ext4: Show journal_checksum option
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240
AT
62static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
ac27a0ec
DK
64/*
65 * Test whether an inode is a fast symlink.
66 */
617ba13b 67static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 68{
617ba13b 69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73}
74
ac27a0ec
DK
75/*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79static unsigned long blocks_for_truncate(struct inode *inode)
80{
725d26d3 81 ext4_lblk_t needed;
ac27a0ec
DK
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
617ba13b 88 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
617ba13b
MC
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 98
617ba13b 99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
100}
101
102/*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112static handle_t *start_transaction(struct inode *inode)
113{
114 handle_t *result;
115
617ba13b 116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
117 if (!IS_ERR(result))
118 return result;
119
617ba13b 120 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
121 return result;
122}
123
124/*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131{
0390131b
FM
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 135 return 0;
617ba13b 136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
137 return 0;
138 return 1;
139}
140
141/*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
fa5d1113 146int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 147 int nblocks)
ac27a0ec 148{
487caeef
JK
149 int ret;
150
151 /*
152 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
0390131b 157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 158 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 162 ext4_discard_preallocations(inode);
487caeef
JK
163
164 return ret;
ac27a0ec
DK
165}
166
167/*
168 * Called at the last iput() if i_nlink is zero.
169 */
af5bc92d 170void ext4_delete_inode(struct inode *inode)
ac27a0ec
DK
171{
172 handle_t *handle;
bc965ab3 173 int err;
ac27a0ec 174
907f4554 175 if (!is_bad_inode(inode))
871a2931 176 dquot_initialize(inode);
907f4554 177
678aaf48
JK
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
bc965ab3 185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 186 if (IS_ERR(handle)) {
bc965ab3 187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
617ba13b 193 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
0390131b 198 ext4_handle_sync(handle);
ac27a0ec 199 inode->i_size = 0;
bc965ab3
TT
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
12062ddd 202 ext4_warning(inode->i_sb,
bc965ab3
TT
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
ac27a0ec 206 if (inode->i_blocks)
617ba13b 207 ext4_truncate(inode);
bc965ab3
TT
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
0390131b 215 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
12062ddd 220 ext4_warning(inode->i_sb,
bc965ab3
TT
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
ac27a0ec 228 /*
617ba13b 229 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 230 * AKPM: I think this can be inside the above `if'.
617ba13b 231 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 232 * deletion of a non-existent orphan - this is because we don't
617ba13b 233 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
234 * (Well, we could do this if we need to, but heck - it works)
235 */
617ba13b
MC
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
617ba13b 246 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
617ba13b
MC
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
ac27a0ec
DK
252 return;
253no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255}
256
257typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261} Indirect;
262
263static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264{
265 p->key = *(p->p = v);
266 p->bh = bh;
267}
268
ac27a0ec 269/**
617ba13b 270 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
8c55e204
DK
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
ac27a0ec 276 *
617ba13b 277 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290/*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
617ba13b 300static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 303{
617ba13b
MC
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
c333e073 312 if (i_block < direct_blocks) {
ac27a0ec
DK
313 offsets[n++] = i_block;
314 final = direct_blocks;
af5bc92d 315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 316 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 320 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 325 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
12062ddd 331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338}
339
fe2c8191 340static int __ext4_check_blockref(const char *function, struct inode *inode,
6fd058f7
TT
341 __le32 *p, unsigned int max)
342{
f73953c0 343 __le32 *bref = p;
6fd058f7
TT
344 unsigned int blk;
345
fe2c8191 346 while (bref < p+max) {
6fd058f7 347 blk = le32_to_cpu(*bref++);
de9a55b8
TT
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 350 blk, 1))) {
12062ddd 351 __ext4_error(inode->i_sb, function,
6fd058f7
TT
352 "invalid block reference %u "
353 "in inode #%lu", blk, inode->i_ino);
de9a55b8
TT
354 return -EIO;
355 }
356 }
357 return 0;
fe2c8191
TN
358}
359
360
361#define ext4_check_indirect_blockref(inode, bh) \
de9a55b8 362 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
fe2c8191
TN
363 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364
365#define ext4_check_inode_blockref(inode) \
de9a55b8 366 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
fe2c8191
TN
367 EXT4_NDIR_BLOCKS)
368
ac27a0ec 369/**
617ba13b 370 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
371 * @inode: inode in question
372 * @depth: depth of the chain (1 - direct pointer, etc.)
373 * @offsets: offsets of pointers in inode/indirect blocks
374 * @chain: place to store the result
375 * @err: here we store the error value
376 *
377 * Function fills the array of triples <key, p, bh> and returns %NULL
378 * if everything went OK or the pointer to the last filled triple
379 * (incomplete one) otherwise. Upon the return chain[i].key contains
380 * the number of (i+1)-th block in the chain (as it is stored in memory,
381 * i.e. little-endian 32-bit), chain[i].p contains the address of that
382 * number (it points into struct inode for i==0 and into the bh->b_data
383 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
384 * block for i>0 and NULL for i==0. In other words, it holds the block
385 * numbers of the chain, addresses they were taken from (and where we can
386 * verify that chain did not change) and buffer_heads hosting these
387 * numbers.
388 *
389 * Function stops when it stumbles upon zero pointer (absent block)
390 * (pointer to last triple returned, *@err == 0)
391 * or when it gets an IO error reading an indirect block
392 * (ditto, *@err == -EIO)
ac27a0ec
DK
393 * or when it reads all @depth-1 indirect blocks successfully and finds
394 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
395 *
396 * Need to be called with
0e855ac8 397 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 398 */
725d26d3
AK
399static Indirect *ext4_get_branch(struct inode *inode, int depth,
400 ext4_lblk_t *offsets,
ac27a0ec
DK
401 Indirect chain[4], int *err)
402{
403 struct super_block *sb = inode->i_sb;
404 Indirect *p = chain;
405 struct buffer_head *bh;
406
407 *err = 0;
408 /* i_data is not going away, no lock needed */
af5bc92d 409 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
410 if (!p->key)
411 goto no_block;
412 while (--depth) {
fe2c8191
TN
413 bh = sb_getblk(sb, le32_to_cpu(p->key));
414 if (unlikely(!bh))
ac27a0ec 415 goto failure;
de9a55b8 416
fe2c8191
TN
417 if (!bh_uptodate_or_lock(bh)) {
418 if (bh_submit_read(bh) < 0) {
419 put_bh(bh);
420 goto failure;
421 }
422 /* validate block references */
423 if (ext4_check_indirect_blockref(inode, bh)) {
424 put_bh(bh);
425 goto failure;
426 }
427 }
de9a55b8 428
af5bc92d 429 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
430 /* Reader: end */
431 if (!p->key)
432 goto no_block;
433 }
434 return NULL;
435
ac27a0ec
DK
436failure:
437 *err = -EIO;
438no_block:
439 return p;
440}
441
442/**
617ba13b 443 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
444 * @inode: owner
445 * @ind: descriptor of indirect block.
446 *
1cc8dcf5 447 * This function returns the preferred place for block allocation.
ac27a0ec
DK
448 * It is used when heuristic for sequential allocation fails.
449 * Rules are:
450 * + if there is a block to the left of our position - allocate near it.
451 * + if pointer will live in indirect block - allocate near that block.
452 * + if pointer will live in inode - allocate in the same
453 * cylinder group.
454 *
455 * In the latter case we colour the starting block by the callers PID to
456 * prevent it from clashing with concurrent allocations for a different inode
457 * in the same block group. The PID is used here so that functionally related
458 * files will be close-by on-disk.
459 *
460 * Caller must make sure that @ind is valid and will stay that way.
461 */
617ba13b 462static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 463{
617ba13b 464 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 465 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 466 __le32 *p;
617ba13b 467 ext4_fsblk_t bg_start;
74d3487f 468 ext4_fsblk_t last_block;
617ba13b 469 ext4_grpblk_t colour;
a4912123
TT
470 ext4_group_t block_group;
471 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
472
473 /* Try to find previous block */
474 for (p = ind->p - 1; p >= start; p--) {
475 if (*p)
476 return le32_to_cpu(*p);
477 }
478
479 /* No such thing, so let's try location of indirect block */
480 if (ind->bh)
481 return ind->bh->b_blocknr;
482
483 /*
484 * It is going to be referred to from the inode itself? OK, just put it
485 * into the same cylinder group then.
486 */
a4912123
TT
487 block_group = ei->i_block_group;
488 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
489 block_group &= ~(flex_size-1);
490 if (S_ISREG(inode->i_mode))
491 block_group++;
492 }
493 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
494 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
495
a4912123
TT
496 /*
497 * If we are doing delayed allocation, we don't need take
498 * colour into account.
499 */
500 if (test_opt(inode->i_sb, DELALLOC))
501 return bg_start;
502
74d3487f
VC
503 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
504 colour = (current->pid % 16) *
617ba13b 505 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
506 else
507 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
508 return bg_start + colour;
509}
510
511/**
1cc8dcf5 512 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
513 * @inode: owner
514 * @block: block we want
ac27a0ec 515 * @partial: pointer to the last triple within a chain
ac27a0ec 516 *
1cc8dcf5 517 * Normally this function find the preferred place for block allocation,
fb01bfda 518 * returns it.
fb0a387d
ES
519 * Because this is only used for non-extent files, we limit the block nr
520 * to 32 bits.
ac27a0ec 521 */
725d26d3 522static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 523 Indirect *partial)
ac27a0ec 524{
fb0a387d
ES
525 ext4_fsblk_t goal;
526
ac27a0ec 527 /*
c2ea3fde 528 * XXX need to get goal block from mballoc's data structures
ac27a0ec 529 */
ac27a0ec 530
fb0a387d
ES
531 goal = ext4_find_near(inode, partial);
532 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
533 return goal;
ac27a0ec
DK
534}
535
536/**
617ba13b 537 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
538 * of direct blocks need to be allocated for the given branch.
539 *
540 * @branch: chain of indirect blocks
541 * @k: number of blocks need for indirect blocks
542 * @blks: number of data blocks to be mapped.
543 * @blocks_to_boundary: the offset in the indirect block
544 *
545 * return the total number of blocks to be allocate, including the
546 * direct and indirect blocks.
547 */
498e5f24 548static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 549 int blocks_to_boundary)
ac27a0ec 550{
498e5f24 551 unsigned int count = 0;
ac27a0ec
DK
552
553 /*
554 * Simple case, [t,d]Indirect block(s) has not allocated yet
555 * then it's clear blocks on that path have not allocated
556 */
557 if (k > 0) {
558 /* right now we don't handle cross boundary allocation */
559 if (blks < blocks_to_boundary + 1)
560 count += blks;
561 else
562 count += blocks_to_boundary + 1;
563 return count;
564 }
565
566 count++;
567 while (count < blks && count <= blocks_to_boundary &&
568 le32_to_cpu(*(branch[0].p + count)) == 0) {
569 count++;
570 }
571 return count;
572}
573
574/**
617ba13b 575 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
576 * @indirect_blks: the number of blocks need to allocate for indirect
577 * blocks
578 *
579 * @new_blocks: on return it will store the new block numbers for
580 * the indirect blocks(if needed) and the first direct block,
581 * @blks: on return it will store the total number of allocated
582 * direct blocks
583 */
617ba13b 584static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
585 ext4_lblk_t iblock, ext4_fsblk_t goal,
586 int indirect_blks, int blks,
587 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 588{
815a1130 589 struct ext4_allocation_request ar;
ac27a0ec 590 int target, i;
7061eba7 591 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 592 int index = 0;
617ba13b 593 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
594 int ret = 0;
595
596 /*
597 * Here we try to allocate the requested multiple blocks at once,
598 * on a best-effort basis.
599 * To build a branch, we should allocate blocks for
600 * the indirect blocks(if not allocated yet), and at least
601 * the first direct block of this branch. That's the
602 * minimum number of blocks need to allocate(required)
603 */
7061eba7
AK
604 /* first we try to allocate the indirect blocks */
605 target = indirect_blks;
606 while (target > 0) {
ac27a0ec
DK
607 count = target;
608 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
609 current_block = ext4_new_meta_blocks(handle, inode,
610 goal, &count, err);
ac27a0ec
DK
611 if (*err)
612 goto failed_out;
613
273df556
FM
614 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
615 EXT4_ERROR_INODE(inode,
616 "current_block %llu + count %lu > %d!",
617 current_block, count,
618 EXT4_MAX_BLOCK_FILE_PHYS);
619 *err = -EIO;
620 goto failed_out;
621 }
fb0a387d 622
ac27a0ec
DK
623 target -= count;
624 /* allocate blocks for indirect blocks */
625 while (index < indirect_blks && count) {
626 new_blocks[index++] = current_block++;
627 count--;
628 }
7061eba7
AK
629 if (count > 0) {
630 /*
631 * save the new block number
632 * for the first direct block
633 */
634 new_blocks[index] = current_block;
635 printk(KERN_INFO "%s returned more blocks than "
636 "requested\n", __func__);
637 WARN_ON(1);
ac27a0ec 638 break;
7061eba7 639 }
ac27a0ec
DK
640 }
641
7061eba7
AK
642 target = blks - count ;
643 blk_allocated = count;
644 if (!target)
645 goto allocated;
646 /* Now allocate data blocks */
815a1130
TT
647 memset(&ar, 0, sizeof(ar));
648 ar.inode = inode;
649 ar.goal = goal;
650 ar.len = target;
651 ar.logical = iblock;
652 if (S_ISREG(inode->i_mode))
653 /* enable in-core preallocation only for regular files */
654 ar.flags = EXT4_MB_HINT_DATA;
655
656 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
657 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
658 EXT4_ERROR_INODE(inode,
659 "current_block %llu + ar.len %d > %d!",
660 current_block, ar.len,
661 EXT4_MAX_BLOCK_FILE_PHYS);
662 *err = -EIO;
663 goto failed_out;
664 }
815a1130 665
7061eba7
AK
666 if (*err && (target == blks)) {
667 /*
668 * if the allocation failed and we didn't allocate
669 * any blocks before
670 */
671 goto failed_out;
672 }
673 if (!*err) {
674 if (target == blks) {
de9a55b8
TT
675 /*
676 * save the new block number
677 * for the first direct block
678 */
7061eba7
AK
679 new_blocks[index] = current_block;
680 }
815a1130 681 blk_allocated += ar.len;
7061eba7
AK
682 }
683allocated:
ac27a0ec 684 /* total number of blocks allocated for direct blocks */
7061eba7 685 ret = blk_allocated;
ac27a0ec
DK
686 *err = 0;
687 return ret;
688failed_out:
af5bc92d 689 for (i = 0; i < index; i++)
e6362609 690 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
691 return ret;
692}
693
694/**
617ba13b 695 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
696 * @inode: owner
697 * @indirect_blks: number of allocated indirect blocks
698 * @blks: number of allocated direct blocks
699 * @offsets: offsets (in the blocks) to store the pointers to next.
700 * @branch: place to store the chain in.
701 *
702 * This function allocates blocks, zeroes out all but the last one,
703 * links them into chain and (if we are synchronous) writes them to disk.
704 * In other words, it prepares a branch that can be spliced onto the
705 * inode. It stores the information about that chain in the branch[], in
617ba13b 706 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
707 * we had read the existing part of chain and partial points to the last
708 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 709 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
710 * place chain is disconnected - *branch->p is still zero (we did not
711 * set the last link), but branch->key contains the number that should
712 * be placed into *branch->p to fill that gap.
713 *
714 * If allocation fails we free all blocks we've allocated (and forget
715 * their buffer_heads) and return the error value the from failed
617ba13b 716 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
717 * as described above and return 0.
718 */
617ba13b 719static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
720 ext4_lblk_t iblock, int indirect_blks,
721 int *blks, ext4_fsblk_t goal,
722 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
723{
724 int blocksize = inode->i_sb->s_blocksize;
725 int i, n = 0;
726 int err = 0;
727 struct buffer_head *bh;
728 int num;
617ba13b
MC
729 ext4_fsblk_t new_blocks[4];
730 ext4_fsblk_t current_block;
ac27a0ec 731
7061eba7 732 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
733 *blks, new_blocks, &err);
734 if (err)
735 return err;
736
737 branch[0].key = cpu_to_le32(new_blocks[0]);
738 /*
739 * metadata blocks and data blocks are allocated.
740 */
741 for (n = 1; n <= indirect_blks; n++) {
742 /*
743 * Get buffer_head for parent block, zero it out
744 * and set the pointer to new one, then send
745 * parent to disk.
746 */
747 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
748 branch[n].bh = bh;
749 lock_buffer(bh);
750 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 751 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 752 if (err) {
6487a9d3
CW
753 /* Don't brelse(bh) here; it's done in
754 * ext4_journal_forget() below */
ac27a0ec 755 unlock_buffer(bh);
ac27a0ec
DK
756 goto failed;
757 }
758
759 memset(bh->b_data, 0, blocksize);
760 branch[n].p = (__le32 *) bh->b_data + offsets[n];
761 branch[n].key = cpu_to_le32(new_blocks[n]);
762 *branch[n].p = branch[n].key;
af5bc92d 763 if (n == indirect_blks) {
ac27a0ec
DK
764 current_block = new_blocks[n];
765 /*
766 * End of chain, update the last new metablock of
767 * the chain to point to the new allocated
768 * data blocks numbers
769 */
de9a55b8 770 for (i = 1; i < num; i++)
ac27a0ec
DK
771 *(branch[n].p + i) = cpu_to_le32(++current_block);
772 }
773 BUFFER_TRACE(bh, "marking uptodate");
774 set_buffer_uptodate(bh);
775 unlock_buffer(bh);
776
0390131b
FM
777 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
778 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
779 if (err)
780 goto failed;
781 }
782 *blks = num;
783 return err;
784failed:
785 /* Allocation failed, free what we already allocated */
e6362609 786 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 787 for (i = 1; i <= n ; i++) {
b7e57e7c 788 /*
e6362609
TT
789 * branch[i].bh is newly allocated, so there is no
790 * need to revoke the block, which is why we don't
791 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 792 */
e6362609
TT
793 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
794 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 795 }
e6362609
TT
796 for (i = n+1; i < indirect_blks; i++)
797 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 798
e6362609 799 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
800
801 return err;
802}
803
804/**
617ba13b 805 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
806 * @inode: owner
807 * @block: (logical) number of block we are adding
808 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 809 * ext4_alloc_branch)
ac27a0ec
DK
810 * @where: location of missing link
811 * @num: number of indirect blocks we are adding
812 * @blks: number of direct blocks we are adding
813 *
814 * This function fills the missing link and does all housekeeping needed in
815 * inode (->i_blocks, etc.). In case of success we end up with the full
816 * chain to new block and return 0.
817 */
617ba13b 818static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
819 ext4_lblk_t block, Indirect *where, int num,
820 int blks)
ac27a0ec
DK
821{
822 int i;
823 int err = 0;
617ba13b 824 ext4_fsblk_t current_block;
ac27a0ec 825
ac27a0ec
DK
826 /*
827 * If we're splicing into a [td]indirect block (as opposed to the
828 * inode) then we need to get write access to the [td]indirect block
829 * before the splice.
830 */
831 if (where->bh) {
832 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 833 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
834 if (err)
835 goto err_out;
836 }
837 /* That's it */
838
839 *where->p = where->key;
840
841 /*
842 * Update the host buffer_head or inode to point to more just allocated
843 * direct blocks blocks
844 */
845 if (num == 0 && blks > 1) {
846 current_block = le32_to_cpu(where->key) + 1;
847 for (i = 1; i < blks; i++)
af5bc92d 848 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
849 }
850
ac27a0ec 851 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
852 /* had we spliced it onto indirect block? */
853 if (where->bh) {
854 /*
855 * If we spliced it onto an indirect block, we haven't
856 * altered the inode. Note however that if it is being spliced
857 * onto an indirect block at the very end of the file (the
858 * file is growing) then we *will* alter the inode to reflect
859 * the new i_size. But that is not done here - it is done in
617ba13b 860 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
861 */
862 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
863 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
864 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
865 if (err)
866 goto err_out;
867 } else {
868 /*
869 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 870 */
41591750 871 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
872 jbd_debug(5, "splicing direct\n");
873 }
874 return err;
875
876err_out:
877 for (i = 1; i <= num; i++) {
b7e57e7c 878 /*
e6362609
TT
879 * branch[i].bh is newly allocated, so there is no
880 * need to revoke the block, which is why we don't
881 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 882 */
e6362609
TT
883 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
884 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 885 }
e6362609
TT
886 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
887 blks, 0);
ac27a0ec
DK
888
889 return err;
890}
891
892/*
b920c755
TT
893 * The ext4_ind_get_blocks() function handles non-extents inodes
894 * (i.e., using the traditional indirect/double-indirect i_blocks
895 * scheme) for ext4_get_blocks().
896 *
ac27a0ec
DK
897 * Allocation strategy is simple: if we have to allocate something, we will
898 * have to go the whole way to leaf. So let's do it before attaching anything
899 * to tree, set linkage between the newborn blocks, write them if sync is
900 * required, recheck the path, free and repeat if check fails, otherwise
901 * set the last missing link (that will protect us from any truncate-generated
902 * removals - all blocks on the path are immune now) and possibly force the
903 * write on the parent block.
904 * That has a nice additional property: no special recovery from the failed
905 * allocations is needed - we simply release blocks and do not touch anything
906 * reachable from inode.
907 *
908 * `handle' can be NULL if create == 0.
909 *
ac27a0ec
DK
910 * return > 0, # of blocks mapped or allocated.
911 * return = 0, if plain lookup failed.
912 * return < 0, error case.
c278bfec 913 *
b920c755
TT
914 * The ext4_ind_get_blocks() function should be called with
915 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
916 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
917 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
918 * blocks.
ac27a0ec 919 */
e4d996ca 920static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
921 ext4_lblk_t iblock, unsigned int maxblocks,
922 struct buffer_head *bh_result,
923 int flags)
ac27a0ec
DK
924{
925 int err = -EIO;
725d26d3 926 ext4_lblk_t offsets[4];
ac27a0ec
DK
927 Indirect chain[4];
928 Indirect *partial;
617ba13b 929 ext4_fsblk_t goal;
ac27a0ec
DK
930 int indirect_blks;
931 int blocks_to_boundary = 0;
932 int depth;
ac27a0ec 933 int count = 0;
617ba13b 934 ext4_fsblk_t first_block = 0;
ac27a0ec 935
a86c6181 936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
c2177057 937 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
725d26d3 938 depth = ext4_block_to_path(inode, iblock, offsets,
de9a55b8 939 &blocks_to_boundary);
ac27a0ec
DK
940
941 if (depth == 0)
942 goto out;
943
617ba13b 944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 953 ext4_fsblk_t blk;
ac27a0ec 954
ac27a0ec
DK
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
c278bfec 962 goto got_it;
ac27a0ec
DK
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 966 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
967 goto cleanup;
968
ac27a0ec 969 /*
c2ea3fde 970 * Okay, we need to do block allocation.
ac27a0ec 971 */
fb01bfda 972 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
617ba13b 981 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
982 maxblocks, blocks_to_boundary);
983 /*
617ba13b 984 * Block out ext4_truncate while we alter the tree
ac27a0ec 985 */
7061eba7 986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
de9a55b8
TT
987 &count, goal,
988 offsets + (partial - chain), partial);
ac27a0ec
DK
989
990 /*
617ba13b 991 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
617ba13b 998 err = ext4_splice_branch(handle, inode, iblock,
de9a55b8 999 partial, indirect_blks, count);
2bba702d 1000 if (err)
ac27a0ec
DK
1001 goto cleanup;
1002
1003 set_buffer_new(bh_result);
b436b9be
JK
1004
1005 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec
DK
1006got_it:
1007 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1008 if (count > blocks_to_boundary)
1009 set_buffer_boundary(bh_result);
1010 err = count;
1011 /* Clean up and exit */
1012 partial = chain + depth - 1; /* the whole chain */
1013cleanup:
1014 while (partial > chain) {
1015 BUFFER_TRACE(partial->bh, "call brelse");
1016 brelse(partial->bh);
1017 partial--;
1018 }
1019 BUFFER_TRACE(bh_result, "returned");
1020out:
1021 return err;
1022}
1023
a9e7f447
DM
1024#ifdef CONFIG_QUOTA
1025qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1026{
a9e7f447 1027 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1028}
a9e7f447 1029#endif
9d0be502 1030
12219aea
AK
1031/*
1032 * Calculate the number of metadata blocks need to reserve
9d0be502 1033 * to allocate a new block at @lblocks for non extent file based file
12219aea 1034 */
9d0be502
TT
1035static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1036 sector_t lblock)
12219aea 1037{
9d0be502 1038 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1039 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1040 int blk_bits;
12219aea 1041
9d0be502
TT
1042 if (lblock < EXT4_NDIR_BLOCKS)
1043 return 0;
12219aea 1044
9d0be502 1045 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1046
9d0be502
TT
1047 if (ei->i_da_metadata_calc_len &&
1048 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1049 ei->i_da_metadata_calc_len++;
1050 return 0;
1051 }
1052 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1053 ei->i_da_metadata_calc_len = 1;
d330a5be 1054 blk_bits = order_base_2(lblock);
9d0be502 1055 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1056}
1057
1058/*
1059 * Calculate the number of metadata blocks need to reserve
9d0be502 1060 * to allocate a block located at @lblock
12219aea 1061 */
9d0be502 1062static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea
AK
1063{
1064 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
9d0be502 1065 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1066
9d0be502 1067 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1068}
1069
0637c6f4
TT
1070/*
1071 * Called with i_data_sem down, which is important since we can call
1072 * ext4_discard_preallocations() from here.
1073 */
5f634d06
AK
1074void ext4_da_update_reserve_space(struct inode *inode,
1075 int used, int quota_claim)
12219aea
AK
1076{
1077 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1078 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1079
1080 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1081 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1082 if (unlikely(used > ei->i_reserved_data_blocks)) {
1083 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084 "with only %d reserved data blocks\n",
1085 __func__, inode->i_ino, used,
1086 ei->i_reserved_data_blocks);
1087 WARN_ON(1);
1088 used = ei->i_reserved_data_blocks;
1089 }
12219aea 1090
0637c6f4
TT
1091 /* Update per-inode reservations */
1092 ei->i_reserved_data_blocks -= used;
0637c6f4 1093 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1094 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1095 used + ei->i_allocated_meta_blocks);
0637c6f4 1096 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1097
0637c6f4
TT
1098 if (ei->i_reserved_data_blocks == 0) {
1099 /*
1100 * We can release all of the reserved metadata blocks
1101 * only when we have written all of the delayed
1102 * allocation blocks.
1103 */
72b8ab9d
ES
1104 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1105 ei->i_reserved_meta_blocks);
ee5f4d9c 1106 ei->i_reserved_meta_blocks = 0;
9d0be502 1107 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1108 }
12219aea 1109 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1110
72b8ab9d
ES
1111 /* Update quota subsystem for data blocks */
1112 if (quota_claim)
5dd4056d 1113 dquot_claim_block(inode, used);
72b8ab9d 1114 else {
5f634d06
AK
1115 /*
1116 * We did fallocate with an offset that is already delayed
1117 * allocated. So on delayed allocated writeback we should
72b8ab9d 1118 * not re-claim the quota for fallocated blocks.
5f634d06 1119 */
72b8ab9d 1120 dquot_release_reservation_block(inode, used);
5f634d06 1121 }
d6014301
AK
1122
1123 /*
1124 * If we have done all the pending block allocations and if
1125 * there aren't any writers on the inode, we can discard the
1126 * inode's preallocations.
1127 */
0637c6f4
TT
1128 if ((ei->i_reserved_data_blocks == 0) &&
1129 (atomic_read(&inode->i_writecount) == 0))
d6014301 1130 ext4_discard_preallocations(inode);
12219aea
AK
1131}
1132
80e42468
TT
1133static int check_block_validity(struct inode *inode, const char *msg,
1134 sector_t logical, sector_t phys, int len)
6fd058f7
TT
1135{
1136 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
12062ddd 1137 __ext4_error(inode->i_sb, msg,
6fd058f7
TT
1138 "inode #%lu logical block %llu mapped to %llu "
1139 "(size %d)", inode->i_ino,
1140 (unsigned long long) logical,
1141 (unsigned long long) phys, len);
6fd058f7
TT
1142 return -EIO;
1143 }
1144 return 0;
1145}
1146
55138e0b 1147/*
1f94533d
TT
1148 * Return the number of contiguous dirty pages in a given inode
1149 * starting at page frame idx.
55138e0b
TT
1150 */
1151static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1152 unsigned int max_pages)
1153{
1154 struct address_space *mapping = inode->i_mapping;
1155 pgoff_t index;
1156 struct pagevec pvec;
1157 pgoff_t num = 0;
1158 int i, nr_pages, done = 0;
1159
1160 if (max_pages == 0)
1161 return 0;
1162 pagevec_init(&pvec, 0);
1163 while (!done) {
1164 index = idx;
1165 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1166 PAGECACHE_TAG_DIRTY,
1167 (pgoff_t)PAGEVEC_SIZE);
1168 if (nr_pages == 0)
1169 break;
1170 for (i = 0; i < nr_pages; i++) {
1171 struct page *page = pvec.pages[i];
1172 struct buffer_head *bh, *head;
1173
1174 lock_page(page);
1175 if (unlikely(page->mapping != mapping) ||
1176 !PageDirty(page) ||
1177 PageWriteback(page) ||
1178 page->index != idx) {
1179 done = 1;
1180 unlock_page(page);
1181 break;
1182 }
1f94533d
TT
1183 if (page_has_buffers(page)) {
1184 bh = head = page_buffers(page);
1185 do {
1186 if (!buffer_delay(bh) &&
1187 !buffer_unwritten(bh))
1188 done = 1;
1189 bh = bh->b_this_page;
1190 } while (!done && (bh != head));
1191 }
55138e0b
TT
1192 unlock_page(page);
1193 if (done)
1194 break;
1195 idx++;
1196 num++;
1197 if (num >= max_pages)
1198 break;
1199 }
1200 pagevec_release(&pvec);
1201 }
1202 return num;
1203}
1204
f5ab0d1f 1205/*
12b7ac17 1206 * The ext4_get_blocks() function tries to look up the requested blocks,
2b2d6d01 1207 * and returns if the blocks are already mapped.
f5ab0d1f 1208 *
f5ab0d1f
MC
1209 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1210 * and store the allocated blocks in the result buffer head and mark it
1211 * mapped.
1212 *
1213 * If file type is extents based, it will call ext4_ext_get_blocks(),
e4d996ca 1214 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
f5ab0d1f
MC
1215 * based files
1216 *
1217 * On success, it returns the number of blocks being mapped or allocate.
1218 * if create==0 and the blocks are pre-allocated and uninitialized block,
1219 * the result buffer head is unmapped. If the create ==1, it will make sure
1220 * the buffer head is mapped.
1221 *
1222 * It returns 0 if plain look up failed (blocks have not been allocated), in
1223 * that casem, buffer head is unmapped
1224 *
1225 * It returns the error in case of allocation failure.
1226 */
12b7ac17
TT
1227int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1228 unsigned int max_blocks, struct buffer_head *bh,
c2177057 1229 int flags)
0e855ac8
AK
1230{
1231 int retval;
f5ab0d1f
MC
1232
1233 clear_buffer_mapped(bh);
2a8964d6 1234 clear_buffer_unwritten(bh);
f5ab0d1f 1235
0031462b
MC
1236 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1237 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1238 (unsigned long)block);
4df3d265 1239 /*
b920c755
TT
1240 * Try to see if we can get the block without requesting a new
1241 * file system block.
4df3d265
AK
1242 */
1243 down_read((&EXT4_I(inode)->i_data_sem));
1244 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1245 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1246 bh, 0);
0e855ac8 1247 } else {
e4d996ca 1248 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
c2177057 1249 bh, 0);
0e855ac8 1250 }
4df3d265 1251 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1252
6fd058f7 1253 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1254 int ret = check_block_validity(inode, "file system corruption",
1255 block, bh->b_blocknr, retval);
6fd058f7
TT
1256 if (ret != 0)
1257 return ret;
1258 }
1259
f5ab0d1f 1260 /* If it is only a block(s) look up */
c2177057 1261 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1262 return retval;
1263
1264 /*
1265 * Returns if the blocks have already allocated
1266 *
1267 * Note that if blocks have been preallocated
1268 * ext4_ext_get_block() returns th create = 0
1269 * with buffer head unmapped.
1270 */
1271 if (retval > 0 && buffer_mapped(bh))
4df3d265
AK
1272 return retval;
1273
2a8964d6
AK
1274 /*
1275 * When we call get_blocks without the create flag, the
1276 * BH_Unwritten flag could have gotten set if the blocks
1277 * requested were part of a uninitialized extent. We need to
1278 * clear this flag now that we are committed to convert all or
1279 * part of the uninitialized extent to be an initialized
1280 * extent. This is because we need to avoid the combination
1281 * of BH_Unwritten and BH_Mapped flags being simultaneously
1282 * set on the buffer_head.
1283 */
1284 clear_buffer_unwritten(bh);
1285
4df3d265 1286 /*
f5ab0d1f
MC
1287 * New blocks allocate and/or writing to uninitialized extent
1288 * will possibly result in updating i_data, so we take
1289 * the write lock of i_data_sem, and call get_blocks()
1290 * with create == 1 flag.
4df3d265
AK
1291 */
1292 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1293
1294 /*
1295 * if the caller is from delayed allocation writeout path
1296 * we have already reserved fs blocks for allocation
1297 * let the underlying get_block() function know to
1298 * avoid double accounting
1299 */
c2177057 1300 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1301 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1302 /*
1303 * We need to check for EXT4 here because migrate
1304 * could have changed the inode type in between
1305 */
0e855ac8
AK
1306 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1307 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
c2177057 1308 bh, flags);
0e855ac8 1309 } else {
e4d996ca 1310 retval = ext4_ind_get_blocks(handle, inode, block,
c2177057 1311 max_blocks, bh, flags);
267e4db9
AK
1312
1313 if (retval > 0 && buffer_new(bh)) {
1314 /*
1315 * We allocated new blocks which will result in
1316 * i_data's format changing. Force the migrate
1317 * to fail by clearing migrate flags
1318 */
19f5fb7a 1319 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1320 }
d2a17637 1321
5f634d06
AK
1322 /*
1323 * Update reserved blocks/metadata blocks after successful
1324 * block allocation which had been deferred till now. We don't
1325 * support fallocate for non extent files. So we can update
1326 * reserve space here.
1327 */
1328 if ((retval > 0) &&
1296cc85 1329 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1330 ext4_da_update_reserve_space(inode, retval, 1);
1331 }
2ac3b6e0 1332 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1333 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1334
4df3d265 1335 up_write((&EXT4_I(inode)->i_data_sem));
6fd058f7 1336 if (retval > 0 && buffer_mapped(bh)) {
80e42468
TT
1337 int ret = check_block_validity(inode, "file system "
1338 "corruption after allocation",
1339 block, bh->b_blocknr, retval);
6fd058f7
TT
1340 if (ret != 0)
1341 return ret;
1342 }
0e855ac8
AK
1343 return retval;
1344}
1345
f3bd1f3f
MC
1346/* Maximum number of blocks we map for direct IO at once. */
1347#define DIO_MAX_BLOCKS 4096
1348
6873fa0d
ES
1349int ext4_get_block(struct inode *inode, sector_t iblock,
1350 struct buffer_head *bh_result, int create)
ac27a0ec 1351{
3e4fdaf8 1352 handle_t *handle = ext4_journal_current_handle();
7fb5409d 1353 int ret = 0, started = 0;
ac27a0ec 1354 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
f3bd1f3f 1355 int dio_credits;
ac27a0ec 1356
7fb5409d
JK
1357 if (create && !handle) {
1358 /* Direct IO write... */
1359 if (max_blocks > DIO_MAX_BLOCKS)
1360 max_blocks = DIO_MAX_BLOCKS;
f3bd1f3f
MC
1361 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1362 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1363 if (IS_ERR(handle)) {
ac27a0ec 1364 ret = PTR_ERR(handle);
7fb5409d 1365 goto out;
ac27a0ec 1366 }
7fb5409d 1367 started = 1;
ac27a0ec
DK
1368 }
1369
12b7ac17 1370 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
c2177057 1371 create ? EXT4_GET_BLOCKS_CREATE : 0);
7fb5409d
JK
1372 if (ret > 0) {
1373 bh_result->b_size = (ret << inode->i_blkbits);
1374 ret = 0;
ac27a0ec 1375 }
7fb5409d
JK
1376 if (started)
1377 ext4_journal_stop(handle);
1378out:
ac27a0ec
DK
1379 return ret;
1380}
1381
1382/*
1383 * `handle' can be NULL if create is zero
1384 */
617ba13b 1385struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1386 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
1387{
1388 struct buffer_head dummy;
1389 int fatal = 0, err;
03f5d8bc 1390 int flags = 0;
ac27a0ec
DK
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
1394 dummy.b_state = 0;
1395 dummy.b_blocknr = -1000;
1396 buffer_trace_init(&dummy.b_history);
c2177057
TT
1397 if (create)
1398 flags |= EXT4_GET_BLOCKS_CREATE;
1399 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
ac27a0ec 1400 /*
c2177057
TT
1401 * ext4_get_blocks() returns number of blocks mapped. 0 in
1402 * case of a HOLE.
ac27a0ec
DK
1403 */
1404 if (err > 0) {
1405 if (err > 1)
1406 WARN_ON(1);
1407 err = 0;
1408 }
1409 *errp = err;
1410 if (!err && buffer_mapped(&dummy)) {
1411 struct buffer_head *bh;
1412 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1413 if (!bh) {
1414 *errp = -EIO;
1415 goto err;
1416 }
1417 if (buffer_new(&dummy)) {
1418 J_ASSERT(create != 0);
ac39849d 1419 J_ASSERT(handle != NULL);
ac27a0ec
DK
1420
1421 /*
1422 * Now that we do not always journal data, we should
1423 * keep in mind whether this should always journal the
1424 * new buffer as metadata. For now, regular file
617ba13b 1425 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1426 * problem.
1427 */
1428 lock_buffer(bh);
1429 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1430 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec 1431 if (!fatal && !buffer_uptodate(bh)) {
af5bc92d 1432 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
ac27a0ec
DK
1433 set_buffer_uptodate(bh);
1434 }
1435 unlock_buffer(bh);
0390131b
FM
1436 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1437 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
1438 if (!fatal)
1439 fatal = err;
1440 } else {
1441 BUFFER_TRACE(bh, "not a new buffer");
1442 }
1443 if (fatal) {
1444 *errp = fatal;
1445 brelse(bh);
1446 bh = NULL;
1447 }
1448 return bh;
1449 }
1450err:
1451 return NULL;
1452}
1453
617ba13b 1454struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1455 ext4_lblk_t block, int create, int *err)
ac27a0ec 1456{
af5bc92d 1457 struct buffer_head *bh;
ac27a0ec 1458
617ba13b 1459 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1460 if (!bh)
1461 return bh;
1462 if (buffer_uptodate(bh))
1463 return bh;
1464 ll_rw_block(READ_META, 1, &bh);
1465 wait_on_buffer(bh);
1466 if (buffer_uptodate(bh))
1467 return bh;
1468 put_bh(bh);
1469 *err = -EIO;
1470 return NULL;
1471}
1472
af5bc92d
TT
1473static int walk_page_buffers(handle_t *handle,
1474 struct buffer_head *head,
1475 unsigned from,
1476 unsigned to,
1477 int *partial,
1478 int (*fn)(handle_t *handle,
1479 struct buffer_head *bh))
ac27a0ec
DK
1480{
1481 struct buffer_head *bh;
1482 unsigned block_start, block_end;
1483 unsigned blocksize = head->b_size;
1484 int err, ret = 0;
1485 struct buffer_head *next;
1486
af5bc92d
TT
1487 for (bh = head, block_start = 0;
1488 ret == 0 && (bh != head || !block_start);
de9a55b8 1489 block_start = block_end, bh = next) {
ac27a0ec
DK
1490 next = bh->b_this_page;
1491 block_end = block_start + blocksize;
1492 if (block_end <= from || block_start >= to) {
1493 if (partial && !buffer_uptodate(bh))
1494 *partial = 1;
1495 continue;
1496 }
1497 err = (*fn)(handle, bh);
1498 if (!ret)
1499 ret = err;
1500 }
1501 return ret;
1502}
1503
1504/*
1505 * To preserve ordering, it is essential that the hole instantiation and
1506 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1507 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1508 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1509 * prepare_write() is the right place.
1510 *
617ba13b
MC
1511 * Also, this function can nest inside ext4_writepage() ->
1512 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1513 * has generated enough buffer credits to do the whole page. So we won't
1514 * block on the journal in that case, which is good, because the caller may
1515 * be PF_MEMALLOC.
1516 *
617ba13b 1517 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1518 * quota file writes. If we were to commit the transaction while thus
1519 * reentered, there can be a deadlock - we would be holding a quota
1520 * lock, and the commit would never complete if another thread had a
1521 * transaction open and was blocking on the quota lock - a ranking
1522 * violation.
1523 *
dab291af 1524 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1525 * will _not_ run commit under these circumstances because handle->h_ref
1526 * is elevated. We'll still have enough credits for the tiny quotafile
1527 * write.
1528 */
1529static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1530 struct buffer_head *bh)
ac27a0ec
DK
1531{
1532 if (!buffer_mapped(bh) || buffer_freed(bh))
1533 return 0;
617ba13b 1534 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1535}
1536
b9a4207d
JK
1537/*
1538 * Truncate blocks that were not used by write. We have to truncate the
1539 * pagecache as well so that corresponding buffers get properly unmapped.
1540 */
1541static void ext4_truncate_failed_write(struct inode *inode)
1542{
1543 truncate_inode_pages(inode->i_mapping, inode->i_size);
1544 ext4_truncate(inode);
1545}
1546
744692dc
JZ
1547static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1548 struct buffer_head *bh_result, int create);
bfc1af65 1549static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1550 loff_t pos, unsigned len, unsigned flags,
1551 struct page **pagep, void **fsdata)
ac27a0ec 1552{
af5bc92d 1553 struct inode *inode = mapping->host;
1938a150 1554 int ret, needed_blocks;
ac27a0ec
DK
1555 handle_t *handle;
1556 int retries = 0;
af5bc92d 1557 struct page *page;
de9a55b8 1558 pgoff_t index;
af5bc92d 1559 unsigned from, to;
bfc1af65 1560
9bffad1e 1561 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1562 /*
1563 * Reserve one block more for addition to orphan list in case
1564 * we allocate blocks but write fails for some reason
1565 */
1566 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1567 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1568 from = pos & (PAGE_CACHE_SIZE - 1);
1569 to = from + len;
ac27a0ec
DK
1570
1571retry:
af5bc92d
TT
1572 handle = ext4_journal_start(inode, needed_blocks);
1573 if (IS_ERR(handle)) {
1574 ret = PTR_ERR(handle);
1575 goto out;
7479d2b9 1576 }
ac27a0ec 1577
ebd3610b
JK
1578 /* We cannot recurse into the filesystem as the transaction is already
1579 * started */
1580 flags |= AOP_FLAG_NOFS;
1581
54566b2c 1582 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1583 if (!page) {
1584 ext4_journal_stop(handle);
1585 ret = -ENOMEM;
1586 goto out;
1587 }
1588 *pagep = page;
1589
744692dc
JZ
1590 if (ext4_should_dioread_nolock(inode))
1591 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1592 fsdata, ext4_get_block_write);
1593 else
1594 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1595 fsdata, ext4_get_block);
bfc1af65
NP
1596
1597 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1598 ret = walk_page_buffers(handle, page_buffers(page),
1599 from, to, NULL, do_journal_get_write_access);
1600 }
bfc1af65
NP
1601
1602 if (ret) {
af5bc92d 1603 unlock_page(page);
af5bc92d 1604 page_cache_release(page);
ae4d5372
AK
1605 /*
1606 * block_write_begin may have instantiated a few blocks
1607 * outside i_size. Trim these off again. Don't need
1608 * i_size_read because we hold i_mutex.
1938a150
AK
1609 *
1610 * Add inode to orphan list in case we crash before
1611 * truncate finishes
ae4d5372 1612 */
ffacfa7a 1613 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1614 ext4_orphan_add(handle, inode);
1615
1616 ext4_journal_stop(handle);
1617 if (pos + len > inode->i_size) {
b9a4207d 1618 ext4_truncate_failed_write(inode);
de9a55b8 1619 /*
ffacfa7a 1620 * If truncate failed early the inode might
1938a150
AK
1621 * still be on the orphan list; we need to
1622 * make sure the inode is removed from the
1623 * orphan list in that case.
1624 */
1625 if (inode->i_nlink)
1626 ext4_orphan_del(NULL, inode);
1627 }
bfc1af65
NP
1628 }
1629
617ba13b 1630 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1631 goto retry;
7479d2b9 1632out:
ac27a0ec
DK
1633 return ret;
1634}
1635
bfc1af65
NP
1636/* For write_end() in data=journal mode */
1637static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1638{
1639 if (!buffer_mapped(bh) || buffer_freed(bh))
1640 return 0;
1641 set_buffer_uptodate(bh);
0390131b 1642 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1643}
1644
f8514083 1645static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1646 struct address_space *mapping,
1647 loff_t pos, unsigned len, unsigned copied,
1648 struct page *page, void *fsdata)
f8514083
AK
1649{
1650 int i_size_changed = 0;
1651 struct inode *inode = mapping->host;
1652 handle_t *handle = ext4_journal_current_handle();
1653
1654 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1655
1656 /*
1657 * No need to use i_size_read() here, the i_size
1658 * cannot change under us because we hold i_mutex.
1659 *
1660 * But it's important to update i_size while still holding page lock:
1661 * page writeout could otherwise come in and zero beyond i_size.
1662 */
1663 if (pos + copied > inode->i_size) {
1664 i_size_write(inode, pos + copied);
1665 i_size_changed = 1;
1666 }
1667
1668 if (pos + copied > EXT4_I(inode)->i_disksize) {
1669 /* We need to mark inode dirty even if
1670 * new_i_size is less that inode->i_size
1671 * bu greater than i_disksize.(hint delalloc)
1672 */
1673 ext4_update_i_disksize(inode, (pos + copied));
1674 i_size_changed = 1;
1675 }
1676 unlock_page(page);
1677 page_cache_release(page);
1678
1679 /*
1680 * Don't mark the inode dirty under page lock. First, it unnecessarily
1681 * makes the holding time of page lock longer. Second, it forces lock
1682 * ordering of page lock and transaction start for journaling
1683 * filesystems.
1684 */
1685 if (i_size_changed)
1686 ext4_mark_inode_dirty(handle, inode);
1687
1688 return copied;
1689}
1690
ac27a0ec
DK
1691/*
1692 * We need to pick up the new inode size which generic_commit_write gave us
1693 * `file' can be NULL - eg, when called from page_symlink().
1694 *
617ba13b 1695 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1696 * buffers are managed internally.
1697 */
bfc1af65 1698static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1699 struct address_space *mapping,
1700 loff_t pos, unsigned len, unsigned copied,
1701 struct page *page, void *fsdata)
ac27a0ec 1702{
617ba13b 1703 handle_t *handle = ext4_journal_current_handle();
cf108bca 1704 struct inode *inode = mapping->host;
ac27a0ec
DK
1705 int ret = 0, ret2;
1706
9bffad1e 1707 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1708 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1709
1710 if (ret == 0) {
f8514083 1711 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1712 page, fsdata);
f8a87d89 1713 copied = ret2;
ffacfa7a 1714 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1715 /* if we have allocated more blocks and copied
1716 * less. We will have blocks allocated outside
1717 * inode->i_size. So truncate them
1718 */
1719 ext4_orphan_add(handle, inode);
f8a87d89
RK
1720 if (ret2 < 0)
1721 ret = ret2;
ac27a0ec 1722 }
617ba13b 1723 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1724 if (!ret)
1725 ret = ret2;
bfc1af65 1726
f8514083 1727 if (pos + len > inode->i_size) {
b9a4207d 1728 ext4_truncate_failed_write(inode);
de9a55b8 1729 /*
ffacfa7a 1730 * If truncate failed early the inode might still be
f8514083
AK
1731 * on the orphan list; we need to make sure the inode
1732 * is removed from the orphan list in that case.
1733 */
1734 if (inode->i_nlink)
1735 ext4_orphan_del(NULL, inode);
1736 }
1737
1738
bfc1af65 1739 return ret ? ret : copied;
ac27a0ec
DK
1740}
1741
bfc1af65 1742static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1743 struct address_space *mapping,
1744 loff_t pos, unsigned len, unsigned copied,
1745 struct page *page, void *fsdata)
ac27a0ec 1746{
617ba13b 1747 handle_t *handle = ext4_journal_current_handle();
cf108bca 1748 struct inode *inode = mapping->host;
ac27a0ec 1749 int ret = 0, ret2;
ac27a0ec 1750
9bffad1e 1751 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1752 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1753 page, fsdata);
f8a87d89 1754 copied = ret2;
ffacfa7a 1755 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1756 /* if we have allocated more blocks and copied
1757 * less. We will have blocks allocated outside
1758 * inode->i_size. So truncate them
1759 */
1760 ext4_orphan_add(handle, inode);
1761
f8a87d89
RK
1762 if (ret2 < 0)
1763 ret = ret2;
ac27a0ec 1764
617ba13b 1765 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1766 if (!ret)
1767 ret = ret2;
bfc1af65 1768
f8514083 1769 if (pos + len > inode->i_size) {
b9a4207d 1770 ext4_truncate_failed_write(inode);
de9a55b8 1771 /*
ffacfa7a 1772 * If truncate failed early the inode might still be
f8514083
AK
1773 * on the orphan list; we need to make sure the inode
1774 * is removed from the orphan list in that case.
1775 */
1776 if (inode->i_nlink)
1777 ext4_orphan_del(NULL, inode);
1778 }
1779
bfc1af65 1780 return ret ? ret : copied;
ac27a0ec
DK
1781}
1782
bfc1af65 1783static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1784 struct address_space *mapping,
1785 loff_t pos, unsigned len, unsigned copied,
1786 struct page *page, void *fsdata)
ac27a0ec 1787{
617ba13b 1788 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1789 struct inode *inode = mapping->host;
ac27a0ec
DK
1790 int ret = 0, ret2;
1791 int partial = 0;
bfc1af65 1792 unsigned from, to;
cf17fea6 1793 loff_t new_i_size;
ac27a0ec 1794
9bffad1e 1795 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1796 from = pos & (PAGE_CACHE_SIZE - 1);
1797 to = from + len;
1798
1799 if (copied < len) {
1800 if (!PageUptodate(page))
1801 copied = 0;
1802 page_zero_new_buffers(page, from+copied, to);
1803 }
ac27a0ec
DK
1804
1805 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1806 to, &partial, write_end_fn);
ac27a0ec
DK
1807 if (!partial)
1808 SetPageUptodate(page);
cf17fea6
AK
1809 new_i_size = pos + copied;
1810 if (new_i_size > inode->i_size)
bfc1af65 1811 i_size_write(inode, pos+copied);
19f5fb7a 1812 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1813 if (new_i_size > EXT4_I(inode)->i_disksize) {
1814 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1815 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1816 if (!ret)
1817 ret = ret2;
1818 }
bfc1af65 1819
cf108bca 1820 unlock_page(page);
f8514083 1821 page_cache_release(page);
ffacfa7a 1822 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1823 /* if we have allocated more blocks and copied
1824 * less. We will have blocks allocated outside
1825 * inode->i_size. So truncate them
1826 */
1827 ext4_orphan_add(handle, inode);
1828
617ba13b 1829 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1830 if (!ret)
1831 ret = ret2;
f8514083 1832 if (pos + len > inode->i_size) {
b9a4207d 1833 ext4_truncate_failed_write(inode);
de9a55b8 1834 /*
ffacfa7a 1835 * If truncate failed early the inode might still be
f8514083
AK
1836 * on the orphan list; we need to make sure the inode
1837 * is removed from the orphan list in that case.
1838 */
1839 if (inode->i_nlink)
1840 ext4_orphan_del(NULL, inode);
1841 }
bfc1af65
NP
1842
1843 return ret ? ret : copied;
ac27a0ec 1844}
d2a17637 1845
9d0be502
TT
1846/*
1847 * Reserve a single block located at lblock
1848 */
1849static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1850{
030ba6bc 1851 int retries = 0;
60e58e0f 1852 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1853 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1854 unsigned long md_needed;
5dd4056d 1855 int ret;
d2a17637
MC
1856
1857 /*
1858 * recalculate the amount of metadata blocks to reserve
1859 * in order to allocate nrblocks
1860 * worse case is one extent per block
1861 */
030ba6bc 1862repeat:
0637c6f4 1863 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1864 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1865 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1866 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1867
60e58e0f 1868 /*
72b8ab9d
ES
1869 * We will charge metadata quota at writeout time; this saves
1870 * us from metadata over-estimation, though we may go over by
1871 * a small amount in the end. Here we just reserve for data.
60e58e0f 1872 */
72b8ab9d 1873 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1874 if (ret)
1875 return ret;
72b8ab9d
ES
1876 /*
1877 * We do still charge estimated metadata to the sb though;
1878 * we cannot afford to run out of free blocks.
1879 */
9d0be502 1880 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1881 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1882 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1883 yield();
1884 goto repeat;
1885 }
d2a17637
MC
1886 return -ENOSPC;
1887 }
0637c6f4 1888 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1889 ei->i_reserved_data_blocks++;
0637c6f4
TT
1890 ei->i_reserved_meta_blocks += md_needed;
1891 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1892
d2a17637
MC
1893 return 0; /* success */
1894}
1895
12219aea 1896static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1897{
1898 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1899 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1900
cd213226
MC
1901 if (!to_free)
1902 return; /* Nothing to release, exit */
1903
d2a17637 1904 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1905
0637c6f4 1906 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1907 /*
0637c6f4
TT
1908 * if there aren't enough reserved blocks, then the
1909 * counter is messed up somewhere. Since this
1910 * function is called from invalidate page, it's
1911 * harmless to return without any action.
cd213226 1912 */
0637c6f4
TT
1913 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1914 "ino %lu, to_free %d with only %d reserved "
1915 "data blocks\n", inode->i_ino, to_free,
1916 ei->i_reserved_data_blocks);
1917 WARN_ON(1);
1918 to_free = ei->i_reserved_data_blocks;
cd213226 1919 }
0637c6f4 1920 ei->i_reserved_data_blocks -= to_free;
cd213226 1921
0637c6f4
TT
1922 if (ei->i_reserved_data_blocks == 0) {
1923 /*
1924 * We can release all of the reserved metadata blocks
1925 * only when we have written all of the delayed
1926 * allocation blocks.
1927 */
72b8ab9d
ES
1928 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1929 ei->i_reserved_meta_blocks);
ee5f4d9c 1930 ei->i_reserved_meta_blocks = 0;
9d0be502 1931 ei->i_da_metadata_calc_len = 0;
0637c6f4 1932 }
d2a17637 1933
72b8ab9d 1934 /* update fs dirty data blocks counter */
0637c6f4 1935 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1936
d2a17637 1937 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1938
5dd4056d 1939 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1940}
1941
1942static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1943 unsigned long offset)
d2a17637
MC
1944{
1945 int to_release = 0;
1946 struct buffer_head *head, *bh;
1947 unsigned int curr_off = 0;
1948
1949 head = page_buffers(page);
1950 bh = head;
1951 do {
1952 unsigned int next_off = curr_off + bh->b_size;
1953
1954 if ((offset <= curr_off) && (buffer_delay(bh))) {
1955 to_release++;
1956 clear_buffer_delay(bh);
1957 }
1958 curr_off = next_off;
1959 } while ((bh = bh->b_this_page) != head);
12219aea 1960 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1961}
ac27a0ec 1962
64769240
AT
1963/*
1964 * Delayed allocation stuff
1965 */
1966
64769240
AT
1967/*
1968 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1969 * them with writepage() call back
64769240
AT
1970 *
1971 * @mpd->inode: inode
1972 * @mpd->first_page: first page of the extent
1973 * @mpd->next_page: page after the last page of the extent
64769240
AT
1974 *
1975 * By the time mpage_da_submit_io() is called we expect all blocks
1976 * to be allocated. this may be wrong if allocation failed.
1977 *
1978 * As pages are already locked by write_cache_pages(), we can't use it
1979 */
1980static int mpage_da_submit_io(struct mpage_da_data *mpd)
1981{
22208ded 1982 long pages_skipped;
791b7f08
AK
1983 struct pagevec pvec;
1984 unsigned long index, end;
1985 int ret = 0, err, nr_pages, i;
1986 struct inode *inode = mpd->inode;
1987 struct address_space *mapping = inode->i_mapping;
64769240
AT
1988
1989 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
1990 /*
1991 * We need to start from the first_page to the next_page - 1
1992 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1993 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1994 * at the currently mapped buffer_heads.
1995 */
64769240
AT
1996 index = mpd->first_page;
1997 end = mpd->next_page - 1;
1998
791b7f08 1999 pagevec_init(&pvec, 0);
64769240 2000 while (index <= end) {
791b7f08 2001 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2002 if (nr_pages == 0)
2003 break;
2004 for (i = 0; i < nr_pages; i++) {
2005 struct page *page = pvec.pages[i];
2006
791b7f08
AK
2007 index = page->index;
2008 if (index > end)
2009 break;
2010 index++;
2011
2012 BUG_ON(!PageLocked(page));
2013 BUG_ON(PageWriteback(page));
2014
22208ded 2015 pages_skipped = mpd->wbc->pages_skipped;
a1d6cc56 2016 err = mapping->a_ops->writepage(page, mpd->wbc);
22208ded
AK
2017 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2018 /*
2019 * have successfully written the page
2020 * without skipping the same
2021 */
a1d6cc56 2022 mpd->pages_written++;
64769240
AT
2023 /*
2024 * In error case, we have to continue because
2025 * remaining pages are still locked
2026 * XXX: unlock and re-dirty them?
2027 */
2028 if (ret == 0)
2029 ret = err;
2030 }
2031 pagevec_release(&pvec);
2032 }
64769240
AT
2033 return ret;
2034}
2035
2036/*
2037 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2038 *
2039 * @mpd->inode - inode to walk through
2040 * @exbh->b_blocknr - first block on a disk
2041 * @exbh->b_size - amount of space in bytes
2042 * @logical - first logical block to start assignment with
2043 *
2044 * the function goes through all passed space and put actual disk
29fa89d0 2045 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240
AT
2046 */
2047static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2048 struct buffer_head *exbh)
2049{
2050 struct inode *inode = mpd->inode;
2051 struct address_space *mapping = inode->i_mapping;
2052 int blocks = exbh->b_size >> inode->i_blkbits;
2053 sector_t pblock = exbh->b_blocknr, cur_logical;
2054 struct buffer_head *head, *bh;
a1d6cc56 2055 pgoff_t index, end;
64769240
AT
2056 struct pagevec pvec;
2057 int nr_pages, i;
2058
2059 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2060 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2061 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2062
2063 pagevec_init(&pvec, 0);
2064
2065 while (index <= end) {
2066 /* XXX: optimize tail */
2067 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2068 if (nr_pages == 0)
2069 break;
2070 for (i = 0; i < nr_pages; i++) {
2071 struct page *page = pvec.pages[i];
2072
2073 index = page->index;
2074 if (index > end)
2075 break;
2076 index++;
2077
2078 BUG_ON(!PageLocked(page));
2079 BUG_ON(PageWriteback(page));
2080 BUG_ON(!page_has_buffers(page));
2081
2082 bh = page_buffers(page);
2083 head = bh;
2084
2085 /* skip blocks out of the range */
2086 do {
2087 if (cur_logical >= logical)
2088 break;
2089 cur_logical++;
2090 } while ((bh = bh->b_this_page) != head);
2091
2092 do {
2093 if (cur_logical >= logical + blocks)
2094 break;
29fa89d0
AK
2095
2096 if (buffer_delay(bh) ||
2097 buffer_unwritten(bh)) {
2098
2099 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2100
2101 if (buffer_delay(bh)) {
2102 clear_buffer_delay(bh);
2103 bh->b_blocknr = pblock;
2104 } else {
2105 /*
2106 * unwritten already should have
2107 * blocknr assigned. Verify that
2108 */
2109 clear_buffer_unwritten(bh);
2110 BUG_ON(bh->b_blocknr != pblock);
2111 }
2112
61628a3f 2113 } else if (buffer_mapped(bh))
64769240 2114 BUG_ON(bh->b_blocknr != pblock);
64769240 2115
744692dc
JZ
2116 if (buffer_uninit(exbh))
2117 set_buffer_uninit(bh);
64769240
AT
2118 cur_logical++;
2119 pblock++;
2120 } while ((bh = bh->b_this_page) != head);
2121 }
2122 pagevec_release(&pvec);
2123 }
2124}
2125
2126
2127/*
2128 * __unmap_underlying_blocks - just a helper function to unmap
2129 * set of blocks described by @bh
2130 */
2131static inline void __unmap_underlying_blocks(struct inode *inode,
2132 struct buffer_head *bh)
2133{
2134 struct block_device *bdev = inode->i_sb->s_bdev;
2135 int blocks, i;
2136
2137 blocks = bh->b_size >> inode->i_blkbits;
2138 for (i = 0; i < blocks; i++)
2139 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2140}
2141
c4a0c46e
AK
2142static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2143 sector_t logical, long blk_cnt)
2144{
2145 int nr_pages, i;
2146 pgoff_t index, end;
2147 struct pagevec pvec;
2148 struct inode *inode = mpd->inode;
2149 struct address_space *mapping = inode->i_mapping;
2150
2151 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2152 end = (logical + blk_cnt - 1) >>
2153 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2154 while (index <= end) {
2155 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2156 if (nr_pages == 0)
2157 break;
2158 for (i = 0; i < nr_pages; i++) {
2159 struct page *page = pvec.pages[i];
9b1d0998 2160 if (page->index > end)
c4a0c46e 2161 break;
c4a0c46e
AK
2162 BUG_ON(!PageLocked(page));
2163 BUG_ON(PageWriteback(page));
2164 block_invalidatepage(page, 0);
2165 ClearPageUptodate(page);
2166 unlock_page(page);
2167 }
9b1d0998
JK
2168 index = pvec.pages[nr_pages - 1]->index + 1;
2169 pagevec_release(&pvec);
c4a0c46e
AK
2170 }
2171 return;
2172}
2173
df22291f
AK
2174static void ext4_print_free_blocks(struct inode *inode)
2175{
2176 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2177 printk(KERN_CRIT "Total free blocks count %lld\n",
2178 ext4_count_free_blocks(inode->i_sb));
2179 printk(KERN_CRIT "Free/Dirty block details\n");
2180 printk(KERN_CRIT "free_blocks=%lld\n",
2181 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2182 printk(KERN_CRIT "dirty_blocks=%lld\n",
2183 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2184 printk(KERN_CRIT "Block reservation details\n");
2185 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2186 EXT4_I(inode)->i_reserved_data_blocks);
2187 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2188 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2189 return;
2190}
2191
64769240
AT
2192/*
2193 * mpage_da_map_blocks - go through given space
2194 *
8dc207c0 2195 * @mpd - bh describing space
64769240
AT
2196 *
2197 * The function skips space we know is already mapped to disk blocks.
2198 *
64769240 2199 */
ed5bde0b 2200static int mpage_da_map_blocks(struct mpage_da_data *mpd)
64769240 2201{
2ac3b6e0 2202 int err, blks, get_blocks_flags;
030ba6bc 2203 struct buffer_head new;
2fa3cdfb
TT
2204 sector_t next = mpd->b_blocknr;
2205 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2206 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2207 handle_t *handle = NULL;
64769240
AT
2208
2209 /*
2210 * We consider only non-mapped and non-allocated blocks
2211 */
8dc207c0 2212 if ((mpd->b_state & (1 << BH_Mapped)) &&
29fa89d0
AK
2213 !(mpd->b_state & (1 << BH_Delay)) &&
2214 !(mpd->b_state & (1 << BH_Unwritten)))
c4a0c46e 2215 return 0;
2fa3cdfb
TT
2216
2217 /*
2218 * If we didn't accumulate anything to write simply return
2219 */
2220 if (!mpd->b_size)
2221 return 0;
2222
2223 handle = ext4_journal_current_handle();
2224 BUG_ON(!handle);
2225
79ffab34 2226 /*
2ac3b6e0
TT
2227 * Call ext4_get_blocks() to allocate any delayed allocation
2228 * blocks, or to convert an uninitialized extent to be
2229 * initialized (in the case where we have written into
2230 * one or more preallocated blocks).
2231 *
2232 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2233 * indicate that we are on the delayed allocation path. This
2234 * affects functions in many different parts of the allocation
2235 * call path. This flag exists primarily because we don't
2236 * want to change *many* call functions, so ext4_get_blocks()
2237 * will set the magic i_delalloc_reserved_flag once the
2238 * inode's allocation semaphore is taken.
2239 *
2240 * If the blocks in questions were delalloc blocks, set
2241 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2242 * variables are updated after the blocks have been allocated.
79ffab34 2243 */
2ac3b6e0 2244 new.b_state = 0;
1296cc85 2245 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2246 if (ext4_should_dioread_nolock(mpd->inode))
2247 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2248 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2249 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2250
2fa3cdfb 2251 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2ac3b6e0 2252 &new, get_blocks_flags);
2fa3cdfb
TT
2253 if (blks < 0) {
2254 err = blks;
ed5bde0b
TT
2255 /*
2256 * If get block returns with error we simply
2257 * return. Later writepage will redirty the page and
2258 * writepages will find the dirty page again
c4a0c46e
AK
2259 */
2260 if (err == -EAGAIN)
2261 return 0;
df22291f
AK
2262
2263 if (err == -ENOSPC &&
ed5bde0b 2264 ext4_count_free_blocks(mpd->inode->i_sb)) {
df22291f
AK
2265 mpd->retval = err;
2266 return 0;
2267 }
2268
c4a0c46e 2269 /*
ed5bde0b
TT
2270 * get block failure will cause us to loop in
2271 * writepages, because a_ops->writepage won't be able
2272 * to make progress. The page will be redirtied by
2273 * writepage and writepages will again try to write
2274 * the same.
c4a0c46e 2275 */
1693918e
TT
2276 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2277 "delayed block allocation failed for inode %lu at "
2278 "logical offset %llu with max blocks %zd with "
fbe845dd 2279 "error %d", mpd->inode->i_ino,
1693918e
TT
2280 (unsigned long long) next,
2281 mpd->b_size >> mpd->inode->i_blkbits, err);
2282 printk(KERN_CRIT "This should not happen!! "
2283 "Data will be lost\n");
030ba6bc 2284 if (err == -ENOSPC) {
df22291f 2285 ext4_print_free_blocks(mpd->inode);
030ba6bc 2286 }
2fa3cdfb 2287 /* invalidate all the pages */
c4a0c46e 2288 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2289 mpd->b_size >> mpd->inode->i_blkbits);
c4a0c46e
AK
2290 return err;
2291 }
2fa3cdfb
TT
2292 BUG_ON(blks == 0);
2293
2294 new.b_size = (blks << mpd->inode->i_blkbits);
64769240 2295
a1d6cc56
AK
2296 if (buffer_new(&new))
2297 __unmap_underlying_blocks(mpd->inode, &new);
64769240 2298
a1d6cc56
AK
2299 /*
2300 * If blocks are delayed marked, we need to
2301 * put actual blocknr and drop delayed bit
2302 */
8dc207c0
TT
2303 if ((mpd->b_state & (1 << BH_Delay)) ||
2304 (mpd->b_state & (1 << BH_Unwritten)))
a1d6cc56 2305 mpage_put_bnr_to_bhs(mpd, next, &new);
64769240 2306
2fa3cdfb
TT
2307 if (ext4_should_order_data(mpd->inode)) {
2308 err = ext4_jbd2_file_inode(handle, mpd->inode);
2309 if (err)
2310 return err;
2311 }
2312
2313 /*
03f5d8bc 2314 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2315 */
2316 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2317 if (disksize > i_size_read(mpd->inode))
2318 disksize = i_size_read(mpd->inode);
2319 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2320 ext4_update_i_disksize(mpd->inode, disksize);
2321 return ext4_mark_inode_dirty(handle, mpd->inode);
2322 }
2323
c4a0c46e 2324 return 0;
64769240
AT
2325}
2326
bf068ee2
AK
2327#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2328 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2329
2330/*
2331 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2332 *
2333 * @mpd->lbh - extent of blocks
2334 * @logical - logical number of the block in the file
2335 * @bh - bh of the block (used to access block's state)
2336 *
2337 * the function is used to collect contig. blocks in same state
2338 */
2339static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2340 sector_t logical, size_t b_size,
2341 unsigned long b_state)
64769240 2342{
64769240 2343 sector_t next;
8dc207c0 2344 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2345
c445e3e0
ES
2346 /*
2347 * XXX Don't go larger than mballoc is willing to allocate
2348 * This is a stopgap solution. We eventually need to fold
2349 * mpage_da_submit_io() into this function and then call
2350 * ext4_get_blocks() multiple times in a loop
2351 */
2352 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2353 goto flush_it;
2354
525f4ed8
MC
2355 /* check if thereserved journal credits might overflow */
2356 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2357 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2358 /*
2359 * With non-extent format we are limited by the journal
2360 * credit available. Total credit needed to insert
2361 * nrblocks contiguous blocks is dependent on the
2362 * nrblocks. So limit nrblocks.
2363 */
2364 goto flush_it;
2365 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2366 EXT4_MAX_TRANS_DATA) {
2367 /*
2368 * Adding the new buffer_head would make it cross the
2369 * allowed limit for which we have journal credit
2370 * reserved. So limit the new bh->b_size
2371 */
2372 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2373 mpd->inode->i_blkbits;
2374 /* we will do mpage_da_submit_io in the next loop */
2375 }
2376 }
64769240
AT
2377 /*
2378 * First block in the extent
2379 */
8dc207c0
TT
2380 if (mpd->b_size == 0) {
2381 mpd->b_blocknr = logical;
2382 mpd->b_size = b_size;
2383 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2384 return;
2385 }
2386
8dc207c0 2387 next = mpd->b_blocknr + nrblocks;
64769240
AT
2388 /*
2389 * Can we merge the block to our big extent?
2390 */
8dc207c0
TT
2391 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2392 mpd->b_size += b_size;
64769240
AT
2393 return;
2394 }
2395
525f4ed8 2396flush_it:
64769240
AT
2397 /*
2398 * We couldn't merge the block to our extent, so we
2399 * need to flush current extent and start new one
2400 */
c4a0c46e
AK
2401 if (mpage_da_map_blocks(mpd) == 0)
2402 mpage_da_submit_io(mpd);
a1d6cc56
AK
2403 mpd->io_done = 1;
2404 return;
64769240
AT
2405}
2406
c364b22c 2407static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2408{
c364b22c 2409 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2410}
2411
64769240
AT
2412/*
2413 * __mpage_da_writepage - finds extent of pages and blocks
2414 *
2415 * @page: page to consider
2416 * @wbc: not used, we just follow rules
2417 * @data: context
2418 *
2419 * The function finds extents of pages and scan them for all blocks.
2420 */
2421static int __mpage_da_writepage(struct page *page,
2422 struct writeback_control *wbc, void *data)
2423{
2424 struct mpage_da_data *mpd = data;
2425 struct inode *inode = mpd->inode;
8dc207c0 2426 struct buffer_head *bh, *head;
64769240
AT
2427 sector_t logical;
2428
a1d6cc56
AK
2429 if (mpd->io_done) {
2430 /*
2431 * Rest of the page in the page_vec
2432 * redirty then and skip then. We will
fd589a8f 2433 * try to write them again after
a1d6cc56
AK
2434 * starting a new transaction
2435 */
2436 redirty_page_for_writepage(wbc, page);
2437 unlock_page(page);
2438 return MPAGE_DA_EXTENT_TAIL;
2439 }
64769240
AT
2440 /*
2441 * Can we merge this page to current extent?
2442 */
2443 if (mpd->next_page != page->index) {
2444 /*
2445 * Nope, we can't. So, we map non-allocated blocks
a1d6cc56 2446 * and start IO on them using writepage()
64769240
AT
2447 */
2448 if (mpd->next_page != mpd->first_page) {
c4a0c46e
AK
2449 if (mpage_da_map_blocks(mpd) == 0)
2450 mpage_da_submit_io(mpd);
a1d6cc56
AK
2451 /*
2452 * skip rest of the page in the page_vec
2453 */
2454 mpd->io_done = 1;
2455 redirty_page_for_writepage(wbc, page);
2456 unlock_page(page);
2457 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2458 }
2459
2460 /*
2461 * Start next extent of pages ...
2462 */
2463 mpd->first_page = page->index;
2464
2465 /*
2466 * ... and blocks
2467 */
8dc207c0
TT
2468 mpd->b_size = 0;
2469 mpd->b_state = 0;
2470 mpd->b_blocknr = 0;
64769240
AT
2471 }
2472
2473 mpd->next_page = page->index + 1;
2474 logical = (sector_t) page->index <<
2475 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2476
2477 if (!page_has_buffers(page)) {
8dc207c0
TT
2478 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2479 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2480 if (mpd->io_done)
2481 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2482 } else {
2483 /*
2484 * Page with regular buffer heads, just add all dirty ones
2485 */
2486 head = page_buffers(page);
2487 bh = head;
2488 do {
2489 BUG_ON(buffer_locked(bh));
791b7f08
AK
2490 /*
2491 * We need to try to allocate
2492 * unmapped blocks in the same page.
2493 * Otherwise we won't make progress
43ce1d23 2494 * with the page in ext4_writepage
791b7f08 2495 */
c364b22c 2496 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2497 mpage_add_bh_to_extent(mpd, logical,
2498 bh->b_size,
2499 bh->b_state);
a1d6cc56
AK
2500 if (mpd->io_done)
2501 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2502 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2503 /*
2504 * mapped dirty buffer. We need to update
2505 * the b_state because we look at
2506 * b_state in mpage_da_map_blocks. We don't
2507 * update b_size because if we find an
2508 * unmapped buffer_head later we need to
2509 * use the b_state flag of that buffer_head.
2510 */
8dc207c0
TT
2511 if (mpd->b_size == 0)
2512 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2513 }
64769240
AT
2514 logical++;
2515 } while ((bh = bh->b_this_page) != head);
2516 }
2517
2518 return 0;
2519}
2520
64769240 2521/*
b920c755
TT
2522 * This is a special get_blocks_t callback which is used by
2523 * ext4_da_write_begin(). It will either return mapped block or
2524 * reserve space for a single block.
29fa89d0
AK
2525 *
2526 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2527 * We also have b_blocknr = -1 and b_bdev initialized properly
2528 *
2529 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2530 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2531 * initialized properly.
64769240
AT
2532 */
2533static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2534 struct buffer_head *bh_result, int create)
2535{
2536 int ret = 0;
33b9817e
AK
2537 sector_t invalid_block = ~((sector_t) 0xffff);
2538
2539 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2540 invalid_block = ~0;
64769240
AT
2541
2542 BUG_ON(create == 0);
2543 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2544
2545 /*
2546 * first, we need to know whether the block is allocated already
2547 * preallocated blocks are unmapped but should treated
2548 * the same as allocated blocks.
2549 */
c2177057 2550 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
d2a17637
MC
2551 if ((ret == 0) && !buffer_delay(bh_result)) {
2552 /* the block isn't (pre)allocated yet, let's reserve space */
64769240
AT
2553 /*
2554 * XXX: __block_prepare_write() unmaps passed block,
2555 * is it OK?
2556 */
9d0be502 2557 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2558 if (ret)
2559 /* not enough space to reserve */
2560 return ret;
2561
33b9817e 2562 map_bh(bh_result, inode->i_sb, invalid_block);
64769240
AT
2563 set_buffer_new(bh_result);
2564 set_buffer_delay(bh_result);
2565 } else if (ret > 0) {
2566 bh_result->b_size = (ret << inode->i_blkbits);
29fa89d0
AK
2567 if (buffer_unwritten(bh_result)) {
2568 /* A delayed write to unwritten bh should
2569 * be marked new and mapped. Mapped ensures
2570 * that we don't do get_block multiple times
2571 * when we write to the same offset and new
2572 * ensures that we do proper zero out for
2573 * partial write.
2574 */
9c1ee184 2575 set_buffer_new(bh_result);
29fa89d0
AK
2576 set_buffer_mapped(bh_result);
2577 }
64769240
AT
2578 ret = 0;
2579 }
2580
2581 return ret;
2582}
61628a3f 2583
b920c755
TT
2584/*
2585 * This function is used as a standard get_block_t calback function
2586 * when there is no desire to allocate any blocks. It is used as a
2587 * callback function for block_prepare_write(), nobh_writepage(), and
2588 * block_write_full_page(). These functions should only try to map a
2589 * single block at a time.
2590 *
2591 * Since this function doesn't do block allocations even if the caller
2592 * requests it by passing in create=1, it is critically important that
2593 * any caller checks to make sure that any buffer heads are returned
2594 * by this function are either all already mapped or marked for
2595 * delayed allocation before calling nobh_writepage() or
2596 * block_write_full_page(). Otherwise, b_blocknr could be left
2597 * unitialized, and the page write functions will be taken by
2598 * surprise.
2599 */
2600static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2601 struct buffer_head *bh_result, int create)
2602{
2603 int ret = 0;
2604 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2605
a2dc52b5
TT
2606 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2607
f0e6c985
AK
2608 /*
2609 * we don't want to do block allocation in writepage
2610 * so call get_block_wrap with create = 0
2611 */
c2177057 2612 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
f0e6c985
AK
2613 if (ret > 0) {
2614 bh_result->b_size = (ret << inode->i_blkbits);
2615 ret = 0;
2616 }
2617 return ret;
61628a3f
MC
2618}
2619
62e086be
AK
2620static int bget_one(handle_t *handle, struct buffer_head *bh)
2621{
2622 get_bh(bh);
2623 return 0;
2624}
2625
2626static int bput_one(handle_t *handle, struct buffer_head *bh)
2627{
2628 put_bh(bh);
2629 return 0;
2630}
2631
2632static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2633 unsigned int len)
2634{
2635 struct address_space *mapping = page->mapping;
2636 struct inode *inode = mapping->host;
2637 struct buffer_head *page_bufs;
2638 handle_t *handle = NULL;
2639 int ret = 0;
2640 int err;
2641
2642 page_bufs = page_buffers(page);
2643 BUG_ON(!page_bufs);
2644 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2645 /* As soon as we unlock the page, it can go away, but we have
2646 * references to buffers so we are safe */
2647 unlock_page(page);
2648
2649 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2650 if (IS_ERR(handle)) {
2651 ret = PTR_ERR(handle);
2652 goto out;
2653 }
2654
2655 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2656 do_journal_get_write_access);
2657
2658 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2659 write_end_fn);
2660 if (ret == 0)
2661 ret = err;
2662 err = ext4_journal_stop(handle);
2663 if (!ret)
2664 ret = err;
2665
2666 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2667 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2668out:
2669 return ret;
2670}
2671
744692dc
JZ
2672static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2673static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2674
61628a3f 2675/*
43ce1d23
AK
2676 * Note that we don't need to start a transaction unless we're journaling data
2677 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2678 * need to file the inode to the transaction's list in ordered mode because if
2679 * we are writing back data added by write(), the inode is already there and if
2680 * we are writing back data modified via mmap(), noone guarantees in which
2681 * transaction the data will hit the disk. In case we are journaling data, we
2682 * cannot start transaction directly because transaction start ranks above page
2683 * lock so we have to do some magic.
2684 *
b920c755
TT
2685 * This function can get called via...
2686 * - ext4_da_writepages after taking page lock (have journal handle)
2687 * - journal_submit_inode_data_buffers (no journal handle)
2688 * - shrink_page_list via pdflush (no journal handle)
2689 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2690 *
2691 * We don't do any block allocation in this function. If we have page with
2692 * multiple blocks we need to write those buffer_heads that are mapped. This
2693 * is important for mmaped based write. So if we do with blocksize 1K
2694 * truncate(f, 1024);
2695 * a = mmap(f, 0, 4096);
2696 * a[0] = 'a';
2697 * truncate(f, 4096);
2698 * we have in the page first buffer_head mapped via page_mkwrite call back
2699 * but other bufer_heads would be unmapped but dirty(dirty done via the
2700 * do_wp_page). So writepage should write the first block. If we modify
2701 * the mmap area beyond 1024 we will again get a page_fault and the
2702 * page_mkwrite callback will do the block allocation and mark the
2703 * buffer_heads mapped.
2704 *
2705 * We redirty the page if we have any buffer_heads that is either delay or
2706 * unwritten in the page.
2707 *
2708 * We can get recursively called as show below.
2709 *
2710 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2711 * ext4_writepage()
2712 *
2713 * But since we don't do any block allocation we should not deadlock.
2714 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2715 */
43ce1d23 2716static int ext4_writepage(struct page *page,
62e086be 2717 struct writeback_control *wbc)
64769240 2718{
64769240 2719 int ret = 0;
61628a3f 2720 loff_t size;
498e5f24 2721 unsigned int len;
744692dc 2722 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2723 struct inode *inode = page->mapping->host;
2724
43ce1d23 2725 trace_ext4_writepage(inode, page);
f0e6c985
AK
2726 size = i_size_read(inode);
2727 if (page->index == size >> PAGE_CACHE_SHIFT)
2728 len = size & ~PAGE_CACHE_MASK;
2729 else
2730 len = PAGE_CACHE_SIZE;
64769240 2731
f0e6c985 2732 if (page_has_buffers(page)) {
61628a3f 2733 page_bufs = page_buffers(page);
f0e6c985 2734 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2735 ext4_bh_delay_or_unwritten)) {
61628a3f 2736 /*
f0e6c985
AK
2737 * We don't want to do block allocation
2738 * So redirty the page and return
cd1aac32
AK
2739 * We may reach here when we do a journal commit
2740 * via journal_submit_inode_data_buffers.
2741 * If we don't have mapping block we just ignore
f0e6c985
AK
2742 * them. We can also reach here via shrink_page_list
2743 */
2744 redirty_page_for_writepage(wbc, page);
2745 unlock_page(page);
2746 return 0;
2747 }
2748 } else {
2749 /*
2750 * The test for page_has_buffers() is subtle:
2751 * We know the page is dirty but it lost buffers. That means
2752 * that at some moment in time after write_begin()/write_end()
2753 * has been called all buffers have been clean and thus they
2754 * must have been written at least once. So they are all
2755 * mapped and we can happily proceed with mapping them
2756 * and writing the page.
2757 *
2758 * Try to initialize the buffer_heads and check whether
2759 * all are mapped and non delay. We don't want to
2760 * do block allocation here.
2761 */
b767e78a 2762 ret = block_prepare_write(page, 0, len,
b920c755 2763 noalloc_get_block_write);
f0e6c985
AK
2764 if (!ret) {
2765 page_bufs = page_buffers(page);
2766 /* check whether all are mapped and non delay */
2767 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
c364b22c 2768 ext4_bh_delay_or_unwritten)) {
f0e6c985
AK
2769 redirty_page_for_writepage(wbc, page);
2770 unlock_page(page);
2771 return 0;
2772 }
2773 } else {
2774 /*
2775 * We can't do block allocation here
2776 * so just redity the page and unlock
2777 * and return
61628a3f 2778 */
61628a3f
MC
2779 redirty_page_for_writepage(wbc, page);
2780 unlock_page(page);
2781 return 0;
2782 }
ed9b3e33 2783 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2784 block_commit_write(page, 0, len);
64769240
AT
2785 }
2786
43ce1d23
AK
2787 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2788 /*
2789 * It's mmapped pagecache. Add buffers and journal it. There
2790 * doesn't seem much point in redirtying the page here.
2791 */
2792 ClearPageChecked(page);
3f0ca309 2793 return __ext4_journalled_writepage(page, len);
43ce1d23
AK
2794 }
2795
64769240 2796 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
b920c755 2797 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
744692dc
JZ
2798 else if (page_bufs && buffer_uninit(page_bufs)) {
2799 ext4_set_bh_endio(page_bufs, inode);
2800 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2801 wbc, ext4_end_io_buffer_write);
2802 } else
b920c755
TT
2803 ret = block_write_full_page(page, noalloc_get_block_write,
2804 wbc);
64769240 2805
64769240
AT
2806 return ret;
2807}
2808
61628a3f 2809/*
525f4ed8
MC
2810 * This is called via ext4_da_writepages() to
2811 * calulate the total number of credits to reserve to fit
2812 * a single extent allocation into a single transaction,
2813 * ext4_da_writpeages() will loop calling this before
2814 * the block allocation.
61628a3f 2815 */
525f4ed8
MC
2816
2817static int ext4_da_writepages_trans_blocks(struct inode *inode)
2818{
2819 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2820
2821 /*
2822 * With non-extent format the journal credit needed to
2823 * insert nrblocks contiguous block is dependent on
2824 * number of contiguous block. So we will limit
2825 * number of contiguous block to a sane value
2826 */
30c6e07a 2827 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
525f4ed8
MC
2828 (max_blocks > EXT4_MAX_TRANS_DATA))
2829 max_blocks = EXT4_MAX_TRANS_DATA;
2830
2831 return ext4_chunk_trans_blocks(inode, max_blocks);
2832}
61628a3f 2833
64769240 2834static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2835 struct writeback_control *wbc)
64769240 2836{
22208ded
AK
2837 pgoff_t index;
2838 int range_whole = 0;
61628a3f 2839 handle_t *handle = NULL;
df22291f 2840 struct mpage_da_data mpd;
5e745b04 2841 struct inode *inode = mapping->host;
22208ded 2842 int no_nrwrite_index_update;
498e5f24
TT
2843 int pages_written = 0;
2844 long pages_skipped;
55138e0b 2845 unsigned int max_pages;
2acf2c26 2846 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2847 int needed_blocks, ret = 0;
2848 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2849 loff_t range_start = wbc->range_start;
5e745b04 2850 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2851
9bffad1e 2852 trace_ext4_da_writepages(inode, wbc);
ba80b101 2853
61628a3f
MC
2854 /*
2855 * No pages to write? This is mainly a kludge to avoid starting
2856 * a transaction for special inodes like journal inode on last iput()
2857 * because that could violate lock ordering on umount
2858 */
a1d6cc56 2859 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2860 return 0;
2a21e37e
TT
2861
2862 /*
2863 * If the filesystem has aborted, it is read-only, so return
2864 * right away instead of dumping stack traces later on that
2865 * will obscure the real source of the problem. We test
4ab2f15b 2866 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2867 * the latter could be true if the filesystem is mounted
2868 * read-only, and in that case, ext4_da_writepages should
2869 * *never* be called, so if that ever happens, we would want
2870 * the stack trace.
2871 */
4ab2f15b 2872 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2873 return -EROFS;
2874
22208ded
AK
2875 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2876 range_whole = 1;
61628a3f 2877
2acf2c26
AK
2878 range_cyclic = wbc->range_cyclic;
2879 if (wbc->range_cyclic) {
22208ded 2880 index = mapping->writeback_index;
2acf2c26
AK
2881 if (index)
2882 cycled = 0;
2883 wbc->range_start = index << PAGE_CACHE_SHIFT;
2884 wbc->range_end = LLONG_MAX;
2885 wbc->range_cyclic = 0;
2886 } else
22208ded 2887 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 2888
55138e0b
TT
2889 /*
2890 * This works around two forms of stupidity. The first is in
2891 * the writeback code, which caps the maximum number of pages
2892 * written to be 1024 pages. This is wrong on multiple
2893 * levels; different architectues have a different page size,
2894 * which changes the maximum amount of data which gets
2895 * written. Secondly, 4 megabytes is way too small. XFS
2896 * forces this value to be 16 megabytes by multiplying
2897 * nr_to_write parameter by four, and then relies on its
2898 * allocator to allocate larger extents to make them
2899 * contiguous. Unfortunately this brings us to the second
2900 * stupidity, which is that ext4's mballoc code only allocates
2901 * at most 2048 blocks. So we force contiguous writes up to
2902 * the number of dirty blocks in the inode, or
2903 * sbi->max_writeback_mb_bump whichever is smaller.
2904 */
2905 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2906 if (!range_cyclic && range_whole)
2907 desired_nr_to_write = wbc->nr_to_write * 8;
2908 else
2909 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2910 max_pages);
2911 if (desired_nr_to_write > max_pages)
2912 desired_nr_to_write = max_pages;
2913
2914 if (wbc->nr_to_write < desired_nr_to_write) {
2915 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2916 wbc->nr_to_write = desired_nr_to_write;
2917 }
2918
df22291f
AK
2919 mpd.wbc = wbc;
2920 mpd.inode = mapping->host;
2921
22208ded
AK
2922 /*
2923 * we don't want write_cache_pages to update
2924 * nr_to_write and writeback_index
2925 */
2926 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2927 wbc->no_nrwrite_index_update = 1;
2928 pages_skipped = wbc->pages_skipped;
2929
2acf2c26 2930retry:
22208ded 2931 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2932
2933 /*
2934 * we insert one extent at a time. So we need
2935 * credit needed for single extent allocation.
2936 * journalled mode is currently not supported
2937 * by delalloc
2938 */
2939 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2940 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2941
61628a3f
MC
2942 /* start a new transaction*/
2943 handle = ext4_journal_start(inode, needed_blocks);
2944 if (IS_ERR(handle)) {
2945 ret = PTR_ERR(handle);
1693918e 2946 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2947 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2948 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
2949 goto out_writepages;
2950 }
f63e6005
TT
2951
2952 /*
2953 * Now call __mpage_da_writepage to find the next
2954 * contiguous region of logical blocks that need
2955 * blocks to be allocated by ext4. We don't actually
2956 * submit the blocks for I/O here, even though
2957 * write_cache_pages thinks it will, and will set the
2958 * pages as clean for write before calling
2959 * __mpage_da_writepage().
2960 */
2961 mpd.b_size = 0;
2962 mpd.b_state = 0;
2963 mpd.b_blocknr = 0;
2964 mpd.first_page = 0;
2965 mpd.next_page = 0;
2966 mpd.io_done = 0;
2967 mpd.pages_written = 0;
2968 mpd.retval = 0;
2969 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2970 &mpd);
2971 /*
af901ca1 2972 * If we have a contiguous extent of pages and we
f63e6005
TT
2973 * haven't done the I/O yet, map the blocks and submit
2974 * them for I/O.
2975 */
2976 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2977 if (mpage_da_map_blocks(&mpd) == 0)
2978 mpage_da_submit_io(&mpd);
2979 mpd.io_done = 1;
2980 ret = MPAGE_DA_EXTENT_TAIL;
2981 }
b3a3ca8c 2982 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2983 wbc->nr_to_write -= mpd.pages_written;
df22291f 2984
61628a3f 2985 ext4_journal_stop(handle);
df22291f 2986
8f64b32e 2987 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2988 /* commit the transaction which would
2989 * free blocks released in the transaction
2990 * and try again
2991 */
df22291f 2992 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2993 wbc->pages_skipped = pages_skipped;
2994 ret = 0;
2995 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
2996 /*
2997 * got one extent now try with
2998 * rest of the pages
2999 */
22208ded
AK
3000 pages_written += mpd.pages_written;
3001 wbc->pages_skipped = pages_skipped;
a1d6cc56 3002 ret = 0;
2acf2c26 3003 io_done = 1;
22208ded 3004 } else if (wbc->nr_to_write)
61628a3f
MC
3005 /*
3006 * There is no more writeout needed
3007 * or we requested for a noblocking writeout
3008 * and we found the device congested
3009 */
61628a3f 3010 break;
a1d6cc56 3011 }
2acf2c26
AK
3012 if (!io_done && !cycled) {
3013 cycled = 1;
3014 index = 0;
3015 wbc->range_start = index << PAGE_CACHE_SHIFT;
3016 wbc->range_end = mapping->writeback_index - 1;
3017 goto retry;
3018 }
22208ded 3019 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3020 ext4_msg(inode->i_sb, KERN_CRIT,
3021 "This should not happen leaving %s "
fbe845dd 3022 "with nr_to_write = %ld ret = %d",
1693918e 3023 __func__, wbc->nr_to_write, ret);
22208ded
AK
3024
3025 /* Update index */
3026 index += pages_written;
2acf2c26 3027 wbc->range_cyclic = range_cyclic;
22208ded
AK
3028 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3029 /*
3030 * set the writeback_index so that range_cyclic
3031 * mode will write it back later
3032 */
3033 mapping->writeback_index = index;
a1d6cc56 3034
61628a3f 3035out_writepages:
22208ded
AK
3036 if (!no_nrwrite_index_update)
3037 wbc->no_nrwrite_index_update = 0;
2faf2e19 3038 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3039 wbc->range_start = range_start;
9bffad1e 3040 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3041 return ret;
64769240
AT
3042}
3043
79f0be8d
AK
3044#define FALL_BACK_TO_NONDELALLOC 1
3045static int ext4_nonda_switch(struct super_block *sb)
3046{
3047 s64 free_blocks, dirty_blocks;
3048 struct ext4_sb_info *sbi = EXT4_SB(sb);
3049
3050 /*
3051 * switch to non delalloc mode if we are running low
3052 * on free block. The free block accounting via percpu
179f7ebf 3053 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3054 * accumulated on each CPU without updating global counters
3055 * Delalloc need an accurate free block accounting. So switch
3056 * to non delalloc when we are near to error range.
3057 */
3058 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3059 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3060 if (2 * free_blocks < 3 * dirty_blocks ||
3061 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3062 /*
c8afb446
ES
3063 * free block count is less than 150% of dirty blocks
3064 * or free blocks is less than watermark
79f0be8d
AK
3065 */
3066 return 1;
3067 }
c8afb446
ES
3068 /*
3069 * Even if we don't switch but are nearing capacity,
3070 * start pushing delalloc when 1/2 of free blocks are dirty.
3071 */
3072 if (free_blocks < 2 * dirty_blocks)
3073 writeback_inodes_sb_if_idle(sb);
3074
79f0be8d
AK
3075 return 0;
3076}
3077
64769240 3078static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3079 loff_t pos, unsigned len, unsigned flags,
3080 struct page **pagep, void **fsdata)
64769240 3081{
72b8ab9d 3082 int ret, retries = 0;
64769240
AT
3083 struct page *page;
3084 pgoff_t index;
3085 unsigned from, to;
3086 struct inode *inode = mapping->host;
3087 handle_t *handle;
3088
3089 index = pos >> PAGE_CACHE_SHIFT;
3090 from = pos & (PAGE_CACHE_SIZE - 1);
3091 to = from + len;
79f0be8d
AK
3092
3093 if (ext4_nonda_switch(inode->i_sb)) {
3094 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3095 return ext4_write_begin(file, mapping, pos,
3096 len, flags, pagep, fsdata);
3097 }
3098 *fsdata = (void *)0;
9bffad1e 3099 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3100retry:
64769240
AT
3101 /*
3102 * With delayed allocation, we don't log the i_disksize update
3103 * if there is delayed block allocation. But we still need
3104 * to journalling the i_disksize update if writes to the end
3105 * of file which has an already mapped buffer.
3106 */
3107 handle = ext4_journal_start(inode, 1);
3108 if (IS_ERR(handle)) {
3109 ret = PTR_ERR(handle);
3110 goto out;
3111 }
ebd3610b
JK
3112 /* We cannot recurse into the filesystem as the transaction is already
3113 * started */
3114 flags |= AOP_FLAG_NOFS;
64769240 3115
54566b2c 3116 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3117 if (!page) {
3118 ext4_journal_stop(handle);
3119 ret = -ENOMEM;
3120 goto out;
3121 }
64769240
AT
3122 *pagep = page;
3123
3124 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
b920c755 3125 ext4_da_get_block_prep);
64769240
AT
3126 if (ret < 0) {
3127 unlock_page(page);
3128 ext4_journal_stop(handle);
3129 page_cache_release(page);
ae4d5372
AK
3130 /*
3131 * block_write_begin may have instantiated a few blocks
3132 * outside i_size. Trim these off again. Don't need
3133 * i_size_read because we hold i_mutex.
3134 */
3135 if (pos + len > inode->i_size)
b9a4207d 3136 ext4_truncate_failed_write(inode);
64769240
AT
3137 }
3138
d2a17637
MC
3139 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3140 goto retry;
64769240
AT
3141out:
3142 return ret;
3143}
3144
632eaeab
MC
3145/*
3146 * Check if we should update i_disksize
3147 * when write to the end of file but not require block allocation
3148 */
3149static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3150 unsigned long offset)
632eaeab
MC
3151{
3152 struct buffer_head *bh;
3153 struct inode *inode = page->mapping->host;
3154 unsigned int idx;
3155 int i;
3156
3157 bh = page_buffers(page);
3158 idx = offset >> inode->i_blkbits;
3159
af5bc92d 3160 for (i = 0; i < idx; i++)
632eaeab
MC
3161 bh = bh->b_this_page;
3162
29fa89d0 3163 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3164 return 0;
3165 return 1;
3166}
3167
64769240 3168static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3169 struct address_space *mapping,
3170 loff_t pos, unsigned len, unsigned copied,
3171 struct page *page, void *fsdata)
64769240
AT
3172{
3173 struct inode *inode = mapping->host;
3174 int ret = 0, ret2;
3175 handle_t *handle = ext4_journal_current_handle();
3176 loff_t new_i_size;
632eaeab 3177 unsigned long start, end;
79f0be8d
AK
3178 int write_mode = (int)(unsigned long)fsdata;
3179
3180 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3181 if (ext4_should_order_data(inode)) {
3182 return ext4_ordered_write_end(file, mapping, pos,
3183 len, copied, page, fsdata);
3184 } else if (ext4_should_writeback_data(inode)) {
3185 return ext4_writeback_write_end(file, mapping, pos,
3186 len, copied, page, fsdata);
3187 } else {
3188 BUG();
3189 }
3190 }
632eaeab 3191
9bffad1e 3192 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3193 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3194 end = start + copied - 1;
64769240
AT
3195
3196 /*
3197 * generic_write_end() will run mark_inode_dirty() if i_size
3198 * changes. So let's piggyback the i_disksize mark_inode_dirty
3199 * into that.
3200 */
3201
3202 new_i_size = pos + copied;
632eaeab
MC
3203 if (new_i_size > EXT4_I(inode)->i_disksize) {
3204 if (ext4_da_should_update_i_disksize(page, end)) {
3205 down_write(&EXT4_I(inode)->i_data_sem);
3206 if (new_i_size > EXT4_I(inode)->i_disksize) {
3207 /*
3208 * Updating i_disksize when extending file
3209 * without needing block allocation
3210 */
3211 if (ext4_should_order_data(inode))
3212 ret = ext4_jbd2_file_inode(handle,
3213 inode);
64769240 3214
632eaeab
MC
3215 EXT4_I(inode)->i_disksize = new_i_size;
3216 }
3217 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3218 /* We need to mark inode dirty even if
3219 * new_i_size is less that inode->i_size
3220 * bu greater than i_disksize.(hint delalloc)
3221 */
3222 ext4_mark_inode_dirty(handle, inode);
64769240 3223 }
632eaeab 3224 }
64769240
AT
3225 ret2 = generic_write_end(file, mapping, pos, len, copied,
3226 page, fsdata);
3227 copied = ret2;
3228 if (ret2 < 0)
3229 ret = ret2;
3230 ret2 = ext4_journal_stop(handle);
3231 if (!ret)
3232 ret = ret2;
3233
3234 return ret ? ret : copied;
3235}
3236
3237static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3238{
64769240
AT
3239 /*
3240 * Drop reserved blocks
3241 */
3242 BUG_ON(!PageLocked(page));
3243 if (!page_has_buffers(page))
3244 goto out;
3245
d2a17637 3246 ext4_da_page_release_reservation(page, offset);
64769240
AT
3247
3248out:
3249 ext4_invalidatepage(page, offset);
3250
3251 return;
3252}
3253
ccd2506b
TT
3254/*
3255 * Force all delayed allocation blocks to be allocated for a given inode.
3256 */
3257int ext4_alloc_da_blocks(struct inode *inode)
3258{
fb40ba0d
TT
3259 trace_ext4_alloc_da_blocks(inode);
3260
ccd2506b
TT
3261 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3262 !EXT4_I(inode)->i_reserved_meta_blocks)
3263 return 0;
3264
3265 /*
3266 * We do something simple for now. The filemap_flush() will
3267 * also start triggering a write of the data blocks, which is
3268 * not strictly speaking necessary (and for users of
3269 * laptop_mode, not even desirable). However, to do otherwise
3270 * would require replicating code paths in:
de9a55b8 3271 *
ccd2506b
TT
3272 * ext4_da_writepages() ->
3273 * write_cache_pages() ---> (via passed in callback function)
3274 * __mpage_da_writepage() -->
3275 * mpage_add_bh_to_extent()
3276 * mpage_da_map_blocks()
3277 *
3278 * The problem is that write_cache_pages(), located in
3279 * mm/page-writeback.c, marks pages clean in preparation for
3280 * doing I/O, which is not desirable if we're not planning on
3281 * doing I/O at all.
3282 *
3283 * We could call write_cache_pages(), and then redirty all of
3284 * the pages by calling redirty_page_for_writeback() but that
3285 * would be ugly in the extreme. So instead we would need to
3286 * replicate parts of the code in the above functions,
3287 * simplifying them becuase we wouldn't actually intend to
3288 * write out the pages, but rather only collect contiguous
3289 * logical block extents, call the multi-block allocator, and
3290 * then update the buffer heads with the block allocations.
de9a55b8 3291 *
ccd2506b
TT
3292 * For now, though, we'll cheat by calling filemap_flush(),
3293 * which will map the blocks, and start the I/O, but not
3294 * actually wait for the I/O to complete.
3295 */
3296 return filemap_flush(inode->i_mapping);
3297}
64769240 3298
ac27a0ec
DK
3299/*
3300 * bmap() is special. It gets used by applications such as lilo and by
3301 * the swapper to find the on-disk block of a specific piece of data.
3302 *
3303 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3304 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3305 * filesystem and enables swap, then they may get a nasty shock when the
3306 * data getting swapped to that swapfile suddenly gets overwritten by
3307 * the original zero's written out previously to the journal and
3308 * awaiting writeback in the kernel's buffer cache.
3309 *
3310 * So, if we see any bmap calls here on a modified, data-journaled file,
3311 * take extra steps to flush any blocks which might be in the cache.
3312 */
617ba13b 3313static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3314{
3315 struct inode *inode = mapping->host;
3316 journal_t *journal;
3317 int err;
3318
64769240
AT
3319 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3320 test_opt(inode->i_sb, DELALLOC)) {
3321 /*
3322 * With delalloc we want to sync the file
3323 * so that we can make sure we allocate
3324 * blocks for file
3325 */
3326 filemap_write_and_wait(mapping);
3327 }
3328
19f5fb7a
TT
3329 if (EXT4_JOURNAL(inode) &&
3330 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3331 /*
3332 * This is a REALLY heavyweight approach, but the use of
3333 * bmap on dirty files is expected to be extremely rare:
3334 * only if we run lilo or swapon on a freshly made file
3335 * do we expect this to happen.
3336 *
3337 * (bmap requires CAP_SYS_RAWIO so this does not
3338 * represent an unprivileged user DOS attack --- we'd be
3339 * in trouble if mortal users could trigger this path at
3340 * will.)
3341 *
617ba13b 3342 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3343 * regular files. If somebody wants to bmap a directory
3344 * or symlink and gets confused because the buffer
3345 * hasn't yet been flushed to disk, they deserve
3346 * everything they get.
3347 */
3348
19f5fb7a 3349 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3350 journal = EXT4_JOURNAL(inode);
dab291af
MC
3351 jbd2_journal_lock_updates(journal);
3352 err = jbd2_journal_flush(journal);
3353 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3354
3355 if (err)
3356 return 0;
3357 }
3358
af5bc92d 3359 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3360}
3361
617ba13b 3362static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3363{
617ba13b 3364 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3365}
3366
3367static int
617ba13b 3368ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3369 struct list_head *pages, unsigned nr_pages)
3370{
617ba13b 3371 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3372}
3373
744692dc
JZ
3374static void ext4_free_io_end(ext4_io_end_t *io)
3375{
3376 BUG_ON(!io);
3377 if (io->page)
3378 put_page(io->page);
3379 iput(io->inode);
3380 kfree(io);
3381}
3382
3383static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3384{
3385 struct buffer_head *head, *bh;
3386 unsigned int curr_off = 0;
3387
3388 if (!page_has_buffers(page))
3389 return;
3390 head = bh = page_buffers(page);
3391 do {
3392 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3393 && bh->b_private) {
3394 ext4_free_io_end(bh->b_private);
3395 bh->b_private = NULL;
3396 bh->b_end_io = NULL;
3397 }
3398 curr_off = curr_off + bh->b_size;
3399 bh = bh->b_this_page;
3400 } while (bh != head);
3401}
3402
617ba13b 3403static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3404{
617ba13b 3405 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3406
744692dc
JZ
3407 /*
3408 * free any io_end structure allocated for buffers to be discarded
3409 */
3410 if (ext4_should_dioread_nolock(page->mapping->host))
3411 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3412 /*
3413 * If it's a full truncate we just forget about the pending dirtying
3414 */
3415 if (offset == 0)
3416 ClearPageChecked(page);
3417
0390131b
FM
3418 if (journal)
3419 jbd2_journal_invalidatepage(journal, page, offset);
3420 else
3421 block_invalidatepage(page, offset);
ac27a0ec
DK
3422}
3423
617ba13b 3424static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3425{
617ba13b 3426 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3427
3428 WARN_ON(PageChecked(page));
3429 if (!page_has_buffers(page))
3430 return 0;
0390131b
FM
3431 if (journal)
3432 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3433 else
3434 return try_to_free_buffers(page);
ac27a0ec
DK
3435}
3436
3437/*
4c0425ff
MC
3438 * O_DIRECT for ext3 (or indirect map) based files
3439 *
ac27a0ec
DK
3440 * If the O_DIRECT write will extend the file then add this inode to the
3441 * orphan list. So recovery will truncate it back to the original size
3442 * if the machine crashes during the write.
3443 *
3444 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3445 * crashes then stale disk data _may_ be exposed inside the file. But current
3446 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3447 */
4c0425ff 3448static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3449 const struct iovec *iov, loff_t offset,
3450 unsigned long nr_segs)
ac27a0ec
DK
3451{
3452 struct file *file = iocb->ki_filp;
3453 struct inode *inode = file->f_mapping->host;
617ba13b 3454 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3455 handle_t *handle;
ac27a0ec
DK
3456 ssize_t ret;
3457 int orphan = 0;
3458 size_t count = iov_length(iov, nr_segs);
fbbf6945 3459 int retries = 0;
ac27a0ec
DK
3460
3461 if (rw == WRITE) {
3462 loff_t final_size = offset + count;
3463
ac27a0ec 3464 if (final_size > inode->i_size) {
7fb5409d
JK
3465 /* Credits for sb + inode write */
3466 handle = ext4_journal_start(inode, 2);
3467 if (IS_ERR(handle)) {
3468 ret = PTR_ERR(handle);
3469 goto out;
3470 }
617ba13b 3471 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3472 if (ret) {
3473 ext4_journal_stop(handle);
3474 goto out;
3475 }
ac27a0ec
DK
3476 orphan = 1;
3477 ei->i_disksize = inode->i_size;
7fb5409d 3478 ext4_journal_stop(handle);
ac27a0ec
DK
3479 }
3480 }
3481
fbbf6945 3482retry:
b7adc1f3
JZ
3483 if (rw == READ && ext4_should_dioread_nolock(inode))
3484 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3485 inode->i_sb->s_bdev, iov,
3486 offset, nr_segs,
3487 ext4_get_block, NULL);
3488 else
3489 ret = blockdev_direct_IO(rw, iocb, inode,
3490 inode->i_sb->s_bdev, iov,
ac27a0ec 3491 offset, nr_segs,
617ba13b 3492 ext4_get_block, NULL);
fbbf6945
ES
3493 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3494 goto retry;
ac27a0ec 3495
7fb5409d 3496 if (orphan) {
ac27a0ec
DK
3497 int err;
3498
7fb5409d
JK
3499 /* Credits for sb + inode write */
3500 handle = ext4_journal_start(inode, 2);
3501 if (IS_ERR(handle)) {
3502 /* This is really bad luck. We've written the data
3503 * but cannot extend i_size. Bail out and pretend
3504 * the write failed... */
3505 ret = PTR_ERR(handle);
da1dafca
DM
3506 if (inode->i_nlink)
3507 ext4_orphan_del(NULL, inode);
3508
7fb5409d
JK
3509 goto out;
3510 }
3511 if (inode->i_nlink)
617ba13b 3512 ext4_orphan_del(handle, inode);
7fb5409d 3513 if (ret > 0) {
ac27a0ec
DK
3514 loff_t end = offset + ret;
3515 if (end > inode->i_size) {
3516 ei->i_disksize = end;
3517 i_size_write(inode, end);
3518 /*
3519 * We're going to return a positive `ret'
3520 * here due to non-zero-length I/O, so there's
3521 * no way of reporting error returns from
617ba13b 3522 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3523 * ignore it.
3524 */
617ba13b 3525 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3526 }
3527 }
617ba13b 3528 err = ext4_journal_stop(handle);
ac27a0ec
DK
3529 if (ret == 0)
3530 ret = err;
3531 }
3532out:
3533 return ret;
3534}
3535
c7064ef1 3536static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3537 struct buffer_head *bh_result, int create)
3538{
744692dc 3539 handle_t *handle = ext4_journal_current_handle();
4c0425ff
MC
3540 int ret = 0;
3541 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3542 int dio_credits;
744692dc 3543 int started = 0;
4c0425ff 3544
c7064ef1 3545 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3546 inode->i_ino, create);
4c0425ff 3547 /*
c7064ef1
JZ
3548 * ext4_get_block in prepare for a DIO write or buffer write.
3549 * We allocate an uinitialized extent if blocks haven't been allocated.
3550 * The extent will be converted to initialized after IO complete.
4c0425ff 3551 */
c7064ef1 3552 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
4c0425ff 3553
744692dc
JZ
3554 if (!handle) {
3555 if (max_blocks > DIO_MAX_BLOCKS)
3556 max_blocks = DIO_MAX_BLOCKS;
3557 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3558 handle = ext4_journal_start(inode, dio_credits);
3559 if (IS_ERR(handle)) {
3560 ret = PTR_ERR(handle);
3561 goto out;
3562 }
3563 started = 1;
4c0425ff 3564 }
744692dc 3565
4c0425ff
MC
3566 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3567 create);
3568 if (ret > 0) {
3569 bh_result->b_size = (ret << inode->i_blkbits);
3570 ret = 0;
3571 }
744692dc
JZ
3572 if (started)
3573 ext4_journal_stop(handle);
4c0425ff
MC
3574out:
3575 return ret;
3576}
3577
c7064ef1 3578static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3579{
3580#ifdef EXT4_DEBUG
3581 struct list_head *cur, *before, *after;
3582 ext4_io_end_t *io, *io0, *io1;
744692dc 3583 unsigned long flags;
8d5d02e6 3584
c7064ef1
JZ
3585 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3586 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3587 return;
3588 }
3589
c7064ef1 3590 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3591 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3592 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3593 cur = &io->list;
3594 before = cur->prev;
3595 io0 = container_of(before, ext4_io_end_t, list);
3596 after = cur->next;
3597 io1 = container_of(after, ext4_io_end_t, list);
3598
3599 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3600 io, inode->i_ino, io0, io1);
3601 }
744692dc 3602 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3603#endif
3604}
4c0425ff
MC
3605
3606/*
4c0425ff
MC
3607 * check a range of space and convert unwritten extents to written.
3608 */
c7064ef1 3609static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3610{
4c0425ff
MC
3611 struct inode *inode = io->inode;
3612 loff_t offset = io->offset;
a1de02dc 3613 ssize_t size = io->size;
4c0425ff 3614 int ret = 0;
4c0425ff 3615
c7064ef1 3616 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3617 "list->prev 0x%p\n",
3618 io, inode->i_ino, io->list.next, io->list.prev);
3619
3620 if (list_empty(&io->list))
3621 return ret;
3622
c7064ef1 3623 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3624 return ret;
3625
744692dc 3626 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3627 if (ret < 0) {
4c0425ff 3628 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3629 "extents to written extents, error is %d"
3630 " io is still on inode %lu aio dio list\n",
3631 __func__, ret, inode->i_ino);
3632 return ret;
3633 }
4c0425ff 3634
8d5d02e6
MC
3635 /* clear the DIO AIO unwritten flag */
3636 io->flag = 0;
3637 return ret;
4c0425ff 3638}
c7064ef1 3639
8d5d02e6
MC
3640/*
3641 * work on completed aio dio IO, to convert unwritten extents to extents
3642 */
c7064ef1 3643static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3644{
744692dc
JZ
3645 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3646 struct inode *inode = io->inode;
3647 struct ext4_inode_info *ei = EXT4_I(inode);
3648 unsigned long flags;
3649 int ret;
4c0425ff 3650
8d5d02e6 3651 mutex_lock(&inode->i_mutex);
c7064ef1 3652 ret = ext4_end_io_nolock(io);
744692dc
JZ
3653 if (ret < 0) {
3654 mutex_unlock(&inode->i_mutex);
3655 return;
8d5d02e6 3656 }
744692dc
JZ
3657
3658 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3659 if (!list_empty(&io->list))
3660 list_del_init(&io->list);
3661 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3662 mutex_unlock(&inode->i_mutex);
744692dc 3663 ext4_free_io_end(io);
8d5d02e6 3664}
c7064ef1 3665
8d5d02e6
MC
3666/*
3667 * This function is called from ext4_sync_file().
3668 *
c7064ef1
JZ
3669 * When IO is completed, the work to convert unwritten extents to
3670 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3671 * scheduled. When fsync is called, we need to ensure the
3672 * conversion is complete before fsync returns.
c7064ef1
JZ
3673 * The inode keeps track of a list of pending/completed IO that
3674 * might needs to do the conversion. This function walks through
3675 * the list and convert the related unwritten extents for completed IO
3676 * to written.
3677 * The function return the number of pending IOs on success.
8d5d02e6 3678 */
c7064ef1 3679int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3680{
3681 ext4_io_end_t *io;
744692dc
JZ
3682 struct ext4_inode_info *ei = EXT4_I(inode);
3683 unsigned long flags;
8d5d02e6
MC
3684 int ret = 0;
3685 int ret2 = 0;
3686
744692dc 3687 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3688 return ret;
3689
c7064ef1 3690 dump_completed_IO(inode);
744692dc
JZ
3691 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3692 while (!list_empty(&ei->i_completed_io_list)){
3693 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3694 ext4_io_end_t, list);
3695 /*
c7064ef1 3696 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3697 * IO to written.
3698 *
3699 * When ext4_sync_file() is called, run_queue() may already
3700 * about to flush the work corresponding to this io structure.
3701 * It will be upset if it founds the io structure related
3702 * to the work-to-be schedule is freed.
3703 *
3704 * Thus we need to keep the io structure still valid here after
3705 * convertion finished. The io structure has a flag to
3706 * avoid double converting from both fsync and background work
3707 * queue work.
3708 */
744692dc 3709 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3710 ret = ext4_end_io_nolock(io);
744692dc 3711 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3712 if (ret < 0)
3713 ret2 = ret;
3714 else
3715 list_del_init(&io->list);
3716 }
744692dc 3717 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3718 return (ret2 < 0) ? ret2 : 0;
3719}
3720
744692dc 3721static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3722{
3723 ext4_io_end_t *io = NULL;
3724
744692dc 3725 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3726
3727 if (io) {
8d5d02e6 3728 igrab(inode);
4c0425ff 3729 io->inode = inode;
8d5d02e6 3730 io->flag = 0;
4c0425ff
MC
3731 io->offset = 0;
3732 io->size = 0;
744692dc 3733 io->page = NULL;
c7064ef1 3734 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3735 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3736 }
3737
3738 return io;
3739}
3740
3741static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3742 ssize_t size, void *private)
3743{
3744 ext4_io_end_t *io_end = iocb->private;
3745 struct workqueue_struct *wq;
744692dc
JZ
3746 unsigned long flags;
3747 struct ext4_inode_info *ei;
4c0425ff 3748
4b70df18
M
3749 /* if not async direct IO or dio with 0 bytes write, just return */
3750 if (!io_end || !size)
3751 return;
3752
8d5d02e6
MC
3753 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3754 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3755 iocb->private, io_end->inode->i_ino, iocb, offset,
3756 size);
8d5d02e6
MC
3757
3758 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3759 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3760 ext4_free_io_end(io_end);
3761 iocb->private = NULL;
4c0425ff 3762 return;
8d5d02e6
MC
3763 }
3764
4c0425ff
MC
3765 io_end->offset = offset;
3766 io_end->size = size;
744692dc 3767 io_end->flag = EXT4_IO_UNWRITTEN;
4c0425ff
MC
3768 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3769
8d5d02e6 3770 /* queue the work to convert unwritten extents to written */
4c0425ff
MC
3771 queue_work(wq, &io_end->work);
3772
8d5d02e6 3773 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3774 ei = EXT4_I(io_end->inode);
3775 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3776 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3777 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
4c0425ff
MC
3778 iocb->private = NULL;
3779}
c7064ef1 3780
744692dc
JZ
3781static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3782{
3783 ext4_io_end_t *io_end = bh->b_private;
3784 struct workqueue_struct *wq;
3785 struct inode *inode;
3786 unsigned long flags;
3787
3788 if (!test_clear_buffer_uninit(bh) || !io_end)
3789 goto out;
3790
3791 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3792 printk("sb umounted, discard end_io request for inode %lu\n",
3793 io_end->inode->i_ino);
3794 ext4_free_io_end(io_end);
3795 goto out;
3796 }
3797
3798 io_end->flag = EXT4_IO_UNWRITTEN;
3799 inode = io_end->inode;
3800
3801 /* Add the io_end to per-inode completed io list*/
3802 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3803 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3804 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3805
3806 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3807 /* queue the work to convert unwritten extents to written */
3808 queue_work(wq, &io_end->work);
3809out:
3810 bh->b_private = NULL;
3811 bh->b_end_io = NULL;
3812 clear_buffer_uninit(bh);
3813 end_buffer_async_write(bh, uptodate);
3814}
3815
3816static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3817{
3818 ext4_io_end_t *io_end;
3819 struct page *page = bh->b_page;
3820 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3821 size_t size = bh->b_size;
3822
3823retry:
3824 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3825 if (!io_end) {
3826 if (printk_ratelimit())
3827 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3828 schedule();
3829 goto retry;
3830 }
3831 io_end->offset = offset;
3832 io_end->size = size;
3833 /*
3834 * We need to hold a reference to the page to make sure it
3835 * doesn't get evicted before ext4_end_io_work() has a chance
3836 * to convert the extent from written to unwritten.
3837 */
3838 io_end->page = page;
3839 get_page(io_end->page);
3840
3841 bh->b_private = io_end;
3842 bh->b_end_io = ext4_end_io_buffer_write;
3843 return 0;
3844}
3845
4c0425ff
MC
3846/*
3847 * For ext4 extent files, ext4 will do direct-io write to holes,
3848 * preallocated extents, and those write extend the file, no need to
3849 * fall back to buffered IO.
3850 *
3851 * For holes, we fallocate those blocks, mark them as unintialized
3852 * If those blocks were preallocated, we mark sure they are splited, but
3853 * still keep the range to write as unintialized.
3854 *
8d5d02e6
MC
3855 * The unwrritten extents will be converted to written when DIO is completed.
3856 * For async direct IO, since the IO may still pending when return, we
3857 * set up an end_io call back function, which will do the convertion
3858 * when async direct IO completed.
4c0425ff
MC
3859 *
3860 * If the O_DIRECT write will extend the file then add this inode to the
3861 * orphan list. So recovery will truncate it back to the original size
3862 * if the machine crashes during the write.
3863 *
3864 */
3865static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3866 const struct iovec *iov, loff_t offset,
3867 unsigned long nr_segs)
3868{
3869 struct file *file = iocb->ki_filp;
3870 struct inode *inode = file->f_mapping->host;
3871 ssize_t ret;
3872 size_t count = iov_length(iov, nr_segs);
3873
3874 loff_t final_size = offset + count;
3875 if (rw == WRITE && final_size <= inode->i_size) {
3876 /*
8d5d02e6
MC
3877 * We could direct write to holes and fallocate.
3878 *
3879 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3880 * to prevent paralel buffered read to expose the stale data
3881 * before DIO complete the data IO.
8d5d02e6
MC
3882 *
3883 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3884 * will just simply mark the buffer mapped but still
3885 * keep the extents uninitialized.
3886 *
8d5d02e6
MC
3887 * for non AIO case, we will convert those unwritten extents
3888 * to written after return back from blockdev_direct_IO.
3889 *
3890 * for async DIO, the conversion needs to be defered when
3891 * the IO is completed. The ext4 end_io callback function
3892 * will be called to take care of the conversion work.
3893 * Here for async case, we allocate an io_end structure to
3894 * hook to the iocb.
4c0425ff 3895 */
8d5d02e6
MC
3896 iocb->private = NULL;
3897 EXT4_I(inode)->cur_aio_dio = NULL;
3898 if (!is_sync_kiocb(iocb)) {
744692dc 3899 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
3900 if (!iocb->private)
3901 return -ENOMEM;
3902 /*
3903 * we save the io structure for current async
3904 * direct IO, so that later ext4_get_blocks()
3905 * could flag the io structure whether there
3906 * is a unwritten extents needs to be converted
3907 * when IO is completed.
3908 */
3909 EXT4_I(inode)->cur_aio_dio = iocb->private;
3910 }
3911
4c0425ff
MC
3912 ret = blockdev_direct_IO(rw, iocb, inode,
3913 inode->i_sb->s_bdev, iov,
3914 offset, nr_segs,
c7064ef1 3915 ext4_get_block_write,
4c0425ff 3916 ext4_end_io_dio);
8d5d02e6
MC
3917 if (iocb->private)
3918 EXT4_I(inode)->cur_aio_dio = NULL;
3919 /*
3920 * The io_end structure takes a reference to the inode,
3921 * that structure needs to be destroyed and the
3922 * reference to the inode need to be dropped, when IO is
3923 * complete, even with 0 byte write, or failed.
3924 *
3925 * In the successful AIO DIO case, the io_end structure will be
3926 * desctroyed and the reference to the inode will be dropped
3927 * after the end_io call back function is called.
3928 *
3929 * In the case there is 0 byte write, or error case, since
3930 * VFS direct IO won't invoke the end_io call back function,
3931 * we need to free the end_io structure here.
3932 */
3933 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3934 ext4_free_io_end(iocb->private);
3935 iocb->private = NULL;
19f5fb7a
TT
3936 } else if (ret > 0 && ext4_test_inode_state(inode,
3937 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3938 int err;
8d5d02e6
MC
3939 /*
3940 * for non AIO case, since the IO is already
3941 * completed, we could do the convertion right here
3942 */
109f5565
M
3943 err = ext4_convert_unwritten_extents(inode,
3944 offset, ret);
3945 if (err < 0)
3946 ret = err;
19f5fb7a 3947 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3948 }
4c0425ff
MC
3949 return ret;
3950 }
8d5d02e6
MC
3951
3952 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3953 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3954}
3955
3956static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3957 const struct iovec *iov, loff_t offset,
3958 unsigned long nr_segs)
3959{
3960 struct file *file = iocb->ki_filp;
3961 struct inode *inode = file->f_mapping->host;
3962
3963 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3964 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3965
3966 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3967}
3968
ac27a0ec 3969/*
617ba13b 3970 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3971 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3972 * much here because ->set_page_dirty is called under VFS locks. The page is
3973 * not necessarily locked.
3974 *
3975 * We cannot just dirty the page and leave attached buffers clean, because the
3976 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3977 * or jbddirty because all the journalling code will explode.
3978 *
3979 * So what we do is to mark the page "pending dirty" and next time writepage
3980 * is called, propagate that into the buffers appropriately.
3981 */
617ba13b 3982static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3983{
3984 SetPageChecked(page);
3985 return __set_page_dirty_nobuffers(page);
3986}
3987
617ba13b 3988static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3989 .readpage = ext4_readpage,
3990 .readpages = ext4_readpages,
43ce1d23 3991 .writepage = ext4_writepage,
8ab22b9a
HH
3992 .sync_page = block_sync_page,
3993 .write_begin = ext4_write_begin,
3994 .write_end = ext4_ordered_write_end,
3995 .bmap = ext4_bmap,
3996 .invalidatepage = ext4_invalidatepage,
3997 .releasepage = ext4_releasepage,
3998 .direct_IO = ext4_direct_IO,
3999 .migratepage = buffer_migrate_page,
4000 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4001 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4002};
4003
617ba13b 4004static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4005 .readpage = ext4_readpage,
4006 .readpages = ext4_readpages,
43ce1d23 4007 .writepage = ext4_writepage,
8ab22b9a
HH
4008 .sync_page = block_sync_page,
4009 .write_begin = ext4_write_begin,
4010 .write_end = ext4_writeback_write_end,
4011 .bmap = ext4_bmap,
4012 .invalidatepage = ext4_invalidatepage,
4013 .releasepage = ext4_releasepage,
4014 .direct_IO = ext4_direct_IO,
4015 .migratepage = buffer_migrate_page,
4016 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4017 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4018};
4019
617ba13b 4020static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4021 .readpage = ext4_readpage,
4022 .readpages = ext4_readpages,
43ce1d23 4023 .writepage = ext4_writepage,
8ab22b9a
HH
4024 .sync_page = block_sync_page,
4025 .write_begin = ext4_write_begin,
4026 .write_end = ext4_journalled_write_end,
4027 .set_page_dirty = ext4_journalled_set_page_dirty,
4028 .bmap = ext4_bmap,
4029 .invalidatepage = ext4_invalidatepage,
4030 .releasepage = ext4_releasepage,
4031 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4032 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4033};
4034
64769240 4035static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4036 .readpage = ext4_readpage,
4037 .readpages = ext4_readpages,
43ce1d23 4038 .writepage = ext4_writepage,
8ab22b9a
HH
4039 .writepages = ext4_da_writepages,
4040 .sync_page = block_sync_page,
4041 .write_begin = ext4_da_write_begin,
4042 .write_end = ext4_da_write_end,
4043 .bmap = ext4_bmap,
4044 .invalidatepage = ext4_da_invalidatepage,
4045 .releasepage = ext4_releasepage,
4046 .direct_IO = ext4_direct_IO,
4047 .migratepage = buffer_migrate_page,
4048 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4049 .error_remove_page = generic_error_remove_page,
64769240
AT
4050};
4051
617ba13b 4052void ext4_set_aops(struct inode *inode)
ac27a0ec 4053{
cd1aac32
AK
4054 if (ext4_should_order_data(inode) &&
4055 test_opt(inode->i_sb, DELALLOC))
4056 inode->i_mapping->a_ops = &ext4_da_aops;
4057 else if (ext4_should_order_data(inode))
617ba13b 4058 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4059 else if (ext4_should_writeback_data(inode) &&
4060 test_opt(inode->i_sb, DELALLOC))
4061 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4062 else if (ext4_should_writeback_data(inode))
4063 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4064 else
617ba13b 4065 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4066}
4067
4068/*
617ba13b 4069 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4070 * up to the end of the block which corresponds to `from'.
4071 * This required during truncate. We need to physically zero the tail end
4072 * of that block so it doesn't yield old data if the file is later grown.
4073 */
cf108bca 4074int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4075 struct address_space *mapping, loff_t from)
4076{
617ba13b 4077 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4078 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4079 unsigned blocksize, length, pos;
4080 ext4_lblk_t iblock;
ac27a0ec
DK
4081 struct inode *inode = mapping->host;
4082 struct buffer_head *bh;
cf108bca 4083 struct page *page;
ac27a0ec 4084 int err = 0;
ac27a0ec 4085
f4a01017
TT
4086 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4087 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4088 if (!page)
4089 return -EINVAL;
4090
ac27a0ec
DK
4091 blocksize = inode->i_sb->s_blocksize;
4092 length = blocksize - (offset & (blocksize - 1));
4093 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4094
4095 /*
4096 * For "nobh" option, we can only work if we don't need to
4097 * read-in the page - otherwise we create buffers to do the IO.
4098 */
4099 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 4100 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 4101 zero_user(page, offset, length);
ac27a0ec
DK
4102 set_page_dirty(page);
4103 goto unlock;
4104 }
4105
4106 if (!page_has_buffers(page))
4107 create_empty_buffers(page, blocksize, 0);
4108
4109 /* Find the buffer that contains "offset" */
4110 bh = page_buffers(page);
4111 pos = blocksize;
4112 while (offset >= pos) {
4113 bh = bh->b_this_page;
4114 iblock++;
4115 pos += blocksize;
4116 }
4117
4118 err = 0;
4119 if (buffer_freed(bh)) {
4120 BUFFER_TRACE(bh, "freed: skip");
4121 goto unlock;
4122 }
4123
4124 if (!buffer_mapped(bh)) {
4125 BUFFER_TRACE(bh, "unmapped");
617ba13b 4126 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4127 /* unmapped? It's a hole - nothing to do */
4128 if (!buffer_mapped(bh)) {
4129 BUFFER_TRACE(bh, "still unmapped");
4130 goto unlock;
4131 }
4132 }
4133
4134 /* Ok, it's mapped. Make sure it's up-to-date */
4135 if (PageUptodate(page))
4136 set_buffer_uptodate(bh);
4137
4138 if (!buffer_uptodate(bh)) {
4139 err = -EIO;
4140 ll_rw_block(READ, 1, &bh);
4141 wait_on_buffer(bh);
4142 /* Uhhuh. Read error. Complain and punt. */
4143 if (!buffer_uptodate(bh))
4144 goto unlock;
4145 }
4146
617ba13b 4147 if (ext4_should_journal_data(inode)) {
ac27a0ec 4148 BUFFER_TRACE(bh, "get write access");
617ba13b 4149 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4150 if (err)
4151 goto unlock;
4152 }
4153
eebd2aa3 4154 zero_user(page, offset, length);
ac27a0ec
DK
4155
4156 BUFFER_TRACE(bh, "zeroed end of block");
4157
4158 err = 0;
617ba13b 4159 if (ext4_should_journal_data(inode)) {
0390131b 4160 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4161 } else {
617ba13b 4162 if (ext4_should_order_data(inode))
678aaf48 4163 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4164 mark_buffer_dirty(bh);
4165 }
4166
4167unlock:
4168 unlock_page(page);
4169 page_cache_release(page);
4170 return err;
4171}
4172
4173/*
4174 * Probably it should be a library function... search for first non-zero word
4175 * or memcmp with zero_page, whatever is better for particular architecture.
4176 * Linus?
4177 */
4178static inline int all_zeroes(__le32 *p, __le32 *q)
4179{
4180 while (p < q)
4181 if (*p++)
4182 return 0;
4183 return 1;
4184}
4185
4186/**
617ba13b 4187 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4188 * @inode: inode in question
4189 * @depth: depth of the affected branch
617ba13b 4190 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4191 * @chain: place to store the pointers to partial indirect blocks
4192 * @top: place to the (detached) top of branch
4193 *
617ba13b 4194 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4195 *
4196 * When we do truncate() we may have to clean the ends of several
4197 * indirect blocks but leave the blocks themselves alive. Block is
4198 * partially truncated if some data below the new i_size is refered
4199 * from it (and it is on the path to the first completely truncated
4200 * data block, indeed). We have to free the top of that path along
4201 * with everything to the right of the path. Since no allocation
617ba13b 4202 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4203 * finishes, we may safely do the latter, but top of branch may
4204 * require special attention - pageout below the truncation point
4205 * might try to populate it.
4206 *
4207 * We atomically detach the top of branch from the tree, store the
4208 * block number of its root in *@top, pointers to buffer_heads of
4209 * partially truncated blocks - in @chain[].bh and pointers to
4210 * their last elements that should not be removed - in
4211 * @chain[].p. Return value is the pointer to last filled element
4212 * of @chain.
4213 *
4214 * The work left to caller to do the actual freeing of subtrees:
4215 * a) free the subtree starting from *@top
4216 * b) free the subtrees whose roots are stored in
4217 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4218 * c) free the subtrees growing from the inode past the @chain[0].
4219 * (no partially truncated stuff there). */
4220
617ba13b 4221static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4222 ext4_lblk_t offsets[4], Indirect chain[4],
4223 __le32 *top)
ac27a0ec
DK
4224{
4225 Indirect *partial, *p;
4226 int k, err;
4227
4228 *top = 0;
bf48aabb 4229 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4230 for (k = depth; k > 1 && !offsets[k-1]; k--)
4231 ;
617ba13b 4232 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4233 /* Writer: pointers */
4234 if (!partial)
4235 partial = chain + k-1;
4236 /*
4237 * If the branch acquired continuation since we've looked at it -
4238 * fine, it should all survive and (new) top doesn't belong to us.
4239 */
4240 if (!partial->key && *partial->p)
4241 /* Writer: end */
4242 goto no_top;
af5bc92d 4243 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4244 ;
4245 /*
4246 * OK, we've found the last block that must survive. The rest of our
4247 * branch should be detached before unlocking. However, if that rest
4248 * of branch is all ours and does not grow immediately from the inode
4249 * it's easier to cheat and just decrement partial->p.
4250 */
4251 if (p == chain + k - 1 && p > chain) {
4252 p->p--;
4253 } else {
4254 *top = *p->p;
617ba13b 4255 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4256#if 0
4257 *p->p = 0;
4258#endif
4259 }
4260 /* Writer: end */
4261
af5bc92d 4262 while (partial > p) {
ac27a0ec
DK
4263 brelse(partial->bh);
4264 partial--;
4265 }
4266no_top:
4267 return partial;
4268}
4269
4270/*
4271 * Zero a number of block pointers in either an inode or an indirect block.
4272 * If we restart the transaction we must again get write access to the
4273 * indirect block for further modification.
4274 *
4275 * We release `count' blocks on disk, but (last - first) may be greater
4276 * than `count' because there can be holes in there.
4277 */
1f2acb60
TT
4278static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4279 struct buffer_head *bh,
4280 ext4_fsblk_t block_to_free,
4281 unsigned long count, __le32 *first,
4282 __le32 *last)
ac27a0ec
DK
4283{
4284 __le32 *p;
1f2acb60 4285 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4286
4287 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4288 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4289
1f2acb60
TT
4290 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4291 count)) {
12062ddd 4292 ext4_error(inode->i_sb, "inode #%lu: "
1f2acb60
TT
4293 "attempt to clear blocks %llu len %lu, invalid",
4294 inode->i_ino, (unsigned long long) block_to_free,
4295 count);
4296 return 1;
4297 }
4298
ac27a0ec
DK
4299 if (try_to_extend_transaction(handle, inode)) {
4300 if (bh) {
0390131b
FM
4301 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4302 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4303 }
617ba13b 4304 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4305 ext4_truncate_restart_trans(handle, inode,
4306 blocks_for_truncate(inode));
ac27a0ec
DK
4307 if (bh) {
4308 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4309 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4310 }
4311 }
4312
e6362609
TT
4313 for (p = first; p < last; p++)
4314 *p = 0;
ac27a0ec 4315
e6362609 4316 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4317 return 0;
ac27a0ec
DK
4318}
4319
4320/**
617ba13b 4321 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4322 * @handle: handle for this transaction
4323 * @inode: inode we are dealing with
4324 * @this_bh: indirect buffer_head which contains *@first and *@last
4325 * @first: array of block numbers
4326 * @last: points immediately past the end of array
4327 *
4328 * We are freeing all blocks refered from that array (numbers are stored as
4329 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4330 *
4331 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4332 * blocks are contiguous then releasing them at one time will only affect one
4333 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4334 * actually use a lot of journal space.
4335 *
4336 * @this_bh will be %NULL if @first and @last point into the inode's direct
4337 * block pointers.
4338 */
617ba13b 4339static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4340 struct buffer_head *this_bh,
4341 __le32 *first, __le32 *last)
4342{
617ba13b 4343 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4344 unsigned long count = 0; /* Number of blocks in the run */
4345 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4346 corresponding to
4347 block_to_free */
617ba13b 4348 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4349 __le32 *p; /* Pointer into inode/ind
4350 for current block */
4351 int err;
4352
4353 if (this_bh) { /* For indirect block */
4354 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4355 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4356 /* Important: if we can't update the indirect pointers
4357 * to the blocks, we can't free them. */
4358 if (err)
4359 return;
4360 }
4361
4362 for (p = first; p < last; p++) {
4363 nr = le32_to_cpu(*p);
4364 if (nr) {
4365 /* accumulate blocks to free if they're contiguous */
4366 if (count == 0) {
4367 block_to_free = nr;
4368 block_to_free_p = p;
4369 count = 1;
4370 } else if (nr == block_to_free + count) {
4371 count++;
4372 } else {
1f2acb60
TT
4373 if (ext4_clear_blocks(handle, inode, this_bh,
4374 block_to_free, count,
4375 block_to_free_p, p))
4376 break;
ac27a0ec
DK
4377 block_to_free = nr;
4378 block_to_free_p = p;
4379 count = 1;
4380 }
4381 }
4382 }
4383
4384 if (count > 0)
617ba13b 4385 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4386 count, block_to_free_p, p);
4387
4388 if (this_bh) {
0390131b 4389 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4390
4391 /*
4392 * The buffer head should have an attached journal head at this
4393 * point. However, if the data is corrupted and an indirect
4394 * block pointed to itself, it would have been detached when
4395 * the block was cleared. Check for this instead of OOPSing.
4396 */
e7f07968 4397 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4398 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4399 else
12062ddd 4400 ext4_error(inode->i_sb,
71dc8fbc
DG
4401 "circular indirect block detected, "
4402 "inode=%lu, block=%llu",
4403 inode->i_ino,
4404 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4405 }
4406}
4407
4408/**
617ba13b 4409 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4410 * @handle: JBD handle for this transaction
4411 * @inode: inode we are dealing with
4412 * @parent_bh: the buffer_head which contains *@first and *@last
4413 * @first: array of block numbers
4414 * @last: pointer immediately past the end of array
4415 * @depth: depth of the branches to free
4416 *
4417 * We are freeing all blocks refered from these branches (numbers are
4418 * stored as little-endian 32-bit) and updating @inode->i_blocks
4419 * appropriately.
4420 */
617ba13b 4421static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4422 struct buffer_head *parent_bh,
4423 __le32 *first, __le32 *last, int depth)
4424{
617ba13b 4425 ext4_fsblk_t nr;
ac27a0ec
DK
4426 __le32 *p;
4427
0390131b 4428 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4429 return;
4430
4431 if (depth--) {
4432 struct buffer_head *bh;
617ba13b 4433 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4434 p = last;
4435 while (--p >= first) {
4436 nr = le32_to_cpu(*p);
4437 if (!nr)
4438 continue; /* A hole */
4439
1f2acb60
TT
4440 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4441 nr, 1)) {
12062ddd 4442 ext4_error(inode->i_sb,
1f2acb60
TT
4443 "indirect mapped block in inode "
4444 "#%lu invalid (level %d, blk #%lu)",
4445 inode->i_ino, depth,
4446 (unsigned long) nr);
4447 break;
4448 }
4449
ac27a0ec
DK
4450 /* Go read the buffer for the next level down */
4451 bh = sb_bread(inode->i_sb, nr);
4452
4453 /*
4454 * A read failure? Report error and clear slot
4455 * (should be rare).
4456 */
4457 if (!bh) {
12062ddd 4458 ext4_error(inode->i_sb,
2ae02107 4459 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
4460 inode->i_ino, nr);
4461 continue;
4462 }
4463
4464 /* This zaps the entire block. Bottom up. */
4465 BUFFER_TRACE(bh, "free child branches");
617ba13b 4466 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4467 (__le32 *) bh->b_data,
4468 (__le32 *) bh->b_data + addr_per_block,
4469 depth);
ac27a0ec
DK
4470
4471 /*
4472 * We've probably journalled the indirect block several
4473 * times during the truncate. But it's no longer
4474 * needed and we now drop it from the transaction via
dab291af 4475 * jbd2_journal_revoke().
ac27a0ec
DK
4476 *
4477 * That's easy if it's exclusively part of this
4478 * transaction. But if it's part of the committing
dab291af 4479 * transaction then jbd2_journal_forget() will simply
ac27a0ec 4480 * brelse() it. That means that if the underlying
617ba13b 4481 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
4482 * unmap_underlying_metadata() will find this block
4483 * and will try to get rid of it. damn, damn.
4484 *
4485 * If this block has already been committed to the
4486 * journal, a revoke record will be written. And
4487 * revoke records must be emitted *before* clearing
4488 * this block's bit in the bitmaps.
4489 */
617ba13b 4490 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
4491
4492 /*
4493 * Everything below this this pointer has been
4494 * released. Now let this top-of-subtree go.
4495 *
4496 * We want the freeing of this indirect block to be
4497 * atomic in the journal with the updating of the
4498 * bitmap block which owns it. So make some room in
4499 * the journal.
4500 *
4501 * We zero the parent pointer *after* freeing its
4502 * pointee in the bitmaps, so if extend_transaction()
4503 * for some reason fails to put the bitmap changes and
4504 * the release into the same transaction, recovery
4505 * will merely complain about releasing a free block,
4506 * rather than leaking blocks.
4507 */
0390131b 4508 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4509 return;
4510 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4511 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4512 ext4_truncate_restart_trans(handle, inode,
4513 blocks_for_truncate(inode));
ac27a0ec
DK
4514 }
4515
e6362609
TT
4516 ext4_free_blocks(handle, inode, 0, nr, 1,
4517 EXT4_FREE_BLOCKS_METADATA);
ac27a0ec
DK
4518
4519 if (parent_bh) {
4520 /*
4521 * The block which we have just freed is
4522 * pointed to by an indirect block: journal it
4523 */
4524 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4525 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4526 parent_bh)){
4527 *p = 0;
4528 BUFFER_TRACE(parent_bh,
0390131b
FM
4529 "call ext4_handle_dirty_metadata");
4530 ext4_handle_dirty_metadata(handle,
4531 inode,
4532 parent_bh);
ac27a0ec
DK
4533 }
4534 }
4535 }
4536 } else {
4537 /* We have reached the bottom of the tree. */
4538 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4539 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4540 }
4541}
4542
91ef4caf
DG
4543int ext4_can_truncate(struct inode *inode)
4544{
4545 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4546 return 0;
4547 if (S_ISREG(inode->i_mode))
4548 return 1;
4549 if (S_ISDIR(inode->i_mode))
4550 return 1;
4551 if (S_ISLNK(inode->i_mode))
4552 return !ext4_inode_is_fast_symlink(inode);
4553 return 0;
4554}
4555
ac27a0ec 4556/*
617ba13b 4557 * ext4_truncate()
ac27a0ec 4558 *
617ba13b
MC
4559 * We block out ext4_get_block() block instantiations across the entire
4560 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4561 * simultaneously on behalf of the same inode.
4562 *
4563 * As we work through the truncate and commmit bits of it to the journal there
4564 * is one core, guiding principle: the file's tree must always be consistent on
4565 * disk. We must be able to restart the truncate after a crash.
4566 *
4567 * The file's tree may be transiently inconsistent in memory (although it
4568 * probably isn't), but whenever we close off and commit a journal transaction,
4569 * the contents of (the filesystem + the journal) must be consistent and
4570 * restartable. It's pretty simple, really: bottom up, right to left (although
4571 * left-to-right works OK too).
4572 *
4573 * Note that at recovery time, journal replay occurs *before* the restart of
4574 * truncate against the orphan inode list.
4575 *
4576 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4577 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4578 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4579 * ext4_truncate() to have another go. So there will be instantiated blocks
4580 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4581 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4582 * ext4_truncate() run will find them and release them.
ac27a0ec 4583 */
617ba13b 4584void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4585{
4586 handle_t *handle;
617ba13b 4587 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4588 __le32 *i_data = ei->i_data;
617ba13b 4589 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4590 struct address_space *mapping = inode->i_mapping;
725d26d3 4591 ext4_lblk_t offsets[4];
ac27a0ec
DK
4592 Indirect chain[4];
4593 Indirect *partial;
4594 __le32 nr = 0;
4595 int n;
725d26d3 4596 ext4_lblk_t last_block;
ac27a0ec 4597 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4598
91ef4caf 4599 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4600 return;
4601
c8d46e41
JZ
4602 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4603
5534fb5b 4604 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4605 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4606
1d03ec98 4607 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
cf108bca 4608 ext4_ext_truncate(inode);
1d03ec98
AK
4609 return;
4610 }
a86c6181 4611
ac27a0ec 4612 handle = start_transaction(inode);
cf108bca 4613 if (IS_ERR(handle))
ac27a0ec 4614 return; /* AKPM: return what? */
ac27a0ec
DK
4615
4616 last_block = (inode->i_size + blocksize-1)
617ba13b 4617 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4618
cf108bca
JK
4619 if (inode->i_size & (blocksize - 1))
4620 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4621 goto out_stop;
ac27a0ec 4622
617ba13b 4623 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4624 if (n == 0)
4625 goto out_stop; /* error */
4626
4627 /*
4628 * OK. This truncate is going to happen. We add the inode to the
4629 * orphan list, so that if this truncate spans multiple transactions,
4630 * and we crash, we will resume the truncate when the filesystem
4631 * recovers. It also marks the inode dirty, to catch the new size.
4632 *
4633 * Implication: the file must always be in a sane, consistent
4634 * truncatable state while each transaction commits.
4635 */
617ba13b 4636 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4637 goto out_stop;
4638
632eaeab
MC
4639 /*
4640 * From here we block out all ext4_get_block() callers who want to
4641 * modify the block allocation tree.
4642 */
4643 down_write(&ei->i_data_sem);
b4df2030 4644
c2ea3fde 4645 ext4_discard_preallocations(inode);
b4df2030 4646
ac27a0ec
DK
4647 /*
4648 * The orphan list entry will now protect us from any crash which
4649 * occurs before the truncate completes, so it is now safe to propagate
4650 * the new, shorter inode size (held for now in i_size) into the
4651 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4652 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4653 */
4654 ei->i_disksize = inode->i_size;
4655
ac27a0ec 4656 if (n == 1) { /* direct blocks */
617ba13b
MC
4657 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4658 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4659 goto do_indirects;
4660 }
4661
617ba13b 4662 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4663 /* Kill the top of shared branch (not detached) */
4664 if (nr) {
4665 if (partial == chain) {
4666 /* Shared branch grows from the inode */
617ba13b 4667 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4668 &nr, &nr+1, (chain+n-1) - partial);
4669 *partial->p = 0;
4670 /*
4671 * We mark the inode dirty prior to restart,
4672 * and prior to stop. No need for it here.
4673 */
4674 } else {
4675 /* Shared branch grows from an indirect block */
4676 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4677 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4678 partial->p,
4679 partial->p+1, (chain+n-1) - partial);
4680 }
4681 }
4682 /* Clear the ends of indirect blocks on the shared branch */
4683 while (partial > chain) {
617ba13b 4684 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4685 (__le32*)partial->bh->b_data+addr_per_block,
4686 (chain+n-1) - partial);
4687 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4688 brelse(partial->bh);
ac27a0ec
DK
4689 partial--;
4690 }
4691do_indirects:
4692 /* Kill the remaining (whole) subtrees */
4693 switch (offsets[0]) {
4694 default:
617ba13b 4695 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4696 if (nr) {
617ba13b
MC
4697 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4698 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4699 }
617ba13b
MC
4700 case EXT4_IND_BLOCK:
4701 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4702 if (nr) {
617ba13b
MC
4703 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4704 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4705 }
617ba13b
MC
4706 case EXT4_DIND_BLOCK:
4707 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4708 if (nr) {
617ba13b
MC
4709 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4710 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4711 }
617ba13b 4712 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4713 ;
4714 }
4715
0e855ac8 4716 up_write(&ei->i_data_sem);
ef7f3835 4717 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4718 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4719
4720 /*
4721 * In a multi-transaction truncate, we only make the final transaction
4722 * synchronous
4723 */
4724 if (IS_SYNC(inode))
0390131b 4725 ext4_handle_sync(handle);
ac27a0ec
DK
4726out_stop:
4727 /*
4728 * If this was a simple ftruncate(), and the file will remain alive
4729 * then we need to clear up the orphan record which we created above.
4730 * However, if this was a real unlink then we were called by
617ba13b 4731 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4732 * orphan info for us.
4733 */
4734 if (inode->i_nlink)
617ba13b 4735 ext4_orphan_del(handle, inode);
ac27a0ec 4736
617ba13b 4737 ext4_journal_stop(handle);
ac27a0ec
DK
4738}
4739
ac27a0ec 4740/*
617ba13b 4741 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4742 * underlying buffer_head on success. If 'in_mem' is true, we have all
4743 * data in memory that is needed to recreate the on-disk version of this
4744 * inode.
4745 */
617ba13b
MC
4746static int __ext4_get_inode_loc(struct inode *inode,
4747 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4748{
240799cd
TT
4749 struct ext4_group_desc *gdp;
4750 struct buffer_head *bh;
4751 struct super_block *sb = inode->i_sb;
4752 ext4_fsblk_t block;
4753 int inodes_per_block, inode_offset;
4754
3a06d778 4755 iloc->bh = NULL;
240799cd
TT
4756 if (!ext4_valid_inum(sb, inode->i_ino))
4757 return -EIO;
ac27a0ec 4758
240799cd
TT
4759 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4760 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4761 if (!gdp)
ac27a0ec
DK
4762 return -EIO;
4763
240799cd
TT
4764 /*
4765 * Figure out the offset within the block group inode table
4766 */
4767 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4768 inode_offset = ((inode->i_ino - 1) %
4769 EXT4_INODES_PER_GROUP(sb));
4770 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4771 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4772
4773 bh = sb_getblk(sb, block);
ac27a0ec 4774 if (!bh) {
12062ddd
ES
4775 ext4_error(sb, "unable to read inode block - "
4776 "inode=%lu, block=%llu", inode->i_ino, block);
ac27a0ec
DK
4777 return -EIO;
4778 }
4779 if (!buffer_uptodate(bh)) {
4780 lock_buffer(bh);
9c83a923
HK
4781
4782 /*
4783 * If the buffer has the write error flag, we have failed
4784 * to write out another inode in the same block. In this
4785 * case, we don't have to read the block because we may
4786 * read the old inode data successfully.
4787 */
4788 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4789 set_buffer_uptodate(bh);
4790
ac27a0ec
DK
4791 if (buffer_uptodate(bh)) {
4792 /* someone brought it uptodate while we waited */
4793 unlock_buffer(bh);
4794 goto has_buffer;
4795 }
4796
4797 /*
4798 * If we have all information of the inode in memory and this
4799 * is the only valid inode in the block, we need not read the
4800 * block.
4801 */
4802 if (in_mem) {
4803 struct buffer_head *bitmap_bh;
240799cd 4804 int i, start;
ac27a0ec 4805
240799cd 4806 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4807
240799cd
TT
4808 /* Is the inode bitmap in cache? */
4809 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4810 if (!bitmap_bh)
4811 goto make_io;
4812
4813 /*
4814 * If the inode bitmap isn't in cache then the
4815 * optimisation may end up performing two reads instead
4816 * of one, so skip it.
4817 */
4818 if (!buffer_uptodate(bitmap_bh)) {
4819 brelse(bitmap_bh);
4820 goto make_io;
4821 }
240799cd 4822 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4823 if (i == inode_offset)
4824 continue;
617ba13b 4825 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4826 break;
4827 }
4828 brelse(bitmap_bh);
240799cd 4829 if (i == start + inodes_per_block) {
ac27a0ec
DK
4830 /* all other inodes are free, so skip I/O */
4831 memset(bh->b_data, 0, bh->b_size);
4832 set_buffer_uptodate(bh);
4833 unlock_buffer(bh);
4834 goto has_buffer;
4835 }
4836 }
4837
4838make_io:
240799cd
TT
4839 /*
4840 * If we need to do any I/O, try to pre-readahead extra
4841 * blocks from the inode table.
4842 */
4843 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4844 ext4_fsblk_t b, end, table;
4845 unsigned num;
4846
4847 table = ext4_inode_table(sb, gdp);
b713a5ec 4848 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4849 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4850 if (table > b)
4851 b = table;
4852 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4853 num = EXT4_INODES_PER_GROUP(sb);
4854 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4855 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4856 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4857 table += num / inodes_per_block;
4858 if (end > table)
4859 end = table;
4860 while (b <= end)
4861 sb_breadahead(sb, b++);
4862 }
4863
ac27a0ec
DK
4864 /*
4865 * There are other valid inodes in the buffer, this inode
4866 * has in-inode xattrs, or we don't have this inode in memory.
4867 * Read the block from disk.
4868 */
4869 get_bh(bh);
4870 bh->b_end_io = end_buffer_read_sync;
4871 submit_bh(READ_META, bh);
4872 wait_on_buffer(bh);
4873 if (!buffer_uptodate(bh)) {
12062ddd
ES
4874 ext4_error(sb, "unable to read inode block - inode=%lu,"
4875 " block=%llu", inode->i_ino, block);
ac27a0ec
DK
4876 brelse(bh);
4877 return -EIO;
4878 }
4879 }
4880has_buffer:
4881 iloc->bh = bh;
4882 return 0;
4883}
4884
617ba13b 4885int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4886{
4887 /* We have all inode data except xattrs in memory here. */
617ba13b 4888 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4889 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4890}
4891
617ba13b 4892void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4893{
617ba13b 4894 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4895
4896 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4897 if (flags & EXT4_SYNC_FL)
ac27a0ec 4898 inode->i_flags |= S_SYNC;
617ba13b 4899 if (flags & EXT4_APPEND_FL)
ac27a0ec 4900 inode->i_flags |= S_APPEND;
617ba13b 4901 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4902 inode->i_flags |= S_IMMUTABLE;
617ba13b 4903 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4904 inode->i_flags |= S_NOATIME;
617ba13b 4905 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4906 inode->i_flags |= S_DIRSYNC;
4907}
4908
ff9ddf7e
JK
4909/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4910void ext4_get_inode_flags(struct ext4_inode_info *ei)
4911{
4912 unsigned int flags = ei->vfs_inode.i_flags;
4913
4914 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4915 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4916 if (flags & S_SYNC)
4917 ei->i_flags |= EXT4_SYNC_FL;
4918 if (flags & S_APPEND)
4919 ei->i_flags |= EXT4_APPEND_FL;
4920 if (flags & S_IMMUTABLE)
4921 ei->i_flags |= EXT4_IMMUTABLE_FL;
4922 if (flags & S_NOATIME)
4923 ei->i_flags |= EXT4_NOATIME_FL;
4924 if (flags & S_DIRSYNC)
4925 ei->i_flags |= EXT4_DIRSYNC_FL;
4926}
de9a55b8 4927
0fc1b451 4928static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4929 struct ext4_inode_info *ei)
0fc1b451
AK
4930{
4931 blkcnt_t i_blocks ;
8180a562
AK
4932 struct inode *inode = &(ei->vfs_inode);
4933 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4934
4935 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4936 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4937 /* we are using combined 48 bit field */
4938 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4939 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
4940 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4941 /* i_blocks represent file system block size */
4942 return i_blocks << (inode->i_blkbits - 9);
4943 } else {
4944 return i_blocks;
4945 }
0fc1b451
AK
4946 } else {
4947 return le32_to_cpu(raw_inode->i_blocks_lo);
4948 }
4949}
ff9ddf7e 4950
1d1fe1ee 4951struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4952{
617ba13b
MC
4953 struct ext4_iloc iloc;
4954 struct ext4_inode *raw_inode;
1d1fe1ee 4955 struct ext4_inode_info *ei;
1d1fe1ee 4956 struct inode *inode;
b436b9be 4957 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4958 long ret;
ac27a0ec
DK
4959 int block;
4960
1d1fe1ee
DH
4961 inode = iget_locked(sb, ino);
4962 if (!inode)
4963 return ERR_PTR(-ENOMEM);
4964 if (!(inode->i_state & I_NEW))
4965 return inode;
4966
4967 ei = EXT4_I(inode);
567f3e9a 4968 iloc.bh = 0;
ac27a0ec 4969
1d1fe1ee
DH
4970 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4971 if (ret < 0)
ac27a0ec 4972 goto bad_inode;
617ba13b 4973 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
4974 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4975 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4976 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4977 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
4978 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4979 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4980 }
4981 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 4982
19f5fb7a 4983 ei->i_state_flags = 0;
ac27a0ec
DK
4984 ei->i_dir_start_lookup = 0;
4985 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4986 /* We now have enough fields to check if the inode was active or not.
4987 * This is needed because nfsd might try to access dead inodes
4988 * the test is that same one that e2fsck uses
4989 * NeilBrown 1999oct15
4990 */
4991 if (inode->i_nlink == 0) {
4992 if (inode->i_mode == 0 ||
617ba13b 4993 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4994 /* this inode is deleted */
1d1fe1ee 4995 ret = -ESTALE;
ac27a0ec
DK
4996 goto bad_inode;
4997 }
4998 /* The only unlinked inodes we let through here have
4999 * valid i_mode and are being read by the orphan
5000 * recovery code: that's fine, we're about to complete
5001 * the process of deleting those. */
5002 }
ac27a0ec 5003 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5004 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5005 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5006 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5007 ei->i_file_acl |=
5008 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5009 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5010 ei->i_disksize = inode->i_size;
a9e7f447
DM
5011#ifdef CONFIG_QUOTA
5012 ei->i_reserved_quota = 0;
5013#endif
ac27a0ec
DK
5014 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5015 ei->i_block_group = iloc.block_group;
a4912123 5016 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5017 /*
5018 * NOTE! The in-memory inode i_data array is in little-endian order
5019 * even on big-endian machines: we do NOT byteswap the block numbers!
5020 */
617ba13b 5021 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5022 ei->i_data[block] = raw_inode->i_block[block];
5023 INIT_LIST_HEAD(&ei->i_orphan);
5024
b436b9be
JK
5025 /*
5026 * Set transaction id's of transactions that have to be committed
5027 * to finish f[data]sync. We set them to currently running transaction
5028 * as we cannot be sure that the inode or some of its metadata isn't
5029 * part of the transaction - the inode could have been reclaimed and
5030 * now it is reread from disk.
5031 */
5032 if (journal) {
5033 transaction_t *transaction;
5034 tid_t tid;
5035
5036 spin_lock(&journal->j_state_lock);
5037 if (journal->j_running_transaction)
5038 transaction = journal->j_running_transaction;
5039 else
5040 transaction = journal->j_committing_transaction;
5041 if (transaction)
5042 tid = transaction->t_tid;
5043 else
5044 tid = journal->j_commit_sequence;
5045 spin_unlock(&journal->j_state_lock);
5046 ei->i_sync_tid = tid;
5047 ei->i_datasync_tid = tid;
5048 }
5049
0040d987 5050 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5051 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5052 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5053 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5054 ret = -EIO;
ac27a0ec 5055 goto bad_inode;
e5d2861f 5056 }
ac27a0ec
DK
5057 if (ei->i_extra_isize == 0) {
5058 /* The extra space is currently unused. Use it. */
617ba13b
MC
5059 ei->i_extra_isize = sizeof(struct ext4_inode) -
5060 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5061 } else {
5062 __le32 *magic = (void *)raw_inode +
617ba13b 5063 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5064 ei->i_extra_isize;
617ba13b 5065 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5066 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5067 }
5068 } else
5069 ei->i_extra_isize = 0;
5070
ef7f3835
KS
5071 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5072 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5073 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5074 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5075
25ec56b5
JNC
5076 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5077 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5078 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5079 inode->i_version |=
5080 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5081 }
5082
c4b5a614 5083 ret = 0;
485c26ec 5084 if (ei->i_file_acl &&
1032988c 5085 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
12062ddd 5086 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
485c26ec
TT
5087 ei->i_file_acl, inode->i_ino);
5088 ret = -EIO;
5089 goto bad_inode;
5090 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
c4b5a614
TT
5091 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5092 (S_ISLNK(inode->i_mode) &&
5093 !ext4_inode_is_fast_symlink(inode)))
5094 /* Validate extent which is part of inode */
5095 ret = ext4_ext_check_inode(inode);
de9a55b8 5096 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5097 (S_ISLNK(inode->i_mode) &&
5098 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5099 /* Validate block references which are part of inode */
fe2c8191
TN
5100 ret = ext4_check_inode_blockref(inode);
5101 }
567f3e9a 5102 if (ret)
de9a55b8 5103 goto bad_inode;
7a262f7c 5104
ac27a0ec 5105 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5106 inode->i_op = &ext4_file_inode_operations;
5107 inode->i_fop = &ext4_file_operations;
5108 ext4_set_aops(inode);
ac27a0ec 5109 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5110 inode->i_op = &ext4_dir_inode_operations;
5111 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5112 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5113 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5114 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5115 nd_terminate_link(ei->i_data, inode->i_size,
5116 sizeof(ei->i_data) - 1);
5117 } else {
617ba13b
MC
5118 inode->i_op = &ext4_symlink_inode_operations;
5119 ext4_set_aops(inode);
ac27a0ec 5120 }
563bdd61
TT
5121 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5122 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5123 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5124 if (raw_inode->i_block[0])
5125 init_special_inode(inode, inode->i_mode,
5126 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5127 else
5128 init_special_inode(inode, inode->i_mode,
5129 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5130 } else {
563bdd61 5131 ret = -EIO;
12062ddd 5132 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
563bdd61
TT
5133 inode->i_mode, inode->i_ino);
5134 goto bad_inode;
ac27a0ec 5135 }
af5bc92d 5136 brelse(iloc.bh);
617ba13b 5137 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5138 unlock_new_inode(inode);
5139 return inode;
ac27a0ec
DK
5140
5141bad_inode:
567f3e9a 5142 brelse(iloc.bh);
1d1fe1ee
DH
5143 iget_failed(inode);
5144 return ERR_PTR(ret);
ac27a0ec
DK
5145}
5146
0fc1b451
AK
5147static int ext4_inode_blocks_set(handle_t *handle,
5148 struct ext4_inode *raw_inode,
5149 struct ext4_inode_info *ei)
5150{
5151 struct inode *inode = &(ei->vfs_inode);
5152 u64 i_blocks = inode->i_blocks;
5153 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5154
5155 if (i_blocks <= ~0U) {
5156 /*
5157 * i_blocks can be represnted in a 32 bit variable
5158 * as multiple of 512 bytes
5159 */
8180a562 5160 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5161 raw_inode->i_blocks_high = 0;
8180a562 5162 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
f287a1a5
TT
5163 return 0;
5164 }
5165 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5166 return -EFBIG;
5167
5168 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5169 /*
5170 * i_blocks can be represented in a 48 bit variable
5171 * as multiple of 512 bytes
5172 */
8180a562 5173 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5174 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 5175 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 5176 } else {
8180a562
AK
5177 ei->i_flags |= EXT4_HUGE_FILE_FL;
5178 /* i_block is stored in file system block size */
5179 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5180 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5181 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5182 }
f287a1a5 5183 return 0;
0fc1b451
AK
5184}
5185
ac27a0ec
DK
5186/*
5187 * Post the struct inode info into an on-disk inode location in the
5188 * buffer-cache. This gobbles the caller's reference to the
5189 * buffer_head in the inode location struct.
5190 *
5191 * The caller must have write access to iloc->bh.
5192 */
617ba13b 5193static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5194 struct inode *inode,
830156c7 5195 struct ext4_iloc *iloc)
ac27a0ec 5196{
617ba13b
MC
5197 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5198 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5199 struct buffer_head *bh = iloc->bh;
5200 int err = 0, rc, block;
5201
5202 /* For fields not not tracking in the in-memory inode,
5203 * initialise them to zero for new inodes. */
19f5fb7a 5204 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5205 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5206
ff9ddf7e 5207 ext4_get_inode_flags(ei);
ac27a0ec 5208 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5209 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5210 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5211 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5212/*
5213 * Fix up interoperability with old kernels. Otherwise, old inodes get
5214 * re-used with the upper 16 bits of the uid/gid intact
5215 */
af5bc92d 5216 if (!ei->i_dtime) {
ac27a0ec
DK
5217 raw_inode->i_uid_high =
5218 cpu_to_le16(high_16_bits(inode->i_uid));
5219 raw_inode->i_gid_high =
5220 cpu_to_le16(high_16_bits(inode->i_gid));
5221 } else {
5222 raw_inode->i_uid_high = 0;
5223 raw_inode->i_gid_high = 0;
5224 }
5225 } else {
5226 raw_inode->i_uid_low =
5227 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5228 raw_inode->i_gid_low =
5229 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5230 raw_inode->i_uid_high = 0;
5231 raw_inode->i_gid_high = 0;
5232 }
5233 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5234
5235 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5236 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5237 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5238 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5239
0fc1b451
AK
5240 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5241 goto out_brelse;
ac27a0ec 5242 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5243 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5244 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5245 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5246 raw_inode->i_file_acl_high =
5247 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5248 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5249 ext4_isize_set(raw_inode, ei->i_disksize);
5250 if (ei->i_disksize > 0x7fffffffULL) {
5251 struct super_block *sb = inode->i_sb;
5252 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5253 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5254 EXT4_SB(sb)->s_es->s_rev_level ==
5255 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5256 /* If this is the first large file
5257 * created, add a flag to the superblock.
5258 */
5259 err = ext4_journal_get_write_access(handle,
5260 EXT4_SB(sb)->s_sbh);
5261 if (err)
5262 goto out_brelse;
5263 ext4_update_dynamic_rev(sb);
5264 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5265 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5266 sb->s_dirt = 1;
0390131b 5267 ext4_handle_sync(handle);
73b50c1c 5268 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5269 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5270 }
5271 }
5272 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5273 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5274 if (old_valid_dev(inode->i_rdev)) {
5275 raw_inode->i_block[0] =
5276 cpu_to_le32(old_encode_dev(inode->i_rdev));
5277 raw_inode->i_block[1] = 0;
5278 } else {
5279 raw_inode->i_block[0] = 0;
5280 raw_inode->i_block[1] =
5281 cpu_to_le32(new_encode_dev(inode->i_rdev));
5282 raw_inode->i_block[2] = 0;
5283 }
de9a55b8
TT
5284 } else
5285 for (block = 0; block < EXT4_N_BLOCKS; block++)
5286 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5287
25ec56b5
JNC
5288 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5289 if (ei->i_extra_isize) {
5290 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5291 raw_inode->i_version_hi =
5292 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5293 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5294 }
5295
830156c7 5296 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5297 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5298 if (!err)
5299 err = rc;
19f5fb7a 5300 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5301
b436b9be 5302 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5303out_brelse:
af5bc92d 5304 brelse(bh);
617ba13b 5305 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5306 return err;
5307}
5308
5309/*
617ba13b 5310 * ext4_write_inode()
ac27a0ec
DK
5311 *
5312 * We are called from a few places:
5313 *
5314 * - Within generic_file_write() for O_SYNC files.
5315 * Here, there will be no transaction running. We wait for any running
5316 * trasnaction to commit.
5317 *
5318 * - Within sys_sync(), kupdate and such.
5319 * We wait on commit, if tol to.
5320 *
5321 * - Within prune_icache() (PF_MEMALLOC == true)
5322 * Here we simply return. We can't afford to block kswapd on the
5323 * journal commit.
5324 *
5325 * In all cases it is actually safe for us to return without doing anything,
5326 * because the inode has been copied into a raw inode buffer in
617ba13b 5327 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5328 * knfsd.
5329 *
5330 * Note that we are absolutely dependent upon all inode dirtiers doing the
5331 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5332 * which we are interested.
5333 *
5334 * It would be a bug for them to not do this. The code:
5335 *
5336 * mark_inode_dirty(inode)
5337 * stuff();
5338 * inode->i_size = expr;
5339 *
5340 * is in error because a kswapd-driven write_inode() could occur while
5341 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5342 * will no longer be on the superblock's dirty inode list.
5343 */
a9185b41 5344int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5345{
91ac6f43
FM
5346 int err;
5347
ac27a0ec
DK
5348 if (current->flags & PF_MEMALLOC)
5349 return 0;
5350
91ac6f43
FM
5351 if (EXT4_SB(inode->i_sb)->s_journal) {
5352 if (ext4_journal_current_handle()) {
5353 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5354 dump_stack();
5355 return -EIO;
5356 }
ac27a0ec 5357
a9185b41 5358 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5359 return 0;
5360
5361 err = ext4_force_commit(inode->i_sb);
5362 } else {
5363 struct ext4_iloc iloc;
ac27a0ec 5364
8b472d73 5365 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5366 if (err)
5367 return err;
a9185b41 5368 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5369 sync_dirty_buffer(iloc.bh);
5370 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
12062ddd
ES
5371 ext4_error(inode->i_sb, "IO error syncing inode, "
5372 "inode=%lu, block=%llu", inode->i_ino,
830156c7
FM
5373 (unsigned long long)iloc.bh->b_blocknr);
5374 err = -EIO;
5375 }
fd2dd9fb 5376 brelse(iloc.bh);
91ac6f43
FM
5377 }
5378 return err;
ac27a0ec
DK
5379}
5380
5381/*
617ba13b 5382 * ext4_setattr()
ac27a0ec
DK
5383 *
5384 * Called from notify_change.
5385 *
5386 * We want to trap VFS attempts to truncate the file as soon as
5387 * possible. In particular, we want to make sure that when the VFS
5388 * shrinks i_size, we put the inode on the orphan list and modify
5389 * i_disksize immediately, so that during the subsequent flushing of
5390 * dirty pages and freeing of disk blocks, we can guarantee that any
5391 * commit will leave the blocks being flushed in an unused state on
5392 * disk. (On recovery, the inode will get truncated and the blocks will
5393 * be freed, so we have a strong guarantee that no future commit will
5394 * leave these blocks visible to the user.)
5395 *
678aaf48
JK
5396 * Another thing we have to assure is that if we are in ordered mode
5397 * and inode is still attached to the committing transaction, we must
5398 * we start writeout of all the dirty pages which are being truncated.
5399 * This way we are sure that all the data written in the previous
5400 * transaction are already on disk (truncate waits for pages under
5401 * writeback).
5402 *
5403 * Called with inode->i_mutex down.
ac27a0ec 5404 */
617ba13b 5405int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5406{
5407 struct inode *inode = dentry->d_inode;
5408 int error, rc = 0;
5409 const unsigned int ia_valid = attr->ia_valid;
5410
5411 error = inode_change_ok(inode, attr);
5412 if (error)
5413 return error;
5414
907f4554 5415 if (ia_valid & ATTR_SIZE)
871a2931 5416 dquot_initialize(inode);
ac27a0ec
DK
5417 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5418 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5419 handle_t *handle;
5420
5421 /* (user+group)*(old+new) structure, inode write (sb,
5422 * inode block, ? - but truncate inode update has it) */
5aca07eb 5423 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5424 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5425 if (IS_ERR(handle)) {
5426 error = PTR_ERR(handle);
5427 goto err_out;
5428 }
b43fa828 5429 error = dquot_transfer(inode, attr);
ac27a0ec 5430 if (error) {
617ba13b 5431 ext4_journal_stop(handle);
ac27a0ec
DK
5432 return error;
5433 }
5434 /* Update corresponding info in inode so that everything is in
5435 * one transaction */
5436 if (attr->ia_valid & ATTR_UID)
5437 inode->i_uid = attr->ia_uid;
5438 if (attr->ia_valid & ATTR_GID)
5439 inode->i_gid = attr->ia_gid;
617ba13b
MC
5440 error = ext4_mark_inode_dirty(handle, inode);
5441 ext4_journal_stop(handle);
ac27a0ec
DK
5442 }
5443
e2b46574
ES
5444 if (attr->ia_valid & ATTR_SIZE) {
5445 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5446 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5447
5448 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5449 error = -EFBIG;
5450 goto err_out;
5451 }
5452 }
5453 }
5454
ac27a0ec 5455 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5456 attr->ia_valid & ATTR_SIZE &&
5457 (attr->ia_size < inode->i_size ||
5458 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
ac27a0ec
DK
5459 handle_t *handle;
5460
617ba13b 5461 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5462 if (IS_ERR(handle)) {
5463 error = PTR_ERR(handle);
5464 goto err_out;
5465 }
5466
617ba13b
MC
5467 error = ext4_orphan_add(handle, inode);
5468 EXT4_I(inode)->i_disksize = attr->ia_size;
5469 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5470 if (!error)
5471 error = rc;
617ba13b 5472 ext4_journal_stop(handle);
678aaf48
JK
5473
5474 if (ext4_should_order_data(inode)) {
5475 error = ext4_begin_ordered_truncate(inode,
5476 attr->ia_size);
5477 if (error) {
5478 /* Do as much error cleanup as possible */
5479 handle = ext4_journal_start(inode, 3);
5480 if (IS_ERR(handle)) {
5481 ext4_orphan_del(NULL, inode);
5482 goto err_out;
5483 }
5484 ext4_orphan_del(handle, inode);
5485 ext4_journal_stop(handle);
5486 goto err_out;
5487 }
5488 }
c8d46e41
JZ
5489 /* ext4_truncate will clear the flag */
5490 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5491 ext4_truncate(inode);
ac27a0ec
DK
5492 }
5493
5494 rc = inode_setattr(inode, attr);
5495
617ba13b 5496 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
5497 * transaction handle at all, we need to clean up the in-core
5498 * orphan list manually. */
5499 if (inode->i_nlink)
617ba13b 5500 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5501
5502 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5503 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5504
5505err_out:
617ba13b 5506 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5507 if (!error)
5508 error = rc;
5509 return error;
5510}
5511
3e3398a0
MC
5512int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5513 struct kstat *stat)
5514{
5515 struct inode *inode;
5516 unsigned long delalloc_blocks;
5517
5518 inode = dentry->d_inode;
5519 generic_fillattr(inode, stat);
5520
5521 /*
5522 * We can't update i_blocks if the block allocation is delayed
5523 * otherwise in the case of system crash before the real block
5524 * allocation is done, we will have i_blocks inconsistent with
5525 * on-disk file blocks.
5526 * We always keep i_blocks updated together with real
5527 * allocation. But to not confuse with user, stat
5528 * will return the blocks that include the delayed allocation
5529 * blocks for this file.
5530 */
5531 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5532 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5533 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5534
5535 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5536 return 0;
5537}
ac27a0ec 5538
a02908f1
MC
5539static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5540 int chunk)
5541{
5542 int indirects;
5543
5544 /* if nrblocks are contiguous */
5545 if (chunk) {
5546 /*
5547 * With N contiguous data blocks, it need at most
5548 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5549 * 2 dindirect blocks
5550 * 1 tindirect block
5551 */
5552 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5553 return indirects + 3;
5554 }
5555 /*
5556 * if nrblocks are not contiguous, worse case, each block touch
5557 * a indirect block, and each indirect block touch a double indirect
5558 * block, plus a triple indirect block
5559 */
5560 indirects = nrblocks * 2 + 1;
5561 return indirects;
5562}
5563
5564static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5565{
5566 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
ac51d837
TT
5567 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5568 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5569}
ac51d837 5570
ac27a0ec 5571/*
a02908f1
MC
5572 * Account for index blocks, block groups bitmaps and block group
5573 * descriptor blocks if modify datablocks and index blocks
5574 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5575 *
a02908f1 5576 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5577 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5578 * they could still across block group boundary.
ac27a0ec 5579 *
a02908f1
MC
5580 * Also account for superblock, inode, quota and xattr blocks
5581 */
5582int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5583{
8df9675f
TT
5584 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5585 int gdpblocks;
a02908f1
MC
5586 int idxblocks;
5587 int ret = 0;
5588
5589 /*
5590 * How many index blocks need to touch to modify nrblocks?
5591 * The "Chunk" flag indicating whether the nrblocks is
5592 * physically contiguous on disk
5593 *
5594 * For Direct IO and fallocate, they calls get_block to allocate
5595 * one single extent at a time, so they could set the "Chunk" flag
5596 */
5597 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5598
5599 ret = idxblocks;
5600
5601 /*
5602 * Now let's see how many group bitmaps and group descriptors need
5603 * to account
5604 */
5605 groups = idxblocks;
5606 if (chunk)
5607 groups += 1;
5608 else
5609 groups += nrblocks;
5610
5611 gdpblocks = groups;
8df9675f
TT
5612 if (groups > ngroups)
5613 groups = ngroups;
a02908f1
MC
5614 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5615 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5616
5617 /* bitmaps and block group descriptor blocks */
5618 ret += groups + gdpblocks;
5619
5620 /* Blocks for super block, inode, quota and xattr blocks */
5621 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5622
5623 return ret;
5624}
5625
5626/*
5627 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5628 * the modification of a single pages into a single transaction,
5629 * which may include multiple chunks of block allocations.
ac27a0ec 5630 *
525f4ed8 5631 * This could be called via ext4_write_begin()
ac27a0ec 5632 *
525f4ed8 5633 * We need to consider the worse case, when
a02908f1 5634 * one new block per extent.
ac27a0ec 5635 */
a86c6181 5636int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5637{
617ba13b 5638 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5639 int ret;
5640
a02908f1 5641 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5642
a02908f1 5643 /* Account for data blocks for journalled mode */
617ba13b 5644 if (ext4_should_journal_data(inode))
a02908f1 5645 ret += bpp;
ac27a0ec
DK
5646 return ret;
5647}
f3bd1f3f
MC
5648
5649/*
5650 * Calculate the journal credits for a chunk of data modification.
5651 *
5652 * This is called from DIO, fallocate or whoever calling
af901ca1 5653 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5654 *
5655 * journal buffers for data blocks are not included here, as DIO
5656 * and fallocate do no need to journal data buffers.
5657 */
5658int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5659{
5660 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5661}
5662
ac27a0ec 5663/*
617ba13b 5664 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5665 * Give this, we know that the caller already has write access to iloc->bh.
5666 */
617ba13b 5667int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5668 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5669{
5670 int err = 0;
5671
25ec56b5
JNC
5672 if (test_opt(inode->i_sb, I_VERSION))
5673 inode_inc_iversion(inode);
5674
ac27a0ec
DK
5675 /* the do_update_inode consumes one bh->b_count */
5676 get_bh(iloc->bh);
5677
dab291af 5678 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5679 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5680 put_bh(iloc->bh);
5681 return err;
5682}
5683
5684/*
5685 * On success, We end up with an outstanding reference count against
5686 * iloc->bh. This _must_ be cleaned up later.
5687 */
5688
5689int
617ba13b
MC
5690ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5691 struct ext4_iloc *iloc)
ac27a0ec 5692{
0390131b
FM
5693 int err;
5694
5695 err = ext4_get_inode_loc(inode, iloc);
5696 if (!err) {
5697 BUFFER_TRACE(iloc->bh, "get_write_access");
5698 err = ext4_journal_get_write_access(handle, iloc->bh);
5699 if (err) {
5700 brelse(iloc->bh);
5701 iloc->bh = NULL;
ac27a0ec
DK
5702 }
5703 }
617ba13b 5704 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5705 return err;
5706}
5707
6dd4ee7c
KS
5708/*
5709 * Expand an inode by new_extra_isize bytes.
5710 * Returns 0 on success or negative error number on failure.
5711 */
1d03ec98
AK
5712static int ext4_expand_extra_isize(struct inode *inode,
5713 unsigned int new_extra_isize,
5714 struct ext4_iloc iloc,
5715 handle_t *handle)
6dd4ee7c
KS
5716{
5717 struct ext4_inode *raw_inode;
5718 struct ext4_xattr_ibody_header *header;
5719 struct ext4_xattr_entry *entry;
5720
5721 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5722 return 0;
5723
5724 raw_inode = ext4_raw_inode(&iloc);
5725
5726 header = IHDR(inode, raw_inode);
5727 entry = IFIRST(header);
5728
5729 /* No extended attributes present */
19f5fb7a
TT
5730 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5731 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5732 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5733 new_extra_isize);
5734 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5735 return 0;
5736 }
5737
5738 /* try to expand with EAs present */
5739 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5740 raw_inode, handle);
5741}
5742
ac27a0ec
DK
5743/*
5744 * What we do here is to mark the in-core inode as clean with respect to inode
5745 * dirtiness (it may still be data-dirty).
5746 * This means that the in-core inode may be reaped by prune_icache
5747 * without having to perform any I/O. This is a very good thing,
5748 * because *any* task may call prune_icache - even ones which
5749 * have a transaction open against a different journal.
5750 *
5751 * Is this cheating? Not really. Sure, we haven't written the
5752 * inode out, but prune_icache isn't a user-visible syncing function.
5753 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5754 * we start and wait on commits.
5755 *
5756 * Is this efficient/effective? Well, we're being nice to the system
5757 * by cleaning up our inodes proactively so they can be reaped
5758 * without I/O. But we are potentially leaving up to five seconds'
5759 * worth of inodes floating about which prune_icache wants us to
5760 * write out. One way to fix that would be to get prune_icache()
5761 * to do a write_super() to free up some memory. It has the desired
5762 * effect.
5763 */
617ba13b 5764int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5765{
617ba13b 5766 struct ext4_iloc iloc;
6dd4ee7c
KS
5767 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5768 static unsigned int mnt_count;
5769 int err, ret;
ac27a0ec
DK
5770
5771 might_sleep();
617ba13b 5772 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5773 if (ext4_handle_valid(handle) &&
5774 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5775 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5776 /*
5777 * We need extra buffer credits since we may write into EA block
5778 * with this same handle. If journal_extend fails, then it will
5779 * only result in a minor loss of functionality for that inode.
5780 * If this is felt to be critical, then e2fsck should be run to
5781 * force a large enough s_min_extra_isize.
5782 */
5783 if ((jbd2_journal_extend(handle,
5784 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5785 ret = ext4_expand_extra_isize(inode,
5786 sbi->s_want_extra_isize,
5787 iloc, handle);
5788 if (ret) {
19f5fb7a
TT
5789 ext4_set_inode_state(inode,
5790 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5791 if (mnt_count !=
5792 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5793 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5794 "Unable to expand inode %lu. Delete"
5795 " some EAs or run e2fsck.",
5796 inode->i_ino);
c1bddad9
AK
5797 mnt_count =
5798 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5799 }
5800 }
5801 }
5802 }
ac27a0ec 5803 if (!err)
617ba13b 5804 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5805 return err;
5806}
5807
5808/*
617ba13b 5809 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5810 *
5811 * We're really interested in the case where a file is being extended.
5812 * i_size has been changed by generic_commit_write() and we thus need
5813 * to include the updated inode in the current transaction.
5814 *
5dd4056d 5815 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5816 * are allocated to the file.
5817 *
5818 * If the inode is marked synchronous, we don't honour that here - doing
5819 * so would cause a commit on atime updates, which we don't bother doing.
5820 * We handle synchronous inodes at the highest possible level.
5821 */
617ba13b 5822void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5823{
ac27a0ec
DK
5824 handle_t *handle;
5825
617ba13b 5826 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5827 if (IS_ERR(handle))
5828 goto out;
f3dc272f 5829
f3dc272f
CW
5830 ext4_mark_inode_dirty(handle, inode);
5831
617ba13b 5832 ext4_journal_stop(handle);
ac27a0ec
DK
5833out:
5834 return;
5835}
5836
5837#if 0
5838/*
5839 * Bind an inode's backing buffer_head into this transaction, to prevent
5840 * it from being flushed to disk early. Unlike
617ba13b 5841 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5842 * returns no iloc structure, so the caller needs to repeat the iloc
5843 * lookup to mark the inode dirty later.
5844 */
617ba13b 5845static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5846{
617ba13b 5847 struct ext4_iloc iloc;
ac27a0ec
DK
5848
5849 int err = 0;
5850 if (handle) {
617ba13b 5851 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5852 if (!err) {
5853 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5854 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5855 if (!err)
0390131b 5856 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5857 NULL,
0390131b 5858 iloc.bh);
ac27a0ec
DK
5859 brelse(iloc.bh);
5860 }
5861 }
617ba13b 5862 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5863 return err;
5864}
5865#endif
5866
617ba13b 5867int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5868{
5869 journal_t *journal;
5870 handle_t *handle;
5871 int err;
5872
5873 /*
5874 * We have to be very careful here: changing a data block's
5875 * journaling status dynamically is dangerous. If we write a
5876 * data block to the journal, change the status and then delete
5877 * that block, we risk forgetting to revoke the old log record
5878 * from the journal and so a subsequent replay can corrupt data.
5879 * So, first we make sure that the journal is empty and that
5880 * nobody is changing anything.
5881 */
5882
617ba13b 5883 journal = EXT4_JOURNAL(inode);
0390131b
FM
5884 if (!journal)
5885 return 0;
d699594d 5886 if (is_journal_aborted(journal))
ac27a0ec
DK
5887 return -EROFS;
5888
dab291af
MC
5889 jbd2_journal_lock_updates(journal);
5890 jbd2_journal_flush(journal);
ac27a0ec
DK
5891
5892 /*
5893 * OK, there are no updates running now, and all cached data is
5894 * synced to disk. We are now in a completely consistent state
5895 * which doesn't have anything in the journal, and we know that
5896 * no filesystem updates are running, so it is safe to modify
5897 * the inode's in-core data-journaling state flag now.
5898 */
5899
5900 if (val)
617ba13b 5901 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 5902 else
617ba13b
MC
5903 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5904 ext4_set_aops(inode);
ac27a0ec 5905
dab291af 5906 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5907
5908 /* Finally we can mark the inode as dirty. */
5909
617ba13b 5910 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
5911 if (IS_ERR(handle))
5912 return PTR_ERR(handle);
5913
617ba13b 5914 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5915 ext4_handle_sync(handle);
617ba13b
MC
5916 ext4_journal_stop(handle);
5917 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5918
5919 return err;
5920}
2e9ee850
AK
5921
5922static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5923{
5924 return !buffer_mapped(bh);
5925}
5926
c2ec175c 5927int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5928{
c2ec175c 5929 struct page *page = vmf->page;
2e9ee850
AK
5930 loff_t size;
5931 unsigned long len;
5932 int ret = -EINVAL;
79f0be8d 5933 void *fsdata;
2e9ee850
AK
5934 struct file *file = vma->vm_file;
5935 struct inode *inode = file->f_path.dentry->d_inode;
5936 struct address_space *mapping = inode->i_mapping;
5937
5938 /*
5939 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5940 * get i_mutex because we are already holding mmap_sem.
5941 */
5942 down_read(&inode->i_alloc_sem);
5943 size = i_size_read(inode);
5944 if (page->mapping != mapping || size <= page_offset(page)
5945 || !PageUptodate(page)) {
5946 /* page got truncated from under us? */
5947 goto out_unlock;
5948 }
5949 ret = 0;
5950 if (PageMappedToDisk(page))
5951 goto out_unlock;
5952
5953 if (page->index == size >> PAGE_CACHE_SHIFT)
5954 len = size & ~PAGE_CACHE_MASK;
5955 else
5956 len = PAGE_CACHE_SIZE;
5957
a827eaff
AK
5958 lock_page(page);
5959 /*
5960 * return if we have all the buffers mapped. This avoid
5961 * the need to call write_begin/write_end which does a
5962 * journal_start/journal_stop which can block and take
5963 * long time
5964 */
2e9ee850 5965 if (page_has_buffers(page)) {
2e9ee850 5966 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
5967 ext4_bh_unmapped)) {
5968 unlock_page(page);
2e9ee850 5969 goto out_unlock;
a827eaff 5970 }
2e9ee850 5971 }
a827eaff 5972 unlock_page(page);
2e9ee850
AK
5973 /*
5974 * OK, we need to fill the hole... Do write_begin write_end
5975 * to do block allocation/reservation.We are not holding
5976 * inode.i__mutex here. That allow * parallel write_begin,
5977 * write_end call. lock_page prevent this from happening
5978 * on the same page though
5979 */
5980 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 5981 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
5982 if (ret < 0)
5983 goto out_unlock;
5984 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 5985 len, len, page, fsdata);
2e9ee850
AK
5986 if (ret < 0)
5987 goto out_unlock;
5988 ret = 0;
5989out_unlock:
c2ec175c
NP
5990 if (ret)
5991 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
5992 up_read(&inode->i_alloc_sem);
5993 return ret;
5994}
This page took 1.177548 seconds and 5 git commands to generate.