ext4: add check for inodes_count overflow in new resize ioctl
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
171a7f21 58 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 62 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
171a7f21 69 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 72 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
137static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
617ba13b 146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
0930fcc1 188 if (inode->i_nlink) {
2d859db3
JK
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
d76a3a77 213 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
214 filemap_write_and_wait(&inode->i_data);
215 }
0930fcc1 216 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 217 ext4_ioend_shutdown(inode);
0930fcc1
AV
218 goto no_delete;
219 }
220
907f4554 221 if (!is_bad_inode(inode))
871a2931 222 dquot_initialize(inode);
907f4554 223
678aaf48
JK
224 if (ext4_should_order_data(inode))
225 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 226 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 227 ext4_ioend_shutdown(inode);
ac27a0ec
DK
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
12219aea
AK
321/*
322 * Calculate the number of metadata blocks need to reserve
9d0be502 323 * to allocate a block located at @lblock
12219aea 324 */
01f49d0b 325static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 326{
12e9b892 327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 328 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 329
8bb2b247 330 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
331}
332
0637c6f4
TT
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
5f634d06
AK
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
12219aea
AK
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 341 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
342
343 spin_lock(&ei->i_block_reservation_lock);
d8990240 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 345 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 347 "with only %d reserved data blocks",
0637c6f4
TT
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
12219aea 353
97795d2a 354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
97795d2a
BF
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 }
364
0637c6f4
TT
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
0637c6f4 367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 369 used + ei->i_allocated_meta_blocks);
0637c6f4 370 ei->i_allocated_meta_blocks = 0;
6bc6e63f 371
0637c6f4
TT
372 if (ei->i_reserved_data_blocks == 0) {
373 /*
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
377 */
57042651 378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 379 ei->i_reserved_meta_blocks);
ee5f4d9c 380 ei->i_reserved_meta_blocks = 0;
9d0be502 381 ei->i_da_metadata_calc_len = 0;
6bc6e63f 382 }
12219aea 383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 384
72b8ab9d
ES
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
7b415bf6 387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 388 else {
5f634d06
AK
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
72b8ab9d 392 * not re-claim the quota for fallocated blocks.
5f634d06 393 */
7b415bf6 394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 395 }
d6014301
AK
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
0637c6f4
TT
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
d6014301 404 ext4_discard_preallocations(inode);
12219aea
AK
405}
406
e29136f8 407static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
408 unsigned int line,
409 struct ext4_map_blocks *map)
6fd058f7 410{
24676da4
TT
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
c398eda0
TT
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
6fd058f7
TT
417 return -EIO;
418 }
419 return 0;
420}
421
e29136f8 422#define check_block_validity(inode, map) \
c398eda0 423 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 424
55138e0b 425/*
1f94533d
TT
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
55138e0b
TT
428 */
429static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
431{
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
437
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
451
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
460 }
1f94533d
TT
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
469 }
55138e0b
TT
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
659c6009
ES
475 if (num >= max_pages) {
476 done = 1;
55138e0b 477 break;
659c6009 478 }
55138e0b
TT
479 }
480 pagevec_release(&pvec);
481 }
482 return num;
483}
484
921f266b
DM
485#ifdef ES_AGGRESSIVE_TEST
486static void ext4_map_blocks_es_recheck(handle_t *handle,
487 struct inode *inode,
488 struct ext4_map_blocks *es_map,
489 struct ext4_map_blocks *map,
490 int flags)
491{
492 int retval;
493
494 map->m_flags = 0;
495 /*
496 * There is a race window that the result is not the same.
497 * e.g. xfstests #223 when dioread_nolock enables. The reason
498 * is that we lookup a block mapping in extent status tree with
499 * out taking i_data_sem. So at the time the unwritten extent
500 * could be converted.
501 */
502 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503 down_read((&EXT4_I(inode)->i_data_sem));
504 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506 EXT4_GET_BLOCKS_KEEP_SIZE);
507 } else {
508 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 }
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 up_read((&EXT4_I(inode)->i_data_sem));
513 /*
514 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515 * because it shouldn't be marked in es_map->m_flags.
516 */
517 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519 /*
520 * We don't check m_len because extent will be collpased in status
521 * tree. So the m_len might not equal.
522 */
523 if (es_map->m_lblk != map->m_lblk ||
524 es_map->m_flags != map->m_flags ||
525 es_map->m_pblk != map->m_pblk) {
526 printk("ES cache assertation failed for inode: %lu "
527 "es_cached ex [%d/%d/%llu/%x] != "
528 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529 inode->i_ino, es_map->m_lblk, es_map->m_len,
530 es_map->m_pblk, es_map->m_flags, map->m_lblk,
531 map->m_len, map->m_pblk, map->m_flags,
532 retval, flags);
533 }
534}
535#endif /* ES_AGGRESSIVE_TEST */
536
f5ab0d1f 537/*
e35fd660 538 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 539 * and returns if the blocks are already mapped.
f5ab0d1f 540 *
f5ab0d1f
MC
541 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542 * and store the allocated blocks in the result buffer head and mark it
543 * mapped.
544 *
e35fd660
TT
545 * If file type is extents based, it will call ext4_ext_map_blocks(),
546 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
547 * based files
548 *
549 * On success, it returns the number of blocks being mapped or allocate.
550 * if create==0 and the blocks are pre-allocated and uninitialized block,
551 * the result buffer head is unmapped. If the create ==1, it will make sure
552 * the buffer head is mapped.
553 *
554 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 555 * that case, buffer head is unmapped
f5ab0d1f
MC
556 *
557 * It returns the error in case of allocation failure.
558 */
e35fd660
TT
559int ext4_map_blocks(handle_t *handle, struct inode *inode,
560 struct ext4_map_blocks *map, int flags)
0e855ac8 561{
d100eef2 562 struct extent_status es;
0e855ac8 563 int retval;
921f266b
DM
564#ifdef ES_AGGRESSIVE_TEST
565 struct ext4_map_blocks orig_map;
566
567 memcpy(&orig_map, map, sizeof(*map));
568#endif
f5ab0d1f 569
e35fd660
TT
570 map->m_flags = 0;
571 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572 "logical block %lu\n", inode->i_ino, flags, map->m_len,
573 (unsigned long) map->m_lblk);
d100eef2
ZL
574
575 /* Lookup extent status tree firstly */
576 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578 map->m_pblk = ext4_es_pblock(&es) +
579 map->m_lblk - es.es_lblk;
580 map->m_flags |= ext4_es_is_written(&es) ?
581 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582 retval = es.es_len - (map->m_lblk - es.es_lblk);
583 if (retval > map->m_len)
584 retval = map->m_len;
585 map->m_len = retval;
586 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587 retval = 0;
588 } else {
589 BUG_ON(1);
590 }
921f266b
DM
591#ifdef ES_AGGRESSIVE_TEST
592 ext4_map_blocks_es_recheck(handle, inode, map,
593 &orig_map, flags);
594#endif
d100eef2
ZL
595 goto found;
596 }
597
4df3d265 598 /*
b920c755
TT
599 * Try to see if we can get the block without requesting a new
600 * file system block.
4df3d265 601 */
729f52c6
ZL
602 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 604 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
605 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 607 } else {
a4e5d88b
DM
608 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 610 }
f7fec032
ZL
611 if (retval > 0) {
612 int ret;
613 unsigned long long status;
614
921f266b
DM
615#ifdef ES_AGGRESSIVE_TEST
616 if (retval != map->m_len) {
617 printk("ES len assertation failed for inode: %lu "
618 "retval %d != map->m_len %d "
619 "in %s (lookup)\n", inode->i_ino, retval,
620 map->m_len, __func__);
621 }
622#endif
623
f7fec032
ZL
624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627 ext4_find_delalloc_range(inode, map->m_lblk,
628 map->m_lblk + map->m_len - 1))
629 status |= EXTENT_STATUS_DELAYED;
630 ret = ext4_es_insert_extent(inode, map->m_lblk,
631 map->m_len, map->m_pblk, status);
632 if (ret < 0)
633 retval = ret;
634 }
729f52c6
ZL
635 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 637
d100eef2 638found:
e35fd660 639 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 640 int ret = check_block_validity(inode, map);
6fd058f7
TT
641 if (ret != 0)
642 return ret;
643 }
644
f5ab0d1f 645 /* If it is only a block(s) look up */
c2177057 646 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
647 return retval;
648
649 /*
650 * Returns if the blocks have already allocated
651 *
652 * Note that if blocks have been preallocated
df3ab170 653 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
654 * with buffer head unmapped.
655 */
e35fd660 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
657 return retval;
658
2a8964d6 659 /*
a25a4e1a
ZL
660 * Here we clear m_flags because after allocating an new extent,
661 * it will be set again.
2a8964d6 662 */
a25a4e1a 663 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 664
4df3d265 665 /*
f5ab0d1f
MC
666 * New blocks allocate and/or writing to uninitialized extent
667 * will possibly result in updating i_data, so we take
668 * the write lock of i_data_sem, and call get_blocks()
669 * with create == 1 flag.
4df3d265
AK
670 */
671 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
672
673 /*
674 * if the caller is from delayed allocation writeout path
675 * we have already reserved fs blocks for allocation
676 * let the underlying get_block() function know to
677 * avoid double accounting
678 */
c2177057 679 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 680 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
681 /*
682 * We need to check for EXT4 here because migrate
683 * could have changed the inode type in between
684 */
12e9b892 685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 686 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 687 } else {
e35fd660 688 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 689
e35fd660 690 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
691 /*
692 * We allocated new blocks which will result in
693 * i_data's format changing. Force the migrate
694 * to fail by clearing migrate flags
695 */
19f5fb7a 696 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 697 }
d2a17637 698
5f634d06
AK
699 /*
700 * Update reserved blocks/metadata blocks after successful
701 * block allocation which had been deferred till now. We don't
702 * support fallocate for non extent files. So we can update
703 * reserve space here.
704 */
705 if ((retval > 0) &&
1296cc85 706 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
707 ext4_da_update_reserve_space(inode, retval, 1);
708 }
f7fec032 709 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 710 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 711
f7fec032
ZL
712 if (retval > 0) {
713 int ret;
714 unsigned long long status;
715
921f266b
DM
716#ifdef ES_AGGRESSIVE_TEST
717 if (retval != map->m_len) {
718 printk("ES len assertation failed for inode: %lu "
719 "retval %d != map->m_len %d "
720 "in %s (allocation)\n", inode->i_ino, retval,
721 map->m_len, __func__);
722 }
723#endif
724
adb23551
ZL
725 /*
726 * If the extent has been zeroed out, we don't need to update
727 * extent status tree.
728 */
729 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731 if (ext4_es_is_written(&es))
732 goto has_zeroout;
733 }
f7fec032
ZL
734 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737 ext4_find_delalloc_range(inode, map->m_lblk,
738 map->m_lblk + map->m_len - 1))
739 status |= EXTENT_STATUS_DELAYED;
740 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741 map->m_pblk, status);
742 if (ret < 0)
743 retval = ret;
5356f261
AK
744 }
745
adb23551 746has_zeroout:
4df3d265 747 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 748 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 749 int ret = check_block_validity(inode, map);
6fd058f7
TT
750 if (ret != 0)
751 return ret;
752 }
0e855ac8
AK
753 return retval;
754}
755
f3bd1f3f
MC
756/* Maximum number of blocks we map for direct IO at once. */
757#define DIO_MAX_BLOCKS 4096
758
2ed88685
TT
759static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
ac27a0ec 761{
3e4fdaf8 762 handle_t *handle = ext4_journal_current_handle();
2ed88685 763 struct ext4_map_blocks map;
7fb5409d 764 int ret = 0, started = 0;
f3bd1f3f 765 int dio_credits;
ac27a0ec 766
46c7f254
TM
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
769
2ed88685
TT
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
772
8b0f165f 773 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 774 /* Direct IO write... */
2ed88685
TT
775 if (map.m_len > DIO_MAX_BLOCKS)
776 map.m_len = DIO_MAX_BLOCKS;
777 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
778 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779 dio_credits);
7fb5409d 780 if (IS_ERR(handle)) {
ac27a0ec 781 ret = PTR_ERR(handle);
2ed88685 782 return ret;
ac27a0ec 783 }
7fb5409d 784 started = 1;
ac27a0ec
DK
785 }
786
2ed88685 787 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 788 if (ret > 0) {
2ed88685
TT
789 map_bh(bh, inode->i_sb, map.m_pblk);
790 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 792 ret = 0;
ac27a0ec 793 }
7fb5409d
JK
794 if (started)
795 ext4_journal_stop(handle);
ac27a0ec
DK
796 return ret;
797}
798
2ed88685
TT
799int ext4_get_block(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh, int create)
801{
802 return _ext4_get_block(inode, iblock, bh,
803 create ? EXT4_GET_BLOCKS_CREATE : 0);
804}
805
ac27a0ec
DK
806/*
807 * `handle' can be NULL if create is zero
808 */
617ba13b 809struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 810 ext4_lblk_t block, int create, int *errp)
ac27a0ec 811{
2ed88685
TT
812 struct ext4_map_blocks map;
813 struct buffer_head *bh;
ac27a0ec
DK
814 int fatal = 0, err;
815
816 J_ASSERT(handle != NULL || create == 0);
817
2ed88685
TT
818 map.m_lblk = block;
819 map.m_len = 1;
820 err = ext4_map_blocks(handle, inode, &map,
821 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 822
90b0a973
CM
823 /* ensure we send some value back into *errp */
824 *errp = 0;
825
0f70b406
TT
826 if (create && err == 0)
827 err = -ENOSPC; /* should never happen */
2ed88685
TT
828 if (err < 0)
829 *errp = err;
830 if (err <= 0)
831 return NULL;
2ed88685
TT
832
833 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 834 if (unlikely(!bh)) {
860d21e2 835 *errp = -ENOMEM;
2ed88685 836 return NULL;
ac27a0ec 837 }
2ed88685
TT
838 if (map.m_flags & EXT4_MAP_NEW) {
839 J_ASSERT(create != 0);
840 J_ASSERT(handle != NULL);
ac27a0ec 841
2ed88685
TT
842 /*
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
847 * problem.
848 */
849 lock_buffer(bh);
850 BUFFER_TRACE(bh, "call get_create_access");
851 fatal = ext4_journal_get_create_access(handle, bh);
852 if (!fatal && !buffer_uptodate(bh)) {
853 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 set_buffer_uptodate(bh);
ac27a0ec 855 }
2ed88685
TT
856 unlock_buffer(bh);
857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 err = ext4_handle_dirty_metadata(handle, inode, bh);
859 if (!fatal)
860 fatal = err;
861 } else {
862 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 863 }
2ed88685
TT
864 if (fatal) {
865 *errp = fatal;
866 brelse(bh);
867 bh = NULL;
868 }
869 return bh;
ac27a0ec
DK
870}
871
617ba13b 872struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 873 ext4_lblk_t block, int create, int *err)
ac27a0ec 874{
af5bc92d 875 struct buffer_head *bh;
ac27a0ec 876
617ba13b 877 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
878 if (!bh)
879 return bh;
880 if (buffer_uptodate(bh))
881 return bh;
65299a3b 882 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
883 wait_on_buffer(bh);
884 if (buffer_uptodate(bh))
885 return bh;
886 put_bh(bh);
887 *err = -EIO;
888 return NULL;
889}
890
f19d5870
TM
891int ext4_walk_page_buffers(handle_t *handle,
892 struct buffer_head *head,
893 unsigned from,
894 unsigned to,
895 int *partial,
896 int (*fn)(handle_t *handle,
897 struct buffer_head *bh))
ac27a0ec
DK
898{
899 struct buffer_head *bh;
900 unsigned block_start, block_end;
901 unsigned blocksize = head->b_size;
902 int err, ret = 0;
903 struct buffer_head *next;
904
af5bc92d
TT
905 for (bh = head, block_start = 0;
906 ret == 0 && (bh != head || !block_start);
de9a55b8 907 block_start = block_end, bh = next) {
ac27a0ec
DK
908 next = bh->b_this_page;
909 block_end = block_start + blocksize;
910 if (block_end <= from || block_start >= to) {
911 if (partial && !buffer_uptodate(bh))
912 *partial = 1;
913 continue;
914 }
915 err = (*fn)(handle, bh);
916 if (!ret)
917 ret = err;
918 }
919 return ret;
920}
921
922/*
923 * To preserve ordering, it is essential that the hole instantiation and
924 * the data write be encapsulated in a single transaction. We cannot
617ba13b 925 * close off a transaction and start a new one between the ext4_get_block()
dab291af 926 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
927 * prepare_write() is the right place.
928 *
36ade451
JK
929 * Also, this function can nest inside ext4_writepage(). In that case, we
930 * *know* that ext4_writepage() has generated enough buffer credits to do the
931 * whole page. So we won't block on the journal in that case, which is good,
932 * because the caller may be PF_MEMALLOC.
ac27a0ec 933 *
617ba13b 934 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
935 * quota file writes. If we were to commit the transaction while thus
936 * reentered, there can be a deadlock - we would be holding a quota
937 * lock, and the commit would never complete if another thread had a
938 * transaction open and was blocking on the quota lock - a ranking
939 * violation.
940 *
dab291af 941 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
942 * will _not_ run commit under these circumstances because handle->h_ref
943 * is elevated. We'll still have enough credits for the tiny quotafile
944 * write.
945 */
f19d5870
TM
946int do_journal_get_write_access(handle_t *handle,
947 struct buffer_head *bh)
ac27a0ec 948{
56d35a4c
JK
949 int dirty = buffer_dirty(bh);
950 int ret;
951
ac27a0ec
DK
952 if (!buffer_mapped(bh) || buffer_freed(bh))
953 return 0;
56d35a4c 954 /*
ebdec241 955 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
956 * the dirty bit as jbd2_journal_get_write_access() could complain
957 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 958 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
959 * the bit before releasing a page lock and thus writeback cannot
960 * ever write the buffer.
961 */
962 if (dirty)
963 clear_buffer_dirty(bh);
964 ret = ext4_journal_get_write_access(handle, bh);
965 if (!ret && dirty)
966 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967 return ret;
ac27a0ec
DK
968}
969
8b0f165f
AP
970static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971 struct buffer_head *bh_result, int create);
bfc1af65 972static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
ac27a0ec 975{
af5bc92d 976 struct inode *inode = mapping->host;
1938a150 977 int ret, needed_blocks;
ac27a0ec
DK
978 handle_t *handle;
979 int retries = 0;
af5bc92d 980 struct page *page;
de9a55b8 981 pgoff_t index;
af5bc92d 982 unsigned from, to;
bfc1af65 983
9bffad1e 984 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
985 /*
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
988 */
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 990 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
ac27a0ec 993
f19d5870
TM
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
47564bfb
TT
998 return ret;
999 if (ret == 1)
1000 return 0;
f19d5870
TM
1001 }
1002
47564bfb
TT
1003 /*
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1009 */
1010retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1015
1016retry_journal:
9924a92a 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1018 if (IS_ERR(handle)) {
47564bfb
TT
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
7479d2b9 1021 }
ac27a0ec 1022
47564bfb
TT
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
cf108bca 1028 ext4_journal_stop(handle);
47564bfb 1029 goto retry_grab;
cf108bca 1030 }
47564bfb 1031 wait_on_page_writeback(page);
cf108bca 1032
744692dc 1033 if (ext4_should_dioread_nolock(inode))
6e1db88d 1034 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1035 else
6e1db88d 1036 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1037
1038 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1039 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040 from, to, NULL,
1041 do_journal_get_write_access);
ac27a0ec 1042 }
bfc1af65
NP
1043
1044 if (ret) {
af5bc92d 1045 unlock_page(page);
ae4d5372 1046 /*
6e1db88d 1047 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1048 * outside i_size. Trim these off again. Don't need
1049 * i_size_read because we hold i_mutex.
1938a150
AK
1050 *
1051 * Add inode to orphan list in case we crash before
1052 * truncate finishes
ae4d5372 1053 */
ffacfa7a 1054 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1055 ext4_orphan_add(handle, inode);
1056
1057 ext4_journal_stop(handle);
1058 if (pos + len > inode->i_size) {
b9a4207d 1059 ext4_truncate_failed_write(inode);
de9a55b8 1060 /*
ffacfa7a 1061 * If truncate failed early the inode might
1938a150
AK
1062 * still be on the orphan list; we need to
1063 * make sure the inode is removed from the
1064 * orphan list in that case.
1065 */
1066 if (inode->i_nlink)
1067 ext4_orphan_del(NULL, inode);
1068 }
bfc1af65 1069
47564bfb
TT
1070 if (ret == -ENOSPC &&
1071 ext4_should_retry_alloc(inode->i_sb, &retries))
1072 goto retry_journal;
1073 page_cache_release(page);
1074 return ret;
1075 }
1076 *pagep = page;
ac27a0ec
DK
1077 return ret;
1078}
1079
bfc1af65
NP
1080/* For write_end() in data=journal mode */
1081static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1082{
13fca323 1083 int ret;
ac27a0ec
DK
1084 if (!buffer_mapped(bh) || buffer_freed(bh))
1085 return 0;
1086 set_buffer_uptodate(bh);
13fca323
TT
1087 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1088 clear_buffer_meta(bh);
1089 clear_buffer_prio(bh);
1090 return ret;
ac27a0ec
DK
1091}
1092
eed4333f
ZL
1093/*
1094 * We need to pick up the new inode size which generic_commit_write gave us
1095 * `file' can be NULL - eg, when called from page_symlink().
1096 *
1097 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1098 * buffers are managed internally.
1099 */
1100static int ext4_write_end(struct file *file,
1101 struct address_space *mapping,
1102 loff_t pos, unsigned len, unsigned copied,
1103 struct page *page, void *fsdata)
f8514083 1104{
f8514083 1105 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1106 struct inode *inode = mapping->host;
1107 int ret = 0, ret2;
1108 int i_size_changed = 0;
1109
1110 trace_ext4_write_end(inode, pos, len, copied);
1111 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1112 ret = ext4_jbd2_file_inode(handle, inode);
1113 if (ret) {
1114 unlock_page(page);
1115 page_cache_release(page);
1116 goto errout;
1117 }
1118 }
f8514083 1119
f19d5870
TM
1120 if (ext4_has_inline_data(inode))
1121 copied = ext4_write_inline_data_end(inode, pos, len,
1122 copied, page);
1123 else
1124 copied = block_write_end(file, mapping, pos,
1125 len, copied, page, fsdata);
f8514083
AK
1126
1127 /*
1128 * No need to use i_size_read() here, the i_size
eed4333f 1129 * cannot change under us because we hole i_mutex.
f8514083
AK
1130 *
1131 * But it's important to update i_size while still holding page lock:
1132 * page writeout could otherwise come in and zero beyond i_size.
1133 */
1134 if (pos + copied > inode->i_size) {
1135 i_size_write(inode, pos + copied);
1136 i_size_changed = 1;
1137 }
1138
eed4333f 1139 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1140 /* We need to mark inode dirty even if
1141 * new_i_size is less that inode->i_size
eed4333f 1142 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1143 */
1144 ext4_update_i_disksize(inode, (pos + copied));
1145 i_size_changed = 1;
1146 }
1147 unlock_page(page);
1148 page_cache_release(page);
1149
1150 /*
1151 * Don't mark the inode dirty under page lock. First, it unnecessarily
1152 * makes the holding time of page lock longer. Second, it forces lock
1153 * ordering of page lock and transaction start for journaling
1154 * filesystems.
1155 */
1156 if (i_size_changed)
1157 ext4_mark_inode_dirty(handle, inode);
1158
74d553aa
TT
1159 if (copied < 0)
1160 ret = copied;
ffacfa7a 1161 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1162 /* if we have allocated more blocks and copied
1163 * less. We will have blocks allocated outside
1164 * inode->i_size. So truncate them
1165 */
1166 ext4_orphan_add(handle, inode);
74d553aa 1167errout:
617ba13b 1168 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1169 if (!ret)
1170 ret = ret2;
bfc1af65 1171
f8514083 1172 if (pos + len > inode->i_size) {
b9a4207d 1173 ext4_truncate_failed_write(inode);
de9a55b8 1174 /*
ffacfa7a 1175 * If truncate failed early the inode might still be
f8514083
AK
1176 * on the orphan list; we need to make sure the inode
1177 * is removed from the orphan list in that case.
1178 */
1179 if (inode->i_nlink)
1180 ext4_orphan_del(NULL, inode);
1181 }
1182
bfc1af65 1183 return ret ? ret : copied;
ac27a0ec
DK
1184}
1185
bfc1af65 1186static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1187 struct address_space *mapping,
1188 loff_t pos, unsigned len, unsigned copied,
1189 struct page *page, void *fsdata)
ac27a0ec 1190{
617ba13b 1191 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1192 struct inode *inode = mapping->host;
ac27a0ec
DK
1193 int ret = 0, ret2;
1194 int partial = 0;
bfc1af65 1195 unsigned from, to;
cf17fea6 1196 loff_t new_i_size;
ac27a0ec 1197
9bffad1e 1198 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1199 from = pos & (PAGE_CACHE_SIZE - 1);
1200 to = from + len;
1201
441c8508
CW
1202 BUG_ON(!ext4_handle_valid(handle));
1203
3fdcfb66
TM
1204 if (ext4_has_inline_data(inode))
1205 copied = ext4_write_inline_data_end(inode, pos, len,
1206 copied, page);
1207 else {
1208 if (copied < len) {
1209 if (!PageUptodate(page))
1210 copied = 0;
1211 page_zero_new_buffers(page, from+copied, to);
1212 }
ac27a0ec 1213
3fdcfb66
TM
1214 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1215 to, &partial, write_end_fn);
1216 if (!partial)
1217 SetPageUptodate(page);
1218 }
cf17fea6
AK
1219 new_i_size = pos + copied;
1220 if (new_i_size > inode->i_size)
bfc1af65 1221 i_size_write(inode, pos+copied);
19f5fb7a 1222 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1223 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1224 if (new_i_size > EXT4_I(inode)->i_disksize) {
1225 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1226 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1227 if (!ret)
1228 ret = ret2;
1229 }
bfc1af65 1230
cf108bca 1231 unlock_page(page);
f8514083 1232 page_cache_release(page);
ffacfa7a 1233 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1234 /* if we have allocated more blocks and copied
1235 * less. We will have blocks allocated outside
1236 * inode->i_size. So truncate them
1237 */
1238 ext4_orphan_add(handle, inode);
1239
617ba13b 1240 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1241 if (!ret)
1242 ret = ret2;
f8514083 1243 if (pos + len > inode->i_size) {
b9a4207d 1244 ext4_truncate_failed_write(inode);
de9a55b8 1245 /*
ffacfa7a 1246 * If truncate failed early the inode might still be
f8514083
AK
1247 * on the orphan list; we need to make sure the inode
1248 * is removed from the orphan list in that case.
1249 */
1250 if (inode->i_nlink)
1251 ext4_orphan_del(NULL, inode);
1252 }
bfc1af65
NP
1253
1254 return ret ? ret : copied;
ac27a0ec 1255}
d2a17637 1256
386ad67c
LC
1257/*
1258 * Reserve a metadata for a single block located at lblock
1259 */
1260static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1261{
1262 int retries = 0;
1263 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1264 struct ext4_inode_info *ei = EXT4_I(inode);
1265 unsigned int md_needed;
1266 ext4_lblk_t save_last_lblock;
1267 int save_len;
1268
1269 /*
1270 * recalculate the amount of metadata blocks to reserve
1271 * in order to allocate nrblocks
1272 * worse case is one extent per block
1273 */
1274repeat:
1275 spin_lock(&ei->i_block_reservation_lock);
1276 /*
1277 * ext4_calc_metadata_amount() has side effects, which we have
1278 * to be prepared undo if we fail to claim space.
1279 */
1280 save_len = ei->i_da_metadata_calc_len;
1281 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1282 md_needed = EXT4_NUM_B2C(sbi,
1283 ext4_calc_metadata_amount(inode, lblock));
1284 trace_ext4_da_reserve_space(inode, md_needed);
1285
1286 /*
1287 * We do still charge estimated metadata to the sb though;
1288 * we cannot afford to run out of free blocks.
1289 */
1290 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1291 ei->i_da_metadata_calc_len = save_len;
1292 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293 spin_unlock(&ei->i_block_reservation_lock);
1294 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1295 cond_resched();
1296 goto repeat;
1297 }
1298 return -ENOSPC;
1299 }
1300 ei->i_reserved_meta_blocks += md_needed;
1301 spin_unlock(&ei->i_block_reservation_lock);
1302
1303 return 0; /* success */
1304}
1305
9d0be502 1306/*
7b415bf6 1307 * Reserve a single cluster located at lblock
9d0be502 1308 */
01f49d0b 1309static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1310{
030ba6bc 1311 int retries = 0;
60e58e0f 1312 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1313 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1314 unsigned int md_needed;
5dd4056d 1315 int ret;
03179fe9
TT
1316 ext4_lblk_t save_last_lblock;
1317 int save_len;
1318
1319 /*
1320 * We will charge metadata quota at writeout time; this saves
1321 * us from metadata over-estimation, though we may go over by
1322 * a small amount in the end. Here we just reserve for data.
1323 */
1324 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1325 if (ret)
1326 return ret;
d2a17637
MC
1327
1328 /*
1329 * recalculate the amount of metadata blocks to reserve
1330 * in order to allocate nrblocks
1331 * worse case is one extent per block
1332 */
030ba6bc 1333repeat:
0637c6f4 1334 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1335 /*
1336 * ext4_calc_metadata_amount() has side effects, which we have
1337 * to be prepared undo if we fail to claim space.
1338 */
1339 save_len = ei->i_da_metadata_calc_len;
1340 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1341 md_needed = EXT4_NUM_B2C(sbi,
1342 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1343 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1344
72b8ab9d
ES
1345 /*
1346 * We do still charge estimated metadata to the sb though;
1347 * we cannot afford to run out of free blocks.
1348 */
e7d5f315 1349 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1350 ei->i_da_metadata_calc_len = save_len;
1351 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1352 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1353 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1354 cond_resched();
030ba6bc
AK
1355 goto repeat;
1356 }
03179fe9 1357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1358 return -ENOSPC;
1359 }
9d0be502 1360 ei->i_reserved_data_blocks++;
0637c6f4
TT
1361 ei->i_reserved_meta_blocks += md_needed;
1362 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1363
d2a17637
MC
1364 return 0; /* success */
1365}
1366
12219aea 1367static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1368{
1369 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1370 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1371
cd213226
MC
1372 if (!to_free)
1373 return; /* Nothing to release, exit */
1374
d2a17637 1375 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1376
5a58ec87 1377 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1378 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1379 /*
0637c6f4
TT
1380 * if there aren't enough reserved blocks, then the
1381 * counter is messed up somewhere. Since this
1382 * function is called from invalidate page, it's
1383 * harmless to return without any action.
cd213226 1384 */
8de5c325 1385 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1386 "ino %lu, to_free %d with only %d reserved "
1084f252 1387 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1388 ei->i_reserved_data_blocks);
1389 WARN_ON(1);
1390 to_free = ei->i_reserved_data_blocks;
cd213226 1391 }
0637c6f4 1392 ei->i_reserved_data_blocks -= to_free;
cd213226 1393
0637c6f4
TT
1394 if (ei->i_reserved_data_blocks == 0) {
1395 /*
1396 * We can release all of the reserved metadata blocks
1397 * only when we have written all of the delayed
1398 * allocation blocks.
7b415bf6
AK
1399 * Note that in case of bigalloc, i_reserved_meta_blocks,
1400 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1401 */
57042651 1402 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1403 ei->i_reserved_meta_blocks);
ee5f4d9c 1404 ei->i_reserved_meta_blocks = 0;
9d0be502 1405 ei->i_da_metadata_calc_len = 0;
0637c6f4 1406 }
d2a17637 1407
72b8ab9d 1408 /* update fs dirty data blocks counter */
57042651 1409 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1410
d2a17637 1411 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1412
7b415bf6 1413 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1414}
1415
1416static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1417 unsigned long offset)
d2a17637
MC
1418{
1419 int to_release = 0;
1420 struct buffer_head *head, *bh;
1421 unsigned int curr_off = 0;
7b415bf6
AK
1422 struct inode *inode = page->mapping->host;
1423 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1424 int num_clusters;
51865fda 1425 ext4_fsblk_t lblk;
d2a17637
MC
1426
1427 head = page_buffers(page);
1428 bh = head;
1429 do {
1430 unsigned int next_off = curr_off + bh->b_size;
1431
1432 if ((offset <= curr_off) && (buffer_delay(bh))) {
1433 to_release++;
1434 clear_buffer_delay(bh);
1435 }
1436 curr_off = next_off;
1437 } while ((bh = bh->b_this_page) != head);
7b415bf6 1438
51865fda
ZL
1439 if (to_release) {
1440 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1441 ext4_es_remove_extent(inode, lblk, to_release);
1442 }
1443
7b415bf6
AK
1444 /* If we have released all the blocks belonging to a cluster, then we
1445 * need to release the reserved space for that cluster. */
1446 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1447 while (num_clusters > 0) {
7b415bf6
AK
1448 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1449 ((num_clusters - 1) << sbi->s_cluster_bits);
1450 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1451 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1452 ext4_da_release_space(inode, 1);
1453
1454 num_clusters--;
1455 }
d2a17637 1456}
ac27a0ec 1457
64769240
AT
1458/*
1459 * Delayed allocation stuff
1460 */
1461
64769240
AT
1462/*
1463 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1464 * them with writepage() call back
64769240
AT
1465 *
1466 * @mpd->inode: inode
1467 * @mpd->first_page: first page of the extent
1468 * @mpd->next_page: page after the last page of the extent
64769240
AT
1469 *
1470 * By the time mpage_da_submit_io() is called we expect all blocks
1471 * to be allocated. this may be wrong if allocation failed.
1472 *
1473 * As pages are already locked by write_cache_pages(), we can't use it
1474 */
1de3e3df
TT
1475static int mpage_da_submit_io(struct mpage_da_data *mpd,
1476 struct ext4_map_blocks *map)
64769240 1477{
791b7f08
AK
1478 struct pagevec pvec;
1479 unsigned long index, end;
1480 int ret = 0, err, nr_pages, i;
1481 struct inode *inode = mpd->inode;
1482 struct address_space *mapping = inode->i_mapping;
cb20d518 1483 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1484 unsigned int len, block_start;
1485 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1486 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1487 struct ext4_io_submit io_submit;
64769240
AT
1488
1489 BUG_ON(mpd->next_page <= mpd->first_page);
4eec708d
JK
1490 ext4_io_submit_init(&io_submit, mpd->wbc);
1491 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1492 if (!io_submit.io_end)
1493 return -ENOMEM;
791b7f08
AK
1494 /*
1495 * We need to start from the first_page to the next_page - 1
1496 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1497 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1498 * at the currently mapped buffer_heads.
1499 */
64769240
AT
1500 index = mpd->first_page;
1501 end = mpd->next_page - 1;
1502
791b7f08 1503 pagevec_init(&pvec, 0);
64769240 1504 while (index <= end) {
791b7f08 1505 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1506 if (nr_pages == 0)
1507 break;
1508 for (i = 0; i < nr_pages; i++) {
f8bec370 1509 int skip_page = 0;
64769240
AT
1510 struct page *page = pvec.pages[i];
1511
791b7f08
AK
1512 index = page->index;
1513 if (index > end)
1514 break;
cb20d518
TT
1515
1516 if (index == size >> PAGE_CACHE_SHIFT)
1517 len = size & ~PAGE_CACHE_MASK;
1518 else
1519 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1520 if (map) {
1521 cur_logical = index << (PAGE_CACHE_SHIFT -
1522 inode->i_blkbits);
1523 pblock = map->m_pblk + (cur_logical -
1524 map->m_lblk);
1525 }
791b7f08
AK
1526 index++;
1527
1528 BUG_ON(!PageLocked(page));
1529 BUG_ON(PageWriteback(page));
1530
3ecdb3a1
TT
1531 bh = page_bufs = page_buffers(page);
1532 block_start = 0;
64769240 1533 do {
1de3e3df
TT
1534 if (map && (cur_logical >= map->m_lblk) &&
1535 (cur_logical <= (map->m_lblk +
1536 (map->m_len - 1)))) {
29fa89d0
AK
1537 if (buffer_delay(bh)) {
1538 clear_buffer_delay(bh);
1539 bh->b_blocknr = pblock;
29fa89d0 1540 }
1de3e3df
TT
1541 if (buffer_unwritten(bh) ||
1542 buffer_mapped(bh))
1543 BUG_ON(bh->b_blocknr != pblock);
1544 if (map->m_flags & EXT4_MAP_UNINIT)
1545 set_buffer_uninit(bh);
1546 clear_buffer_unwritten(bh);
1547 }
29fa89d0 1548
13a79a47
YY
1549 /*
1550 * skip page if block allocation undone and
1551 * block is dirty
1552 */
1553 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1554 skip_page = 1;
3ecdb3a1
TT
1555 bh = bh->b_this_page;
1556 block_start += bh->b_size;
64769240
AT
1557 cur_logical++;
1558 pblock++;
1de3e3df
TT
1559 } while (bh != page_bufs);
1560
f8bec370
JK
1561 if (skip_page) {
1562 unlock_page(page);
1563 continue;
1564 }
cb20d518 1565
97498956 1566 clear_page_dirty_for_io(page);
fe089c77
JK
1567 err = ext4_bio_write_page(&io_submit, page, len,
1568 mpd->wbc);
cb20d518 1569 if (!err)
a1d6cc56 1570 mpd->pages_written++;
64769240
AT
1571 /*
1572 * In error case, we have to continue because
1573 * remaining pages are still locked
64769240
AT
1574 */
1575 if (ret == 0)
1576 ret = err;
64769240
AT
1577 }
1578 pagevec_release(&pvec);
1579 }
bd2d0210 1580 ext4_io_submit(&io_submit);
4eec708d
JK
1581 /* Drop io_end reference we got from init */
1582 ext4_put_io_end_defer(io_submit.io_end);
64769240 1583 return ret;
64769240
AT
1584}
1585
c7f5938a 1586static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1587{
1588 int nr_pages, i;
1589 pgoff_t index, end;
1590 struct pagevec pvec;
1591 struct inode *inode = mpd->inode;
1592 struct address_space *mapping = inode->i_mapping;
51865fda 1593 ext4_lblk_t start, last;
c4a0c46e 1594
c7f5938a
CW
1595 index = mpd->first_page;
1596 end = mpd->next_page - 1;
51865fda
ZL
1597
1598 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1599 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1600 ext4_es_remove_extent(inode, start, last - start + 1);
1601
66bea92c 1602 pagevec_init(&pvec, 0);
c4a0c46e
AK
1603 while (index <= end) {
1604 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1605 if (nr_pages == 0)
1606 break;
1607 for (i = 0; i < nr_pages; i++) {
1608 struct page *page = pvec.pages[i];
9b1d0998 1609 if (page->index > end)
c4a0c46e 1610 break;
c4a0c46e
AK
1611 BUG_ON(!PageLocked(page));
1612 BUG_ON(PageWriteback(page));
1613 block_invalidatepage(page, 0);
1614 ClearPageUptodate(page);
1615 unlock_page(page);
1616 }
9b1d0998
JK
1617 index = pvec.pages[nr_pages - 1]->index + 1;
1618 pagevec_release(&pvec);
c4a0c46e
AK
1619 }
1620 return;
1621}
1622
df22291f
AK
1623static void ext4_print_free_blocks(struct inode *inode)
1624{
1625 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1626 struct super_block *sb = inode->i_sb;
f78ee70d 1627 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1628
1629 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1630 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1631 ext4_count_free_clusters(sb)));
92b97816
TT
1632 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1633 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1634 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1635 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1636 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1637 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1638 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1639 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1640 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1641 ei->i_reserved_data_blocks);
92b97816 1642 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1643 ei->i_reserved_meta_blocks);
1644 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1645 ei->i_allocated_meta_blocks);
df22291f
AK
1646 return;
1647}
1648
64769240 1649/*
5a87b7a5
TT
1650 * mpage_da_map_and_submit - go through given space, map them
1651 * if necessary, and then submit them for I/O
64769240 1652 *
8dc207c0 1653 * @mpd - bh describing space
64769240
AT
1654 *
1655 * The function skips space we know is already mapped to disk blocks.
1656 *
64769240 1657 */
5a87b7a5 1658static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1659{
2ac3b6e0 1660 int err, blks, get_blocks_flags;
1de3e3df 1661 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1662 sector_t next = mpd->b_blocknr;
1663 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1664 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1665 handle_t *handle = NULL;
64769240
AT
1666
1667 /*
5a87b7a5
TT
1668 * If the blocks are mapped already, or we couldn't accumulate
1669 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1670 */
5a87b7a5
TT
1671 if ((mpd->b_size == 0) ||
1672 ((mpd->b_state & (1 << BH_Mapped)) &&
1673 !(mpd->b_state & (1 << BH_Delay)) &&
1674 !(mpd->b_state & (1 << BH_Unwritten))))
1675 goto submit_io;
2fa3cdfb
TT
1676
1677 handle = ext4_journal_current_handle();
1678 BUG_ON(!handle);
1679
79ffab34 1680 /*
79e83036 1681 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1682 * blocks, or to convert an uninitialized extent to be
1683 * initialized (in the case where we have written into
1684 * one or more preallocated blocks).
1685 *
1686 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1687 * indicate that we are on the delayed allocation path. This
1688 * affects functions in many different parts of the allocation
1689 * call path. This flag exists primarily because we don't
79e83036 1690 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1691 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1692 * inode's allocation semaphore is taken.
1693 *
1694 * If the blocks in questions were delalloc blocks, set
1695 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1696 * variables are updated after the blocks have been allocated.
79ffab34 1697 */
2ed88685
TT
1698 map.m_lblk = next;
1699 map.m_len = max_blocks;
27dd4385
LC
1700 /*
1701 * We're in delalloc path and it is possible that we're going to
1702 * need more metadata blocks than previously reserved. However
1703 * we must not fail because we're in writeback and there is
1704 * nothing we can do about it so it might result in data loss.
1705 * So use reserved blocks to allocate metadata if possible.
1706 */
1707 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1708 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1709 if (ext4_should_dioread_nolock(mpd->inode))
1710 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1711 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1712 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1713
27dd4385 1714
2ed88685 1715 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1716 if (blks < 0) {
e3570639
ES
1717 struct super_block *sb = mpd->inode->i_sb;
1718
2fa3cdfb 1719 err = blks;
ed5bde0b 1720 /*
5a87b7a5 1721 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1722 * appears to be free blocks we will just let
1723 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1724 */
1725 if (err == -EAGAIN)
5a87b7a5 1726 goto submit_io;
df22291f 1727
5dee5437 1728 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1729 mpd->retval = err;
5a87b7a5 1730 goto submit_io;
df22291f
AK
1731 }
1732
c4a0c46e 1733 /*
ed5bde0b
TT
1734 * get block failure will cause us to loop in
1735 * writepages, because a_ops->writepage won't be able
1736 * to make progress. The page will be redirtied by
1737 * writepage and writepages will again try to write
1738 * the same.
c4a0c46e 1739 */
e3570639
ES
1740 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1741 ext4_msg(sb, KERN_CRIT,
1742 "delayed block allocation failed for inode %lu "
1743 "at logical offset %llu with max blocks %zd "
1744 "with error %d", mpd->inode->i_ino,
1745 (unsigned long long) next,
1746 mpd->b_size >> mpd->inode->i_blkbits, err);
1747 ext4_msg(sb, KERN_CRIT,
01a523eb 1748 "This should not happen!! Data will be lost");
e3570639
ES
1749 if (err == -ENOSPC)
1750 ext4_print_free_blocks(mpd->inode);
030ba6bc 1751 }
2fa3cdfb 1752 /* invalidate all the pages */
c7f5938a 1753 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1754
1755 /* Mark this page range as having been completed */
1756 mpd->io_done = 1;
5a87b7a5 1757 return;
c4a0c46e 1758 }
2fa3cdfb
TT
1759 BUG_ON(blks == 0);
1760
1de3e3df 1761 mapp = &map;
2ed88685
TT
1762 if (map.m_flags & EXT4_MAP_NEW) {
1763 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1764 int i;
64769240 1765
2ed88685
TT
1766 for (i = 0; i < map.m_len; i++)
1767 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1768 }
1769
1770 /*
03f5d8bc 1771 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1772 */
1773 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1774 if (disksize > i_size_read(mpd->inode))
1775 disksize = i_size_read(mpd->inode);
1776 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1777 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1778 err = ext4_mark_inode_dirty(handle, mpd->inode);
1779 if (err)
1780 ext4_error(mpd->inode->i_sb,
1781 "Failed to mark inode %lu dirty",
1782 mpd->inode->i_ino);
2fa3cdfb
TT
1783 }
1784
5a87b7a5 1785submit_io:
1de3e3df 1786 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1787 mpd->io_done = 1;
64769240
AT
1788}
1789
bf068ee2
AK
1790#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1791 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1792
1793/*
1794 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1795 *
1796 * @mpd->lbh - extent of blocks
1797 * @logical - logical number of the block in the file
b6a8e62f 1798 * @b_state - b_state of the buffer head added
64769240
AT
1799 *
1800 * the function is used to collect contig. blocks in same state
1801 */
b6a8e62f 1802static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1803 unsigned long b_state)
64769240 1804{
64769240 1805 sector_t next;
b6a8e62f
JK
1806 int blkbits = mpd->inode->i_blkbits;
1807 int nrblocks = mpd->b_size >> blkbits;
64769240 1808
c445e3e0
ES
1809 /*
1810 * XXX Don't go larger than mballoc is willing to allocate
1811 * This is a stopgap solution. We eventually need to fold
1812 * mpage_da_submit_io() into this function and then call
79e83036 1813 * ext4_map_blocks() multiple times in a loop
c445e3e0 1814 */
b6a8e62f 1815 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1816 goto flush_it;
1817
b6a8e62f
JK
1818 /* check if the reserved journal credits might overflow */
1819 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1820 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1821 /*
1822 * With non-extent format we are limited by the journal
1823 * credit available. Total credit needed to insert
1824 * nrblocks contiguous blocks is dependent on the
1825 * nrblocks. So limit nrblocks.
1826 */
1827 goto flush_it;
525f4ed8
MC
1828 }
1829 }
64769240
AT
1830 /*
1831 * First block in the extent
1832 */
8dc207c0
TT
1833 if (mpd->b_size == 0) {
1834 mpd->b_blocknr = logical;
b6a8e62f 1835 mpd->b_size = 1 << blkbits;
8dc207c0 1836 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1837 return;
1838 }
1839
8dc207c0 1840 next = mpd->b_blocknr + nrblocks;
64769240
AT
1841 /*
1842 * Can we merge the block to our big extent?
1843 */
8dc207c0 1844 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1845 mpd->b_size += 1 << blkbits;
64769240
AT
1846 return;
1847 }
1848
525f4ed8 1849flush_it:
64769240
AT
1850 /*
1851 * We couldn't merge the block to our extent, so we
1852 * need to flush current extent and start new one
1853 */
5a87b7a5 1854 mpage_da_map_and_submit(mpd);
a1d6cc56 1855 return;
64769240
AT
1856}
1857
c364b22c 1858static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1859{
c364b22c 1860 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1861}
1862
5356f261
AK
1863/*
1864 * This function is grabs code from the very beginning of
1865 * ext4_map_blocks, but assumes that the caller is from delayed write
1866 * time. This function looks up the requested blocks and sets the
1867 * buffer delay bit under the protection of i_data_sem.
1868 */
1869static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1870 struct ext4_map_blocks *map,
1871 struct buffer_head *bh)
1872{
d100eef2 1873 struct extent_status es;
5356f261
AK
1874 int retval;
1875 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1876#ifdef ES_AGGRESSIVE_TEST
1877 struct ext4_map_blocks orig_map;
1878
1879 memcpy(&orig_map, map, sizeof(*map));
1880#endif
5356f261
AK
1881
1882 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1883 invalid_block = ~0;
1884
1885 map->m_flags = 0;
1886 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1887 "logical block %lu\n", inode->i_ino, map->m_len,
1888 (unsigned long) map->m_lblk);
d100eef2
ZL
1889
1890 /* Lookup extent status tree firstly */
1891 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1892
1893 if (ext4_es_is_hole(&es)) {
1894 retval = 0;
1895 down_read((&EXT4_I(inode)->i_data_sem));
1896 goto add_delayed;
1897 }
1898
1899 /*
1900 * Delayed extent could be allocated by fallocate.
1901 * So we need to check it.
1902 */
1903 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1904 map_bh(bh, inode->i_sb, invalid_block);
1905 set_buffer_new(bh);
1906 set_buffer_delay(bh);
1907 return 0;
1908 }
1909
1910 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1911 retval = es.es_len - (iblock - es.es_lblk);
1912 if (retval > map->m_len)
1913 retval = map->m_len;
1914 map->m_len = retval;
1915 if (ext4_es_is_written(&es))
1916 map->m_flags |= EXT4_MAP_MAPPED;
1917 else if (ext4_es_is_unwritten(&es))
1918 map->m_flags |= EXT4_MAP_UNWRITTEN;
1919 else
1920 BUG_ON(1);
1921
921f266b
DM
1922#ifdef ES_AGGRESSIVE_TEST
1923 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1924#endif
d100eef2
ZL
1925 return retval;
1926 }
1927
5356f261
AK
1928 /*
1929 * Try to see if we can get the block without requesting a new
1930 * file system block.
1931 */
1932 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1933 if (ext4_has_inline_data(inode)) {
1934 /*
1935 * We will soon create blocks for this page, and let
1936 * us pretend as if the blocks aren't allocated yet.
1937 * In case of clusters, we have to handle the work
1938 * of mapping from cluster so that the reserved space
1939 * is calculated properly.
1940 */
1941 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1942 ext4_find_delalloc_cluster(inode, map->m_lblk))
1943 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1944 retval = 0;
1945 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1946 retval = ext4_ext_map_blocks(NULL, inode, map,
1947 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1948 else
d100eef2
ZL
1949 retval = ext4_ind_map_blocks(NULL, inode, map,
1950 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1951
d100eef2 1952add_delayed:
5356f261 1953 if (retval == 0) {
f7fec032 1954 int ret;
5356f261
AK
1955 /*
1956 * XXX: __block_prepare_write() unmaps passed block,
1957 * is it OK?
1958 */
386ad67c
LC
1959 /*
1960 * If the block was allocated from previously allocated cluster,
1961 * then we don't need to reserve it again. However we still need
1962 * to reserve metadata for every block we're going to write.
1963 */
5356f261 1964 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1965 ret = ext4_da_reserve_space(inode, iblock);
1966 if (ret) {
5356f261 1967 /* not enough space to reserve */
f7fec032 1968 retval = ret;
5356f261 1969 goto out_unlock;
f7fec032 1970 }
386ad67c
LC
1971 } else {
1972 ret = ext4_da_reserve_metadata(inode, iblock);
1973 if (ret) {
1974 /* not enough space to reserve */
1975 retval = ret;
1976 goto out_unlock;
1977 }
5356f261
AK
1978 }
1979
f7fec032
ZL
1980 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1981 ~0, EXTENT_STATUS_DELAYED);
1982 if (ret) {
1983 retval = ret;
51865fda 1984 goto out_unlock;
f7fec032 1985 }
51865fda 1986
5356f261
AK
1987 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1988 * and it should not appear on the bh->b_state.
1989 */
1990 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1991
1992 map_bh(bh, inode->i_sb, invalid_block);
1993 set_buffer_new(bh);
1994 set_buffer_delay(bh);
f7fec032
ZL
1995 } else if (retval > 0) {
1996 int ret;
1997 unsigned long long status;
1998
921f266b
DM
1999#ifdef ES_AGGRESSIVE_TEST
2000 if (retval != map->m_len) {
2001 printk("ES len assertation failed for inode: %lu "
2002 "retval %d != map->m_len %d "
2003 "in %s (lookup)\n", inode->i_ino, retval,
2004 map->m_len, __func__);
2005 }
2006#endif
2007
f7fec032
ZL
2008 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
2009 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
2010 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
2011 map->m_pblk, status);
2012 if (ret != 0)
2013 retval = ret;
5356f261
AK
2014 }
2015
2016out_unlock:
2017 up_read((&EXT4_I(inode)->i_data_sem));
2018
2019 return retval;
2020}
2021
64769240 2022/*
b920c755
TT
2023 * This is a special get_blocks_t callback which is used by
2024 * ext4_da_write_begin(). It will either return mapped block or
2025 * reserve space for a single block.
29fa89d0
AK
2026 *
2027 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2028 * We also have b_blocknr = -1 and b_bdev initialized properly
2029 *
2030 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2031 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2032 * initialized properly.
64769240 2033 */
9c3569b5
TM
2034int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2035 struct buffer_head *bh, int create)
64769240 2036{
2ed88685 2037 struct ext4_map_blocks map;
64769240
AT
2038 int ret = 0;
2039
2040 BUG_ON(create == 0);
2ed88685
TT
2041 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2042
2043 map.m_lblk = iblock;
2044 map.m_len = 1;
64769240
AT
2045
2046 /*
2047 * first, we need to know whether the block is allocated already
2048 * preallocated blocks are unmapped but should treated
2049 * the same as allocated blocks.
2050 */
5356f261
AK
2051 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2052 if (ret <= 0)
2ed88685 2053 return ret;
64769240 2054
2ed88685
TT
2055 map_bh(bh, inode->i_sb, map.m_pblk);
2056 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2057
2058 if (buffer_unwritten(bh)) {
2059 /* A delayed write to unwritten bh should be marked
2060 * new and mapped. Mapped ensures that we don't do
2061 * get_block multiple times when we write to the same
2062 * offset and new ensures that we do proper zero out
2063 * for partial write.
2064 */
2065 set_buffer_new(bh);
c8205636 2066 set_buffer_mapped(bh);
2ed88685
TT
2067 }
2068 return 0;
64769240 2069}
61628a3f 2070
62e086be
AK
2071static int bget_one(handle_t *handle, struct buffer_head *bh)
2072{
2073 get_bh(bh);
2074 return 0;
2075}
2076
2077static int bput_one(handle_t *handle, struct buffer_head *bh)
2078{
2079 put_bh(bh);
2080 return 0;
2081}
2082
2083static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2084 unsigned int len)
2085{
2086 struct address_space *mapping = page->mapping;
2087 struct inode *inode = mapping->host;
3fdcfb66 2088 struct buffer_head *page_bufs = NULL;
62e086be 2089 handle_t *handle = NULL;
3fdcfb66
TM
2090 int ret = 0, err = 0;
2091 int inline_data = ext4_has_inline_data(inode);
2092 struct buffer_head *inode_bh = NULL;
62e086be 2093
cb20d518 2094 ClearPageChecked(page);
3fdcfb66
TM
2095
2096 if (inline_data) {
2097 BUG_ON(page->index != 0);
2098 BUG_ON(len > ext4_get_max_inline_size(inode));
2099 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2100 if (inode_bh == NULL)
2101 goto out;
2102 } else {
2103 page_bufs = page_buffers(page);
2104 if (!page_bufs) {
2105 BUG();
2106 goto out;
2107 }
2108 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2109 NULL, bget_one);
2110 }
62e086be
AK
2111 /* As soon as we unlock the page, it can go away, but we have
2112 * references to buffers so we are safe */
2113 unlock_page(page);
2114
9924a92a
TT
2115 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2116 ext4_writepage_trans_blocks(inode));
62e086be
AK
2117 if (IS_ERR(handle)) {
2118 ret = PTR_ERR(handle);
2119 goto out;
2120 }
2121
441c8508
CW
2122 BUG_ON(!ext4_handle_valid(handle));
2123
3fdcfb66
TM
2124 if (inline_data) {
2125 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2126
3fdcfb66
TM
2127 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2128
2129 } else {
2130 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2131 do_journal_get_write_access);
2132
2133 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2134 write_end_fn);
2135 }
62e086be
AK
2136 if (ret == 0)
2137 ret = err;
2d859db3 2138 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2139 err = ext4_journal_stop(handle);
2140 if (!ret)
2141 ret = err;
2142
3fdcfb66
TM
2143 if (!ext4_has_inline_data(inode))
2144 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2145 NULL, bput_one);
19f5fb7a 2146 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2147out:
3fdcfb66 2148 brelse(inode_bh);
62e086be
AK
2149 return ret;
2150}
2151
61628a3f 2152/*
43ce1d23
AK
2153 * Note that we don't need to start a transaction unless we're journaling data
2154 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2155 * need to file the inode to the transaction's list in ordered mode because if
2156 * we are writing back data added by write(), the inode is already there and if
25985edc 2157 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2158 * transaction the data will hit the disk. In case we are journaling data, we
2159 * cannot start transaction directly because transaction start ranks above page
2160 * lock so we have to do some magic.
2161 *
b920c755
TT
2162 * This function can get called via...
2163 * - ext4_da_writepages after taking page lock (have journal handle)
2164 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2165 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2166 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2167 *
2168 * We don't do any block allocation in this function. If we have page with
2169 * multiple blocks we need to write those buffer_heads that are mapped. This
2170 * is important for mmaped based write. So if we do with blocksize 1K
2171 * truncate(f, 1024);
2172 * a = mmap(f, 0, 4096);
2173 * a[0] = 'a';
2174 * truncate(f, 4096);
2175 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2176 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2177 * do_wp_page). So writepage should write the first block. If we modify
2178 * the mmap area beyond 1024 we will again get a page_fault and the
2179 * page_mkwrite callback will do the block allocation and mark the
2180 * buffer_heads mapped.
2181 *
2182 * We redirty the page if we have any buffer_heads that is either delay or
2183 * unwritten in the page.
2184 *
2185 * We can get recursively called as show below.
2186 *
2187 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2188 * ext4_writepage()
2189 *
2190 * But since we don't do any block allocation we should not deadlock.
2191 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2192 */
43ce1d23 2193static int ext4_writepage(struct page *page,
62e086be 2194 struct writeback_control *wbc)
64769240 2195{
f8bec370 2196 int ret = 0;
61628a3f 2197 loff_t size;
498e5f24 2198 unsigned int len;
744692dc 2199 struct buffer_head *page_bufs = NULL;
61628a3f 2200 struct inode *inode = page->mapping->host;
36ade451 2201 struct ext4_io_submit io_submit;
61628a3f 2202
a9c667f8 2203 trace_ext4_writepage(page);
f0e6c985
AK
2204 size = i_size_read(inode);
2205 if (page->index == size >> PAGE_CACHE_SHIFT)
2206 len = size & ~PAGE_CACHE_MASK;
2207 else
2208 len = PAGE_CACHE_SIZE;
64769240 2209
a42afc5f 2210 page_bufs = page_buffers(page);
a42afc5f 2211 /*
fe386132
JK
2212 * We cannot do block allocation or other extent handling in this
2213 * function. If there are buffers needing that, we have to redirty
2214 * the page. But we may reach here when we do a journal commit via
2215 * journal_submit_inode_data_buffers() and in that case we must write
2216 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2217 */
f19d5870
TM
2218 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2219 ext4_bh_delay_or_unwritten)) {
f8bec370 2220 redirty_page_for_writepage(wbc, page);
fe386132
JK
2221 if (current->flags & PF_MEMALLOC) {
2222 /*
2223 * For memory cleaning there's no point in writing only
2224 * some buffers. So just bail out. Warn if we came here
2225 * from direct reclaim.
2226 */
2227 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2228 == PF_MEMALLOC);
f0e6c985
AK
2229 unlock_page(page);
2230 return 0;
2231 }
a42afc5f 2232 }
64769240 2233
cb20d518 2234 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2235 /*
2236 * It's mmapped pagecache. Add buffers and journal it. There
2237 * doesn't seem much point in redirtying the page here.
2238 */
3f0ca309 2239 return __ext4_journalled_writepage(page, len);
43ce1d23 2240
4eec708d
JK
2241 ext4_io_submit_init(&io_submit, wbc);
2242 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2243 if (!io_submit.io_end) {
2244 redirty_page_for_writepage(wbc, page);
2245 return -ENOMEM;
2246 }
36ade451
JK
2247 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2248 ext4_io_submit(&io_submit);
4eec708d
JK
2249 /* Drop io_end reference we got from init */
2250 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2251 return ret;
2252}
2253
61628a3f 2254/*
525f4ed8 2255 * This is called via ext4_da_writepages() to
25985edc 2256 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2257 * a single extent allocation into a single transaction,
2258 * ext4_da_writpeages() will loop calling this before
2259 * the block allocation.
61628a3f 2260 */
525f4ed8
MC
2261
2262static int ext4_da_writepages_trans_blocks(struct inode *inode)
2263{
2264 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2265
2266 /*
2267 * With non-extent format the journal credit needed to
2268 * insert nrblocks contiguous block is dependent on
2269 * number of contiguous block. So we will limit
2270 * number of contiguous block to a sane value
2271 */
12e9b892 2272 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2273 (max_blocks > EXT4_MAX_TRANS_DATA))
2274 max_blocks = EXT4_MAX_TRANS_DATA;
2275
2276 return ext4_chunk_trans_blocks(inode, max_blocks);
2277}
61628a3f 2278
8e48dcfb
TT
2279/*
2280 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2281 * address space and accumulate pages that need writing, and call
168fc022
TT
2282 * mpage_da_map_and_submit to map a single contiguous memory region
2283 * and then write them.
8e48dcfb 2284 */
9c3569b5
TM
2285static int write_cache_pages_da(handle_t *handle,
2286 struct address_space *mapping,
8e48dcfb 2287 struct writeback_control *wbc,
72f84e65
ES
2288 struct mpage_da_data *mpd,
2289 pgoff_t *done_index)
8e48dcfb 2290{
4f01b02c 2291 struct buffer_head *bh, *head;
168fc022 2292 struct inode *inode = mapping->host;
4f01b02c
TT
2293 struct pagevec pvec;
2294 unsigned int nr_pages;
2295 sector_t logical;
2296 pgoff_t index, end;
2297 long nr_to_write = wbc->nr_to_write;
2298 int i, tag, ret = 0;
8e48dcfb 2299
168fc022
TT
2300 memset(mpd, 0, sizeof(struct mpage_da_data));
2301 mpd->wbc = wbc;
2302 mpd->inode = inode;
8e48dcfb
TT
2303 pagevec_init(&pvec, 0);
2304 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2305 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2306
6e6938b6 2307 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2308 tag = PAGECACHE_TAG_TOWRITE;
2309 else
2310 tag = PAGECACHE_TAG_DIRTY;
2311
72f84e65 2312 *done_index = index;
4f01b02c 2313 while (index <= end) {
5b41d924 2314 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2315 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2316 if (nr_pages == 0)
4f01b02c 2317 return 0;
8e48dcfb
TT
2318
2319 for (i = 0; i < nr_pages; i++) {
2320 struct page *page = pvec.pages[i];
2321
2322 /*
2323 * At this point, the page may be truncated or
2324 * invalidated (changing page->mapping to NULL), or
2325 * even swizzled back from swapper_space to tmpfs file
2326 * mapping. However, page->index will not change
2327 * because we have a reference on the page.
2328 */
4f01b02c
TT
2329 if (page->index > end)
2330 goto out;
8e48dcfb 2331
72f84e65
ES
2332 *done_index = page->index + 1;
2333
78aaced3
TT
2334 /*
2335 * If we can't merge this page, and we have
2336 * accumulated an contiguous region, write it
2337 */
2338 if ((mpd->next_page != page->index) &&
2339 (mpd->next_page != mpd->first_page)) {
2340 mpage_da_map_and_submit(mpd);
2341 goto ret_extent_tail;
2342 }
2343
8e48dcfb
TT
2344 lock_page(page);
2345
2346 /*
4f01b02c
TT
2347 * If the page is no longer dirty, or its
2348 * mapping no longer corresponds to inode we
2349 * are writing (which means it has been
2350 * truncated or invalidated), or the page is
2351 * already under writeback and we are not
2352 * doing a data integrity writeback, skip the page
8e48dcfb 2353 */
4f01b02c
TT
2354 if (!PageDirty(page) ||
2355 (PageWriteback(page) &&
2356 (wbc->sync_mode == WB_SYNC_NONE)) ||
2357 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2358 unlock_page(page);
2359 continue;
2360 }
2361
7cb1a535 2362 wait_on_page_writeback(page);
8e48dcfb 2363 BUG_ON(PageWriteback(page));
8e48dcfb 2364
9c3569b5
TM
2365 /*
2366 * If we have inline data and arrive here, it means that
2367 * we will soon create the block for the 1st page, so
2368 * we'd better clear the inline data here.
2369 */
2370 if (ext4_has_inline_data(inode)) {
2371 BUG_ON(ext4_test_inode_state(inode,
2372 EXT4_STATE_MAY_INLINE_DATA));
2373 ext4_destroy_inline_data(handle, inode);
2374 }
2375
168fc022 2376 if (mpd->next_page != page->index)
8eb9e5ce 2377 mpd->first_page = page->index;
8eb9e5ce
TT
2378 mpd->next_page = page->index + 1;
2379 logical = (sector_t) page->index <<
2380 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2381
f8bec370
JK
2382 /* Add all dirty buffers to mpd */
2383 head = page_buffers(page);
2384 bh = head;
2385 do {
2386 BUG_ON(buffer_locked(bh));
8eb9e5ce 2387 /*
f8bec370
JK
2388 * We need to try to allocate unmapped blocks
2389 * in the same page. Otherwise we won't make
2390 * progress with the page in ext4_writepage
8eb9e5ce 2391 */
f8bec370
JK
2392 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2393 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2394 bh->b_state);
2395 if (mpd->io_done)
2396 goto ret_extent_tail;
2397 } else if (buffer_dirty(bh) &&
2398 buffer_mapped(bh)) {
8eb9e5ce 2399 /*
f8bec370
JK
2400 * mapped dirty buffer. We need to
2401 * update the b_state because we look
2402 * at b_state in mpage_da_map_blocks.
2403 * We don't update b_size because if we
2404 * find an unmapped buffer_head later
2405 * we need to use the b_state flag of
2406 * that buffer_head.
8eb9e5ce 2407 */
f8bec370
JK
2408 if (mpd->b_size == 0)
2409 mpd->b_state =
2410 bh->b_state & BH_FLAGS;
2411 }
2412 logical++;
2413 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2414
2415 if (nr_to_write > 0) {
2416 nr_to_write--;
2417 if (nr_to_write == 0 &&
4f01b02c 2418 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2419 /*
2420 * We stop writing back only if we are
2421 * not doing integrity sync. In case of
2422 * integrity sync we have to keep going
2423 * because someone may be concurrently
2424 * dirtying pages, and we might have
2425 * synced a lot of newly appeared dirty
2426 * pages, but have not synced all of the
2427 * old dirty pages.
2428 */
4f01b02c 2429 goto out;
8e48dcfb
TT
2430 }
2431 }
2432 pagevec_release(&pvec);
2433 cond_resched();
2434 }
4f01b02c
TT
2435 return 0;
2436ret_extent_tail:
2437 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2438out:
2439 pagevec_release(&pvec);
2440 cond_resched();
8e48dcfb
TT
2441 return ret;
2442}
2443
2444
64769240 2445static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2446 struct writeback_control *wbc)
64769240 2447{
22208ded
AK
2448 pgoff_t index;
2449 int range_whole = 0;
61628a3f 2450 handle_t *handle = NULL;
df22291f 2451 struct mpage_da_data mpd;
5e745b04 2452 struct inode *inode = mapping->host;
498e5f24 2453 int pages_written = 0;
55138e0b 2454 unsigned int max_pages;
2acf2c26 2455 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2456 int needed_blocks, ret = 0;
2457 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2458 loff_t range_start = wbc->range_start;
5e745b04 2459 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2460 pgoff_t done_index = 0;
5b41d924 2461 pgoff_t end;
1bce63d1 2462 struct blk_plug plug;
61628a3f 2463
9bffad1e 2464 trace_ext4_da_writepages(inode, wbc);
ba80b101 2465
61628a3f
MC
2466 /*
2467 * No pages to write? This is mainly a kludge to avoid starting
2468 * a transaction for special inodes like journal inode on last iput()
2469 * because that could violate lock ordering on umount
2470 */
a1d6cc56 2471 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2472 return 0;
2a21e37e
TT
2473
2474 /*
2475 * If the filesystem has aborted, it is read-only, so return
2476 * right away instead of dumping stack traces later on that
2477 * will obscure the real source of the problem. We test
4ab2f15b 2478 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2479 * the latter could be true if the filesystem is mounted
2480 * read-only, and in that case, ext4_da_writepages should
2481 * *never* be called, so if that ever happens, we would want
2482 * the stack trace.
2483 */
4ab2f15b 2484 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2485 return -EROFS;
2486
22208ded
AK
2487 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2488 range_whole = 1;
61628a3f 2489
2acf2c26
AK
2490 range_cyclic = wbc->range_cyclic;
2491 if (wbc->range_cyclic) {
22208ded 2492 index = mapping->writeback_index;
2acf2c26
AK
2493 if (index)
2494 cycled = 0;
2495 wbc->range_start = index << PAGE_CACHE_SHIFT;
2496 wbc->range_end = LLONG_MAX;
2497 wbc->range_cyclic = 0;
5b41d924
ES
2498 end = -1;
2499 } else {
22208ded 2500 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2501 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2502 }
a1d6cc56 2503
55138e0b
TT
2504 /*
2505 * This works around two forms of stupidity. The first is in
2506 * the writeback code, which caps the maximum number of pages
2507 * written to be 1024 pages. This is wrong on multiple
2508 * levels; different architectues have a different page size,
2509 * which changes the maximum amount of data which gets
2510 * written. Secondly, 4 megabytes is way too small. XFS
2511 * forces this value to be 16 megabytes by multiplying
2512 * nr_to_write parameter by four, and then relies on its
2513 * allocator to allocate larger extents to make them
2514 * contiguous. Unfortunately this brings us to the second
2515 * stupidity, which is that ext4's mballoc code only allocates
2516 * at most 2048 blocks. So we force contiguous writes up to
2517 * the number of dirty blocks in the inode, or
2518 * sbi->max_writeback_mb_bump whichever is smaller.
2519 */
2520 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2521 if (!range_cyclic && range_whole) {
2522 if (wbc->nr_to_write == LONG_MAX)
2523 desired_nr_to_write = wbc->nr_to_write;
2524 else
2525 desired_nr_to_write = wbc->nr_to_write * 8;
2526 } else
55138e0b
TT
2527 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2528 max_pages);
2529 if (desired_nr_to_write > max_pages)
2530 desired_nr_to_write = max_pages;
2531
2532 if (wbc->nr_to_write < desired_nr_to_write) {
2533 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2534 wbc->nr_to_write = desired_nr_to_write;
2535 }
2536
2acf2c26 2537retry:
6e6938b6 2538 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2539 tag_pages_for_writeback(mapping, index, end);
2540
1bce63d1 2541 blk_start_plug(&plug);
22208ded 2542 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2543
2544 /*
2545 * we insert one extent at a time. So we need
2546 * credit needed for single extent allocation.
2547 * journalled mode is currently not supported
2548 * by delalloc
2549 */
2550 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2551 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2552
61628a3f 2553 /* start a new transaction*/
9924a92a
TT
2554 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2555 needed_blocks);
61628a3f
MC
2556 if (IS_ERR(handle)) {
2557 ret = PTR_ERR(handle);
1693918e 2558 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2559 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2560 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2561 blk_finish_plug(&plug);
61628a3f
MC
2562 goto out_writepages;
2563 }
f63e6005
TT
2564
2565 /*
8eb9e5ce 2566 * Now call write_cache_pages_da() to find the next
f63e6005 2567 * contiguous region of logical blocks that need
8eb9e5ce 2568 * blocks to be allocated by ext4 and submit them.
f63e6005 2569 */
9c3569b5
TM
2570 ret = write_cache_pages_da(handle, mapping,
2571 wbc, &mpd, &done_index);
f63e6005 2572 /*
af901ca1 2573 * If we have a contiguous extent of pages and we
f63e6005
TT
2574 * haven't done the I/O yet, map the blocks and submit
2575 * them for I/O.
2576 */
2577 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2578 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2579 ret = MPAGE_DA_EXTENT_TAIL;
2580 }
b3a3ca8c 2581 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2582 wbc->nr_to_write -= mpd.pages_written;
df22291f 2583
61628a3f 2584 ext4_journal_stop(handle);
df22291f 2585
8f64b32e 2586 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2587 /* commit the transaction which would
2588 * free blocks released in the transaction
2589 * and try again
2590 */
df22291f 2591 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2592 ret = 0;
2593 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2594 /*
8de49e67
KM
2595 * Got one extent now try with rest of the pages.
2596 * If mpd.retval is set -EIO, journal is aborted.
2597 * So we don't need to write any more.
a1d6cc56 2598 */
22208ded 2599 pages_written += mpd.pages_written;
8de49e67 2600 ret = mpd.retval;
2acf2c26 2601 io_done = 1;
22208ded 2602 } else if (wbc->nr_to_write)
61628a3f
MC
2603 /*
2604 * There is no more writeout needed
2605 * or we requested for a noblocking writeout
2606 * and we found the device congested
2607 */
61628a3f 2608 break;
a1d6cc56 2609 }
1bce63d1 2610 blk_finish_plug(&plug);
2acf2c26
AK
2611 if (!io_done && !cycled) {
2612 cycled = 1;
2613 index = 0;
2614 wbc->range_start = index << PAGE_CACHE_SHIFT;
2615 wbc->range_end = mapping->writeback_index - 1;
2616 goto retry;
2617 }
22208ded
AK
2618
2619 /* Update index */
2acf2c26 2620 wbc->range_cyclic = range_cyclic;
22208ded
AK
2621 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2622 /*
2623 * set the writeback_index so that range_cyclic
2624 * mode will write it back later
2625 */
72f84e65 2626 mapping->writeback_index = done_index;
a1d6cc56 2627
61628a3f 2628out_writepages:
2faf2e19 2629 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2630 wbc->range_start = range_start;
9bffad1e 2631 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2632 return ret;
64769240
AT
2633}
2634
79f0be8d
AK
2635static int ext4_nonda_switch(struct super_block *sb)
2636{
5c1ff336 2637 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2638 struct ext4_sb_info *sbi = EXT4_SB(sb);
2639
2640 /*
2641 * switch to non delalloc mode if we are running low
2642 * on free block. The free block accounting via percpu
179f7ebf 2643 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2644 * accumulated on each CPU without updating global counters
2645 * Delalloc need an accurate free block accounting. So switch
2646 * to non delalloc when we are near to error range.
2647 */
5c1ff336
EW
2648 free_clusters =
2649 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2650 dirty_clusters =
2651 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2652 /*
2653 * Start pushing delalloc when 1/2 of free blocks are dirty.
2654 */
5c1ff336 2655 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2656 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2657
5c1ff336
EW
2658 if (2 * free_clusters < 3 * dirty_clusters ||
2659 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2660 /*
c8afb446
ES
2661 * free block count is less than 150% of dirty blocks
2662 * or free blocks is less than watermark
79f0be8d
AK
2663 */
2664 return 1;
2665 }
2666 return 0;
2667}
2668
64769240 2669static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2670 loff_t pos, unsigned len, unsigned flags,
2671 struct page **pagep, void **fsdata)
64769240 2672{
72b8ab9d 2673 int ret, retries = 0;
64769240
AT
2674 struct page *page;
2675 pgoff_t index;
64769240
AT
2676 struct inode *inode = mapping->host;
2677 handle_t *handle;
2678
2679 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2680
2681 if (ext4_nonda_switch(inode->i_sb)) {
2682 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2683 return ext4_write_begin(file, mapping, pos,
2684 len, flags, pagep, fsdata);
2685 }
2686 *fsdata = (void *)0;
9bffad1e 2687 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2688
2689 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2690 ret = ext4_da_write_inline_data_begin(mapping, inode,
2691 pos, len, flags,
2692 pagep, fsdata);
2693 if (ret < 0)
47564bfb
TT
2694 return ret;
2695 if (ret == 1)
2696 return 0;
9c3569b5
TM
2697 }
2698
47564bfb
TT
2699 /*
2700 * grab_cache_page_write_begin() can take a long time if the
2701 * system is thrashing due to memory pressure, or if the page
2702 * is being written back. So grab it first before we start
2703 * the transaction handle. This also allows us to allocate
2704 * the page (if needed) without using GFP_NOFS.
2705 */
2706retry_grab:
2707 page = grab_cache_page_write_begin(mapping, index, flags);
2708 if (!page)
2709 return -ENOMEM;
2710 unlock_page(page);
2711
64769240
AT
2712 /*
2713 * With delayed allocation, we don't log the i_disksize update
2714 * if there is delayed block allocation. But we still need
2715 * to journalling the i_disksize update if writes to the end
2716 * of file which has an already mapped buffer.
2717 */
47564bfb 2718retry_journal:
9924a92a 2719 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2720 if (IS_ERR(handle)) {
47564bfb
TT
2721 page_cache_release(page);
2722 return PTR_ERR(handle);
64769240
AT
2723 }
2724
47564bfb
TT
2725 lock_page(page);
2726 if (page->mapping != mapping) {
2727 /* The page got truncated from under us */
2728 unlock_page(page);
2729 page_cache_release(page);
d5a0d4f7 2730 ext4_journal_stop(handle);
47564bfb 2731 goto retry_grab;
d5a0d4f7 2732 }
47564bfb
TT
2733 /* In case writeback began while the page was unlocked */
2734 wait_on_page_writeback(page);
64769240 2735
6e1db88d 2736 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2737 if (ret < 0) {
2738 unlock_page(page);
2739 ext4_journal_stop(handle);
ae4d5372
AK
2740 /*
2741 * block_write_begin may have instantiated a few blocks
2742 * outside i_size. Trim these off again. Don't need
2743 * i_size_read because we hold i_mutex.
2744 */
2745 if (pos + len > inode->i_size)
b9a4207d 2746 ext4_truncate_failed_write(inode);
47564bfb
TT
2747
2748 if (ret == -ENOSPC &&
2749 ext4_should_retry_alloc(inode->i_sb, &retries))
2750 goto retry_journal;
2751
2752 page_cache_release(page);
2753 return ret;
64769240
AT
2754 }
2755
47564bfb 2756 *pagep = page;
64769240
AT
2757 return ret;
2758}
2759
632eaeab
MC
2760/*
2761 * Check if we should update i_disksize
2762 * when write to the end of file but not require block allocation
2763 */
2764static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2765 unsigned long offset)
632eaeab
MC
2766{
2767 struct buffer_head *bh;
2768 struct inode *inode = page->mapping->host;
2769 unsigned int idx;
2770 int i;
2771
2772 bh = page_buffers(page);
2773 idx = offset >> inode->i_blkbits;
2774
af5bc92d 2775 for (i = 0; i < idx; i++)
632eaeab
MC
2776 bh = bh->b_this_page;
2777
29fa89d0 2778 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2779 return 0;
2780 return 1;
2781}
2782
64769240 2783static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2784 struct address_space *mapping,
2785 loff_t pos, unsigned len, unsigned copied,
2786 struct page *page, void *fsdata)
64769240
AT
2787{
2788 struct inode *inode = mapping->host;
2789 int ret = 0, ret2;
2790 handle_t *handle = ext4_journal_current_handle();
2791 loff_t new_i_size;
632eaeab 2792 unsigned long start, end;
79f0be8d
AK
2793 int write_mode = (int)(unsigned long)fsdata;
2794
74d553aa
TT
2795 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2796 return ext4_write_end(file, mapping, pos,
2797 len, copied, page, fsdata);
632eaeab 2798
9bffad1e 2799 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2800 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2801 end = start + copied - 1;
64769240
AT
2802
2803 /*
2804 * generic_write_end() will run mark_inode_dirty() if i_size
2805 * changes. So let's piggyback the i_disksize mark_inode_dirty
2806 * into that.
2807 */
64769240 2808 new_i_size = pos + copied;
ea51d132 2809 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2810 if (ext4_has_inline_data(inode) ||
2811 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2812 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2813 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2814 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2815 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2816 /* We need to mark inode dirty even if
2817 * new_i_size is less that inode->i_size
2818 * bu greater than i_disksize.(hint delalloc)
2819 */
2820 ext4_mark_inode_dirty(handle, inode);
64769240 2821 }
632eaeab 2822 }
9c3569b5
TM
2823
2824 if (write_mode != CONVERT_INLINE_DATA &&
2825 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2826 ext4_has_inline_data(inode))
2827 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2828 page);
2829 else
2830 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2831 page, fsdata);
9c3569b5 2832
64769240
AT
2833 copied = ret2;
2834 if (ret2 < 0)
2835 ret = ret2;
2836 ret2 = ext4_journal_stop(handle);
2837 if (!ret)
2838 ret = ret2;
2839
2840 return ret ? ret : copied;
2841}
2842
2843static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2844{
64769240
AT
2845 /*
2846 * Drop reserved blocks
2847 */
2848 BUG_ON(!PageLocked(page));
2849 if (!page_has_buffers(page))
2850 goto out;
2851
d2a17637 2852 ext4_da_page_release_reservation(page, offset);
64769240
AT
2853
2854out:
2855 ext4_invalidatepage(page, offset);
2856
2857 return;
2858}
2859
ccd2506b
TT
2860/*
2861 * Force all delayed allocation blocks to be allocated for a given inode.
2862 */
2863int ext4_alloc_da_blocks(struct inode *inode)
2864{
fb40ba0d
TT
2865 trace_ext4_alloc_da_blocks(inode);
2866
ccd2506b
TT
2867 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2868 !EXT4_I(inode)->i_reserved_meta_blocks)
2869 return 0;
2870
2871 /*
2872 * We do something simple for now. The filemap_flush() will
2873 * also start triggering a write of the data blocks, which is
2874 * not strictly speaking necessary (and for users of
2875 * laptop_mode, not even desirable). However, to do otherwise
2876 * would require replicating code paths in:
de9a55b8 2877 *
ccd2506b
TT
2878 * ext4_da_writepages() ->
2879 * write_cache_pages() ---> (via passed in callback function)
2880 * __mpage_da_writepage() -->
2881 * mpage_add_bh_to_extent()
2882 * mpage_da_map_blocks()
2883 *
2884 * The problem is that write_cache_pages(), located in
2885 * mm/page-writeback.c, marks pages clean in preparation for
2886 * doing I/O, which is not desirable if we're not planning on
2887 * doing I/O at all.
2888 *
2889 * We could call write_cache_pages(), and then redirty all of
380cf090 2890 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2891 * would be ugly in the extreme. So instead we would need to
2892 * replicate parts of the code in the above functions,
25985edc 2893 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2894 * write out the pages, but rather only collect contiguous
2895 * logical block extents, call the multi-block allocator, and
2896 * then update the buffer heads with the block allocations.
de9a55b8 2897 *
ccd2506b
TT
2898 * For now, though, we'll cheat by calling filemap_flush(),
2899 * which will map the blocks, and start the I/O, but not
2900 * actually wait for the I/O to complete.
2901 */
2902 return filemap_flush(inode->i_mapping);
2903}
64769240 2904
ac27a0ec
DK
2905/*
2906 * bmap() is special. It gets used by applications such as lilo and by
2907 * the swapper to find the on-disk block of a specific piece of data.
2908 *
2909 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2910 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2911 * filesystem and enables swap, then they may get a nasty shock when the
2912 * data getting swapped to that swapfile suddenly gets overwritten by
2913 * the original zero's written out previously to the journal and
2914 * awaiting writeback in the kernel's buffer cache.
2915 *
2916 * So, if we see any bmap calls here on a modified, data-journaled file,
2917 * take extra steps to flush any blocks which might be in the cache.
2918 */
617ba13b 2919static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2920{
2921 struct inode *inode = mapping->host;
2922 journal_t *journal;
2923 int err;
2924
46c7f254
TM
2925 /*
2926 * We can get here for an inline file via the FIBMAP ioctl
2927 */
2928 if (ext4_has_inline_data(inode))
2929 return 0;
2930
64769240
AT
2931 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2932 test_opt(inode->i_sb, DELALLOC)) {
2933 /*
2934 * With delalloc we want to sync the file
2935 * so that we can make sure we allocate
2936 * blocks for file
2937 */
2938 filemap_write_and_wait(mapping);
2939 }
2940
19f5fb7a
TT
2941 if (EXT4_JOURNAL(inode) &&
2942 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2943 /*
2944 * This is a REALLY heavyweight approach, but the use of
2945 * bmap on dirty files is expected to be extremely rare:
2946 * only if we run lilo or swapon on a freshly made file
2947 * do we expect this to happen.
2948 *
2949 * (bmap requires CAP_SYS_RAWIO so this does not
2950 * represent an unprivileged user DOS attack --- we'd be
2951 * in trouble if mortal users could trigger this path at
2952 * will.)
2953 *
617ba13b 2954 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2955 * regular files. If somebody wants to bmap a directory
2956 * or symlink and gets confused because the buffer
2957 * hasn't yet been flushed to disk, they deserve
2958 * everything they get.
2959 */
2960
19f5fb7a 2961 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2962 journal = EXT4_JOURNAL(inode);
dab291af
MC
2963 jbd2_journal_lock_updates(journal);
2964 err = jbd2_journal_flush(journal);
2965 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2966
2967 if (err)
2968 return 0;
2969 }
2970
af5bc92d 2971 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2972}
2973
617ba13b 2974static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2975{
46c7f254
TM
2976 int ret = -EAGAIN;
2977 struct inode *inode = page->mapping->host;
2978
0562e0ba 2979 trace_ext4_readpage(page);
46c7f254
TM
2980
2981 if (ext4_has_inline_data(inode))
2982 ret = ext4_readpage_inline(inode, page);
2983
2984 if (ret == -EAGAIN)
2985 return mpage_readpage(page, ext4_get_block);
2986
2987 return ret;
ac27a0ec
DK
2988}
2989
2990static int
617ba13b 2991ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2992 struct list_head *pages, unsigned nr_pages)
2993{
46c7f254
TM
2994 struct inode *inode = mapping->host;
2995
2996 /* If the file has inline data, no need to do readpages. */
2997 if (ext4_has_inline_data(inode))
2998 return 0;
2999
617ba13b 3000 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3001}
3002
617ba13b 3003static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3004{
0562e0ba
JZ
3005 trace_ext4_invalidatepage(page, offset);
3006
4520fb3c
JK
3007 /* No journalling happens on data buffers when this function is used */
3008 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3009
3010 block_invalidatepage(page, offset);
3011}
3012
53e87268
JK
3013static int __ext4_journalled_invalidatepage(struct page *page,
3014 unsigned long offset)
4520fb3c
JK
3015{
3016 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3017
3018 trace_ext4_journalled_invalidatepage(page, offset);
3019
ac27a0ec
DK
3020 /*
3021 * If it's a full truncate we just forget about the pending dirtying
3022 */
3023 if (offset == 0)
3024 ClearPageChecked(page);
3025
53e87268
JK
3026 return jbd2_journal_invalidatepage(journal, page, offset);
3027}
3028
3029/* Wrapper for aops... */
3030static void ext4_journalled_invalidatepage(struct page *page,
3031 unsigned long offset)
3032{
3033 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3034}
3035
617ba13b 3036static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3037{
617ba13b 3038 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3039
0562e0ba
JZ
3040 trace_ext4_releasepage(page);
3041
e1c36595
JK
3042 /* Page has dirty journalled data -> cannot release */
3043 if (PageChecked(page))
ac27a0ec 3044 return 0;
0390131b
FM
3045 if (journal)
3046 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3047 else
3048 return try_to_free_buffers(page);
ac27a0ec
DK
3049}
3050
2ed88685
TT
3051/*
3052 * ext4_get_block used when preparing for a DIO write or buffer write.
3053 * We allocate an uinitialized extent if blocks haven't been allocated.
3054 * The extent will be converted to initialized after the IO is complete.
3055 */
f19d5870 3056int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3057 struct buffer_head *bh_result, int create)
3058{
c7064ef1 3059 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3060 inode->i_ino, create);
2ed88685
TT
3061 return _ext4_get_block(inode, iblock, bh_result,
3062 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3063}
3064
729f52c6 3065static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3066 struct buffer_head *bh_result, int create)
729f52c6 3067{
8b0f165f
AP
3068 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3069 inode->i_ino, create);
3070 return _ext4_get_block(inode, iblock, bh_result,
3071 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3072}
3073
4c0425ff 3074static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3075 ssize_t size, void *private, int ret,
3076 bool is_async)
4c0425ff 3077{
496ad9aa 3078 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3079 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3080
4eec708d
JK
3081 /* if not async direct IO just return */
3082 if (!io_end) {
3083 inode_dio_done(inode);
3084 if (is_async)
3085 aio_complete(iocb, ret, 0);
3086 return;
3087 }
4b70df18 3088
88635ca2 3089 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3090 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3091 iocb->private, io_end->inode->i_ino, iocb, offset,
3092 size);
8d5d02e6 3093
b5a7e970 3094 iocb->private = NULL;
4c0425ff
MC
3095 io_end->offset = offset;
3096 io_end->size = size;
5b3ff237
JZ
3097 if (is_async) {
3098 io_end->iocb = iocb;
3099 io_end->result = ret;
3100 }
4eec708d 3101 ext4_put_io_end_defer(io_end);
4c0425ff 3102}
c7064ef1 3103
4c0425ff
MC
3104/*
3105 * For ext4 extent files, ext4 will do direct-io write to holes,
3106 * preallocated extents, and those write extend the file, no need to
3107 * fall back to buffered IO.
3108 *
b595076a 3109 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3110 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3111 * still keep the range to write as uninitialized.
4c0425ff 3112 *
69c499d1 3113 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3114 * For async direct IO, since the IO may still pending when return, we
25985edc 3115 * set up an end_io call back function, which will do the conversion
8d5d02e6 3116 * when async direct IO completed.
4c0425ff
MC
3117 *
3118 * If the O_DIRECT write will extend the file then add this inode to the
3119 * orphan list. So recovery will truncate it back to the original size
3120 * if the machine crashes during the write.
3121 *
3122 */
3123static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3124 const struct iovec *iov, loff_t offset,
3125 unsigned long nr_segs)
3126{
3127 struct file *file = iocb->ki_filp;
3128 struct inode *inode = file->f_mapping->host;
3129 ssize_t ret;
3130 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3131 int overwrite = 0;
3132 get_block_t *get_block_func = NULL;
3133 int dio_flags = 0;
4c0425ff 3134 loff_t final_size = offset + count;
4eec708d 3135 ext4_io_end_t *io_end = NULL;
729f52c6 3136
69c499d1
TT
3137 /* Use the old path for reads and writes beyond i_size. */
3138 if (rw != WRITE || final_size > inode->i_size)
3139 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3140
69c499d1 3141 BUG_ON(iocb->private == NULL);
4bd809db 3142
69c499d1
TT
3143 /* If we do a overwrite dio, i_mutex locking can be released */
3144 overwrite = *((int *)iocb->private);
4bd809db 3145
69c499d1
TT
3146 if (overwrite) {
3147 atomic_inc(&inode->i_dio_count);
3148 down_read(&EXT4_I(inode)->i_data_sem);
3149 mutex_unlock(&inode->i_mutex);
3150 }
8d5d02e6 3151
69c499d1
TT
3152 /*
3153 * We could direct write to holes and fallocate.
3154 *
3155 * Allocated blocks to fill the hole are marked as
3156 * uninitialized to prevent parallel buffered read to expose
3157 * the stale data before DIO complete the data IO.
3158 *
3159 * As to previously fallocated extents, ext4 get_block will
3160 * just simply mark the buffer mapped but still keep the
3161 * extents uninitialized.
3162 *
3163 * For non AIO case, we will convert those unwritten extents
3164 * to written after return back from blockdev_direct_IO.
3165 *
3166 * For async DIO, the conversion needs to be deferred when the
3167 * IO is completed. The ext4 end_io callback function will be
3168 * called to take care of the conversion work. Here for async
3169 * case, we allocate an io_end structure to hook to the iocb.
3170 */
3171 iocb->private = NULL;
3172 ext4_inode_aio_set(inode, NULL);
3173 if (!is_sync_kiocb(iocb)) {
4eec708d 3174 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3175 if (!io_end) {
3176 ret = -ENOMEM;
3177 goto retake_lock;
8b0f165f 3178 }
69c499d1 3179 io_end->flag |= EXT4_IO_END_DIRECT;
4eec708d
JK
3180 /*
3181 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3182 */
3183 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3184 /*
69c499d1
TT
3185 * we save the io structure for current async direct
3186 * IO, so that later ext4_map_blocks() could flag the
3187 * io structure whether there is a unwritten extents
3188 * needs to be converted when IO is completed.
8d5d02e6 3189 */
69c499d1
TT
3190 ext4_inode_aio_set(inode, io_end);
3191 }
4bd809db 3192
69c499d1
TT
3193 if (overwrite) {
3194 get_block_func = ext4_get_block_write_nolock;
3195 } else {
3196 get_block_func = ext4_get_block_write;
3197 dio_flags = DIO_LOCKING;
3198 }
3199 ret = __blockdev_direct_IO(rw, iocb, inode,
3200 inode->i_sb->s_bdev, iov,
3201 offset, nr_segs,
3202 get_block_func,
3203 ext4_end_io_dio,
3204 NULL,
3205 dio_flags);
3206
69c499d1 3207 /*
4eec708d
JK
3208 * Put our reference to io_end. This can free the io_end structure e.g.
3209 * in sync IO case or in case of error. It can even perform extent
3210 * conversion if all bios we submitted finished before we got here.
3211 * Note that in that case iocb->private can be already set to NULL
3212 * here.
69c499d1 3213 */
4eec708d
JK
3214 if (io_end) {
3215 ext4_inode_aio_set(inode, NULL);
3216 ext4_put_io_end(io_end);
3217 /*
3218 * In case of error or no write ext4_end_io_dio() was not
3219 * called so we have to put iocb's reference.
3220 */
3221 if (ret <= 0 && ret != -EIOCBQUEUED) {
3222 WARN_ON(iocb->private != io_end);
3223 ext4_put_io_end(io_end);
3224 iocb->private = NULL;
3225 }
3226 }
3227 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3228 EXT4_STATE_DIO_UNWRITTEN)) {
3229 int err;
3230 /*
3231 * for non AIO case, since the IO is already
3232 * completed, we could do the conversion right here
3233 */
3234 err = ext4_convert_unwritten_extents(inode,
3235 offset, ret);
3236 if (err < 0)
3237 ret = err;
3238 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3239 }
4bd809db 3240
69c499d1
TT
3241retake_lock:
3242 /* take i_mutex locking again if we do a ovewrite dio */
3243 if (overwrite) {
3244 inode_dio_done(inode);
3245 up_read(&EXT4_I(inode)->i_data_sem);
3246 mutex_lock(&inode->i_mutex);
4c0425ff 3247 }
8d5d02e6 3248
69c499d1 3249 return ret;
4c0425ff
MC
3250}
3251
3252static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3253 const struct iovec *iov, loff_t offset,
3254 unsigned long nr_segs)
3255{
3256 struct file *file = iocb->ki_filp;
3257 struct inode *inode = file->f_mapping->host;
0562e0ba 3258 ssize_t ret;
4c0425ff 3259
84ebd795
TT
3260 /*
3261 * If we are doing data journalling we don't support O_DIRECT
3262 */
3263 if (ext4_should_journal_data(inode))
3264 return 0;
3265
46c7f254
TM
3266 /* Let buffer I/O handle the inline data case. */
3267 if (ext4_has_inline_data(inode))
3268 return 0;
3269
0562e0ba 3270 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3272 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3273 else
3274 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3275 trace_ext4_direct_IO_exit(inode, offset,
3276 iov_length(iov, nr_segs), rw, ret);
3277 return ret;
4c0425ff
MC
3278}
3279
ac27a0ec 3280/*
617ba13b 3281 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3282 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3283 * much here because ->set_page_dirty is called under VFS locks. The page is
3284 * not necessarily locked.
3285 *
3286 * We cannot just dirty the page and leave attached buffers clean, because the
3287 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3288 * or jbddirty because all the journalling code will explode.
3289 *
3290 * So what we do is to mark the page "pending dirty" and next time writepage
3291 * is called, propagate that into the buffers appropriately.
3292 */
617ba13b 3293static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3294{
3295 SetPageChecked(page);
3296 return __set_page_dirty_nobuffers(page);
3297}
3298
74d553aa 3299static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3300 .readpage = ext4_readpage,
3301 .readpages = ext4_readpages,
43ce1d23 3302 .writepage = ext4_writepage,
8ab22b9a 3303 .write_begin = ext4_write_begin,
74d553aa 3304 .write_end = ext4_write_end,
8ab22b9a
HH
3305 .bmap = ext4_bmap,
3306 .invalidatepage = ext4_invalidatepage,
3307 .releasepage = ext4_releasepage,
3308 .direct_IO = ext4_direct_IO,
3309 .migratepage = buffer_migrate_page,
3310 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3311 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3312};
3313
617ba13b 3314static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3315 .readpage = ext4_readpage,
3316 .readpages = ext4_readpages,
43ce1d23 3317 .writepage = ext4_writepage,
8ab22b9a
HH
3318 .write_begin = ext4_write_begin,
3319 .write_end = ext4_journalled_write_end,
3320 .set_page_dirty = ext4_journalled_set_page_dirty,
3321 .bmap = ext4_bmap,
4520fb3c 3322 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3323 .releasepage = ext4_releasepage,
84ebd795 3324 .direct_IO = ext4_direct_IO,
8ab22b9a 3325 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3326 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3327};
3328
64769240 3329static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3330 .readpage = ext4_readpage,
3331 .readpages = ext4_readpages,
43ce1d23 3332 .writepage = ext4_writepage,
8ab22b9a 3333 .writepages = ext4_da_writepages,
8ab22b9a
HH
3334 .write_begin = ext4_da_write_begin,
3335 .write_end = ext4_da_write_end,
3336 .bmap = ext4_bmap,
3337 .invalidatepage = ext4_da_invalidatepage,
3338 .releasepage = ext4_releasepage,
3339 .direct_IO = ext4_direct_IO,
3340 .migratepage = buffer_migrate_page,
3341 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3342 .error_remove_page = generic_error_remove_page,
64769240
AT
3343};
3344
617ba13b 3345void ext4_set_aops(struct inode *inode)
ac27a0ec 3346{
3d2b1582
LC
3347 switch (ext4_inode_journal_mode(inode)) {
3348 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3349 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3350 break;
3351 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3352 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3353 break;
3354 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3355 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3356 return;
3d2b1582
LC
3357 default:
3358 BUG();
3359 }
74d553aa
TT
3360 if (test_opt(inode->i_sb, DELALLOC))
3361 inode->i_mapping->a_ops = &ext4_da_aops;
3362 else
3363 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3364}
3365
4e96b2db
AH
3366
3367/*
3368 * ext4_discard_partial_page_buffers()
3369 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3370 * This function finds and locks the page containing the offset
3371 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3372 * Calling functions that already have the page locked should call
3373 * ext4_discard_partial_page_buffers_no_lock directly.
3374 */
3375int ext4_discard_partial_page_buffers(handle_t *handle,
3376 struct address_space *mapping, loff_t from,
3377 loff_t length, int flags)
3378{
3379 struct inode *inode = mapping->host;
3380 struct page *page;
3381 int err = 0;
3382
3383 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3384 mapping_gfp_mask(mapping) & ~__GFP_FS);
3385 if (!page)
5129d05f 3386 return -ENOMEM;
4e96b2db
AH
3387
3388 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3389 from, length, flags);
3390
3391 unlock_page(page);
3392 page_cache_release(page);
3393 return err;
3394}
3395
3396/*
3397 * ext4_discard_partial_page_buffers_no_lock()
3398 * Zeros a page range of length 'length' starting from offset 'from'.
3399 * Buffer heads that correspond to the block aligned regions of the
3400 * zeroed range will be unmapped. Unblock aligned regions
3401 * will have the corresponding buffer head mapped if needed so that
3402 * that region of the page can be updated with the partial zero out.
3403 *
3404 * This function assumes that the page has already been locked. The
3405 * The range to be discarded must be contained with in the given page.
3406 * If the specified range exceeds the end of the page it will be shortened
3407 * to the end of the page that corresponds to 'from'. This function is
3408 * appropriate for updating a page and it buffer heads to be unmapped and
3409 * zeroed for blocks that have been either released, or are going to be
3410 * released.
3411 *
3412 * handle: The journal handle
3413 * inode: The files inode
3414 * page: A locked page that contains the offset "from"
4907cb7b 3415 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3416 * to begin discarding
3417 * len: The length of bytes to discard
3418 * flags: Optional flags that may be used:
3419 *
3420 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3421 * Only zero the regions of the page whose buffer heads
3422 * have already been unmapped. This flag is appropriate
4907cb7b 3423 * for updating the contents of a page whose blocks may
4e96b2db
AH
3424 * have already been released, and we only want to zero
3425 * out the regions that correspond to those released blocks.
3426 *
4907cb7b 3427 * Returns zero on success or negative on failure.
4e96b2db 3428 */
5f163cc7 3429static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3430 struct inode *inode, struct page *page, loff_t from,
3431 loff_t length, int flags)
3432{
3433 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3434 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3435 unsigned int blocksize, max, pos;
4e96b2db
AH
3436 ext4_lblk_t iblock;
3437 struct buffer_head *bh;
3438 int err = 0;
3439
3440 blocksize = inode->i_sb->s_blocksize;
3441 max = PAGE_CACHE_SIZE - offset;
3442
3443 if (index != page->index)
3444 return -EINVAL;
3445
3446 /*
3447 * correct length if it does not fall between
3448 * 'from' and the end of the page
3449 */
3450 if (length > max || length < 0)
3451 length = max;
3452
3453 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3454
093e6e36
YY
3455 if (!page_has_buffers(page))
3456 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3457
3458 /* Find the buffer that contains "offset" */
3459 bh = page_buffers(page);
3460 pos = blocksize;
3461 while (offset >= pos) {
3462 bh = bh->b_this_page;
3463 iblock++;
3464 pos += blocksize;
3465 }
3466
3467 pos = offset;
3468 while (pos < offset + length) {
e260daf2
YY
3469 unsigned int end_of_block, range_to_discard;
3470
4e96b2db
AH
3471 err = 0;
3472
3473 /* The length of space left to zero and unmap */
3474 range_to_discard = offset + length - pos;
3475
3476 /* The length of space until the end of the block */
3477 end_of_block = blocksize - (pos & (blocksize-1));
3478
3479 /*
3480 * Do not unmap or zero past end of block
3481 * for this buffer head
3482 */
3483 if (range_to_discard > end_of_block)
3484 range_to_discard = end_of_block;
3485
3486
3487 /*
3488 * Skip this buffer head if we are only zeroing unampped
3489 * regions of the page
3490 */
3491 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3492 buffer_mapped(bh))
3493 goto next;
3494
3495 /* If the range is block aligned, unmap */
3496 if (range_to_discard == blocksize) {
3497 clear_buffer_dirty(bh);
3498 bh->b_bdev = NULL;
3499 clear_buffer_mapped(bh);
3500 clear_buffer_req(bh);
3501 clear_buffer_new(bh);
3502 clear_buffer_delay(bh);
3503 clear_buffer_unwritten(bh);
3504 clear_buffer_uptodate(bh);
3505 zero_user(page, pos, range_to_discard);
3506 BUFFER_TRACE(bh, "Buffer discarded");
3507 goto next;
3508 }
3509
3510 /*
3511 * If this block is not completely contained in the range
3512 * to be discarded, then it is not going to be released. Because
3513 * we need to keep this block, we need to make sure this part
3514 * of the page is uptodate before we modify it by writeing
3515 * partial zeros on it.
3516 */
3517 if (!buffer_mapped(bh)) {
3518 /*
3519 * Buffer head must be mapped before we can read
3520 * from the block
3521 */
3522 BUFFER_TRACE(bh, "unmapped");
3523 ext4_get_block(inode, iblock, bh, 0);
3524 /* unmapped? It's a hole - nothing to do */
3525 if (!buffer_mapped(bh)) {
3526 BUFFER_TRACE(bh, "still unmapped");
3527 goto next;
3528 }
3529 }
3530
3531 /* Ok, it's mapped. Make sure it's up-to-date */
3532 if (PageUptodate(page))
3533 set_buffer_uptodate(bh);
3534
3535 if (!buffer_uptodate(bh)) {
3536 err = -EIO;
3537 ll_rw_block(READ, 1, &bh);
3538 wait_on_buffer(bh);
3539 /* Uhhuh. Read error. Complain and punt.*/
3540 if (!buffer_uptodate(bh))
3541 goto next;
3542 }
3543
3544 if (ext4_should_journal_data(inode)) {
3545 BUFFER_TRACE(bh, "get write access");
3546 err = ext4_journal_get_write_access(handle, bh);
3547 if (err)
3548 goto next;
3549 }
3550
3551 zero_user(page, pos, range_to_discard);
3552
3553 err = 0;
3554 if (ext4_should_journal_data(inode)) {
3555 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3556 } else
4e96b2db 3557 mark_buffer_dirty(bh);
4e96b2db
AH
3558
3559 BUFFER_TRACE(bh, "Partial buffer zeroed");
3560next:
3561 bh = bh->b_this_page;
3562 iblock++;
3563 pos += range_to_discard;
3564 }
3565
3566 return err;
3567}
3568
91ef4caf
DG
3569int ext4_can_truncate(struct inode *inode)
3570{
91ef4caf
DG
3571 if (S_ISREG(inode->i_mode))
3572 return 1;
3573 if (S_ISDIR(inode->i_mode))
3574 return 1;
3575 if (S_ISLNK(inode->i_mode))
3576 return !ext4_inode_is_fast_symlink(inode);
3577 return 0;
3578}
3579
a4bb6b64
AH
3580/*
3581 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3582 * associated with the given offset and length
3583 *
3584 * @inode: File inode
3585 * @offset: The offset where the hole will begin
3586 * @len: The length of the hole
3587 *
4907cb7b 3588 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3589 */
3590
3591int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3592{
496ad9aa 3593 struct inode *inode = file_inode(file);
26a4c0c6
TT
3594 struct super_block *sb = inode->i_sb;
3595 ext4_lblk_t first_block, stop_block;
3596 struct address_space *mapping = inode->i_mapping;
3597 loff_t first_page, last_page, page_len;
3598 loff_t first_page_offset, last_page_offset;
3599 handle_t *handle;
3600 unsigned int credits;
3601 int ret = 0;
3602
a4bb6b64 3603 if (!S_ISREG(inode->i_mode))
73355192 3604 return -EOPNOTSUPP;
a4bb6b64 3605
26a4c0c6 3606 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3607 /* TODO: Add support for bigalloc file systems */
73355192 3608 return -EOPNOTSUPP;
bab08ab9
TT
3609 }
3610
aaddea81
ZL
3611 trace_ext4_punch_hole(inode, offset, length);
3612
26a4c0c6
TT
3613 /*
3614 * Write out all dirty pages to avoid race conditions
3615 * Then release them.
3616 */
3617 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3618 ret = filemap_write_and_wait_range(mapping, offset,
3619 offset + length - 1);
3620 if (ret)
3621 return ret;
3622 }
3623
3624 mutex_lock(&inode->i_mutex);
3625 /* It's not possible punch hole on append only file */
3626 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3627 ret = -EPERM;
3628 goto out_mutex;
3629 }
3630 if (IS_SWAPFILE(inode)) {
3631 ret = -ETXTBSY;
3632 goto out_mutex;
3633 }
3634
3635 /* No need to punch hole beyond i_size */
3636 if (offset >= inode->i_size)
3637 goto out_mutex;
3638
3639 /*
3640 * If the hole extends beyond i_size, set the hole
3641 * to end after the page that contains i_size
3642 */
3643 if (offset + length > inode->i_size) {
3644 length = inode->i_size +
3645 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3646 offset;
3647 }
3648
3649 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3650 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3651
3652 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3653 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3654
3655 /* Now release the pages */
3656 if (last_page_offset > first_page_offset) {
3657 truncate_pagecache_range(inode, first_page_offset,
3658 last_page_offset - 1);
3659 }
3660
3661 /* Wait all existing dio workers, newcomers will block on i_mutex */
3662 ext4_inode_block_unlocked_dio(inode);
3663 ret = ext4_flush_unwritten_io(inode);
3664 if (ret)
3665 goto out_dio;
3666 inode_dio_wait(inode);
3667
3668 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3669 credits = ext4_writepage_trans_blocks(inode);
3670 else
3671 credits = ext4_blocks_for_truncate(inode);
3672 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673 if (IS_ERR(handle)) {
3674 ret = PTR_ERR(handle);
3675 ext4_std_error(sb, ret);
3676 goto out_dio;
3677 }
3678
3679 /*
3680 * Now we need to zero out the non-page-aligned data in the
3681 * pages at the start and tail of the hole, and unmap the
3682 * buffer heads for the block aligned regions of the page that
3683 * were completely zeroed.
3684 */
3685 if (first_page > last_page) {
3686 /*
3687 * If the file space being truncated is contained
3688 * within a page just zero out and unmap the middle of
3689 * that page
3690 */
3691 ret = ext4_discard_partial_page_buffers(handle,
3692 mapping, offset, length, 0);
3693
3694 if (ret)
3695 goto out_stop;
3696 } else {
3697 /*
3698 * zero out and unmap the partial page that contains
3699 * the start of the hole
3700 */
3701 page_len = first_page_offset - offset;
3702 if (page_len > 0) {
3703 ret = ext4_discard_partial_page_buffers(handle, mapping,
3704 offset, page_len, 0);
3705 if (ret)
3706 goto out_stop;
3707 }
3708
3709 /*
3710 * zero out and unmap the partial page that contains
3711 * the end of the hole
3712 */
3713 page_len = offset + length - last_page_offset;
3714 if (page_len > 0) {
3715 ret = ext4_discard_partial_page_buffers(handle, mapping,
3716 last_page_offset, page_len, 0);
3717 if (ret)
3718 goto out_stop;
3719 }
3720 }
3721
3722 /*
3723 * If i_size is contained in the last page, we need to
3724 * unmap and zero the partial page after i_size
3725 */
3726 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3727 inode->i_size % PAGE_CACHE_SIZE != 0) {
3728 page_len = PAGE_CACHE_SIZE -
3729 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3730
3731 if (page_len > 0) {
3732 ret = ext4_discard_partial_page_buffers(handle,
3733 mapping, inode->i_size, page_len, 0);
3734
3735 if (ret)
3736 goto out_stop;
3737 }
3738 }
3739
3740 first_block = (offset + sb->s_blocksize - 1) >>
3741 EXT4_BLOCK_SIZE_BITS(sb);
3742 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3743
3744 /* If there are no blocks to remove, return now */
3745 if (first_block >= stop_block)
3746 goto out_stop;
3747
3748 down_write(&EXT4_I(inode)->i_data_sem);
3749 ext4_discard_preallocations(inode);
3750
3751 ret = ext4_es_remove_extent(inode, first_block,
3752 stop_block - first_block);
3753 if (ret) {
3754 up_write(&EXT4_I(inode)->i_data_sem);
3755 goto out_stop;
3756 }
3757
3758 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3759 ret = ext4_ext_remove_space(inode, first_block,
3760 stop_block - 1);
3761 else
3762 ret = ext4_free_hole_blocks(handle, inode, first_block,
3763 stop_block);
3764
3765 ext4_discard_preallocations(inode);
819c4920 3766 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3767 if (IS_SYNC(inode))
3768 ext4_handle_sync(handle);
26a4c0c6
TT
3769 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3770 ext4_mark_inode_dirty(handle, inode);
3771out_stop:
3772 ext4_journal_stop(handle);
3773out_dio:
3774 ext4_inode_resume_unlocked_dio(inode);
3775out_mutex:
3776 mutex_unlock(&inode->i_mutex);
3777 return ret;
a4bb6b64
AH
3778}
3779
ac27a0ec 3780/*
617ba13b 3781 * ext4_truncate()
ac27a0ec 3782 *
617ba13b
MC
3783 * We block out ext4_get_block() block instantiations across the entire
3784 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3785 * simultaneously on behalf of the same inode.
3786 *
42b2aa86 3787 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3788 * is one core, guiding principle: the file's tree must always be consistent on
3789 * disk. We must be able to restart the truncate after a crash.
3790 *
3791 * The file's tree may be transiently inconsistent in memory (although it
3792 * probably isn't), but whenever we close off and commit a journal transaction,
3793 * the contents of (the filesystem + the journal) must be consistent and
3794 * restartable. It's pretty simple, really: bottom up, right to left (although
3795 * left-to-right works OK too).
3796 *
3797 * Note that at recovery time, journal replay occurs *before* the restart of
3798 * truncate against the orphan inode list.
3799 *
3800 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3801 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3802 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3803 * ext4_truncate() to have another go. So there will be instantiated blocks
3804 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3805 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3806 * ext4_truncate() run will find them and release them.
ac27a0ec 3807 */
617ba13b 3808void ext4_truncate(struct inode *inode)
ac27a0ec 3809{
819c4920
TT
3810 struct ext4_inode_info *ei = EXT4_I(inode);
3811 unsigned int credits;
3812 handle_t *handle;
3813 struct address_space *mapping = inode->i_mapping;
3814 loff_t page_len;
3815
19b5ef61
TT
3816 /*
3817 * There is a possibility that we're either freeing the inode
3818 * or it completely new indode. In those cases we might not
3819 * have i_mutex locked because it's not necessary.
3820 */
3821 if (!(inode->i_state & (I_NEW|I_FREEING)))
3822 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3823 trace_ext4_truncate_enter(inode);
3824
91ef4caf 3825 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3826 return;
3827
12e9b892 3828 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3829
5534fb5b 3830 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3831 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3832
aef1c851
TM
3833 if (ext4_has_inline_data(inode)) {
3834 int has_inline = 1;
3835
3836 ext4_inline_data_truncate(inode, &has_inline);
3837 if (has_inline)
3838 return;
3839 }
3840
819c4920
TT
3841 /*
3842 * finish any pending end_io work so we won't run the risk of
3843 * converting any truncated blocks to initialized later
3844 */
3845 ext4_flush_unwritten_io(inode);
3846
3847 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3848 credits = ext4_writepage_trans_blocks(inode);
3849 else
3850 credits = ext4_blocks_for_truncate(inode);
3851
3852 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3853 if (IS_ERR(handle)) {
3854 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3855 return;
3856 }
3857
3858 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3859 page_len = PAGE_CACHE_SIZE -
3860 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3861
3862 if (ext4_discard_partial_page_buffers(handle,
3863 mapping, inode->i_size, page_len, 0))
3864 goto out_stop;
3865 }
3866
3867 /*
3868 * We add the inode to the orphan list, so that if this
3869 * truncate spans multiple transactions, and we crash, we will
3870 * resume the truncate when the filesystem recovers. It also
3871 * marks the inode dirty, to catch the new size.
3872 *
3873 * Implication: the file must always be in a sane, consistent
3874 * truncatable state while each transaction commits.
3875 */
3876 if (ext4_orphan_add(handle, inode))
3877 goto out_stop;
3878
3879 down_write(&EXT4_I(inode)->i_data_sem);
3880
3881 ext4_discard_preallocations(inode);
3882
ff9893dc 3883 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3884 ext4_ext_truncate(handle, inode);
ff9893dc 3885 else
819c4920
TT
3886 ext4_ind_truncate(handle, inode);
3887
3888 up_write(&ei->i_data_sem);
3889
3890 if (IS_SYNC(inode))
3891 ext4_handle_sync(handle);
3892
3893out_stop:
3894 /*
3895 * If this was a simple ftruncate() and the file will remain alive,
3896 * then we need to clear up the orphan record which we created above.
3897 * However, if this was a real unlink then we were called by
3898 * ext4_delete_inode(), and we allow that function to clean up the
3899 * orphan info for us.
3900 */
3901 if (inode->i_nlink)
3902 ext4_orphan_del(handle, inode);
3903
3904 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3905 ext4_mark_inode_dirty(handle, inode);
3906 ext4_journal_stop(handle);
ac27a0ec 3907
0562e0ba 3908 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3909}
3910
ac27a0ec 3911/*
617ba13b 3912 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3913 * underlying buffer_head on success. If 'in_mem' is true, we have all
3914 * data in memory that is needed to recreate the on-disk version of this
3915 * inode.
3916 */
617ba13b
MC
3917static int __ext4_get_inode_loc(struct inode *inode,
3918 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3919{
240799cd
TT
3920 struct ext4_group_desc *gdp;
3921 struct buffer_head *bh;
3922 struct super_block *sb = inode->i_sb;
3923 ext4_fsblk_t block;
3924 int inodes_per_block, inode_offset;
3925
3a06d778 3926 iloc->bh = NULL;
240799cd
TT
3927 if (!ext4_valid_inum(sb, inode->i_ino))
3928 return -EIO;
ac27a0ec 3929
240799cd
TT
3930 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3931 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3932 if (!gdp)
ac27a0ec
DK
3933 return -EIO;
3934
240799cd
TT
3935 /*
3936 * Figure out the offset within the block group inode table
3937 */
00d09882 3938 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3939 inode_offset = ((inode->i_ino - 1) %
3940 EXT4_INODES_PER_GROUP(sb));
3941 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3942 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3943
3944 bh = sb_getblk(sb, block);
aebf0243 3945 if (unlikely(!bh))
860d21e2 3946 return -ENOMEM;
ac27a0ec
DK
3947 if (!buffer_uptodate(bh)) {
3948 lock_buffer(bh);
9c83a923
HK
3949
3950 /*
3951 * If the buffer has the write error flag, we have failed
3952 * to write out another inode in the same block. In this
3953 * case, we don't have to read the block because we may
3954 * read the old inode data successfully.
3955 */
3956 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3957 set_buffer_uptodate(bh);
3958
ac27a0ec
DK
3959 if (buffer_uptodate(bh)) {
3960 /* someone brought it uptodate while we waited */
3961 unlock_buffer(bh);
3962 goto has_buffer;
3963 }
3964
3965 /*
3966 * If we have all information of the inode in memory and this
3967 * is the only valid inode in the block, we need not read the
3968 * block.
3969 */
3970 if (in_mem) {
3971 struct buffer_head *bitmap_bh;
240799cd 3972 int i, start;
ac27a0ec 3973
240799cd 3974 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3975
240799cd
TT
3976 /* Is the inode bitmap in cache? */
3977 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3978 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3979 goto make_io;
3980
3981 /*
3982 * If the inode bitmap isn't in cache then the
3983 * optimisation may end up performing two reads instead
3984 * of one, so skip it.
3985 */
3986 if (!buffer_uptodate(bitmap_bh)) {
3987 brelse(bitmap_bh);
3988 goto make_io;
3989 }
240799cd 3990 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3991 if (i == inode_offset)
3992 continue;
617ba13b 3993 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3994 break;
3995 }
3996 brelse(bitmap_bh);
240799cd 3997 if (i == start + inodes_per_block) {
ac27a0ec
DK
3998 /* all other inodes are free, so skip I/O */
3999 memset(bh->b_data, 0, bh->b_size);
4000 set_buffer_uptodate(bh);
4001 unlock_buffer(bh);
4002 goto has_buffer;
4003 }
4004 }
4005
4006make_io:
240799cd
TT
4007 /*
4008 * If we need to do any I/O, try to pre-readahead extra
4009 * blocks from the inode table.
4010 */
4011 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4012 ext4_fsblk_t b, end, table;
4013 unsigned num;
4014
4015 table = ext4_inode_table(sb, gdp);
b713a5ec 4016 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4017 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4018 if (table > b)
4019 b = table;
4020 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4021 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 4022 if (ext4_has_group_desc_csum(sb))
560671a0 4023 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4024 table += num / inodes_per_block;
4025 if (end > table)
4026 end = table;
4027 while (b <= end)
4028 sb_breadahead(sb, b++);
4029 }
4030
ac27a0ec
DK
4031 /*
4032 * There are other valid inodes in the buffer, this inode
4033 * has in-inode xattrs, or we don't have this inode in memory.
4034 * Read the block from disk.
4035 */
0562e0ba 4036 trace_ext4_load_inode(inode);
ac27a0ec
DK
4037 get_bh(bh);
4038 bh->b_end_io = end_buffer_read_sync;
65299a3b 4039 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4040 wait_on_buffer(bh);
4041 if (!buffer_uptodate(bh)) {
c398eda0
TT
4042 EXT4_ERROR_INODE_BLOCK(inode, block,
4043 "unable to read itable block");
ac27a0ec
DK
4044 brelse(bh);
4045 return -EIO;
4046 }
4047 }
4048has_buffer:
4049 iloc->bh = bh;
4050 return 0;
4051}
4052
617ba13b 4053int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4054{
4055 /* We have all inode data except xattrs in memory here. */
617ba13b 4056 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4057 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4058}
4059
617ba13b 4060void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4061{
617ba13b 4062 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4063
4064 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4065 if (flags & EXT4_SYNC_FL)
ac27a0ec 4066 inode->i_flags |= S_SYNC;
617ba13b 4067 if (flags & EXT4_APPEND_FL)
ac27a0ec 4068 inode->i_flags |= S_APPEND;
617ba13b 4069 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4070 inode->i_flags |= S_IMMUTABLE;
617ba13b 4071 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4072 inode->i_flags |= S_NOATIME;
617ba13b 4073 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4074 inode->i_flags |= S_DIRSYNC;
4075}
4076
ff9ddf7e
JK
4077/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4078void ext4_get_inode_flags(struct ext4_inode_info *ei)
4079{
84a8dce2
DM
4080 unsigned int vfs_fl;
4081 unsigned long old_fl, new_fl;
4082
4083 do {
4084 vfs_fl = ei->vfs_inode.i_flags;
4085 old_fl = ei->i_flags;
4086 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4087 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4088 EXT4_DIRSYNC_FL);
4089 if (vfs_fl & S_SYNC)
4090 new_fl |= EXT4_SYNC_FL;
4091 if (vfs_fl & S_APPEND)
4092 new_fl |= EXT4_APPEND_FL;
4093 if (vfs_fl & S_IMMUTABLE)
4094 new_fl |= EXT4_IMMUTABLE_FL;
4095 if (vfs_fl & S_NOATIME)
4096 new_fl |= EXT4_NOATIME_FL;
4097 if (vfs_fl & S_DIRSYNC)
4098 new_fl |= EXT4_DIRSYNC_FL;
4099 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4100}
de9a55b8 4101
0fc1b451 4102static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4103 struct ext4_inode_info *ei)
0fc1b451
AK
4104{
4105 blkcnt_t i_blocks ;
8180a562
AK
4106 struct inode *inode = &(ei->vfs_inode);
4107 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4108
4109 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4110 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4111 /* we are using combined 48 bit field */
4112 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4113 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4114 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4115 /* i_blocks represent file system block size */
4116 return i_blocks << (inode->i_blkbits - 9);
4117 } else {
4118 return i_blocks;
4119 }
0fc1b451
AK
4120 } else {
4121 return le32_to_cpu(raw_inode->i_blocks_lo);
4122 }
4123}
ff9ddf7e 4124
152a7b0a
TM
4125static inline void ext4_iget_extra_inode(struct inode *inode,
4126 struct ext4_inode *raw_inode,
4127 struct ext4_inode_info *ei)
4128{
4129 __le32 *magic = (void *)raw_inode +
4130 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4131 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4132 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4133 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4134 } else
4135 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4136}
4137
1d1fe1ee 4138struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4139{
617ba13b
MC
4140 struct ext4_iloc iloc;
4141 struct ext4_inode *raw_inode;
1d1fe1ee 4142 struct ext4_inode_info *ei;
1d1fe1ee 4143 struct inode *inode;
b436b9be 4144 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4145 long ret;
ac27a0ec 4146 int block;
08cefc7a
EB
4147 uid_t i_uid;
4148 gid_t i_gid;
ac27a0ec 4149
1d1fe1ee
DH
4150 inode = iget_locked(sb, ino);
4151 if (!inode)
4152 return ERR_PTR(-ENOMEM);
4153 if (!(inode->i_state & I_NEW))
4154 return inode;
4155
4156 ei = EXT4_I(inode);
7dc57615 4157 iloc.bh = NULL;
ac27a0ec 4158
1d1fe1ee
DH
4159 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4160 if (ret < 0)
ac27a0ec 4161 goto bad_inode;
617ba13b 4162 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4163
4164 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4165 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4166 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4167 EXT4_INODE_SIZE(inode->i_sb)) {
4168 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4169 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4170 EXT4_INODE_SIZE(inode->i_sb));
4171 ret = -EIO;
4172 goto bad_inode;
4173 }
4174 } else
4175 ei->i_extra_isize = 0;
4176
4177 /* Precompute checksum seed for inode metadata */
4178 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4179 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4180 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4181 __u32 csum;
4182 __le32 inum = cpu_to_le32(inode->i_ino);
4183 __le32 gen = raw_inode->i_generation;
4184 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4185 sizeof(inum));
4186 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4187 sizeof(gen));
4188 }
4189
4190 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4191 EXT4_ERROR_INODE(inode, "checksum invalid");
4192 ret = -EIO;
4193 goto bad_inode;
4194 }
4195
ac27a0ec 4196 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4197 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4198 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4199 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4200 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4201 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4202 }
08cefc7a
EB
4203 i_uid_write(inode, i_uid);
4204 i_gid_write(inode, i_gid);
bfe86848 4205 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4206
353eb83c 4207 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4208 ei->i_inline_off = 0;
ac27a0ec
DK
4209 ei->i_dir_start_lookup = 0;
4210 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4211 /* We now have enough fields to check if the inode was active or not.
4212 * This is needed because nfsd might try to access dead inodes
4213 * the test is that same one that e2fsck uses
4214 * NeilBrown 1999oct15
4215 */
4216 if (inode->i_nlink == 0) {
393d1d1d
DTB
4217 if ((inode->i_mode == 0 ||
4218 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4219 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4220 /* this inode is deleted */
1d1fe1ee 4221 ret = -ESTALE;
ac27a0ec
DK
4222 goto bad_inode;
4223 }
4224 /* The only unlinked inodes we let through here have
4225 * valid i_mode and are being read by the orphan
4226 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4227 * the process of deleting those.
4228 * OR it is the EXT4_BOOT_LOADER_INO which is
4229 * not initialized on a new filesystem. */
ac27a0ec 4230 }
ac27a0ec 4231 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4232 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4233 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4234 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4235 ei->i_file_acl |=
4236 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4237 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4238 ei->i_disksize = inode->i_size;
a9e7f447
DM
4239#ifdef CONFIG_QUOTA
4240 ei->i_reserved_quota = 0;
4241#endif
ac27a0ec
DK
4242 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4243 ei->i_block_group = iloc.block_group;
a4912123 4244 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4245 /*
4246 * NOTE! The in-memory inode i_data array is in little-endian order
4247 * even on big-endian machines: we do NOT byteswap the block numbers!
4248 */
617ba13b 4249 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4250 ei->i_data[block] = raw_inode->i_block[block];
4251 INIT_LIST_HEAD(&ei->i_orphan);
4252
b436b9be
JK
4253 /*
4254 * Set transaction id's of transactions that have to be committed
4255 * to finish f[data]sync. We set them to currently running transaction
4256 * as we cannot be sure that the inode or some of its metadata isn't
4257 * part of the transaction - the inode could have been reclaimed and
4258 * now it is reread from disk.
4259 */
4260 if (journal) {
4261 transaction_t *transaction;
4262 tid_t tid;
4263
a931da6a 4264 read_lock(&journal->j_state_lock);
b436b9be
JK
4265 if (journal->j_running_transaction)
4266 transaction = journal->j_running_transaction;
4267 else
4268 transaction = journal->j_committing_transaction;
4269 if (transaction)
4270 tid = transaction->t_tid;
4271 else
4272 tid = journal->j_commit_sequence;
a931da6a 4273 read_unlock(&journal->j_state_lock);
b436b9be
JK
4274 ei->i_sync_tid = tid;
4275 ei->i_datasync_tid = tid;
4276 }
4277
0040d987 4278 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4279 if (ei->i_extra_isize == 0) {
4280 /* The extra space is currently unused. Use it. */
617ba13b
MC
4281 ei->i_extra_isize = sizeof(struct ext4_inode) -
4282 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4283 } else {
152a7b0a 4284 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4285 }
814525f4 4286 }
ac27a0ec 4287
ef7f3835
KS
4288 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4289 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4290 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4291 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4292
25ec56b5
JNC
4293 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4294 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4295 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4296 inode->i_version |=
4297 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4298 }
4299
c4b5a614 4300 ret = 0;
485c26ec 4301 if (ei->i_file_acl &&
1032988c 4302 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4303 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4304 ei->i_file_acl);
485c26ec
TT
4305 ret = -EIO;
4306 goto bad_inode;
f19d5870
TM
4307 } else if (!ext4_has_inline_data(inode)) {
4308 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4309 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4310 (S_ISLNK(inode->i_mode) &&
4311 !ext4_inode_is_fast_symlink(inode))))
4312 /* Validate extent which is part of inode */
4313 ret = ext4_ext_check_inode(inode);
4314 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4315 (S_ISLNK(inode->i_mode) &&
4316 !ext4_inode_is_fast_symlink(inode))) {
4317 /* Validate block references which are part of inode */
4318 ret = ext4_ind_check_inode(inode);
4319 }
fe2c8191 4320 }
567f3e9a 4321 if (ret)
de9a55b8 4322 goto bad_inode;
7a262f7c 4323
ac27a0ec 4324 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4325 inode->i_op = &ext4_file_inode_operations;
4326 inode->i_fop = &ext4_file_operations;
4327 ext4_set_aops(inode);
ac27a0ec 4328 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4329 inode->i_op = &ext4_dir_inode_operations;
4330 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4331 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4332 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4333 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4334 nd_terminate_link(ei->i_data, inode->i_size,
4335 sizeof(ei->i_data) - 1);
4336 } else {
617ba13b
MC
4337 inode->i_op = &ext4_symlink_inode_operations;
4338 ext4_set_aops(inode);
ac27a0ec 4339 }
563bdd61
TT
4340 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4341 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4342 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4343 if (raw_inode->i_block[0])
4344 init_special_inode(inode, inode->i_mode,
4345 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4346 else
4347 init_special_inode(inode, inode->i_mode,
4348 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4349 } else if (ino == EXT4_BOOT_LOADER_INO) {
4350 make_bad_inode(inode);
563bdd61 4351 } else {
563bdd61 4352 ret = -EIO;
24676da4 4353 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4354 goto bad_inode;
ac27a0ec 4355 }
af5bc92d 4356 brelse(iloc.bh);
617ba13b 4357 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4358 unlock_new_inode(inode);
4359 return inode;
ac27a0ec
DK
4360
4361bad_inode:
567f3e9a 4362 brelse(iloc.bh);
1d1fe1ee
DH
4363 iget_failed(inode);
4364 return ERR_PTR(ret);
ac27a0ec
DK
4365}
4366
0fc1b451
AK
4367static int ext4_inode_blocks_set(handle_t *handle,
4368 struct ext4_inode *raw_inode,
4369 struct ext4_inode_info *ei)
4370{
4371 struct inode *inode = &(ei->vfs_inode);
4372 u64 i_blocks = inode->i_blocks;
4373 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4374
4375 if (i_blocks <= ~0U) {
4376 /*
4907cb7b 4377 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4378 * as multiple of 512 bytes
4379 */
8180a562 4380 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4381 raw_inode->i_blocks_high = 0;
84a8dce2 4382 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4383 return 0;
4384 }
4385 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4386 return -EFBIG;
4387
4388 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4389 /*
4390 * i_blocks can be represented in a 48 bit variable
4391 * as multiple of 512 bytes
4392 */
8180a562 4393 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4394 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4395 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4396 } else {
84a8dce2 4397 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4398 /* i_block is stored in file system block size */
4399 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4400 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4401 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4402 }
f287a1a5 4403 return 0;
0fc1b451
AK
4404}
4405
ac27a0ec
DK
4406/*
4407 * Post the struct inode info into an on-disk inode location in the
4408 * buffer-cache. This gobbles the caller's reference to the
4409 * buffer_head in the inode location struct.
4410 *
4411 * The caller must have write access to iloc->bh.
4412 */
617ba13b 4413static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4414 struct inode *inode,
830156c7 4415 struct ext4_iloc *iloc)
ac27a0ec 4416{
617ba13b
MC
4417 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4418 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4419 struct buffer_head *bh = iloc->bh;
4420 int err = 0, rc, block;
b71fc079 4421 int need_datasync = 0;
08cefc7a
EB
4422 uid_t i_uid;
4423 gid_t i_gid;
ac27a0ec
DK
4424
4425 /* For fields not not tracking in the in-memory inode,
4426 * initialise them to zero for new inodes. */
19f5fb7a 4427 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4428 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4429
ff9ddf7e 4430 ext4_get_inode_flags(ei);
ac27a0ec 4431 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4432 i_uid = i_uid_read(inode);
4433 i_gid = i_gid_read(inode);
af5bc92d 4434 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4435 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4436 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4437/*
4438 * Fix up interoperability with old kernels. Otherwise, old inodes get
4439 * re-used with the upper 16 bits of the uid/gid intact
4440 */
af5bc92d 4441 if (!ei->i_dtime) {
ac27a0ec 4442 raw_inode->i_uid_high =
08cefc7a 4443 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4444 raw_inode->i_gid_high =
08cefc7a 4445 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4446 } else {
4447 raw_inode->i_uid_high = 0;
4448 raw_inode->i_gid_high = 0;
4449 }
4450 } else {
08cefc7a
EB
4451 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4452 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4453 raw_inode->i_uid_high = 0;
4454 raw_inode->i_gid_high = 0;
4455 }
4456 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4457
4458 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4459 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4460 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4461 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4462
0fc1b451
AK
4463 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4464 goto out_brelse;
ac27a0ec 4465 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4466 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4467 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4468 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4469 raw_inode->i_file_acl_high =
4470 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4471 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4472 if (ei->i_disksize != ext4_isize(raw_inode)) {
4473 ext4_isize_set(raw_inode, ei->i_disksize);
4474 need_datasync = 1;
4475 }
a48380f7
AK
4476 if (ei->i_disksize > 0x7fffffffULL) {
4477 struct super_block *sb = inode->i_sb;
4478 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4479 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4480 EXT4_SB(sb)->s_es->s_rev_level ==
4481 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4482 /* If this is the first large file
4483 * created, add a flag to the superblock.
4484 */
4485 err = ext4_journal_get_write_access(handle,
4486 EXT4_SB(sb)->s_sbh);
4487 if (err)
4488 goto out_brelse;
4489 ext4_update_dynamic_rev(sb);
4490 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4491 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4492 ext4_handle_sync(handle);
b50924c2 4493 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4494 }
4495 }
4496 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4497 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4498 if (old_valid_dev(inode->i_rdev)) {
4499 raw_inode->i_block[0] =
4500 cpu_to_le32(old_encode_dev(inode->i_rdev));
4501 raw_inode->i_block[1] = 0;
4502 } else {
4503 raw_inode->i_block[0] = 0;
4504 raw_inode->i_block[1] =
4505 cpu_to_le32(new_encode_dev(inode->i_rdev));
4506 raw_inode->i_block[2] = 0;
4507 }
f19d5870 4508 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4509 for (block = 0; block < EXT4_N_BLOCKS; block++)
4510 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4511 }
ac27a0ec 4512
25ec56b5
JNC
4513 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4514 if (ei->i_extra_isize) {
4515 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4516 raw_inode->i_version_hi =
4517 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4518 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4519 }
4520
814525f4
DW
4521 ext4_inode_csum_set(inode, raw_inode, ei);
4522
830156c7 4523 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4524 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4525 if (!err)
4526 err = rc;
19f5fb7a 4527 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4528
b71fc079 4529 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4530out_brelse:
af5bc92d 4531 brelse(bh);
617ba13b 4532 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4533 return err;
4534}
4535
4536/*
617ba13b 4537 * ext4_write_inode()
ac27a0ec
DK
4538 *
4539 * We are called from a few places:
4540 *
4541 * - Within generic_file_write() for O_SYNC files.
4542 * Here, there will be no transaction running. We wait for any running
4907cb7b 4543 * transaction to commit.
ac27a0ec
DK
4544 *
4545 * - Within sys_sync(), kupdate and such.
4546 * We wait on commit, if tol to.
4547 *
4548 * - Within prune_icache() (PF_MEMALLOC == true)
4549 * Here we simply return. We can't afford to block kswapd on the
4550 * journal commit.
4551 *
4552 * In all cases it is actually safe for us to return without doing anything,
4553 * because the inode has been copied into a raw inode buffer in
617ba13b 4554 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4555 * knfsd.
4556 *
4557 * Note that we are absolutely dependent upon all inode dirtiers doing the
4558 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4559 * which we are interested.
4560 *
4561 * It would be a bug for them to not do this. The code:
4562 *
4563 * mark_inode_dirty(inode)
4564 * stuff();
4565 * inode->i_size = expr;
4566 *
4567 * is in error because a kswapd-driven write_inode() could occur while
4568 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4569 * will no longer be on the superblock's dirty inode list.
4570 */
a9185b41 4571int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4572{
91ac6f43
FM
4573 int err;
4574
ac27a0ec
DK
4575 if (current->flags & PF_MEMALLOC)
4576 return 0;
4577
91ac6f43
FM
4578 if (EXT4_SB(inode->i_sb)->s_journal) {
4579 if (ext4_journal_current_handle()) {
4580 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4581 dump_stack();
4582 return -EIO;
4583 }
ac27a0ec 4584
a9185b41 4585 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4586 return 0;
4587
4588 err = ext4_force_commit(inode->i_sb);
4589 } else {
4590 struct ext4_iloc iloc;
ac27a0ec 4591
8b472d73 4592 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4593 if (err)
4594 return err;
a9185b41 4595 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4596 sync_dirty_buffer(iloc.bh);
4597 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4598 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4599 "IO error syncing inode");
830156c7
FM
4600 err = -EIO;
4601 }
fd2dd9fb 4602 brelse(iloc.bh);
91ac6f43
FM
4603 }
4604 return err;
ac27a0ec
DK
4605}
4606
53e87268
JK
4607/*
4608 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4609 * buffers that are attached to a page stradding i_size and are undergoing
4610 * commit. In that case we have to wait for commit to finish and try again.
4611 */
4612static void ext4_wait_for_tail_page_commit(struct inode *inode)
4613{
4614 struct page *page;
4615 unsigned offset;
4616 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4617 tid_t commit_tid = 0;
4618 int ret;
4619
4620 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4621 /*
4622 * All buffers in the last page remain valid? Then there's nothing to
4623 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4624 * blocksize case
4625 */
4626 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4627 return;
4628 while (1) {
4629 page = find_lock_page(inode->i_mapping,
4630 inode->i_size >> PAGE_CACHE_SHIFT);
4631 if (!page)
4632 return;
4633 ret = __ext4_journalled_invalidatepage(page, offset);
4634 unlock_page(page);
4635 page_cache_release(page);
4636 if (ret != -EBUSY)
4637 return;
4638 commit_tid = 0;
4639 read_lock(&journal->j_state_lock);
4640 if (journal->j_committing_transaction)
4641 commit_tid = journal->j_committing_transaction->t_tid;
4642 read_unlock(&journal->j_state_lock);
4643 if (commit_tid)
4644 jbd2_log_wait_commit(journal, commit_tid);
4645 }
4646}
4647
ac27a0ec 4648/*
617ba13b 4649 * ext4_setattr()
ac27a0ec
DK
4650 *
4651 * Called from notify_change.
4652 *
4653 * We want to trap VFS attempts to truncate the file as soon as
4654 * possible. In particular, we want to make sure that when the VFS
4655 * shrinks i_size, we put the inode on the orphan list and modify
4656 * i_disksize immediately, so that during the subsequent flushing of
4657 * dirty pages and freeing of disk blocks, we can guarantee that any
4658 * commit will leave the blocks being flushed in an unused state on
4659 * disk. (On recovery, the inode will get truncated and the blocks will
4660 * be freed, so we have a strong guarantee that no future commit will
4661 * leave these blocks visible to the user.)
4662 *
678aaf48
JK
4663 * Another thing we have to assure is that if we are in ordered mode
4664 * and inode is still attached to the committing transaction, we must
4665 * we start writeout of all the dirty pages which are being truncated.
4666 * This way we are sure that all the data written in the previous
4667 * transaction are already on disk (truncate waits for pages under
4668 * writeback).
4669 *
4670 * Called with inode->i_mutex down.
ac27a0ec 4671 */
617ba13b 4672int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4673{
4674 struct inode *inode = dentry->d_inode;
4675 int error, rc = 0;
3d287de3 4676 int orphan = 0;
ac27a0ec
DK
4677 const unsigned int ia_valid = attr->ia_valid;
4678
4679 error = inode_change_ok(inode, attr);
4680 if (error)
4681 return error;
4682
12755627 4683 if (is_quota_modification(inode, attr))
871a2931 4684 dquot_initialize(inode);
08cefc7a
EB
4685 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4686 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4687 handle_t *handle;
4688
4689 /* (user+group)*(old+new) structure, inode write (sb,
4690 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4691 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4692 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4693 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4694 if (IS_ERR(handle)) {
4695 error = PTR_ERR(handle);
4696 goto err_out;
4697 }
b43fa828 4698 error = dquot_transfer(inode, attr);
ac27a0ec 4699 if (error) {
617ba13b 4700 ext4_journal_stop(handle);
ac27a0ec
DK
4701 return error;
4702 }
4703 /* Update corresponding info in inode so that everything is in
4704 * one transaction */
4705 if (attr->ia_valid & ATTR_UID)
4706 inode->i_uid = attr->ia_uid;
4707 if (attr->ia_valid & ATTR_GID)
4708 inode->i_gid = attr->ia_gid;
617ba13b
MC
4709 error = ext4_mark_inode_dirty(handle, inode);
4710 ext4_journal_stop(handle);
ac27a0ec
DK
4711 }
4712
e2b46574 4713 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4714
12e9b892 4715 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4716 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4717
0c095c7f
TT
4718 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4719 return -EFBIG;
e2b46574
ES
4720 }
4721 }
4722
ac27a0ec 4723 if (S_ISREG(inode->i_mode) &&
c8d46e41 4724 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4725 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4726 handle_t *handle;
4727
9924a92a 4728 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4729 if (IS_ERR(handle)) {
4730 error = PTR_ERR(handle);
4731 goto err_out;
4732 }
3d287de3
DM
4733 if (ext4_handle_valid(handle)) {
4734 error = ext4_orphan_add(handle, inode);
4735 orphan = 1;
4736 }
617ba13b
MC
4737 EXT4_I(inode)->i_disksize = attr->ia_size;
4738 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4739 if (!error)
4740 error = rc;
617ba13b 4741 ext4_journal_stop(handle);
678aaf48
JK
4742
4743 if (ext4_should_order_data(inode)) {
4744 error = ext4_begin_ordered_truncate(inode,
4745 attr->ia_size);
4746 if (error) {
4747 /* Do as much error cleanup as possible */
9924a92a
TT
4748 handle = ext4_journal_start(inode,
4749 EXT4_HT_INODE, 3);
678aaf48
JK
4750 if (IS_ERR(handle)) {
4751 ext4_orphan_del(NULL, inode);
4752 goto err_out;
4753 }
4754 ext4_orphan_del(handle, inode);
3d287de3 4755 orphan = 0;
678aaf48
JK
4756 ext4_journal_stop(handle);
4757 goto err_out;
4758 }
4759 }
ac27a0ec
DK
4760 }
4761
072bd7ea 4762 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4763 if (attr->ia_size != inode->i_size) {
4764 loff_t oldsize = inode->i_size;
4765
4766 i_size_write(inode, attr->ia_size);
4767 /*
4768 * Blocks are going to be removed from the inode. Wait
4769 * for dio in flight. Temporarily disable
4770 * dioread_nolock to prevent livelock.
4771 */
1b65007e 4772 if (orphan) {
53e87268
JK
4773 if (!ext4_should_journal_data(inode)) {
4774 ext4_inode_block_unlocked_dio(inode);
4775 inode_dio_wait(inode);
4776 ext4_inode_resume_unlocked_dio(inode);
4777 } else
4778 ext4_wait_for_tail_page_commit(inode);
1b65007e 4779 }
53e87268
JK
4780 /*
4781 * Truncate pagecache after we've waited for commit
4782 * in data=journal mode to make pages freeable.
4783 */
4784 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4785 }
afcff5d8 4786 ext4_truncate(inode);
072bd7ea 4787 }
ac27a0ec 4788
1025774c
CH
4789 if (!rc) {
4790 setattr_copy(inode, attr);
4791 mark_inode_dirty(inode);
4792 }
4793
4794 /*
4795 * If the call to ext4_truncate failed to get a transaction handle at
4796 * all, we need to clean up the in-core orphan list manually.
4797 */
3d287de3 4798 if (orphan && inode->i_nlink)
617ba13b 4799 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4800
4801 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4802 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4803
4804err_out:
617ba13b 4805 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4806 if (!error)
4807 error = rc;
4808 return error;
4809}
4810
3e3398a0
MC
4811int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4812 struct kstat *stat)
4813{
4814 struct inode *inode;
4815 unsigned long delalloc_blocks;
4816
4817 inode = dentry->d_inode;
4818 generic_fillattr(inode, stat);
4819
4820 /*
4821 * We can't update i_blocks if the block allocation is delayed
4822 * otherwise in the case of system crash before the real block
4823 * allocation is done, we will have i_blocks inconsistent with
4824 * on-disk file blocks.
4825 * We always keep i_blocks updated together with real
4826 * allocation. But to not confuse with user, stat
4827 * will return the blocks that include the delayed allocation
4828 * blocks for this file.
4829 */
96607551
TM
4830 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4831 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4832
4833 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4834 return 0;
4835}
ac27a0ec 4836
a02908f1
MC
4837static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4838{
12e9b892 4839 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4840 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4841 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4842}
ac51d837 4843
ac27a0ec 4844/*
a02908f1
MC
4845 * Account for index blocks, block groups bitmaps and block group
4846 * descriptor blocks if modify datablocks and index blocks
4847 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4848 *
a02908f1 4849 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4850 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4851 * they could still across block group boundary.
ac27a0ec 4852 *
a02908f1
MC
4853 * Also account for superblock, inode, quota and xattr blocks
4854 */
1f109d5a 4855static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4856{
8df9675f
TT
4857 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4858 int gdpblocks;
a02908f1
MC
4859 int idxblocks;
4860 int ret = 0;
4861
4862 /*
4863 * How many index blocks need to touch to modify nrblocks?
4864 * The "Chunk" flag indicating whether the nrblocks is
4865 * physically contiguous on disk
4866 *
4867 * For Direct IO and fallocate, they calls get_block to allocate
4868 * one single extent at a time, so they could set the "Chunk" flag
4869 */
4870 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4871
4872 ret = idxblocks;
4873
4874 /*
4875 * Now let's see how many group bitmaps and group descriptors need
4876 * to account
4877 */
4878 groups = idxblocks;
4879 if (chunk)
4880 groups += 1;
4881 else
4882 groups += nrblocks;
4883
4884 gdpblocks = groups;
8df9675f
TT
4885 if (groups > ngroups)
4886 groups = ngroups;
a02908f1
MC
4887 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4888 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4889
4890 /* bitmaps and block group descriptor blocks */
4891 ret += groups + gdpblocks;
4892
4893 /* Blocks for super block, inode, quota and xattr blocks */
4894 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4895
4896 return ret;
4897}
4898
4899/*
25985edc 4900 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4901 * the modification of a single pages into a single transaction,
4902 * which may include multiple chunks of block allocations.
ac27a0ec 4903 *
525f4ed8 4904 * This could be called via ext4_write_begin()
ac27a0ec 4905 *
525f4ed8 4906 * We need to consider the worse case, when
a02908f1 4907 * one new block per extent.
ac27a0ec 4908 */
a86c6181 4909int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4910{
617ba13b 4911 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4912 int ret;
4913
a02908f1 4914 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4915
a02908f1 4916 /* Account for data blocks for journalled mode */
617ba13b 4917 if (ext4_should_journal_data(inode))
a02908f1 4918 ret += bpp;
ac27a0ec
DK
4919 return ret;
4920}
f3bd1f3f
MC
4921
4922/*
4923 * Calculate the journal credits for a chunk of data modification.
4924 *
4925 * This is called from DIO, fallocate or whoever calling
79e83036 4926 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4927 *
4928 * journal buffers for data blocks are not included here, as DIO
4929 * and fallocate do no need to journal data buffers.
4930 */
4931int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4932{
4933 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4934}
4935
ac27a0ec 4936/*
617ba13b 4937 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4938 * Give this, we know that the caller already has write access to iloc->bh.
4939 */
617ba13b 4940int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4941 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4942{
4943 int err = 0;
4944
c64db50e 4945 if (IS_I_VERSION(inode))
25ec56b5
JNC
4946 inode_inc_iversion(inode);
4947
ac27a0ec
DK
4948 /* the do_update_inode consumes one bh->b_count */
4949 get_bh(iloc->bh);
4950
dab291af 4951 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4952 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4953 put_bh(iloc->bh);
4954 return err;
4955}
4956
4957/*
4958 * On success, We end up with an outstanding reference count against
4959 * iloc->bh. This _must_ be cleaned up later.
4960 */
4961
4962int
617ba13b
MC
4963ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4964 struct ext4_iloc *iloc)
ac27a0ec 4965{
0390131b
FM
4966 int err;
4967
4968 err = ext4_get_inode_loc(inode, iloc);
4969 if (!err) {
4970 BUFFER_TRACE(iloc->bh, "get_write_access");
4971 err = ext4_journal_get_write_access(handle, iloc->bh);
4972 if (err) {
4973 brelse(iloc->bh);
4974 iloc->bh = NULL;
ac27a0ec
DK
4975 }
4976 }
617ba13b 4977 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4978 return err;
4979}
4980
6dd4ee7c
KS
4981/*
4982 * Expand an inode by new_extra_isize bytes.
4983 * Returns 0 on success or negative error number on failure.
4984 */
1d03ec98
AK
4985static int ext4_expand_extra_isize(struct inode *inode,
4986 unsigned int new_extra_isize,
4987 struct ext4_iloc iloc,
4988 handle_t *handle)
6dd4ee7c
KS
4989{
4990 struct ext4_inode *raw_inode;
4991 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4992
4993 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4994 return 0;
4995
4996 raw_inode = ext4_raw_inode(&iloc);
4997
4998 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4999
5000 /* No extended attributes present */
19f5fb7a
TT
5001 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5002 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5003 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5004 new_extra_isize);
5005 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5006 return 0;
5007 }
5008
5009 /* try to expand with EAs present */
5010 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5011 raw_inode, handle);
5012}
5013
ac27a0ec
DK
5014/*
5015 * What we do here is to mark the in-core inode as clean with respect to inode
5016 * dirtiness (it may still be data-dirty).
5017 * This means that the in-core inode may be reaped by prune_icache
5018 * without having to perform any I/O. This is a very good thing,
5019 * because *any* task may call prune_icache - even ones which
5020 * have a transaction open against a different journal.
5021 *
5022 * Is this cheating? Not really. Sure, we haven't written the
5023 * inode out, but prune_icache isn't a user-visible syncing function.
5024 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5025 * we start and wait on commits.
ac27a0ec 5026 */
617ba13b 5027int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5028{
617ba13b 5029 struct ext4_iloc iloc;
6dd4ee7c
KS
5030 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5031 static unsigned int mnt_count;
5032 int err, ret;
ac27a0ec
DK
5033
5034 might_sleep();
7ff9c073 5035 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5036 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5037 if (ext4_handle_valid(handle) &&
5038 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5039 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5040 /*
5041 * We need extra buffer credits since we may write into EA block
5042 * with this same handle. If journal_extend fails, then it will
5043 * only result in a minor loss of functionality for that inode.
5044 * If this is felt to be critical, then e2fsck should be run to
5045 * force a large enough s_min_extra_isize.
5046 */
5047 if ((jbd2_journal_extend(handle,
5048 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5049 ret = ext4_expand_extra_isize(inode,
5050 sbi->s_want_extra_isize,
5051 iloc, handle);
5052 if (ret) {
19f5fb7a
TT
5053 ext4_set_inode_state(inode,
5054 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5055 if (mnt_count !=
5056 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5057 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5058 "Unable to expand inode %lu. Delete"
5059 " some EAs or run e2fsck.",
5060 inode->i_ino);
c1bddad9
AK
5061 mnt_count =
5062 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5063 }
5064 }
5065 }
5066 }
ac27a0ec 5067 if (!err)
617ba13b 5068 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5069 return err;
5070}
5071
5072/*
617ba13b 5073 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5074 *
5075 * We're really interested in the case where a file is being extended.
5076 * i_size has been changed by generic_commit_write() and we thus need
5077 * to include the updated inode in the current transaction.
5078 *
5dd4056d 5079 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5080 * are allocated to the file.
5081 *
5082 * If the inode is marked synchronous, we don't honour that here - doing
5083 * so would cause a commit on atime updates, which we don't bother doing.
5084 * We handle synchronous inodes at the highest possible level.
5085 */
aa385729 5086void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5087{
ac27a0ec
DK
5088 handle_t *handle;
5089
9924a92a 5090 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5091 if (IS_ERR(handle))
5092 goto out;
f3dc272f 5093
f3dc272f
CW
5094 ext4_mark_inode_dirty(handle, inode);
5095
617ba13b 5096 ext4_journal_stop(handle);
ac27a0ec
DK
5097out:
5098 return;
5099}
5100
5101#if 0
5102/*
5103 * Bind an inode's backing buffer_head into this transaction, to prevent
5104 * it from being flushed to disk early. Unlike
617ba13b 5105 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5106 * returns no iloc structure, so the caller needs to repeat the iloc
5107 * lookup to mark the inode dirty later.
5108 */
617ba13b 5109static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5110{
617ba13b 5111 struct ext4_iloc iloc;
ac27a0ec
DK
5112
5113 int err = 0;
5114 if (handle) {
617ba13b 5115 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5116 if (!err) {
5117 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5118 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5119 if (!err)
0390131b 5120 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5121 NULL,
0390131b 5122 iloc.bh);
ac27a0ec
DK
5123 brelse(iloc.bh);
5124 }
5125 }
617ba13b 5126 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5127 return err;
5128}
5129#endif
5130
617ba13b 5131int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5132{
5133 journal_t *journal;
5134 handle_t *handle;
5135 int err;
5136
5137 /*
5138 * We have to be very careful here: changing a data block's
5139 * journaling status dynamically is dangerous. If we write a
5140 * data block to the journal, change the status and then delete
5141 * that block, we risk forgetting to revoke the old log record
5142 * from the journal and so a subsequent replay can corrupt data.
5143 * So, first we make sure that the journal is empty and that
5144 * nobody is changing anything.
5145 */
5146
617ba13b 5147 journal = EXT4_JOURNAL(inode);
0390131b
FM
5148 if (!journal)
5149 return 0;
d699594d 5150 if (is_journal_aborted(journal))
ac27a0ec 5151 return -EROFS;
2aff57b0
YY
5152 /* We have to allocate physical blocks for delalloc blocks
5153 * before flushing journal. otherwise delalloc blocks can not
5154 * be allocated any more. even more truncate on delalloc blocks
5155 * could trigger BUG by flushing delalloc blocks in journal.
5156 * There is no delalloc block in non-journal data mode.
5157 */
5158 if (val && test_opt(inode->i_sb, DELALLOC)) {
5159 err = ext4_alloc_da_blocks(inode);
5160 if (err < 0)
5161 return err;
5162 }
ac27a0ec 5163
17335dcc
DM
5164 /* Wait for all existing dio workers */
5165 ext4_inode_block_unlocked_dio(inode);
5166 inode_dio_wait(inode);
5167
dab291af 5168 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5169
5170 /*
5171 * OK, there are no updates running now, and all cached data is
5172 * synced to disk. We are now in a completely consistent state
5173 * which doesn't have anything in the journal, and we know that
5174 * no filesystem updates are running, so it is safe to modify
5175 * the inode's in-core data-journaling state flag now.
5176 */
5177
5178 if (val)
12e9b892 5179 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5180 else {
5181 jbd2_journal_flush(journal);
12e9b892 5182 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5183 }
617ba13b 5184 ext4_set_aops(inode);
ac27a0ec 5185
dab291af 5186 jbd2_journal_unlock_updates(journal);
17335dcc 5187 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5188
5189 /* Finally we can mark the inode as dirty. */
5190
9924a92a 5191 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5192 if (IS_ERR(handle))
5193 return PTR_ERR(handle);
5194
617ba13b 5195 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5196 ext4_handle_sync(handle);
617ba13b
MC
5197 ext4_journal_stop(handle);
5198 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5199
5200 return err;
5201}
2e9ee850
AK
5202
5203static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5204{
5205 return !buffer_mapped(bh);
5206}
5207
c2ec175c 5208int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5209{
c2ec175c 5210 struct page *page = vmf->page;
2e9ee850
AK
5211 loff_t size;
5212 unsigned long len;
9ea7df53 5213 int ret;
2e9ee850 5214 struct file *file = vma->vm_file;
496ad9aa 5215 struct inode *inode = file_inode(file);
2e9ee850 5216 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5217 handle_t *handle;
5218 get_block_t *get_block;
5219 int retries = 0;
2e9ee850 5220
8e8ad8a5 5221 sb_start_pagefault(inode->i_sb);
041bbb6d 5222 file_update_time(vma->vm_file);
9ea7df53
JK
5223 /* Delalloc case is easy... */
5224 if (test_opt(inode->i_sb, DELALLOC) &&
5225 !ext4_should_journal_data(inode) &&
5226 !ext4_nonda_switch(inode->i_sb)) {
5227 do {
5228 ret = __block_page_mkwrite(vma, vmf,
5229 ext4_da_get_block_prep);
5230 } while (ret == -ENOSPC &&
5231 ext4_should_retry_alloc(inode->i_sb, &retries));
5232 goto out_ret;
2e9ee850 5233 }
0e499890
DW
5234
5235 lock_page(page);
9ea7df53
JK
5236 size = i_size_read(inode);
5237 /* Page got truncated from under us? */
5238 if (page->mapping != mapping || page_offset(page) > size) {
5239 unlock_page(page);
5240 ret = VM_FAULT_NOPAGE;
5241 goto out;
0e499890 5242 }
2e9ee850
AK
5243
5244 if (page->index == size >> PAGE_CACHE_SHIFT)
5245 len = size & ~PAGE_CACHE_MASK;
5246 else
5247 len = PAGE_CACHE_SIZE;
a827eaff 5248 /*
9ea7df53
JK
5249 * Return if we have all the buffers mapped. This avoids the need to do
5250 * journal_start/journal_stop which can block and take a long time
a827eaff 5251 */
2e9ee850 5252 if (page_has_buffers(page)) {
f19d5870
TM
5253 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5254 0, len, NULL,
5255 ext4_bh_unmapped)) {
9ea7df53 5256 /* Wait so that we don't change page under IO */
1d1d1a76 5257 wait_for_stable_page(page);
9ea7df53
JK
5258 ret = VM_FAULT_LOCKED;
5259 goto out;
a827eaff 5260 }
2e9ee850 5261 }
a827eaff 5262 unlock_page(page);
9ea7df53
JK
5263 /* OK, we need to fill the hole... */
5264 if (ext4_should_dioread_nolock(inode))
5265 get_block = ext4_get_block_write;
5266 else
5267 get_block = ext4_get_block;
5268retry_alloc:
9924a92a
TT
5269 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5270 ext4_writepage_trans_blocks(inode));
9ea7df53 5271 if (IS_ERR(handle)) {
c2ec175c 5272 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5273 goto out;
5274 }
5275 ret = __block_page_mkwrite(vma, vmf, get_block);
5276 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5277 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5278 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5279 unlock_page(page);
5280 ret = VM_FAULT_SIGBUS;
fcbb5515 5281 ext4_journal_stop(handle);
9ea7df53
JK
5282 goto out;
5283 }
5284 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5285 }
5286 ext4_journal_stop(handle);
5287 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5288 goto retry_alloc;
5289out_ret:
5290 ret = block_page_mkwrite_return(ret);
5291out:
8e8ad8a5 5292 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5293 return ret;
5294}
This page took 1.263202 seconds and 5 git commands to generate.