ext4: restructure writeback path
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 218 ext4_ioend_shutdown(inode);
0930fcc1
AV
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 227 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 228 ext4_ioend_shutdown(inode);
ac27a0ec
DK
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
12219aea
AK
322/*
323 * Calculate the number of metadata blocks need to reserve
9d0be502 324 * to allocate a block located at @lblock
12219aea 325 */
01f49d0b 326static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 327{
12e9b892 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 329 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 330
8bb2b247 331 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
332}
333
0637c6f4
TT
334/*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
5f634d06
AK
338void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
12219aea
AK
340{
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 342 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
343
344 spin_lock(&ei->i_block_reservation_lock);
d8990240 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 346 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 348 "with only %d reserved data blocks",
0637c6f4
TT
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
12219aea 354
97795d2a 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
97795d2a
BF
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
921f266b
DM
426#ifdef ES_AGGRESSIVE_TEST
427static void ext4_map_blocks_es_recheck(handle_t *handle,
428 struct inode *inode,
429 struct ext4_map_blocks *es_map,
430 struct ext4_map_blocks *map,
431 int flags)
432{
433 int retval;
434
435 map->m_flags = 0;
436 /*
437 * There is a race window that the result is not the same.
438 * e.g. xfstests #223 when dioread_nolock enables. The reason
439 * is that we lookup a block mapping in extent status tree with
440 * out taking i_data_sem. So at the time the unwritten extent
441 * could be converted.
442 */
443 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
444 down_read((&EXT4_I(inode)->i_data_sem));
445 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
446 retval = ext4_ext_map_blocks(handle, inode, map, flags &
447 EXT4_GET_BLOCKS_KEEP_SIZE);
448 } else {
449 retval = ext4_ind_map_blocks(handle, inode, map, flags &
450 EXT4_GET_BLOCKS_KEEP_SIZE);
451 }
452 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
453 up_read((&EXT4_I(inode)->i_data_sem));
454 /*
455 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
456 * because it shouldn't be marked in es_map->m_flags.
457 */
458 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
459
460 /*
461 * We don't check m_len because extent will be collpased in status
462 * tree. So the m_len might not equal.
463 */
464 if (es_map->m_lblk != map->m_lblk ||
465 es_map->m_flags != map->m_flags ||
466 es_map->m_pblk != map->m_pblk) {
467 printk("ES cache assertation failed for inode: %lu "
468 "es_cached ex [%d/%d/%llu/%x] != "
469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470 inode->i_ino, es_map->m_lblk, es_map->m_len,
471 es_map->m_pblk, es_map->m_flags, map->m_lblk,
472 map->m_len, map->m_pblk, map->m_flags,
473 retval, flags);
474 }
475}
476#endif /* ES_AGGRESSIVE_TEST */
477
f5ab0d1f 478/*
e35fd660 479 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 480 * and returns if the blocks are already mapped.
f5ab0d1f 481 *
f5ab0d1f
MC
482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483 * and store the allocated blocks in the result buffer head and mark it
484 * mapped.
485 *
e35fd660
TT
486 * If file type is extents based, it will call ext4_ext_map_blocks(),
487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
488 * based files
489 *
490 * On success, it returns the number of blocks being mapped or allocate.
491 * if create==0 and the blocks are pre-allocated and uninitialized block,
492 * the result buffer head is unmapped. If the create ==1, it will make sure
493 * the buffer head is mapped.
494 *
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 496 * that case, buffer head is unmapped
f5ab0d1f
MC
497 *
498 * It returns the error in case of allocation failure.
499 */
e35fd660
TT
500int ext4_map_blocks(handle_t *handle, struct inode *inode,
501 struct ext4_map_blocks *map, int flags)
0e855ac8 502{
d100eef2 503 struct extent_status es;
0e855ac8 504 int retval;
921f266b
DM
505#ifdef ES_AGGRESSIVE_TEST
506 struct ext4_map_blocks orig_map;
507
508 memcpy(&orig_map, map, sizeof(*map));
509#endif
f5ab0d1f 510
e35fd660
TT
511 map->m_flags = 0;
512 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513 "logical block %lu\n", inode->i_ino, flags, map->m_len,
514 (unsigned long) map->m_lblk);
d100eef2
ZL
515
516 /* Lookup extent status tree firstly */
517 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
518 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519 map->m_pblk = ext4_es_pblock(&es) +
520 map->m_lblk - es.es_lblk;
521 map->m_flags |= ext4_es_is_written(&es) ?
522 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523 retval = es.es_len - (map->m_lblk - es.es_lblk);
524 if (retval > map->m_len)
525 retval = map->m_len;
526 map->m_len = retval;
527 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528 retval = 0;
529 } else {
530 BUG_ON(1);
531 }
921f266b
DM
532#ifdef ES_AGGRESSIVE_TEST
533 ext4_map_blocks_es_recheck(handle, inode, map,
534 &orig_map, flags);
535#endif
d100eef2
ZL
536 goto found;
537 }
538
4df3d265 539 /*
b920c755
TT
540 * Try to see if we can get the block without requesting a new
541 * file system block.
4df3d265 542 */
729f52c6
ZL
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
546 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 548 } else {
a4e5d88b
DM
549 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 }
f7fec032
ZL
552 if (retval > 0) {
553 int ret;
554 unsigned long long status;
555
921f266b
DM
556#ifdef ES_AGGRESSIVE_TEST
557 if (retval != map->m_len) {
558 printk("ES len assertation failed for inode: %lu "
559 "retval %d != map->m_len %d "
560 "in %s (lookup)\n", inode->i_ino, retval,
561 map->m_len, __func__);
562 }
563#endif
564
f7fec032
ZL
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 ext4_find_delalloc_range(inode, map->m_lblk,
569 map->m_lblk + map->m_len - 1))
570 status |= EXTENT_STATUS_DELAYED;
571 ret = ext4_es_insert_extent(inode, map->m_lblk,
572 map->m_len, map->m_pblk, status);
573 if (ret < 0)
574 retval = ret;
575 }
729f52c6
ZL
576 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
577 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 578
d100eef2 579found:
e35fd660 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 581 int ret = check_block_validity(inode, map);
6fd058f7
TT
582 if (ret != 0)
583 return ret;
584 }
585
f5ab0d1f 586 /* If it is only a block(s) look up */
c2177057 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
df3ab170 594 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
595 * with buffer head unmapped.
596 */
e35fd660 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
598 return retval;
599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
f5ab0d1f
MC
607 * New blocks allocate and/or writing to uninitialized extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_blocks()
610 * with create == 1 flag.
4df3d265
AK
611 */
612 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
613
614 /*
615 * if the caller is from delayed allocation writeout path
616 * we have already reserved fs blocks for allocation
617 * let the underlying get_block() function know to
618 * avoid double accounting
619 */
c2177057 620 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 621 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
622 /*
623 * We need to check for EXT4 here because migrate
624 * could have changed the inode type in between
625 */
12e9b892 626 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 627 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 628 } else {
e35fd660 629 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 630
e35fd660 631 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
632 /*
633 * We allocated new blocks which will result in
634 * i_data's format changing. Force the migrate
635 * to fail by clearing migrate flags
636 */
19f5fb7a 637 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 638 }
d2a17637 639
5f634d06
AK
640 /*
641 * Update reserved blocks/metadata blocks after successful
642 * block allocation which had been deferred till now. We don't
643 * support fallocate for non extent files. So we can update
644 * reserve space here.
645 */
646 if ((retval > 0) &&
1296cc85 647 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
648 ext4_da_update_reserve_space(inode, retval, 1);
649 }
f7fec032 650 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 651 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 652
f7fec032
ZL
653 if (retval > 0) {
654 int ret;
655 unsigned long long status;
656
921f266b
DM
657#ifdef ES_AGGRESSIVE_TEST
658 if (retval != map->m_len) {
659 printk("ES len assertation failed for inode: %lu "
660 "retval %d != map->m_len %d "
661 "in %s (allocation)\n", inode->i_ino, retval,
662 map->m_len, __func__);
663 }
664#endif
665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
2ed88685
TT
730 map_bh(bh, inode->i_sb, map.m_pblk);
731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 733 ret = 0;
ac27a0ec 734 }
7fb5409d
JK
735 if (started)
736 ext4_journal_stop(handle);
ac27a0ec
DK
737 return ret;
738}
739
2ed88685
TT
740int ext4_get_block(struct inode *inode, sector_t iblock,
741 struct buffer_head *bh, int create)
742{
743 return _ext4_get_block(inode, iblock, bh,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
745}
746
ac27a0ec
DK
747/*
748 * `handle' can be NULL if create is zero
749 */
617ba13b 750struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 751 ext4_lblk_t block, int create, int *errp)
ac27a0ec 752{
2ed88685
TT
753 struct ext4_map_blocks map;
754 struct buffer_head *bh;
ac27a0ec
DK
755 int fatal = 0, err;
756
757 J_ASSERT(handle != NULL || create == 0);
758
2ed88685
TT
759 map.m_lblk = block;
760 map.m_len = 1;
761 err = ext4_map_blocks(handle, inode, &map,
762 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 763
90b0a973
CM
764 /* ensure we send some value back into *errp */
765 *errp = 0;
766
0f70b406
TT
767 if (create && err == 0)
768 err = -ENOSPC; /* should never happen */
2ed88685
TT
769 if (err < 0)
770 *errp = err;
771 if (err <= 0)
772 return NULL;
2ed88685
TT
773
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 775 if (unlikely(!bh)) {
860d21e2 776 *errp = -ENOMEM;
2ed88685 777 return NULL;
ac27a0ec 778 }
2ed88685
TT
779 if (map.m_flags & EXT4_MAP_NEW) {
780 J_ASSERT(create != 0);
781 J_ASSERT(handle != NULL);
ac27a0ec 782
2ed88685
TT
783 /*
784 * Now that we do not always journal data, we should
785 * keep in mind whether this should always journal the
786 * new buffer as metadata. For now, regular file
787 * writes use ext4_get_block instead, so it's not a
788 * problem.
789 */
790 lock_buffer(bh);
791 BUFFER_TRACE(bh, "call get_create_access");
792 fatal = ext4_journal_get_create_access(handle, bh);
793 if (!fatal && !buffer_uptodate(bh)) {
794 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 set_buffer_uptodate(bh);
ac27a0ec 796 }
2ed88685
TT
797 unlock_buffer(bh);
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
800 if (!fatal)
801 fatal = err;
802 } else {
803 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 804 }
2ed88685
TT
805 if (fatal) {
806 *errp = fatal;
807 brelse(bh);
808 bh = NULL;
809 }
810 return bh;
ac27a0ec
DK
811}
812
617ba13b 813struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 814 ext4_lblk_t block, int create, int *err)
ac27a0ec 815{
af5bc92d 816 struct buffer_head *bh;
ac27a0ec 817
617ba13b 818 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
819 if (!bh)
820 return bh;
821 if (buffer_uptodate(bh))
822 return bh;
65299a3b 823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
824 wait_on_buffer(bh);
825 if (buffer_uptodate(bh))
826 return bh;
827 put_bh(bh);
828 *err = -EIO;
829 return NULL;
830}
831
f19d5870
TM
832int ext4_walk_page_buffers(handle_t *handle,
833 struct buffer_head *head,
834 unsigned from,
835 unsigned to,
836 int *partial,
837 int (*fn)(handle_t *handle,
838 struct buffer_head *bh))
ac27a0ec
DK
839{
840 struct buffer_head *bh;
841 unsigned block_start, block_end;
842 unsigned blocksize = head->b_size;
843 int err, ret = 0;
844 struct buffer_head *next;
845
af5bc92d
TT
846 for (bh = head, block_start = 0;
847 ret == 0 && (bh != head || !block_start);
de9a55b8 848 block_start = block_end, bh = next) {
ac27a0ec
DK
849 next = bh->b_this_page;
850 block_end = block_start + blocksize;
851 if (block_end <= from || block_start >= to) {
852 if (partial && !buffer_uptodate(bh))
853 *partial = 1;
854 continue;
855 }
856 err = (*fn)(handle, bh);
857 if (!ret)
858 ret = err;
859 }
860 return ret;
861}
862
863/*
864 * To preserve ordering, it is essential that the hole instantiation and
865 * the data write be encapsulated in a single transaction. We cannot
617ba13b 866 * close off a transaction and start a new one between the ext4_get_block()
dab291af 867 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
868 * prepare_write() is the right place.
869 *
36ade451
JK
870 * Also, this function can nest inside ext4_writepage(). In that case, we
871 * *know* that ext4_writepage() has generated enough buffer credits to do the
872 * whole page. So we won't block on the journal in that case, which is good,
873 * because the caller may be PF_MEMALLOC.
ac27a0ec 874 *
617ba13b 875 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
876 * quota file writes. If we were to commit the transaction while thus
877 * reentered, there can be a deadlock - we would be holding a quota
878 * lock, and the commit would never complete if another thread had a
879 * transaction open and was blocking on the quota lock - a ranking
880 * violation.
881 *
dab291af 882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
883 * will _not_ run commit under these circumstances because handle->h_ref
884 * is elevated. We'll still have enough credits for the tiny quotafile
885 * write.
886 */
f19d5870
TM
887int do_journal_get_write_access(handle_t *handle,
888 struct buffer_head *bh)
ac27a0ec 889{
56d35a4c
JK
890 int dirty = buffer_dirty(bh);
891 int ret;
892
ac27a0ec
DK
893 if (!buffer_mapped(bh) || buffer_freed(bh))
894 return 0;
56d35a4c 895 /*
ebdec241 896 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
897 * the dirty bit as jbd2_journal_get_write_access() could complain
898 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 899 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
900 * the bit before releasing a page lock and thus writeback cannot
901 * ever write the buffer.
902 */
903 if (dirty)
904 clear_buffer_dirty(bh);
905 ret = ext4_journal_get_write_access(handle, bh);
906 if (!ret && dirty)
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 return ret;
ac27a0ec
DK
909}
910
8b0f165f
AP
911static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 struct buffer_head *bh_result, int create);
bfc1af65 913static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
ac27a0ec 916{
af5bc92d 917 struct inode *inode = mapping->host;
1938a150 918 int ret, needed_blocks;
ac27a0ec
DK
919 handle_t *handle;
920 int retries = 0;
af5bc92d 921 struct page *page;
de9a55b8 922 pgoff_t index;
af5bc92d 923 unsigned from, to;
bfc1af65 924
9bffad1e 925 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
926 /*
927 * Reserve one block more for addition to orphan list in case
928 * we allocate blocks but write fails for some reason
929 */
930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 931 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
932 from = pos & (PAGE_CACHE_SIZE - 1);
933 to = from + len;
ac27a0ec 934
f19d5870
TM
935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937 flags, pagep);
938 if (ret < 0)
47564bfb
TT
939 return ret;
940 if (ret == 1)
941 return 0;
f19d5870
TM
942 }
943
47564bfb
TT
944 /*
945 * grab_cache_page_write_begin() can take a long time if the
946 * system is thrashing due to memory pressure, or if the page
947 * is being written back. So grab it first before we start
948 * the transaction handle. This also allows us to allocate
949 * the page (if needed) without using GFP_NOFS.
950 */
951retry_grab:
952 page = grab_cache_page_write_begin(mapping, index, flags);
953 if (!page)
954 return -ENOMEM;
955 unlock_page(page);
956
957retry_journal:
9924a92a 958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 959 if (IS_ERR(handle)) {
47564bfb
TT
960 page_cache_release(page);
961 return PTR_ERR(handle);
7479d2b9 962 }
ac27a0ec 963
47564bfb
TT
964 lock_page(page);
965 if (page->mapping != mapping) {
966 /* The page got truncated from under us */
967 unlock_page(page);
968 page_cache_release(page);
cf108bca 969 ext4_journal_stop(handle);
47564bfb 970 goto retry_grab;
cf108bca 971 }
47564bfb 972 wait_on_page_writeback(page);
cf108bca 973
744692dc 974 if (ext4_should_dioread_nolock(inode))
6e1db88d 975 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 976 else
6e1db88d 977 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
978
979 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
980 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981 from, to, NULL,
982 do_journal_get_write_access);
ac27a0ec 983 }
bfc1af65
NP
984
985 if (ret) {
af5bc92d 986 unlock_page(page);
ae4d5372 987 /*
6e1db88d 988 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
989 * outside i_size. Trim these off again. Don't need
990 * i_size_read because we hold i_mutex.
1938a150
AK
991 *
992 * Add inode to orphan list in case we crash before
993 * truncate finishes
ae4d5372 994 */
ffacfa7a 995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
996 ext4_orphan_add(handle, inode);
997
998 ext4_journal_stop(handle);
999 if (pos + len > inode->i_size) {
b9a4207d 1000 ext4_truncate_failed_write(inode);
de9a55b8 1001 /*
ffacfa7a 1002 * If truncate failed early the inode might
1938a150
AK
1003 * still be on the orphan list; we need to
1004 * make sure the inode is removed from the
1005 * orphan list in that case.
1006 */
1007 if (inode->i_nlink)
1008 ext4_orphan_del(NULL, inode);
1009 }
bfc1af65 1010
47564bfb
TT
1011 if (ret == -ENOSPC &&
1012 ext4_should_retry_alloc(inode->i_sb, &retries))
1013 goto retry_journal;
1014 page_cache_release(page);
1015 return ret;
1016 }
1017 *pagep = page;
ac27a0ec
DK
1018 return ret;
1019}
1020
bfc1af65
NP
1021/* For write_end() in data=journal mode */
1022static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1023{
13fca323 1024 int ret;
ac27a0ec
DK
1025 if (!buffer_mapped(bh) || buffer_freed(bh))
1026 return 0;
1027 set_buffer_uptodate(bh);
13fca323
TT
1028 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029 clear_buffer_meta(bh);
1030 clear_buffer_prio(bh);
1031 return ret;
ac27a0ec
DK
1032}
1033
eed4333f
ZL
1034/*
1035 * We need to pick up the new inode size which generic_commit_write gave us
1036 * `file' can be NULL - eg, when called from page_symlink().
1037 *
1038 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1039 * buffers are managed internally.
1040 */
1041static int ext4_write_end(struct file *file,
1042 struct address_space *mapping,
1043 loff_t pos, unsigned len, unsigned copied,
1044 struct page *page, void *fsdata)
f8514083 1045{
f8514083 1046 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1047 struct inode *inode = mapping->host;
1048 int ret = 0, ret2;
1049 int i_size_changed = 0;
1050
1051 trace_ext4_write_end(inode, pos, len, copied);
1052 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053 ret = ext4_jbd2_file_inode(handle, inode);
1054 if (ret) {
1055 unlock_page(page);
1056 page_cache_release(page);
1057 goto errout;
1058 }
1059 }
f8514083 1060
f19d5870
TM
1061 if (ext4_has_inline_data(inode))
1062 copied = ext4_write_inline_data_end(inode, pos, len,
1063 copied, page);
1064 else
1065 copied = block_write_end(file, mapping, pos,
1066 len, copied, page, fsdata);
f8514083
AK
1067
1068 /*
1069 * No need to use i_size_read() here, the i_size
eed4333f 1070 * cannot change under us because we hole i_mutex.
f8514083
AK
1071 *
1072 * But it's important to update i_size while still holding page lock:
1073 * page writeout could otherwise come in and zero beyond i_size.
1074 */
1075 if (pos + copied > inode->i_size) {
1076 i_size_write(inode, pos + copied);
1077 i_size_changed = 1;
1078 }
1079
eed4333f 1080 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1081 /* We need to mark inode dirty even if
1082 * new_i_size is less that inode->i_size
eed4333f 1083 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1084 */
1085 ext4_update_i_disksize(inode, (pos + copied));
1086 i_size_changed = 1;
1087 }
1088 unlock_page(page);
1089 page_cache_release(page);
1090
1091 /*
1092 * Don't mark the inode dirty under page lock. First, it unnecessarily
1093 * makes the holding time of page lock longer. Second, it forces lock
1094 * ordering of page lock and transaction start for journaling
1095 * filesystems.
1096 */
1097 if (i_size_changed)
1098 ext4_mark_inode_dirty(handle, inode);
1099
74d553aa
TT
1100 if (copied < 0)
1101 ret = copied;
ffacfa7a 1102 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1103 /* if we have allocated more blocks and copied
1104 * less. We will have blocks allocated outside
1105 * inode->i_size. So truncate them
1106 */
1107 ext4_orphan_add(handle, inode);
74d553aa 1108errout:
617ba13b 1109 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1110 if (!ret)
1111 ret = ret2;
bfc1af65 1112
f8514083 1113 if (pos + len > inode->i_size) {
b9a4207d 1114 ext4_truncate_failed_write(inode);
de9a55b8 1115 /*
ffacfa7a 1116 * If truncate failed early the inode might still be
f8514083
AK
1117 * on the orphan list; we need to make sure the inode
1118 * is removed from the orphan list in that case.
1119 */
1120 if (inode->i_nlink)
1121 ext4_orphan_del(NULL, inode);
1122 }
1123
bfc1af65 1124 return ret ? ret : copied;
ac27a0ec
DK
1125}
1126
bfc1af65 1127static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1128 struct address_space *mapping,
1129 loff_t pos, unsigned len, unsigned copied,
1130 struct page *page, void *fsdata)
ac27a0ec 1131{
617ba13b 1132 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1133 struct inode *inode = mapping->host;
ac27a0ec
DK
1134 int ret = 0, ret2;
1135 int partial = 0;
bfc1af65 1136 unsigned from, to;
cf17fea6 1137 loff_t new_i_size;
ac27a0ec 1138
9bffad1e 1139 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1140 from = pos & (PAGE_CACHE_SIZE - 1);
1141 to = from + len;
1142
441c8508
CW
1143 BUG_ON(!ext4_handle_valid(handle));
1144
3fdcfb66
TM
1145 if (ext4_has_inline_data(inode))
1146 copied = ext4_write_inline_data_end(inode, pos, len,
1147 copied, page);
1148 else {
1149 if (copied < len) {
1150 if (!PageUptodate(page))
1151 copied = 0;
1152 page_zero_new_buffers(page, from+copied, to);
1153 }
ac27a0ec 1154
3fdcfb66
TM
1155 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1156 to, &partial, write_end_fn);
1157 if (!partial)
1158 SetPageUptodate(page);
1159 }
cf17fea6
AK
1160 new_i_size = pos + copied;
1161 if (new_i_size > inode->i_size)
bfc1af65 1162 i_size_write(inode, pos+copied);
19f5fb7a 1163 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1164 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1165 if (new_i_size > EXT4_I(inode)->i_disksize) {
1166 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1167 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1168 if (!ret)
1169 ret = ret2;
1170 }
bfc1af65 1171
cf108bca 1172 unlock_page(page);
f8514083 1173 page_cache_release(page);
ffacfa7a 1174 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1175 /* if we have allocated more blocks and copied
1176 * less. We will have blocks allocated outside
1177 * inode->i_size. So truncate them
1178 */
1179 ext4_orphan_add(handle, inode);
1180
617ba13b 1181 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1182 if (!ret)
1183 ret = ret2;
f8514083 1184 if (pos + len > inode->i_size) {
b9a4207d 1185 ext4_truncate_failed_write(inode);
de9a55b8 1186 /*
ffacfa7a 1187 * If truncate failed early the inode might still be
f8514083
AK
1188 * on the orphan list; we need to make sure the inode
1189 * is removed from the orphan list in that case.
1190 */
1191 if (inode->i_nlink)
1192 ext4_orphan_del(NULL, inode);
1193 }
bfc1af65
NP
1194
1195 return ret ? ret : copied;
ac27a0ec 1196}
d2a17637 1197
386ad67c
LC
1198/*
1199 * Reserve a metadata for a single block located at lblock
1200 */
1201static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1202{
1203 int retries = 0;
1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 struct ext4_inode_info *ei = EXT4_I(inode);
1206 unsigned int md_needed;
1207 ext4_lblk_t save_last_lblock;
1208 int save_len;
1209
1210 /*
1211 * recalculate the amount of metadata blocks to reserve
1212 * in order to allocate nrblocks
1213 * worse case is one extent per block
1214 */
1215repeat:
1216 spin_lock(&ei->i_block_reservation_lock);
1217 /*
1218 * ext4_calc_metadata_amount() has side effects, which we have
1219 * to be prepared undo if we fail to claim space.
1220 */
1221 save_len = ei->i_da_metadata_calc_len;
1222 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1223 md_needed = EXT4_NUM_B2C(sbi,
1224 ext4_calc_metadata_amount(inode, lblock));
1225 trace_ext4_da_reserve_space(inode, md_needed);
1226
1227 /*
1228 * We do still charge estimated metadata to the sb though;
1229 * we cannot afford to run out of free blocks.
1230 */
1231 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1232 ei->i_da_metadata_calc_len = save_len;
1233 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1234 spin_unlock(&ei->i_block_reservation_lock);
1235 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1236 cond_resched();
1237 goto repeat;
1238 }
1239 return -ENOSPC;
1240 }
1241 ei->i_reserved_meta_blocks += md_needed;
1242 spin_unlock(&ei->i_block_reservation_lock);
1243
1244 return 0; /* success */
1245}
1246
9d0be502 1247/*
7b415bf6 1248 * Reserve a single cluster located at lblock
9d0be502 1249 */
01f49d0b 1250static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1251{
030ba6bc 1252 int retries = 0;
60e58e0f 1253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1254 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1255 unsigned int md_needed;
5dd4056d 1256 int ret;
03179fe9
TT
1257 ext4_lblk_t save_last_lblock;
1258 int save_len;
1259
1260 /*
1261 * We will charge metadata quota at writeout time; this saves
1262 * us from metadata over-estimation, though we may go over by
1263 * a small amount in the end. Here we just reserve for data.
1264 */
1265 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1266 if (ret)
1267 return ret;
d2a17637
MC
1268
1269 /*
1270 * recalculate the amount of metadata blocks to reserve
1271 * in order to allocate nrblocks
1272 * worse case is one extent per block
1273 */
030ba6bc 1274repeat:
0637c6f4 1275 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1276 /*
1277 * ext4_calc_metadata_amount() has side effects, which we have
1278 * to be prepared undo if we fail to claim space.
1279 */
1280 save_len = ei->i_da_metadata_calc_len;
1281 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1282 md_needed = EXT4_NUM_B2C(sbi,
1283 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1284 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1285
72b8ab9d
ES
1286 /*
1287 * We do still charge estimated metadata to the sb though;
1288 * we cannot afford to run out of free blocks.
1289 */
e7d5f315 1290 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1291 ei->i_da_metadata_calc_len = save_len;
1292 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1294 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1295 cond_resched();
030ba6bc
AK
1296 goto repeat;
1297 }
03179fe9 1298 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1299 return -ENOSPC;
1300 }
9d0be502 1301 ei->i_reserved_data_blocks++;
0637c6f4
TT
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1304
d2a17637
MC
1305 return 0; /* success */
1306}
1307
12219aea 1308static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1309{
1310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1311 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1312
cd213226
MC
1313 if (!to_free)
1314 return; /* Nothing to release, exit */
1315
d2a17637 1316 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1317
5a58ec87 1318 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1319 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1320 /*
0637c6f4
TT
1321 * if there aren't enough reserved blocks, then the
1322 * counter is messed up somewhere. Since this
1323 * function is called from invalidate page, it's
1324 * harmless to return without any action.
cd213226 1325 */
8de5c325 1326 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1327 "ino %lu, to_free %d with only %d reserved "
1084f252 1328 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1329 ei->i_reserved_data_blocks);
1330 WARN_ON(1);
1331 to_free = ei->i_reserved_data_blocks;
cd213226 1332 }
0637c6f4 1333 ei->i_reserved_data_blocks -= to_free;
cd213226 1334
0637c6f4
TT
1335 if (ei->i_reserved_data_blocks == 0) {
1336 /*
1337 * We can release all of the reserved metadata blocks
1338 * only when we have written all of the delayed
1339 * allocation blocks.
7b415bf6
AK
1340 * Note that in case of bigalloc, i_reserved_meta_blocks,
1341 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1342 */
57042651 1343 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1344 ei->i_reserved_meta_blocks);
ee5f4d9c 1345 ei->i_reserved_meta_blocks = 0;
9d0be502 1346 ei->i_da_metadata_calc_len = 0;
0637c6f4 1347 }
d2a17637 1348
72b8ab9d 1349 /* update fs dirty data blocks counter */
57042651 1350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1351
d2a17637 1352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1353
7b415bf6 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1355}
1356
1357static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1358 unsigned int offset,
1359 unsigned int length)
d2a17637
MC
1360{
1361 int to_release = 0;
1362 struct buffer_head *head, *bh;
1363 unsigned int curr_off = 0;
7b415bf6
AK
1364 struct inode *inode = page->mapping->host;
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1366 unsigned int stop = offset + length;
7b415bf6 1367 int num_clusters;
51865fda 1368 ext4_fsblk_t lblk;
d2a17637 1369
ca99fdd2
LC
1370 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
d2a17637
MC
1372 head = page_buffers(page);
1373 bh = head;
1374 do {
1375 unsigned int next_off = curr_off + bh->b_size;
1376
ca99fdd2
LC
1377 if (next_off > stop)
1378 break;
1379
d2a17637
MC
1380 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381 to_release++;
1382 clear_buffer_delay(bh);
1383 }
1384 curr_off = next_off;
1385 } while ((bh = bh->b_this_page) != head);
7b415bf6 1386
51865fda
ZL
1387 if (to_release) {
1388 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389 ext4_es_remove_extent(inode, lblk, to_release);
1390 }
1391
7b415bf6
AK
1392 /* If we have released all the blocks belonging to a cluster, then we
1393 * need to release the reserved space for that cluster. */
1394 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395 while (num_clusters > 0) {
7b415bf6
AK
1396 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397 ((num_clusters - 1) << sbi->s_cluster_bits);
1398 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1399 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1400 ext4_da_release_space(inode, 1);
1401
1402 num_clusters--;
1403 }
d2a17637 1404}
ac27a0ec 1405
64769240
AT
1406/*
1407 * Delayed allocation stuff
1408 */
1409
4e7ea81d
JK
1410struct mpage_da_data {
1411 struct inode *inode;
1412 struct writeback_control *wbc;
1413 pgoff_t first_page; /* The first page to write */
1414 pgoff_t next_page; /* Current page to examine */
1415 pgoff_t last_page; /* Last page to examine */
791b7f08 1416 /*
4e7ea81d
JK
1417 * Extent to map - this can be after first_page because that can be
1418 * fully mapped. We somewhat abuse m_flags to store whether the extent
1419 * is delalloc or unwritten.
791b7f08 1420 */
4e7ea81d
JK
1421 struct ext4_map_blocks map;
1422 struct ext4_io_submit io_submit; /* IO submission data */
1423};
64769240 1424
4e7ea81d
JK
1425static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1426 bool invalidate)
c4a0c46e
AK
1427{
1428 int nr_pages, i;
1429 pgoff_t index, end;
1430 struct pagevec pvec;
1431 struct inode *inode = mpd->inode;
1432 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1433
1434 /* This is necessary when next_page == 0. */
1435 if (mpd->first_page >= mpd->next_page)
1436 return;
c4a0c46e 1437
c7f5938a
CW
1438 index = mpd->first_page;
1439 end = mpd->next_page - 1;
4e7ea81d
JK
1440 if (invalidate) {
1441 ext4_lblk_t start, last;
1442 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1443 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444 ext4_es_remove_extent(inode, start, last - start + 1);
1445 }
51865fda 1446
66bea92c 1447 pagevec_init(&pvec, 0);
c4a0c46e
AK
1448 while (index <= end) {
1449 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1450 if (nr_pages == 0)
1451 break;
1452 for (i = 0; i < nr_pages; i++) {
1453 struct page *page = pvec.pages[i];
9b1d0998 1454 if (page->index > end)
c4a0c46e 1455 break;
c4a0c46e
AK
1456 BUG_ON(!PageLocked(page));
1457 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1458 if (invalidate) {
1459 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1460 ClearPageUptodate(page);
1461 }
c4a0c46e
AK
1462 unlock_page(page);
1463 }
9b1d0998
JK
1464 index = pvec.pages[nr_pages - 1]->index + 1;
1465 pagevec_release(&pvec);
c4a0c46e 1466 }
c4a0c46e
AK
1467}
1468
df22291f
AK
1469static void ext4_print_free_blocks(struct inode *inode)
1470{
1471 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1472 struct super_block *sb = inode->i_sb;
f78ee70d 1473 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1474
1475 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1476 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1477 ext4_count_free_clusters(sb)));
92b97816
TT
1478 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1479 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1480 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1481 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1482 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1483 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1484 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1485 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1486 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1487 ei->i_reserved_data_blocks);
92b97816 1488 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1489 ei->i_reserved_meta_blocks);
1490 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1491 ei->i_allocated_meta_blocks);
df22291f
AK
1492 return;
1493}
1494
c364b22c 1495static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1496{
c364b22c 1497 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1498}
1499
5356f261
AK
1500/*
1501 * This function is grabs code from the very beginning of
1502 * ext4_map_blocks, but assumes that the caller is from delayed write
1503 * time. This function looks up the requested blocks and sets the
1504 * buffer delay bit under the protection of i_data_sem.
1505 */
1506static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1507 struct ext4_map_blocks *map,
1508 struct buffer_head *bh)
1509{
d100eef2 1510 struct extent_status es;
5356f261
AK
1511 int retval;
1512 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1513#ifdef ES_AGGRESSIVE_TEST
1514 struct ext4_map_blocks orig_map;
1515
1516 memcpy(&orig_map, map, sizeof(*map));
1517#endif
5356f261
AK
1518
1519 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1520 invalid_block = ~0;
1521
1522 map->m_flags = 0;
1523 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1524 "logical block %lu\n", inode->i_ino, map->m_len,
1525 (unsigned long) map->m_lblk);
d100eef2
ZL
1526
1527 /* Lookup extent status tree firstly */
1528 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1529
1530 if (ext4_es_is_hole(&es)) {
1531 retval = 0;
1532 down_read((&EXT4_I(inode)->i_data_sem));
1533 goto add_delayed;
1534 }
1535
1536 /*
1537 * Delayed extent could be allocated by fallocate.
1538 * So we need to check it.
1539 */
1540 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1541 map_bh(bh, inode->i_sb, invalid_block);
1542 set_buffer_new(bh);
1543 set_buffer_delay(bh);
1544 return 0;
1545 }
1546
1547 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1548 retval = es.es_len - (iblock - es.es_lblk);
1549 if (retval > map->m_len)
1550 retval = map->m_len;
1551 map->m_len = retval;
1552 if (ext4_es_is_written(&es))
1553 map->m_flags |= EXT4_MAP_MAPPED;
1554 else if (ext4_es_is_unwritten(&es))
1555 map->m_flags |= EXT4_MAP_UNWRITTEN;
1556 else
1557 BUG_ON(1);
1558
921f266b
DM
1559#ifdef ES_AGGRESSIVE_TEST
1560 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1561#endif
d100eef2
ZL
1562 return retval;
1563 }
1564
5356f261
AK
1565 /*
1566 * Try to see if we can get the block without requesting a new
1567 * file system block.
1568 */
1569 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1570 if (ext4_has_inline_data(inode)) {
1571 /*
1572 * We will soon create blocks for this page, and let
1573 * us pretend as if the blocks aren't allocated yet.
1574 * In case of clusters, we have to handle the work
1575 * of mapping from cluster so that the reserved space
1576 * is calculated properly.
1577 */
1578 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1579 ext4_find_delalloc_cluster(inode, map->m_lblk))
1580 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1581 retval = 0;
1582 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1583 retval = ext4_ext_map_blocks(NULL, inode, map,
1584 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1585 else
d100eef2
ZL
1586 retval = ext4_ind_map_blocks(NULL, inode, map,
1587 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1588
d100eef2 1589add_delayed:
5356f261 1590 if (retval == 0) {
f7fec032 1591 int ret;
5356f261
AK
1592 /*
1593 * XXX: __block_prepare_write() unmaps passed block,
1594 * is it OK?
1595 */
386ad67c
LC
1596 /*
1597 * If the block was allocated from previously allocated cluster,
1598 * then we don't need to reserve it again. However we still need
1599 * to reserve metadata for every block we're going to write.
1600 */
5356f261 1601 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1602 ret = ext4_da_reserve_space(inode, iblock);
1603 if (ret) {
5356f261 1604 /* not enough space to reserve */
f7fec032 1605 retval = ret;
5356f261 1606 goto out_unlock;
f7fec032 1607 }
386ad67c
LC
1608 } else {
1609 ret = ext4_da_reserve_metadata(inode, iblock);
1610 if (ret) {
1611 /* not enough space to reserve */
1612 retval = ret;
1613 goto out_unlock;
1614 }
5356f261
AK
1615 }
1616
f7fec032
ZL
1617 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1618 ~0, EXTENT_STATUS_DELAYED);
1619 if (ret) {
1620 retval = ret;
51865fda 1621 goto out_unlock;
f7fec032 1622 }
51865fda 1623
5356f261
AK
1624 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1625 * and it should not appear on the bh->b_state.
1626 */
1627 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1628
1629 map_bh(bh, inode->i_sb, invalid_block);
1630 set_buffer_new(bh);
1631 set_buffer_delay(bh);
f7fec032
ZL
1632 } else if (retval > 0) {
1633 int ret;
1634 unsigned long long status;
1635
921f266b
DM
1636#ifdef ES_AGGRESSIVE_TEST
1637 if (retval != map->m_len) {
1638 printk("ES len assertation failed for inode: %lu "
1639 "retval %d != map->m_len %d "
1640 "in %s (lookup)\n", inode->i_ino, retval,
1641 map->m_len, __func__);
1642 }
1643#endif
1644
f7fec032
ZL
1645 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1646 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1647 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1648 map->m_pblk, status);
1649 if (ret != 0)
1650 retval = ret;
5356f261
AK
1651 }
1652
1653out_unlock:
1654 up_read((&EXT4_I(inode)->i_data_sem));
1655
1656 return retval;
1657}
1658
64769240 1659/*
b920c755
TT
1660 * This is a special get_blocks_t callback which is used by
1661 * ext4_da_write_begin(). It will either return mapped block or
1662 * reserve space for a single block.
29fa89d0
AK
1663 *
1664 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1665 * We also have b_blocknr = -1 and b_bdev initialized properly
1666 *
1667 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1668 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1669 * initialized properly.
64769240 1670 */
9c3569b5
TM
1671int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1672 struct buffer_head *bh, int create)
64769240 1673{
2ed88685 1674 struct ext4_map_blocks map;
64769240
AT
1675 int ret = 0;
1676
1677 BUG_ON(create == 0);
2ed88685
TT
1678 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1679
1680 map.m_lblk = iblock;
1681 map.m_len = 1;
64769240
AT
1682
1683 /*
1684 * first, we need to know whether the block is allocated already
1685 * preallocated blocks are unmapped but should treated
1686 * the same as allocated blocks.
1687 */
5356f261
AK
1688 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1689 if (ret <= 0)
2ed88685 1690 return ret;
64769240 1691
2ed88685
TT
1692 map_bh(bh, inode->i_sb, map.m_pblk);
1693 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1694
1695 if (buffer_unwritten(bh)) {
1696 /* A delayed write to unwritten bh should be marked
1697 * new and mapped. Mapped ensures that we don't do
1698 * get_block multiple times when we write to the same
1699 * offset and new ensures that we do proper zero out
1700 * for partial write.
1701 */
1702 set_buffer_new(bh);
c8205636 1703 set_buffer_mapped(bh);
2ed88685
TT
1704 }
1705 return 0;
64769240 1706}
61628a3f 1707
62e086be
AK
1708static int bget_one(handle_t *handle, struct buffer_head *bh)
1709{
1710 get_bh(bh);
1711 return 0;
1712}
1713
1714static int bput_one(handle_t *handle, struct buffer_head *bh)
1715{
1716 put_bh(bh);
1717 return 0;
1718}
1719
1720static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1721 unsigned int len)
1722{
1723 struct address_space *mapping = page->mapping;
1724 struct inode *inode = mapping->host;
3fdcfb66 1725 struct buffer_head *page_bufs = NULL;
62e086be 1726 handle_t *handle = NULL;
3fdcfb66
TM
1727 int ret = 0, err = 0;
1728 int inline_data = ext4_has_inline_data(inode);
1729 struct buffer_head *inode_bh = NULL;
62e086be 1730
cb20d518 1731 ClearPageChecked(page);
3fdcfb66
TM
1732
1733 if (inline_data) {
1734 BUG_ON(page->index != 0);
1735 BUG_ON(len > ext4_get_max_inline_size(inode));
1736 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1737 if (inode_bh == NULL)
1738 goto out;
1739 } else {
1740 page_bufs = page_buffers(page);
1741 if (!page_bufs) {
1742 BUG();
1743 goto out;
1744 }
1745 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1746 NULL, bget_one);
1747 }
62e086be
AK
1748 /* As soon as we unlock the page, it can go away, but we have
1749 * references to buffers so we are safe */
1750 unlock_page(page);
1751
9924a92a
TT
1752 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1753 ext4_writepage_trans_blocks(inode));
62e086be
AK
1754 if (IS_ERR(handle)) {
1755 ret = PTR_ERR(handle);
1756 goto out;
1757 }
1758
441c8508
CW
1759 BUG_ON(!ext4_handle_valid(handle));
1760
3fdcfb66
TM
1761 if (inline_data) {
1762 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1763
3fdcfb66
TM
1764 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766 } else {
1767 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768 do_journal_get_write_access);
1769
1770 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771 write_end_fn);
1772 }
62e086be
AK
1773 if (ret == 0)
1774 ret = err;
2d859db3 1775 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1776 err = ext4_journal_stop(handle);
1777 if (!ret)
1778 ret = err;
1779
3fdcfb66
TM
1780 if (!ext4_has_inline_data(inode))
1781 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1782 NULL, bput_one);
19f5fb7a 1783 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1784out:
3fdcfb66 1785 brelse(inode_bh);
62e086be
AK
1786 return ret;
1787}
1788
61628a3f 1789/*
43ce1d23
AK
1790 * Note that we don't need to start a transaction unless we're journaling data
1791 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1792 * need to file the inode to the transaction's list in ordered mode because if
1793 * we are writing back data added by write(), the inode is already there and if
25985edc 1794 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1795 * transaction the data will hit the disk. In case we are journaling data, we
1796 * cannot start transaction directly because transaction start ranks above page
1797 * lock so we have to do some magic.
1798 *
b920c755
TT
1799 * This function can get called via...
1800 * - ext4_da_writepages after taking page lock (have journal handle)
1801 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1802 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1803 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1804 *
1805 * We don't do any block allocation in this function. If we have page with
1806 * multiple blocks we need to write those buffer_heads that are mapped. This
1807 * is important for mmaped based write. So if we do with blocksize 1K
1808 * truncate(f, 1024);
1809 * a = mmap(f, 0, 4096);
1810 * a[0] = 'a';
1811 * truncate(f, 4096);
1812 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1813 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1814 * do_wp_page). So writepage should write the first block. If we modify
1815 * the mmap area beyond 1024 we will again get a page_fault and the
1816 * page_mkwrite callback will do the block allocation and mark the
1817 * buffer_heads mapped.
1818 *
1819 * We redirty the page if we have any buffer_heads that is either delay or
1820 * unwritten in the page.
1821 *
1822 * We can get recursively called as show below.
1823 *
1824 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1825 * ext4_writepage()
1826 *
1827 * But since we don't do any block allocation we should not deadlock.
1828 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1829 */
43ce1d23 1830static int ext4_writepage(struct page *page,
62e086be 1831 struct writeback_control *wbc)
64769240 1832{
f8bec370 1833 int ret = 0;
61628a3f 1834 loff_t size;
498e5f24 1835 unsigned int len;
744692dc 1836 struct buffer_head *page_bufs = NULL;
61628a3f 1837 struct inode *inode = page->mapping->host;
36ade451 1838 struct ext4_io_submit io_submit;
61628a3f 1839
a9c667f8 1840 trace_ext4_writepage(page);
f0e6c985
AK
1841 size = i_size_read(inode);
1842 if (page->index == size >> PAGE_CACHE_SHIFT)
1843 len = size & ~PAGE_CACHE_MASK;
1844 else
1845 len = PAGE_CACHE_SIZE;
64769240 1846
a42afc5f 1847 page_bufs = page_buffers(page);
a42afc5f 1848 /*
fe386132
JK
1849 * We cannot do block allocation or other extent handling in this
1850 * function. If there are buffers needing that, we have to redirty
1851 * the page. But we may reach here when we do a journal commit via
1852 * journal_submit_inode_data_buffers() and in that case we must write
1853 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1854 */
f19d5870
TM
1855 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1856 ext4_bh_delay_or_unwritten)) {
f8bec370 1857 redirty_page_for_writepage(wbc, page);
fe386132
JK
1858 if (current->flags & PF_MEMALLOC) {
1859 /*
1860 * For memory cleaning there's no point in writing only
1861 * some buffers. So just bail out. Warn if we came here
1862 * from direct reclaim.
1863 */
1864 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1865 == PF_MEMALLOC);
f0e6c985
AK
1866 unlock_page(page);
1867 return 0;
1868 }
a42afc5f 1869 }
64769240 1870
cb20d518 1871 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1872 /*
1873 * It's mmapped pagecache. Add buffers and journal it. There
1874 * doesn't seem much point in redirtying the page here.
1875 */
3f0ca309 1876 return __ext4_journalled_writepage(page, len);
43ce1d23 1877
97a851ed
JK
1878 ext4_io_submit_init(&io_submit, wbc);
1879 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1880 if (!io_submit.io_end) {
1881 redirty_page_for_writepage(wbc, page);
1882 unlock_page(page);
1883 return -ENOMEM;
1884 }
36ade451
JK
1885 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1886 ext4_io_submit(&io_submit);
97a851ed
JK
1887 /* Drop io_end reference we got from init */
1888 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1889 return ret;
1890}
1891
4e7ea81d
JK
1892#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1893
61628a3f 1894/*
fffb2739
JK
1895 * mballoc gives us at most this number of blocks...
1896 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1897 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 1898 */
fffb2739 1899#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1900
4e7ea81d
JK
1901/*
1902 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1903 *
1904 * @mpd - extent of blocks
1905 * @lblk - logical number of the block in the file
1906 * @b_state - b_state of the buffer head added
1907 *
1908 * the function is used to collect contig. blocks in same state
1909 */
1910static int mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1911 unsigned long b_state)
1912{
1913 struct ext4_map_blocks *map = &mpd->map;
1914
1915 /* Don't go larger than mballoc is willing to allocate */
1916 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1917 return 0;
1918
1919 /* First block in the extent? */
1920 if (map->m_len == 0) {
1921 map->m_lblk = lblk;
1922 map->m_len = 1;
1923 map->m_flags = b_state & BH_FLAGS;
1924 return 1;
1925 }
1926
1927 /* Can we merge the block to our big extent? */
1928 if (lblk == map->m_lblk + map->m_len &&
1929 (b_state & BH_FLAGS) == map->m_flags) {
1930 map->m_len++;
1931 return 1;
1932 }
1933 return 0;
1934}
1935
1936static bool add_page_bufs_to_extent(struct mpage_da_data *mpd,
1937 struct buffer_head *head,
1938 struct buffer_head *bh,
1939 ext4_lblk_t lblk)
1940{
1941 struct inode *inode = mpd->inode;
1942 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1943 >> inode->i_blkbits;
1944
1945 do {
1946 BUG_ON(buffer_locked(bh));
1947
1948 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1949 (!buffer_delay(bh) && !buffer_unwritten(bh)) ||
1950 lblk >= blocks) {
1951 /* Found extent to map? */
1952 if (mpd->map.m_len)
1953 return false;
1954 if (lblk >= blocks)
1955 return true;
1956 continue;
1957 }
1958 if (!mpage_add_bh_to_extent(mpd, lblk, bh->b_state))
1959 return false;
1960 } while (lblk++, (bh = bh->b_this_page) != head);
1961 return true;
1962}
1963
1964static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1965{
1966 int len;
1967 loff_t size = i_size_read(mpd->inode);
1968 int err;
1969
1970 BUG_ON(page->index != mpd->first_page);
1971 if (page->index == size >> PAGE_CACHE_SHIFT)
1972 len = size & ~PAGE_CACHE_MASK;
1973 else
1974 len = PAGE_CACHE_SIZE;
1975 clear_page_dirty_for_io(page);
1976 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1977 if (!err)
1978 mpd->wbc->nr_to_write--;
1979 mpd->first_page++;
1980
1981 return err;
1982}
1983
1984/*
1985 * mpage_map_buffers - update buffers corresponding to changed extent and
1986 * submit fully mapped pages for IO
1987 *
1988 * @mpd - description of extent to map, on return next extent to map
1989 *
1990 * Scan buffers corresponding to changed extent (we expect corresponding pages
1991 * to be already locked) and update buffer state according to new extent state.
1992 * We map delalloc buffers to their physical location, clear unwritten bits,
1993 * and mark buffers as uninit when we perform writes to uninitialized extents
1994 * and do extent conversion after IO is finished. If the last page is not fully
1995 * mapped, we update @map to the next extent in the last page that needs
1996 * mapping. Otherwise we submit the page for IO.
1997 */
1998static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
1999{
2000 struct pagevec pvec;
2001 int nr_pages, i;
2002 struct inode *inode = mpd->inode;
2003 struct buffer_head *head, *bh;
2004 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2005 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2006 >> inode->i_blkbits;
2007 pgoff_t start, end;
2008 ext4_lblk_t lblk;
2009 sector_t pblock;
2010 int err;
2011
2012 start = mpd->map.m_lblk >> bpp_bits;
2013 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2014 lblk = start << bpp_bits;
2015 pblock = mpd->map.m_pblk;
2016
2017 pagevec_init(&pvec, 0);
2018 while (start <= end) {
2019 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2020 PAGEVEC_SIZE);
2021 if (nr_pages == 0)
2022 break;
2023 for (i = 0; i < nr_pages; i++) {
2024 struct page *page = pvec.pages[i];
2025
2026 if (page->index > end)
2027 break;
2028 /* Upto 'end' pages must be contiguous */
2029 BUG_ON(page->index != start);
2030 bh = head = page_buffers(page);
2031 do {
2032 if (lblk < mpd->map.m_lblk)
2033 continue;
2034 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2035 /*
2036 * Buffer after end of mapped extent.
2037 * Find next buffer in the page to map.
2038 */
2039 mpd->map.m_len = 0;
2040 mpd->map.m_flags = 0;
2041 add_page_bufs_to_extent(mpd, head, bh,
2042 lblk);
2043 pagevec_release(&pvec);
2044 return 0;
2045 }
2046 if (buffer_delay(bh)) {
2047 clear_buffer_delay(bh);
2048 bh->b_blocknr = pblock++;
2049 }
2050 if (mpd->map.m_flags & EXT4_MAP_UNINIT)
2051 set_buffer_uninit(bh);
2052 clear_buffer_unwritten(bh);
2053 } while (++lblk < blocks &&
2054 (bh = bh->b_this_page) != head);
2055
2056 /*
2057 * FIXME: This is going to break if dioread_nolock
2058 * supports blocksize < pagesize as we will try to
2059 * convert potentially unmapped parts of inode.
2060 */
2061 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2062 /* Page fully mapped - let IO run! */
2063 err = mpage_submit_page(mpd, page);
2064 if (err < 0) {
2065 pagevec_release(&pvec);
2066 return err;
2067 }
2068 start++;
2069 }
2070 pagevec_release(&pvec);
2071 }
2072 /* Extent fully mapped and matches with page boundary. We are done. */
2073 mpd->map.m_len = 0;
2074 mpd->map.m_flags = 0;
2075 return 0;
2076}
2077
2078static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2079{
2080 struct inode *inode = mpd->inode;
2081 struct ext4_map_blocks *map = &mpd->map;
2082 int get_blocks_flags;
2083 int err;
2084
2085 trace_ext4_da_write_pages_extent(inode, map);
2086 /*
2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 * to convert an uninitialized extent to be initialized (in the case
2089 * where we have written into one or more preallocated blocks). It is
2090 * possible that we're going to need more metadata blocks than
2091 * previously reserved. However we must not fail because we're in
2092 * writeback and there is nothing we can do about it so it might result
2093 * in data loss. So use reserved blocks to allocate metadata if
2094 * possible.
2095 *
2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2097 * in question are delalloc blocks. This affects functions in many
2098 * different parts of the allocation call path. This flag exists
2099 * primarily because we don't want to change *many* call functions, so
2100 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2101 * once the inode's allocation semaphore is taken.
2102 */
2103 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2104 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2105 if (ext4_should_dioread_nolock(inode))
2106 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2107 if (map->m_flags & (1 << BH_Delay))
2108 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2109
2110 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2111 if (err < 0)
2112 return err;
2113
2114 BUG_ON(map->m_len == 0);
2115 if (map->m_flags & EXT4_MAP_NEW) {
2116 struct block_device *bdev = inode->i_sb->s_bdev;
2117 int i;
2118
2119 for (i = 0; i < map->m_len; i++)
2120 unmap_underlying_metadata(bdev, map->m_pblk + i);
2121 }
2122 return 0;
2123}
2124
2125/*
2126 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2127 * mpd->len and submit pages underlying it for IO
2128 *
2129 * @handle - handle for journal operations
2130 * @mpd - extent to map
2131 *
2132 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2133 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2134 * them to initialized or split the described range from larger unwritten
2135 * extent. Note that we need not map all the described range since allocation
2136 * can return less blocks or the range is covered by more unwritten extents. We
2137 * cannot map more because we are limited by reserved transaction credits. On
2138 * the other hand we always make sure that the last touched page is fully
2139 * mapped so that it can be written out (and thus forward progress is
2140 * guaranteed). After mapping we submit all mapped pages for IO.
2141 */
2142static int mpage_map_and_submit_extent(handle_t *handle,
2143 struct mpage_da_data *mpd)
2144{
2145 struct inode *inode = mpd->inode;
2146 struct ext4_map_blocks *map = &mpd->map;
2147 int err;
2148 loff_t disksize;
2149
2150 mpd->io_submit.io_end->offset =
2151 ((loff_t)map->m_lblk) << inode->i_blkbits;
2152 while (map->m_len) {
2153 err = mpage_map_one_extent(handle, mpd);
2154 if (err < 0) {
2155 struct super_block *sb = inode->i_sb;
2156
2157 /*
2158 * Need to commit transaction to free blocks. Let upper
2159 * layers sort it out.
2160 */
2161 if (err == -ENOSPC && ext4_count_free_clusters(sb))
2162 return -ENOSPC;
2163
2164 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2165 ext4_msg(sb, KERN_CRIT,
2166 "Delayed block allocation failed for "
2167 "inode %lu at logical offset %llu with"
2168 " max blocks %u with error %d",
2169 inode->i_ino,
2170 (unsigned long long)map->m_lblk,
2171 (unsigned)map->m_len, err);
2172 ext4_msg(sb, KERN_CRIT,
2173 "This should not happen!! Data will "
2174 "be lost\n");
2175 if (err == -ENOSPC)
2176 ext4_print_free_blocks(inode);
2177 }
2178 /* invalidate all the pages */
2179 mpage_release_unused_pages(mpd, true);
2180 return err;
2181 }
2182 /*
2183 * Update buffer state, submit mapped pages, and get us new
2184 * extent to map
2185 */
2186 err = mpage_map_and_submit_buffers(mpd);
2187 if (err < 0)
2188 return err;
2189 }
2190
2191 /* Update on-disk size after IO is submitted */
2192 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2193 if (disksize > i_size_read(inode))
2194 disksize = i_size_read(inode);
2195 if (disksize > EXT4_I(inode)->i_disksize) {
2196 int err2;
2197
2198 ext4_update_i_disksize(inode, disksize);
2199 err2 = ext4_mark_inode_dirty(handle, inode);
2200 if (err2)
2201 ext4_error(inode->i_sb,
2202 "Failed to mark inode %lu dirty",
2203 inode->i_ino);
2204 if (!err)
2205 err = err2;
2206 }
2207 return err;
2208}
2209
fffb2739
JK
2210/*
2211 * Calculate the total number of credits to reserve for one writepages
2212 * iteration. This is called from ext4_da_writepages(). We map an extent of
2213 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2214 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2215 * bpp - 1 blocks in bpp different extents.
2216 */
525f4ed8
MC
2217static int ext4_da_writepages_trans_blocks(struct inode *inode)
2218{
fffb2739 2219 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2220
fffb2739
JK
2221 return ext4_meta_trans_blocks(inode,
2222 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2223}
61628a3f 2224
8e48dcfb 2225/*
4e7ea81d
JK
2226 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2227 * and underlying extent to map
2228 *
2229 * @mpd - where to look for pages
2230 *
2231 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2232 * IO immediately. When we find a page which isn't mapped we start accumulating
2233 * extent of buffers underlying these pages that needs mapping (formed by
2234 * either delayed or unwritten buffers). We also lock the pages containing
2235 * these buffers. The extent found is returned in @mpd structure (starting at
2236 * mpd->lblk with length mpd->len blocks).
2237 *
2238 * Note that this function can attach bios to one io_end structure which are
2239 * neither logically nor physically contiguous. Although it may seem as an
2240 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2241 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2242 */
4e7ea81d 2243static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2244{
4e7ea81d
JK
2245 struct address_space *mapping = mpd->inode->i_mapping;
2246 struct pagevec pvec;
2247 unsigned int nr_pages;
2248 pgoff_t index = mpd->first_page;
2249 pgoff_t end = mpd->last_page;
2250 int tag;
2251 int i, err = 0;
2252 int blkbits = mpd->inode->i_blkbits;
2253 ext4_lblk_t lblk;
2254 struct buffer_head *head;
8e48dcfb 2255
4e7ea81d 2256 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2257 tag = PAGECACHE_TAG_TOWRITE;
2258 else
2259 tag = PAGECACHE_TAG_DIRTY;
2260
4e7ea81d
JK
2261 pagevec_init(&pvec, 0);
2262 mpd->map.m_len = 0;
2263 mpd->next_page = index;
4f01b02c 2264 while (index <= end) {
5b41d924 2265 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2266 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2267 if (nr_pages == 0)
4e7ea81d 2268 goto out;
8e48dcfb
TT
2269
2270 for (i = 0; i < nr_pages; i++) {
2271 struct page *page = pvec.pages[i];
2272
2273 /*
2274 * At this point, the page may be truncated or
2275 * invalidated (changing page->mapping to NULL), or
2276 * even swizzled back from swapper_space to tmpfs file
2277 * mapping. However, page->index will not change
2278 * because we have a reference on the page.
2279 */
4f01b02c
TT
2280 if (page->index > end)
2281 goto out;
8e48dcfb 2282
4e7ea81d
JK
2283 /* If we can't merge this page, we are done. */
2284 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2285 goto out;
78aaced3 2286
8e48dcfb 2287 lock_page(page);
8e48dcfb 2288 /*
4e7ea81d
JK
2289 * If the page is no longer dirty, or its mapping no
2290 * longer corresponds to inode we are writing (which
2291 * means it has been truncated or invalidated), or the
2292 * page is already under writeback and we are not doing
2293 * a data integrity writeback, skip the page
8e48dcfb 2294 */
4f01b02c
TT
2295 if (!PageDirty(page) ||
2296 (PageWriteback(page) &&
4e7ea81d 2297 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2298 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2299 unlock_page(page);
2300 continue;
2301 }
2302
7cb1a535 2303 wait_on_page_writeback(page);
8e48dcfb 2304 BUG_ON(PageWriteback(page));
8e48dcfb 2305
4e7ea81d 2306 if (mpd->map.m_len == 0)
8eb9e5ce 2307 mpd->first_page = page->index;
8eb9e5ce 2308 mpd->next_page = page->index + 1;
f8bec370 2309 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2310 lblk = ((ext4_lblk_t)page->index) <<
2311 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2312 head = page_buffers(page);
4e7ea81d
JK
2313 if (!add_page_bufs_to_extent(mpd, head, head, lblk))
2314 goto out;
2315 /* So far everything mapped? Submit the page for IO. */
2316 if (mpd->map.m_len == 0) {
2317 err = mpage_submit_page(mpd, page);
2318 if (err < 0)
4f01b02c 2319 goto out;
8e48dcfb 2320 }
4e7ea81d
JK
2321
2322 /*
2323 * Accumulated enough dirty pages? This doesn't apply
2324 * to WB_SYNC_ALL mode. For integrity sync we have to
2325 * keep going because someone may be concurrently
2326 * dirtying pages, and we might have synced a lot of
2327 * newly appeared dirty pages, but have not synced all
2328 * of the old dirty pages.
2329 */
2330 if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2331 mpd->next_page - mpd->first_page >=
2332 mpd->wbc->nr_to_write)
2333 goto out;
8e48dcfb
TT
2334 }
2335 pagevec_release(&pvec);
2336 cond_resched();
2337 }
4f01b02c 2338 return 0;
8eb9e5ce
TT
2339out:
2340 pagevec_release(&pvec);
4e7ea81d 2341 return err;
8e48dcfb
TT
2342}
2343
64769240 2344static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2345 struct writeback_control *wbc)
64769240 2346{
4e7ea81d
JK
2347 pgoff_t writeback_index = 0;
2348 long nr_to_write = wbc->nr_to_write;
22208ded 2349 int range_whole = 0;
4e7ea81d 2350 int cycled = 1;
61628a3f 2351 handle_t *handle = NULL;
df22291f 2352 struct mpage_da_data mpd;
5e745b04 2353 struct inode *inode = mapping->host;
55138e0b 2354 int needed_blocks, ret = 0;
5e745b04 2355 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2356 bool done;
1bce63d1 2357 struct blk_plug plug;
61628a3f 2358
9bffad1e 2359 trace_ext4_da_writepages(inode, wbc);
ba80b101 2360
61628a3f
MC
2361 /*
2362 * No pages to write? This is mainly a kludge to avoid starting
2363 * a transaction for special inodes like journal inode on last iput()
2364 * because that could violate lock ordering on umount
2365 */
a1d6cc56 2366 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2367 return 0;
2a21e37e
TT
2368
2369 /*
2370 * If the filesystem has aborted, it is read-only, so return
2371 * right away instead of dumping stack traces later on that
2372 * will obscure the real source of the problem. We test
4ab2f15b 2373 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2374 * the latter could be true if the filesystem is mounted
2375 * read-only, and in that case, ext4_da_writepages should
2376 * *never* be called, so if that ever happens, we would want
2377 * the stack trace.
2378 */
4ab2f15b 2379 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2380 return -EROFS;
2381
4e7ea81d
JK
2382 /*
2383 * If we have inline data and arrive here, it means that
2384 * we will soon create the block for the 1st page, so
2385 * we'd better clear the inline data here.
2386 */
2387 if (ext4_has_inline_data(inode)) {
2388 /* Just inode will be modified... */
2389 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2390 if (IS_ERR(handle)) {
2391 ret = PTR_ERR(handle);
2392 goto out_writepages;
2393 }
2394 BUG_ON(ext4_test_inode_state(inode,
2395 EXT4_STATE_MAY_INLINE_DATA));
2396 ext4_destroy_inline_data(handle, inode);
2397 ext4_journal_stop(handle);
2398 }
2399
22208ded
AK
2400 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2401 range_whole = 1;
61628a3f 2402
2acf2c26 2403 if (wbc->range_cyclic) {
4e7ea81d
JK
2404 writeback_index = mapping->writeback_index;
2405 if (writeback_index)
2acf2c26 2406 cycled = 0;
4e7ea81d
JK
2407 mpd.first_page = writeback_index;
2408 mpd.last_page = -1;
5b41d924 2409 } else {
4e7ea81d
JK
2410 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2411 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2412 }
a1d6cc56 2413
4e7ea81d
JK
2414 mpd.inode = inode;
2415 mpd.wbc = wbc;
2416 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2417retry:
6e6938b6 2418 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2419 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2420 done = false;
1bce63d1 2421 blk_start_plug(&plug);
4e7ea81d
JK
2422 while (!done && mpd.first_page <= mpd.last_page) {
2423 /* For each extent of pages we use new io_end */
2424 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2425 if (!mpd.io_submit.io_end) {
2426 ret = -ENOMEM;
2427 break;
2428 }
a1d6cc56
AK
2429
2430 /*
4e7ea81d
JK
2431 * We have two constraints: We find one extent to map and we
2432 * must always write out whole page (makes a difference when
2433 * blocksize < pagesize) so that we don't block on IO when we
2434 * try to write out the rest of the page. Journalled mode is
2435 * not supported by delalloc.
a1d6cc56
AK
2436 */
2437 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2438 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2439
4e7ea81d 2440 /* start a new transaction */
9924a92a
TT
2441 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2442 needed_blocks);
61628a3f
MC
2443 if (IS_ERR(handle)) {
2444 ret = PTR_ERR(handle);
1693918e 2445 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2446 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2447 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2448 /* Release allocated io_end */
2449 ext4_put_io_end(mpd.io_submit.io_end);
2450 break;
61628a3f 2451 }
f63e6005 2452
4e7ea81d
JK
2453 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2454 ret = mpage_prepare_extent_to_map(&mpd);
2455 if (!ret) {
2456 if (mpd.map.m_len)
2457 ret = mpage_map_and_submit_extent(handle, &mpd);
2458 else {
2459 /*
2460 * We scanned the whole range (or exhausted
2461 * nr_to_write), submitted what was mapped and
2462 * didn't find anything needing mapping. We are
2463 * done.
2464 */
2465 done = true;
2466 }
f63e6005 2467 }
61628a3f 2468 ext4_journal_stop(handle);
4e7ea81d
JK
2469 /* Submit prepared bio */
2470 ext4_io_submit(&mpd.io_submit);
2471 /* Unlock pages we didn't use */
2472 mpage_release_unused_pages(&mpd, false);
2473 /* Drop our io_end reference we got from init */
2474 ext4_put_io_end(mpd.io_submit.io_end);
2475
2476 if (ret == -ENOSPC && sbi->s_journal) {
2477 /*
2478 * Commit the transaction which would
22208ded
AK
2479 * free blocks released in the transaction
2480 * and try again
2481 */
df22291f 2482 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2483 ret = 0;
4e7ea81d
JK
2484 continue;
2485 }
2486 /* Fatal error - ENOMEM, EIO... */
2487 if (ret)
61628a3f 2488 break;
a1d6cc56 2489 }
1bce63d1 2490 blk_finish_plug(&plug);
4e7ea81d 2491 if (!ret && !cycled) {
2acf2c26 2492 cycled = 1;
4e7ea81d
JK
2493 mpd.last_page = writeback_index - 1;
2494 mpd.first_page = 0;
2acf2c26
AK
2495 goto retry;
2496 }
22208ded
AK
2497
2498 /* Update index */
22208ded
AK
2499 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2500 /*
4e7ea81d 2501 * Set the writeback_index so that range_cyclic
22208ded
AK
2502 * mode will write it back later
2503 */
4e7ea81d 2504 mapping->writeback_index = mpd.first_page;
a1d6cc56 2505
61628a3f 2506out_writepages:
4e7ea81d
JK
2507 trace_ext4_da_writepages_result(inode, wbc, ret,
2508 nr_to_write - wbc->nr_to_write);
61628a3f 2509 return ret;
64769240
AT
2510}
2511
79f0be8d
AK
2512static int ext4_nonda_switch(struct super_block *sb)
2513{
5c1ff336 2514 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2515 struct ext4_sb_info *sbi = EXT4_SB(sb);
2516
2517 /*
2518 * switch to non delalloc mode if we are running low
2519 * on free block. The free block accounting via percpu
179f7ebf 2520 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2521 * accumulated on each CPU without updating global counters
2522 * Delalloc need an accurate free block accounting. So switch
2523 * to non delalloc when we are near to error range.
2524 */
5c1ff336
EW
2525 free_clusters =
2526 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2527 dirty_clusters =
2528 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2529 /*
2530 * Start pushing delalloc when 1/2 of free blocks are dirty.
2531 */
5c1ff336 2532 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2533 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2534
5c1ff336
EW
2535 if (2 * free_clusters < 3 * dirty_clusters ||
2536 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2537 /*
c8afb446
ES
2538 * free block count is less than 150% of dirty blocks
2539 * or free blocks is less than watermark
79f0be8d
AK
2540 */
2541 return 1;
2542 }
2543 return 0;
2544}
2545
64769240 2546static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2547 loff_t pos, unsigned len, unsigned flags,
2548 struct page **pagep, void **fsdata)
64769240 2549{
72b8ab9d 2550 int ret, retries = 0;
64769240
AT
2551 struct page *page;
2552 pgoff_t index;
64769240
AT
2553 struct inode *inode = mapping->host;
2554 handle_t *handle;
2555
2556 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2557
2558 if (ext4_nonda_switch(inode->i_sb)) {
2559 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2560 return ext4_write_begin(file, mapping, pos,
2561 len, flags, pagep, fsdata);
2562 }
2563 *fsdata = (void *)0;
9bffad1e 2564 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2565
2566 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2567 ret = ext4_da_write_inline_data_begin(mapping, inode,
2568 pos, len, flags,
2569 pagep, fsdata);
2570 if (ret < 0)
47564bfb
TT
2571 return ret;
2572 if (ret == 1)
2573 return 0;
9c3569b5
TM
2574 }
2575
47564bfb
TT
2576 /*
2577 * grab_cache_page_write_begin() can take a long time if the
2578 * system is thrashing due to memory pressure, or if the page
2579 * is being written back. So grab it first before we start
2580 * the transaction handle. This also allows us to allocate
2581 * the page (if needed) without using GFP_NOFS.
2582 */
2583retry_grab:
2584 page = grab_cache_page_write_begin(mapping, index, flags);
2585 if (!page)
2586 return -ENOMEM;
2587 unlock_page(page);
2588
64769240
AT
2589 /*
2590 * With delayed allocation, we don't log the i_disksize update
2591 * if there is delayed block allocation. But we still need
2592 * to journalling the i_disksize update if writes to the end
2593 * of file which has an already mapped buffer.
2594 */
47564bfb 2595retry_journal:
9924a92a 2596 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2597 if (IS_ERR(handle)) {
47564bfb
TT
2598 page_cache_release(page);
2599 return PTR_ERR(handle);
64769240
AT
2600 }
2601
47564bfb
TT
2602 lock_page(page);
2603 if (page->mapping != mapping) {
2604 /* The page got truncated from under us */
2605 unlock_page(page);
2606 page_cache_release(page);
d5a0d4f7 2607 ext4_journal_stop(handle);
47564bfb 2608 goto retry_grab;
d5a0d4f7 2609 }
47564bfb
TT
2610 /* In case writeback began while the page was unlocked */
2611 wait_on_page_writeback(page);
64769240 2612
6e1db88d 2613 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2614 if (ret < 0) {
2615 unlock_page(page);
2616 ext4_journal_stop(handle);
ae4d5372
AK
2617 /*
2618 * block_write_begin may have instantiated a few blocks
2619 * outside i_size. Trim these off again. Don't need
2620 * i_size_read because we hold i_mutex.
2621 */
2622 if (pos + len > inode->i_size)
b9a4207d 2623 ext4_truncate_failed_write(inode);
47564bfb
TT
2624
2625 if (ret == -ENOSPC &&
2626 ext4_should_retry_alloc(inode->i_sb, &retries))
2627 goto retry_journal;
2628
2629 page_cache_release(page);
2630 return ret;
64769240
AT
2631 }
2632
47564bfb 2633 *pagep = page;
64769240
AT
2634 return ret;
2635}
2636
632eaeab
MC
2637/*
2638 * Check if we should update i_disksize
2639 * when write to the end of file but not require block allocation
2640 */
2641static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2642 unsigned long offset)
632eaeab
MC
2643{
2644 struct buffer_head *bh;
2645 struct inode *inode = page->mapping->host;
2646 unsigned int idx;
2647 int i;
2648
2649 bh = page_buffers(page);
2650 idx = offset >> inode->i_blkbits;
2651
af5bc92d 2652 for (i = 0; i < idx; i++)
632eaeab
MC
2653 bh = bh->b_this_page;
2654
29fa89d0 2655 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2656 return 0;
2657 return 1;
2658}
2659
64769240 2660static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2661 struct address_space *mapping,
2662 loff_t pos, unsigned len, unsigned copied,
2663 struct page *page, void *fsdata)
64769240
AT
2664{
2665 struct inode *inode = mapping->host;
2666 int ret = 0, ret2;
2667 handle_t *handle = ext4_journal_current_handle();
2668 loff_t new_i_size;
632eaeab 2669 unsigned long start, end;
79f0be8d
AK
2670 int write_mode = (int)(unsigned long)fsdata;
2671
74d553aa
TT
2672 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2673 return ext4_write_end(file, mapping, pos,
2674 len, copied, page, fsdata);
632eaeab 2675
9bffad1e 2676 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2677 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2678 end = start + copied - 1;
64769240
AT
2679
2680 /*
2681 * generic_write_end() will run mark_inode_dirty() if i_size
2682 * changes. So let's piggyback the i_disksize mark_inode_dirty
2683 * into that.
2684 */
64769240 2685 new_i_size = pos + copied;
ea51d132 2686 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2687 if (ext4_has_inline_data(inode) ||
2688 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2689 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2690 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2691 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2692 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2693 /* We need to mark inode dirty even if
2694 * new_i_size is less that inode->i_size
2695 * bu greater than i_disksize.(hint delalloc)
2696 */
2697 ext4_mark_inode_dirty(handle, inode);
64769240 2698 }
632eaeab 2699 }
9c3569b5
TM
2700
2701 if (write_mode != CONVERT_INLINE_DATA &&
2702 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2703 ext4_has_inline_data(inode))
2704 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2705 page);
2706 else
2707 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2708 page, fsdata);
9c3569b5 2709
64769240
AT
2710 copied = ret2;
2711 if (ret2 < 0)
2712 ret = ret2;
2713 ret2 = ext4_journal_stop(handle);
2714 if (!ret)
2715 ret = ret2;
2716
2717 return ret ? ret : copied;
2718}
2719
d47992f8
LC
2720static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2721 unsigned int length)
64769240 2722{
64769240
AT
2723 /*
2724 * Drop reserved blocks
2725 */
2726 BUG_ON(!PageLocked(page));
2727 if (!page_has_buffers(page))
2728 goto out;
2729
ca99fdd2 2730 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2731
2732out:
d47992f8 2733 ext4_invalidatepage(page, offset, length);
64769240
AT
2734
2735 return;
2736}
2737
ccd2506b
TT
2738/*
2739 * Force all delayed allocation blocks to be allocated for a given inode.
2740 */
2741int ext4_alloc_da_blocks(struct inode *inode)
2742{
fb40ba0d
TT
2743 trace_ext4_alloc_da_blocks(inode);
2744
ccd2506b
TT
2745 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2746 !EXT4_I(inode)->i_reserved_meta_blocks)
2747 return 0;
2748
2749 /*
2750 * We do something simple for now. The filemap_flush() will
2751 * also start triggering a write of the data blocks, which is
2752 * not strictly speaking necessary (and for users of
2753 * laptop_mode, not even desirable). However, to do otherwise
2754 * would require replicating code paths in:
de9a55b8 2755 *
ccd2506b
TT
2756 * ext4_da_writepages() ->
2757 * write_cache_pages() ---> (via passed in callback function)
2758 * __mpage_da_writepage() -->
2759 * mpage_add_bh_to_extent()
2760 * mpage_da_map_blocks()
2761 *
2762 * The problem is that write_cache_pages(), located in
2763 * mm/page-writeback.c, marks pages clean in preparation for
2764 * doing I/O, which is not desirable if we're not planning on
2765 * doing I/O at all.
2766 *
2767 * We could call write_cache_pages(), and then redirty all of
380cf090 2768 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2769 * would be ugly in the extreme. So instead we would need to
2770 * replicate parts of the code in the above functions,
25985edc 2771 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2772 * write out the pages, but rather only collect contiguous
2773 * logical block extents, call the multi-block allocator, and
2774 * then update the buffer heads with the block allocations.
de9a55b8 2775 *
ccd2506b
TT
2776 * For now, though, we'll cheat by calling filemap_flush(),
2777 * which will map the blocks, and start the I/O, but not
2778 * actually wait for the I/O to complete.
2779 */
2780 return filemap_flush(inode->i_mapping);
2781}
64769240 2782
ac27a0ec
DK
2783/*
2784 * bmap() is special. It gets used by applications such as lilo and by
2785 * the swapper to find the on-disk block of a specific piece of data.
2786 *
2787 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2788 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2789 * filesystem and enables swap, then they may get a nasty shock when the
2790 * data getting swapped to that swapfile suddenly gets overwritten by
2791 * the original zero's written out previously to the journal and
2792 * awaiting writeback in the kernel's buffer cache.
2793 *
2794 * So, if we see any bmap calls here on a modified, data-journaled file,
2795 * take extra steps to flush any blocks which might be in the cache.
2796 */
617ba13b 2797static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2798{
2799 struct inode *inode = mapping->host;
2800 journal_t *journal;
2801 int err;
2802
46c7f254
TM
2803 /*
2804 * We can get here for an inline file via the FIBMAP ioctl
2805 */
2806 if (ext4_has_inline_data(inode))
2807 return 0;
2808
64769240
AT
2809 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2810 test_opt(inode->i_sb, DELALLOC)) {
2811 /*
2812 * With delalloc we want to sync the file
2813 * so that we can make sure we allocate
2814 * blocks for file
2815 */
2816 filemap_write_and_wait(mapping);
2817 }
2818
19f5fb7a
TT
2819 if (EXT4_JOURNAL(inode) &&
2820 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2821 /*
2822 * This is a REALLY heavyweight approach, but the use of
2823 * bmap on dirty files is expected to be extremely rare:
2824 * only if we run lilo or swapon on a freshly made file
2825 * do we expect this to happen.
2826 *
2827 * (bmap requires CAP_SYS_RAWIO so this does not
2828 * represent an unprivileged user DOS attack --- we'd be
2829 * in trouble if mortal users could trigger this path at
2830 * will.)
2831 *
617ba13b 2832 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2833 * regular files. If somebody wants to bmap a directory
2834 * or symlink and gets confused because the buffer
2835 * hasn't yet been flushed to disk, they deserve
2836 * everything they get.
2837 */
2838
19f5fb7a 2839 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2840 journal = EXT4_JOURNAL(inode);
dab291af
MC
2841 jbd2_journal_lock_updates(journal);
2842 err = jbd2_journal_flush(journal);
2843 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2844
2845 if (err)
2846 return 0;
2847 }
2848
af5bc92d 2849 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2850}
2851
617ba13b 2852static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2853{
46c7f254
TM
2854 int ret = -EAGAIN;
2855 struct inode *inode = page->mapping->host;
2856
0562e0ba 2857 trace_ext4_readpage(page);
46c7f254
TM
2858
2859 if (ext4_has_inline_data(inode))
2860 ret = ext4_readpage_inline(inode, page);
2861
2862 if (ret == -EAGAIN)
2863 return mpage_readpage(page, ext4_get_block);
2864
2865 return ret;
ac27a0ec
DK
2866}
2867
2868static int
617ba13b 2869ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2870 struct list_head *pages, unsigned nr_pages)
2871{
46c7f254
TM
2872 struct inode *inode = mapping->host;
2873
2874 /* If the file has inline data, no need to do readpages. */
2875 if (ext4_has_inline_data(inode))
2876 return 0;
2877
617ba13b 2878 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2879}
2880
d47992f8
LC
2881static void ext4_invalidatepage(struct page *page, unsigned int offset,
2882 unsigned int length)
ac27a0ec 2883{
ca99fdd2 2884 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2885
4520fb3c
JK
2886 /* No journalling happens on data buffers when this function is used */
2887 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2888
ca99fdd2 2889 block_invalidatepage(page, offset, length);
4520fb3c
JK
2890}
2891
53e87268 2892static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2893 unsigned int offset,
2894 unsigned int length)
4520fb3c
JK
2895{
2896 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2897
ca99fdd2 2898 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2899
ac27a0ec
DK
2900 /*
2901 * If it's a full truncate we just forget about the pending dirtying
2902 */
ca99fdd2 2903 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2904 ClearPageChecked(page);
2905
ca99fdd2 2906 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2907}
2908
2909/* Wrapper for aops... */
2910static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2911 unsigned int offset,
2912 unsigned int length)
53e87268 2913{
ca99fdd2 2914 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2915}
2916
617ba13b 2917static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2918{
617ba13b 2919 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2920
0562e0ba
JZ
2921 trace_ext4_releasepage(page);
2922
e1c36595
JK
2923 /* Page has dirty journalled data -> cannot release */
2924 if (PageChecked(page))
ac27a0ec 2925 return 0;
0390131b
FM
2926 if (journal)
2927 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2928 else
2929 return try_to_free_buffers(page);
ac27a0ec
DK
2930}
2931
2ed88685
TT
2932/*
2933 * ext4_get_block used when preparing for a DIO write or buffer write.
2934 * We allocate an uinitialized extent if blocks haven't been allocated.
2935 * The extent will be converted to initialized after the IO is complete.
2936 */
f19d5870 2937int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2938 struct buffer_head *bh_result, int create)
2939{
c7064ef1 2940 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2941 inode->i_ino, create);
2ed88685
TT
2942 return _ext4_get_block(inode, iblock, bh_result,
2943 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2944}
2945
729f52c6 2946static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2947 struct buffer_head *bh_result, int create)
729f52c6 2948{
8b0f165f
AP
2949 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2950 inode->i_ino, create);
2951 return _ext4_get_block(inode, iblock, bh_result,
2952 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2953}
2954
4c0425ff 2955static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2956 ssize_t size, void *private, int ret,
2957 bool is_async)
4c0425ff 2958{
496ad9aa 2959 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2960 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2961
97a851ed
JK
2962 /* if not async direct IO just return */
2963 if (!io_end) {
2964 inode_dio_done(inode);
2965 if (is_async)
2966 aio_complete(iocb, ret, 0);
2967 return;
2968 }
4b70df18 2969
88635ca2 2970 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2971 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2972 iocb->private, io_end->inode->i_ino, iocb, offset,
2973 size);
8d5d02e6 2974
b5a7e970 2975 iocb->private = NULL;
4c0425ff
MC
2976 io_end->offset = offset;
2977 io_end->size = size;
5b3ff237
JZ
2978 if (is_async) {
2979 io_end->iocb = iocb;
2980 io_end->result = ret;
2981 }
97a851ed 2982 ext4_put_io_end_defer(io_end);
4c0425ff 2983}
c7064ef1 2984
4c0425ff
MC
2985/*
2986 * For ext4 extent files, ext4 will do direct-io write to holes,
2987 * preallocated extents, and those write extend the file, no need to
2988 * fall back to buffered IO.
2989 *
b595076a 2990 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 2991 * If those blocks were preallocated, we mark sure they are split, but
b595076a 2992 * still keep the range to write as uninitialized.
4c0425ff 2993 *
69c499d1 2994 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2995 * For async direct IO, since the IO may still pending when return, we
25985edc 2996 * set up an end_io call back function, which will do the conversion
8d5d02e6 2997 * when async direct IO completed.
4c0425ff
MC
2998 *
2999 * If the O_DIRECT write will extend the file then add this inode to the
3000 * orphan list. So recovery will truncate it back to the original size
3001 * if the machine crashes during the write.
3002 *
3003 */
3004static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3005 const struct iovec *iov, loff_t offset,
3006 unsigned long nr_segs)
3007{
3008 struct file *file = iocb->ki_filp;
3009 struct inode *inode = file->f_mapping->host;
3010 ssize_t ret;
3011 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3012 int overwrite = 0;
3013 get_block_t *get_block_func = NULL;
3014 int dio_flags = 0;
4c0425ff 3015 loff_t final_size = offset + count;
97a851ed 3016 ext4_io_end_t *io_end = NULL;
729f52c6 3017
69c499d1
TT
3018 /* Use the old path for reads and writes beyond i_size. */
3019 if (rw != WRITE || final_size > inode->i_size)
3020 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3021
69c499d1 3022 BUG_ON(iocb->private == NULL);
4bd809db 3023
69c499d1
TT
3024 /* If we do a overwrite dio, i_mutex locking can be released */
3025 overwrite = *((int *)iocb->private);
4bd809db 3026
69c499d1
TT
3027 if (overwrite) {
3028 atomic_inc(&inode->i_dio_count);
3029 down_read(&EXT4_I(inode)->i_data_sem);
3030 mutex_unlock(&inode->i_mutex);
3031 }
8d5d02e6 3032
69c499d1
TT
3033 /*
3034 * We could direct write to holes and fallocate.
3035 *
3036 * Allocated blocks to fill the hole are marked as
3037 * uninitialized to prevent parallel buffered read to expose
3038 * the stale data before DIO complete the data IO.
3039 *
3040 * As to previously fallocated extents, ext4 get_block will
3041 * just simply mark the buffer mapped but still keep the
3042 * extents uninitialized.
3043 *
3044 * For non AIO case, we will convert those unwritten extents
3045 * to written after return back from blockdev_direct_IO.
3046 *
3047 * For async DIO, the conversion needs to be deferred when the
3048 * IO is completed. The ext4 end_io callback function will be
3049 * called to take care of the conversion work. Here for async
3050 * case, we allocate an io_end structure to hook to the iocb.
3051 */
3052 iocb->private = NULL;
3053 ext4_inode_aio_set(inode, NULL);
3054 if (!is_sync_kiocb(iocb)) {
97a851ed 3055 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3056 if (!io_end) {
3057 ret = -ENOMEM;
3058 goto retake_lock;
8b0f165f 3059 }
69c499d1 3060 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3061 /*
3062 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3063 */
3064 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3065 /*
69c499d1
TT
3066 * we save the io structure for current async direct
3067 * IO, so that later ext4_map_blocks() could flag the
3068 * io structure whether there is a unwritten extents
3069 * needs to be converted when IO is completed.
8d5d02e6 3070 */
69c499d1
TT
3071 ext4_inode_aio_set(inode, io_end);
3072 }
4bd809db 3073
69c499d1
TT
3074 if (overwrite) {
3075 get_block_func = ext4_get_block_write_nolock;
3076 } else {
3077 get_block_func = ext4_get_block_write;
3078 dio_flags = DIO_LOCKING;
3079 }
3080 ret = __blockdev_direct_IO(rw, iocb, inode,
3081 inode->i_sb->s_bdev, iov,
3082 offset, nr_segs,
3083 get_block_func,
3084 ext4_end_io_dio,
3085 NULL,
3086 dio_flags);
3087
69c499d1 3088 /*
97a851ed
JK
3089 * Put our reference to io_end. This can free the io_end structure e.g.
3090 * in sync IO case or in case of error. It can even perform extent
3091 * conversion if all bios we submitted finished before we got here.
3092 * Note that in that case iocb->private can be already set to NULL
3093 * here.
69c499d1 3094 */
97a851ed
JK
3095 if (io_end) {
3096 ext4_inode_aio_set(inode, NULL);
3097 ext4_put_io_end(io_end);
3098 /*
3099 * When no IO was submitted ext4_end_io_dio() was not
3100 * called so we have to put iocb's reference.
3101 */
3102 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3103 WARN_ON(iocb->private != io_end);
3104 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3105 WARN_ON(io_end->iocb);
3106 /*
3107 * Generic code already did inode_dio_done() so we
3108 * have to clear EXT4_IO_END_DIRECT to not do it for
3109 * the second time.
3110 */
3111 io_end->flag = 0;
3112 ext4_put_io_end(io_end);
3113 iocb->private = NULL;
3114 }
3115 }
3116 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3117 EXT4_STATE_DIO_UNWRITTEN)) {
3118 int err;
3119 /*
3120 * for non AIO case, since the IO is already
3121 * completed, we could do the conversion right here
3122 */
3123 err = ext4_convert_unwritten_extents(inode,
3124 offset, ret);
3125 if (err < 0)
3126 ret = err;
3127 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3128 }
4bd809db 3129
69c499d1
TT
3130retake_lock:
3131 /* take i_mutex locking again if we do a ovewrite dio */
3132 if (overwrite) {
3133 inode_dio_done(inode);
3134 up_read(&EXT4_I(inode)->i_data_sem);
3135 mutex_lock(&inode->i_mutex);
4c0425ff 3136 }
8d5d02e6 3137
69c499d1 3138 return ret;
4c0425ff
MC
3139}
3140
3141static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3142 const struct iovec *iov, loff_t offset,
3143 unsigned long nr_segs)
3144{
3145 struct file *file = iocb->ki_filp;
3146 struct inode *inode = file->f_mapping->host;
0562e0ba 3147 ssize_t ret;
4c0425ff 3148
84ebd795
TT
3149 /*
3150 * If we are doing data journalling we don't support O_DIRECT
3151 */
3152 if (ext4_should_journal_data(inode))
3153 return 0;
3154
46c7f254
TM
3155 /* Let buffer I/O handle the inline data case. */
3156 if (ext4_has_inline_data(inode))
3157 return 0;
3158
0562e0ba 3159 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3160 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3161 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3162 else
3163 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3164 trace_ext4_direct_IO_exit(inode, offset,
3165 iov_length(iov, nr_segs), rw, ret);
3166 return ret;
4c0425ff
MC
3167}
3168
ac27a0ec 3169/*
617ba13b 3170 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3171 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3172 * much here because ->set_page_dirty is called under VFS locks. The page is
3173 * not necessarily locked.
3174 *
3175 * We cannot just dirty the page and leave attached buffers clean, because the
3176 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3177 * or jbddirty because all the journalling code will explode.
3178 *
3179 * So what we do is to mark the page "pending dirty" and next time writepage
3180 * is called, propagate that into the buffers appropriately.
3181 */
617ba13b 3182static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3183{
3184 SetPageChecked(page);
3185 return __set_page_dirty_nobuffers(page);
3186}
3187
74d553aa 3188static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3189 .readpage = ext4_readpage,
3190 .readpages = ext4_readpages,
43ce1d23 3191 .writepage = ext4_writepage,
8ab22b9a 3192 .write_begin = ext4_write_begin,
74d553aa 3193 .write_end = ext4_write_end,
8ab22b9a
HH
3194 .bmap = ext4_bmap,
3195 .invalidatepage = ext4_invalidatepage,
3196 .releasepage = ext4_releasepage,
3197 .direct_IO = ext4_direct_IO,
3198 .migratepage = buffer_migrate_page,
3199 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3200 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3201};
3202
617ba13b 3203static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3204 .readpage = ext4_readpage,
3205 .readpages = ext4_readpages,
43ce1d23 3206 .writepage = ext4_writepage,
8ab22b9a
HH
3207 .write_begin = ext4_write_begin,
3208 .write_end = ext4_journalled_write_end,
3209 .set_page_dirty = ext4_journalled_set_page_dirty,
3210 .bmap = ext4_bmap,
4520fb3c 3211 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3212 .releasepage = ext4_releasepage,
84ebd795 3213 .direct_IO = ext4_direct_IO,
8ab22b9a 3214 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3215 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3216};
3217
64769240 3218static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3219 .readpage = ext4_readpage,
3220 .readpages = ext4_readpages,
43ce1d23 3221 .writepage = ext4_writepage,
8ab22b9a 3222 .writepages = ext4_da_writepages,
8ab22b9a
HH
3223 .write_begin = ext4_da_write_begin,
3224 .write_end = ext4_da_write_end,
3225 .bmap = ext4_bmap,
3226 .invalidatepage = ext4_da_invalidatepage,
3227 .releasepage = ext4_releasepage,
3228 .direct_IO = ext4_direct_IO,
3229 .migratepage = buffer_migrate_page,
3230 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3231 .error_remove_page = generic_error_remove_page,
64769240
AT
3232};
3233
617ba13b 3234void ext4_set_aops(struct inode *inode)
ac27a0ec 3235{
3d2b1582
LC
3236 switch (ext4_inode_journal_mode(inode)) {
3237 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3238 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3239 break;
3240 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3241 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3242 break;
3243 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3244 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3245 return;
3d2b1582
LC
3246 default:
3247 BUG();
3248 }
74d553aa
TT
3249 if (test_opt(inode->i_sb, DELALLOC))
3250 inode->i_mapping->a_ops = &ext4_da_aops;
3251 else
3252 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3253}
3254
d863dc36
LC
3255/*
3256 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3257 * up to the end of the block which corresponds to `from'.
3258 * This required during truncate. We need to physically zero the tail end
3259 * of that block so it doesn't yield old data if the file is later grown.
3260 */
3261int ext4_block_truncate_page(handle_t *handle,
3262 struct address_space *mapping, loff_t from)
3263{
3264 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3265 unsigned length;
3266 unsigned blocksize;
3267 struct inode *inode = mapping->host;
3268
3269 blocksize = inode->i_sb->s_blocksize;
3270 length = blocksize - (offset & (blocksize - 1));
3271
3272 return ext4_block_zero_page_range(handle, mapping, from, length);
3273}
3274
3275/*
3276 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3277 * starting from file offset 'from'. The range to be zero'd must
3278 * be contained with in one block. If the specified range exceeds
3279 * the end of the block it will be shortened to end of the block
3280 * that cooresponds to 'from'
3281 */
3282int ext4_block_zero_page_range(handle_t *handle,
3283 struct address_space *mapping, loff_t from, loff_t length)
3284{
3285 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3286 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3287 unsigned blocksize, max, pos;
3288 ext4_lblk_t iblock;
3289 struct inode *inode = mapping->host;
3290 struct buffer_head *bh;
3291 struct page *page;
3292 int err = 0;
3293
3294 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3295 mapping_gfp_mask(mapping) & ~__GFP_FS);
3296 if (!page)
3297 return -ENOMEM;
3298
3299 blocksize = inode->i_sb->s_blocksize;
3300 max = blocksize - (offset & (blocksize - 1));
3301
3302 /*
3303 * correct length if it does not fall between
3304 * 'from' and the end of the block
3305 */
3306 if (length > max || length < 0)
3307 length = max;
3308
3309 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3310
3311 if (!page_has_buffers(page))
3312 create_empty_buffers(page, blocksize, 0);
3313
3314 /* Find the buffer that contains "offset" */
3315 bh = page_buffers(page);
3316 pos = blocksize;
3317 while (offset >= pos) {
3318 bh = bh->b_this_page;
3319 iblock++;
3320 pos += blocksize;
3321 }
3322
3323 err = 0;
3324 if (buffer_freed(bh)) {
3325 BUFFER_TRACE(bh, "freed: skip");
3326 goto unlock;
3327 }
3328
3329 if (!buffer_mapped(bh)) {
3330 BUFFER_TRACE(bh, "unmapped");
3331 ext4_get_block(inode, iblock, bh, 0);
3332 /* unmapped? It's a hole - nothing to do */
3333 if (!buffer_mapped(bh)) {
3334 BUFFER_TRACE(bh, "still unmapped");
3335 goto unlock;
3336 }
3337 }
3338
3339 /* Ok, it's mapped. Make sure it's up-to-date */
3340 if (PageUptodate(page))
3341 set_buffer_uptodate(bh);
3342
3343 if (!buffer_uptodate(bh)) {
3344 err = -EIO;
3345 ll_rw_block(READ, 1, &bh);
3346 wait_on_buffer(bh);
3347 /* Uhhuh. Read error. Complain and punt. */
3348 if (!buffer_uptodate(bh))
3349 goto unlock;
3350 }
3351
3352 if (ext4_should_journal_data(inode)) {
3353 BUFFER_TRACE(bh, "get write access");
3354 err = ext4_journal_get_write_access(handle, bh);
3355 if (err)
3356 goto unlock;
3357 }
3358
3359 zero_user(page, offset, length);
3360
3361 BUFFER_TRACE(bh, "zeroed end of block");
3362
3363 err = 0;
3364 if (ext4_should_journal_data(inode)) {
3365 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3366 } else {
d863dc36 3367 mark_buffer_dirty(bh);
0713ed0c
LC
3368 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3369 err = ext4_jbd2_file_inode(handle, inode);
3370 }
d863dc36
LC
3371
3372unlock:
3373 unlock_page(page);
3374 page_cache_release(page);
3375 return err;
3376}
3377
a87dd18c
LC
3378int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3379 loff_t lstart, loff_t length)
3380{
3381 struct super_block *sb = inode->i_sb;
3382 struct address_space *mapping = inode->i_mapping;
3383 unsigned partial = lstart & (sb->s_blocksize - 1);
3384 ext4_fsblk_t start, end;
3385 loff_t byte_end = (lstart + length - 1);
3386 int err = 0;
3387
3388 start = lstart >> sb->s_blocksize_bits;
3389 end = byte_end >> sb->s_blocksize_bits;
3390
3391 /* Handle partial zero within the single block */
3392 if (start == end) {
3393 err = ext4_block_zero_page_range(handle, mapping,
3394 lstart, length);
3395 return err;
3396 }
3397 /* Handle partial zero out on the start of the range */
3398 if (partial) {
3399 err = ext4_block_zero_page_range(handle, mapping,
3400 lstart, sb->s_blocksize);
3401 if (err)
3402 return err;
3403 }
3404 /* Handle partial zero out on the end of the range */
3405 partial = byte_end & (sb->s_blocksize - 1);
3406 if (partial != sb->s_blocksize - 1)
3407 err = ext4_block_zero_page_range(handle, mapping,
3408 byte_end - partial,
3409 partial + 1);
3410 return err;
3411}
3412
91ef4caf
DG
3413int ext4_can_truncate(struct inode *inode)
3414{
91ef4caf
DG
3415 if (S_ISREG(inode->i_mode))
3416 return 1;
3417 if (S_ISDIR(inode->i_mode))
3418 return 1;
3419 if (S_ISLNK(inode->i_mode))
3420 return !ext4_inode_is_fast_symlink(inode);
3421 return 0;
3422}
3423
a4bb6b64
AH
3424/*
3425 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3426 * associated with the given offset and length
3427 *
3428 * @inode: File inode
3429 * @offset: The offset where the hole will begin
3430 * @len: The length of the hole
3431 *
4907cb7b 3432 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3433 */
3434
3435int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3436{
496ad9aa 3437 struct inode *inode = file_inode(file);
26a4c0c6
TT
3438 struct super_block *sb = inode->i_sb;
3439 ext4_lblk_t first_block, stop_block;
3440 struct address_space *mapping = inode->i_mapping;
a87dd18c 3441 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3442 handle_t *handle;
3443 unsigned int credits;
3444 int ret = 0;
3445
a4bb6b64 3446 if (!S_ISREG(inode->i_mode))
73355192 3447 return -EOPNOTSUPP;
a4bb6b64 3448
26a4c0c6 3449 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3450 /* TODO: Add support for bigalloc file systems */
73355192 3451 return -EOPNOTSUPP;
bab08ab9
TT
3452 }
3453
aaddea81
ZL
3454 trace_ext4_punch_hole(inode, offset, length);
3455
26a4c0c6
TT
3456 /*
3457 * Write out all dirty pages to avoid race conditions
3458 * Then release them.
3459 */
3460 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3461 ret = filemap_write_and_wait_range(mapping, offset,
3462 offset + length - 1);
3463 if (ret)
3464 return ret;
3465 }
3466
3467 mutex_lock(&inode->i_mutex);
3468 /* It's not possible punch hole on append only file */
3469 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3470 ret = -EPERM;
3471 goto out_mutex;
3472 }
3473 if (IS_SWAPFILE(inode)) {
3474 ret = -ETXTBSY;
3475 goto out_mutex;
3476 }
3477
3478 /* No need to punch hole beyond i_size */
3479 if (offset >= inode->i_size)
3480 goto out_mutex;
3481
3482 /*
3483 * If the hole extends beyond i_size, set the hole
3484 * to end after the page that contains i_size
3485 */
3486 if (offset + length > inode->i_size) {
3487 length = inode->i_size +
3488 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3489 offset;
3490 }
3491
a87dd18c
LC
3492 first_block_offset = round_up(offset, sb->s_blocksize);
3493 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3494
a87dd18c
LC
3495 /* Now release the pages and zero block aligned part of pages*/
3496 if (last_block_offset > first_block_offset)
3497 truncate_pagecache_range(inode, first_block_offset,
3498 last_block_offset);
26a4c0c6
TT
3499
3500 /* Wait all existing dio workers, newcomers will block on i_mutex */
3501 ext4_inode_block_unlocked_dio(inode);
3502 ret = ext4_flush_unwritten_io(inode);
3503 if (ret)
3504 goto out_dio;
3505 inode_dio_wait(inode);
3506
3507 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3508 credits = ext4_writepage_trans_blocks(inode);
3509 else
3510 credits = ext4_blocks_for_truncate(inode);
3511 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3512 if (IS_ERR(handle)) {
3513 ret = PTR_ERR(handle);
3514 ext4_std_error(sb, ret);
3515 goto out_dio;
3516 }
3517
a87dd18c
LC
3518 ret = ext4_zero_partial_blocks(handle, inode, offset,
3519 length);
3520 if (ret)
3521 goto out_stop;
26a4c0c6
TT
3522
3523 first_block = (offset + sb->s_blocksize - 1) >>
3524 EXT4_BLOCK_SIZE_BITS(sb);
3525 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3526
3527 /* If there are no blocks to remove, return now */
3528 if (first_block >= stop_block)
3529 goto out_stop;
3530
3531 down_write(&EXT4_I(inode)->i_data_sem);
3532 ext4_discard_preallocations(inode);
3533
3534 ret = ext4_es_remove_extent(inode, first_block,
3535 stop_block - first_block);
3536 if (ret) {
3537 up_write(&EXT4_I(inode)->i_data_sem);
3538 goto out_stop;
3539 }
3540
3541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3542 ret = ext4_ext_remove_space(inode, first_block,
3543 stop_block - 1);
3544 else
3545 ret = ext4_free_hole_blocks(handle, inode, first_block,
3546 stop_block);
3547
3548 ext4_discard_preallocations(inode);
819c4920 3549 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3550 if (IS_SYNC(inode))
3551 ext4_handle_sync(handle);
26a4c0c6
TT
3552 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3553 ext4_mark_inode_dirty(handle, inode);
3554out_stop:
3555 ext4_journal_stop(handle);
3556out_dio:
3557 ext4_inode_resume_unlocked_dio(inode);
3558out_mutex:
3559 mutex_unlock(&inode->i_mutex);
3560 return ret;
a4bb6b64
AH
3561}
3562
ac27a0ec 3563/*
617ba13b 3564 * ext4_truncate()
ac27a0ec 3565 *
617ba13b
MC
3566 * We block out ext4_get_block() block instantiations across the entire
3567 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3568 * simultaneously on behalf of the same inode.
3569 *
42b2aa86 3570 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3571 * is one core, guiding principle: the file's tree must always be consistent on
3572 * disk. We must be able to restart the truncate after a crash.
3573 *
3574 * The file's tree may be transiently inconsistent in memory (although it
3575 * probably isn't), but whenever we close off and commit a journal transaction,
3576 * the contents of (the filesystem + the journal) must be consistent and
3577 * restartable. It's pretty simple, really: bottom up, right to left (although
3578 * left-to-right works OK too).
3579 *
3580 * Note that at recovery time, journal replay occurs *before* the restart of
3581 * truncate against the orphan inode list.
3582 *
3583 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3584 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3585 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3586 * ext4_truncate() to have another go. So there will be instantiated blocks
3587 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3588 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3589 * ext4_truncate() run will find them and release them.
ac27a0ec 3590 */
617ba13b 3591void ext4_truncate(struct inode *inode)
ac27a0ec 3592{
819c4920
TT
3593 struct ext4_inode_info *ei = EXT4_I(inode);
3594 unsigned int credits;
3595 handle_t *handle;
3596 struct address_space *mapping = inode->i_mapping;
819c4920 3597
19b5ef61
TT
3598 /*
3599 * There is a possibility that we're either freeing the inode
3600 * or it completely new indode. In those cases we might not
3601 * have i_mutex locked because it's not necessary.
3602 */
3603 if (!(inode->i_state & (I_NEW|I_FREEING)))
3604 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3605 trace_ext4_truncate_enter(inode);
3606
91ef4caf 3607 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3608 return;
3609
12e9b892 3610 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3611
5534fb5b 3612 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3613 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3614
aef1c851
TM
3615 if (ext4_has_inline_data(inode)) {
3616 int has_inline = 1;
3617
3618 ext4_inline_data_truncate(inode, &has_inline);
3619 if (has_inline)
3620 return;
3621 }
3622
819c4920
TT
3623 /*
3624 * finish any pending end_io work so we won't run the risk of
3625 * converting any truncated blocks to initialized later
3626 */
3627 ext4_flush_unwritten_io(inode);
3628
3629 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3630 credits = ext4_writepage_trans_blocks(inode);
3631 else
3632 credits = ext4_blocks_for_truncate(inode);
3633
3634 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3635 if (IS_ERR(handle)) {
3636 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3637 return;
3638 }
3639
eb3544c6
LC
3640 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3641 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3642
3643 /*
3644 * We add the inode to the orphan list, so that if this
3645 * truncate spans multiple transactions, and we crash, we will
3646 * resume the truncate when the filesystem recovers. It also
3647 * marks the inode dirty, to catch the new size.
3648 *
3649 * Implication: the file must always be in a sane, consistent
3650 * truncatable state while each transaction commits.
3651 */
3652 if (ext4_orphan_add(handle, inode))
3653 goto out_stop;
3654
3655 down_write(&EXT4_I(inode)->i_data_sem);
3656
3657 ext4_discard_preallocations(inode);
3658
ff9893dc 3659 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3660 ext4_ext_truncate(handle, inode);
ff9893dc 3661 else
819c4920
TT
3662 ext4_ind_truncate(handle, inode);
3663
3664 up_write(&ei->i_data_sem);
3665
3666 if (IS_SYNC(inode))
3667 ext4_handle_sync(handle);
3668
3669out_stop:
3670 /*
3671 * If this was a simple ftruncate() and the file will remain alive,
3672 * then we need to clear up the orphan record which we created above.
3673 * However, if this was a real unlink then we were called by
3674 * ext4_delete_inode(), and we allow that function to clean up the
3675 * orphan info for us.
3676 */
3677 if (inode->i_nlink)
3678 ext4_orphan_del(handle, inode);
3679
3680 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3681 ext4_mark_inode_dirty(handle, inode);
3682 ext4_journal_stop(handle);
ac27a0ec 3683
0562e0ba 3684 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3685}
3686
ac27a0ec 3687/*
617ba13b 3688 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3689 * underlying buffer_head on success. If 'in_mem' is true, we have all
3690 * data in memory that is needed to recreate the on-disk version of this
3691 * inode.
3692 */
617ba13b
MC
3693static int __ext4_get_inode_loc(struct inode *inode,
3694 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3695{
240799cd
TT
3696 struct ext4_group_desc *gdp;
3697 struct buffer_head *bh;
3698 struct super_block *sb = inode->i_sb;
3699 ext4_fsblk_t block;
3700 int inodes_per_block, inode_offset;
3701
3a06d778 3702 iloc->bh = NULL;
240799cd
TT
3703 if (!ext4_valid_inum(sb, inode->i_ino))
3704 return -EIO;
ac27a0ec 3705
240799cd
TT
3706 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3707 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3708 if (!gdp)
ac27a0ec
DK
3709 return -EIO;
3710
240799cd
TT
3711 /*
3712 * Figure out the offset within the block group inode table
3713 */
00d09882 3714 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3715 inode_offset = ((inode->i_ino - 1) %
3716 EXT4_INODES_PER_GROUP(sb));
3717 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3718 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3719
3720 bh = sb_getblk(sb, block);
aebf0243 3721 if (unlikely(!bh))
860d21e2 3722 return -ENOMEM;
ac27a0ec
DK
3723 if (!buffer_uptodate(bh)) {
3724 lock_buffer(bh);
9c83a923
HK
3725
3726 /*
3727 * If the buffer has the write error flag, we have failed
3728 * to write out another inode in the same block. In this
3729 * case, we don't have to read the block because we may
3730 * read the old inode data successfully.
3731 */
3732 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3733 set_buffer_uptodate(bh);
3734
ac27a0ec
DK
3735 if (buffer_uptodate(bh)) {
3736 /* someone brought it uptodate while we waited */
3737 unlock_buffer(bh);
3738 goto has_buffer;
3739 }
3740
3741 /*
3742 * If we have all information of the inode in memory and this
3743 * is the only valid inode in the block, we need not read the
3744 * block.
3745 */
3746 if (in_mem) {
3747 struct buffer_head *bitmap_bh;
240799cd 3748 int i, start;
ac27a0ec 3749
240799cd 3750 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3751
240799cd
TT
3752 /* Is the inode bitmap in cache? */
3753 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3754 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3755 goto make_io;
3756
3757 /*
3758 * If the inode bitmap isn't in cache then the
3759 * optimisation may end up performing two reads instead
3760 * of one, so skip it.
3761 */
3762 if (!buffer_uptodate(bitmap_bh)) {
3763 brelse(bitmap_bh);
3764 goto make_io;
3765 }
240799cd 3766 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3767 if (i == inode_offset)
3768 continue;
617ba13b 3769 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3770 break;
3771 }
3772 brelse(bitmap_bh);
240799cd 3773 if (i == start + inodes_per_block) {
ac27a0ec
DK
3774 /* all other inodes are free, so skip I/O */
3775 memset(bh->b_data, 0, bh->b_size);
3776 set_buffer_uptodate(bh);
3777 unlock_buffer(bh);
3778 goto has_buffer;
3779 }
3780 }
3781
3782make_io:
240799cd
TT
3783 /*
3784 * If we need to do any I/O, try to pre-readahead extra
3785 * blocks from the inode table.
3786 */
3787 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3788 ext4_fsblk_t b, end, table;
3789 unsigned num;
0d606e2c 3790 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3791
3792 table = ext4_inode_table(sb, gdp);
b713a5ec 3793 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3794 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3795 if (table > b)
3796 b = table;
0d606e2c 3797 end = b + ra_blks;
240799cd 3798 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3799 if (ext4_has_group_desc_csum(sb))
560671a0 3800 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3801 table += num / inodes_per_block;
3802 if (end > table)
3803 end = table;
3804 while (b <= end)
3805 sb_breadahead(sb, b++);
3806 }
3807
ac27a0ec
DK
3808 /*
3809 * There are other valid inodes in the buffer, this inode
3810 * has in-inode xattrs, or we don't have this inode in memory.
3811 * Read the block from disk.
3812 */
0562e0ba 3813 trace_ext4_load_inode(inode);
ac27a0ec
DK
3814 get_bh(bh);
3815 bh->b_end_io = end_buffer_read_sync;
65299a3b 3816 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3817 wait_on_buffer(bh);
3818 if (!buffer_uptodate(bh)) {
c398eda0
TT
3819 EXT4_ERROR_INODE_BLOCK(inode, block,
3820 "unable to read itable block");
ac27a0ec
DK
3821 brelse(bh);
3822 return -EIO;
3823 }
3824 }
3825has_buffer:
3826 iloc->bh = bh;
3827 return 0;
3828}
3829
617ba13b 3830int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3831{
3832 /* We have all inode data except xattrs in memory here. */
617ba13b 3833 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3834 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3835}
3836
617ba13b 3837void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3838{
617ba13b 3839 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3840
3841 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3842 if (flags & EXT4_SYNC_FL)
ac27a0ec 3843 inode->i_flags |= S_SYNC;
617ba13b 3844 if (flags & EXT4_APPEND_FL)
ac27a0ec 3845 inode->i_flags |= S_APPEND;
617ba13b 3846 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3847 inode->i_flags |= S_IMMUTABLE;
617ba13b 3848 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3849 inode->i_flags |= S_NOATIME;
617ba13b 3850 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3851 inode->i_flags |= S_DIRSYNC;
3852}
3853
ff9ddf7e
JK
3854/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3855void ext4_get_inode_flags(struct ext4_inode_info *ei)
3856{
84a8dce2
DM
3857 unsigned int vfs_fl;
3858 unsigned long old_fl, new_fl;
3859
3860 do {
3861 vfs_fl = ei->vfs_inode.i_flags;
3862 old_fl = ei->i_flags;
3863 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3864 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3865 EXT4_DIRSYNC_FL);
3866 if (vfs_fl & S_SYNC)
3867 new_fl |= EXT4_SYNC_FL;
3868 if (vfs_fl & S_APPEND)
3869 new_fl |= EXT4_APPEND_FL;
3870 if (vfs_fl & S_IMMUTABLE)
3871 new_fl |= EXT4_IMMUTABLE_FL;
3872 if (vfs_fl & S_NOATIME)
3873 new_fl |= EXT4_NOATIME_FL;
3874 if (vfs_fl & S_DIRSYNC)
3875 new_fl |= EXT4_DIRSYNC_FL;
3876 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3877}
de9a55b8 3878
0fc1b451 3879static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3880 struct ext4_inode_info *ei)
0fc1b451
AK
3881{
3882 blkcnt_t i_blocks ;
8180a562
AK
3883 struct inode *inode = &(ei->vfs_inode);
3884 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3885
3886 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3887 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3888 /* we are using combined 48 bit field */
3889 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3890 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3891 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3892 /* i_blocks represent file system block size */
3893 return i_blocks << (inode->i_blkbits - 9);
3894 } else {
3895 return i_blocks;
3896 }
0fc1b451
AK
3897 } else {
3898 return le32_to_cpu(raw_inode->i_blocks_lo);
3899 }
3900}
ff9ddf7e 3901
152a7b0a
TM
3902static inline void ext4_iget_extra_inode(struct inode *inode,
3903 struct ext4_inode *raw_inode,
3904 struct ext4_inode_info *ei)
3905{
3906 __le32 *magic = (void *)raw_inode +
3907 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3908 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3909 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3910 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3911 } else
3912 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3913}
3914
1d1fe1ee 3915struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3916{
617ba13b
MC
3917 struct ext4_iloc iloc;
3918 struct ext4_inode *raw_inode;
1d1fe1ee 3919 struct ext4_inode_info *ei;
1d1fe1ee 3920 struct inode *inode;
b436b9be 3921 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3922 long ret;
ac27a0ec 3923 int block;
08cefc7a
EB
3924 uid_t i_uid;
3925 gid_t i_gid;
ac27a0ec 3926
1d1fe1ee
DH
3927 inode = iget_locked(sb, ino);
3928 if (!inode)
3929 return ERR_PTR(-ENOMEM);
3930 if (!(inode->i_state & I_NEW))
3931 return inode;
3932
3933 ei = EXT4_I(inode);
7dc57615 3934 iloc.bh = NULL;
ac27a0ec 3935
1d1fe1ee
DH
3936 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3937 if (ret < 0)
ac27a0ec 3938 goto bad_inode;
617ba13b 3939 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3940
3941 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3942 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3943 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3944 EXT4_INODE_SIZE(inode->i_sb)) {
3945 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3946 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3947 EXT4_INODE_SIZE(inode->i_sb));
3948 ret = -EIO;
3949 goto bad_inode;
3950 }
3951 } else
3952 ei->i_extra_isize = 0;
3953
3954 /* Precompute checksum seed for inode metadata */
3955 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3956 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3957 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3958 __u32 csum;
3959 __le32 inum = cpu_to_le32(inode->i_ino);
3960 __le32 gen = raw_inode->i_generation;
3961 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3962 sizeof(inum));
3963 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3964 sizeof(gen));
3965 }
3966
3967 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3968 EXT4_ERROR_INODE(inode, "checksum invalid");
3969 ret = -EIO;
3970 goto bad_inode;
3971 }
3972
ac27a0ec 3973 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3974 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3975 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3976 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3977 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3978 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3979 }
08cefc7a
EB
3980 i_uid_write(inode, i_uid);
3981 i_gid_write(inode, i_gid);
bfe86848 3982 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3983
353eb83c 3984 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3985 ei->i_inline_off = 0;
ac27a0ec
DK
3986 ei->i_dir_start_lookup = 0;
3987 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3988 /* We now have enough fields to check if the inode was active or not.
3989 * This is needed because nfsd might try to access dead inodes
3990 * the test is that same one that e2fsck uses
3991 * NeilBrown 1999oct15
3992 */
3993 if (inode->i_nlink == 0) {
393d1d1d
DTB
3994 if ((inode->i_mode == 0 ||
3995 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
3996 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 3997 /* this inode is deleted */
1d1fe1ee 3998 ret = -ESTALE;
ac27a0ec
DK
3999 goto bad_inode;
4000 }
4001 /* The only unlinked inodes we let through here have
4002 * valid i_mode and are being read by the orphan
4003 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4004 * the process of deleting those.
4005 * OR it is the EXT4_BOOT_LOADER_INO which is
4006 * not initialized on a new filesystem. */
ac27a0ec 4007 }
ac27a0ec 4008 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4009 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4010 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4011 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4012 ei->i_file_acl |=
4013 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4014 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4015 ei->i_disksize = inode->i_size;
a9e7f447
DM
4016#ifdef CONFIG_QUOTA
4017 ei->i_reserved_quota = 0;
4018#endif
ac27a0ec
DK
4019 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4020 ei->i_block_group = iloc.block_group;
a4912123 4021 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4022 /*
4023 * NOTE! The in-memory inode i_data array is in little-endian order
4024 * even on big-endian machines: we do NOT byteswap the block numbers!
4025 */
617ba13b 4026 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4027 ei->i_data[block] = raw_inode->i_block[block];
4028 INIT_LIST_HEAD(&ei->i_orphan);
4029
b436b9be
JK
4030 /*
4031 * Set transaction id's of transactions that have to be committed
4032 * to finish f[data]sync. We set them to currently running transaction
4033 * as we cannot be sure that the inode or some of its metadata isn't
4034 * part of the transaction - the inode could have been reclaimed and
4035 * now it is reread from disk.
4036 */
4037 if (journal) {
4038 transaction_t *transaction;
4039 tid_t tid;
4040
a931da6a 4041 read_lock(&journal->j_state_lock);
b436b9be
JK
4042 if (journal->j_running_transaction)
4043 transaction = journal->j_running_transaction;
4044 else
4045 transaction = journal->j_committing_transaction;
4046 if (transaction)
4047 tid = transaction->t_tid;
4048 else
4049 tid = journal->j_commit_sequence;
a931da6a 4050 read_unlock(&journal->j_state_lock);
b436b9be
JK
4051 ei->i_sync_tid = tid;
4052 ei->i_datasync_tid = tid;
4053 }
4054
0040d987 4055 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4056 if (ei->i_extra_isize == 0) {
4057 /* The extra space is currently unused. Use it. */
617ba13b
MC
4058 ei->i_extra_isize = sizeof(struct ext4_inode) -
4059 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4060 } else {
152a7b0a 4061 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4062 }
814525f4 4063 }
ac27a0ec 4064
ef7f3835
KS
4065 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4066 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4067 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4068 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4069
25ec56b5
JNC
4070 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4071 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4072 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4073 inode->i_version |=
4074 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4075 }
4076
c4b5a614 4077 ret = 0;
485c26ec 4078 if (ei->i_file_acl &&
1032988c 4079 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4080 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4081 ei->i_file_acl);
485c26ec
TT
4082 ret = -EIO;
4083 goto bad_inode;
f19d5870
TM
4084 } else if (!ext4_has_inline_data(inode)) {
4085 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4086 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4087 (S_ISLNK(inode->i_mode) &&
4088 !ext4_inode_is_fast_symlink(inode))))
4089 /* Validate extent which is part of inode */
4090 ret = ext4_ext_check_inode(inode);
4091 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4092 (S_ISLNK(inode->i_mode) &&
4093 !ext4_inode_is_fast_symlink(inode))) {
4094 /* Validate block references which are part of inode */
4095 ret = ext4_ind_check_inode(inode);
4096 }
fe2c8191 4097 }
567f3e9a 4098 if (ret)
de9a55b8 4099 goto bad_inode;
7a262f7c 4100
ac27a0ec 4101 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4102 inode->i_op = &ext4_file_inode_operations;
4103 inode->i_fop = &ext4_file_operations;
4104 ext4_set_aops(inode);
ac27a0ec 4105 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4106 inode->i_op = &ext4_dir_inode_operations;
4107 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4108 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4109 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4110 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4111 nd_terminate_link(ei->i_data, inode->i_size,
4112 sizeof(ei->i_data) - 1);
4113 } else {
617ba13b
MC
4114 inode->i_op = &ext4_symlink_inode_operations;
4115 ext4_set_aops(inode);
ac27a0ec 4116 }
563bdd61
TT
4117 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4118 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4119 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4120 if (raw_inode->i_block[0])
4121 init_special_inode(inode, inode->i_mode,
4122 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4123 else
4124 init_special_inode(inode, inode->i_mode,
4125 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4126 } else if (ino == EXT4_BOOT_LOADER_INO) {
4127 make_bad_inode(inode);
563bdd61 4128 } else {
563bdd61 4129 ret = -EIO;
24676da4 4130 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4131 goto bad_inode;
ac27a0ec 4132 }
af5bc92d 4133 brelse(iloc.bh);
617ba13b 4134 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4135 unlock_new_inode(inode);
4136 return inode;
ac27a0ec
DK
4137
4138bad_inode:
567f3e9a 4139 brelse(iloc.bh);
1d1fe1ee
DH
4140 iget_failed(inode);
4141 return ERR_PTR(ret);
ac27a0ec
DK
4142}
4143
0fc1b451
AK
4144static int ext4_inode_blocks_set(handle_t *handle,
4145 struct ext4_inode *raw_inode,
4146 struct ext4_inode_info *ei)
4147{
4148 struct inode *inode = &(ei->vfs_inode);
4149 u64 i_blocks = inode->i_blocks;
4150 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4151
4152 if (i_blocks <= ~0U) {
4153 /*
4907cb7b 4154 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4155 * as multiple of 512 bytes
4156 */
8180a562 4157 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4158 raw_inode->i_blocks_high = 0;
84a8dce2 4159 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4160 return 0;
4161 }
4162 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4163 return -EFBIG;
4164
4165 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4166 /*
4167 * i_blocks can be represented in a 48 bit variable
4168 * as multiple of 512 bytes
4169 */
8180a562 4170 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4171 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4172 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4173 } else {
84a8dce2 4174 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4175 /* i_block is stored in file system block size */
4176 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4177 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4178 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4179 }
f287a1a5 4180 return 0;
0fc1b451
AK
4181}
4182
ac27a0ec
DK
4183/*
4184 * Post the struct inode info into an on-disk inode location in the
4185 * buffer-cache. This gobbles the caller's reference to the
4186 * buffer_head in the inode location struct.
4187 *
4188 * The caller must have write access to iloc->bh.
4189 */
617ba13b 4190static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4191 struct inode *inode,
830156c7 4192 struct ext4_iloc *iloc)
ac27a0ec 4193{
617ba13b
MC
4194 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4195 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4196 struct buffer_head *bh = iloc->bh;
4197 int err = 0, rc, block;
b71fc079 4198 int need_datasync = 0;
08cefc7a
EB
4199 uid_t i_uid;
4200 gid_t i_gid;
ac27a0ec
DK
4201
4202 /* For fields not not tracking in the in-memory inode,
4203 * initialise them to zero for new inodes. */
19f5fb7a 4204 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4205 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4206
ff9ddf7e 4207 ext4_get_inode_flags(ei);
ac27a0ec 4208 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4209 i_uid = i_uid_read(inode);
4210 i_gid = i_gid_read(inode);
af5bc92d 4211 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4212 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4213 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4214/*
4215 * Fix up interoperability with old kernels. Otherwise, old inodes get
4216 * re-used with the upper 16 bits of the uid/gid intact
4217 */
af5bc92d 4218 if (!ei->i_dtime) {
ac27a0ec 4219 raw_inode->i_uid_high =
08cefc7a 4220 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4221 raw_inode->i_gid_high =
08cefc7a 4222 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4223 } else {
4224 raw_inode->i_uid_high = 0;
4225 raw_inode->i_gid_high = 0;
4226 }
4227 } else {
08cefc7a
EB
4228 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4229 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4230 raw_inode->i_uid_high = 0;
4231 raw_inode->i_gid_high = 0;
4232 }
4233 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4234
4235 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4236 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4237 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4238 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4239
0fc1b451
AK
4240 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4241 goto out_brelse;
ac27a0ec 4242 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4243 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4244 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4245 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4246 raw_inode->i_file_acl_high =
4247 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4248 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4249 if (ei->i_disksize != ext4_isize(raw_inode)) {
4250 ext4_isize_set(raw_inode, ei->i_disksize);
4251 need_datasync = 1;
4252 }
a48380f7
AK
4253 if (ei->i_disksize > 0x7fffffffULL) {
4254 struct super_block *sb = inode->i_sb;
4255 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4256 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4257 EXT4_SB(sb)->s_es->s_rev_level ==
4258 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4259 /* If this is the first large file
4260 * created, add a flag to the superblock.
4261 */
4262 err = ext4_journal_get_write_access(handle,
4263 EXT4_SB(sb)->s_sbh);
4264 if (err)
4265 goto out_brelse;
4266 ext4_update_dynamic_rev(sb);
4267 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4268 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4269 ext4_handle_sync(handle);
b50924c2 4270 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4271 }
4272 }
4273 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4274 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4275 if (old_valid_dev(inode->i_rdev)) {
4276 raw_inode->i_block[0] =
4277 cpu_to_le32(old_encode_dev(inode->i_rdev));
4278 raw_inode->i_block[1] = 0;
4279 } else {
4280 raw_inode->i_block[0] = 0;
4281 raw_inode->i_block[1] =
4282 cpu_to_le32(new_encode_dev(inode->i_rdev));
4283 raw_inode->i_block[2] = 0;
4284 }
f19d5870 4285 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4286 for (block = 0; block < EXT4_N_BLOCKS; block++)
4287 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4288 }
ac27a0ec 4289
25ec56b5
JNC
4290 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4291 if (ei->i_extra_isize) {
4292 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4293 raw_inode->i_version_hi =
4294 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4295 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4296 }
4297
814525f4
DW
4298 ext4_inode_csum_set(inode, raw_inode, ei);
4299
830156c7 4300 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4301 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4302 if (!err)
4303 err = rc;
19f5fb7a 4304 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4305
b71fc079 4306 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4307out_brelse:
af5bc92d 4308 brelse(bh);
617ba13b 4309 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4310 return err;
4311}
4312
4313/*
617ba13b 4314 * ext4_write_inode()
ac27a0ec
DK
4315 *
4316 * We are called from a few places:
4317 *
4318 * - Within generic_file_write() for O_SYNC files.
4319 * Here, there will be no transaction running. We wait for any running
4907cb7b 4320 * transaction to commit.
ac27a0ec
DK
4321 *
4322 * - Within sys_sync(), kupdate and such.
4323 * We wait on commit, if tol to.
4324 *
4325 * - Within prune_icache() (PF_MEMALLOC == true)
4326 * Here we simply return. We can't afford to block kswapd on the
4327 * journal commit.
4328 *
4329 * In all cases it is actually safe for us to return without doing anything,
4330 * because the inode has been copied into a raw inode buffer in
617ba13b 4331 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4332 * knfsd.
4333 *
4334 * Note that we are absolutely dependent upon all inode dirtiers doing the
4335 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4336 * which we are interested.
4337 *
4338 * It would be a bug for them to not do this. The code:
4339 *
4340 * mark_inode_dirty(inode)
4341 * stuff();
4342 * inode->i_size = expr;
4343 *
4344 * is in error because a kswapd-driven write_inode() could occur while
4345 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4346 * will no longer be on the superblock's dirty inode list.
4347 */
a9185b41 4348int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4349{
91ac6f43
FM
4350 int err;
4351
ac27a0ec
DK
4352 if (current->flags & PF_MEMALLOC)
4353 return 0;
4354
91ac6f43
FM
4355 if (EXT4_SB(inode->i_sb)->s_journal) {
4356 if (ext4_journal_current_handle()) {
4357 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4358 dump_stack();
4359 return -EIO;
4360 }
ac27a0ec 4361
a9185b41 4362 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4363 return 0;
4364
4365 err = ext4_force_commit(inode->i_sb);
4366 } else {
4367 struct ext4_iloc iloc;
ac27a0ec 4368
8b472d73 4369 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4370 if (err)
4371 return err;
a9185b41 4372 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4373 sync_dirty_buffer(iloc.bh);
4374 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4375 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4376 "IO error syncing inode");
830156c7
FM
4377 err = -EIO;
4378 }
fd2dd9fb 4379 brelse(iloc.bh);
91ac6f43
FM
4380 }
4381 return err;
ac27a0ec
DK
4382}
4383
53e87268
JK
4384/*
4385 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4386 * buffers that are attached to a page stradding i_size and are undergoing
4387 * commit. In that case we have to wait for commit to finish and try again.
4388 */
4389static void ext4_wait_for_tail_page_commit(struct inode *inode)
4390{
4391 struct page *page;
4392 unsigned offset;
4393 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4394 tid_t commit_tid = 0;
4395 int ret;
4396
4397 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4398 /*
4399 * All buffers in the last page remain valid? Then there's nothing to
4400 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4401 * blocksize case
4402 */
4403 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4404 return;
4405 while (1) {
4406 page = find_lock_page(inode->i_mapping,
4407 inode->i_size >> PAGE_CACHE_SHIFT);
4408 if (!page)
4409 return;
ca99fdd2
LC
4410 ret = __ext4_journalled_invalidatepage(page, offset,
4411 PAGE_CACHE_SIZE - offset);
53e87268
JK
4412 unlock_page(page);
4413 page_cache_release(page);
4414 if (ret != -EBUSY)
4415 return;
4416 commit_tid = 0;
4417 read_lock(&journal->j_state_lock);
4418 if (journal->j_committing_transaction)
4419 commit_tid = journal->j_committing_transaction->t_tid;
4420 read_unlock(&journal->j_state_lock);
4421 if (commit_tid)
4422 jbd2_log_wait_commit(journal, commit_tid);
4423 }
4424}
4425
ac27a0ec 4426/*
617ba13b 4427 * ext4_setattr()
ac27a0ec
DK
4428 *
4429 * Called from notify_change.
4430 *
4431 * We want to trap VFS attempts to truncate the file as soon as
4432 * possible. In particular, we want to make sure that when the VFS
4433 * shrinks i_size, we put the inode on the orphan list and modify
4434 * i_disksize immediately, so that during the subsequent flushing of
4435 * dirty pages and freeing of disk blocks, we can guarantee that any
4436 * commit will leave the blocks being flushed in an unused state on
4437 * disk. (On recovery, the inode will get truncated and the blocks will
4438 * be freed, so we have a strong guarantee that no future commit will
4439 * leave these blocks visible to the user.)
4440 *
678aaf48
JK
4441 * Another thing we have to assure is that if we are in ordered mode
4442 * and inode is still attached to the committing transaction, we must
4443 * we start writeout of all the dirty pages which are being truncated.
4444 * This way we are sure that all the data written in the previous
4445 * transaction are already on disk (truncate waits for pages under
4446 * writeback).
4447 *
4448 * Called with inode->i_mutex down.
ac27a0ec 4449 */
617ba13b 4450int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4451{
4452 struct inode *inode = dentry->d_inode;
4453 int error, rc = 0;
3d287de3 4454 int orphan = 0;
ac27a0ec
DK
4455 const unsigned int ia_valid = attr->ia_valid;
4456
4457 error = inode_change_ok(inode, attr);
4458 if (error)
4459 return error;
4460
12755627 4461 if (is_quota_modification(inode, attr))
871a2931 4462 dquot_initialize(inode);
08cefc7a
EB
4463 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4464 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4465 handle_t *handle;
4466
4467 /* (user+group)*(old+new) structure, inode write (sb,
4468 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4469 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4470 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4471 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4472 if (IS_ERR(handle)) {
4473 error = PTR_ERR(handle);
4474 goto err_out;
4475 }
b43fa828 4476 error = dquot_transfer(inode, attr);
ac27a0ec 4477 if (error) {
617ba13b 4478 ext4_journal_stop(handle);
ac27a0ec
DK
4479 return error;
4480 }
4481 /* Update corresponding info in inode so that everything is in
4482 * one transaction */
4483 if (attr->ia_valid & ATTR_UID)
4484 inode->i_uid = attr->ia_uid;
4485 if (attr->ia_valid & ATTR_GID)
4486 inode->i_gid = attr->ia_gid;
617ba13b
MC
4487 error = ext4_mark_inode_dirty(handle, inode);
4488 ext4_journal_stop(handle);
ac27a0ec
DK
4489 }
4490
e2b46574 4491 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4492
12e9b892 4493 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4494 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4495
0c095c7f
TT
4496 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4497 return -EFBIG;
e2b46574
ES
4498 }
4499 }
4500
ac27a0ec 4501 if (S_ISREG(inode->i_mode) &&
c8d46e41 4502 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4503 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4504 handle_t *handle;
4505
9924a92a 4506 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4507 if (IS_ERR(handle)) {
4508 error = PTR_ERR(handle);
4509 goto err_out;
4510 }
3d287de3
DM
4511 if (ext4_handle_valid(handle)) {
4512 error = ext4_orphan_add(handle, inode);
4513 orphan = 1;
4514 }
617ba13b
MC
4515 EXT4_I(inode)->i_disksize = attr->ia_size;
4516 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4517 if (!error)
4518 error = rc;
617ba13b 4519 ext4_journal_stop(handle);
678aaf48
JK
4520
4521 if (ext4_should_order_data(inode)) {
4522 error = ext4_begin_ordered_truncate(inode,
4523 attr->ia_size);
4524 if (error) {
4525 /* Do as much error cleanup as possible */
9924a92a
TT
4526 handle = ext4_journal_start(inode,
4527 EXT4_HT_INODE, 3);
678aaf48
JK
4528 if (IS_ERR(handle)) {
4529 ext4_orphan_del(NULL, inode);
4530 goto err_out;
4531 }
4532 ext4_orphan_del(handle, inode);
3d287de3 4533 orphan = 0;
678aaf48
JK
4534 ext4_journal_stop(handle);
4535 goto err_out;
4536 }
4537 }
ac27a0ec
DK
4538 }
4539
072bd7ea 4540 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4541 if (attr->ia_size != inode->i_size) {
4542 loff_t oldsize = inode->i_size;
4543
4544 i_size_write(inode, attr->ia_size);
4545 /*
4546 * Blocks are going to be removed from the inode. Wait
4547 * for dio in flight. Temporarily disable
4548 * dioread_nolock to prevent livelock.
4549 */
1b65007e 4550 if (orphan) {
53e87268
JK
4551 if (!ext4_should_journal_data(inode)) {
4552 ext4_inode_block_unlocked_dio(inode);
4553 inode_dio_wait(inode);
4554 ext4_inode_resume_unlocked_dio(inode);
4555 } else
4556 ext4_wait_for_tail_page_commit(inode);
1b65007e 4557 }
53e87268
JK
4558 /*
4559 * Truncate pagecache after we've waited for commit
4560 * in data=journal mode to make pages freeable.
4561 */
4562 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4563 }
afcff5d8 4564 ext4_truncate(inode);
072bd7ea 4565 }
ac27a0ec 4566
1025774c
CH
4567 if (!rc) {
4568 setattr_copy(inode, attr);
4569 mark_inode_dirty(inode);
4570 }
4571
4572 /*
4573 * If the call to ext4_truncate failed to get a transaction handle at
4574 * all, we need to clean up the in-core orphan list manually.
4575 */
3d287de3 4576 if (orphan && inode->i_nlink)
617ba13b 4577 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4578
4579 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4580 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4581
4582err_out:
617ba13b 4583 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4584 if (!error)
4585 error = rc;
4586 return error;
4587}
4588
3e3398a0
MC
4589int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4590 struct kstat *stat)
4591{
4592 struct inode *inode;
8af8eecc 4593 unsigned long long delalloc_blocks;
3e3398a0
MC
4594
4595 inode = dentry->d_inode;
4596 generic_fillattr(inode, stat);
4597
4598 /*
4599 * We can't update i_blocks if the block allocation is delayed
4600 * otherwise in the case of system crash before the real block
4601 * allocation is done, we will have i_blocks inconsistent with
4602 * on-disk file blocks.
4603 * We always keep i_blocks updated together with real
4604 * allocation. But to not confuse with user, stat
4605 * will return the blocks that include the delayed allocation
4606 * blocks for this file.
4607 */
96607551
TM
4608 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4609 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4610
8af8eecc 4611 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4612 return 0;
4613}
ac27a0ec 4614
fffb2739
JK
4615static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4616 int pextents)
a02908f1 4617{
12e9b892 4618 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4619 return ext4_ind_trans_blocks(inode, lblocks);
4620 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4621}
ac51d837 4622
ac27a0ec 4623/*
a02908f1
MC
4624 * Account for index blocks, block groups bitmaps and block group
4625 * descriptor blocks if modify datablocks and index blocks
4626 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4627 *
a02908f1 4628 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4629 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4630 * they could still across block group boundary.
ac27a0ec 4631 *
a02908f1
MC
4632 * Also account for superblock, inode, quota and xattr blocks
4633 */
fffb2739
JK
4634static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4635 int pextents)
a02908f1 4636{
8df9675f
TT
4637 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4638 int gdpblocks;
a02908f1
MC
4639 int idxblocks;
4640 int ret = 0;
4641
4642 /*
fffb2739
JK
4643 * How many index blocks need to touch to map @lblocks logical blocks
4644 * to @pextents physical extents?
a02908f1 4645 */
fffb2739 4646 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4647
4648 ret = idxblocks;
4649
4650 /*
4651 * Now let's see how many group bitmaps and group descriptors need
4652 * to account
4653 */
fffb2739 4654 groups = idxblocks + pextents;
a02908f1 4655 gdpblocks = groups;
8df9675f
TT
4656 if (groups > ngroups)
4657 groups = ngroups;
a02908f1
MC
4658 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4659 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4660
4661 /* bitmaps and block group descriptor blocks */
4662 ret += groups + gdpblocks;
4663
4664 /* Blocks for super block, inode, quota and xattr blocks */
4665 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4666
4667 return ret;
4668}
4669
4670/*
25985edc 4671 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4672 * the modification of a single pages into a single transaction,
4673 * which may include multiple chunks of block allocations.
ac27a0ec 4674 *
525f4ed8 4675 * This could be called via ext4_write_begin()
ac27a0ec 4676 *
525f4ed8 4677 * We need to consider the worse case, when
a02908f1 4678 * one new block per extent.
ac27a0ec 4679 */
a86c6181 4680int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4681{
617ba13b 4682 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4683 int ret;
4684
fffb2739 4685 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4686
a02908f1 4687 /* Account for data blocks for journalled mode */
617ba13b 4688 if (ext4_should_journal_data(inode))
a02908f1 4689 ret += bpp;
ac27a0ec
DK
4690 return ret;
4691}
f3bd1f3f
MC
4692
4693/*
4694 * Calculate the journal credits for a chunk of data modification.
4695 *
4696 * This is called from DIO, fallocate or whoever calling
79e83036 4697 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4698 *
4699 * journal buffers for data blocks are not included here, as DIO
4700 * and fallocate do no need to journal data buffers.
4701 */
4702int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4703{
4704 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4705}
4706
ac27a0ec 4707/*
617ba13b 4708 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4709 * Give this, we know that the caller already has write access to iloc->bh.
4710 */
617ba13b 4711int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4712 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4713{
4714 int err = 0;
4715
c64db50e 4716 if (IS_I_VERSION(inode))
25ec56b5
JNC
4717 inode_inc_iversion(inode);
4718
ac27a0ec
DK
4719 /* the do_update_inode consumes one bh->b_count */
4720 get_bh(iloc->bh);
4721
dab291af 4722 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4723 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4724 put_bh(iloc->bh);
4725 return err;
4726}
4727
4728/*
4729 * On success, We end up with an outstanding reference count against
4730 * iloc->bh. This _must_ be cleaned up later.
4731 */
4732
4733int
617ba13b
MC
4734ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4735 struct ext4_iloc *iloc)
ac27a0ec 4736{
0390131b
FM
4737 int err;
4738
4739 err = ext4_get_inode_loc(inode, iloc);
4740 if (!err) {
4741 BUFFER_TRACE(iloc->bh, "get_write_access");
4742 err = ext4_journal_get_write_access(handle, iloc->bh);
4743 if (err) {
4744 brelse(iloc->bh);
4745 iloc->bh = NULL;
ac27a0ec
DK
4746 }
4747 }
617ba13b 4748 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4749 return err;
4750}
4751
6dd4ee7c
KS
4752/*
4753 * Expand an inode by new_extra_isize bytes.
4754 * Returns 0 on success or negative error number on failure.
4755 */
1d03ec98
AK
4756static int ext4_expand_extra_isize(struct inode *inode,
4757 unsigned int new_extra_isize,
4758 struct ext4_iloc iloc,
4759 handle_t *handle)
6dd4ee7c
KS
4760{
4761 struct ext4_inode *raw_inode;
4762 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4763
4764 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4765 return 0;
4766
4767 raw_inode = ext4_raw_inode(&iloc);
4768
4769 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4770
4771 /* No extended attributes present */
19f5fb7a
TT
4772 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4773 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4774 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4775 new_extra_isize);
4776 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4777 return 0;
4778 }
4779
4780 /* try to expand with EAs present */
4781 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4782 raw_inode, handle);
4783}
4784
ac27a0ec
DK
4785/*
4786 * What we do here is to mark the in-core inode as clean with respect to inode
4787 * dirtiness (it may still be data-dirty).
4788 * This means that the in-core inode may be reaped by prune_icache
4789 * without having to perform any I/O. This is a very good thing,
4790 * because *any* task may call prune_icache - even ones which
4791 * have a transaction open against a different journal.
4792 *
4793 * Is this cheating? Not really. Sure, we haven't written the
4794 * inode out, but prune_icache isn't a user-visible syncing function.
4795 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4796 * we start and wait on commits.
ac27a0ec 4797 */
617ba13b 4798int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4799{
617ba13b 4800 struct ext4_iloc iloc;
6dd4ee7c
KS
4801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4802 static unsigned int mnt_count;
4803 int err, ret;
ac27a0ec
DK
4804
4805 might_sleep();
7ff9c073 4806 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4807 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4808 if (ext4_handle_valid(handle) &&
4809 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4810 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4811 /*
4812 * We need extra buffer credits since we may write into EA block
4813 * with this same handle. If journal_extend fails, then it will
4814 * only result in a minor loss of functionality for that inode.
4815 * If this is felt to be critical, then e2fsck should be run to
4816 * force a large enough s_min_extra_isize.
4817 */
4818 if ((jbd2_journal_extend(handle,
4819 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4820 ret = ext4_expand_extra_isize(inode,
4821 sbi->s_want_extra_isize,
4822 iloc, handle);
4823 if (ret) {
19f5fb7a
TT
4824 ext4_set_inode_state(inode,
4825 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4826 if (mnt_count !=
4827 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4828 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4829 "Unable to expand inode %lu. Delete"
4830 " some EAs or run e2fsck.",
4831 inode->i_ino);
c1bddad9
AK
4832 mnt_count =
4833 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4834 }
4835 }
4836 }
4837 }
ac27a0ec 4838 if (!err)
617ba13b 4839 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4840 return err;
4841}
4842
4843/*
617ba13b 4844 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4845 *
4846 * We're really interested in the case where a file is being extended.
4847 * i_size has been changed by generic_commit_write() and we thus need
4848 * to include the updated inode in the current transaction.
4849 *
5dd4056d 4850 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4851 * are allocated to the file.
4852 *
4853 * If the inode is marked synchronous, we don't honour that here - doing
4854 * so would cause a commit on atime updates, which we don't bother doing.
4855 * We handle synchronous inodes at the highest possible level.
4856 */
aa385729 4857void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4858{
ac27a0ec
DK
4859 handle_t *handle;
4860
9924a92a 4861 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4862 if (IS_ERR(handle))
4863 goto out;
f3dc272f 4864
f3dc272f
CW
4865 ext4_mark_inode_dirty(handle, inode);
4866
617ba13b 4867 ext4_journal_stop(handle);
ac27a0ec
DK
4868out:
4869 return;
4870}
4871
4872#if 0
4873/*
4874 * Bind an inode's backing buffer_head into this transaction, to prevent
4875 * it from being flushed to disk early. Unlike
617ba13b 4876 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4877 * returns no iloc structure, so the caller needs to repeat the iloc
4878 * lookup to mark the inode dirty later.
4879 */
617ba13b 4880static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4881{
617ba13b 4882 struct ext4_iloc iloc;
ac27a0ec
DK
4883
4884 int err = 0;
4885 if (handle) {
617ba13b 4886 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4887 if (!err) {
4888 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4889 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4890 if (!err)
0390131b 4891 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4892 NULL,
0390131b 4893 iloc.bh);
ac27a0ec
DK
4894 brelse(iloc.bh);
4895 }
4896 }
617ba13b 4897 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4898 return err;
4899}
4900#endif
4901
617ba13b 4902int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4903{
4904 journal_t *journal;
4905 handle_t *handle;
4906 int err;
4907
4908 /*
4909 * We have to be very careful here: changing a data block's
4910 * journaling status dynamically is dangerous. If we write a
4911 * data block to the journal, change the status and then delete
4912 * that block, we risk forgetting to revoke the old log record
4913 * from the journal and so a subsequent replay can corrupt data.
4914 * So, first we make sure that the journal is empty and that
4915 * nobody is changing anything.
4916 */
4917
617ba13b 4918 journal = EXT4_JOURNAL(inode);
0390131b
FM
4919 if (!journal)
4920 return 0;
d699594d 4921 if (is_journal_aborted(journal))
ac27a0ec 4922 return -EROFS;
2aff57b0
YY
4923 /* We have to allocate physical blocks for delalloc blocks
4924 * before flushing journal. otherwise delalloc blocks can not
4925 * be allocated any more. even more truncate on delalloc blocks
4926 * could trigger BUG by flushing delalloc blocks in journal.
4927 * There is no delalloc block in non-journal data mode.
4928 */
4929 if (val && test_opt(inode->i_sb, DELALLOC)) {
4930 err = ext4_alloc_da_blocks(inode);
4931 if (err < 0)
4932 return err;
4933 }
ac27a0ec 4934
17335dcc
DM
4935 /* Wait for all existing dio workers */
4936 ext4_inode_block_unlocked_dio(inode);
4937 inode_dio_wait(inode);
4938
dab291af 4939 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4940
4941 /*
4942 * OK, there are no updates running now, and all cached data is
4943 * synced to disk. We are now in a completely consistent state
4944 * which doesn't have anything in the journal, and we know that
4945 * no filesystem updates are running, so it is safe to modify
4946 * the inode's in-core data-journaling state flag now.
4947 */
4948
4949 if (val)
12e9b892 4950 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4951 else {
4952 jbd2_journal_flush(journal);
12e9b892 4953 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4954 }
617ba13b 4955 ext4_set_aops(inode);
ac27a0ec 4956
dab291af 4957 jbd2_journal_unlock_updates(journal);
17335dcc 4958 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4959
4960 /* Finally we can mark the inode as dirty. */
4961
9924a92a 4962 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
4963 if (IS_ERR(handle))
4964 return PTR_ERR(handle);
4965
617ba13b 4966 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4967 ext4_handle_sync(handle);
617ba13b
MC
4968 ext4_journal_stop(handle);
4969 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4970
4971 return err;
4972}
2e9ee850
AK
4973
4974static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4975{
4976 return !buffer_mapped(bh);
4977}
4978
c2ec175c 4979int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4980{
c2ec175c 4981 struct page *page = vmf->page;
2e9ee850
AK
4982 loff_t size;
4983 unsigned long len;
9ea7df53 4984 int ret;
2e9ee850 4985 struct file *file = vma->vm_file;
496ad9aa 4986 struct inode *inode = file_inode(file);
2e9ee850 4987 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4988 handle_t *handle;
4989 get_block_t *get_block;
4990 int retries = 0;
2e9ee850 4991
8e8ad8a5 4992 sb_start_pagefault(inode->i_sb);
041bbb6d 4993 file_update_time(vma->vm_file);
9ea7df53
JK
4994 /* Delalloc case is easy... */
4995 if (test_opt(inode->i_sb, DELALLOC) &&
4996 !ext4_should_journal_data(inode) &&
4997 !ext4_nonda_switch(inode->i_sb)) {
4998 do {
4999 ret = __block_page_mkwrite(vma, vmf,
5000 ext4_da_get_block_prep);
5001 } while (ret == -ENOSPC &&
5002 ext4_should_retry_alloc(inode->i_sb, &retries));
5003 goto out_ret;
2e9ee850 5004 }
0e499890
DW
5005
5006 lock_page(page);
9ea7df53
JK
5007 size = i_size_read(inode);
5008 /* Page got truncated from under us? */
5009 if (page->mapping != mapping || page_offset(page) > size) {
5010 unlock_page(page);
5011 ret = VM_FAULT_NOPAGE;
5012 goto out;
0e499890 5013 }
2e9ee850
AK
5014
5015 if (page->index == size >> PAGE_CACHE_SHIFT)
5016 len = size & ~PAGE_CACHE_MASK;
5017 else
5018 len = PAGE_CACHE_SIZE;
a827eaff 5019 /*
9ea7df53
JK
5020 * Return if we have all the buffers mapped. This avoids the need to do
5021 * journal_start/journal_stop which can block and take a long time
a827eaff 5022 */
2e9ee850 5023 if (page_has_buffers(page)) {
f19d5870
TM
5024 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5025 0, len, NULL,
5026 ext4_bh_unmapped)) {
9ea7df53 5027 /* Wait so that we don't change page under IO */
1d1d1a76 5028 wait_for_stable_page(page);
9ea7df53
JK
5029 ret = VM_FAULT_LOCKED;
5030 goto out;
a827eaff 5031 }
2e9ee850 5032 }
a827eaff 5033 unlock_page(page);
9ea7df53
JK
5034 /* OK, we need to fill the hole... */
5035 if (ext4_should_dioread_nolock(inode))
5036 get_block = ext4_get_block_write;
5037 else
5038 get_block = ext4_get_block;
5039retry_alloc:
9924a92a
TT
5040 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5041 ext4_writepage_trans_blocks(inode));
9ea7df53 5042 if (IS_ERR(handle)) {
c2ec175c 5043 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5044 goto out;
5045 }
5046 ret = __block_page_mkwrite(vma, vmf, get_block);
5047 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5048 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5049 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5050 unlock_page(page);
5051 ret = VM_FAULT_SIGBUS;
fcbb5515 5052 ext4_journal_stop(handle);
9ea7df53
JK
5053 goto out;
5054 }
5055 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5056 }
5057 ext4_journal_stop(handle);
5058 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5059 goto retry_alloc;
5060out_ret:
5061 ret = block_page_mkwrite_return(ret);
5062out:
8e8ad8a5 5063 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5064 return ret;
5065}
This page took 1.197963 seconds and 5 git commands to generate.