ipr: fix small coding style issues
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
9f125d64 236 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 237 if (IS_ERR(handle)) {
bc965ab3 238 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
239 /*
240 * If we're going to skip the normal cleanup, we still need to
241 * make sure that the in-core orphan linked list is properly
242 * cleaned up.
243 */
617ba13b 244 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
245 goto no_delete;
246 }
247
248 if (IS_SYNC(inode))
0390131b 249 ext4_handle_sync(handle);
ac27a0ec 250 inode->i_size = 0;
bc965ab3
TT
251 err = ext4_mark_inode_dirty(handle, inode);
252 if (err) {
12062ddd 253 ext4_warning(inode->i_sb,
bc965ab3
TT
254 "couldn't mark inode dirty (err %d)", err);
255 goto stop_handle;
256 }
ac27a0ec 257 if (inode->i_blocks)
617ba13b 258 ext4_truncate(inode);
bc965ab3
TT
259
260 /*
261 * ext4_ext_truncate() doesn't reserve any slop when it
262 * restarts journal transactions; therefore there may not be
263 * enough credits left in the handle to remove the inode from
264 * the orphan list and set the dtime field.
265 */
0390131b 266 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
267 err = ext4_journal_extend(handle, 3);
268 if (err > 0)
269 err = ext4_journal_restart(handle, 3);
270 if (err != 0) {
12062ddd 271 ext4_warning(inode->i_sb,
bc965ab3
TT
272 "couldn't extend journal (err %d)", err);
273 stop_handle:
274 ext4_journal_stop(handle);
45388219 275 ext4_orphan_del(NULL, inode);
bc965ab3
TT
276 goto no_delete;
277 }
278 }
279
ac27a0ec 280 /*
617ba13b 281 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 282 * AKPM: I think this can be inside the above `if'.
617ba13b 283 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 284 * deletion of a non-existent orphan - this is because we don't
617ba13b 285 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
286 * (Well, we could do this if we need to, but heck - it works)
287 */
617ba13b
MC
288 ext4_orphan_del(handle, inode);
289 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
290
291 /*
292 * One subtle ordering requirement: if anything has gone wrong
293 * (transaction abort, IO errors, whatever), then we can still
294 * do these next steps (the fs will already have been marked as
295 * having errors), but we can't free the inode if the mark_dirty
296 * fails.
297 */
617ba13b 298 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 299 /* If that failed, just do the required in-core inode clear. */
0930fcc1 300 ext4_clear_inode(inode);
ac27a0ec 301 else
617ba13b
MC
302 ext4_free_inode(handle, inode);
303 ext4_journal_stop(handle);
ac27a0ec
DK
304 return;
305no_delete:
0930fcc1 306 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
307}
308
a9e7f447
DM
309#ifdef CONFIG_QUOTA
310qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 311{
a9e7f447 312 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 313}
a9e7f447 314#endif
9d0be502 315
12219aea
AK
316/*
317 * Calculate the number of metadata blocks need to reserve
9d0be502 318 * to allocate a block located at @lblock
12219aea 319 */
01f49d0b 320static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 321{
12e9b892 322 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 323 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 324
8bb2b247 325 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
326}
327
0637c6f4
TT
328/*
329 * Called with i_data_sem down, which is important since we can call
330 * ext4_discard_preallocations() from here.
331 */
5f634d06
AK
332void ext4_da_update_reserve_space(struct inode *inode,
333 int used, int quota_claim)
12219aea
AK
334{
335 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 336 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
337
338 spin_lock(&ei->i_block_reservation_lock);
d8990240 339 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
340 if (unlikely(used > ei->i_reserved_data_blocks)) {
341 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 342 "with only %d reserved data blocks",
0637c6f4
TT
343 __func__, inode->i_ino, used,
344 ei->i_reserved_data_blocks);
345 WARN_ON(1);
346 used = ei->i_reserved_data_blocks;
347 }
12219aea 348
0637c6f4
TT
349 /* Update per-inode reservations */
350 ei->i_reserved_data_blocks -= used;
0637c6f4 351 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 352 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 353 used + ei->i_allocated_meta_blocks);
0637c6f4 354 ei->i_allocated_meta_blocks = 0;
6bc6e63f 355
0637c6f4
TT
356 if (ei->i_reserved_data_blocks == 0) {
357 /*
358 * We can release all of the reserved metadata blocks
359 * only when we have written all of the delayed
360 * allocation blocks.
361 */
57042651 362 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 363 ei->i_reserved_meta_blocks);
ee5f4d9c 364 ei->i_reserved_meta_blocks = 0;
9d0be502 365 ei->i_da_metadata_calc_len = 0;
6bc6e63f 366 }
12219aea 367 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 368
72b8ab9d
ES
369 /* Update quota subsystem for data blocks */
370 if (quota_claim)
7b415bf6 371 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 372 else {
5f634d06
AK
373 /*
374 * We did fallocate with an offset that is already delayed
375 * allocated. So on delayed allocated writeback we should
72b8ab9d 376 * not re-claim the quota for fallocated blocks.
5f634d06 377 */
7b415bf6 378 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 379 }
d6014301
AK
380
381 /*
382 * If we have done all the pending block allocations and if
383 * there aren't any writers on the inode, we can discard the
384 * inode's preallocations.
385 */
0637c6f4
TT
386 if ((ei->i_reserved_data_blocks == 0) &&
387 (atomic_read(&inode->i_writecount) == 0))
d6014301 388 ext4_discard_preallocations(inode);
12219aea
AK
389}
390
e29136f8 391static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
392 unsigned int line,
393 struct ext4_map_blocks *map)
6fd058f7 394{
24676da4
TT
395 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
396 map->m_len)) {
c398eda0
TT
397 ext4_error_inode(inode, func, line, map->m_pblk,
398 "lblock %lu mapped to illegal pblock "
399 "(length %d)", (unsigned long) map->m_lblk,
400 map->m_len);
6fd058f7
TT
401 return -EIO;
402 }
403 return 0;
404}
405
e29136f8 406#define check_block_validity(inode, map) \
c398eda0 407 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 408
55138e0b 409/*
1f94533d
TT
410 * Return the number of contiguous dirty pages in a given inode
411 * starting at page frame idx.
55138e0b
TT
412 */
413static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
414 unsigned int max_pages)
415{
416 struct address_space *mapping = inode->i_mapping;
417 pgoff_t index;
418 struct pagevec pvec;
419 pgoff_t num = 0;
420 int i, nr_pages, done = 0;
421
422 if (max_pages == 0)
423 return 0;
424 pagevec_init(&pvec, 0);
425 while (!done) {
426 index = idx;
427 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 PAGECACHE_TAG_DIRTY,
429 (pgoff_t)PAGEVEC_SIZE);
430 if (nr_pages == 0)
431 break;
432 for (i = 0; i < nr_pages; i++) {
433 struct page *page = pvec.pages[i];
434 struct buffer_head *bh, *head;
435
436 lock_page(page);
437 if (unlikely(page->mapping != mapping) ||
438 !PageDirty(page) ||
439 PageWriteback(page) ||
440 page->index != idx) {
441 done = 1;
442 unlock_page(page);
443 break;
444 }
1f94533d
TT
445 if (page_has_buffers(page)) {
446 bh = head = page_buffers(page);
447 do {
448 if (!buffer_delay(bh) &&
449 !buffer_unwritten(bh))
450 done = 1;
451 bh = bh->b_this_page;
452 } while (!done && (bh != head));
453 }
55138e0b
TT
454 unlock_page(page);
455 if (done)
456 break;
457 idx++;
458 num++;
659c6009
ES
459 if (num >= max_pages) {
460 done = 1;
55138e0b 461 break;
659c6009 462 }
55138e0b
TT
463 }
464 pagevec_release(&pvec);
465 }
466 return num;
467}
468
5356f261
AK
469/*
470 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
471 */
472static void set_buffers_da_mapped(struct inode *inode,
473 struct ext4_map_blocks *map)
474{
475 struct address_space *mapping = inode->i_mapping;
476 struct pagevec pvec;
477 int i, nr_pages;
478 pgoff_t index, end;
479
480 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
481 end = (map->m_lblk + map->m_len - 1) >>
482 (PAGE_CACHE_SHIFT - inode->i_blkbits);
483
484 pagevec_init(&pvec, 0);
485 while (index <= end) {
486 nr_pages = pagevec_lookup(&pvec, mapping, index,
487 min(end - index + 1,
488 (pgoff_t)PAGEVEC_SIZE));
489 if (nr_pages == 0)
490 break;
491 for (i = 0; i < nr_pages; i++) {
492 struct page *page = pvec.pages[i];
493 struct buffer_head *bh, *head;
494
495 if (unlikely(page->mapping != mapping) ||
496 !PageDirty(page))
497 break;
498
499 if (page_has_buffers(page)) {
500 bh = head = page_buffers(page);
501 do {
502 set_buffer_da_mapped(bh);
503 bh = bh->b_this_page;
504 } while (bh != head);
505 }
506 index++;
507 }
508 pagevec_release(&pvec);
509 }
510}
511
f5ab0d1f 512/*
e35fd660 513 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 514 * and returns if the blocks are already mapped.
f5ab0d1f 515 *
f5ab0d1f
MC
516 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
517 * and store the allocated blocks in the result buffer head and mark it
518 * mapped.
519 *
e35fd660
TT
520 * If file type is extents based, it will call ext4_ext_map_blocks(),
521 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
522 * based files
523 *
524 * On success, it returns the number of blocks being mapped or allocate.
525 * if create==0 and the blocks are pre-allocated and uninitialized block,
526 * the result buffer head is unmapped. If the create ==1, it will make sure
527 * the buffer head is mapped.
528 *
529 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 530 * that case, buffer head is unmapped
f5ab0d1f
MC
531 *
532 * It returns the error in case of allocation failure.
533 */
e35fd660
TT
534int ext4_map_blocks(handle_t *handle, struct inode *inode,
535 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
536{
537 int retval;
f5ab0d1f 538
e35fd660
TT
539 map->m_flags = 0;
540 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
541 "logical block %lu\n", inode->i_ino, flags, map->m_len,
542 (unsigned long) map->m_lblk);
4df3d265 543 /*
b920c755
TT
544 * Try to see if we can get the block without requesting a new
545 * file system block.
4df3d265
AK
546 */
547 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 548 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
549 retval = ext4_ext_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 } else {
a4e5d88b
DM
552 retval = ext4_ind_map_blocks(handle, inode, map, flags &
553 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 554 }
4df3d265 555 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 556
e35fd660 557 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 558 int ret = check_block_validity(inode, map);
6fd058f7
TT
559 if (ret != 0)
560 return ret;
561 }
562
f5ab0d1f 563 /* If it is only a block(s) look up */
c2177057 564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
565 return retval;
566
567 /*
568 * Returns if the blocks have already allocated
569 *
570 * Note that if blocks have been preallocated
df3ab170 571 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
572 * with buffer head unmapped.
573 */
e35fd660 574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
575 return retval;
576
2a8964d6
AK
577 /*
578 * When we call get_blocks without the create flag, the
579 * BH_Unwritten flag could have gotten set if the blocks
580 * requested were part of a uninitialized extent. We need to
581 * clear this flag now that we are committed to convert all or
582 * part of the uninitialized extent to be an initialized
583 * extent. This is because we need to avoid the combination
584 * of BH_Unwritten and BH_Mapped flags being simultaneously
585 * set on the buffer_head.
586 */
e35fd660 587 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 588
4df3d265 589 /*
f5ab0d1f
MC
590 * New blocks allocate and/or writing to uninitialized extent
591 * will possibly result in updating i_data, so we take
592 * the write lock of i_data_sem, and call get_blocks()
593 * with create == 1 flag.
4df3d265
AK
594 */
595 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
596
597 /*
598 * if the caller is from delayed allocation writeout path
599 * we have already reserved fs blocks for allocation
600 * let the underlying get_block() function know to
601 * avoid double accounting
602 */
c2177057 603 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 604 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
605 /*
606 * We need to check for EXT4 here because migrate
607 * could have changed the inode type in between
608 */
12e9b892 609 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 610 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 611 } else {
e35fd660 612 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 613
e35fd660 614 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
615 /*
616 * We allocated new blocks which will result in
617 * i_data's format changing. Force the migrate
618 * to fail by clearing migrate flags
619 */
19f5fb7a 620 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 621 }
d2a17637 622
5f634d06
AK
623 /*
624 * Update reserved blocks/metadata blocks after successful
625 * block allocation which had been deferred till now. We don't
626 * support fallocate for non extent files. So we can update
627 * reserve space here.
628 */
629 if ((retval > 0) &&
1296cc85 630 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
631 ext4_da_update_reserve_space(inode, retval, 1);
632 }
5356f261 633 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 634 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 635
5356f261
AK
636 /* If we have successfully mapped the delayed allocated blocks,
637 * set the BH_Da_Mapped bit on them. Its important to do this
638 * under the protection of i_data_sem.
639 */
640 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
641 set_buffers_da_mapped(inode, map);
642 }
643
4df3d265 644 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 645 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 646 int ret = check_block_validity(inode, map);
6fd058f7
TT
647 if (ret != 0)
648 return ret;
649 }
0e855ac8
AK
650 return retval;
651}
652
f3bd1f3f
MC
653/* Maximum number of blocks we map for direct IO at once. */
654#define DIO_MAX_BLOCKS 4096
655
2ed88685
TT
656static int _ext4_get_block(struct inode *inode, sector_t iblock,
657 struct buffer_head *bh, int flags)
ac27a0ec 658{
3e4fdaf8 659 handle_t *handle = ext4_journal_current_handle();
2ed88685 660 struct ext4_map_blocks map;
7fb5409d 661 int ret = 0, started = 0;
f3bd1f3f 662 int dio_credits;
ac27a0ec 663
2ed88685
TT
664 map.m_lblk = iblock;
665 map.m_len = bh->b_size >> inode->i_blkbits;
666
667 if (flags && !handle) {
7fb5409d 668 /* Direct IO write... */
2ed88685
TT
669 if (map.m_len > DIO_MAX_BLOCKS)
670 map.m_len = DIO_MAX_BLOCKS;
671 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 672 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 673 if (IS_ERR(handle)) {
ac27a0ec 674 ret = PTR_ERR(handle);
2ed88685 675 return ret;
ac27a0ec 676 }
7fb5409d 677 started = 1;
ac27a0ec
DK
678 }
679
2ed88685 680 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 681 if (ret > 0) {
2ed88685
TT
682 map_bh(bh, inode->i_sb, map.m_pblk);
683 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
684 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 685 ret = 0;
ac27a0ec 686 }
7fb5409d
JK
687 if (started)
688 ext4_journal_stop(handle);
ac27a0ec
DK
689 return ret;
690}
691
2ed88685
TT
692int ext4_get_block(struct inode *inode, sector_t iblock,
693 struct buffer_head *bh, int create)
694{
695 return _ext4_get_block(inode, iblock, bh,
696 create ? EXT4_GET_BLOCKS_CREATE : 0);
697}
698
ac27a0ec
DK
699/*
700 * `handle' can be NULL if create is zero
701 */
617ba13b 702struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 703 ext4_lblk_t block, int create, int *errp)
ac27a0ec 704{
2ed88685
TT
705 struct ext4_map_blocks map;
706 struct buffer_head *bh;
ac27a0ec
DK
707 int fatal = 0, err;
708
709 J_ASSERT(handle != NULL || create == 0);
710
2ed88685
TT
711 map.m_lblk = block;
712 map.m_len = 1;
713 err = ext4_map_blocks(handle, inode, &map,
714 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 715
2ed88685
TT
716 if (err < 0)
717 *errp = err;
718 if (err <= 0)
719 return NULL;
720 *errp = 0;
721
722 bh = sb_getblk(inode->i_sb, map.m_pblk);
723 if (!bh) {
724 *errp = -EIO;
725 return NULL;
ac27a0ec 726 }
2ed88685
TT
727 if (map.m_flags & EXT4_MAP_NEW) {
728 J_ASSERT(create != 0);
729 J_ASSERT(handle != NULL);
ac27a0ec 730
2ed88685
TT
731 /*
732 * Now that we do not always journal data, we should
733 * keep in mind whether this should always journal the
734 * new buffer as metadata. For now, regular file
735 * writes use ext4_get_block instead, so it's not a
736 * problem.
737 */
738 lock_buffer(bh);
739 BUFFER_TRACE(bh, "call get_create_access");
740 fatal = ext4_journal_get_create_access(handle, bh);
741 if (!fatal && !buffer_uptodate(bh)) {
742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
743 set_buffer_uptodate(bh);
ac27a0ec 744 }
2ed88685
TT
745 unlock_buffer(bh);
746 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
747 err = ext4_handle_dirty_metadata(handle, inode, bh);
748 if (!fatal)
749 fatal = err;
750 } else {
751 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 752 }
2ed88685
TT
753 if (fatal) {
754 *errp = fatal;
755 brelse(bh);
756 bh = NULL;
757 }
758 return bh;
ac27a0ec
DK
759}
760
617ba13b 761struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 762 ext4_lblk_t block, int create, int *err)
ac27a0ec 763{
af5bc92d 764 struct buffer_head *bh;
ac27a0ec 765
617ba13b 766 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
767 if (!bh)
768 return bh;
769 if (buffer_uptodate(bh))
770 return bh;
65299a3b 771 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
772 wait_on_buffer(bh);
773 if (buffer_uptodate(bh))
774 return bh;
775 put_bh(bh);
776 *err = -EIO;
777 return NULL;
778}
779
af5bc92d
TT
780static int walk_page_buffers(handle_t *handle,
781 struct buffer_head *head,
782 unsigned from,
783 unsigned to,
784 int *partial,
785 int (*fn)(handle_t *handle,
786 struct buffer_head *bh))
ac27a0ec
DK
787{
788 struct buffer_head *bh;
789 unsigned block_start, block_end;
790 unsigned blocksize = head->b_size;
791 int err, ret = 0;
792 struct buffer_head *next;
793
af5bc92d
TT
794 for (bh = head, block_start = 0;
795 ret == 0 && (bh != head || !block_start);
de9a55b8 796 block_start = block_end, bh = next) {
ac27a0ec
DK
797 next = bh->b_this_page;
798 block_end = block_start + blocksize;
799 if (block_end <= from || block_start >= to) {
800 if (partial && !buffer_uptodate(bh))
801 *partial = 1;
802 continue;
803 }
804 err = (*fn)(handle, bh);
805 if (!ret)
806 ret = err;
807 }
808 return ret;
809}
810
811/*
812 * To preserve ordering, it is essential that the hole instantiation and
813 * the data write be encapsulated in a single transaction. We cannot
617ba13b 814 * close off a transaction and start a new one between the ext4_get_block()
dab291af 815 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
816 * prepare_write() is the right place.
817 *
617ba13b
MC
818 * Also, this function can nest inside ext4_writepage() ->
819 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
820 * has generated enough buffer credits to do the whole page. So we won't
821 * block on the journal in that case, which is good, because the caller may
822 * be PF_MEMALLOC.
823 *
617ba13b 824 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
825 * quota file writes. If we were to commit the transaction while thus
826 * reentered, there can be a deadlock - we would be holding a quota
827 * lock, and the commit would never complete if another thread had a
828 * transaction open and was blocking on the quota lock - a ranking
829 * violation.
830 *
dab291af 831 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
832 * will _not_ run commit under these circumstances because handle->h_ref
833 * is elevated. We'll still have enough credits for the tiny quotafile
834 * write.
835 */
836static int do_journal_get_write_access(handle_t *handle,
de9a55b8 837 struct buffer_head *bh)
ac27a0ec 838{
56d35a4c
JK
839 int dirty = buffer_dirty(bh);
840 int ret;
841
ac27a0ec
DK
842 if (!buffer_mapped(bh) || buffer_freed(bh))
843 return 0;
56d35a4c 844 /*
ebdec241 845 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
846 * the dirty bit as jbd2_journal_get_write_access() could complain
847 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 848 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
849 * the bit before releasing a page lock and thus writeback cannot
850 * ever write the buffer.
851 */
852 if (dirty)
853 clear_buffer_dirty(bh);
854 ret = ext4_journal_get_write_access(handle, bh);
855 if (!ret && dirty)
856 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
857 return ret;
ac27a0ec
DK
858}
859
744692dc
JZ
860static int ext4_get_block_write(struct inode *inode, sector_t iblock,
861 struct buffer_head *bh_result, int create);
bfc1af65 862static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
863 loff_t pos, unsigned len, unsigned flags,
864 struct page **pagep, void **fsdata)
ac27a0ec 865{
af5bc92d 866 struct inode *inode = mapping->host;
1938a150 867 int ret, needed_blocks;
ac27a0ec
DK
868 handle_t *handle;
869 int retries = 0;
af5bc92d 870 struct page *page;
de9a55b8 871 pgoff_t index;
af5bc92d 872 unsigned from, to;
bfc1af65 873
9bffad1e 874 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
875 /*
876 * Reserve one block more for addition to orphan list in case
877 * we allocate blocks but write fails for some reason
878 */
879 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 880 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
881 from = pos & (PAGE_CACHE_SIZE - 1);
882 to = from + len;
ac27a0ec
DK
883
884retry:
af5bc92d
TT
885 handle = ext4_journal_start(inode, needed_blocks);
886 if (IS_ERR(handle)) {
887 ret = PTR_ERR(handle);
888 goto out;
7479d2b9 889 }
ac27a0ec 890
ebd3610b
JK
891 /* We cannot recurse into the filesystem as the transaction is already
892 * started */
893 flags |= AOP_FLAG_NOFS;
894
54566b2c 895 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
896 if (!page) {
897 ext4_journal_stop(handle);
898 ret = -ENOMEM;
899 goto out;
900 }
901 *pagep = page;
902
744692dc 903 if (ext4_should_dioread_nolock(inode))
6e1db88d 904 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 905 else
6e1db88d 906 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
907
908 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
909 ret = walk_page_buffers(handle, page_buffers(page),
910 from, to, NULL, do_journal_get_write_access);
911 }
bfc1af65
NP
912
913 if (ret) {
af5bc92d 914 unlock_page(page);
af5bc92d 915 page_cache_release(page);
ae4d5372 916 /*
6e1db88d 917 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
918 * outside i_size. Trim these off again. Don't need
919 * i_size_read because we hold i_mutex.
1938a150
AK
920 *
921 * Add inode to orphan list in case we crash before
922 * truncate finishes
ae4d5372 923 */
ffacfa7a 924 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
925 ext4_orphan_add(handle, inode);
926
927 ext4_journal_stop(handle);
928 if (pos + len > inode->i_size) {
b9a4207d 929 ext4_truncate_failed_write(inode);
de9a55b8 930 /*
ffacfa7a 931 * If truncate failed early the inode might
1938a150
AK
932 * still be on the orphan list; we need to
933 * make sure the inode is removed from the
934 * orphan list in that case.
935 */
936 if (inode->i_nlink)
937 ext4_orphan_del(NULL, inode);
938 }
bfc1af65
NP
939 }
940
617ba13b 941 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 942 goto retry;
7479d2b9 943out:
ac27a0ec
DK
944 return ret;
945}
946
bfc1af65
NP
947/* For write_end() in data=journal mode */
948static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
949{
950 if (!buffer_mapped(bh) || buffer_freed(bh))
951 return 0;
952 set_buffer_uptodate(bh);
0390131b 953 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
954}
955
f8514083 956static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
957 struct address_space *mapping,
958 loff_t pos, unsigned len, unsigned copied,
959 struct page *page, void *fsdata)
f8514083
AK
960{
961 int i_size_changed = 0;
962 struct inode *inode = mapping->host;
963 handle_t *handle = ext4_journal_current_handle();
964
965 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
966
967 /*
968 * No need to use i_size_read() here, the i_size
969 * cannot change under us because we hold i_mutex.
970 *
971 * But it's important to update i_size while still holding page lock:
972 * page writeout could otherwise come in and zero beyond i_size.
973 */
974 if (pos + copied > inode->i_size) {
975 i_size_write(inode, pos + copied);
976 i_size_changed = 1;
977 }
978
979 if (pos + copied > EXT4_I(inode)->i_disksize) {
980 /* We need to mark inode dirty even if
981 * new_i_size is less that inode->i_size
982 * bu greater than i_disksize.(hint delalloc)
983 */
984 ext4_update_i_disksize(inode, (pos + copied));
985 i_size_changed = 1;
986 }
987 unlock_page(page);
988 page_cache_release(page);
989
990 /*
991 * Don't mark the inode dirty under page lock. First, it unnecessarily
992 * makes the holding time of page lock longer. Second, it forces lock
993 * ordering of page lock and transaction start for journaling
994 * filesystems.
995 */
996 if (i_size_changed)
997 ext4_mark_inode_dirty(handle, inode);
998
999 return copied;
1000}
1001
ac27a0ec
DK
1002/*
1003 * We need to pick up the new inode size which generic_commit_write gave us
1004 * `file' can be NULL - eg, when called from page_symlink().
1005 *
617ba13b 1006 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1007 * buffers are managed internally.
1008 */
bfc1af65 1009static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1010 struct address_space *mapping,
1011 loff_t pos, unsigned len, unsigned copied,
1012 struct page *page, void *fsdata)
ac27a0ec 1013{
617ba13b 1014 handle_t *handle = ext4_journal_current_handle();
cf108bca 1015 struct inode *inode = mapping->host;
ac27a0ec
DK
1016 int ret = 0, ret2;
1017
9bffad1e 1018 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1019 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1020
1021 if (ret == 0) {
f8514083 1022 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1023 page, fsdata);
f8a87d89 1024 copied = ret2;
ffacfa7a 1025 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1026 /* if we have allocated more blocks and copied
1027 * less. We will have blocks allocated outside
1028 * inode->i_size. So truncate them
1029 */
1030 ext4_orphan_add(handle, inode);
f8a87d89
RK
1031 if (ret2 < 0)
1032 ret = ret2;
09e0834f
AF
1033 } else {
1034 unlock_page(page);
1035 page_cache_release(page);
ac27a0ec 1036 }
09e0834f 1037
617ba13b 1038 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1039 if (!ret)
1040 ret = ret2;
bfc1af65 1041
f8514083 1042 if (pos + len > inode->i_size) {
b9a4207d 1043 ext4_truncate_failed_write(inode);
de9a55b8 1044 /*
ffacfa7a 1045 * If truncate failed early the inode might still be
f8514083
AK
1046 * on the orphan list; we need to make sure the inode
1047 * is removed from the orphan list in that case.
1048 */
1049 if (inode->i_nlink)
1050 ext4_orphan_del(NULL, inode);
1051 }
1052
1053
bfc1af65 1054 return ret ? ret : copied;
ac27a0ec
DK
1055}
1056
bfc1af65 1057static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1058 struct address_space *mapping,
1059 loff_t pos, unsigned len, unsigned copied,
1060 struct page *page, void *fsdata)
ac27a0ec 1061{
617ba13b 1062 handle_t *handle = ext4_journal_current_handle();
cf108bca 1063 struct inode *inode = mapping->host;
ac27a0ec 1064 int ret = 0, ret2;
ac27a0ec 1065
9bffad1e 1066 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1067 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1068 page, fsdata);
f8a87d89 1069 copied = ret2;
ffacfa7a 1070 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1071 /* if we have allocated more blocks and copied
1072 * less. We will have blocks allocated outside
1073 * inode->i_size. So truncate them
1074 */
1075 ext4_orphan_add(handle, inode);
1076
f8a87d89
RK
1077 if (ret2 < 0)
1078 ret = ret2;
ac27a0ec 1079
617ba13b 1080 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1081 if (!ret)
1082 ret = ret2;
bfc1af65 1083
f8514083 1084 if (pos + len > inode->i_size) {
b9a4207d 1085 ext4_truncate_failed_write(inode);
de9a55b8 1086 /*
ffacfa7a 1087 * If truncate failed early the inode might still be
f8514083
AK
1088 * on the orphan list; we need to make sure the inode
1089 * is removed from the orphan list in that case.
1090 */
1091 if (inode->i_nlink)
1092 ext4_orphan_del(NULL, inode);
1093 }
1094
bfc1af65 1095 return ret ? ret : copied;
ac27a0ec
DK
1096}
1097
bfc1af65 1098static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1099 struct address_space *mapping,
1100 loff_t pos, unsigned len, unsigned copied,
1101 struct page *page, void *fsdata)
ac27a0ec 1102{
617ba13b 1103 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1104 struct inode *inode = mapping->host;
ac27a0ec
DK
1105 int ret = 0, ret2;
1106 int partial = 0;
bfc1af65 1107 unsigned from, to;
cf17fea6 1108 loff_t new_i_size;
ac27a0ec 1109
9bffad1e 1110 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1111 from = pos & (PAGE_CACHE_SIZE - 1);
1112 to = from + len;
1113
441c8508
CW
1114 BUG_ON(!ext4_handle_valid(handle));
1115
bfc1af65
NP
1116 if (copied < len) {
1117 if (!PageUptodate(page))
1118 copied = 0;
1119 page_zero_new_buffers(page, from+copied, to);
1120 }
ac27a0ec
DK
1121
1122 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1123 to, &partial, write_end_fn);
ac27a0ec
DK
1124 if (!partial)
1125 SetPageUptodate(page);
cf17fea6
AK
1126 new_i_size = pos + copied;
1127 if (new_i_size > inode->i_size)
bfc1af65 1128 i_size_write(inode, pos+copied);
19f5fb7a 1129 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1130 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1131 if (new_i_size > EXT4_I(inode)->i_disksize) {
1132 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1133 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1134 if (!ret)
1135 ret = ret2;
1136 }
bfc1af65 1137
cf108bca 1138 unlock_page(page);
f8514083 1139 page_cache_release(page);
ffacfa7a 1140 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1141 /* if we have allocated more blocks and copied
1142 * less. We will have blocks allocated outside
1143 * inode->i_size. So truncate them
1144 */
1145 ext4_orphan_add(handle, inode);
1146
617ba13b 1147 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1148 if (!ret)
1149 ret = ret2;
f8514083 1150 if (pos + len > inode->i_size) {
b9a4207d 1151 ext4_truncate_failed_write(inode);
de9a55b8 1152 /*
ffacfa7a 1153 * If truncate failed early the inode might still be
f8514083
AK
1154 * on the orphan list; we need to make sure the inode
1155 * is removed from the orphan list in that case.
1156 */
1157 if (inode->i_nlink)
1158 ext4_orphan_del(NULL, inode);
1159 }
bfc1af65
NP
1160
1161 return ret ? ret : copied;
ac27a0ec 1162}
d2a17637 1163
9d0be502 1164/*
7b415bf6 1165 * Reserve a single cluster located at lblock
9d0be502 1166 */
01f49d0b 1167static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1168{
030ba6bc 1169 int retries = 0;
60e58e0f 1170 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1171 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1172 unsigned int md_needed;
5dd4056d 1173 int ret;
d2a17637
MC
1174
1175 /*
1176 * recalculate the amount of metadata blocks to reserve
1177 * in order to allocate nrblocks
1178 * worse case is one extent per block
1179 */
030ba6bc 1180repeat:
0637c6f4 1181 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1182 md_needed = EXT4_NUM_B2C(sbi,
1183 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1184 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1185 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1186
60e58e0f 1187 /*
72b8ab9d
ES
1188 * We will charge metadata quota at writeout time; this saves
1189 * us from metadata over-estimation, though we may go over by
1190 * a small amount in the end. Here we just reserve for data.
60e58e0f 1191 */
7b415bf6 1192 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1193 if (ret)
1194 return ret;
72b8ab9d
ES
1195 /*
1196 * We do still charge estimated metadata to the sb though;
1197 * we cannot afford to run out of free blocks.
1198 */
e7d5f315 1199 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1200 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1201 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1202 yield();
1203 goto repeat;
1204 }
d2a17637
MC
1205 return -ENOSPC;
1206 }
0637c6f4 1207 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1208 ei->i_reserved_data_blocks++;
0637c6f4
TT
1209 ei->i_reserved_meta_blocks += md_needed;
1210 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1211
d2a17637
MC
1212 return 0; /* success */
1213}
1214
12219aea 1215static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1216{
1217 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1218 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1219
cd213226
MC
1220 if (!to_free)
1221 return; /* Nothing to release, exit */
1222
d2a17637 1223 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1224
5a58ec87 1225 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1226 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1227 /*
0637c6f4
TT
1228 * if there aren't enough reserved blocks, then the
1229 * counter is messed up somewhere. Since this
1230 * function is called from invalidate page, it's
1231 * harmless to return without any action.
cd213226 1232 */
0637c6f4
TT
1233 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1234 "ino %lu, to_free %d with only %d reserved "
1084f252 1235 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1236 ei->i_reserved_data_blocks);
1237 WARN_ON(1);
1238 to_free = ei->i_reserved_data_blocks;
cd213226 1239 }
0637c6f4 1240 ei->i_reserved_data_blocks -= to_free;
cd213226 1241
0637c6f4
TT
1242 if (ei->i_reserved_data_blocks == 0) {
1243 /*
1244 * We can release all of the reserved metadata blocks
1245 * only when we have written all of the delayed
1246 * allocation blocks.
7b415bf6
AK
1247 * Note that in case of bigalloc, i_reserved_meta_blocks,
1248 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1249 */
57042651 1250 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1251 ei->i_reserved_meta_blocks);
ee5f4d9c 1252 ei->i_reserved_meta_blocks = 0;
9d0be502 1253 ei->i_da_metadata_calc_len = 0;
0637c6f4 1254 }
d2a17637 1255
72b8ab9d 1256 /* update fs dirty data blocks counter */
57042651 1257 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1258
d2a17637 1259 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1260
7b415bf6 1261 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1262}
1263
1264static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1265 unsigned long offset)
d2a17637
MC
1266{
1267 int to_release = 0;
1268 struct buffer_head *head, *bh;
1269 unsigned int curr_off = 0;
7b415bf6
AK
1270 struct inode *inode = page->mapping->host;
1271 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1272 int num_clusters;
d2a17637
MC
1273
1274 head = page_buffers(page);
1275 bh = head;
1276 do {
1277 unsigned int next_off = curr_off + bh->b_size;
1278
1279 if ((offset <= curr_off) && (buffer_delay(bh))) {
1280 to_release++;
1281 clear_buffer_delay(bh);
5356f261 1282 clear_buffer_da_mapped(bh);
d2a17637
MC
1283 }
1284 curr_off = next_off;
1285 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1286
1287 /* If we have released all the blocks belonging to a cluster, then we
1288 * need to release the reserved space for that cluster. */
1289 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1290 while (num_clusters > 0) {
1291 ext4_fsblk_t lblk;
1292 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1293 ((num_clusters - 1) << sbi->s_cluster_bits);
1294 if (sbi->s_cluster_ratio == 1 ||
1295 !ext4_find_delalloc_cluster(inode, lblk, 1))
1296 ext4_da_release_space(inode, 1);
1297
1298 num_clusters--;
1299 }
d2a17637 1300}
ac27a0ec 1301
64769240
AT
1302/*
1303 * Delayed allocation stuff
1304 */
1305
64769240
AT
1306/*
1307 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1308 * them with writepage() call back
64769240
AT
1309 *
1310 * @mpd->inode: inode
1311 * @mpd->first_page: first page of the extent
1312 * @mpd->next_page: page after the last page of the extent
64769240
AT
1313 *
1314 * By the time mpage_da_submit_io() is called we expect all blocks
1315 * to be allocated. this may be wrong if allocation failed.
1316 *
1317 * As pages are already locked by write_cache_pages(), we can't use it
1318 */
1de3e3df
TT
1319static int mpage_da_submit_io(struct mpage_da_data *mpd,
1320 struct ext4_map_blocks *map)
64769240 1321{
791b7f08
AK
1322 struct pagevec pvec;
1323 unsigned long index, end;
1324 int ret = 0, err, nr_pages, i;
1325 struct inode *inode = mpd->inode;
1326 struct address_space *mapping = inode->i_mapping;
cb20d518 1327 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1328 unsigned int len, block_start;
1329 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1330 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1331 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1332 struct ext4_io_submit io_submit;
64769240
AT
1333
1334 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1335 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1336 /*
1337 * We need to start from the first_page to the next_page - 1
1338 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1339 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1340 * at the currently mapped buffer_heads.
1341 */
64769240
AT
1342 index = mpd->first_page;
1343 end = mpd->next_page - 1;
1344
791b7f08 1345 pagevec_init(&pvec, 0);
64769240 1346 while (index <= end) {
791b7f08 1347 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1348 if (nr_pages == 0)
1349 break;
1350 for (i = 0; i < nr_pages; i++) {
97498956 1351 int commit_write = 0, skip_page = 0;
64769240
AT
1352 struct page *page = pvec.pages[i];
1353
791b7f08
AK
1354 index = page->index;
1355 if (index > end)
1356 break;
cb20d518
TT
1357
1358 if (index == size >> PAGE_CACHE_SHIFT)
1359 len = size & ~PAGE_CACHE_MASK;
1360 else
1361 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1362 if (map) {
1363 cur_logical = index << (PAGE_CACHE_SHIFT -
1364 inode->i_blkbits);
1365 pblock = map->m_pblk + (cur_logical -
1366 map->m_lblk);
1367 }
791b7f08
AK
1368 index++;
1369
1370 BUG_ON(!PageLocked(page));
1371 BUG_ON(PageWriteback(page));
1372
64769240 1373 /*
cb20d518
TT
1374 * If the page does not have buffers (for
1375 * whatever reason), try to create them using
a107e5a3 1376 * __block_write_begin. If this fails,
97498956 1377 * skip the page and move on.
64769240 1378 */
cb20d518 1379 if (!page_has_buffers(page)) {
a107e5a3 1380 if (__block_write_begin(page, 0, len,
cb20d518 1381 noalloc_get_block_write)) {
97498956 1382 skip_page:
cb20d518
TT
1383 unlock_page(page);
1384 continue;
1385 }
1386 commit_write = 1;
1387 }
64769240 1388
3ecdb3a1
TT
1389 bh = page_bufs = page_buffers(page);
1390 block_start = 0;
64769240 1391 do {
1de3e3df 1392 if (!bh)
97498956 1393 goto skip_page;
1de3e3df
TT
1394 if (map && (cur_logical >= map->m_lblk) &&
1395 (cur_logical <= (map->m_lblk +
1396 (map->m_len - 1)))) {
29fa89d0
AK
1397 if (buffer_delay(bh)) {
1398 clear_buffer_delay(bh);
1399 bh->b_blocknr = pblock;
29fa89d0 1400 }
5356f261
AK
1401 if (buffer_da_mapped(bh))
1402 clear_buffer_da_mapped(bh);
1de3e3df
TT
1403 if (buffer_unwritten(bh) ||
1404 buffer_mapped(bh))
1405 BUG_ON(bh->b_blocknr != pblock);
1406 if (map->m_flags & EXT4_MAP_UNINIT)
1407 set_buffer_uninit(bh);
1408 clear_buffer_unwritten(bh);
1409 }
29fa89d0 1410
13a79a47
YY
1411 /*
1412 * skip page if block allocation undone and
1413 * block is dirty
1414 */
1415 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1416 skip_page = 1;
3ecdb3a1
TT
1417 bh = bh->b_this_page;
1418 block_start += bh->b_size;
64769240
AT
1419 cur_logical++;
1420 pblock++;
1de3e3df
TT
1421 } while (bh != page_bufs);
1422
97498956
TT
1423 if (skip_page)
1424 goto skip_page;
cb20d518
TT
1425
1426 if (commit_write)
1427 /* mark the buffer_heads as dirty & uptodate */
1428 block_commit_write(page, 0, len);
1429
97498956 1430 clear_page_dirty_for_io(page);
bd2d0210
TT
1431 /*
1432 * Delalloc doesn't support data journalling,
1433 * but eventually maybe we'll lift this
1434 * restriction.
1435 */
1436 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1437 err = __ext4_journalled_writepage(page, len);
1449032b 1438 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1439 err = ext4_bio_write_page(&io_submit, page,
1440 len, mpd->wbc);
9dd75f1f
TT
1441 else if (buffer_uninit(page_bufs)) {
1442 ext4_set_bh_endio(page_bufs, inode);
1443 err = block_write_full_page_endio(page,
1444 noalloc_get_block_write,
1445 mpd->wbc, ext4_end_io_buffer_write);
1446 } else
1449032b
TT
1447 err = block_write_full_page(page,
1448 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1449
1450 if (!err)
a1d6cc56 1451 mpd->pages_written++;
64769240
AT
1452 /*
1453 * In error case, we have to continue because
1454 * remaining pages are still locked
64769240
AT
1455 */
1456 if (ret == 0)
1457 ret = err;
64769240
AT
1458 }
1459 pagevec_release(&pvec);
1460 }
bd2d0210 1461 ext4_io_submit(&io_submit);
64769240 1462 return ret;
64769240
AT
1463}
1464
c7f5938a 1465static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1466{
1467 int nr_pages, i;
1468 pgoff_t index, end;
1469 struct pagevec pvec;
1470 struct inode *inode = mpd->inode;
1471 struct address_space *mapping = inode->i_mapping;
1472
c7f5938a
CW
1473 index = mpd->first_page;
1474 end = mpd->next_page - 1;
c4a0c46e
AK
1475 while (index <= end) {
1476 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1477 if (nr_pages == 0)
1478 break;
1479 for (i = 0; i < nr_pages; i++) {
1480 struct page *page = pvec.pages[i];
9b1d0998 1481 if (page->index > end)
c4a0c46e 1482 break;
c4a0c46e
AK
1483 BUG_ON(!PageLocked(page));
1484 BUG_ON(PageWriteback(page));
1485 block_invalidatepage(page, 0);
1486 ClearPageUptodate(page);
1487 unlock_page(page);
1488 }
9b1d0998
JK
1489 index = pvec.pages[nr_pages - 1]->index + 1;
1490 pagevec_release(&pvec);
c4a0c46e
AK
1491 }
1492 return;
1493}
1494
df22291f
AK
1495static void ext4_print_free_blocks(struct inode *inode)
1496{
1497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1498 struct super_block *sb = inode->i_sb;
1499
1500 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1501 EXT4_C2B(EXT4_SB(inode->i_sb),
1502 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1503 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1504 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1505 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1506 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1507 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1508 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1509 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1510 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1511 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1512 EXT4_I(inode)->i_reserved_data_blocks);
1513 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1514 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1515 return;
1516}
1517
64769240 1518/*
5a87b7a5
TT
1519 * mpage_da_map_and_submit - go through given space, map them
1520 * if necessary, and then submit them for I/O
64769240 1521 *
8dc207c0 1522 * @mpd - bh describing space
64769240
AT
1523 *
1524 * The function skips space we know is already mapped to disk blocks.
1525 *
64769240 1526 */
5a87b7a5 1527static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1528{
2ac3b6e0 1529 int err, blks, get_blocks_flags;
1de3e3df 1530 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1531 sector_t next = mpd->b_blocknr;
1532 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1533 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1534 handle_t *handle = NULL;
64769240
AT
1535
1536 /*
5a87b7a5
TT
1537 * If the blocks are mapped already, or we couldn't accumulate
1538 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1539 */
5a87b7a5
TT
1540 if ((mpd->b_size == 0) ||
1541 ((mpd->b_state & (1 << BH_Mapped)) &&
1542 !(mpd->b_state & (1 << BH_Delay)) &&
1543 !(mpd->b_state & (1 << BH_Unwritten))))
1544 goto submit_io;
2fa3cdfb
TT
1545
1546 handle = ext4_journal_current_handle();
1547 BUG_ON(!handle);
1548
79ffab34 1549 /*
79e83036 1550 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1551 * blocks, or to convert an uninitialized extent to be
1552 * initialized (in the case where we have written into
1553 * one or more preallocated blocks).
1554 *
1555 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1556 * indicate that we are on the delayed allocation path. This
1557 * affects functions in many different parts of the allocation
1558 * call path. This flag exists primarily because we don't
79e83036 1559 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1560 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1561 * inode's allocation semaphore is taken.
1562 *
1563 * If the blocks in questions were delalloc blocks, set
1564 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1565 * variables are updated after the blocks have been allocated.
79ffab34 1566 */
2ed88685
TT
1567 map.m_lblk = next;
1568 map.m_len = max_blocks;
1296cc85 1569 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1570 if (ext4_should_dioread_nolock(mpd->inode))
1571 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1572 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1573 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1574
2ed88685 1575 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1576 if (blks < 0) {
e3570639
ES
1577 struct super_block *sb = mpd->inode->i_sb;
1578
2fa3cdfb 1579 err = blks;
ed5bde0b 1580 /*
5a87b7a5 1581 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1582 * appears to be free blocks we will just let
1583 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1584 */
1585 if (err == -EAGAIN)
5a87b7a5 1586 goto submit_io;
df22291f 1587
5dee5437 1588 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1589 mpd->retval = err;
5a87b7a5 1590 goto submit_io;
df22291f
AK
1591 }
1592
c4a0c46e 1593 /*
ed5bde0b
TT
1594 * get block failure will cause us to loop in
1595 * writepages, because a_ops->writepage won't be able
1596 * to make progress. The page will be redirtied by
1597 * writepage and writepages will again try to write
1598 * the same.
c4a0c46e 1599 */
e3570639
ES
1600 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1601 ext4_msg(sb, KERN_CRIT,
1602 "delayed block allocation failed for inode %lu "
1603 "at logical offset %llu with max blocks %zd "
1604 "with error %d", mpd->inode->i_ino,
1605 (unsigned long long) next,
1606 mpd->b_size >> mpd->inode->i_blkbits, err);
1607 ext4_msg(sb, KERN_CRIT,
1608 "This should not happen!! Data will be lost\n");
1609 if (err == -ENOSPC)
1610 ext4_print_free_blocks(mpd->inode);
030ba6bc 1611 }
2fa3cdfb 1612 /* invalidate all the pages */
c7f5938a 1613 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1614
1615 /* Mark this page range as having been completed */
1616 mpd->io_done = 1;
5a87b7a5 1617 return;
c4a0c46e 1618 }
2fa3cdfb
TT
1619 BUG_ON(blks == 0);
1620
1de3e3df 1621 mapp = &map;
2ed88685
TT
1622 if (map.m_flags & EXT4_MAP_NEW) {
1623 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1624 int i;
64769240 1625
2ed88685
TT
1626 for (i = 0; i < map.m_len; i++)
1627 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1628
decbd919
TT
1629 if (ext4_should_order_data(mpd->inode)) {
1630 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1631 if (err) {
decbd919 1632 /* Only if the journal is aborted */
8de49e67
KM
1633 mpd->retval = err;
1634 goto submit_io;
1635 }
decbd919 1636 }
2fa3cdfb
TT
1637 }
1638
1639 /*
03f5d8bc 1640 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1641 */
1642 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1643 if (disksize > i_size_read(mpd->inode))
1644 disksize = i_size_read(mpd->inode);
1645 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1646 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1647 err = ext4_mark_inode_dirty(handle, mpd->inode);
1648 if (err)
1649 ext4_error(mpd->inode->i_sb,
1650 "Failed to mark inode %lu dirty",
1651 mpd->inode->i_ino);
2fa3cdfb
TT
1652 }
1653
5a87b7a5 1654submit_io:
1de3e3df 1655 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1656 mpd->io_done = 1;
64769240
AT
1657}
1658
bf068ee2
AK
1659#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1660 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1661
1662/*
1663 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1664 *
1665 * @mpd->lbh - extent of blocks
1666 * @logical - logical number of the block in the file
1667 * @bh - bh of the block (used to access block's state)
1668 *
1669 * the function is used to collect contig. blocks in same state
1670 */
1671static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1672 sector_t logical, size_t b_size,
1673 unsigned long b_state)
64769240 1674{
64769240 1675 sector_t next;
8dc207c0 1676 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1677
c445e3e0
ES
1678 /*
1679 * XXX Don't go larger than mballoc is willing to allocate
1680 * This is a stopgap solution. We eventually need to fold
1681 * mpage_da_submit_io() into this function and then call
79e83036 1682 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1683 */
1684 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1685 goto flush_it;
1686
525f4ed8 1687 /* check if thereserved journal credits might overflow */
12e9b892 1688 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1689 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1690 /*
1691 * With non-extent format we are limited by the journal
1692 * credit available. Total credit needed to insert
1693 * nrblocks contiguous blocks is dependent on the
1694 * nrblocks. So limit nrblocks.
1695 */
1696 goto flush_it;
1697 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1698 EXT4_MAX_TRANS_DATA) {
1699 /*
1700 * Adding the new buffer_head would make it cross the
1701 * allowed limit for which we have journal credit
1702 * reserved. So limit the new bh->b_size
1703 */
1704 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1705 mpd->inode->i_blkbits;
1706 /* we will do mpage_da_submit_io in the next loop */
1707 }
1708 }
64769240
AT
1709 /*
1710 * First block in the extent
1711 */
8dc207c0
TT
1712 if (mpd->b_size == 0) {
1713 mpd->b_blocknr = logical;
1714 mpd->b_size = b_size;
1715 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1716 return;
1717 }
1718
8dc207c0 1719 next = mpd->b_blocknr + nrblocks;
64769240
AT
1720 /*
1721 * Can we merge the block to our big extent?
1722 */
8dc207c0
TT
1723 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1724 mpd->b_size += b_size;
64769240
AT
1725 return;
1726 }
1727
525f4ed8 1728flush_it:
64769240
AT
1729 /*
1730 * We couldn't merge the block to our extent, so we
1731 * need to flush current extent and start new one
1732 */
5a87b7a5 1733 mpage_da_map_and_submit(mpd);
a1d6cc56 1734 return;
64769240
AT
1735}
1736
c364b22c 1737static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1738{
c364b22c 1739 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1740}
1741
5356f261
AK
1742/*
1743 * This function is grabs code from the very beginning of
1744 * ext4_map_blocks, but assumes that the caller is from delayed write
1745 * time. This function looks up the requested blocks and sets the
1746 * buffer delay bit under the protection of i_data_sem.
1747 */
1748static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1749 struct ext4_map_blocks *map,
1750 struct buffer_head *bh)
1751{
1752 int retval;
1753 sector_t invalid_block = ~((sector_t) 0xffff);
1754
1755 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1756 invalid_block = ~0;
1757
1758 map->m_flags = 0;
1759 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1760 "logical block %lu\n", inode->i_ino, map->m_len,
1761 (unsigned long) map->m_lblk);
1762 /*
1763 * Try to see if we can get the block without requesting a new
1764 * file system block.
1765 */
1766 down_read((&EXT4_I(inode)->i_data_sem));
1767 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1768 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1769 else
1770 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1771
1772 if (retval == 0) {
1773 /*
1774 * XXX: __block_prepare_write() unmaps passed block,
1775 * is it OK?
1776 */
1777 /* If the block was allocated from previously allocated cluster,
1778 * then we dont need to reserve it again. */
1779 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1780 retval = ext4_da_reserve_space(inode, iblock);
1781 if (retval)
1782 /* not enough space to reserve */
1783 goto out_unlock;
1784 }
1785
1786 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1787 * and it should not appear on the bh->b_state.
1788 */
1789 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1790
1791 map_bh(bh, inode->i_sb, invalid_block);
1792 set_buffer_new(bh);
1793 set_buffer_delay(bh);
1794 }
1795
1796out_unlock:
1797 up_read((&EXT4_I(inode)->i_data_sem));
1798
1799 return retval;
1800}
1801
64769240 1802/*
b920c755
TT
1803 * This is a special get_blocks_t callback which is used by
1804 * ext4_da_write_begin(). It will either return mapped block or
1805 * reserve space for a single block.
29fa89d0
AK
1806 *
1807 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1808 * We also have b_blocknr = -1 and b_bdev initialized properly
1809 *
1810 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1811 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1812 * initialized properly.
64769240
AT
1813 */
1814static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1815 struct buffer_head *bh, int create)
64769240 1816{
2ed88685 1817 struct ext4_map_blocks map;
64769240
AT
1818 int ret = 0;
1819
1820 BUG_ON(create == 0);
2ed88685
TT
1821 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1822
1823 map.m_lblk = iblock;
1824 map.m_len = 1;
64769240
AT
1825
1826 /*
1827 * first, we need to know whether the block is allocated already
1828 * preallocated blocks are unmapped but should treated
1829 * the same as allocated blocks.
1830 */
5356f261
AK
1831 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1832 if (ret <= 0)
2ed88685 1833 return ret;
64769240 1834
2ed88685
TT
1835 map_bh(bh, inode->i_sb, map.m_pblk);
1836 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1837
1838 if (buffer_unwritten(bh)) {
1839 /* A delayed write to unwritten bh should be marked
1840 * new and mapped. Mapped ensures that we don't do
1841 * get_block multiple times when we write to the same
1842 * offset and new ensures that we do proper zero out
1843 * for partial write.
1844 */
1845 set_buffer_new(bh);
c8205636 1846 set_buffer_mapped(bh);
2ed88685
TT
1847 }
1848 return 0;
64769240 1849}
61628a3f 1850
b920c755
TT
1851/*
1852 * This function is used as a standard get_block_t calback function
1853 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1854 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1855 * These functions should only try to map a single block at a time.
b920c755
TT
1856 *
1857 * Since this function doesn't do block allocations even if the caller
1858 * requests it by passing in create=1, it is critically important that
1859 * any caller checks to make sure that any buffer heads are returned
1860 * by this function are either all already mapped or marked for
206f7ab4
CH
1861 * delayed allocation before calling block_write_full_page(). Otherwise,
1862 * b_blocknr could be left unitialized, and the page write functions will
1863 * be taken by surprise.
b920c755
TT
1864 */
1865static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1866 struct buffer_head *bh_result, int create)
1867{
a2dc52b5 1868 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1869 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1870}
1871
62e086be
AK
1872static int bget_one(handle_t *handle, struct buffer_head *bh)
1873{
1874 get_bh(bh);
1875 return 0;
1876}
1877
1878static int bput_one(handle_t *handle, struct buffer_head *bh)
1879{
1880 put_bh(bh);
1881 return 0;
1882}
1883
1884static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1885 unsigned int len)
1886{
1887 struct address_space *mapping = page->mapping;
1888 struct inode *inode = mapping->host;
1889 struct buffer_head *page_bufs;
1890 handle_t *handle = NULL;
1891 int ret = 0;
1892 int err;
1893
cb20d518 1894 ClearPageChecked(page);
62e086be
AK
1895 page_bufs = page_buffers(page);
1896 BUG_ON(!page_bufs);
1897 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1898 /* As soon as we unlock the page, it can go away, but we have
1899 * references to buffers so we are safe */
1900 unlock_page(page);
1901
1902 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1903 if (IS_ERR(handle)) {
1904 ret = PTR_ERR(handle);
1905 goto out;
1906 }
1907
441c8508
CW
1908 BUG_ON(!ext4_handle_valid(handle));
1909
62e086be
AK
1910 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1911 do_journal_get_write_access);
1912
1913 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1914 write_end_fn);
1915 if (ret == 0)
1916 ret = err;
2d859db3 1917 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1918 err = ext4_journal_stop(handle);
1919 if (!ret)
1920 ret = err;
1921
1922 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1923 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1924out:
1925 return ret;
1926}
1927
744692dc
JZ
1928static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1929static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1930
61628a3f 1931/*
43ce1d23
AK
1932 * Note that we don't need to start a transaction unless we're journaling data
1933 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1934 * need to file the inode to the transaction's list in ordered mode because if
1935 * we are writing back data added by write(), the inode is already there and if
25985edc 1936 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1937 * transaction the data will hit the disk. In case we are journaling data, we
1938 * cannot start transaction directly because transaction start ranks above page
1939 * lock so we have to do some magic.
1940 *
b920c755
TT
1941 * This function can get called via...
1942 * - ext4_da_writepages after taking page lock (have journal handle)
1943 * - journal_submit_inode_data_buffers (no journal handle)
1944 * - shrink_page_list via pdflush (no journal handle)
1945 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1946 *
1947 * We don't do any block allocation in this function. If we have page with
1948 * multiple blocks we need to write those buffer_heads that are mapped. This
1949 * is important for mmaped based write. So if we do with blocksize 1K
1950 * truncate(f, 1024);
1951 * a = mmap(f, 0, 4096);
1952 * a[0] = 'a';
1953 * truncate(f, 4096);
1954 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1955 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1956 * do_wp_page). So writepage should write the first block. If we modify
1957 * the mmap area beyond 1024 we will again get a page_fault and the
1958 * page_mkwrite callback will do the block allocation and mark the
1959 * buffer_heads mapped.
1960 *
1961 * We redirty the page if we have any buffer_heads that is either delay or
1962 * unwritten in the page.
1963 *
1964 * We can get recursively called as show below.
1965 *
1966 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1967 * ext4_writepage()
1968 *
1969 * But since we don't do any block allocation we should not deadlock.
1970 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1971 */
43ce1d23 1972static int ext4_writepage(struct page *page,
62e086be 1973 struct writeback_control *wbc)
64769240 1974{
a42afc5f 1975 int ret = 0, commit_write = 0;
61628a3f 1976 loff_t size;
498e5f24 1977 unsigned int len;
744692dc 1978 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1979 struct inode *inode = page->mapping->host;
1980
a9c667f8 1981 trace_ext4_writepage(page);
f0e6c985
AK
1982 size = i_size_read(inode);
1983 if (page->index == size >> PAGE_CACHE_SHIFT)
1984 len = size & ~PAGE_CACHE_MASK;
1985 else
1986 len = PAGE_CACHE_SIZE;
64769240 1987
a42afc5f
TT
1988 /*
1989 * If the page does not have buffers (for whatever reason),
a107e5a3 1990 * try to create them using __block_write_begin. If this
a42afc5f
TT
1991 * fails, redirty the page and move on.
1992 */
b1142e8f 1993 if (!page_has_buffers(page)) {
a107e5a3 1994 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1995 noalloc_get_block_write)) {
1996 redirty_page:
f0e6c985
AK
1997 redirty_page_for_writepage(wbc, page);
1998 unlock_page(page);
1999 return 0;
2000 }
a42afc5f
TT
2001 commit_write = 1;
2002 }
2003 page_bufs = page_buffers(page);
2004 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2005 ext4_bh_delay_or_unwritten)) {
f0e6c985 2006 /*
b1142e8f
TT
2007 * We don't want to do block allocation, so redirty
2008 * the page and return. We may reach here when we do
2009 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2010 * We can also reach here via shrink_page_list but it
2011 * should never be for direct reclaim so warn if that
2012 * happens
f0e6c985 2013 */
966dbde2
MG
2014 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2015 PF_MEMALLOC);
a42afc5f
TT
2016 goto redirty_page;
2017 }
2018 if (commit_write)
ed9b3e33 2019 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2020 block_commit_write(page, 0, len);
64769240 2021
cb20d518 2022 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2023 /*
2024 * It's mmapped pagecache. Add buffers and journal it. There
2025 * doesn't seem much point in redirtying the page here.
2026 */
3f0ca309 2027 return __ext4_journalled_writepage(page, len);
43ce1d23 2028
a42afc5f 2029 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2030 ext4_set_bh_endio(page_bufs, inode);
2031 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2032 wbc, ext4_end_io_buffer_write);
2033 } else
b920c755
TT
2034 ret = block_write_full_page(page, noalloc_get_block_write,
2035 wbc);
64769240 2036
64769240
AT
2037 return ret;
2038}
2039
61628a3f 2040/*
525f4ed8 2041 * This is called via ext4_da_writepages() to
25985edc 2042 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2043 * a single extent allocation into a single transaction,
2044 * ext4_da_writpeages() will loop calling this before
2045 * the block allocation.
61628a3f 2046 */
525f4ed8
MC
2047
2048static int ext4_da_writepages_trans_blocks(struct inode *inode)
2049{
2050 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2051
2052 /*
2053 * With non-extent format the journal credit needed to
2054 * insert nrblocks contiguous block is dependent on
2055 * number of contiguous block. So we will limit
2056 * number of contiguous block to a sane value
2057 */
12e9b892 2058 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2059 (max_blocks > EXT4_MAX_TRANS_DATA))
2060 max_blocks = EXT4_MAX_TRANS_DATA;
2061
2062 return ext4_chunk_trans_blocks(inode, max_blocks);
2063}
61628a3f 2064
8e48dcfb
TT
2065/*
2066 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2067 * address space and accumulate pages that need writing, and call
168fc022
TT
2068 * mpage_da_map_and_submit to map a single contiguous memory region
2069 * and then write them.
8e48dcfb
TT
2070 */
2071static int write_cache_pages_da(struct address_space *mapping,
2072 struct writeback_control *wbc,
72f84e65
ES
2073 struct mpage_da_data *mpd,
2074 pgoff_t *done_index)
8e48dcfb 2075{
4f01b02c 2076 struct buffer_head *bh, *head;
168fc022 2077 struct inode *inode = mapping->host;
4f01b02c
TT
2078 struct pagevec pvec;
2079 unsigned int nr_pages;
2080 sector_t logical;
2081 pgoff_t index, end;
2082 long nr_to_write = wbc->nr_to_write;
2083 int i, tag, ret = 0;
8e48dcfb 2084
168fc022
TT
2085 memset(mpd, 0, sizeof(struct mpage_da_data));
2086 mpd->wbc = wbc;
2087 mpd->inode = inode;
8e48dcfb
TT
2088 pagevec_init(&pvec, 0);
2089 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2090 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2091
6e6938b6 2092 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2093 tag = PAGECACHE_TAG_TOWRITE;
2094 else
2095 tag = PAGECACHE_TAG_DIRTY;
2096
72f84e65 2097 *done_index = index;
4f01b02c 2098 while (index <= end) {
5b41d924 2099 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2100 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2101 if (nr_pages == 0)
4f01b02c 2102 return 0;
8e48dcfb
TT
2103
2104 for (i = 0; i < nr_pages; i++) {
2105 struct page *page = pvec.pages[i];
2106
2107 /*
2108 * At this point, the page may be truncated or
2109 * invalidated (changing page->mapping to NULL), or
2110 * even swizzled back from swapper_space to tmpfs file
2111 * mapping. However, page->index will not change
2112 * because we have a reference on the page.
2113 */
4f01b02c
TT
2114 if (page->index > end)
2115 goto out;
8e48dcfb 2116
72f84e65
ES
2117 *done_index = page->index + 1;
2118
78aaced3
TT
2119 /*
2120 * If we can't merge this page, and we have
2121 * accumulated an contiguous region, write it
2122 */
2123 if ((mpd->next_page != page->index) &&
2124 (mpd->next_page != mpd->first_page)) {
2125 mpage_da_map_and_submit(mpd);
2126 goto ret_extent_tail;
2127 }
2128
8e48dcfb
TT
2129 lock_page(page);
2130
2131 /*
4f01b02c
TT
2132 * If the page is no longer dirty, or its
2133 * mapping no longer corresponds to inode we
2134 * are writing (which means it has been
2135 * truncated or invalidated), or the page is
2136 * already under writeback and we are not
2137 * doing a data integrity writeback, skip the page
8e48dcfb 2138 */
4f01b02c
TT
2139 if (!PageDirty(page) ||
2140 (PageWriteback(page) &&
2141 (wbc->sync_mode == WB_SYNC_NONE)) ||
2142 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2143 unlock_page(page);
2144 continue;
2145 }
2146
7cb1a535 2147 wait_on_page_writeback(page);
8e48dcfb 2148 BUG_ON(PageWriteback(page));
8e48dcfb 2149
168fc022 2150 if (mpd->next_page != page->index)
8eb9e5ce 2151 mpd->first_page = page->index;
8eb9e5ce
TT
2152 mpd->next_page = page->index + 1;
2153 logical = (sector_t) page->index <<
2154 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2155
2156 if (!page_has_buffers(page)) {
4f01b02c
TT
2157 mpage_add_bh_to_extent(mpd, logical,
2158 PAGE_CACHE_SIZE,
8eb9e5ce 2159 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2160 if (mpd->io_done)
2161 goto ret_extent_tail;
8eb9e5ce
TT
2162 } else {
2163 /*
4f01b02c
TT
2164 * Page with regular buffer heads,
2165 * just add all dirty ones
8eb9e5ce
TT
2166 */
2167 head = page_buffers(page);
2168 bh = head;
2169 do {
2170 BUG_ON(buffer_locked(bh));
2171 /*
2172 * We need to try to allocate
2173 * unmapped blocks in the same page.
2174 * Otherwise we won't make progress
2175 * with the page in ext4_writepage
2176 */
2177 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2178 mpage_add_bh_to_extent(mpd, logical,
2179 bh->b_size,
2180 bh->b_state);
4f01b02c
TT
2181 if (mpd->io_done)
2182 goto ret_extent_tail;
8eb9e5ce
TT
2183 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2184 /*
4f01b02c
TT
2185 * mapped dirty buffer. We need
2186 * to update the b_state
2187 * because we look at b_state
2188 * in mpage_da_map_blocks. We
2189 * don't update b_size because
2190 * if we find an unmapped
2191 * buffer_head later we need to
2192 * use the b_state flag of that
2193 * buffer_head.
8eb9e5ce
TT
2194 */
2195 if (mpd->b_size == 0)
2196 mpd->b_state = bh->b_state & BH_FLAGS;
2197 }
2198 logical++;
2199 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2200 }
2201
2202 if (nr_to_write > 0) {
2203 nr_to_write--;
2204 if (nr_to_write == 0 &&
4f01b02c 2205 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2206 /*
2207 * We stop writing back only if we are
2208 * not doing integrity sync. In case of
2209 * integrity sync we have to keep going
2210 * because someone may be concurrently
2211 * dirtying pages, and we might have
2212 * synced a lot of newly appeared dirty
2213 * pages, but have not synced all of the
2214 * old dirty pages.
2215 */
4f01b02c 2216 goto out;
8e48dcfb
TT
2217 }
2218 }
2219 pagevec_release(&pvec);
2220 cond_resched();
2221 }
4f01b02c
TT
2222 return 0;
2223ret_extent_tail:
2224 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2225out:
2226 pagevec_release(&pvec);
2227 cond_resched();
8e48dcfb
TT
2228 return ret;
2229}
2230
2231
64769240 2232static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2233 struct writeback_control *wbc)
64769240 2234{
22208ded
AK
2235 pgoff_t index;
2236 int range_whole = 0;
61628a3f 2237 handle_t *handle = NULL;
df22291f 2238 struct mpage_da_data mpd;
5e745b04 2239 struct inode *inode = mapping->host;
498e5f24 2240 int pages_written = 0;
55138e0b 2241 unsigned int max_pages;
2acf2c26 2242 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2243 int needed_blocks, ret = 0;
2244 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2245 loff_t range_start = wbc->range_start;
5e745b04 2246 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2247 pgoff_t done_index = 0;
5b41d924 2248 pgoff_t end;
1bce63d1 2249 struct blk_plug plug;
61628a3f 2250
9bffad1e 2251 trace_ext4_da_writepages(inode, wbc);
ba80b101 2252
61628a3f
MC
2253 /*
2254 * No pages to write? This is mainly a kludge to avoid starting
2255 * a transaction for special inodes like journal inode on last iput()
2256 * because that could violate lock ordering on umount
2257 */
a1d6cc56 2258 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2259 return 0;
2a21e37e
TT
2260
2261 /*
2262 * If the filesystem has aborted, it is read-only, so return
2263 * right away instead of dumping stack traces later on that
2264 * will obscure the real source of the problem. We test
4ab2f15b 2265 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2266 * the latter could be true if the filesystem is mounted
2267 * read-only, and in that case, ext4_da_writepages should
2268 * *never* be called, so if that ever happens, we would want
2269 * the stack trace.
2270 */
4ab2f15b 2271 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2272 return -EROFS;
2273
22208ded
AK
2274 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2275 range_whole = 1;
61628a3f 2276
2acf2c26
AK
2277 range_cyclic = wbc->range_cyclic;
2278 if (wbc->range_cyclic) {
22208ded 2279 index = mapping->writeback_index;
2acf2c26
AK
2280 if (index)
2281 cycled = 0;
2282 wbc->range_start = index << PAGE_CACHE_SHIFT;
2283 wbc->range_end = LLONG_MAX;
2284 wbc->range_cyclic = 0;
5b41d924
ES
2285 end = -1;
2286 } else {
22208ded 2287 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2288 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2289 }
a1d6cc56 2290
55138e0b
TT
2291 /*
2292 * This works around two forms of stupidity. The first is in
2293 * the writeback code, which caps the maximum number of pages
2294 * written to be 1024 pages. This is wrong on multiple
2295 * levels; different architectues have a different page size,
2296 * which changes the maximum amount of data which gets
2297 * written. Secondly, 4 megabytes is way too small. XFS
2298 * forces this value to be 16 megabytes by multiplying
2299 * nr_to_write parameter by four, and then relies on its
2300 * allocator to allocate larger extents to make them
2301 * contiguous. Unfortunately this brings us to the second
2302 * stupidity, which is that ext4's mballoc code only allocates
2303 * at most 2048 blocks. So we force contiguous writes up to
2304 * the number of dirty blocks in the inode, or
2305 * sbi->max_writeback_mb_bump whichever is smaller.
2306 */
2307 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2308 if (!range_cyclic && range_whole) {
2309 if (wbc->nr_to_write == LONG_MAX)
2310 desired_nr_to_write = wbc->nr_to_write;
2311 else
2312 desired_nr_to_write = wbc->nr_to_write * 8;
2313 } else
55138e0b
TT
2314 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2315 max_pages);
2316 if (desired_nr_to_write > max_pages)
2317 desired_nr_to_write = max_pages;
2318
2319 if (wbc->nr_to_write < desired_nr_to_write) {
2320 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2321 wbc->nr_to_write = desired_nr_to_write;
2322 }
2323
2acf2c26 2324retry:
6e6938b6 2325 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2326 tag_pages_for_writeback(mapping, index, end);
2327
1bce63d1 2328 blk_start_plug(&plug);
22208ded 2329 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2330
2331 /*
2332 * we insert one extent at a time. So we need
2333 * credit needed for single extent allocation.
2334 * journalled mode is currently not supported
2335 * by delalloc
2336 */
2337 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2338 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2339
61628a3f
MC
2340 /* start a new transaction*/
2341 handle = ext4_journal_start(inode, needed_blocks);
2342 if (IS_ERR(handle)) {
2343 ret = PTR_ERR(handle);
1693918e 2344 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2345 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2346 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2347 blk_finish_plug(&plug);
61628a3f
MC
2348 goto out_writepages;
2349 }
f63e6005
TT
2350
2351 /*
8eb9e5ce 2352 * Now call write_cache_pages_da() to find the next
f63e6005 2353 * contiguous region of logical blocks that need
8eb9e5ce 2354 * blocks to be allocated by ext4 and submit them.
f63e6005 2355 */
72f84e65 2356 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2357 /*
af901ca1 2358 * If we have a contiguous extent of pages and we
f63e6005
TT
2359 * haven't done the I/O yet, map the blocks and submit
2360 * them for I/O.
2361 */
2362 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2363 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2364 ret = MPAGE_DA_EXTENT_TAIL;
2365 }
b3a3ca8c 2366 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2367 wbc->nr_to_write -= mpd.pages_written;
df22291f 2368
61628a3f 2369 ext4_journal_stop(handle);
df22291f 2370
8f64b32e 2371 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2372 /* commit the transaction which would
2373 * free blocks released in the transaction
2374 * and try again
2375 */
df22291f 2376 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2377 ret = 0;
2378 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2379 /*
8de49e67
KM
2380 * Got one extent now try with rest of the pages.
2381 * If mpd.retval is set -EIO, journal is aborted.
2382 * So we don't need to write any more.
a1d6cc56 2383 */
22208ded 2384 pages_written += mpd.pages_written;
8de49e67 2385 ret = mpd.retval;
2acf2c26 2386 io_done = 1;
22208ded 2387 } else if (wbc->nr_to_write)
61628a3f
MC
2388 /*
2389 * There is no more writeout needed
2390 * or we requested for a noblocking writeout
2391 * and we found the device congested
2392 */
61628a3f 2393 break;
a1d6cc56 2394 }
1bce63d1 2395 blk_finish_plug(&plug);
2acf2c26
AK
2396 if (!io_done && !cycled) {
2397 cycled = 1;
2398 index = 0;
2399 wbc->range_start = index << PAGE_CACHE_SHIFT;
2400 wbc->range_end = mapping->writeback_index - 1;
2401 goto retry;
2402 }
22208ded
AK
2403
2404 /* Update index */
2acf2c26 2405 wbc->range_cyclic = range_cyclic;
22208ded
AK
2406 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2407 /*
2408 * set the writeback_index so that range_cyclic
2409 * mode will write it back later
2410 */
72f84e65 2411 mapping->writeback_index = done_index;
a1d6cc56 2412
61628a3f 2413out_writepages:
2faf2e19 2414 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2415 wbc->range_start = range_start;
9bffad1e 2416 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2417 return ret;
64769240
AT
2418}
2419
79f0be8d
AK
2420#define FALL_BACK_TO_NONDELALLOC 1
2421static int ext4_nonda_switch(struct super_block *sb)
2422{
2423 s64 free_blocks, dirty_blocks;
2424 struct ext4_sb_info *sbi = EXT4_SB(sb);
2425
2426 /*
2427 * switch to non delalloc mode if we are running low
2428 * on free block. The free block accounting via percpu
179f7ebf 2429 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2430 * accumulated on each CPU without updating global counters
2431 * Delalloc need an accurate free block accounting. So switch
2432 * to non delalloc when we are near to error range.
2433 */
57042651
TT
2434 free_blocks = EXT4_C2B(sbi,
2435 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2436 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2437 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2438 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2439 /*
c8afb446
ES
2440 * free block count is less than 150% of dirty blocks
2441 * or free blocks is less than watermark
79f0be8d
AK
2442 */
2443 return 1;
2444 }
c8afb446
ES
2445 /*
2446 * Even if we don't switch but are nearing capacity,
2447 * start pushing delalloc when 1/2 of free blocks are dirty.
2448 */
2449 if (free_blocks < 2 * dirty_blocks)
0e175a18 2450 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
c8afb446 2451
79f0be8d
AK
2452 return 0;
2453}
2454
64769240 2455static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2456 loff_t pos, unsigned len, unsigned flags,
2457 struct page **pagep, void **fsdata)
64769240 2458{
72b8ab9d 2459 int ret, retries = 0;
64769240
AT
2460 struct page *page;
2461 pgoff_t index;
64769240
AT
2462 struct inode *inode = mapping->host;
2463 handle_t *handle;
2464
2465 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2466
2467 if (ext4_nonda_switch(inode->i_sb)) {
2468 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2469 return ext4_write_begin(file, mapping, pos,
2470 len, flags, pagep, fsdata);
2471 }
2472 *fsdata = (void *)0;
9bffad1e 2473 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2474retry:
64769240
AT
2475 /*
2476 * With delayed allocation, we don't log the i_disksize update
2477 * if there is delayed block allocation. But we still need
2478 * to journalling the i_disksize update if writes to the end
2479 * of file which has an already mapped buffer.
2480 */
2481 handle = ext4_journal_start(inode, 1);
2482 if (IS_ERR(handle)) {
2483 ret = PTR_ERR(handle);
2484 goto out;
2485 }
ebd3610b
JK
2486 /* We cannot recurse into the filesystem as the transaction is already
2487 * started */
2488 flags |= AOP_FLAG_NOFS;
64769240 2489
54566b2c 2490 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2491 if (!page) {
2492 ext4_journal_stop(handle);
2493 ret = -ENOMEM;
2494 goto out;
2495 }
64769240
AT
2496 *pagep = page;
2497
6e1db88d 2498 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2499 if (ret < 0) {
2500 unlock_page(page);
2501 ext4_journal_stop(handle);
2502 page_cache_release(page);
ae4d5372
AK
2503 /*
2504 * block_write_begin may have instantiated a few blocks
2505 * outside i_size. Trim these off again. Don't need
2506 * i_size_read because we hold i_mutex.
2507 */
2508 if (pos + len > inode->i_size)
b9a4207d 2509 ext4_truncate_failed_write(inode);
64769240
AT
2510 }
2511
d2a17637
MC
2512 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2513 goto retry;
64769240
AT
2514out:
2515 return ret;
2516}
2517
632eaeab
MC
2518/*
2519 * Check if we should update i_disksize
2520 * when write to the end of file but not require block allocation
2521 */
2522static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2523 unsigned long offset)
632eaeab
MC
2524{
2525 struct buffer_head *bh;
2526 struct inode *inode = page->mapping->host;
2527 unsigned int idx;
2528 int i;
2529
2530 bh = page_buffers(page);
2531 idx = offset >> inode->i_blkbits;
2532
af5bc92d 2533 for (i = 0; i < idx; i++)
632eaeab
MC
2534 bh = bh->b_this_page;
2535
29fa89d0 2536 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2537 return 0;
2538 return 1;
2539}
2540
64769240 2541static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2542 struct address_space *mapping,
2543 loff_t pos, unsigned len, unsigned copied,
2544 struct page *page, void *fsdata)
64769240
AT
2545{
2546 struct inode *inode = mapping->host;
2547 int ret = 0, ret2;
2548 handle_t *handle = ext4_journal_current_handle();
2549 loff_t new_i_size;
632eaeab 2550 unsigned long start, end;
79f0be8d
AK
2551 int write_mode = (int)(unsigned long)fsdata;
2552
2553 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2554 switch (ext4_inode_journal_mode(inode)) {
2555 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2556 return ext4_ordered_write_end(file, mapping, pos,
2557 len, copied, page, fsdata);
3d2b1582 2558 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2559 return ext4_writeback_write_end(file, mapping, pos,
2560 len, copied, page, fsdata);
3d2b1582 2561 default:
79f0be8d
AK
2562 BUG();
2563 }
2564 }
632eaeab 2565
9bffad1e 2566 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2567 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2568 end = start + copied - 1;
64769240
AT
2569
2570 /*
2571 * generic_write_end() will run mark_inode_dirty() if i_size
2572 * changes. So let's piggyback the i_disksize mark_inode_dirty
2573 * into that.
2574 */
2575
2576 new_i_size = pos + copied;
ea51d132 2577 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2578 if (ext4_da_should_update_i_disksize(page, end)) {
2579 down_write(&EXT4_I(inode)->i_data_sem);
2580 if (new_i_size > EXT4_I(inode)->i_disksize) {
2581 /*
2582 * Updating i_disksize when extending file
2583 * without needing block allocation
2584 */
2585 if (ext4_should_order_data(inode))
2586 ret = ext4_jbd2_file_inode(handle,
2587 inode);
64769240 2588
632eaeab
MC
2589 EXT4_I(inode)->i_disksize = new_i_size;
2590 }
2591 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2592 /* We need to mark inode dirty even if
2593 * new_i_size is less that inode->i_size
2594 * bu greater than i_disksize.(hint delalloc)
2595 */
2596 ext4_mark_inode_dirty(handle, inode);
64769240 2597 }
632eaeab 2598 }
64769240
AT
2599 ret2 = generic_write_end(file, mapping, pos, len, copied,
2600 page, fsdata);
2601 copied = ret2;
2602 if (ret2 < 0)
2603 ret = ret2;
2604 ret2 = ext4_journal_stop(handle);
2605 if (!ret)
2606 ret = ret2;
2607
2608 return ret ? ret : copied;
2609}
2610
2611static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2612{
64769240
AT
2613 /*
2614 * Drop reserved blocks
2615 */
2616 BUG_ON(!PageLocked(page));
2617 if (!page_has_buffers(page))
2618 goto out;
2619
d2a17637 2620 ext4_da_page_release_reservation(page, offset);
64769240
AT
2621
2622out:
2623 ext4_invalidatepage(page, offset);
2624
2625 return;
2626}
2627
ccd2506b
TT
2628/*
2629 * Force all delayed allocation blocks to be allocated for a given inode.
2630 */
2631int ext4_alloc_da_blocks(struct inode *inode)
2632{
fb40ba0d
TT
2633 trace_ext4_alloc_da_blocks(inode);
2634
ccd2506b
TT
2635 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2636 !EXT4_I(inode)->i_reserved_meta_blocks)
2637 return 0;
2638
2639 /*
2640 * We do something simple for now. The filemap_flush() will
2641 * also start triggering a write of the data blocks, which is
2642 * not strictly speaking necessary (and for users of
2643 * laptop_mode, not even desirable). However, to do otherwise
2644 * would require replicating code paths in:
de9a55b8 2645 *
ccd2506b
TT
2646 * ext4_da_writepages() ->
2647 * write_cache_pages() ---> (via passed in callback function)
2648 * __mpage_da_writepage() -->
2649 * mpage_add_bh_to_extent()
2650 * mpage_da_map_blocks()
2651 *
2652 * The problem is that write_cache_pages(), located in
2653 * mm/page-writeback.c, marks pages clean in preparation for
2654 * doing I/O, which is not desirable if we're not planning on
2655 * doing I/O at all.
2656 *
2657 * We could call write_cache_pages(), and then redirty all of
380cf090 2658 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2659 * would be ugly in the extreme. So instead we would need to
2660 * replicate parts of the code in the above functions,
25985edc 2661 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2662 * write out the pages, but rather only collect contiguous
2663 * logical block extents, call the multi-block allocator, and
2664 * then update the buffer heads with the block allocations.
de9a55b8 2665 *
ccd2506b
TT
2666 * For now, though, we'll cheat by calling filemap_flush(),
2667 * which will map the blocks, and start the I/O, but not
2668 * actually wait for the I/O to complete.
2669 */
2670 return filemap_flush(inode->i_mapping);
2671}
64769240 2672
ac27a0ec
DK
2673/*
2674 * bmap() is special. It gets used by applications such as lilo and by
2675 * the swapper to find the on-disk block of a specific piece of data.
2676 *
2677 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2678 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2679 * filesystem and enables swap, then they may get a nasty shock when the
2680 * data getting swapped to that swapfile suddenly gets overwritten by
2681 * the original zero's written out previously to the journal and
2682 * awaiting writeback in the kernel's buffer cache.
2683 *
2684 * So, if we see any bmap calls here on a modified, data-journaled file,
2685 * take extra steps to flush any blocks which might be in the cache.
2686 */
617ba13b 2687static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2688{
2689 struct inode *inode = mapping->host;
2690 journal_t *journal;
2691 int err;
2692
64769240
AT
2693 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2694 test_opt(inode->i_sb, DELALLOC)) {
2695 /*
2696 * With delalloc we want to sync the file
2697 * so that we can make sure we allocate
2698 * blocks for file
2699 */
2700 filemap_write_and_wait(mapping);
2701 }
2702
19f5fb7a
TT
2703 if (EXT4_JOURNAL(inode) &&
2704 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2705 /*
2706 * This is a REALLY heavyweight approach, but the use of
2707 * bmap on dirty files is expected to be extremely rare:
2708 * only if we run lilo or swapon on a freshly made file
2709 * do we expect this to happen.
2710 *
2711 * (bmap requires CAP_SYS_RAWIO so this does not
2712 * represent an unprivileged user DOS attack --- we'd be
2713 * in trouble if mortal users could trigger this path at
2714 * will.)
2715 *
617ba13b 2716 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2717 * regular files. If somebody wants to bmap a directory
2718 * or symlink and gets confused because the buffer
2719 * hasn't yet been flushed to disk, they deserve
2720 * everything they get.
2721 */
2722
19f5fb7a 2723 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2724 journal = EXT4_JOURNAL(inode);
dab291af
MC
2725 jbd2_journal_lock_updates(journal);
2726 err = jbd2_journal_flush(journal);
2727 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2728
2729 if (err)
2730 return 0;
2731 }
2732
af5bc92d 2733 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2734}
2735
617ba13b 2736static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2737{
0562e0ba 2738 trace_ext4_readpage(page);
617ba13b 2739 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2740}
2741
2742static int
617ba13b 2743ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2744 struct list_head *pages, unsigned nr_pages)
2745{
617ba13b 2746 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2747}
2748
744692dc
JZ
2749static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2750{
2751 struct buffer_head *head, *bh;
2752 unsigned int curr_off = 0;
2753
2754 if (!page_has_buffers(page))
2755 return;
2756 head = bh = page_buffers(page);
2757 do {
2758 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2759 && bh->b_private) {
2760 ext4_free_io_end(bh->b_private);
2761 bh->b_private = NULL;
2762 bh->b_end_io = NULL;
2763 }
2764 curr_off = curr_off + bh->b_size;
2765 bh = bh->b_this_page;
2766 } while (bh != head);
2767}
2768
617ba13b 2769static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2770{
617ba13b 2771 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2772
0562e0ba
JZ
2773 trace_ext4_invalidatepage(page, offset);
2774
744692dc
JZ
2775 /*
2776 * free any io_end structure allocated for buffers to be discarded
2777 */
2778 if (ext4_should_dioread_nolock(page->mapping->host))
2779 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2780 /*
2781 * If it's a full truncate we just forget about the pending dirtying
2782 */
2783 if (offset == 0)
2784 ClearPageChecked(page);
2785
0390131b
FM
2786 if (journal)
2787 jbd2_journal_invalidatepage(journal, page, offset);
2788 else
2789 block_invalidatepage(page, offset);
ac27a0ec
DK
2790}
2791
617ba13b 2792static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2793{
617ba13b 2794 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2795
0562e0ba
JZ
2796 trace_ext4_releasepage(page);
2797
ac27a0ec
DK
2798 WARN_ON(PageChecked(page));
2799 if (!page_has_buffers(page))
2800 return 0;
0390131b
FM
2801 if (journal)
2802 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2803 else
2804 return try_to_free_buffers(page);
ac27a0ec
DK
2805}
2806
2ed88685
TT
2807/*
2808 * ext4_get_block used when preparing for a DIO write or buffer write.
2809 * We allocate an uinitialized extent if blocks haven't been allocated.
2810 * The extent will be converted to initialized after the IO is complete.
2811 */
c7064ef1 2812static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2813 struct buffer_head *bh_result, int create)
2814{
c7064ef1 2815 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2816 inode->i_ino, create);
2ed88685
TT
2817 return _ext4_get_block(inode, iblock, bh_result,
2818 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2819}
2820
4c0425ff 2821static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2822 ssize_t size, void *private, int ret,
2823 bool is_async)
4c0425ff 2824{
72c5052d 2825 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2826 ext4_io_end_t *io_end = iocb->private;
2827 struct workqueue_struct *wq;
744692dc
JZ
2828 unsigned long flags;
2829 struct ext4_inode_info *ei;
4c0425ff 2830
4b70df18
M
2831 /* if not async direct IO or dio with 0 bytes write, just return */
2832 if (!io_end || !size)
552ef802 2833 goto out;
4b70df18 2834
88635ca2 2835 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2836 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2837 iocb->private, io_end->inode->i_ino, iocb, offset,
2838 size);
8d5d02e6 2839
b5a7e970
TT
2840 iocb->private = NULL;
2841
8d5d02e6 2842 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2843 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2844 ext4_free_io_end(io_end);
5b3ff237
JZ
2845out:
2846 if (is_async)
2847 aio_complete(iocb, ret, 0);
72c5052d 2848 inode_dio_done(inode);
5b3ff237 2849 return;
8d5d02e6
MC
2850 }
2851
4c0425ff
MC
2852 io_end->offset = offset;
2853 io_end->size = size;
5b3ff237
JZ
2854 if (is_async) {
2855 io_end->iocb = iocb;
2856 io_end->result = ret;
2857 }
4c0425ff
MC
2858 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2859
8d5d02e6 2860 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2861 ei = EXT4_I(io_end->inode);
2862 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2863 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2864 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2865
2866 /* queue the work to convert unwritten extents to written */
4c81f045 2867 queue_work(wq, &io_end->work);
4c0425ff 2868}
c7064ef1 2869
744692dc
JZ
2870static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2871{
2872 ext4_io_end_t *io_end = bh->b_private;
2873 struct workqueue_struct *wq;
2874 struct inode *inode;
2875 unsigned long flags;
2876
2877 if (!test_clear_buffer_uninit(bh) || !io_end)
2878 goto out;
2879
2880 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2881 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2882 "sb umounted, discard end_io request for inode %lu",
2883 io_end->inode->i_ino);
744692dc
JZ
2884 ext4_free_io_end(io_end);
2885 goto out;
2886 }
2887
32c80b32
TM
2888 /*
2889 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2890 * but being more careful is always safe for the future change.
2891 */
744692dc 2892 inode = io_end->inode;
0edeb71d 2893 ext4_set_io_unwritten_flag(inode, io_end);
744692dc
JZ
2894
2895 /* Add the io_end to per-inode completed io list*/
2896 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2897 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2898 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2899
2900 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2901 /* queue the work to convert unwritten extents to written */
2902 queue_work(wq, &io_end->work);
2903out:
2904 bh->b_private = NULL;
2905 bh->b_end_io = NULL;
2906 clear_buffer_uninit(bh);
2907 end_buffer_async_write(bh, uptodate);
2908}
2909
2910static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2911{
2912 ext4_io_end_t *io_end;
2913 struct page *page = bh->b_page;
2914 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2915 size_t size = bh->b_size;
2916
2917retry:
2918 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2919 if (!io_end) {
6db26ffc 2920 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2921 schedule();
2922 goto retry;
2923 }
2924 io_end->offset = offset;
2925 io_end->size = size;
2926 /*
2927 * We need to hold a reference to the page to make sure it
2928 * doesn't get evicted before ext4_end_io_work() has a chance
2929 * to convert the extent from written to unwritten.
2930 */
2931 io_end->page = page;
2932 get_page(io_end->page);
2933
2934 bh->b_private = io_end;
2935 bh->b_end_io = ext4_end_io_buffer_write;
2936 return 0;
2937}
2938
4c0425ff
MC
2939/*
2940 * For ext4 extent files, ext4 will do direct-io write to holes,
2941 * preallocated extents, and those write extend the file, no need to
2942 * fall back to buffered IO.
2943 *
b595076a 2944 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2945 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2946 * still keep the range to write as uninitialized.
4c0425ff 2947 *
8d5d02e6
MC
2948 * The unwrritten extents will be converted to written when DIO is completed.
2949 * For async direct IO, since the IO may still pending when return, we
25985edc 2950 * set up an end_io call back function, which will do the conversion
8d5d02e6 2951 * when async direct IO completed.
4c0425ff
MC
2952 *
2953 * If the O_DIRECT write will extend the file then add this inode to the
2954 * orphan list. So recovery will truncate it back to the original size
2955 * if the machine crashes during the write.
2956 *
2957 */
2958static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2959 const struct iovec *iov, loff_t offset,
2960 unsigned long nr_segs)
2961{
2962 struct file *file = iocb->ki_filp;
2963 struct inode *inode = file->f_mapping->host;
2964 ssize_t ret;
2965 size_t count = iov_length(iov, nr_segs);
2966
2967 loff_t final_size = offset + count;
2968 if (rw == WRITE && final_size <= inode->i_size) {
2969 /*
8d5d02e6
MC
2970 * We could direct write to holes and fallocate.
2971 *
2972 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2973 * to prevent parallel buffered read to expose the stale data
4c0425ff 2974 * before DIO complete the data IO.
8d5d02e6
MC
2975 *
2976 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2977 * will just simply mark the buffer mapped but still
2978 * keep the extents uninitialized.
2979 *
8d5d02e6
MC
2980 * for non AIO case, we will convert those unwritten extents
2981 * to written after return back from blockdev_direct_IO.
2982 *
2983 * for async DIO, the conversion needs to be defered when
2984 * the IO is completed. The ext4 end_io callback function
2985 * will be called to take care of the conversion work.
2986 * Here for async case, we allocate an io_end structure to
2987 * hook to the iocb.
4c0425ff 2988 */
8d5d02e6
MC
2989 iocb->private = NULL;
2990 EXT4_I(inode)->cur_aio_dio = NULL;
2991 if (!is_sync_kiocb(iocb)) {
266991b1
JM
2992 ext4_io_end_t *io_end =
2993 ext4_init_io_end(inode, GFP_NOFS);
2994 if (!io_end)
8d5d02e6 2995 return -ENOMEM;
266991b1
JM
2996 io_end->flag |= EXT4_IO_END_DIRECT;
2997 iocb->private = io_end;
8d5d02e6
MC
2998 /*
2999 * we save the io structure for current async
79e83036 3000 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3001 * could flag the io structure whether there
3002 * is a unwritten extents needs to be converted
3003 * when IO is completed.
3004 */
3005 EXT4_I(inode)->cur_aio_dio = iocb->private;
3006 }
3007
aacfc19c 3008 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
3009 inode->i_sb->s_bdev, iov,
3010 offset, nr_segs,
c7064ef1 3011 ext4_get_block_write,
aacfc19c
CH
3012 ext4_end_io_dio,
3013 NULL,
93ef8541 3014 DIO_LOCKING);
8d5d02e6
MC
3015 if (iocb->private)
3016 EXT4_I(inode)->cur_aio_dio = NULL;
3017 /*
3018 * The io_end structure takes a reference to the inode,
3019 * that structure needs to be destroyed and the
3020 * reference to the inode need to be dropped, when IO is
3021 * complete, even with 0 byte write, or failed.
3022 *
3023 * In the successful AIO DIO case, the io_end structure will be
3024 * desctroyed and the reference to the inode will be dropped
3025 * after the end_io call back function is called.
3026 *
3027 * In the case there is 0 byte write, or error case, since
3028 * VFS direct IO won't invoke the end_io call back function,
3029 * we need to free the end_io structure here.
3030 */
3031 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3032 ext4_free_io_end(iocb->private);
3033 iocb->private = NULL;
19f5fb7a
TT
3034 } else if (ret > 0 && ext4_test_inode_state(inode,
3035 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3036 int err;
8d5d02e6
MC
3037 /*
3038 * for non AIO case, since the IO is already
25985edc 3039 * completed, we could do the conversion right here
8d5d02e6 3040 */
109f5565
M
3041 err = ext4_convert_unwritten_extents(inode,
3042 offset, ret);
3043 if (err < 0)
3044 ret = err;
19f5fb7a 3045 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3046 }
4c0425ff
MC
3047 return ret;
3048 }
8d5d02e6
MC
3049
3050 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3051 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3052}
3053
3054static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3055 const struct iovec *iov, loff_t offset,
3056 unsigned long nr_segs)
3057{
3058 struct file *file = iocb->ki_filp;
3059 struct inode *inode = file->f_mapping->host;
0562e0ba 3060 ssize_t ret;
4c0425ff 3061
84ebd795
TT
3062 /*
3063 * If we are doing data journalling we don't support O_DIRECT
3064 */
3065 if (ext4_should_journal_data(inode))
3066 return 0;
3067
0562e0ba 3068 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3069 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3070 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3071 else
3072 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3073 trace_ext4_direct_IO_exit(inode, offset,
3074 iov_length(iov, nr_segs), rw, ret);
3075 return ret;
4c0425ff
MC
3076}
3077
ac27a0ec 3078/*
617ba13b 3079 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3080 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3081 * much here because ->set_page_dirty is called under VFS locks. The page is
3082 * not necessarily locked.
3083 *
3084 * We cannot just dirty the page and leave attached buffers clean, because the
3085 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3086 * or jbddirty because all the journalling code will explode.
3087 *
3088 * So what we do is to mark the page "pending dirty" and next time writepage
3089 * is called, propagate that into the buffers appropriately.
3090 */
617ba13b 3091static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3092{
3093 SetPageChecked(page);
3094 return __set_page_dirty_nobuffers(page);
3095}
3096
617ba13b 3097static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3098 .readpage = ext4_readpage,
3099 .readpages = ext4_readpages,
43ce1d23 3100 .writepage = ext4_writepage,
8ab22b9a
HH
3101 .write_begin = ext4_write_begin,
3102 .write_end = ext4_ordered_write_end,
3103 .bmap = ext4_bmap,
3104 .invalidatepage = ext4_invalidatepage,
3105 .releasepage = ext4_releasepage,
3106 .direct_IO = ext4_direct_IO,
3107 .migratepage = buffer_migrate_page,
3108 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3109 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3110};
3111
617ba13b 3112static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3113 .readpage = ext4_readpage,
3114 .readpages = ext4_readpages,
43ce1d23 3115 .writepage = ext4_writepage,
8ab22b9a
HH
3116 .write_begin = ext4_write_begin,
3117 .write_end = ext4_writeback_write_end,
3118 .bmap = ext4_bmap,
3119 .invalidatepage = ext4_invalidatepage,
3120 .releasepage = ext4_releasepage,
3121 .direct_IO = ext4_direct_IO,
3122 .migratepage = buffer_migrate_page,
3123 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3124 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3125};
3126
617ba13b 3127static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3128 .readpage = ext4_readpage,
3129 .readpages = ext4_readpages,
43ce1d23 3130 .writepage = ext4_writepage,
8ab22b9a
HH
3131 .write_begin = ext4_write_begin,
3132 .write_end = ext4_journalled_write_end,
3133 .set_page_dirty = ext4_journalled_set_page_dirty,
3134 .bmap = ext4_bmap,
3135 .invalidatepage = ext4_invalidatepage,
3136 .releasepage = ext4_releasepage,
84ebd795 3137 .direct_IO = ext4_direct_IO,
8ab22b9a 3138 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3139 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3140};
3141
64769240 3142static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3143 .readpage = ext4_readpage,
3144 .readpages = ext4_readpages,
43ce1d23 3145 .writepage = ext4_writepage,
8ab22b9a 3146 .writepages = ext4_da_writepages,
8ab22b9a
HH
3147 .write_begin = ext4_da_write_begin,
3148 .write_end = ext4_da_write_end,
3149 .bmap = ext4_bmap,
3150 .invalidatepage = ext4_da_invalidatepage,
3151 .releasepage = ext4_releasepage,
3152 .direct_IO = ext4_direct_IO,
3153 .migratepage = buffer_migrate_page,
3154 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3155 .error_remove_page = generic_error_remove_page,
64769240
AT
3156};
3157
617ba13b 3158void ext4_set_aops(struct inode *inode)
ac27a0ec 3159{
3d2b1582
LC
3160 switch (ext4_inode_journal_mode(inode)) {
3161 case EXT4_INODE_ORDERED_DATA_MODE:
3162 if (test_opt(inode->i_sb, DELALLOC))
3163 inode->i_mapping->a_ops = &ext4_da_aops;
3164 else
3165 inode->i_mapping->a_ops = &ext4_ordered_aops;
3166 break;
3167 case EXT4_INODE_WRITEBACK_DATA_MODE:
3168 if (test_opt(inode->i_sb, DELALLOC))
3169 inode->i_mapping->a_ops = &ext4_da_aops;
3170 else
3171 inode->i_mapping->a_ops = &ext4_writeback_aops;
3172 break;
3173 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3174 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3175 break;
3176 default:
3177 BUG();
3178 }
ac27a0ec
DK
3179}
3180
4e96b2db
AH
3181
3182/*
3183 * ext4_discard_partial_page_buffers()
3184 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3185 * This function finds and locks the page containing the offset
3186 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3187 * Calling functions that already have the page locked should call
3188 * ext4_discard_partial_page_buffers_no_lock directly.
3189 */
3190int ext4_discard_partial_page_buffers(handle_t *handle,
3191 struct address_space *mapping, loff_t from,
3192 loff_t length, int flags)
3193{
3194 struct inode *inode = mapping->host;
3195 struct page *page;
3196 int err = 0;
3197
3198 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3199 mapping_gfp_mask(mapping) & ~__GFP_FS);
3200 if (!page)
5129d05f 3201 return -ENOMEM;
4e96b2db
AH
3202
3203 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3204 from, length, flags);
3205
3206 unlock_page(page);
3207 page_cache_release(page);
3208 return err;
3209}
3210
3211/*
3212 * ext4_discard_partial_page_buffers_no_lock()
3213 * Zeros a page range of length 'length' starting from offset 'from'.
3214 * Buffer heads that correspond to the block aligned regions of the
3215 * zeroed range will be unmapped. Unblock aligned regions
3216 * will have the corresponding buffer head mapped if needed so that
3217 * that region of the page can be updated with the partial zero out.
3218 *
3219 * This function assumes that the page has already been locked. The
3220 * The range to be discarded must be contained with in the given page.
3221 * If the specified range exceeds the end of the page it will be shortened
3222 * to the end of the page that corresponds to 'from'. This function is
3223 * appropriate for updating a page and it buffer heads to be unmapped and
3224 * zeroed for blocks that have been either released, or are going to be
3225 * released.
3226 *
3227 * handle: The journal handle
3228 * inode: The files inode
3229 * page: A locked page that contains the offset "from"
3230 * from: The starting byte offset (from the begining of the file)
3231 * to begin discarding
3232 * len: The length of bytes to discard
3233 * flags: Optional flags that may be used:
3234 *
3235 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3236 * Only zero the regions of the page whose buffer heads
3237 * have already been unmapped. This flag is appropriate
3238 * for updateing the contents of a page whose blocks may
3239 * have already been released, and we only want to zero
3240 * out the regions that correspond to those released blocks.
3241 *
3242 * Returns zero on sucess or negative on failure.
3243 */
5f163cc7 3244static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3245 struct inode *inode, struct page *page, loff_t from,
3246 loff_t length, int flags)
3247{
3248 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3249 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3250 unsigned int blocksize, max, pos;
4e96b2db
AH
3251 ext4_lblk_t iblock;
3252 struct buffer_head *bh;
3253 int err = 0;
3254
3255 blocksize = inode->i_sb->s_blocksize;
3256 max = PAGE_CACHE_SIZE - offset;
3257
3258 if (index != page->index)
3259 return -EINVAL;
3260
3261 /*
3262 * correct length if it does not fall between
3263 * 'from' and the end of the page
3264 */
3265 if (length > max || length < 0)
3266 length = max;
3267
3268 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3269
093e6e36
YY
3270 if (!page_has_buffers(page))
3271 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3272
3273 /* Find the buffer that contains "offset" */
3274 bh = page_buffers(page);
3275 pos = blocksize;
3276 while (offset >= pos) {
3277 bh = bh->b_this_page;
3278 iblock++;
3279 pos += blocksize;
3280 }
3281
3282 pos = offset;
3283 while (pos < offset + length) {
e260daf2
YY
3284 unsigned int end_of_block, range_to_discard;
3285
4e96b2db
AH
3286 err = 0;
3287
3288 /* The length of space left to zero and unmap */
3289 range_to_discard = offset + length - pos;
3290
3291 /* The length of space until the end of the block */
3292 end_of_block = blocksize - (pos & (blocksize-1));
3293
3294 /*
3295 * Do not unmap or zero past end of block
3296 * for this buffer head
3297 */
3298 if (range_to_discard > end_of_block)
3299 range_to_discard = end_of_block;
3300
3301
3302 /*
3303 * Skip this buffer head if we are only zeroing unampped
3304 * regions of the page
3305 */
3306 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3307 buffer_mapped(bh))
3308 goto next;
3309
3310 /* If the range is block aligned, unmap */
3311 if (range_to_discard == blocksize) {
3312 clear_buffer_dirty(bh);
3313 bh->b_bdev = NULL;
3314 clear_buffer_mapped(bh);
3315 clear_buffer_req(bh);
3316 clear_buffer_new(bh);
3317 clear_buffer_delay(bh);
3318 clear_buffer_unwritten(bh);
3319 clear_buffer_uptodate(bh);
3320 zero_user(page, pos, range_to_discard);
3321 BUFFER_TRACE(bh, "Buffer discarded");
3322 goto next;
3323 }
3324
3325 /*
3326 * If this block is not completely contained in the range
3327 * to be discarded, then it is not going to be released. Because
3328 * we need to keep this block, we need to make sure this part
3329 * of the page is uptodate before we modify it by writeing
3330 * partial zeros on it.
3331 */
3332 if (!buffer_mapped(bh)) {
3333 /*
3334 * Buffer head must be mapped before we can read
3335 * from the block
3336 */
3337 BUFFER_TRACE(bh, "unmapped");
3338 ext4_get_block(inode, iblock, bh, 0);
3339 /* unmapped? It's a hole - nothing to do */
3340 if (!buffer_mapped(bh)) {
3341 BUFFER_TRACE(bh, "still unmapped");
3342 goto next;
3343 }
3344 }
3345
3346 /* Ok, it's mapped. Make sure it's up-to-date */
3347 if (PageUptodate(page))
3348 set_buffer_uptodate(bh);
3349
3350 if (!buffer_uptodate(bh)) {
3351 err = -EIO;
3352 ll_rw_block(READ, 1, &bh);
3353 wait_on_buffer(bh);
3354 /* Uhhuh. Read error. Complain and punt.*/
3355 if (!buffer_uptodate(bh))
3356 goto next;
3357 }
3358
3359 if (ext4_should_journal_data(inode)) {
3360 BUFFER_TRACE(bh, "get write access");
3361 err = ext4_journal_get_write_access(handle, bh);
3362 if (err)
3363 goto next;
3364 }
3365
3366 zero_user(page, pos, range_to_discard);
3367
3368 err = 0;
3369 if (ext4_should_journal_data(inode)) {
3370 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3371 } else
4e96b2db 3372 mark_buffer_dirty(bh);
4e96b2db
AH
3373
3374 BUFFER_TRACE(bh, "Partial buffer zeroed");
3375next:
3376 bh = bh->b_this_page;
3377 iblock++;
3378 pos += range_to_discard;
3379 }
3380
3381 return err;
3382}
3383
91ef4caf
DG
3384int ext4_can_truncate(struct inode *inode)
3385{
91ef4caf
DG
3386 if (S_ISREG(inode->i_mode))
3387 return 1;
3388 if (S_ISDIR(inode->i_mode))
3389 return 1;
3390 if (S_ISLNK(inode->i_mode))
3391 return !ext4_inode_is_fast_symlink(inode);
3392 return 0;
3393}
3394
a4bb6b64
AH
3395/*
3396 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3397 * associated with the given offset and length
3398 *
3399 * @inode: File inode
3400 * @offset: The offset where the hole will begin
3401 * @len: The length of the hole
3402 *
3403 * Returns: 0 on sucess or negative on failure
3404 */
3405
3406int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3407{
3408 struct inode *inode = file->f_path.dentry->d_inode;
3409 if (!S_ISREG(inode->i_mode))
73355192 3410 return -EOPNOTSUPP;
a4bb6b64
AH
3411
3412 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3413 /* TODO: Add support for non extent hole punching */
73355192 3414 return -EOPNOTSUPP;
a4bb6b64
AH
3415 }
3416
bab08ab9
TT
3417 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3418 /* TODO: Add support for bigalloc file systems */
73355192 3419 return -EOPNOTSUPP;
bab08ab9
TT
3420 }
3421
a4bb6b64
AH
3422 return ext4_ext_punch_hole(file, offset, length);
3423}
3424
ac27a0ec 3425/*
617ba13b 3426 * ext4_truncate()
ac27a0ec 3427 *
617ba13b
MC
3428 * We block out ext4_get_block() block instantiations across the entire
3429 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3430 * simultaneously on behalf of the same inode.
3431 *
42b2aa86 3432 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3433 * is one core, guiding principle: the file's tree must always be consistent on
3434 * disk. We must be able to restart the truncate after a crash.
3435 *
3436 * The file's tree may be transiently inconsistent in memory (although it
3437 * probably isn't), but whenever we close off and commit a journal transaction,
3438 * the contents of (the filesystem + the journal) must be consistent and
3439 * restartable. It's pretty simple, really: bottom up, right to left (although
3440 * left-to-right works OK too).
3441 *
3442 * Note that at recovery time, journal replay occurs *before* the restart of
3443 * truncate against the orphan inode list.
3444 *
3445 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3446 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3447 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3448 * ext4_truncate() to have another go. So there will be instantiated blocks
3449 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3450 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3451 * ext4_truncate() run will find them and release them.
ac27a0ec 3452 */
617ba13b 3453void ext4_truncate(struct inode *inode)
ac27a0ec 3454{
0562e0ba
JZ
3455 trace_ext4_truncate_enter(inode);
3456
91ef4caf 3457 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3458 return;
3459
12e9b892 3460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3461
5534fb5b 3462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3464
ff9893dc 3465 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3466 ext4_ext_truncate(inode);
ff9893dc
AG
3467 else
3468 ext4_ind_truncate(inode);
ac27a0ec 3469
0562e0ba 3470 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3471}
3472
ac27a0ec 3473/*
617ba13b 3474 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3475 * underlying buffer_head on success. If 'in_mem' is true, we have all
3476 * data in memory that is needed to recreate the on-disk version of this
3477 * inode.
3478 */
617ba13b
MC
3479static int __ext4_get_inode_loc(struct inode *inode,
3480 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3481{
240799cd
TT
3482 struct ext4_group_desc *gdp;
3483 struct buffer_head *bh;
3484 struct super_block *sb = inode->i_sb;
3485 ext4_fsblk_t block;
3486 int inodes_per_block, inode_offset;
3487
3a06d778 3488 iloc->bh = NULL;
240799cd
TT
3489 if (!ext4_valid_inum(sb, inode->i_ino))
3490 return -EIO;
ac27a0ec 3491
240799cd
TT
3492 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3493 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3494 if (!gdp)
ac27a0ec
DK
3495 return -EIO;
3496
240799cd
TT
3497 /*
3498 * Figure out the offset within the block group inode table
3499 */
00d09882 3500 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3501 inode_offset = ((inode->i_ino - 1) %
3502 EXT4_INODES_PER_GROUP(sb));
3503 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3504 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3505
3506 bh = sb_getblk(sb, block);
ac27a0ec 3507 if (!bh) {
c398eda0
TT
3508 EXT4_ERROR_INODE_BLOCK(inode, block,
3509 "unable to read itable block");
ac27a0ec
DK
3510 return -EIO;
3511 }
3512 if (!buffer_uptodate(bh)) {
3513 lock_buffer(bh);
9c83a923
HK
3514
3515 /*
3516 * If the buffer has the write error flag, we have failed
3517 * to write out another inode in the same block. In this
3518 * case, we don't have to read the block because we may
3519 * read the old inode data successfully.
3520 */
3521 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3522 set_buffer_uptodate(bh);
3523
ac27a0ec
DK
3524 if (buffer_uptodate(bh)) {
3525 /* someone brought it uptodate while we waited */
3526 unlock_buffer(bh);
3527 goto has_buffer;
3528 }
3529
3530 /*
3531 * If we have all information of the inode in memory and this
3532 * is the only valid inode in the block, we need not read the
3533 * block.
3534 */
3535 if (in_mem) {
3536 struct buffer_head *bitmap_bh;
240799cd 3537 int i, start;
ac27a0ec 3538
240799cd 3539 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3540
240799cd
TT
3541 /* Is the inode bitmap in cache? */
3542 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3543 if (!bitmap_bh)
3544 goto make_io;
3545
3546 /*
3547 * If the inode bitmap isn't in cache then the
3548 * optimisation may end up performing two reads instead
3549 * of one, so skip it.
3550 */
3551 if (!buffer_uptodate(bitmap_bh)) {
3552 brelse(bitmap_bh);
3553 goto make_io;
3554 }
240799cd 3555 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3556 if (i == inode_offset)
3557 continue;
617ba13b 3558 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3559 break;
3560 }
3561 brelse(bitmap_bh);
240799cd 3562 if (i == start + inodes_per_block) {
ac27a0ec
DK
3563 /* all other inodes are free, so skip I/O */
3564 memset(bh->b_data, 0, bh->b_size);
3565 set_buffer_uptodate(bh);
3566 unlock_buffer(bh);
3567 goto has_buffer;
3568 }
3569 }
3570
3571make_io:
240799cd
TT
3572 /*
3573 * If we need to do any I/O, try to pre-readahead extra
3574 * blocks from the inode table.
3575 */
3576 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3577 ext4_fsblk_t b, end, table;
3578 unsigned num;
3579
3580 table = ext4_inode_table(sb, gdp);
b713a5ec 3581 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3582 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3583 if (table > b)
3584 b = table;
3585 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3586 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3587 if (ext4_has_group_desc_csum(sb))
560671a0 3588 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3589 table += num / inodes_per_block;
3590 if (end > table)
3591 end = table;
3592 while (b <= end)
3593 sb_breadahead(sb, b++);
3594 }
3595
ac27a0ec
DK
3596 /*
3597 * There are other valid inodes in the buffer, this inode
3598 * has in-inode xattrs, or we don't have this inode in memory.
3599 * Read the block from disk.
3600 */
0562e0ba 3601 trace_ext4_load_inode(inode);
ac27a0ec
DK
3602 get_bh(bh);
3603 bh->b_end_io = end_buffer_read_sync;
65299a3b 3604 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3605 wait_on_buffer(bh);
3606 if (!buffer_uptodate(bh)) {
c398eda0
TT
3607 EXT4_ERROR_INODE_BLOCK(inode, block,
3608 "unable to read itable block");
ac27a0ec
DK
3609 brelse(bh);
3610 return -EIO;
3611 }
3612 }
3613has_buffer:
3614 iloc->bh = bh;
3615 return 0;
3616}
3617
617ba13b 3618int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3619{
3620 /* We have all inode data except xattrs in memory here. */
617ba13b 3621 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3622 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3623}
3624
617ba13b 3625void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3626{
617ba13b 3627 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3628
3629 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3630 if (flags & EXT4_SYNC_FL)
ac27a0ec 3631 inode->i_flags |= S_SYNC;
617ba13b 3632 if (flags & EXT4_APPEND_FL)
ac27a0ec 3633 inode->i_flags |= S_APPEND;
617ba13b 3634 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3635 inode->i_flags |= S_IMMUTABLE;
617ba13b 3636 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3637 inode->i_flags |= S_NOATIME;
617ba13b 3638 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3639 inode->i_flags |= S_DIRSYNC;
3640}
3641
ff9ddf7e
JK
3642/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3643void ext4_get_inode_flags(struct ext4_inode_info *ei)
3644{
84a8dce2
DM
3645 unsigned int vfs_fl;
3646 unsigned long old_fl, new_fl;
3647
3648 do {
3649 vfs_fl = ei->vfs_inode.i_flags;
3650 old_fl = ei->i_flags;
3651 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3652 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3653 EXT4_DIRSYNC_FL);
3654 if (vfs_fl & S_SYNC)
3655 new_fl |= EXT4_SYNC_FL;
3656 if (vfs_fl & S_APPEND)
3657 new_fl |= EXT4_APPEND_FL;
3658 if (vfs_fl & S_IMMUTABLE)
3659 new_fl |= EXT4_IMMUTABLE_FL;
3660 if (vfs_fl & S_NOATIME)
3661 new_fl |= EXT4_NOATIME_FL;
3662 if (vfs_fl & S_DIRSYNC)
3663 new_fl |= EXT4_DIRSYNC_FL;
3664 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3665}
de9a55b8 3666
0fc1b451 3667static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3668 struct ext4_inode_info *ei)
0fc1b451
AK
3669{
3670 blkcnt_t i_blocks ;
8180a562
AK
3671 struct inode *inode = &(ei->vfs_inode);
3672 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3673
3674 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3675 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3676 /* we are using combined 48 bit field */
3677 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3678 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3679 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3680 /* i_blocks represent file system block size */
3681 return i_blocks << (inode->i_blkbits - 9);
3682 } else {
3683 return i_blocks;
3684 }
0fc1b451
AK
3685 } else {
3686 return le32_to_cpu(raw_inode->i_blocks_lo);
3687 }
3688}
ff9ddf7e 3689
1d1fe1ee 3690struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3691{
617ba13b
MC
3692 struct ext4_iloc iloc;
3693 struct ext4_inode *raw_inode;
1d1fe1ee 3694 struct ext4_inode_info *ei;
1d1fe1ee 3695 struct inode *inode;
b436b9be 3696 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3697 long ret;
ac27a0ec 3698 int block;
08cefc7a
EB
3699 uid_t i_uid;
3700 gid_t i_gid;
ac27a0ec 3701
1d1fe1ee
DH
3702 inode = iget_locked(sb, ino);
3703 if (!inode)
3704 return ERR_PTR(-ENOMEM);
3705 if (!(inode->i_state & I_NEW))
3706 return inode;
3707
3708 ei = EXT4_I(inode);
7dc57615 3709 iloc.bh = NULL;
ac27a0ec 3710
1d1fe1ee
DH
3711 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3712 if (ret < 0)
ac27a0ec 3713 goto bad_inode;
617ba13b 3714 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3715
3716 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3717 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3718 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3719 EXT4_INODE_SIZE(inode->i_sb)) {
3720 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3721 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3722 EXT4_INODE_SIZE(inode->i_sb));
3723 ret = -EIO;
3724 goto bad_inode;
3725 }
3726 } else
3727 ei->i_extra_isize = 0;
3728
3729 /* Precompute checksum seed for inode metadata */
3730 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3731 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3732 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3733 __u32 csum;
3734 __le32 inum = cpu_to_le32(inode->i_ino);
3735 __le32 gen = raw_inode->i_generation;
3736 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3737 sizeof(inum));
3738 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3739 sizeof(gen));
3740 }
3741
3742 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3743 EXT4_ERROR_INODE(inode, "checksum invalid");
3744 ret = -EIO;
3745 goto bad_inode;
3746 }
3747
ac27a0ec 3748 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3749 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3750 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3751 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3752 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3753 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3754 }
08cefc7a
EB
3755 i_uid_write(inode, i_uid);
3756 i_gid_write(inode, i_gid);
bfe86848 3757 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3758
353eb83c 3759 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3760 ei->i_dir_start_lookup = 0;
3761 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3762 /* We now have enough fields to check if the inode was active or not.
3763 * This is needed because nfsd might try to access dead inodes
3764 * the test is that same one that e2fsck uses
3765 * NeilBrown 1999oct15
3766 */
3767 if (inode->i_nlink == 0) {
3768 if (inode->i_mode == 0 ||
617ba13b 3769 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3770 /* this inode is deleted */
1d1fe1ee 3771 ret = -ESTALE;
ac27a0ec
DK
3772 goto bad_inode;
3773 }
3774 /* The only unlinked inodes we let through here have
3775 * valid i_mode and are being read by the orphan
3776 * recovery code: that's fine, we're about to complete
3777 * the process of deleting those. */
3778 }
ac27a0ec 3779 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3780 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3781 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3782 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3783 ei->i_file_acl |=
3784 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3785 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3786 ei->i_disksize = inode->i_size;
a9e7f447
DM
3787#ifdef CONFIG_QUOTA
3788 ei->i_reserved_quota = 0;
3789#endif
ac27a0ec
DK
3790 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3791 ei->i_block_group = iloc.block_group;
a4912123 3792 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3793 /*
3794 * NOTE! The in-memory inode i_data array is in little-endian order
3795 * even on big-endian machines: we do NOT byteswap the block numbers!
3796 */
617ba13b 3797 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3798 ei->i_data[block] = raw_inode->i_block[block];
3799 INIT_LIST_HEAD(&ei->i_orphan);
3800
b436b9be
JK
3801 /*
3802 * Set transaction id's of transactions that have to be committed
3803 * to finish f[data]sync. We set them to currently running transaction
3804 * as we cannot be sure that the inode or some of its metadata isn't
3805 * part of the transaction - the inode could have been reclaimed and
3806 * now it is reread from disk.
3807 */
3808 if (journal) {
3809 transaction_t *transaction;
3810 tid_t tid;
3811
a931da6a 3812 read_lock(&journal->j_state_lock);
b436b9be
JK
3813 if (journal->j_running_transaction)
3814 transaction = journal->j_running_transaction;
3815 else
3816 transaction = journal->j_committing_transaction;
3817 if (transaction)
3818 tid = transaction->t_tid;
3819 else
3820 tid = journal->j_commit_sequence;
a931da6a 3821 read_unlock(&journal->j_state_lock);
b436b9be
JK
3822 ei->i_sync_tid = tid;
3823 ei->i_datasync_tid = tid;
3824 }
3825
0040d987 3826 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3827 if (ei->i_extra_isize == 0) {
3828 /* The extra space is currently unused. Use it. */
617ba13b
MC
3829 ei->i_extra_isize = sizeof(struct ext4_inode) -
3830 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3831 } else {
3832 __le32 *magic = (void *)raw_inode +
617ba13b 3833 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3834 ei->i_extra_isize;
617ba13b 3835 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3836 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec 3837 }
814525f4 3838 }
ac27a0ec 3839
ef7f3835
KS
3840 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3841 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3842 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3843 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3844
25ec56b5
JNC
3845 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3846 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3847 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3848 inode->i_version |=
3849 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3850 }
3851
c4b5a614 3852 ret = 0;
485c26ec 3853 if (ei->i_file_acl &&
1032988c 3854 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3855 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3856 ei->i_file_acl);
485c26ec
TT
3857 ret = -EIO;
3858 goto bad_inode;
07a03824 3859 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3860 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3861 (S_ISLNK(inode->i_mode) &&
3862 !ext4_inode_is_fast_symlink(inode)))
3863 /* Validate extent which is part of inode */
3864 ret = ext4_ext_check_inode(inode);
de9a55b8 3865 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3866 (S_ISLNK(inode->i_mode) &&
3867 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3868 /* Validate block references which are part of inode */
1f7d1e77 3869 ret = ext4_ind_check_inode(inode);
fe2c8191 3870 }
567f3e9a 3871 if (ret)
de9a55b8 3872 goto bad_inode;
7a262f7c 3873
ac27a0ec 3874 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3875 inode->i_op = &ext4_file_inode_operations;
3876 inode->i_fop = &ext4_file_operations;
3877 ext4_set_aops(inode);
ac27a0ec 3878 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3879 inode->i_op = &ext4_dir_inode_operations;
3880 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3881 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3882 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3883 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3884 nd_terminate_link(ei->i_data, inode->i_size,
3885 sizeof(ei->i_data) - 1);
3886 } else {
617ba13b
MC
3887 inode->i_op = &ext4_symlink_inode_operations;
3888 ext4_set_aops(inode);
ac27a0ec 3889 }
563bdd61
TT
3890 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3891 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3892 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3893 if (raw_inode->i_block[0])
3894 init_special_inode(inode, inode->i_mode,
3895 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3896 else
3897 init_special_inode(inode, inode->i_mode,
3898 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3899 } else {
563bdd61 3900 ret = -EIO;
24676da4 3901 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3902 goto bad_inode;
ac27a0ec 3903 }
af5bc92d 3904 brelse(iloc.bh);
617ba13b 3905 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3906 unlock_new_inode(inode);
3907 return inode;
ac27a0ec
DK
3908
3909bad_inode:
567f3e9a 3910 brelse(iloc.bh);
1d1fe1ee
DH
3911 iget_failed(inode);
3912 return ERR_PTR(ret);
ac27a0ec
DK
3913}
3914
0fc1b451
AK
3915static int ext4_inode_blocks_set(handle_t *handle,
3916 struct ext4_inode *raw_inode,
3917 struct ext4_inode_info *ei)
3918{
3919 struct inode *inode = &(ei->vfs_inode);
3920 u64 i_blocks = inode->i_blocks;
3921 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3922
3923 if (i_blocks <= ~0U) {
3924 /*
3925 * i_blocks can be represnted in a 32 bit variable
3926 * as multiple of 512 bytes
3927 */
8180a562 3928 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3929 raw_inode->i_blocks_high = 0;
84a8dce2 3930 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3931 return 0;
3932 }
3933 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3934 return -EFBIG;
3935
3936 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3937 /*
3938 * i_blocks can be represented in a 48 bit variable
3939 * as multiple of 512 bytes
3940 */
8180a562 3941 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3942 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3943 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3944 } else {
84a8dce2 3945 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3946 /* i_block is stored in file system block size */
3947 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3948 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3949 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3950 }
f287a1a5 3951 return 0;
0fc1b451
AK
3952}
3953
ac27a0ec
DK
3954/*
3955 * Post the struct inode info into an on-disk inode location in the
3956 * buffer-cache. This gobbles the caller's reference to the
3957 * buffer_head in the inode location struct.
3958 *
3959 * The caller must have write access to iloc->bh.
3960 */
617ba13b 3961static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3962 struct inode *inode,
830156c7 3963 struct ext4_iloc *iloc)
ac27a0ec 3964{
617ba13b
MC
3965 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3966 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3967 struct buffer_head *bh = iloc->bh;
3968 int err = 0, rc, block;
08cefc7a
EB
3969 uid_t i_uid;
3970 gid_t i_gid;
ac27a0ec
DK
3971
3972 /* For fields not not tracking in the in-memory inode,
3973 * initialise them to zero for new inodes. */
19f5fb7a 3974 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 3975 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3976
ff9ddf7e 3977 ext4_get_inode_flags(ei);
ac27a0ec 3978 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
3979 i_uid = i_uid_read(inode);
3980 i_gid = i_gid_read(inode);
af5bc92d 3981 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3982 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
3983 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
3984/*
3985 * Fix up interoperability with old kernels. Otherwise, old inodes get
3986 * re-used with the upper 16 bits of the uid/gid intact
3987 */
af5bc92d 3988 if (!ei->i_dtime) {
ac27a0ec 3989 raw_inode->i_uid_high =
08cefc7a 3990 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 3991 raw_inode->i_gid_high =
08cefc7a 3992 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
3993 } else {
3994 raw_inode->i_uid_high = 0;
3995 raw_inode->i_gid_high = 0;
3996 }
3997 } else {
08cefc7a
EB
3998 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
3999 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4000 raw_inode->i_uid_high = 0;
4001 raw_inode->i_gid_high = 0;
4002 }
4003 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4004
4005 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4006 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4007 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4008 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4009
0fc1b451
AK
4010 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4011 goto out_brelse;
ac27a0ec 4012 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4013 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4014 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4015 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4016 raw_inode->i_file_acl_high =
4017 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4018 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
4019 ext4_isize_set(raw_inode, ei->i_disksize);
4020 if (ei->i_disksize > 0x7fffffffULL) {
4021 struct super_block *sb = inode->i_sb;
4022 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4023 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4024 EXT4_SB(sb)->s_es->s_rev_level ==
4025 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4026 /* If this is the first large file
4027 * created, add a flag to the superblock.
4028 */
4029 err = ext4_journal_get_write_access(handle,
4030 EXT4_SB(sb)->s_sbh);
4031 if (err)
4032 goto out_brelse;
4033 ext4_update_dynamic_rev(sb);
4034 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4035 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4036 ext4_handle_sync(handle);
a9c47317 4037 err = ext4_handle_dirty_super_now(handle, sb);
ac27a0ec
DK
4038 }
4039 }
4040 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4041 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4042 if (old_valid_dev(inode->i_rdev)) {
4043 raw_inode->i_block[0] =
4044 cpu_to_le32(old_encode_dev(inode->i_rdev));
4045 raw_inode->i_block[1] = 0;
4046 } else {
4047 raw_inode->i_block[0] = 0;
4048 raw_inode->i_block[1] =
4049 cpu_to_le32(new_encode_dev(inode->i_rdev));
4050 raw_inode->i_block[2] = 0;
4051 }
de9a55b8
TT
4052 } else
4053 for (block = 0; block < EXT4_N_BLOCKS; block++)
4054 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4055
25ec56b5
JNC
4056 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4057 if (ei->i_extra_isize) {
4058 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4059 raw_inode->i_version_hi =
4060 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4061 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4062 }
4063
814525f4
DW
4064 ext4_inode_csum_set(inode, raw_inode, ei);
4065
830156c7 4066 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4067 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4068 if (!err)
4069 err = rc;
19f5fb7a 4070 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4071
b436b9be 4072 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 4073out_brelse:
af5bc92d 4074 brelse(bh);
617ba13b 4075 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4076 return err;
4077}
4078
4079/*
617ba13b 4080 * ext4_write_inode()
ac27a0ec
DK
4081 *
4082 * We are called from a few places:
4083 *
4084 * - Within generic_file_write() for O_SYNC files.
4085 * Here, there will be no transaction running. We wait for any running
4086 * trasnaction to commit.
4087 *
4088 * - Within sys_sync(), kupdate and such.
4089 * We wait on commit, if tol to.
4090 *
4091 * - Within prune_icache() (PF_MEMALLOC == true)
4092 * Here we simply return. We can't afford to block kswapd on the
4093 * journal commit.
4094 *
4095 * In all cases it is actually safe for us to return without doing anything,
4096 * because the inode has been copied into a raw inode buffer in
617ba13b 4097 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4098 * knfsd.
4099 *
4100 * Note that we are absolutely dependent upon all inode dirtiers doing the
4101 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4102 * which we are interested.
4103 *
4104 * It would be a bug for them to not do this. The code:
4105 *
4106 * mark_inode_dirty(inode)
4107 * stuff();
4108 * inode->i_size = expr;
4109 *
4110 * is in error because a kswapd-driven write_inode() could occur while
4111 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4112 * will no longer be on the superblock's dirty inode list.
4113 */
a9185b41 4114int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4115{
91ac6f43
FM
4116 int err;
4117
ac27a0ec
DK
4118 if (current->flags & PF_MEMALLOC)
4119 return 0;
4120
91ac6f43
FM
4121 if (EXT4_SB(inode->i_sb)->s_journal) {
4122 if (ext4_journal_current_handle()) {
4123 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4124 dump_stack();
4125 return -EIO;
4126 }
ac27a0ec 4127
a9185b41 4128 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4129 return 0;
4130
4131 err = ext4_force_commit(inode->i_sb);
4132 } else {
4133 struct ext4_iloc iloc;
ac27a0ec 4134
8b472d73 4135 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4136 if (err)
4137 return err;
a9185b41 4138 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4139 sync_dirty_buffer(iloc.bh);
4140 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4141 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4142 "IO error syncing inode");
830156c7
FM
4143 err = -EIO;
4144 }
fd2dd9fb 4145 brelse(iloc.bh);
91ac6f43
FM
4146 }
4147 return err;
ac27a0ec
DK
4148}
4149
4150/*
617ba13b 4151 * ext4_setattr()
ac27a0ec
DK
4152 *
4153 * Called from notify_change.
4154 *
4155 * We want to trap VFS attempts to truncate the file as soon as
4156 * possible. In particular, we want to make sure that when the VFS
4157 * shrinks i_size, we put the inode on the orphan list and modify
4158 * i_disksize immediately, so that during the subsequent flushing of
4159 * dirty pages and freeing of disk blocks, we can guarantee that any
4160 * commit will leave the blocks being flushed in an unused state on
4161 * disk. (On recovery, the inode will get truncated and the blocks will
4162 * be freed, so we have a strong guarantee that no future commit will
4163 * leave these blocks visible to the user.)
4164 *
678aaf48
JK
4165 * Another thing we have to assure is that if we are in ordered mode
4166 * and inode is still attached to the committing transaction, we must
4167 * we start writeout of all the dirty pages which are being truncated.
4168 * This way we are sure that all the data written in the previous
4169 * transaction are already on disk (truncate waits for pages under
4170 * writeback).
4171 *
4172 * Called with inode->i_mutex down.
ac27a0ec 4173 */
617ba13b 4174int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4175{
4176 struct inode *inode = dentry->d_inode;
4177 int error, rc = 0;
3d287de3 4178 int orphan = 0;
ac27a0ec
DK
4179 const unsigned int ia_valid = attr->ia_valid;
4180
4181 error = inode_change_ok(inode, attr);
4182 if (error)
4183 return error;
4184
12755627 4185 if (is_quota_modification(inode, attr))
871a2931 4186 dquot_initialize(inode);
08cefc7a
EB
4187 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4188 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4189 handle_t *handle;
4190
4191 /* (user+group)*(old+new) structure, inode write (sb,
4192 * inode block, ? - but truncate inode update has it) */
5aca07eb 4193 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4194 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4195 if (IS_ERR(handle)) {
4196 error = PTR_ERR(handle);
4197 goto err_out;
4198 }
b43fa828 4199 error = dquot_transfer(inode, attr);
ac27a0ec 4200 if (error) {
617ba13b 4201 ext4_journal_stop(handle);
ac27a0ec
DK
4202 return error;
4203 }
4204 /* Update corresponding info in inode so that everything is in
4205 * one transaction */
4206 if (attr->ia_valid & ATTR_UID)
4207 inode->i_uid = attr->ia_uid;
4208 if (attr->ia_valid & ATTR_GID)
4209 inode->i_gid = attr->ia_gid;
617ba13b
MC
4210 error = ext4_mark_inode_dirty(handle, inode);
4211 ext4_journal_stop(handle);
ac27a0ec
DK
4212 }
4213
e2b46574 4214 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4215 inode_dio_wait(inode);
4216
12e9b892 4217 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4218 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4219
0c095c7f
TT
4220 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4221 return -EFBIG;
e2b46574
ES
4222 }
4223 }
4224
ac27a0ec 4225 if (S_ISREG(inode->i_mode) &&
c8d46e41 4226 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4227 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4228 handle_t *handle;
4229
617ba13b 4230 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4231 if (IS_ERR(handle)) {
4232 error = PTR_ERR(handle);
4233 goto err_out;
4234 }
3d287de3
DM
4235 if (ext4_handle_valid(handle)) {
4236 error = ext4_orphan_add(handle, inode);
4237 orphan = 1;
4238 }
617ba13b
MC
4239 EXT4_I(inode)->i_disksize = attr->ia_size;
4240 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4241 if (!error)
4242 error = rc;
617ba13b 4243 ext4_journal_stop(handle);
678aaf48
JK
4244
4245 if (ext4_should_order_data(inode)) {
4246 error = ext4_begin_ordered_truncate(inode,
4247 attr->ia_size);
4248 if (error) {
4249 /* Do as much error cleanup as possible */
4250 handle = ext4_journal_start(inode, 3);
4251 if (IS_ERR(handle)) {
4252 ext4_orphan_del(NULL, inode);
4253 goto err_out;
4254 }
4255 ext4_orphan_del(handle, inode);
3d287de3 4256 orphan = 0;
678aaf48
JK
4257 ext4_journal_stop(handle);
4258 goto err_out;
4259 }
4260 }
ac27a0ec
DK
4261 }
4262
072bd7ea 4263 if (attr->ia_valid & ATTR_SIZE) {
afcff5d8 4264 if (attr->ia_size != i_size_read(inode))
072bd7ea 4265 truncate_setsize(inode, attr->ia_size);
afcff5d8 4266 ext4_truncate(inode);
072bd7ea 4267 }
ac27a0ec 4268
1025774c
CH
4269 if (!rc) {
4270 setattr_copy(inode, attr);
4271 mark_inode_dirty(inode);
4272 }
4273
4274 /*
4275 * If the call to ext4_truncate failed to get a transaction handle at
4276 * all, we need to clean up the in-core orphan list manually.
4277 */
3d287de3 4278 if (orphan && inode->i_nlink)
617ba13b 4279 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4280
4281 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4282 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4283
4284err_out:
617ba13b 4285 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4286 if (!error)
4287 error = rc;
4288 return error;
4289}
4290
3e3398a0
MC
4291int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4292 struct kstat *stat)
4293{
4294 struct inode *inode;
4295 unsigned long delalloc_blocks;
4296
4297 inode = dentry->d_inode;
4298 generic_fillattr(inode, stat);
4299
4300 /*
4301 * We can't update i_blocks if the block allocation is delayed
4302 * otherwise in the case of system crash before the real block
4303 * allocation is done, we will have i_blocks inconsistent with
4304 * on-disk file blocks.
4305 * We always keep i_blocks updated together with real
4306 * allocation. But to not confuse with user, stat
4307 * will return the blocks that include the delayed allocation
4308 * blocks for this file.
4309 */
96607551
TM
4310 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4311 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4312
4313 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4314 return 0;
4315}
ac27a0ec 4316
a02908f1
MC
4317static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4318{
12e9b892 4319 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4320 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4321 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4322}
ac51d837 4323
ac27a0ec 4324/*
a02908f1
MC
4325 * Account for index blocks, block groups bitmaps and block group
4326 * descriptor blocks if modify datablocks and index blocks
4327 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4328 *
a02908f1 4329 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4330 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4331 * they could still across block group boundary.
ac27a0ec 4332 *
a02908f1
MC
4333 * Also account for superblock, inode, quota and xattr blocks
4334 */
1f109d5a 4335static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4336{
8df9675f
TT
4337 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4338 int gdpblocks;
a02908f1
MC
4339 int idxblocks;
4340 int ret = 0;
4341
4342 /*
4343 * How many index blocks need to touch to modify nrblocks?
4344 * The "Chunk" flag indicating whether the nrblocks is
4345 * physically contiguous on disk
4346 *
4347 * For Direct IO and fallocate, they calls get_block to allocate
4348 * one single extent at a time, so they could set the "Chunk" flag
4349 */
4350 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4351
4352 ret = idxblocks;
4353
4354 /*
4355 * Now let's see how many group bitmaps and group descriptors need
4356 * to account
4357 */
4358 groups = idxblocks;
4359 if (chunk)
4360 groups += 1;
4361 else
4362 groups += nrblocks;
4363
4364 gdpblocks = groups;
8df9675f
TT
4365 if (groups > ngroups)
4366 groups = ngroups;
a02908f1
MC
4367 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4368 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4369
4370 /* bitmaps and block group descriptor blocks */
4371 ret += groups + gdpblocks;
4372
4373 /* Blocks for super block, inode, quota and xattr blocks */
4374 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4375
4376 return ret;
4377}
4378
4379/*
25985edc 4380 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4381 * the modification of a single pages into a single transaction,
4382 * which may include multiple chunks of block allocations.
ac27a0ec 4383 *
525f4ed8 4384 * This could be called via ext4_write_begin()
ac27a0ec 4385 *
525f4ed8 4386 * We need to consider the worse case, when
a02908f1 4387 * one new block per extent.
ac27a0ec 4388 */
a86c6181 4389int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4390{
617ba13b 4391 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4392 int ret;
4393
a02908f1 4394 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4395
a02908f1 4396 /* Account for data blocks for journalled mode */
617ba13b 4397 if (ext4_should_journal_data(inode))
a02908f1 4398 ret += bpp;
ac27a0ec
DK
4399 return ret;
4400}
f3bd1f3f
MC
4401
4402/*
4403 * Calculate the journal credits for a chunk of data modification.
4404 *
4405 * This is called from DIO, fallocate or whoever calling
79e83036 4406 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4407 *
4408 * journal buffers for data blocks are not included here, as DIO
4409 * and fallocate do no need to journal data buffers.
4410 */
4411int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4412{
4413 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4414}
4415
ac27a0ec 4416/*
617ba13b 4417 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4418 * Give this, we know that the caller already has write access to iloc->bh.
4419 */
617ba13b 4420int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4421 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4422{
4423 int err = 0;
4424
c64db50e 4425 if (IS_I_VERSION(inode))
25ec56b5
JNC
4426 inode_inc_iversion(inode);
4427
ac27a0ec
DK
4428 /* the do_update_inode consumes one bh->b_count */
4429 get_bh(iloc->bh);
4430
dab291af 4431 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4432 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4433 put_bh(iloc->bh);
4434 return err;
4435}
4436
4437/*
4438 * On success, We end up with an outstanding reference count against
4439 * iloc->bh. This _must_ be cleaned up later.
4440 */
4441
4442int
617ba13b
MC
4443ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4444 struct ext4_iloc *iloc)
ac27a0ec 4445{
0390131b
FM
4446 int err;
4447
4448 err = ext4_get_inode_loc(inode, iloc);
4449 if (!err) {
4450 BUFFER_TRACE(iloc->bh, "get_write_access");
4451 err = ext4_journal_get_write_access(handle, iloc->bh);
4452 if (err) {
4453 brelse(iloc->bh);
4454 iloc->bh = NULL;
ac27a0ec
DK
4455 }
4456 }
617ba13b 4457 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4458 return err;
4459}
4460
6dd4ee7c
KS
4461/*
4462 * Expand an inode by new_extra_isize bytes.
4463 * Returns 0 on success or negative error number on failure.
4464 */
1d03ec98
AK
4465static int ext4_expand_extra_isize(struct inode *inode,
4466 unsigned int new_extra_isize,
4467 struct ext4_iloc iloc,
4468 handle_t *handle)
6dd4ee7c
KS
4469{
4470 struct ext4_inode *raw_inode;
4471 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4472
4473 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4474 return 0;
4475
4476 raw_inode = ext4_raw_inode(&iloc);
4477
4478 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4479
4480 /* No extended attributes present */
19f5fb7a
TT
4481 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4482 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4483 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4484 new_extra_isize);
4485 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4486 return 0;
4487 }
4488
4489 /* try to expand with EAs present */
4490 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4491 raw_inode, handle);
4492}
4493
ac27a0ec
DK
4494/*
4495 * What we do here is to mark the in-core inode as clean with respect to inode
4496 * dirtiness (it may still be data-dirty).
4497 * This means that the in-core inode may be reaped by prune_icache
4498 * without having to perform any I/O. This is a very good thing,
4499 * because *any* task may call prune_icache - even ones which
4500 * have a transaction open against a different journal.
4501 *
4502 * Is this cheating? Not really. Sure, we haven't written the
4503 * inode out, but prune_icache isn't a user-visible syncing function.
4504 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4505 * we start and wait on commits.
4506 *
4507 * Is this efficient/effective? Well, we're being nice to the system
4508 * by cleaning up our inodes proactively so they can be reaped
4509 * without I/O. But we are potentially leaving up to five seconds'
4510 * worth of inodes floating about which prune_icache wants us to
4511 * write out. One way to fix that would be to get prune_icache()
4512 * to do a write_super() to free up some memory. It has the desired
4513 * effect.
4514 */
617ba13b 4515int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4516{
617ba13b 4517 struct ext4_iloc iloc;
6dd4ee7c
KS
4518 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4519 static unsigned int mnt_count;
4520 int err, ret;
ac27a0ec
DK
4521
4522 might_sleep();
7ff9c073 4523 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4524 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4525 if (ext4_handle_valid(handle) &&
4526 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4527 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4528 /*
4529 * We need extra buffer credits since we may write into EA block
4530 * with this same handle. If journal_extend fails, then it will
4531 * only result in a minor loss of functionality for that inode.
4532 * If this is felt to be critical, then e2fsck should be run to
4533 * force a large enough s_min_extra_isize.
4534 */
4535 if ((jbd2_journal_extend(handle,
4536 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4537 ret = ext4_expand_extra_isize(inode,
4538 sbi->s_want_extra_isize,
4539 iloc, handle);
4540 if (ret) {
19f5fb7a
TT
4541 ext4_set_inode_state(inode,
4542 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4543 if (mnt_count !=
4544 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4545 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4546 "Unable to expand inode %lu. Delete"
4547 " some EAs or run e2fsck.",
4548 inode->i_ino);
c1bddad9
AK
4549 mnt_count =
4550 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4551 }
4552 }
4553 }
4554 }
ac27a0ec 4555 if (!err)
617ba13b 4556 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4557 return err;
4558}
4559
4560/*
617ba13b 4561 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4562 *
4563 * We're really interested in the case where a file is being extended.
4564 * i_size has been changed by generic_commit_write() and we thus need
4565 * to include the updated inode in the current transaction.
4566 *
5dd4056d 4567 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4568 * are allocated to the file.
4569 *
4570 * If the inode is marked synchronous, we don't honour that here - doing
4571 * so would cause a commit on atime updates, which we don't bother doing.
4572 * We handle synchronous inodes at the highest possible level.
4573 */
aa385729 4574void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4575{
ac27a0ec
DK
4576 handle_t *handle;
4577
617ba13b 4578 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4579 if (IS_ERR(handle))
4580 goto out;
f3dc272f 4581
f3dc272f
CW
4582 ext4_mark_inode_dirty(handle, inode);
4583
617ba13b 4584 ext4_journal_stop(handle);
ac27a0ec
DK
4585out:
4586 return;
4587}
4588
4589#if 0
4590/*
4591 * Bind an inode's backing buffer_head into this transaction, to prevent
4592 * it from being flushed to disk early. Unlike
617ba13b 4593 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4594 * returns no iloc structure, so the caller needs to repeat the iloc
4595 * lookup to mark the inode dirty later.
4596 */
617ba13b 4597static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4598{
617ba13b 4599 struct ext4_iloc iloc;
ac27a0ec
DK
4600
4601 int err = 0;
4602 if (handle) {
617ba13b 4603 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4604 if (!err) {
4605 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4606 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4607 if (!err)
0390131b 4608 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4609 NULL,
0390131b 4610 iloc.bh);
ac27a0ec
DK
4611 brelse(iloc.bh);
4612 }
4613 }
617ba13b 4614 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4615 return err;
4616}
4617#endif
4618
617ba13b 4619int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4620{
4621 journal_t *journal;
4622 handle_t *handle;
4623 int err;
4624
4625 /*
4626 * We have to be very careful here: changing a data block's
4627 * journaling status dynamically is dangerous. If we write a
4628 * data block to the journal, change the status and then delete
4629 * that block, we risk forgetting to revoke the old log record
4630 * from the journal and so a subsequent replay can corrupt data.
4631 * So, first we make sure that the journal is empty and that
4632 * nobody is changing anything.
4633 */
4634
617ba13b 4635 journal = EXT4_JOURNAL(inode);
0390131b
FM
4636 if (!journal)
4637 return 0;
d699594d 4638 if (is_journal_aborted(journal))
ac27a0ec 4639 return -EROFS;
2aff57b0
YY
4640 /* We have to allocate physical blocks for delalloc blocks
4641 * before flushing journal. otherwise delalloc blocks can not
4642 * be allocated any more. even more truncate on delalloc blocks
4643 * could trigger BUG by flushing delalloc blocks in journal.
4644 * There is no delalloc block in non-journal data mode.
4645 */
4646 if (val && test_opt(inode->i_sb, DELALLOC)) {
4647 err = ext4_alloc_da_blocks(inode);
4648 if (err < 0)
4649 return err;
4650 }
ac27a0ec 4651
dab291af 4652 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4653
4654 /*
4655 * OK, there are no updates running now, and all cached data is
4656 * synced to disk. We are now in a completely consistent state
4657 * which doesn't have anything in the journal, and we know that
4658 * no filesystem updates are running, so it is safe to modify
4659 * the inode's in-core data-journaling state flag now.
4660 */
4661
4662 if (val)
12e9b892 4663 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4664 else {
4665 jbd2_journal_flush(journal);
12e9b892 4666 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4667 }
617ba13b 4668 ext4_set_aops(inode);
ac27a0ec 4669
dab291af 4670 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4671
4672 /* Finally we can mark the inode as dirty. */
4673
617ba13b 4674 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4675 if (IS_ERR(handle))
4676 return PTR_ERR(handle);
4677
617ba13b 4678 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4679 ext4_handle_sync(handle);
617ba13b
MC
4680 ext4_journal_stop(handle);
4681 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4682
4683 return err;
4684}
2e9ee850
AK
4685
4686static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4687{
4688 return !buffer_mapped(bh);
4689}
4690
c2ec175c 4691int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4692{
c2ec175c 4693 struct page *page = vmf->page;
2e9ee850
AK
4694 loff_t size;
4695 unsigned long len;
9ea7df53 4696 int ret;
2e9ee850
AK
4697 struct file *file = vma->vm_file;
4698 struct inode *inode = file->f_path.dentry->d_inode;
4699 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4700 handle_t *handle;
4701 get_block_t *get_block;
4702 int retries = 0;
2e9ee850
AK
4703
4704 /*
9ea7df53
JK
4705 * This check is racy but catches the common case. We rely on
4706 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4707 */
9ea7df53
JK
4708 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4709 /* Delalloc case is easy... */
4710 if (test_opt(inode->i_sb, DELALLOC) &&
4711 !ext4_should_journal_data(inode) &&
4712 !ext4_nonda_switch(inode->i_sb)) {
4713 do {
4714 ret = __block_page_mkwrite(vma, vmf,
4715 ext4_da_get_block_prep);
4716 } while (ret == -ENOSPC &&
4717 ext4_should_retry_alloc(inode->i_sb, &retries));
4718 goto out_ret;
2e9ee850 4719 }
0e499890
DW
4720
4721 lock_page(page);
9ea7df53
JK
4722 size = i_size_read(inode);
4723 /* Page got truncated from under us? */
4724 if (page->mapping != mapping || page_offset(page) > size) {
4725 unlock_page(page);
4726 ret = VM_FAULT_NOPAGE;
4727 goto out;
0e499890 4728 }
2e9ee850
AK
4729
4730 if (page->index == size >> PAGE_CACHE_SHIFT)
4731 len = size & ~PAGE_CACHE_MASK;
4732 else
4733 len = PAGE_CACHE_SIZE;
a827eaff 4734 /*
9ea7df53
JK
4735 * Return if we have all the buffers mapped. This avoids the need to do
4736 * journal_start/journal_stop which can block and take a long time
a827eaff 4737 */
2e9ee850 4738 if (page_has_buffers(page)) {
2e9ee850 4739 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4740 ext4_bh_unmapped)) {
9ea7df53
JK
4741 /* Wait so that we don't change page under IO */
4742 wait_on_page_writeback(page);
4743 ret = VM_FAULT_LOCKED;
4744 goto out;
a827eaff 4745 }
2e9ee850 4746 }
a827eaff 4747 unlock_page(page);
9ea7df53
JK
4748 /* OK, we need to fill the hole... */
4749 if (ext4_should_dioread_nolock(inode))
4750 get_block = ext4_get_block_write;
4751 else
4752 get_block = ext4_get_block;
4753retry_alloc:
4754 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4755 if (IS_ERR(handle)) {
c2ec175c 4756 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4757 goto out;
4758 }
4759 ret = __block_page_mkwrite(vma, vmf, get_block);
4760 if (!ret && ext4_should_journal_data(inode)) {
4761 if (walk_page_buffers(handle, page_buffers(page), 0,
4762 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4763 unlock_page(page);
4764 ret = VM_FAULT_SIGBUS;
fcbb5515 4765 ext4_journal_stop(handle);
9ea7df53
JK
4766 goto out;
4767 }
4768 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4769 }
4770 ext4_journal_stop(handle);
4771 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4772 goto retry_alloc;
4773out_ret:
4774 ret = block_page_mkwrite_return(ret);
4775out:
2e9ee850
AK
4776 return ret;
4777}
This page took 1.063705 seconds and 5 git commands to generate.