ext4: initialize extent status tree
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
5356f261
AK
486/*
487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488 */
489static void set_buffers_da_mapped(struct inode *inode,
490 struct ext4_map_blocks *map)
491{
492 struct address_space *mapping = inode->i_mapping;
493 struct pagevec pvec;
494 int i, nr_pages;
495 pgoff_t index, end;
496
497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 end = (map->m_lblk + map->m_len - 1) >>
499 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501 pagevec_init(&pvec, 0);
502 while (index <= end) {
503 nr_pages = pagevec_lookup(&pvec, mapping, index,
504 min(end - index + 1,
505 (pgoff_t)PAGEVEC_SIZE));
506 if (nr_pages == 0)
507 break;
508 for (i = 0; i < nr_pages; i++) {
509 struct page *page = pvec.pages[i];
510 struct buffer_head *bh, *head;
511
512 if (unlikely(page->mapping != mapping) ||
513 !PageDirty(page))
514 break;
515
516 if (page_has_buffers(page)) {
517 bh = head = page_buffers(page);
518 do {
519 set_buffer_da_mapped(bh);
520 bh = bh->b_this_page;
521 } while (bh != head);
522 }
523 index++;
524 }
525 pagevec_release(&pvec);
526 }
527}
528
f5ab0d1f 529/*
e35fd660 530 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 531 * and returns if the blocks are already mapped.
f5ab0d1f 532 *
f5ab0d1f
MC
533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534 * and store the allocated blocks in the result buffer head and mark it
535 * mapped.
536 *
e35fd660
TT
537 * If file type is extents based, it will call ext4_ext_map_blocks(),
538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
539 * based files
540 *
541 * On success, it returns the number of blocks being mapped or allocate.
542 * if create==0 and the blocks are pre-allocated and uninitialized block,
543 * the result buffer head is unmapped. If the create ==1, it will make sure
544 * the buffer head is mapped.
545 *
546 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 547 * that case, buffer head is unmapped
f5ab0d1f
MC
548 *
549 * It returns the error in case of allocation failure.
550 */
e35fd660
TT
551int ext4_map_blocks(handle_t *handle, struct inode *inode,
552 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
553{
554 int retval;
f5ab0d1f 555
e35fd660
TT
556 map->m_flags = 0;
557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558 "logical block %lu\n", inode->i_ino, flags, map->m_len,
559 (unsigned long) map->m_lblk);
4df3d265 560 /*
b920c755
TT
561 * Try to see if we can get the block without requesting a new
562 * file system block.
4df3d265 563 */
729f52c6
ZL
564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
567 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 569 } else {
a4e5d88b
DM
570 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 572 }
729f52c6
ZL
573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 575
e35fd660 576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 577 int ret = check_block_validity(inode, map);
6fd058f7
TT
578 if (ret != 0)
579 return ret;
580 }
581
f5ab0d1f 582 /* If it is only a block(s) look up */
c2177057 583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
584 return retval;
585
586 /*
587 * Returns if the blocks have already allocated
588 *
589 * Note that if blocks have been preallocated
df3ab170 590 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
591 * with buffer head unmapped.
592 */
e35fd660 593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
594 return retval;
595
2a8964d6
AK
596 /*
597 * When we call get_blocks without the create flag, the
598 * BH_Unwritten flag could have gotten set if the blocks
599 * requested were part of a uninitialized extent. We need to
600 * clear this flag now that we are committed to convert all or
601 * part of the uninitialized extent to be an initialized
602 * extent. This is because we need to avoid the combination
603 * of BH_Unwritten and BH_Mapped flags being simultaneously
604 * set on the buffer_head.
605 */
e35fd660 606 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 607
4df3d265 608 /*
f5ab0d1f
MC
609 * New blocks allocate and/or writing to uninitialized extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_blocks()
612 * with create == 1 flag.
4df3d265
AK
613 */
614 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
615
616 /*
617 * if the caller is from delayed allocation writeout path
618 * we have already reserved fs blocks for allocation
619 * let the underlying get_block() function know to
620 * avoid double accounting
621 */
c2177057 622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
624 /*
625 * We need to check for EXT4 here because migrate
626 * could have changed the inode type in between
627 */
12e9b892 628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 629 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 630 } else {
e35fd660 631 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 632
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
634 /*
635 * We allocated new blocks which will result in
636 * i_data's format changing. Force the migrate
637 * to fail by clearing migrate flags
638 */
19f5fb7a 639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 640 }
d2a17637 641
5f634d06
AK
642 /*
643 * Update reserved blocks/metadata blocks after successful
644 * block allocation which had been deferred till now. We don't
645 * support fallocate for non extent files. So we can update
646 * reserve space here.
647 */
648 if ((retval > 0) &&
1296cc85 649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
650 ext4_da_update_reserve_space(inode, retval, 1);
651 }
5356f261 652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 654
5356f261
AK
655 /* If we have successfully mapped the delayed allocated blocks,
656 * set the BH_Da_Mapped bit on them. Its important to do this
657 * under the protection of i_data_sem.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 set_buffers_da_mapped(inode, map);
661 }
662
4df3d265 663 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 665 int ret = check_block_validity(inode, map);
6fd058f7
TT
666 if (ret != 0)
667 return ret;
668 }
0e855ac8
AK
669 return retval;
670}
671
f3bd1f3f
MC
672/* Maximum number of blocks we map for direct IO at once. */
673#define DIO_MAX_BLOCKS 4096
674
2ed88685
TT
675static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
ac27a0ec 677{
3e4fdaf8 678 handle_t *handle = ext4_journal_current_handle();
2ed88685 679 struct ext4_map_blocks map;
7fb5409d 680 int ret = 0, started = 0;
f3bd1f3f 681 int dio_credits;
ac27a0ec 682
2ed88685
TT
683 map.m_lblk = iblock;
684 map.m_len = bh->b_size >> inode->i_blkbits;
685
8b0f165f 686 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 687 /* Direct IO write... */
2ed88685
TT
688 if (map.m_len > DIO_MAX_BLOCKS)
689 map.m_len = DIO_MAX_BLOCKS;
690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 691 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 692 if (IS_ERR(handle)) {
ac27a0ec 693 ret = PTR_ERR(handle);
2ed88685 694 return ret;
ac27a0ec 695 }
7fb5409d 696 started = 1;
ac27a0ec
DK
697 }
698
2ed88685 699 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 700 if (ret > 0) {
2ed88685
TT
701 map_bh(bh, inode->i_sb, map.m_pblk);
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 704 ret = 0;
ac27a0ec 705 }
7fb5409d
JK
706 if (started)
707 ext4_journal_stop(handle);
ac27a0ec
DK
708 return ret;
709}
710
2ed88685
TT
711int ext4_get_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int create)
713{
714 return _ext4_get_block(inode, iblock, bh,
715 create ? EXT4_GET_BLOCKS_CREATE : 0);
716}
717
ac27a0ec
DK
718/*
719 * `handle' can be NULL if create is zero
720 */
617ba13b 721struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 722 ext4_lblk_t block, int create, int *errp)
ac27a0ec 723{
2ed88685
TT
724 struct ext4_map_blocks map;
725 struct buffer_head *bh;
ac27a0ec
DK
726 int fatal = 0, err;
727
728 J_ASSERT(handle != NULL || create == 0);
729
2ed88685
TT
730 map.m_lblk = block;
731 map.m_len = 1;
732 err = ext4_map_blocks(handle, inode, &map,
733 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 734
90b0a973
CM
735 /* ensure we send some value back into *errp */
736 *errp = 0;
737
2ed88685
TT
738 if (err < 0)
739 *errp = err;
740 if (err <= 0)
741 return NULL;
2ed88685
TT
742
743 bh = sb_getblk(inode->i_sb, map.m_pblk);
744 if (!bh) {
745 *errp = -EIO;
746 return NULL;
ac27a0ec 747 }
2ed88685
TT
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
ac27a0ec 751
2ed88685
TT
752 /*
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
758 */
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 fatal = ext4_journal_get_create_access(handle, bh);
762 if (!fatal && !buffer_uptodate(bh)) {
763 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764 set_buffer_uptodate(bh);
ac27a0ec 765 }
2ed88685
TT
766 unlock_buffer(bh);
767 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768 err = ext4_handle_dirty_metadata(handle, inode, bh);
769 if (!fatal)
770 fatal = err;
771 } else {
772 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 773 }
2ed88685
TT
774 if (fatal) {
775 *errp = fatal;
776 brelse(bh);
777 bh = NULL;
778 }
779 return bh;
ac27a0ec
DK
780}
781
617ba13b 782struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 783 ext4_lblk_t block, int create, int *err)
ac27a0ec 784{
af5bc92d 785 struct buffer_head *bh;
ac27a0ec 786
617ba13b 787 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
788 if (!bh)
789 return bh;
790 if (buffer_uptodate(bh))
791 return bh;
65299a3b 792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
793 wait_on_buffer(bh);
794 if (buffer_uptodate(bh))
795 return bh;
796 put_bh(bh);
797 *err = -EIO;
798 return NULL;
799}
800
af5bc92d
TT
801static int walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
ac27a0ec
DK
808{
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
814
af5bc92d
TT
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
de9a55b8 817 block_start = block_end, bh = next) {
ac27a0ec
DK
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
824 }
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
828 }
829 return ret;
830}
831
832/*
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
617ba13b 835 * close off a transaction and start a new one between the ext4_get_block()
dab291af 836 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
837 * prepare_write() is the right place.
838 *
617ba13b
MC
839 * Also, this function can nest inside ext4_writepage() ->
840 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
841 * has generated enough buffer credits to do the whole page. So we won't
842 * block on the journal in that case, which is good, because the caller may
843 * be PF_MEMALLOC.
844 *
617ba13b 845 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
dab291af 852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
857static int do_journal_get_write_access(handle_t *handle,
de9a55b8 858 struct buffer_head *bh)
ac27a0ec 859{
56d35a4c
JK
860 int dirty = buffer_dirty(bh);
861 int ret;
862
ac27a0ec
DK
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
56d35a4c 865 /*
ebdec241 866 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 869 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
ac27a0ec
DK
879}
880
744692dc
JZ
881static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
8b0f165f
AP
883static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
884 struct buffer_head *bh_result, int create);
bfc1af65 885static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
886 loff_t pos, unsigned len, unsigned flags,
887 struct page **pagep, void **fsdata)
ac27a0ec 888{
af5bc92d 889 struct inode *inode = mapping->host;
1938a150 890 int ret, needed_blocks;
ac27a0ec
DK
891 handle_t *handle;
892 int retries = 0;
af5bc92d 893 struct page *page;
de9a55b8 894 pgoff_t index;
af5bc92d 895 unsigned from, to;
bfc1af65 896
9bffad1e 897 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
898 /*
899 * Reserve one block more for addition to orphan list in case
900 * we allocate blocks but write fails for some reason
901 */
902 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 903 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
904 from = pos & (PAGE_CACHE_SIZE - 1);
905 to = from + len;
ac27a0ec
DK
906
907retry:
af5bc92d
TT
908 handle = ext4_journal_start(inode, needed_blocks);
909 if (IS_ERR(handle)) {
910 ret = PTR_ERR(handle);
911 goto out;
7479d2b9 912 }
ac27a0ec 913
ebd3610b
JK
914 /* We cannot recurse into the filesystem as the transaction is already
915 * started */
916 flags |= AOP_FLAG_NOFS;
917
54566b2c 918 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
919 if (!page) {
920 ext4_journal_stop(handle);
921 ret = -ENOMEM;
922 goto out;
923 }
924 *pagep = page;
925
744692dc 926 if (ext4_should_dioread_nolock(inode))
6e1db88d 927 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 928 else
6e1db88d 929 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
930
931 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
932 ret = walk_page_buffers(handle, page_buffers(page),
933 from, to, NULL, do_journal_get_write_access);
934 }
bfc1af65
NP
935
936 if (ret) {
af5bc92d 937 unlock_page(page);
af5bc92d 938 page_cache_release(page);
ae4d5372 939 /*
6e1db88d 940 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
941 * outside i_size. Trim these off again. Don't need
942 * i_size_read because we hold i_mutex.
1938a150
AK
943 *
944 * Add inode to orphan list in case we crash before
945 * truncate finishes
ae4d5372 946 */
ffacfa7a 947 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
948 ext4_orphan_add(handle, inode);
949
950 ext4_journal_stop(handle);
951 if (pos + len > inode->i_size) {
b9a4207d 952 ext4_truncate_failed_write(inode);
de9a55b8 953 /*
ffacfa7a 954 * If truncate failed early the inode might
1938a150
AK
955 * still be on the orphan list; we need to
956 * make sure the inode is removed from the
957 * orphan list in that case.
958 */
959 if (inode->i_nlink)
960 ext4_orphan_del(NULL, inode);
961 }
bfc1af65
NP
962 }
963
617ba13b 964 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 965 goto retry;
7479d2b9 966out:
ac27a0ec
DK
967 return ret;
968}
969
bfc1af65
NP
970/* For write_end() in data=journal mode */
971static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
972{
973 if (!buffer_mapped(bh) || buffer_freed(bh))
974 return 0;
975 set_buffer_uptodate(bh);
0390131b 976 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
977}
978
f8514083 979static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
980 struct address_space *mapping,
981 loff_t pos, unsigned len, unsigned copied,
982 struct page *page, void *fsdata)
f8514083
AK
983{
984 int i_size_changed = 0;
985 struct inode *inode = mapping->host;
986 handle_t *handle = ext4_journal_current_handle();
987
988 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
989
990 /*
991 * No need to use i_size_read() here, the i_size
992 * cannot change under us because we hold i_mutex.
993 *
994 * But it's important to update i_size while still holding page lock:
995 * page writeout could otherwise come in and zero beyond i_size.
996 */
997 if (pos + copied > inode->i_size) {
998 i_size_write(inode, pos + copied);
999 i_size_changed = 1;
1000 }
1001
1002 if (pos + copied > EXT4_I(inode)->i_disksize) {
1003 /* We need to mark inode dirty even if
1004 * new_i_size is less that inode->i_size
1005 * bu greater than i_disksize.(hint delalloc)
1006 */
1007 ext4_update_i_disksize(inode, (pos + copied));
1008 i_size_changed = 1;
1009 }
1010 unlock_page(page);
1011 page_cache_release(page);
1012
1013 /*
1014 * Don't mark the inode dirty under page lock. First, it unnecessarily
1015 * makes the holding time of page lock longer. Second, it forces lock
1016 * ordering of page lock and transaction start for journaling
1017 * filesystems.
1018 */
1019 if (i_size_changed)
1020 ext4_mark_inode_dirty(handle, inode);
1021
1022 return copied;
1023}
1024
ac27a0ec
DK
1025/*
1026 * We need to pick up the new inode size which generic_commit_write gave us
1027 * `file' can be NULL - eg, when called from page_symlink().
1028 *
617ba13b 1029 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1030 * buffers are managed internally.
1031 */
bfc1af65 1032static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1033 struct address_space *mapping,
1034 loff_t pos, unsigned len, unsigned copied,
1035 struct page *page, void *fsdata)
ac27a0ec 1036{
617ba13b 1037 handle_t *handle = ext4_journal_current_handle();
cf108bca 1038 struct inode *inode = mapping->host;
ac27a0ec
DK
1039 int ret = 0, ret2;
1040
9bffad1e 1041 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1042 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1043
1044 if (ret == 0) {
f8514083 1045 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1046 page, fsdata);
f8a87d89 1047 copied = ret2;
ffacfa7a 1048 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1049 /* if we have allocated more blocks and copied
1050 * less. We will have blocks allocated outside
1051 * inode->i_size. So truncate them
1052 */
1053 ext4_orphan_add(handle, inode);
f8a87d89
RK
1054 if (ret2 < 0)
1055 ret = ret2;
09e0834f
AF
1056 } else {
1057 unlock_page(page);
1058 page_cache_release(page);
ac27a0ec 1059 }
09e0834f 1060
617ba13b 1061 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1062 if (!ret)
1063 ret = ret2;
bfc1af65 1064
f8514083 1065 if (pos + len > inode->i_size) {
b9a4207d 1066 ext4_truncate_failed_write(inode);
de9a55b8 1067 /*
ffacfa7a 1068 * If truncate failed early the inode might still be
f8514083
AK
1069 * on the orphan list; we need to make sure the inode
1070 * is removed from the orphan list in that case.
1071 */
1072 if (inode->i_nlink)
1073 ext4_orphan_del(NULL, inode);
1074 }
1075
1076
bfc1af65 1077 return ret ? ret : copied;
ac27a0ec
DK
1078}
1079
bfc1af65 1080static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1081 struct address_space *mapping,
1082 loff_t pos, unsigned len, unsigned copied,
1083 struct page *page, void *fsdata)
ac27a0ec 1084{
617ba13b 1085 handle_t *handle = ext4_journal_current_handle();
cf108bca 1086 struct inode *inode = mapping->host;
ac27a0ec 1087 int ret = 0, ret2;
ac27a0ec 1088
9bffad1e 1089 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1090 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1091 page, fsdata);
f8a87d89 1092 copied = ret2;
ffacfa7a 1093 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1094 /* if we have allocated more blocks and copied
1095 * less. We will have blocks allocated outside
1096 * inode->i_size. So truncate them
1097 */
1098 ext4_orphan_add(handle, inode);
1099
f8a87d89
RK
1100 if (ret2 < 0)
1101 ret = ret2;
ac27a0ec 1102
617ba13b 1103 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1104 if (!ret)
1105 ret = ret2;
bfc1af65 1106
f8514083 1107 if (pos + len > inode->i_size) {
b9a4207d 1108 ext4_truncate_failed_write(inode);
de9a55b8 1109 /*
ffacfa7a 1110 * If truncate failed early the inode might still be
f8514083
AK
1111 * on the orphan list; we need to make sure the inode
1112 * is removed from the orphan list in that case.
1113 */
1114 if (inode->i_nlink)
1115 ext4_orphan_del(NULL, inode);
1116 }
1117
bfc1af65 1118 return ret ? ret : copied;
ac27a0ec
DK
1119}
1120
bfc1af65 1121static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1122 struct address_space *mapping,
1123 loff_t pos, unsigned len, unsigned copied,
1124 struct page *page, void *fsdata)
ac27a0ec 1125{
617ba13b 1126 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1127 struct inode *inode = mapping->host;
ac27a0ec
DK
1128 int ret = 0, ret2;
1129 int partial = 0;
bfc1af65 1130 unsigned from, to;
cf17fea6 1131 loff_t new_i_size;
ac27a0ec 1132
9bffad1e 1133 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1134 from = pos & (PAGE_CACHE_SIZE - 1);
1135 to = from + len;
1136
441c8508
CW
1137 BUG_ON(!ext4_handle_valid(handle));
1138
bfc1af65
NP
1139 if (copied < len) {
1140 if (!PageUptodate(page))
1141 copied = 0;
1142 page_zero_new_buffers(page, from+copied, to);
1143 }
ac27a0ec
DK
1144
1145 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1146 to, &partial, write_end_fn);
ac27a0ec
DK
1147 if (!partial)
1148 SetPageUptodate(page);
cf17fea6
AK
1149 new_i_size = pos + copied;
1150 if (new_i_size > inode->i_size)
bfc1af65 1151 i_size_write(inode, pos+copied);
19f5fb7a 1152 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1153 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1154 if (new_i_size > EXT4_I(inode)->i_disksize) {
1155 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1156 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1157 if (!ret)
1158 ret = ret2;
1159 }
bfc1af65 1160
cf108bca 1161 unlock_page(page);
f8514083 1162 page_cache_release(page);
ffacfa7a 1163 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1164 /* if we have allocated more blocks and copied
1165 * less. We will have blocks allocated outside
1166 * inode->i_size. So truncate them
1167 */
1168 ext4_orphan_add(handle, inode);
1169
617ba13b 1170 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1171 if (!ret)
1172 ret = ret2;
f8514083 1173 if (pos + len > inode->i_size) {
b9a4207d 1174 ext4_truncate_failed_write(inode);
de9a55b8 1175 /*
ffacfa7a 1176 * If truncate failed early the inode might still be
f8514083
AK
1177 * on the orphan list; we need to make sure the inode
1178 * is removed from the orphan list in that case.
1179 */
1180 if (inode->i_nlink)
1181 ext4_orphan_del(NULL, inode);
1182 }
bfc1af65
NP
1183
1184 return ret ? ret : copied;
ac27a0ec 1185}
d2a17637 1186
9d0be502 1187/*
7b415bf6 1188 * Reserve a single cluster located at lblock
9d0be502 1189 */
01f49d0b 1190static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1191{
030ba6bc 1192 int retries = 0;
60e58e0f 1193 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1194 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1195 unsigned int md_needed;
5dd4056d 1196 int ret;
03179fe9
TT
1197 ext4_lblk_t save_last_lblock;
1198 int save_len;
1199
1200 /*
1201 * We will charge metadata quota at writeout time; this saves
1202 * us from metadata over-estimation, though we may go over by
1203 * a small amount in the end. Here we just reserve for data.
1204 */
1205 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1206 if (ret)
1207 return ret;
d2a17637
MC
1208
1209 /*
1210 * recalculate the amount of metadata blocks to reserve
1211 * in order to allocate nrblocks
1212 * worse case is one extent per block
1213 */
030ba6bc 1214repeat:
0637c6f4 1215 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1216 /*
1217 * ext4_calc_metadata_amount() has side effects, which we have
1218 * to be prepared undo if we fail to claim space.
1219 */
1220 save_len = ei->i_da_metadata_calc_len;
1221 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1222 md_needed = EXT4_NUM_B2C(sbi,
1223 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1224 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1225
72b8ab9d
ES
1226 /*
1227 * We do still charge estimated metadata to the sb though;
1228 * we cannot afford to run out of free blocks.
1229 */
e7d5f315 1230 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1231 ei->i_da_metadata_calc_len = save_len;
1232 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1233 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1234 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1235 yield();
1236 goto repeat;
1237 }
03179fe9 1238 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1239 return -ENOSPC;
1240 }
9d0be502 1241 ei->i_reserved_data_blocks++;
0637c6f4
TT
1242 ei->i_reserved_meta_blocks += md_needed;
1243 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1244
d2a17637
MC
1245 return 0; /* success */
1246}
1247
12219aea 1248static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1249{
1250 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1251 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1252
cd213226
MC
1253 if (!to_free)
1254 return; /* Nothing to release, exit */
1255
d2a17637 1256 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1257
5a58ec87 1258 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1259 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1260 /*
0637c6f4
TT
1261 * if there aren't enough reserved blocks, then the
1262 * counter is messed up somewhere. Since this
1263 * function is called from invalidate page, it's
1264 * harmless to return without any action.
cd213226 1265 */
0637c6f4
TT
1266 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1267 "ino %lu, to_free %d with only %d reserved "
1084f252 1268 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1269 ei->i_reserved_data_blocks);
1270 WARN_ON(1);
1271 to_free = ei->i_reserved_data_blocks;
cd213226 1272 }
0637c6f4 1273 ei->i_reserved_data_blocks -= to_free;
cd213226 1274
0637c6f4
TT
1275 if (ei->i_reserved_data_blocks == 0) {
1276 /*
1277 * We can release all of the reserved metadata blocks
1278 * only when we have written all of the delayed
1279 * allocation blocks.
7b415bf6
AK
1280 * Note that in case of bigalloc, i_reserved_meta_blocks,
1281 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1282 */
57042651 1283 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1284 ei->i_reserved_meta_blocks);
ee5f4d9c 1285 ei->i_reserved_meta_blocks = 0;
9d0be502 1286 ei->i_da_metadata_calc_len = 0;
0637c6f4 1287 }
d2a17637 1288
72b8ab9d 1289 /* update fs dirty data blocks counter */
57042651 1290 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1291
d2a17637 1292 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1293
7b415bf6 1294 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1295}
1296
1297static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1298 unsigned long offset)
d2a17637
MC
1299{
1300 int to_release = 0;
1301 struct buffer_head *head, *bh;
1302 unsigned int curr_off = 0;
7b415bf6
AK
1303 struct inode *inode = page->mapping->host;
1304 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1305 int num_clusters;
d2a17637
MC
1306
1307 head = page_buffers(page);
1308 bh = head;
1309 do {
1310 unsigned int next_off = curr_off + bh->b_size;
1311
1312 if ((offset <= curr_off) && (buffer_delay(bh))) {
1313 to_release++;
1314 clear_buffer_delay(bh);
5356f261 1315 clear_buffer_da_mapped(bh);
d2a17637
MC
1316 }
1317 curr_off = next_off;
1318 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1319
1320 /* If we have released all the blocks belonging to a cluster, then we
1321 * need to release the reserved space for that cluster. */
1322 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1323 while (num_clusters > 0) {
1324 ext4_fsblk_t lblk;
1325 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1326 ((num_clusters - 1) << sbi->s_cluster_bits);
1327 if (sbi->s_cluster_ratio == 1 ||
1328 !ext4_find_delalloc_cluster(inode, lblk, 1))
1329 ext4_da_release_space(inode, 1);
1330
1331 num_clusters--;
1332 }
d2a17637 1333}
ac27a0ec 1334
64769240
AT
1335/*
1336 * Delayed allocation stuff
1337 */
1338
64769240
AT
1339/*
1340 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1341 * them with writepage() call back
64769240
AT
1342 *
1343 * @mpd->inode: inode
1344 * @mpd->first_page: first page of the extent
1345 * @mpd->next_page: page after the last page of the extent
64769240
AT
1346 *
1347 * By the time mpage_da_submit_io() is called we expect all blocks
1348 * to be allocated. this may be wrong if allocation failed.
1349 *
1350 * As pages are already locked by write_cache_pages(), we can't use it
1351 */
1de3e3df
TT
1352static int mpage_da_submit_io(struct mpage_da_data *mpd,
1353 struct ext4_map_blocks *map)
64769240 1354{
791b7f08
AK
1355 struct pagevec pvec;
1356 unsigned long index, end;
1357 int ret = 0, err, nr_pages, i;
1358 struct inode *inode = mpd->inode;
1359 struct address_space *mapping = inode->i_mapping;
cb20d518 1360 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1361 unsigned int len, block_start;
1362 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1363 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1364 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1365 struct ext4_io_submit io_submit;
64769240
AT
1366
1367 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1368 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1369 /*
1370 * We need to start from the first_page to the next_page - 1
1371 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1372 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1373 * at the currently mapped buffer_heads.
1374 */
64769240
AT
1375 index = mpd->first_page;
1376 end = mpd->next_page - 1;
1377
791b7f08 1378 pagevec_init(&pvec, 0);
64769240 1379 while (index <= end) {
791b7f08 1380 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1381 if (nr_pages == 0)
1382 break;
1383 for (i = 0; i < nr_pages; i++) {
97498956 1384 int commit_write = 0, skip_page = 0;
64769240
AT
1385 struct page *page = pvec.pages[i];
1386
791b7f08
AK
1387 index = page->index;
1388 if (index > end)
1389 break;
cb20d518
TT
1390
1391 if (index == size >> PAGE_CACHE_SHIFT)
1392 len = size & ~PAGE_CACHE_MASK;
1393 else
1394 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1395 if (map) {
1396 cur_logical = index << (PAGE_CACHE_SHIFT -
1397 inode->i_blkbits);
1398 pblock = map->m_pblk + (cur_logical -
1399 map->m_lblk);
1400 }
791b7f08
AK
1401 index++;
1402
1403 BUG_ON(!PageLocked(page));
1404 BUG_ON(PageWriteback(page));
1405
64769240 1406 /*
cb20d518
TT
1407 * If the page does not have buffers (for
1408 * whatever reason), try to create them using
a107e5a3 1409 * __block_write_begin. If this fails,
97498956 1410 * skip the page and move on.
64769240 1411 */
cb20d518 1412 if (!page_has_buffers(page)) {
a107e5a3 1413 if (__block_write_begin(page, 0, len,
cb20d518 1414 noalloc_get_block_write)) {
97498956 1415 skip_page:
cb20d518
TT
1416 unlock_page(page);
1417 continue;
1418 }
1419 commit_write = 1;
1420 }
64769240 1421
3ecdb3a1
TT
1422 bh = page_bufs = page_buffers(page);
1423 block_start = 0;
64769240 1424 do {
1de3e3df 1425 if (!bh)
97498956 1426 goto skip_page;
1de3e3df
TT
1427 if (map && (cur_logical >= map->m_lblk) &&
1428 (cur_logical <= (map->m_lblk +
1429 (map->m_len - 1)))) {
29fa89d0
AK
1430 if (buffer_delay(bh)) {
1431 clear_buffer_delay(bh);
1432 bh->b_blocknr = pblock;
29fa89d0 1433 }
5356f261
AK
1434 if (buffer_da_mapped(bh))
1435 clear_buffer_da_mapped(bh);
1de3e3df
TT
1436 if (buffer_unwritten(bh) ||
1437 buffer_mapped(bh))
1438 BUG_ON(bh->b_blocknr != pblock);
1439 if (map->m_flags & EXT4_MAP_UNINIT)
1440 set_buffer_uninit(bh);
1441 clear_buffer_unwritten(bh);
1442 }
29fa89d0 1443
13a79a47
YY
1444 /*
1445 * skip page if block allocation undone and
1446 * block is dirty
1447 */
1448 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1449 skip_page = 1;
3ecdb3a1
TT
1450 bh = bh->b_this_page;
1451 block_start += bh->b_size;
64769240
AT
1452 cur_logical++;
1453 pblock++;
1de3e3df
TT
1454 } while (bh != page_bufs);
1455
97498956
TT
1456 if (skip_page)
1457 goto skip_page;
cb20d518
TT
1458
1459 if (commit_write)
1460 /* mark the buffer_heads as dirty & uptodate */
1461 block_commit_write(page, 0, len);
1462
97498956 1463 clear_page_dirty_for_io(page);
bd2d0210
TT
1464 /*
1465 * Delalloc doesn't support data journalling,
1466 * but eventually maybe we'll lift this
1467 * restriction.
1468 */
1469 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1470 err = __ext4_journalled_writepage(page, len);
1449032b 1471 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1472 err = ext4_bio_write_page(&io_submit, page,
1473 len, mpd->wbc);
9dd75f1f
TT
1474 else if (buffer_uninit(page_bufs)) {
1475 ext4_set_bh_endio(page_bufs, inode);
1476 err = block_write_full_page_endio(page,
1477 noalloc_get_block_write,
1478 mpd->wbc, ext4_end_io_buffer_write);
1479 } else
1449032b
TT
1480 err = block_write_full_page(page,
1481 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1482
1483 if (!err)
a1d6cc56 1484 mpd->pages_written++;
64769240
AT
1485 /*
1486 * In error case, we have to continue because
1487 * remaining pages are still locked
64769240
AT
1488 */
1489 if (ret == 0)
1490 ret = err;
64769240
AT
1491 }
1492 pagevec_release(&pvec);
1493 }
bd2d0210 1494 ext4_io_submit(&io_submit);
64769240 1495 return ret;
64769240
AT
1496}
1497
c7f5938a 1498static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1499{
1500 int nr_pages, i;
1501 pgoff_t index, end;
1502 struct pagevec pvec;
1503 struct inode *inode = mpd->inode;
1504 struct address_space *mapping = inode->i_mapping;
1505
c7f5938a
CW
1506 index = mpd->first_page;
1507 end = mpd->next_page - 1;
c4a0c46e
AK
1508 while (index <= end) {
1509 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1510 if (nr_pages == 0)
1511 break;
1512 for (i = 0; i < nr_pages; i++) {
1513 struct page *page = pvec.pages[i];
9b1d0998 1514 if (page->index > end)
c4a0c46e 1515 break;
c4a0c46e
AK
1516 BUG_ON(!PageLocked(page));
1517 BUG_ON(PageWriteback(page));
1518 block_invalidatepage(page, 0);
1519 ClearPageUptodate(page);
1520 unlock_page(page);
1521 }
9b1d0998
JK
1522 index = pvec.pages[nr_pages - 1]->index + 1;
1523 pagevec_release(&pvec);
c4a0c46e
AK
1524 }
1525 return;
1526}
1527
df22291f
AK
1528static void ext4_print_free_blocks(struct inode *inode)
1529{
1530 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1531 struct super_block *sb = inode->i_sb;
1532
1533 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1534 EXT4_C2B(EXT4_SB(inode->i_sb),
1535 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1536 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1537 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1538 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1539 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1540 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1541 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1542 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1543 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1544 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1545 EXT4_I(inode)->i_reserved_data_blocks);
1546 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1547 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1548 return;
1549}
1550
64769240 1551/*
5a87b7a5
TT
1552 * mpage_da_map_and_submit - go through given space, map them
1553 * if necessary, and then submit them for I/O
64769240 1554 *
8dc207c0 1555 * @mpd - bh describing space
64769240
AT
1556 *
1557 * The function skips space we know is already mapped to disk blocks.
1558 *
64769240 1559 */
5a87b7a5 1560static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1561{
2ac3b6e0 1562 int err, blks, get_blocks_flags;
1de3e3df 1563 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1564 sector_t next = mpd->b_blocknr;
1565 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1566 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1567 handle_t *handle = NULL;
64769240
AT
1568
1569 /*
5a87b7a5
TT
1570 * If the blocks are mapped already, or we couldn't accumulate
1571 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1572 */
5a87b7a5
TT
1573 if ((mpd->b_size == 0) ||
1574 ((mpd->b_state & (1 << BH_Mapped)) &&
1575 !(mpd->b_state & (1 << BH_Delay)) &&
1576 !(mpd->b_state & (1 << BH_Unwritten))))
1577 goto submit_io;
2fa3cdfb
TT
1578
1579 handle = ext4_journal_current_handle();
1580 BUG_ON(!handle);
1581
79ffab34 1582 /*
79e83036 1583 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1584 * blocks, or to convert an uninitialized extent to be
1585 * initialized (in the case where we have written into
1586 * one or more preallocated blocks).
1587 *
1588 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1589 * indicate that we are on the delayed allocation path. This
1590 * affects functions in many different parts of the allocation
1591 * call path. This flag exists primarily because we don't
79e83036 1592 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1593 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1594 * inode's allocation semaphore is taken.
1595 *
1596 * If the blocks in questions were delalloc blocks, set
1597 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1598 * variables are updated after the blocks have been allocated.
79ffab34 1599 */
2ed88685
TT
1600 map.m_lblk = next;
1601 map.m_len = max_blocks;
1296cc85 1602 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1603 if (ext4_should_dioread_nolock(mpd->inode))
1604 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1605 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1606 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1607
2ed88685 1608 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1609 if (blks < 0) {
e3570639
ES
1610 struct super_block *sb = mpd->inode->i_sb;
1611
2fa3cdfb 1612 err = blks;
ed5bde0b 1613 /*
5a87b7a5 1614 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1615 * appears to be free blocks we will just let
1616 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1617 */
1618 if (err == -EAGAIN)
5a87b7a5 1619 goto submit_io;
df22291f 1620
5dee5437 1621 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1622 mpd->retval = err;
5a87b7a5 1623 goto submit_io;
df22291f
AK
1624 }
1625
c4a0c46e 1626 /*
ed5bde0b
TT
1627 * get block failure will cause us to loop in
1628 * writepages, because a_ops->writepage won't be able
1629 * to make progress. The page will be redirtied by
1630 * writepage and writepages will again try to write
1631 * the same.
c4a0c46e 1632 */
e3570639
ES
1633 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1634 ext4_msg(sb, KERN_CRIT,
1635 "delayed block allocation failed for inode %lu "
1636 "at logical offset %llu with max blocks %zd "
1637 "with error %d", mpd->inode->i_ino,
1638 (unsigned long long) next,
1639 mpd->b_size >> mpd->inode->i_blkbits, err);
1640 ext4_msg(sb, KERN_CRIT,
1641 "This should not happen!! Data will be lost\n");
1642 if (err == -ENOSPC)
1643 ext4_print_free_blocks(mpd->inode);
030ba6bc 1644 }
2fa3cdfb 1645 /* invalidate all the pages */
c7f5938a 1646 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1647
1648 /* Mark this page range as having been completed */
1649 mpd->io_done = 1;
5a87b7a5 1650 return;
c4a0c46e 1651 }
2fa3cdfb
TT
1652 BUG_ON(blks == 0);
1653
1de3e3df 1654 mapp = &map;
2ed88685
TT
1655 if (map.m_flags & EXT4_MAP_NEW) {
1656 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1657 int i;
64769240 1658
2ed88685
TT
1659 for (i = 0; i < map.m_len; i++)
1660 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1661
decbd919
TT
1662 if (ext4_should_order_data(mpd->inode)) {
1663 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1664 if (err) {
decbd919 1665 /* Only if the journal is aborted */
8de49e67
KM
1666 mpd->retval = err;
1667 goto submit_io;
1668 }
decbd919 1669 }
2fa3cdfb
TT
1670 }
1671
1672 /*
03f5d8bc 1673 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1674 */
1675 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1676 if (disksize > i_size_read(mpd->inode))
1677 disksize = i_size_read(mpd->inode);
1678 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1679 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1680 err = ext4_mark_inode_dirty(handle, mpd->inode);
1681 if (err)
1682 ext4_error(mpd->inode->i_sb,
1683 "Failed to mark inode %lu dirty",
1684 mpd->inode->i_ino);
2fa3cdfb
TT
1685 }
1686
5a87b7a5 1687submit_io:
1de3e3df 1688 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1689 mpd->io_done = 1;
64769240
AT
1690}
1691
bf068ee2
AK
1692#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1693 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1694
1695/*
1696 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1697 *
1698 * @mpd->lbh - extent of blocks
1699 * @logical - logical number of the block in the file
1700 * @bh - bh of the block (used to access block's state)
1701 *
1702 * the function is used to collect contig. blocks in same state
1703 */
1704static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1705 sector_t logical, size_t b_size,
1706 unsigned long b_state)
64769240 1707{
64769240 1708 sector_t next;
8dc207c0 1709 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1710
c445e3e0
ES
1711 /*
1712 * XXX Don't go larger than mballoc is willing to allocate
1713 * This is a stopgap solution. We eventually need to fold
1714 * mpage_da_submit_io() into this function and then call
79e83036 1715 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1716 */
1717 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1718 goto flush_it;
1719
525f4ed8 1720 /* check if thereserved journal credits might overflow */
12e9b892 1721 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1722 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1723 /*
1724 * With non-extent format we are limited by the journal
1725 * credit available. Total credit needed to insert
1726 * nrblocks contiguous blocks is dependent on the
1727 * nrblocks. So limit nrblocks.
1728 */
1729 goto flush_it;
1730 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1731 EXT4_MAX_TRANS_DATA) {
1732 /*
1733 * Adding the new buffer_head would make it cross the
1734 * allowed limit for which we have journal credit
1735 * reserved. So limit the new bh->b_size
1736 */
1737 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1738 mpd->inode->i_blkbits;
1739 /* we will do mpage_da_submit_io in the next loop */
1740 }
1741 }
64769240
AT
1742 /*
1743 * First block in the extent
1744 */
8dc207c0
TT
1745 if (mpd->b_size == 0) {
1746 mpd->b_blocknr = logical;
1747 mpd->b_size = b_size;
1748 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1749 return;
1750 }
1751
8dc207c0 1752 next = mpd->b_blocknr + nrblocks;
64769240
AT
1753 /*
1754 * Can we merge the block to our big extent?
1755 */
8dc207c0
TT
1756 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1757 mpd->b_size += b_size;
64769240
AT
1758 return;
1759 }
1760
525f4ed8 1761flush_it:
64769240
AT
1762 /*
1763 * We couldn't merge the block to our extent, so we
1764 * need to flush current extent and start new one
1765 */
5a87b7a5 1766 mpage_da_map_and_submit(mpd);
a1d6cc56 1767 return;
64769240
AT
1768}
1769
c364b22c 1770static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1771{
c364b22c 1772 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1773}
1774
5356f261
AK
1775/*
1776 * This function is grabs code from the very beginning of
1777 * ext4_map_blocks, but assumes that the caller is from delayed write
1778 * time. This function looks up the requested blocks and sets the
1779 * buffer delay bit under the protection of i_data_sem.
1780 */
1781static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1782 struct ext4_map_blocks *map,
1783 struct buffer_head *bh)
1784{
1785 int retval;
1786 sector_t invalid_block = ~((sector_t) 0xffff);
1787
1788 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1789 invalid_block = ~0;
1790
1791 map->m_flags = 0;
1792 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1793 "logical block %lu\n", inode->i_ino, map->m_len,
1794 (unsigned long) map->m_lblk);
1795 /*
1796 * Try to see if we can get the block without requesting a new
1797 * file system block.
1798 */
1799 down_read((&EXT4_I(inode)->i_data_sem));
1800 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1801 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1802 else
1803 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1804
1805 if (retval == 0) {
1806 /*
1807 * XXX: __block_prepare_write() unmaps passed block,
1808 * is it OK?
1809 */
1810 /* If the block was allocated from previously allocated cluster,
1811 * then we dont need to reserve it again. */
1812 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1813 retval = ext4_da_reserve_space(inode, iblock);
1814 if (retval)
1815 /* not enough space to reserve */
1816 goto out_unlock;
1817 }
1818
1819 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1820 * and it should not appear on the bh->b_state.
1821 */
1822 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1823
1824 map_bh(bh, inode->i_sb, invalid_block);
1825 set_buffer_new(bh);
1826 set_buffer_delay(bh);
1827 }
1828
1829out_unlock:
1830 up_read((&EXT4_I(inode)->i_data_sem));
1831
1832 return retval;
1833}
1834
64769240 1835/*
b920c755
TT
1836 * This is a special get_blocks_t callback which is used by
1837 * ext4_da_write_begin(). It will either return mapped block or
1838 * reserve space for a single block.
29fa89d0
AK
1839 *
1840 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1841 * We also have b_blocknr = -1 and b_bdev initialized properly
1842 *
1843 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1844 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1845 * initialized properly.
64769240
AT
1846 */
1847static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1848 struct buffer_head *bh, int create)
64769240 1849{
2ed88685 1850 struct ext4_map_blocks map;
64769240
AT
1851 int ret = 0;
1852
1853 BUG_ON(create == 0);
2ed88685
TT
1854 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1855
1856 map.m_lblk = iblock;
1857 map.m_len = 1;
64769240
AT
1858
1859 /*
1860 * first, we need to know whether the block is allocated already
1861 * preallocated blocks are unmapped but should treated
1862 * the same as allocated blocks.
1863 */
5356f261
AK
1864 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1865 if (ret <= 0)
2ed88685 1866 return ret;
64769240 1867
2ed88685
TT
1868 map_bh(bh, inode->i_sb, map.m_pblk);
1869 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1870
1871 if (buffer_unwritten(bh)) {
1872 /* A delayed write to unwritten bh should be marked
1873 * new and mapped. Mapped ensures that we don't do
1874 * get_block multiple times when we write to the same
1875 * offset and new ensures that we do proper zero out
1876 * for partial write.
1877 */
1878 set_buffer_new(bh);
c8205636 1879 set_buffer_mapped(bh);
2ed88685
TT
1880 }
1881 return 0;
64769240 1882}
61628a3f 1883
b920c755
TT
1884/*
1885 * This function is used as a standard get_block_t calback function
1886 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1887 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1888 * These functions should only try to map a single block at a time.
b920c755
TT
1889 *
1890 * Since this function doesn't do block allocations even if the caller
1891 * requests it by passing in create=1, it is critically important that
1892 * any caller checks to make sure that any buffer heads are returned
1893 * by this function are either all already mapped or marked for
206f7ab4
CH
1894 * delayed allocation before calling block_write_full_page(). Otherwise,
1895 * b_blocknr could be left unitialized, and the page write functions will
1896 * be taken by surprise.
b920c755
TT
1897 */
1898static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1899 struct buffer_head *bh_result, int create)
1900{
a2dc52b5 1901 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1902 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1903}
1904
62e086be
AK
1905static int bget_one(handle_t *handle, struct buffer_head *bh)
1906{
1907 get_bh(bh);
1908 return 0;
1909}
1910
1911static int bput_one(handle_t *handle, struct buffer_head *bh)
1912{
1913 put_bh(bh);
1914 return 0;
1915}
1916
1917static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1918 unsigned int len)
1919{
1920 struct address_space *mapping = page->mapping;
1921 struct inode *inode = mapping->host;
1922 struct buffer_head *page_bufs;
1923 handle_t *handle = NULL;
1924 int ret = 0;
1925 int err;
1926
cb20d518 1927 ClearPageChecked(page);
62e086be
AK
1928 page_bufs = page_buffers(page);
1929 BUG_ON(!page_bufs);
1930 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1931 /* As soon as we unlock the page, it can go away, but we have
1932 * references to buffers so we are safe */
1933 unlock_page(page);
1934
1935 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1936 if (IS_ERR(handle)) {
1937 ret = PTR_ERR(handle);
1938 goto out;
1939 }
1940
441c8508
CW
1941 BUG_ON(!ext4_handle_valid(handle));
1942
62e086be
AK
1943 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1944 do_journal_get_write_access);
1945
1946 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1947 write_end_fn);
1948 if (ret == 0)
1949 ret = err;
2d859db3 1950 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1951 err = ext4_journal_stop(handle);
1952 if (!ret)
1953 ret = err;
1954
1955 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1956 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1957out:
1958 return ret;
1959}
1960
61628a3f 1961/*
43ce1d23
AK
1962 * Note that we don't need to start a transaction unless we're journaling data
1963 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1964 * need to file the inode to the transaction's list in ordered mode because if
1965 * we are writing back data added by write(), the inode is already there and if
25985edc 1966 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1967 * transaction the data will hit the disk. In case we are journaling data, we
1968 * cannot start transaction directly because transaction start ranks above page
1969 * lock so we have to do some magic.
1970 *
b920c755
TT
1971 * This function can get called via...
1972 * - ext4_da_writepages after taking page lock (have journal handle)
1973 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1974 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1975 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1976 *
1977 * We don't do any block allocation in this function. If we have page with
1978 * multiple blocks we need to write those buffer_heads that are mapped. This
1979 * is important for mmaped based write. So if we do with blocksize 1K
1980 * truncate(f, 1024);
1981 * a = mmap(f, 0, 4096);
1982 * a[0] = 'a';
1983 * truncate(f, 4096);
1984 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1985 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1986 * do_wp_page). So writepage should write the first block. If we modify
1987 * the mmap area beyond 1024 we will again get a page_fault and the
1988 * page_mkwrite callback will do the block allocation and mark the
1989 * buffer_heads mapped.
1990 *
1991 * We redirty the page if we have any buffer_heads that is either delay or
1992 * unwritten in the page.
1993 *
1994 * We can get recursively called as show below.
1995 *
1996 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1997 * ext4_writepage()
1998 *
1999 * But since we don't do any block allocation we should not deadlock.
2000 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2001 */
43ce1d23 2002static int ext4_writepage(struct page *page,
62e086be 2003 struct writeback_control *wbc)
64769240 2004{
a42afc5f 2005 int ret = 0, commit_write = 0;
61628a3f 2006 loff_t size;
498e5f24 2007 unsigned int len;
744692dc 2008 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2009 struct inode *inode = page->mapping->host;
2010
a9c667f8 2011 trace_ext4_writepage(page);
f0e6c985
AK
2012 size = i_size_read(inode);
2013 if (page->index == size >> PAGE_CACHE_SHIFT)
2014 len = size & ~PAGE_CACHE_MASK;
2015 else
2016 len = PAGE_CACHE_SIZE;
64769240 2017
a42afc5f
TT
2018 /*
2019 * If the page does not have buffers (for whatever reason),
a107e5a3 2020 * try to create them using __block_write_begin. If this
a42afc5f
TT
2021 * fails, redirty the page and move on.
2022 */
b1142e8f 2023 if (!page_has_buffers(page)) {
a107e5a3 2024 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2025 noalloc_get_block_write)) {
2026 redirty_page:
f0e6c985
AK
2027 redirty_page_for_writepage(wbc, page);
2028 unlock_page(page);
2029 return 0;
2030 }
a42afc5f
TT
2031 commit_write = 1;
2032 }
2033 page_bufs = page_buffers(page);
2034 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2035 ext4_bh_delay_or_unwritten)) {
f0e6c985 2036 /*
b1142e8f
TT
2037 * We don't want to do block allocation, so redirty
2038 * the page and return. We may reach here when we do
2039 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2040 * We can also reach here via shrink_page_list but it
2041 * should never be for direct reclaim so warn if that
2042 * happens
f0e6c985 2043 */
966dbde2
MG
2044 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2045 PF_MEMALLOC);
a42afc5f
TT
2046 goto redirty_page;
2047 }
2048 if (commit_write)
ed9b3e33 2049 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2050 block_commit_write(page, 0, len);
64769240 2051
cb20d518 2052 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2053 /*
2054 * It's mmapped pagecache. Add buffers and journal it. There
2055 * doesn't seem much point in redirtying the page here.
2056 */
3f0ca309 2057 return __ext4_journalled_writepage(page, len);
43ce1d23 2058
a42afc5f 2059 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2060 ext4_set_bh_endio(page_bufs, inode);
2061 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2062 wbc, ext4_end_io_buffer_write);
2063 } else
b920c755
TT
2064 ret = block_write_full_page(page, noalloc_get_block_write,
2065 wbc);
64769240 2066
64769240
AT
2067 return ret;
2068}
2069
61628a3f 2070/*
525f4ed8 2071 * This is called via ext4_da_writepages() to
25985edc 2072 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2073 * a single extent allocation into a single transaction,
2074 * ext4_da_writpeages() will loop calling this before
2075 * the block allocation.
61628a3f 2076 */
525f4ed8
MC
2077
2078static int ext4_da_writepages_trans_blocks(struct inode *inode)
2079{
2080 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2081
2082 /*
2083 * With non-extent format the journal credit needed to
2084 * insert nrblocks contiguous block is dependent on
2085 * number of contiguous block. So we will limit
2086 * number of contiguous block to a sane value
2087 */
12e9b892 2088 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2089 (max_blocks > EXT4_MAX_TRANS_DATA))
2090 max_blocks = EXT4_MAX_TRANS_DATA;
2091
2092 return ext4_chunk_trans_blocks(inode, max_blocks);
2093}
61628a3f 2094
8e48dcfb
TT
2095/*
2096 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2097 * address space and accumulate pages that need writing, and call
168fc022
TT
2098 * mpage_da_map_and_submit to map a single contiguous memory region
2099 * and then write them.
8e48dcfb
TT
2100 */
2101static int write_cache_pages_da(struct address_space *mapping,
2102 struct writeback_control *wbc,
72f84e65
ES
2103 struct mpage_da_data *mpd,
2104 pgoff_t *done_index)
8e48dcfb 2105{
4f01b02c 2106 struct buffer_head *bh, *head;
168fc022 2107 struct inode *inode = mapping->host;
4f01b02c
TT
2108 struct pagevec pvec;
2109 unsigned int nr_pages;
2110 sector_t logical;
2111 pgoff_t index, end;
2112 long nr_to_write = wbc->nr_to_write;
2113 int i, tag, ret = 0;
8e48dcfb 2114
168fc022
TT
2115 memset(mpd, 0, sizeof(struct mpage_da_data));
2116 mpd->wbc = wbc;
2117 mpd->inode = inode;
8e48dcfb
TT
2118 pagevec_init(&pvec, 0);
2119 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2120 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2121
6e6938b6 2122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2123 tag = PAGECACHE_TAG_TOWRITE;
2124 else
2125 tag = PAGECACHE_TAG_DIRTY;
2126
72f84e65 2127 *done_index = index;
4f01b02c 2128 while (index <= end) {
5b41d924 2129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2130 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2131 if (nr_pages == 0)
4f01b02c 2132 return 0;
8e48dcfb
TT
2133
2134 for (i = 0; i < nr_pages; i++) {
2135 struct page *page = pvec.pages[i];
2136
2137 /*
2138 * At this point, the page may be truncated or
2139 * invalidated (changing page->mapping to NULL), or
2140 * even swizzled back from swapper_space to tmpfs file
2141 * mapping. However, page->index will not change
2142 * because we have a reference on the page.
2143 */
4f01b02c
TT
2144 if (page->index > end)
2145 goto out;
8e48dcfb 2146
72f84e65
ES
2147 *done_index = page->index + 1;
2148
78aaced3
TT
2149 /*
2150 * If we can't merge this page, and we have
2151 * accumulated an contiguous region, write it
2152 */
2153 if ((mpd->next_page != page->index) &&
2154 (mpd->next_page != mpd->first_page)) {
2155 mpage_da_map_and_submit(mpd);
2156 goto ret_extent_tail;
2157 }
2158
8e48dcfb
TT
2159 lock_page(page);
2160
2161 /*
4f01b02c
TT
2162 * If the page is no longer dirty, or its
2163 * mapping no longer corresponds to inode we
2164 * are writing (which means it has been
2165 * truncated or invalidated), or the page is
2166 * already under writeback and we are not
2167 * doing a data integrity writeback, skip the page
8e48dcfb 2168 */
4f01b02c
TT
2169 if (!PageDirty(page) ||
2170 (PageWriteback(page) &&
2171 (wbc->sync_mode == WB_SYNC_NONE)) ||
2172 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2173 unlock_page(page);
2174 continue;
2175 }
2176
7cb1a535 2177 wait_on_page_writeback(page);
8e48dcfb 2178 BUG_ON(PageWriteback(page));
8e48dcfb 2179
168fc022 2180 if (mpd->next_page != page->index)
8eb9e5ce 2181 mpd->first_page = page->index;
8eb9e5ce
TT
2182 mpd->next_page = page->index + 1;
2183 logical = (sector_t) page->index <<
2184 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2185
2186 if (!page_has_buffers(page)) {
4f01b02c
TT
2187 mpage_add_bh_to_extent(mpd, logical,
2188 PAGE_CACHE_SIZE,
8eb9e5ce 2189 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2190 if (mpd->io_done)
2191 goto ret_extent_tail;
8eb9e5ce
TT
2192 } else {
2193 /*
4f01b02c
TT
2194 * Page with regular buffer heads,
2195 * just add all dirty ones
8eb9e5ce
TT
2196 */
2197 head = page_buffers(page);
2198 bh = head;
2199 do {
2200 BUG_ON(buffer_locked(bh));
2201 /*
2202 * We need to try to allocate
2203 * unmapped blocks in the same page.
2204 * Otherwise we won't make progress
2205 * with the page in ext4_writepage
2206 */
2207 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2208 mpage_add_bh_to_extent(mpd, logical,
2209 bh->b_size,
2210 bh->b_state);
4f01b02c
TT
2211 if (mpd->io_done)
2212 goto ret_extent_tail;
8eb9e5ce
TT
2213 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2214 /*
4f01b02c
TT
2215 * mapped dirty buffer. We need
2216 * to update the b_state
2217 * because we look at b_state
2218 * in mpage_da_map_blocks. We
2219 * don't update b_size because
2220 * if we find an unmapped
2221 * buffer_head later we need to
2222 * use the b_state flag of that
2223 * buffer_head.
8eb9e5ce
TT
2224 */
2225 if (mpd->b_size == 0)
2226 mpd->b_state = bh->b_state & BH_FLAGS;
2227 }
2228 logical++;
2229 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2230 }
2231
2232 if (nr_to_write > 0) {
2233 nr_to_write--;
2234 if (nr_to_write == 0 &&
4f01b02c 2235 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2236 /*
2237 * We stop writing back only if we are
2238 * not doing integrity sync. In case of
2239 * integrity sync we have to keep going
2240 * because someone may be concurrently
2241 * dirtying pages, and we might have
2242 * synced a lot of newly appeared dirty
2243 * pages, but have not synced all of the
2244 * old dirty pages.
2245 */
4f01b02c 2246 goto out;
8e48dcfb
TT
2247 }
2248 }
2249 pagevec_release(&pvec);
2250 cond_resched();
2251 }
4f01b02c
TT
2252 return 0;
2253ret_extent_tail:
2254 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2255out:
2256 pagevec_release(&pvec);
2257 cond_resched();
8e48dcfb
TT
2258 return ret;
2259}
2260
2261
64769240 2262static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2263 struct writeback_control *wbc)
64769240 2264{
22208ded
AK
2265 pgoff_t index;
2266 int range_whole = 0;
61628a3f 2267 handle_t *handle = NULL;
df22291f 2268 struct mpage_da_data mpd;
5e745b04 2269 struct inode *inode = mapping->host;
498e5f24 2270 int pages_written = 0;
55138e0b 2271 unsigned int max_pages;
2acf2c26 2272 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2273 int needed_blocks, ret = 0;
2274 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2275 loff_t range_start = wbc->range_start;
5e745b04 2276 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2277 pgoff_t done_index = 0;
5b41d924 2278 pgoff_t end;
1bce63d1 2279 struct blk_plug plug;
61628a3f 2280
9bffad1e 2281 trace_ext4_da_writepages(inode, wbc);
ba80b101 2282
61628a3f
MC
2283 /*
2284 * No pages to write? This is mainly a kludge to avoid starting
2285 * a transaction for special inodes like journal inode on last iput()
2286 * because that could violate lock ordering on umount
2287 */
a1d6cc56 2288 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2289 return 0;
2a21e37e
TT
2290
2291 /*
2292 * If the filesystem has aborted, it is read-only, so return
2293 * right away instead of dumping stack traces later on that
2294 * will obscure the real source of the problem. We test
4ab2f15b 2295 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2296 * the latter could be true if the filesystem is mounted
2297 * read-only, and in that case, ext4_da_writepages should
2298 * *never* be called, so if that ever happens, we would want
2299 * the stack trace.
2300 */
4ab2f15b 2301 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2302 return -EROFS;
2303
22208ded
AK
2304 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2305 range_whole = 1;
61628a3f 2306
2acf2c26
AK
2307 range_cyclic = wbc->range_cyclic;
2308 if (wbc->range_cyclic) {
22208ded 2309 index = mapping->writeback_index;
2acf2c26
AK
2310 if (index)
2311 cycled = 0;
2312 wbc->range_start = index << PAGE_CACHE_SHIFT;
2313 wbc->range_end = LLONG_MAX;
2314 wbc->range_cyclic = 0;
5b41d924
ES
2315 end = -1;
2316 } else {
22208ded 2317 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2318 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2319 }
a1d6cc56 2320
55138e0b
TT
2321 /*
2322 * This works around two forms of stupidity. The first is in
2323 * the writeback code, which caps the maximum number of pages
2324 * written to be 1024 pages. This is wrong on multiple
2325 * levels; different architectues have a different page size,
2326 * which changes the maximum amount of data which gets
2327 * written. Secondly, 4 megabytes is way too small. XFS
2328 * forces this value to be 16 megabytes by multiplying
2329 * nr_to_write parameter by four, and then relies on its
2330 * allocator to allocate larger extents to make them
2331 * contiguous. Unfortunately this brings us to the second
2332 * stupidity, which is that ext4's mballoc code only allocates
2333 * at most 2048 blocks. So we force contiguous writes up to
2334 * the number of dirty blocks in the inode, or
2335 * sbi->max_writeback_mb_bump whichever is smaller.
2336 */
2337 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2338 if (!range_cyclic && range_whole) {
2339 if (wbc->nr_to_write == LONG_MAX)
2340 desired_nr_to_write = wbc->nr_to_write;
2341 else
2342 desired_nr_to_write = wbc->nr_to_write * 8;
2343 } else
55138e0b
TT
2344 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2345 max_pages);
2346 if (desired_nr_to_write > max_pages)
2347 desired_nr_to_write = max_pages;
2348
2349 if (wbc->nr_to_write < desired_nr_to_write) {
2350 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2351 wbc->nr_to_write = desired_nr_to_write;
2352 }
2353
2acf2c26 2354retry:
6e6938b6 2355 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2356 tag_pages_for_writeback(mapping, index, end);
2357
1bce63d1 2358 blk_start_plug(&plug);
22208ded 2359 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2360
2361 /*
2362 * we insert one extent at a time. So we need
2363 * credit needed for single extent allocation.
2364 * journalled mode is currently not supported
2365 * by delalloc
2366 */
2367 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2368 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2369
61628a3f
MC
2370 /* start a new transaction*/
2371 handle = ext4_journal_start(inode, needed_blocks);
2372 if (IS_ERR(handle)) {
2373 ret = PTR_ERR(handle);
1693918e 2374 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2375 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2376 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2377 blk_finish_plug(&plug);
61628a3f
MC
2378 goto out_writepages;
2379 }
f63e6005
TT
2380
2381 /*
8eb9e5ce 2382 * Now call write_cache_pages_da() to find the next
f63e6005 2383 * contiguous region of logical blocks that need
8eb9e5ce 2384 * blocks to be allocated by ext4 and submit them.
f63e6005 2385 */
72f84e65 2386 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2387 /*
af901ca1 2388 * If we have a contiguous extent of pages and we
f63e6005
TT
2389 * haven't done the I/O yet, map the blocks and submit
2390 * them for I/O.
2391 */
2392 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2393 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2394 ret = MPAGE_DA_EXTENT_TAIL;
2395 }
b3a3ca8c 2396 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2397 wbc->nr_to_write -= mpd.pages_written;
df22291f 2398
61628a3f 2399 ext4_journal_stop(handle);
df22291f 2400
8f64b32e 2401 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2402 /* commit the transaction which would
2403 * free blocks released in the transaction
2404 * and try again
2405 */
df22291f 2406 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2407 ret = 0;
2408 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2409 /*
8de49e67
KM
2410 * Got one extent now try with rest of the pages.
2411 * If mpd.retval is set -EIO, journal is aborted.
2412 * So we don't need to write any more.
a1d6cc56 2413 */
22208ded 2414 pages_written += mpd.pages_written;
8de49e67 2415 ret = mpd.retval;
2acf2c26 2416 io_done = 1;
22208ded 2417 } else if (wbc->nr_to_write)
61628a3f
MC
2418 /*
2419 * There is no more writeout needed
2420 * or we requested for a noblocking writeout
2421 * and we found the device congested
2422 */
61628a3f 2423 break;
a1d6cc56 2424 }
1bce63d1 2425 blk_finish_plug(&plug);
2acf2c26
AK
2426 if (!io_done && !cycled) {
2427 cycled = 1;
2428 index = 0;
2429 wbc->range_start = index << PAGE_CACHE_SHIFT;
2430 wbc->range_end = mapping->writeback_index - 1;
2431 goto retry;
2432 }
22208ded
AK
2433
2434 /* Update index */
2acf2c26 2435 wbc->range_cyclic = range_cyclic;
22208ded
AK
2436 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2437 /*
2438 * set the writeback_index so that range_cyclic
2439 * mode will write it back later
2440 */
72f84e65 2441 mapping->writeback_index = done_index;
a1d6cc56 2442
61628a3f 2443out_writepages:
2faf2e19 2444 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2445 wbc->range_start = range_start;
9bffad1e 2446 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2447 return ret;
64769240
AT
2448}
2449
79f0be8d
AK
2450#define FALL_BACK_TO_NONDELALLOC 1
2451static int ext4_nonda_switch(struct super_block *sb)
2452{
2453 s64 free_blocks, dirty_blocks;
2454 struct ext4_sb_info *sbi = EXT4_SB(sb);
2455
2456 /*
2457 * switch to non delalloc mode if we are running low
2458 * on free block. The free block accounting via percpu
179f7ebf 2459 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2460 * accumulated on each CPU without updating global counters
2461 * Delalloc need an accurate free block accounting. So switch
2462 * to non delalloc when we are near to error range.
2463 */
57042651
TT
2464 free_blocks = EXT4_C2B(sbi,
2465 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2466 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2467 /*
2468 * Start pushing delalloc when 1/2 of free blocks are dirty.
2469 */
2470 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2471 !writeback_in_progress(sb->s_bdi) &&
2472 down_read_trylock(&sb->s_umount)) {
2473 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2474 up_read(&sb->s_umount);
2475 }
2476
79f0be8d 2477 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2478 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2479 /*
c8afb446
ES
2480 * free block count is less than 150% of dirty blocks
2481 * or free blocks is less than watermark
79f0be8d
AK
2482 */
2483 return 1;
2484 }
2485 return 0;
2486}
2487
64769240 2488static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2489 loff_t pos, unsigned len, unsigned flags,
2490 struct page **pagep, void **fsdata)
64769240 2491{
72b8ab9d 2492 int ret, retries = 0;
64769240
AT
2493 struct page *page;
2494 pgoff_t index;
64769240
AT
2495 struct inode *inode = mapping->host;
2496 handle_t *handle;
2497
2498 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2499
2500 if (ext4_nonda_switch(inode->i_sb)) {
2501 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2502 return ext4_write_begin(file, mapping, pos,
2503 len, flags, pagep, fsdata);
2504 }
2505 *fsdata = (void *)0;
9bffad1e 2506 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2507retry:
64769240
AT
2508 /*
2509 * With delayed allocation, we don't log the i_disksize update
2510 * if there is delayed block allocation. But we still need
2511 * to journalling the i_disksize update if writes to the end
2512 * of file which has an already mapped buffer.
2513 */
2514 handle = ext4_journal_start(inode, 1);
2515 if (IS_ERR(handle)) {
2516 ret = PTR_ERR(handle);
2517 goto out;
2518 }
ebd3610b
JK
2519 /* We cannot recurse into the filesystem as the transaction is already
2520 * started */
2521 flags |= AOP_FLAG_NOFS;
64769240 2522
54566b2c 2523 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2524 if (!page) {
2525 ext4_journal_stop(handle);
2526 ret = -ENOMEM;
2527 goto out;
2528 }
64769240
AT
2529 *pagep = page;
2530
6e1db88d 2531 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2532 if (ret < 0) {
2533 unlock_page(page);
2534 ext4_journal_stop(handle);
2535 page_cache_release(page);
ae4d5372
AK
2536 /*
2537 * block_write_begin may have instantiated a few blocks
2538 * outside i_size. Trim these off again. Don't need
2539 * i_size_read because we hold i_mutex.
2540 */
2541 if (pos + len > inode->i_size)
b9a4207d 2542 ext4_truncate_failed_write(inode);
64769240
AT
2543 }
2544
d2a17637
MC
2545 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2546 goto retry;
64769240
AT
2547out:
2548 return ret;
2549}
2550
632eaeab
MC
2551/*
2552 * Check if we should update i_disksize
2553 * when write to the end of file but not require block allocation
2554 */
2555static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2556 unsigned long offset)
632eaeab
MC
2557{
2558 struct buffer_head *bh;
2559 struct inode *inode = page->mapping->host;
2560 unsigned int idx;
2561 int i;
2562
2563 bh = page_buffers(page);
2564 idx = offset >> inode->i_blkbits;
2565
af5bc92d 2566 for (i = 0; i < idx; i++)
632eaeab
MC
2567 bh = bh->b_this_page;
2568
29fa89d0 2569 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2570 return 0;
2571 return 1;
2572}
2573
64769240 2574static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2575 struct address_space *mapping,
2576 loff_t pos, unsigned len, unsigned copied,
2577 struct page *page, void *fsdata)
64769240
AT
2578{
2579 struct inode *inode = mapping->host;
2580 int ret = 0, ret2;
2581 handle_t *handle = ext4_journal_current_handle();
2582 loff_t new_i_size;
632eaeab 2583 unsigned long start, end;
79f0be8d
AK
2584 int write_mode = (int)(unsigned long)fsdata;
2585
2586 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2587 switch (ext4_inode_journal_mode(inode)) {
2588 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2589 return ext4_ordered_write_end(file, mapping, pos,
2590 len, copied, page, fsdata);
3d2b1582 2591 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2592 return ext4_writeback_write_end(file, mapping, pos,
2593 len, copied, page, fsdata);
3d2b1582 2594 default:
79f0be8d
AK
2595 BUG();
2596 }
2597 }
632eaeab 2598
9bffad1e 2599 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2600 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2601 end = start + copied - 1;
64769240
AT
2602
2603 /*
2604 * generic_write_end() will run mark_inode_dirty() if i_size
2605 * changes. So let's piggyback the i_disksize mark_inode_dirty
2606 * into that.
2607 */
2608
2609 new_i_size = pos + copied;
ea51d132 2610 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2611 if (ext4_da_should_update_i_disksize(page, end)) {
2612 down_write(&EXT4_I(inode)->i_data_sem);
2613 if (new_i_size > EXT4_I(inode)->i_disksize) {
2614 /*
2615 * Updating i_disksize when extending file
2616 * without needing block allocation
2617 */
2618 if (ext4_should_order_data(inode))
2619 ret = ext4_jbd2_file_inode(handle,
2620 inode);
64769240 2621
632eaeab
MC
2622 EXT4_I(inode)->i_disksize = new_i_size;
2623 }
2624 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2625 /* We need to mark inode dirty even if
2626 * new_i_size is less that inode->i_size
2627 * bu greater than i_disksize.(hint delalloc)
2628 */
2629 ext4_mark_inode_dirty(handle, inode);
64769240 2630 }
632eaeab 2631 }
64769240
AT
2632 ret2 = generic_write_end(file, mapping, pos, len, copied,
2633 page, fsdata);
2634 copied = ret2;
2635 if (ret2 < 0)
2636 ret = ret2;
2637 ret2 = ext4_journal_stop(handle);
2638 if (!ret)
2639 ret = ret2;
2640
2641 return ret ? ret : copied;
2642}
2643
2644static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2645{
64769240
AT
2646 /*
2647 * Drop reserved blocks
2648 */
2649 BUG_ON(!PageLocked(page));
2650 if (!page_has_buffers(page))
2651 goto out;
2652
d2a17637 2653 ext4_da_page_release_reservation(page, offset);
64769240
AT
2654
2655out:
2656 ext4_invalidatepage(page, offset);
2657
2658 return;
2659}
2660
ccd2506b
TT
2661/*
2662 * Force all delayed allocation blocks to be allocated for a given inode.
2663 */
2664int ext4_alloc_da_blocks(struct inode *inode)
2665{
fb40ba0d
TT
2666 trace_ext4_alloc_da_blocks(inode);
2667
ccd2506b
TT
2668 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2669 !EXT4_I(inode)->i_reserved_meta_blocks)
2670 return 0;
2671
2672 /*
2673 * We do something simple for now. The filemap_flush() will
2674 * also start triggering a write of the data blocks, which is
2675 * not strictly speaking necessary (and for users of
2676 * laptop_mode, not even desirable). However, to do otherwise
2677 * would require replicating code paths in:
de9a55b8 2678 *
ccd2506b
TT
2679 * ext4_da_writepages() ->
2680 * write_cache_pages() ---> (via passed in callback function)
2681 * __mpage_da_writepage() -->
2682 * mpage_add_bh_to_extent()
2683 * mpage_da_map_blocks()
2684 *
2685 * The problem is that write_cache_pages(), located in
2686 * mm/page-writeback.c, marks pages clean in preparation for
2687 * doing I/O, which is not desirable if we're not planning on
2688 * doing I/O at all.
2689 *
2690 * We could call write_cache_pages(), and then redirty all of
380cf090 2691 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2692 * would be ugly in the extreme. So instead we would need to
2693 * replicate parts of the code in the above functions,
25985edc 2694 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2695 * write out the pages, but rather only collect contiguous
2696 * logical block extents, call the multi-block allocator, and
2697 * then update the buffer heads with the block allocations.
de9a55b8 2698 *
ccd2506b
TT
2699 * For now, though, we'll cheat by calling filemap_flush(),
2700 * which will map the blocks, and start the I/O, but not
2701 * actually wait for the I/O to complete.
2702 */
2703 return filemap_flush(inode->i_mapping);
2704}
64769240 2705
ac27a0ec
DK
2706/*
2707 * bmap() is special. It gets used by applications such as lilo and by
2708 * the swapper to find the on-disk block of a specific piece of data.
2709 *
2710 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2711 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2712 * filesystem and enables swap, then they may get a nasty shock when the
2713 * data getting swapped to that swapfile suddenly gets overwritten by
2714 * the original zero's written out previously to the journal and
2715 * awaiting writeback in the kernel's buffer cache.
2716 *
2717 * So, if we see any bmap calls here on a modified, data-journaled file,
2718 * take extra steps to flush any blocks which might be in the cache.
2719 */
617ba13b 2720static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2721{
2722 struct inode *inode = mapping->host;
2723 journal_t *journal;
2724 int err;
2725
64769240
AT
2726 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2727 test_opt(inode->i_sb, DELALLOC)) {
2728 /*
2729 * With delalloc we want to sync the file
2730 * so that we can make sure we allocate
2731 * blocks for file
2732 */
2733 filemap_write_and_wait(mapping);
2734 }
2735
19f5fb7a
TT
2736 if (EXT4_JOURNAL(inode) &&
2737 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2738 /*
2739 * This is a REALLY heavyweight approach, but the use of
2740 * bmap on dirty files is expected to be extremely rare:
2741 * only if we run lilo or swapon on a freshly made file
2742 * do we expect this to happen.
2743 *
2744 * (bmap requires CAP_SYS_RAWIO so this does not
2745 * represent an unprivileged user DOS attack --- we'd be
2746 * in trouble if mortal users could trigger this path at
2747 * will.)
2748 *
617ba13b 2749 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2750 * regular files. If somebody wants to bmap a directory
2751 * or symlink and gets confused because the buffer
2752 * hasn't yet been flushed to disk, they deserve
2753 * everything they get.
2754 */
2755
19f5fb7a 2756 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2757 journal = EXT4_JOURNAL(inode);
dab291af
MC
2758 jbd2_journal_lock_updates(journal);
2759 err = jbd2_journal_flush(journal);
2760 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2761
2762 if (err)
2763 return 0;
2764 }
2765
af5bc92d 2766 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2767}
2768
617ba13b 2769static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2770{
0562e0ba 2771 trace_ext4_readpage(page);
617ba13b 2772 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2773}
2774
2775static int
617ba13b 2776ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2777 struct list_head *pages, unsigned nr_pages)
2778{
617ba13b 2779 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2780}
2781
744692dc
JZ
2782static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2783{
2784 struct buffer_head *head, *bh;
2785 unsigned int curr_off = 0;
2786
2787 if (!page_has_buffers(page))
2788 return;
2789 head = bh = page_buffers(page);
2790 do {
2791 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2792 && bh->b_private) {
2793 ext4_free_io_end(bh->b_private);
2794 bh->b_private = NULL;
2795 bh->b_end_io = NULL;
2796 }
2797 curr_off = curr_off + bh->b_size;
2798 bh = bh->b_this_page;
2799 } while (bh != head);
2800}
2801
617ba13b 2802static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2803{
617ba13b 2804 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2805
0562e0ba
JZ
2806 trace_ext4_invalidatepage(page, offset);
2807
744692dc
JZ
2808 /*
2809 * free any io_end structure allocated for buffers to be discarded
2810 */
2811 if (ext4_should_dioread_nolock(page->mapping->host))
2812 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2813 /*
2814 * If it's a full truncate we just forget about the pending dirtying
2815 */
2816 if (offset == 0)
2817 ClearPageChecked(page);
2818
0390131b
FM
2819 if (journal)
2820 jbd2_journal_invalidatepage(journal, page, offset);
2821 else
2822 block_invalidatepage(page, offset);
ac27a0ec
DK
2823}
2824
617ba13b 2825static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2826{
617ba13b 2827 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2828
0562e0ba
JZ
2829 trace_ext4_releasepage(page);
2830
ac27a0ec
DK
2831 WARN_ON(PageChecked(page));
2832 if (!page_has_buffers(page))
2833 return 0;
0390131b
FM
2834 if (journal)
2835 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2836 else
2837 return try_to_free_buffers(page);
ac27a0ec
DK
2838}
2839
2ed88685
TT
2840/*
2841 * ext4_get_block used when preparing for a DIO write or buffer write.
2842 * We allocate an uinitialized extent if blocks haven't been allocated.
2843 * The extent will be converted to initialized after the IO is complete.
2844 */
c7064ef1 2845static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2846 struct buffer_head *bh_result, int create)
2847{
c7064ef1 2848 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2849 inode->i_ino, create);
2ed88685
TT
2850 return _ext4_get_block(inode, iblock, bh_result,
2851 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2852}
2853
729f52c6 2854static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2855 struct buffer_head *bh_result, int create)
729f52c6 2856{
8b0f165f
AP
2857 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2858 inode->i_ino, create);
2859 return _ext4_get_block(inode, iblock, bh_result,
2860 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2861}
2862
4c0425ff 2863static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2864 ssize_t size, void *private, int ret,
2865 bool is_async)
4c0425ff 2866{
72c5052d 2867 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2868 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2869
4b70df18
M
2870 /* if not async direct IO or dio with 0 bytes write, just return */
2871 if (!io_end || !size)
552ef802 2872 goto out;
4b70df18 2873
88635ca2 2874 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2875 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2876 iocb->private, io_end->inode->i_ino, iocb, offset,
2877 size);
8d5d02e6 2878
b5a7e970
TT
2879 iocb->private = NULL;
2880
8d5d02e6 2881 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2882 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2883 ext4_free_io_end(io_end);
5b3ff237
JZ
2884out:
2885 if (is_async)
2886 aio_complete(iocb, ret, 0);
72c5052d 2887 inode_dio_done(inode);
5b3ff237 2888 return;
8d5d02e6
MC
2889 }
2890
4c0425ff
MC
2891 io_end->offset = offset;
2892 io_end->size = size;
5b3ff237
JZ
2893 if (is_async) {
2894 io_end->iocb = iocb;
2895 io_end->result = ret;
2896 }
4c0425ff 2897
28a535f9 2898 ext4_add_complete_io(io_end);
4c0425ff 2899}
c7064ef1 2900
744692dc
JZ
2901static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2902{
2903 ext4_io_end_t *io_end = bh->b_private;
744692dc 2904 struct inode *inode;
744692dc
JZ
2905
2906 if (!test_clear_buffer_uninit(bh) || !io_end)
2907 goto out;
2908
2909 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2910 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2911 "sb umounted, discard end_io request for inode %lu",
2912 io_end->inode->i_ino);
744692dc
JZ
2913 ext4_free_io_end(io_end);
2914 goto out;
2915 }
2916
32c80b32
TM
2917 /*
2918 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2919 * but being more careful is always safe for the future change.
2920 */
744692dc 2921 inode = io_end->inode;
0edeb71d 2922 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 2923 ext4_add_complete_io(io_end);
744692dc
JZ
2924out:
2925 bh->b_private = NULL;
2926 bh->b_end_io = NULL;
2927 clear_buffer_uninit(bh);
2928 end_buffer_async_write(bh, uptodate);
2929}
2930
2931static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2932{
2933 ext4_io_end_t *io_end;
2934 struct page *page = bh->b_page;
2935 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2936 size_t size = bh->b_size;
2937
2938retry:
2939 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2940 if (!io_end) {
6db26ffc 2941 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2942 schedule();
2943 goto retry;
2944 }
2945 io_end->offset = offset;
2946 io_end->size = size;
2947 /*
2948 * We need to hold a reference to the page to make sure it
2949 * doesn't get evicted before ext4_end_io_work() has a chance
2950 * to convert the extent from written to unwritten.
2951 */
2952 io_end->page = page;
2953 get_page(io_end->page);
2954
2955 bh->b_private = io_end;
2956 bh->b_end_io = ext4_end_io_buffer_write;
2957 return 0;
2958}
2959
4c0425ff
MC
2960/*
2961 * For ext4 extent files, ext4 will do direct-io write to holes,
2962 * preallocated extents, and those write extend the file, no need to
2963 * fall back to buffered IO.
2964 *
b595076a 2965 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2966 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2967 * still keep the range to write as uninitialized.
4c0425ff 2968 *
8d5d02e6
MC
2969 * The unwrritten extents will be converted to written when DIO is completed.
2970 * For async direct IO, since the IO may still pending when return, we
25985edc 2971 * set up an end_io call back function, which will do the conversion
8d5d02e6 2972 * when async direct IO completed.
4c0425ff
MC
2973 *
2974 * If the O_DIRECT write will extend the file then add this inode to the
2975 * orphan list. So recovery will truncate it back to the original size
2976 * if the machine crashes during the write.
2977 *
2978 */
2979static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2980 const struct iovec *iov, loff_t offset,
2981 unsigned long nr_segs)
2982{
2983 struct file *file = iocb->ki_filp;
2984 struct inode *inode = file->f_mapping->host;
2985 ssize_t ret;
2986 size_t count = iov_length(iov, nr_segs);
2987
2988 loff_t final_size = offset + count;
2989 if (rw == WRITE && final_size <= inode->i_size) {
729f52c6 2990 int overwrite = 0;
8b0f165f
AP
2991 get_block_t *get_block_func = NULL;
2992 int dio_flags = 0;
729f52c6 2993
4bd809db
ZL
2994 BUG_ON(iocb->private == NULL);
2995
2996 /* If we do a overwrite dio, i_mutex locking can be released */
2997 overwrite = *((int *)iocb->private);
2998
2999 if (overwrite) {
1f555cfa 3000 atomic_inc(&inode->i_dio_count);
4bd809db
ZL
3001 down_read(&EXT4_I(inode)->i_data_sem);
3002 mutex_unlock(&inode->i_mutex);
3003 }
3004
4c0425ff 3005 /*
8d5d02e6
MC
3006 * We could direct write to holes and fallocate.
3007 *
3008 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 3009 * to prevent parallel buffered read to expose the stale data
4c0425ff 3010 * before DIO complete the data IO.
8d5d02e6
MC
3011 *
3012 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3013 * will just simply mark the buffer mapped but still
3014 * keep the extents uninitialized.
3015 *
8d5d02e6
MC
3016 * for non AIO case, we will convert those unwritten extents
3017 * to written after return back from blockdev_direct_IO.
3018 *
3019 * for async DIO, the conversion needs to be defered when
3020 * the IO is completed. The ext4 end_io callback function
3021 * will be called to take care of the conversion work.
3022 * Here for async case, we allocate an io_end structure to
3023 * hook to the iocb.
4c0425ff 3024 */
8d5d02e6 3025 iocb->private = NULL;
f45ee3a1 3026 ext4_inode_aio_set(inode, NULL);
8d5d02e6 3027 if (!is_sync_kiocb(iocb)) {
266991b1
JM
3028 ext4_io_end_t *io_end =
3029 ext4_init_io_end(inode, GFP_NOFS);
4bd809db
ZL
3030 if (!io_end) {
3031 ret = -ENOMEM;
3032 goto retake_lock;
3033 }
266991b1
JM
3034 io_end->flag |= EXT4_IO_END_DIRECT;
3035 iocb->private = io_end;
8d5d02e6
MC
3036 /*
3037 * we save the io structure for current async
79e83036 3038 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
3039 * could flag the io structure whether there
3040 * is a unwritten extents needs to be converted
3041 * when IO is completed.
3042 */
f45ee3a1 3043 ext4_inode_aio_set(inode, io_end);
8d5d02e6
MC
3044 }
3045
8b0f165f
AP
3046 if (overwrite) {
3047 get_block_func = ext4_get_block_write_nolock;
3048 } else {
3049 get_block_func = ext4_get_block_write;
3050 dio_flags = DIO_LOCKING;
3051 }
3052 ret = __blockdev_direct_IO(rw, iocb, inode,
3053 inode->i_sb->s_bdev, iov,
3054 offset, nr_segs,
3055 get_block_func,
3056 ext4_end_io_dio,
3057 NULL,
3058 dio_flags);
3059
8d5d02e6 3060 if (iocb->private)
f45ee3a1 3061 ext4_inode_aio_set(inode, NULL);
8d5d02e6
MC
3062 /*
3063 * The io_end structure takes a reference to the inode,
3064 * that structure needs to be destroyed and the
3065 * reference to the inode need to be dropped, when IO is
3066 * complete, even with 0 byte write, or failed.
3067 *
3068 * In the successful AIO DIO case, the io_end structure will be
3069 * desctroyed and the reference to the inode will be dropped
3070 * after the end_io call back function is called.
3071 *
3072 * In the case there is 0 byte write, or error case, since
3073 * VFS direct IO won't invoke the end_io call back function,
3074 * we need to free the end_io structure here.
3075 */
3076 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3077 ext4_free_io_end(iocb->private);
3078 iocb->private = NULL;
729f52c6 3079 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
19f5fb7a 3080 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 3081 int err;
8d5d02e6
MC
3082 /*
3083 * for non AIO case, since the IO is already
25985edc 3084 * completed, we could do the conversion right here
8d5d02e6 3085 */
109f5565
M
3086 err = ext4_convert_unwritten_extents(inode,
3087 offset, ret);
3088 if (err < 0)
3089 ret = err;
19f5fb7a 3090 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 3091 }
4bd809db
ZL
3092
3093 retake_lock:
3094 /* take i_mutex locking again if we do a ovewrite dio */
3095 if (overwrite) {
1f555cfa 3096 inode_dio_done(inode);
4bd809db
ZL
3097 up_read(&EXT4_I(inode)->i_data_sem);
3098 mutex_lock(&inode->i_mutex);
3099 }
3100
4c0425ff
MC
3101 return ret;
3102 }
8d5d02e6
MC
3103
3104 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
3105 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3106}
3107
3108static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3109 const struct iovec *iov, loff_t offset,
3110 unsigned long nr_segs)
3111{
3112 struct file *file = iocb->ki_filp;
3113 struct inode *inode = file->f_mapping->host;
0562e0ba 3114 ssize_t ret;
4c0425ff 3115
84ebd795
TT
3116 /*
3117 * If we are doing data journalling we don't support O_DIRECT
3118 */
3119 if (ext4_should_journal_data(inode))
3120 return 0;
3121
0562e0ba 3122 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3123 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3124 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3125 else
3126 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3127 trace_ext4_direct_IO_exit(inode, offset,
3128 iov_length(iov, nr_segs), rw, ret);
3129 return ret;
4c0425ff
MC
3130}
3131
ac27a0ec 3132/*
617ba13b 3133 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3134 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3135 * much here because ->set_page_dirty is called under VFS locks. The page is
3136 * not necessarily locked.
3137 *
3138 * We cannot just dirty the page and leave attached buffers clean, because the
3139 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3140 * or jbddirty because all the journalling code will explode.
3141 *
3142 * So what we do is to mark the page "pending dirty" and next time writepage
3143 * is called, propagate that into the buffers appropriately.
3144 */
617ba13b 3145static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3146{
3147 SetPageChecked(page);
3148 return __set_page_dirty_nobuffers(page);
3149}
3150
617ba13b 3151static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3152 .readpage = ext4_readpage,
3153 .readpages = ext4_readpages,
43ce1d23 3154 .writepage = ext4_writepage,
8ab22b9a
HH
3155 .write_begin = ext4_write_begin,
3156 .write_end = ext4_ordered_write_end,
3157 .bmap = ext4_bmap,
3158 .invalidatepage = ext4_invalidatepage,
3159 .releasepage = ext4_releasepage,
3160 .direct_IO = ext4_direct_IO,
3161 .migratepage = buffer_migrate_page,
3162 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3163 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3164};
3165
617ba13b 3166static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3167 .readpage = ext4_readpage,
3168 .readpages = ext4_readpages,
43ce1d23 3169 .writepage = ext4_writepage,
8ab22b9a
HH
3170 .write_begin = ext4_write_begin,
3171 .write_end = ext4_writeback_write_end,
3172 .bmap = ext4_bmap,
3173 .invalidatepage = ext4_invalidatepage,
3174 .releasepage = ext4_releasepage,
3175 .direct_IO = ext4_direct_IO,
3176 .migratepage = buffer_migrate_page,
3177 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3178 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3179};
3180
617ba13b 3181static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3182 .readpage = ext4_readpage,
3183 .readpages = ext4_readpages,
43ce1d23 3184 .writepage = ext4_writepage,
8ab22b9a
HH
3185 .write_begin = ext4_write_begin,
3186 .write_end = ext4_journalled_write_end,
3187 .set_page_dirty = ext4_journalled_set_page_dirty,
3188 .bmap = ext4_bmap,
3189 .invalidatepage = ext4_invalidatepage,
3190 .releasepage = ext4_releasepage,
84ebd795 3191 .direct_IO = ext4_direct_IO,
8ab22b9a 3192 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3193 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3194};
3195
64769240 3196static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3197 .readpage = ext4_readpage,
3198 .readpages = ext4_readpages,
43ce1d23 3199 .writepage = ext4_writepage,
8ab22b9a 3200 .writepages = ext4_da_writepages,
8ab22b9a
HH
3201 .write_begin = ext4_da_write_begin,
3202 .write_end = ext4_da_write_end,
3203 .bmap = ext4_bmap,
3204 .invalidatepage = ext4_da_invalidatepage,
3205 .releasepage = ext4_releasepage,
3206 .direct_IO = ext4_direct_IO,
3207 .migratepage = buffer_migrate_page,
3208 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3209 .error_remove_page = generic_error_remove_page,
64769240
AT
3210};
3211
617ba13b 3212void ext4_set_aops(struct inode *inode)
ac27a0ec 3213{
3d2b1582
LC
3214 switch (ext4_inode_journal_mode(inode)) {
3215 case EXT4_INODE_ORDERED_DATA_MODE:
3216 if (test_opt(inode->i_sb, DELALLOC))
3217 inode->i_mapping->a_ops = &ext4_da_aops;
3218 else
3219 inode->i_mapping->a_ops = &ext4_ordered_aops;
3220 break;
3221 case EXT4_INODE_WRITEBACK_DATA_MODE:
3222 if (test_opt(inode->i_sb, DELALLOC))
3223 inode->i_mapping->a_ops = &ext4_da_aops;
3224 else
3225 inode->i_mapping->a_ops = &ext4_writeback_aops;
3226 break;
3227 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3228 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3229 break;
3230 default:
3231 BUG();
3232 }
ac27a0ec
DK
3233}
3234
4e96b2db
AH
3235
3236/*
3237 * ext4_discard_partial_page_buffers()
3238 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3239 * This function finds and locks the page containing the offset
3240 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3241 * Calling functions that already have the page locked should call
3242 * ext4_discard_partial_page_buffers_no_lock directly.
3243 */
3244int ext4_discard_partial_page_buffers(handle_t *handle,
3245 struct address_space *mapping, loff_t from,
3246 loff_t length, int flags)
3247{
3248 struct inode *inode = mapping->host;
3249 struct page *page;
3250 int err = 0;
3251
3252 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3253 mapping_gfp_mask(mapping) & ~__GFP_FS);
3254 if (!page)
5129d05f 3255 return -ENOMEM;
4e96b2db
AH
3256
3257 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3258 from, length, flags);
3259
3260 unlock_page(page);
3261 page_cache_release(page);
3262 return err;
3263}
3264
3265/*
3266 * ext4_discard_partial_page_buffers_no_lock()
3267 * Zeros a page range of length 'length' starting from offset 'from'.
3268 * Buffer heads that correspond to the block aligned regions of the
3269 * zeroed range will be unmapped. Unblock aligned regions
3270 * will have the corresponding buffer head mapped if needed so that
3271 * that region of the page can be updated with the partial zero out.
3272 *
3273 * This function assumes that the page has already been locked. The
3274 * The range to be discarded must be contained with in the given page.
3275 * If the specified range exceeds the end of the page it will be shortened
3276 * to the end of the page that corresponds to 'from'. This function is
3277 * appropriate for updating a page and it buffer heads to be unmapped and
3278 * zeroed for blocks that have been either released, or are going to be
3279 * released.
3280 *
3281 * handle: The journal handle
3282 * inode: The files inode
3283 * page: A locked page that contains the offset "from"
4907cb7b 3284 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3285 * to begin discarding
3286 * len: The length of bytes to discard
3287 * flags: Optional flags that may be used:
3288 *
3289 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3290 * Only zero the regions of the page whose buffer heads
3291 * have already been unmapped. This flag is appropriate
4907cb7b 3292 * for updating the contents of a page whose blocks may
4e96b2db
AH
3293 * have already been released, and we only want to zero
3294 * out the regions that correspond to those released blocks.
3295 *
4907cb7b 3296 * Returns zero on success or negative on failure.
4e96b2db 3297 */
5f163cc7 3298static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3299 struct inode *inode, struct page *page, loff_t from,
3300 loff_t length, int flags)
3301{
3302 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3303 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3304 unsigned int blocksize, max, pos;
4e96b2db
AH
3305 ext4_lblk_t iblock;
3306 struct buffer_head *bh;
3307 int err = 0;
3308
3309 blocksize = inode->i_sb->s_blocksize;
3310 max = PAGE_CACHE_SIZE - offset;
3311
3312 if (index != page->index)
3313 return -EINVAL;
3314
3315 /*
3316 * correct length if it does not fall between
3317 * 'from' and the end of the page
3318 */
3319 if (length > max || length < 0)
3320 length = max;
3321
3322 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3323
093e6e36
YY
3324 if (!page_has_buffers(page))
3325 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3326
3327 /* Find the buffer that contains "offset" */
3328 bh = page_buffers(page);
3329 pos = blocksize;
3330 while (offset >= pos) {
3331 bh = bh->b_this_page;
3332 iblock++;
3333 pos += blocksize;
3334 }
3335
3336 pos = offset;
3337 while (pos < offset + length) {
e260daf2
YY
3338 unsigned int end_of_block, range_to_discard;
3339
4e96b2db
AH
3340 err = 0;
3341
3342 /* The length of space left to zero and unmap */
3343 range_to_discard = offset + length - pos;
3344
3345 /* The length of space until the end of the block */
3346 end_of_block = blocksize - (pos & (blocksize-1));
3347
3348 /*
3349 * Do not unmap or zero past end of block
3350 * for this buffer head
3351 */
3352 if (range_to_discard > end_of_block)
3353 range_to_discard = end_of_block;
3354
3355
3356 /*
3357 * Skip this buffer head if we are only zeroing unampped
3358 * regions of the page
3359 */
3360 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3361 buffer_mapped(bh))
3362 goto next;
3363
3364 /* If the range is block aligned, unmap */
3365 if (range_to_discard == blocksize) {
3366 clear_buffer_dirty(bh);
3367 bh->b_bdev = NULL;
3368 clear_buffer_mapped(bh);
3369 clear_buffer_req(bh);
3370 clear_buffer_new(bh);
3371 clear_buffer_delay(bh);
3372 clear_buffer_unwritten(bh);
3373 clear_buffer_uptodate(bh);
3374 zero_user(page, pos, range_to_discard);
3375 BUFFER_TRACE(bh, "Buffer discarded");
3376 goto next;
3377 }
3378
3379 /*
3380 * If this block is not completely contained in the range
3381 * to be discarded, then it is not going to be released. Because
3382 * we need to keep this block, we need to make sure this part
3383 * of the page is uptodate before we modify it by writeing
3384 * partial zeros on it.
3385 */
3386 if (!buffer_mapped(bh)) {
3387 /*
3388 * Buffer head must be mapped before we can read
3389 * from the block
3390 */
3391 BUFFER_TRACE(bh, "unmapped");
3392 ext4_get_block(inode, iblock, bh, 0);
3393 /* unmapped? It's a hole - nothing to do */
3394 if (!buffer_mapped(bh)) {
3395 BUFFER_TRACE(bh, "still unmapped");
3396 goto next;
3397 }
3398 }
3399
3400 /* Ok, it's mapped. Make sure it's up-to-date */
3401 if (PageUptodate(page))
3402 set_buffer_uptodate(bh);
3403
3404 if (!buffer_uptodate(bh)) {
3405 err = -EIO;
3406 ll_rw_block(READ, 1, &bh);
3407 wait_on_buffer(bh);
3408 /* Uhhuh. Read error. Complain and punt.*/
3409 if (!buffer_uptodate(bh))
3410 goto next;
3411 }
3412
3413 if (ext4_should_journal_data(inode)) {
3414 BUFFER_TRACE(bh, "get write access");
3415 err = ext4_journal_get_write_access(handle, bh);
3416 if (err)
3417 goto next;
3418 }
3419
3420 zero_user(page, pos, range_to_discard);
3421
3422 err = 0;
3423 if (ext4_should_journal_data(inode)) {
3424 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3425 } else
4e96b2db 3426 mark_buffer_dirty(bh);
4e96b2db
AH
3427
3428 BUFFER_TRACE(bh, "Partial buffer zeroed");
3429next:
3430 bh = bh->b_this_page;
3431 iblock++;
3432 pos += range_to_discard;
3433 }
3434
3435 return err;
3436}
3437
91ef4caf
DG
3438int ext4_can_truncate(struct inode *inode)
3439{
91ef4caf
DG
3440 if (S_ISREG(inode->i_mode))
3441 return 1;
3442 if (S_ISDIR(inode->i_mode))
3443 return 1;
3444 if (S_ISLNK(inode->i_mode))
3445 return !ext4_inode_is_fast_symlink(inode);
3446 return 0;
3447}
3448
a4bb6b64
AH
3449/*
3450 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3451 * associated with the given offset and length
3452 *
3453 * @inode: File inode
3454 * @offset: The offset where the hole will begin
3455 * @len: The length of the hole
3456 *
4907cb7b 3457 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3458 */
3459
3460int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3461{
3462 struct inode *inode = file->f_path.dentry->d_inode;
3463 if (!S_ISREG(inode->i_mode))
73355192 3464 return -EOPNOTSUPP;
a4bb6b64
AH
3465
3466 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3467 /* TODO: Add support for non extent hole punching */
73355192 3468 return -EOPNOTSUPP;
a4bb6b64
AH
3469 }
3470
bab08ab9
TT
3471 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3472 /* TODO: Add support for bigalloc file systems */
73355192 3473 return -EOPNOTSUPP;
bab08ab9
TT
3474 }
3475
a4bb6b64
AH
3476 return ext4_ext_punch_hole(file, offset, length);
3477}
3478
ac27a0ec 3479/*
617ba13b 3480 * ext4_truncate()
ac27a0ec 3481 *
617ba13b
MC
3482 * We block out ext4_get_block() block instantiations across the entire
3483 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3484 * simultaneously on behalf of the same inode.
3485 *
42b2aa86 3486 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3487 * is one core, guiding principle: the file's tree must always be consistent on
3488 * disk. We must be able to restart the truncate after a crash.
3489 *
3490 * The file's tree may be transiently inconsistent in memory (although it
3491 * probably isn't), but whenever we close off and commit a journal transaction,
3492 * the contents of (the filesystem + the journal) must be consistent and
3493 * restartable. It's pretty simple, really: bottom up, right to left (although
3494 * left-to-right works OK too).
3495 *
3496 * Note that at recovery time, journal replay occurs *before* the restart of
3497 * truncate against the orphan inode list.
3498 *
3499 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3500 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3501 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3502 * ext4_truncate() to have another go. So there will be instantiated blocks
3503 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3504 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3505 * ext4_truncate() run will find them and release them.
ac27a0ec 3506 */
617ba13b 3507void ext4_truncate(struct inode *inode)
ac27a0ec 3508{
0562e0ba
JZ
3509 trace_ext4_truncate_enter(inode);
3510
91ef4caf 3511 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3512 return;
3513
12e9b892 3514 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3515
5534fb5b 3516 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3517 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3518
ff9893dc 3519 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3520 ext4_ext_truncate(inode);
ff9893dc
AG
3521 else
3522 ext4_ind_truncate(inode);
ac27a0ec 3523
0562e0ba 3524 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3525}
3526
ac27a0ec 3527/*
617ba13b 3528 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3529 * underlying buffer_head on success. If 'in_mem' is true, we have all
3530 * data in memory that is needed to recreate the on-disk version of this
3531 * inode.
3532 */
617ba13b
MC
3533static int __ext4_get_inode_loc(struct inode *inode,
3534 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3535{
240799cd
TT
3536 struct ext4_group_desc *gdp;
3537 struct buffer_head *bh;
3538 struct super_block *sb = inode->i_sb;
3539 ext4_fsblk_t block;
3540 int inodes_per_block, inode_offset;
3541
3a06d778 3542 iloc->bh = NULL;
240799cd
TT
3543 if (!ext4_valid_inum(sb, inode->i_ino))
3544 return -EIO;
ac27a0ec 3545
240799cd
TT
3546 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3547 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3548 if (!gdp)
ac27a0ec
DK
3549 return -EIO;
3550
240799cd
TT
3551 /*
3552 * Figure out the offset within the block group inode table
3553 */
00d09882 3554 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3555 inode_offset = ((inode->i_ino - 1) %
3556 EXT4_INODES_PER_GROUP(sb));
3557 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3558 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3559
3560 bh = sb_getblk(sb, block);
ac27a0ec 3561 if (!bh) {
c398eda0
TT
3562 EXT4_ERROR_INODE_BLOCK(inode, block,
3563 "unable to read itable block");
ac27a0ec
DK
3564 return -EIO;
3565 }
3566 if (!buffer_uptodate(bh)) {
3567 lock_buffer(bh);
9c83a923
HK
3568
3569 /*
3570 * If the buffer has the write error flag, we have failed
3571 * to write out another inode in the same block. In this
3572 * case, we don't have to read the block because we may
3573 * read the old inode data successfully.
3574 */
3575 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3576 set_buffer_uptodate(bh);
3577
ac27a0ec
DK
3578 if (buffer_uptodate(bh)) {
3579 /* someone brought it uptodate while we waited */
3580 unlock_buffer(bh);
3581 goto has_buffer;
3582 }
3583
3584 /*
3585 * If we have all information of the inode in memory and this
3586 * is the only valid inode in the block, we need not read the
3587 * block.
3588 */
3589 if (in_mem) {
3590 struct buffer_head *bitmap_bh;
240799cd 3591 int i, start;
ac27a0ec 3592
240799cd 3593 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3594
240799cd
TT
3595 /* Is the inode bitmap in cache? */
3596 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3597 if (!bitmap_bh)
3598 goto make_io;
3599
3600 /*
3601 * If the inode bitmap isn't in cache then the
3602 * optimisation may end up performing two reads instead
3603 * of one, so skip it.
3604 */
3605 if (!buffer_uptodate(bitmap_bh)) {
3606 brelse(bitmap_bh);
3607 goto make_io;
3608 }
240799cd 3609 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3610 if (i == inode_offset)
3611 continue;
617ba13b 3612 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3613 break;
3614 }
3615 brelse(bitmap_bh);
240799cd 3616 if (i == start + inodes_per_block) {
ac27a0ec
DK
3617 /* all other inodes are free, so skip I/O */
3618 memset(bh->b_data, 0, bh->b_size);
3619 set_buffer_uptodate(bh);
3620 unlock_buffer(bh);
3621 goto has_buffer;
3622 }
3623 }
3624
3625make_io:
240799cd
TT
3626 /*
3627 * If we need to do any I/O, try to pre-readahead extra
3628 * blocks from the inode table.
3629 */
3630 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3631 ext4_fsblk_t b, end, table;
3632 unsigned num;
3633
3634 table = ext4_inode_table(sb, gdp);
b713a5ec 3635 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3636 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3637 if (table > b)
3638 b = table;
3639 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3640 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3641 if (ext4_has_group_desc_csum(sb))
560671a0 3642 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3643 table += num / inodes_per_block;
3644 if (end > table)
3645 end = table;
3646 while (b <= end)
3647 sb_breadahead(sb, b++);
3648 }
3649
ac27a0ec
DK
3650 /*
3651 * There are other valid inodes in the buffer, this inode
3652 * has in-inode xattrs, or we don't have this inode in memory.
3653 * Read the block from disk.
3654 */
0562e0ba 3655 trace_ext4_load_inode(inode);
ac27a0ec
DK
3656 get_bh(bh);
3657 bh->b_end_io = end_buffer_read_sync;
65299a3b 3658 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3659 wait_on_buffer(bh);
3660 if (!buffer_uptodate(bh)) {
c398eda0
TT
3661 EXT4_ERROR_INODE_BLOCK(inode, block,
3662 "unable to read itable block");
ac27a0ec
DK
3663 brelse(bh);
3664 return -EIO;
3665 }
3666 }
3667has_buffer:
3668 iloc->bh = bh;
3669 return 0;
3670}
3671
617ba13b 3672int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3673{
3674 /* We have all inode data except xattrs in memory here. */
617ba13b 3675 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3676 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3677}
3678
617ba13b 3679void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3680{
617ba13b 3681 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3682
3683 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3684 if (flags & EXT4_SYNC_FL)
ac27a0ec 3685 inode->i_flags |= S_SYNC;
617ba13b 3686 if (flags & EXT4_APPEND_FL)
ac27a0ec 3687 inode->i_flags |= S_APPEND;
617ba13b 3688 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3689 inode->i_flags |= S_IMMUTABLE;
617ba13b 3690 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3691 inode->i_flags |= S_NOATIME;
617ba13b 3692 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3693 inode->i_flags |= S_DIRSYNC;
3694}
3695
ff9ddf7e
JK
3696/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3697void ext4_get_inode_flags(struct ext4_inode_info *ei)
3698{
84a8dce2
DM
3699 unsigned int vfs_fl;
3700 unsigned long old_fl, new_fl;
3701
3702 do {
3703 vfs_fl = ei->vfs_inode.i_flags;
3704 old_fl = ei->i_flags;
3705 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3706 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3707 EXT4_DIRSYNC_FL);
3708 if (vfs_fl & S_SYNC)
3709 new_fl |= EXT4_SYNC_FL;
3710 if (vfs_fl & S_APPEND)
3711 new_fl |= EXT4_APPEND_FL;
3712 if (vfs_fl & S_IMMUTABLE)
3713 new_fl |= EXT4_IMMUTABLE_FL;
3714 if (vfs_fl & S_NOATIME)
3715 new_fl |= EXT4_NOATIME_FL;
3716 if (vfs_fl & S_DIRSYNC)
3717 new_fl |= EXT4_DIRSYNC_FL;
3718 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3719}
de9a55b8 3720
0fc1b451 3721static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3722 struct ext4_inode_info *ei)
0fc1b451
AK
3723{
3724 blkcnt_t i_blocks ;
8180a562
AK
3725 struct inode *inode = &(ei->vfs_inode);
3726 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3727
3728 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3729 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3730 /* we are using combined 48 bit field */
3731 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3732 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3733 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3734 /* i_blocks represent file system block size */
3735 return i_blocks << (inode->i_blkbits - 9);
3736 } else {
3737 return i_blocks;
3738 }
0fc1b451
AK
3739 } else {
3740 return le32_to_cpu(raw_inode->i_blocks_lo);
3741 }
3742}
ff9ddf7e 3743
1d1fe1ee 3744struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3745{
617ba13b
MC
3746 struct ext4_iloc iloc;
3747 struct ext4_inode *raw_inode;
1d1fe1ee 3748 struct ext4_inode_info *ei;
1d1fe1ee 3749 struct inode *inode;
b436b9be 3750 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3751 long ret;
ac27a0ec 3752 int block;
08cefc7a
EB
3753 uid_t i_uid;
3754 gid_t i_gid;
ac27a0ec 3755
1d1fe1ee
DH
3756 inode = iget_locked(sb, ino);
3757 if (!inode)
3758 return ERR_PTR(-ENOMEM);
3759 if (!(inode->i_state & I_NEW))
3760 return inode;
3761
3762 ei = EXT4_I(inode);
7dc57615 3763 iloc.bh = NULL;
ac27a0ec 3764
1d1fe1ee
DH
3765 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3766 if (ret < 0)
ac27a0ec 3767 goto bad_inode;
617ba13b 3768 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3769
3770 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3771 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3772 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3773 EXT4_INODE_SIZE(inode->i_sb)) {
3774 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3775 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3776 EXT4_INODE_SIZE(inode->i_sb));
3777 ret = -EIO;
3778 goto bad_inode;
3779 }
3780 } else
3781 ei->i_extra_isize = 0;
3782
3783 /* Precompute checksum seed for inode metadata */
3784 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3785 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3786 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3787 __u32 csum;
3788 __le32 inum = cpu_to_le32(inode->i_ino);
3789 __le32 gen = raw_inode->i_generation;
3790 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3791 sizeof(inum));
3792 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3793 sizeof(gen));
3794 }
3795
3796 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3797 EXT4_ERROR_INODE(inode, "checksum invalid");
3798 ret = -EIO;
3799 goto bad_inode;
3800 }
3801
ac27a0ec 3802 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3803 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3804 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3805 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3806 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3807 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3808 }
08cefc7a
EB
3809 i_uid_write(inode, i_uid);
3810 i_gid_write(inode, i_gid);
bfe86848 3811 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3812
353eb83c 3813 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3814 ei->i_dir_start_lookup = 0;
3815 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3816 /* We now have enough fields to check if the inode was active or not.
3817 * This is needed because nfsd might try to access dead inodes
3818 * the test is that same one that e2fsck uses
3819 * NeilBrown 1999oct15
3820 */
3821 if (inode->i_nlink == 0) {
3822 if (inode->i_mode == 0 ||
617ba13b 3823 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3824 /* this inode is deleted */
1d1fe1ee 3825 ret = -ESTALE;
ac27a0ec
DK
3826 goto bad_inode;
3827 }
3828 /* The only unlinked inodes we let through here have
3829 * valid i_mode and are being read by the orphan
3830 * recovery code: that's fine, we're about to complete
3831 * the process of deleting those. */
3832 }
ac27a0ec 3833 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3834 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3835 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3836 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3837 ei->i_file_acl |=
3838 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3839 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3840 ei->i_disksize = inode->i_size;
a9e7f447
DM
3841#ifdef CONFIG_QUOTA
3842 ei->i_reserved_quota = 0;
3843#endif
ac27a0ec
DK
3844 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3845 ei->i_block_group = iloc.block_group;
a4912123 3846 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3847 /*
3848 * NOTE! The in-memory inode i_data array is in little-endian order
3849 * even on big-endian machines: we do NOT byteswap the block numbers!
3850 */
617ba13b 3851 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3852 ei->i_data[block] = raw_inode->i_block[block];
3853 INIT_LIST_HEAD(&ei->i_orphan);
3854
b436b9be
JK
3855 /*
3856 * Set transaction id's of transactions that have to be committed
3857 * to finish f[data]sync. We set them to currently running transaction
3858 * as we cannot be sure that the inode or some of its metadata isn't
3859 * part of the transaction - the inode could have been reclaimed and
3860 * now it is reread from disk.
3861 */
3862 if (journal) {
3863 transaction_t *transaction;
3864 tid_t tid;
3865
a931da6a 3866 read_lock(&journal->j_state_lock);
b436b9be
JK
3867 if (journal->j_running_transaction)
3868 transaction = journal->j_running_transaction;
3869 else
3870 transaction = journal->j_committing_transaction;
3871 if (transaction)
3872 tid = transaction->t_tid;
3873 else
3874 tid = journal->j_commit_sequence;
a931da6a 3875 read_unlock(&journal->j_state_lock);
b436b9be
JK
3876 ei->i_sync_tid = tid;
3877 ei->i_datasync_tid = tid;
3878 }
3879
0040d987 3880 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3881 if (ei->i_extra_isize == 0) {
3882 /* The extra space is currently unused. Use it. */
617ba13b
MC
3883 ei->i_extra_isize = sizeof(struct ext4_inode) -
3884 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3885 } else {
3886 __le32 *magic = (void *)raw_inode +
617ba13b 3887 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3888 ei->i_extra_isize;
617ba13b 3889 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3890 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec 3891 }
814525f4 3892 }
ac27a0ec 3893
ef7f3835
KS
3894 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3895 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3896 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3897 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3898
25ec56b5
JNC
3899 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3900 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3901 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3902 inode->i_version |=
3903 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3904 }
3905
c4b5a614 3906 ret = 0;
485c26ec 3907 if (ei->i_file_acl &&
1032988c 3908 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3909 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3910 ei->i_file_acl);
485c26ec
TT
3911 ret = -EIO;
3912 goto bad_inode;
07a03824 3913 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3914 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3915 (S_ISLNK(inode->i_mode) &&
3916 !ext4_inode_is_fast_symlink(inode)))
3917 /* Validate extent which is part of inode */
3918 ret = ext4_ext_check_inode(inode);
de9a55b8 3919 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3920 (S_ISLNK(inode->i_mode) &&
3921 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3922 /* Validate block references which are part of inode */
1f7d1e77 3923 ret = ext4_ind_check_inode(inode);
fe2c8191 3924 }
567f3e9a 3925 if (ret)
de9a55b8 3926 goto bad_inode;
7a262f7c 3927
ac27a0ec 3928 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3929 inode->i_op = &ext4_file_inode_operations;
3930 inode->i_fop = &ext4_file_operations;
3931 ext4_set_aops(inode);
ac27a0ec 3932 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3933 inode->i_op = &ext4_dir_inode_operations;
3934 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3935 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3936 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3937 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3938 nd_terminate_link(ei->i_data, inode->i_size,
3939 sizeof(ei->i_data) - 1);
3940 } else {
617ba13b
MC
3941 inode->i_op = &ext4_symlink_inode_operations;
3942 ext4_set_aops(inode);
ac27a0ec 3943 }
563bdd61
TT
3944 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3945 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3946 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3947 if (raw_inode->i_block[0])
3948 init_special_inode(inode, inode->i_mode,
3949 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3950 else
3951 init_special_inode(inode, inode->i_mode,
3952 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3953 } else {
563bdd61 3954 ret = -EIO;
24676da4 3955 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3956 goto bad_inode;
ac27a0ec 3957 }
af5bc92d 3958 brelse(iloc.bh);
617ba13b 3959 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3960 unlock_new_inode(inode);
3961 return inode;
ac27a0ec
DK
3962
3963bad_inode:
567f3e9a 3964 brelse(iloc.bh);
1d1fe1ee
DH
3965 iget_failed(inode);
3966 return ERR_PTR(ret);
ac27a0ec
DK
3967}
3968
0fc1b451
AK
3969static int ext4_inode_blocks_set(handle_t *handle,
3970 struct ext4_inode *raw_inode,
3971 struct ext4_inode_info *ei)
3972{
3973 struct inode *inode = &(ei->vfs_inode);
3974 u64 i_blocks = inode->i_blocks;
3975 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3976
3977 if (i_blocks <= ~0U) {
3978 /*
4907cb7b 3979 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
3980 * as multiple of 512 bytes
3981 */
8180a562 3982 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3983 raw_inode->i_blocks_high = 0;
84a8dce2 3984 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3985 return 0;
3986 }
3987 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3988 return -EFBIG;
3989
3990 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3991 /*
3992 * i_blocks can be represented in a 48 bit variable
3993 * as multiple of 512 bytes
3994 */
8180a562 3995 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3996 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3997 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3998 } else {
84a8dce2 3999 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4000 /* i_block is stored in file system block size */
4001 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4002 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4003 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4004 }
f287a1a5 4005 return 0;
0fc1b451
AK
4006}
4007
ac27a0ec
DK
4008/*
4009 * Post the struct inode info into an on-disk inode location in the
4010 * buffer-cache. This gobbles the caller's reference to the
4011 * buffer_head in the inode location struct.
4012 *
4013 * The caller must have write access to iloc->bh.
4014 */
617ba13b 4015static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4016 struct inode *inode,
830156c7 4017 struct ext4_iloc *iloc)
ac27a0ec 4018{
617ba13b
MC
4019 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4020 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4021 struct buffer_head *bh = iloc->bh;
4022 int err = 0, rc, block;
b71fc079 4023 int need_datasync = 0;
08cefc7a
EB
4024 uid_t i_uid;
4025 gid_t i_gid;
ac27a0ec
DK
4026
4027 /* For fields not not tracking in the in-memory inode,
4028 * initialise them to zero for new inodes. */
19f5fb7a 4029 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4030 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4031
ff9ddf7e 4032 ext4_get_inode_flags(ei);
ac27a0ec 4033 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4034 i_uid = i_uid_read(inode);
4035 i_gid = i_gid_read(inode);
af5bc92d 4036 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4037 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4038 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4039/*
4040 * Fix up interoperability with old kernels. Otherwise, old inodes get
4041 * re-used with the upper 16 bits of the uid/gid intact
4042 */
af5bc92d 4043 if (!ei->i_dtime) {
ac27a0ec 4044 raw_inode->i_uid_high =
08cefc7a 4045 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4046 raw_inode->i_gid_high =
08cefc7a 4047 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4048 } else {
4049 raw_inode->i_uid_high = 0;
4050 raw_inode->i_gid_high = 0;
4051 }
4052 } else {
08cefc7a
EB
4053 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4054 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4055 raw_inode->i_uid_high = 0;
4056 raw_inode->i_gid_high = 0;
4057 }
4058 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4059
4060 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4061 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4062 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4063 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4064
0fc1b451
AK
4065 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4066 goto out_brelse;
ac27a0ec 4067 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4068 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4069 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4070 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4071 raw_inode->i_file_acl_high =
4072 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4073 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4074 if (ei->i_disksize != ext4_isize(raw_inode)) {
4075 ext4_isize_set(raw_inode, ei->i_disksize);
4076 need_datasync = 1;
4077 }
a48380f7
AK
4078 if (ei->i_disksize > 0x7fffffffULL) {
4079 struct super_block *sb = inode->i_sb;
4080 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4081 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4082 EXT4_SB(sb)->s_es->s_rev_level ==
4083 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4084 /* If this is the first large file
4085 * created, add a flag to the superblock.
4086 */
4087 err = ext4_journal_get_write_access(handle,
4088 EXT4_SB(sb)->s_sbh);
4089 if (err)
4090 goto out_brelse;
4091 ext4_update_dynamic_rev(sb);
4092 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4093 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4094 ext4_handle_sync(handle);
b50924c2 4095 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4096 }
4097 }
4098 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4099 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4100 if (old_valid_dev(inode->i_rdev)) {
4101 raw_inode->i_block[0] =
4102 cpu_to_le32(old_encode_dev(inode->i_rdev));
4103 raw_inode->i_block[1] = 0;
4104 } else {
4105 raw_inode->i_block[0] = 0;
4106 raw_inode->i_block[1] =
4107 cpu_to_le32(new_encode_dev(inode->i_rdev));
4108 raw_inode->i_block[2] = 0;
4109 }
de9a55b8
TT
4110 } else
4111 for (block = 0; block < EXT4_N_BLOCKS; block++)
4112 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 4113
25ec56b5
JNC
4114 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4115 if (ei->i_extra_isize) {
4116 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4117 raw_inode->i_version_hi =
4118 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4119 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4120 }
4121
814525f4
DW
4122 ext4_inode_csum_set(inode, raw_inode, ei);
4123
830156c7 4124 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4125 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4126 if (!err)
4127 err = rc;
19f5fb7a 4128 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4129
b71fc079 4130 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4131out_brelse:
af5bc92d 4132 brelse(bh);
617ba13b 4133 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4134 return err;
4135}
4136
4137/*
617ba13b 4138 * ext4_write_inode()
ac27a0ec
DK
4139 *
4140 * We are called from a few places:
4141 *
4142 * - Within generic_file_write() for O_SYNC files.
4143 * Here, there will be no transaction running. We wait for any running
4907cb7b 4144 * transaction to commit.
ac27a0ec
DK
4145 *
4146 * - Within sys_sync(), kupdate and such.
4147 * We wait on commit, if tol to.
4148 *
4149 * - Within prune_icache() (PF_MEMALLOC == true)
4150 * Here we simply return. We can't afford to block kswapd on the
4151 * journal commit.
4152 *
4153 * In all cases it is actually safe for us to return without doing anything,
4154 * because the inode has been copied into a raw inode buffer in
617ba13b 4155 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4156 * knfsd.
4157 *
4158 * Note that we are absolutely dependent upon all inode dirtiers doing the
4159 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4160 * which we are interested.
4161 *
4162 * It would be a bug for them to not do this. The code:
4163 *
4164 * mark_inode_dirty(inode)
4165 * stuff();
4166 * inode->i_size = expr;
4167 *
4168 * is in error because a kswapd-driven write_inode() could occur while
4169 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4170 * will no longer be on the superblock's dirty inode list.
4171 */
a9185b41 4172int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4173{
91ac6f43
FM
4174 int err;
4175
ac27a0ec
DK
4176 if (current->flags & PF_MEMALLOC)
4177 return 0;
4178
91ac6f43
FM
4179 if (EXT4_SB(inode->i_sb)->s_journal) {
4180 if (ext4_journal_current_handle()) {
4181 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4182 dump_stack();
4183 return -EIO;
4184 }
ac27a0ec 4185
a9185b41 4186 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4187 return 0;
4188
4189 err = ext4_force_commit(inode->i_sb);
4190 } else {
4191 struct ext4_iloc iloc;
ac27a0ec 4192
8b472d73 4193 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4194 if (err)
4195 return err;
a9185b41 4196 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4197 sync_dirty_buffer(iloc.bh);
4198 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4199 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4200 "IO error syncing inode");
830156c7
FM
4201 err = -EIO;
4202 }
fd2dd9fb 4203 brelse(iloc.bh);
91ac6f43
FM
4204 }
4205 return err;
ac27a0ec
DK
4206}
4207
4208/*
617ba13b 4209 * ext4_setattr()
ac27a0ec
DK
4210 *
4211 * Called from notify_change.
4212 *
4213 * We want to trap VFS attempts to truncate the file as soon as
4214 * possible. In particular, we want to make sure that when the VFS
4215 * shrinks i_size, we put the inode on the orphan list and modify
4216 * i_disksize immediately, so that during the subsequent flushing of
4217 * dirty pages and freeing of disk blocks, we can guarantee that any
4218 * commit will leave the blocks being flushed in an unused state on
4219 * disk. (On recovery, the inode will get truncated and the blocks will
4220 * be freed, so we have a strong guarantee that no future commit will
4221 * leave these blocks visible to the user.)
4222 *
678aaf48
JK
4223 * Another thing we have to assure is that if we are in ordered mode
4224 * and inode is still attached to the committing transaction, we must
4225 * we start writeout of all the dirty pages which are being truncated.
4226 * This way we are sure that all the data written in the previous
4227 * transaction are already on disk (truncate waits for pages under
4228 * writeback).
4229 *
4230 * Called with inode->i_mutex down.
ac27a0ec 4231 */
617ba13b 4232int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4233{
4234 struct inode *inode = dentry->d_inode;
4235 int error, rc = 0;
3d287de3 4236 int orphan = 0;
ac27a0ec
DK
4237 const unsigned int ia_valid = attr->ia_valid;
4238
4239 error = inode_change_ok(inode, attr);
4240 if (error)
4241 return error;
4242
12755627 4243 if (is_quota_modification(inode, attr))
871a2931 4244 dquot_initialize(inode);
08cefc7a
EB
4245 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4246 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4247 handle_t *handle;
4248
4249 /* (user+group)*(old+new) structure, inode write (sb,
4250 * inode block, ? - but truncate inode update has it) */
5aca07eb 4251 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4252 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4253 if (IS_ERR(handle)) {
4254 error = PTR_ERR(handle);
4255 goto err_out;
4256 }
b43fa828 4257 error = dquot_transfer(inode, attr);
ac27a0ec 4258 if (error) {
617ba13b 4259 ext4_journal_stop(handle);
ac27a0ec
DK
4260 return error;
4261 }
4262 /* Update corresponding info in inode so that everything is in
4263 * one transaction */
4264 if (attr->ia_valid & ATTR_UID)
4265 inode->i_uid = attr->ia_uid;
4266 if (attr->ia_valid & ATTR_GID)
4267 inode->i_gid = attr->ia_gid;
617ba13b
MC
4268 error = ext4_mark_inode_dirty(handle, inode);
4269 ext4_journal_stop(handle);
ac27a0ec
DK
4270 }
4271
e2b46574 4272 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4273
12e9b892 4274 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4275 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4276
0c095c7f
TT
4277 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4278 return -EFBIG;
e2b46574
ES
4279 }
4280 }
4281
ac27a0ec 4282 if (S_ISREG(inode->i_mode) &&
c8d46e41 4283 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4284 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4285 handle_t *handle;
4286
617ba13b 4287 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4288 if (IS_ERR(handle)) {
4289 error = PTR_ERR(handle);
4290 goto err_out;
4291 }
3d287de3
DM
4292 if (ext4_handle_valid(handle)) {
4293 error = ext4_orphan_add(handle, inode);
4294 orphan = 1;
4295 }
617ba13b
MC
4296 EXT4_I(inode)->i_disksize = attr->ia_size;
4297 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4298 if (!error)
4299 error = rc;
617ba13b 4300 ext4_journal_stop(handle);
678aaf48
JK
4301
4302 if (ext4_should_order_data(inode)) {
4303 error = ext4_begin_ordered_truncate(inode,
4304 attr->ia_size);
4305 if (error) {
4306 /* Do as much error cleanup as possible */
4307 handle = ext4_journal_start(inode, 3);
4308 if (IS_ERR(handle)) {
4309 ext4_orphan_del(NULL, inode);
4310 goto err_out;
4311 }
4312 ext4_orphan_del(handle, inode);
3d287de3 4313 orphan = 0;
678aaf48
JK
4314 ext4_journal_stop(handle);
4315 goto err_out;
4316 }
4317 }
ac27a0ec
DK
4318 }
4319
072bd7ea 4320 if (attr->ia_valid & ATTR_SIZE) {
1c9114f9 4321 if (attr->ia_size != i_size_read(inode)) {
072bd7ea 4322 truncate_setsize(inode, attr->ia_size);
1b65007e
DM
4323 /* Inode size will be reduced, wait for dio in flight.
4324 * Temporarily disable dioread_nolock to prevent
4325 * livelock. */
4326 if (orphan) {
4327 ext4_inode_block_unlocked_dio(inode);
1c9114f9 4328 inode_dio_wait(inode);
1b65007e
DM
4329 ext4_inode_resume_unlocked_dio(inode);
4330 }
1c9114f9 4331 }
afcff5d8 4332 ext4_truncate(inode);
072bd7ea 4333 }
ac27a0ec 4334
1025774c
CH
4335 if (!rc) {
4336 setattr_copy(inode, attr);
4337 mark_inode_dirty(inode);
4338 }
4339
4340 /*
4341 * If the call to ext4_truncate failed to get a transaction handle at
4342 * all, we need to clean up the in-core orphan list manually.
4343 */
3d287de3 4344 if (orphan && inode->i_nlink)
617ba13b 4345 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4346
4347 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4348 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4349
4350err_out:
617ba13b 4351 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4352 if (!error)
4353 error = rc;
4354 return error;
4355}
4356
3e3398a0
MC
4357int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4358 struct kstat *stat)
4359{
4360 struct inode *inode;
4361 unsigned long delalloc_blocks;
4362
4363 inode = dentry->d_inode;
4364 generic_fillattr(inode, stat);
4365
4366 /*
4367 * We can't update i_blocks if the block allocation is delayed
4368 * otherwise in the case of system crash before the real block
4369 * allocation is done, we will have i_blocks inconsistent with
4370 * on-disk file blocks.
4371 * We always keep i_blocks updated together with real
4372 * allocation. But to not confuse with user, stat
4373 * will return the blocks that include the delayed allocation
4374 * blocks for this file.
4375 */
96607551
TM
4376 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4377 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4378
4379 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4380 return 0;
4381}
ac27a0ec 4382
a02908f1
MC
4383static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4384{
12e9b892 4385 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4386 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4387 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4388}
ac51d837 4389
ac27a0ec 4390/*
a02908f1
MC
4391 * Account for index blocks, block groups bitmaps and block group
4392 * descriptor blocks if modify datablocks and index blocks
4393 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4394 *
a02908f1 4395 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4396 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4397 * they could still across block group boundary.
ac27a0ec 4398 *
a02908f1
MC
4399 * Also account for superblock, inode, quota and xattr blocks
4400 */
1f109d5a 4401static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4402{
8df9675f
TT
4403 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4404 int gdpblocks;
a02908f1
MC
4405 int idxblocks;
4406 int ret = 0;
4407
4408 /*
4409 * How many index blocks need to touch to modify nrblocks?
4410 * The "Chunk" flag indicating whether the nrblocks is
4411 * physically contiguous on disk
4412 *
4413 * For Direct IO and fallocate, they calls get_block to allocate
4414 * one single extent at a time, so they could set the "Chunk" flag
4415 */
4416 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4417
4418 ret = idxblocks;
4419
4420 /*
4421 * Now let's see how many group bitmaps and group descriptors need
4422 * to account
4423 */
4424 groups = idxblocks;
4425 if (chunk)
4426 groups += 1;
4427 else
4428 groups += nrblocks;
4429
4430 gdpblocks = groups;
8df9675f
TT
4431 if (groups > ngroups)
4432 groups = ngroups;
a02908f1
MC
4433 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4434 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4435
4436 /* bitmaps and block group descriptor blocks */
4437 ret += groups + gdpblocks;
4438
4439 /* Blocks for super block, inode, quota and xattr blocks */
4440 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4441
4442 return ret;
4443}
4444
4445/*
25985edc 4446 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4447 * the modification of a single pages into a single transaction,
4448 * which may include multiple chunks of block allocations.
ac27a0ec 4449 *
525f4ed8 4450 * This could be called via ext4_write_begin()
ac27a0ec 4451 *
525f4ed8 4452 * We need to consider the worse case, when
a02908f1 4453 * one new block per extent.
ac27a0ec 4454 */
a86c6181 4455int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4456{
617ba13b 4457 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4458 int ret;
4459
a02908f1 4460 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4461
a02908f1 4462 /* Account for data blocks for journalled mode */
617ba13b 4463 if (ext4_should_journal_data(inode))
a02908f1 4464 ret += bpp;
ac27a0ec
DK
4465 return ret;
4466}
f3bd1f3f
MC
4467
4468/*
4469 * Calculate the journal credits for a chunk of data modification.
4470 *
4471 * This is called from DIO, fallocate or whoever calling
79e83036 4472 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4473 *
4474 * journal buffers for data blocks are not included here, as DIO
4475 * and fallocate do no need to journal data buffers.
4476 */
4477int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4478{
4479 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4480}
4481
ac27a0ec 4482/*
617ba13b 4483 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4484 * Give this, we know that the caller already has write access to iloc->bh.
4485 */
617ba13b 4486int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4487 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4488{
4489 int err = 0;
4490
c64db50e 4491 if (IS_I_VERSION(inode))
25ec56b5
JNC
4492 inode_inc_iversion(inode);
4493
ac27a0ec
DK
4494 /* the do_update_inode consumes one bh->b_count */
4495 get_bh(iloc->bh);
4496
dab291af 4497 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4498 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4499 put_bh(iloc->bh);
4500 return err;
4501}
4502
4503/*
4504 * On success, We end up with an outstanding reference count against
4505 * iloc->bh. This _must_ be cleaned up later.
4506 */
4507
4508int
617ba13b
MC
4509ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4510 struct ext4_iloc *iloc)
ac27a0ec 4511{
0390131b
FM
4512 int err;
4513
4514 err = ext4_get_inode_loc(inode, iloc);
4515 if (!err) {
4516 BUFFER_TRACE(iloc->bh, "get_write_access");
4517 err = ext4_journal_get_write_access(handle, iloc->bh);
4518 if (err) {
4519 brelse(iloc->bh);
4520 iloc->bh = NULL;
ac27a0ec
DK
4521 }
4522 }
617ba13b 4523 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4524 return err;
4525}
4526
6dd4ee7c
KS
4527/*
4528 * Expand an inode by new_extra_isize bytes.
4529 * Returns 0 on success or negative error number on failure.
4530 */
1d03ec98
AK
4531static int ext4_expand_extra_isize(struct inode *inode,
4532 unsigned int new_extra_isize,
4533 struct ext4_iloc iloc,
4534 handle_t *handle)
6dd4ee7c
KS
4535{
4536 struct ext4_inode *raw_inode;
4537 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4538
4539 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4540 return 0;
4541
4542 raw_inode = ext4_raw_inode(&iloc);
4543
4544 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4545
4546 /* No extended attributes present */
19f5fb7a
TT
4547 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4548 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4549 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4550 new_extra_isize);
4551 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4552 return 0;
4553 }
4554
4555 /* try to expand with EAs present */
4556 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4557 raw_inode, handle);
4558}
4559
ac27a0ec
DK
4560/*
4561 * What we do here is to mark the in-core inode as clean with respect to inode
4562 * dirtiness (it may still be data-dirty).
4563 * This means that the in-core inode may be reaped by prune_icache
4564 * without having to perform any I/O. This is a very good thing,
4565 * because *any* task may call prune_icache - even ones which
4566 * have a transaction open against a different journal.
4567 *
4568 * Is this cheating? Not really. Sure, we haven't written the
4569 * inode out, but prune_icache isn't a user-visible syncing function.
4570 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4571 * we start and wait on commits.
ac27a0ec 4572 */
617ba13b 4573int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4574{
617ba13b 4575 struct ext4_iloc iloc;
6dd4ee7c
KS
4576 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4577 static unsigned int mnt_count;
4578 int err, ret;
ac27a0ec
DK
4579
4580 might_sleep();
7ff9c073 4581 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4582 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4583 if (ext4_handle_valid(handle) &&
4584 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4585 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4586 /*
4587 * We need extra buffer credits since we may write into EA block
4588 * with this same handle. If journal_extend fails, then it will
4589 * only result in a minor loss of functionality for that inode.
4590 * If this is felt to be critical, then e2fsck should be run to
4591 * force a large enough s_min_extra_isize.
4592 */
4593 if ((jbd2_journal_extend(handle,
4594 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4595 ret = ext4_expand_extra_isize(inode,
4596 sbi->s_want_extra_isize,
4597 iloc, handle);
4598 if (ret) {
19f5fb7a
TT
4599 ext4_set_inode_state(inode,
4600 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4601 if (mnt_count !=
4602 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4603 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4604 "Unable to expand inode %lu. Delete"
4605 " some EAs or run e2fsck.",
4606 inode->i_ino);
c1bddad9
AK
4607 mnt_count =
4608 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4609 }
4610 }
4611 }
4612 }
ac27a0ec 4613 if (!err)
617ba13b 4614 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4615 return err;
4616}
4617
4618/*
617ba13b 4619 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4620 *
4621 * We're really interested in the case where a file is being extended.
4622 * i_size has been changed by generic_commit_write() and we thus need
4623 * to include the updated inode in the current transaction.
4624 *
5dd4056d 4625 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4626 * are allocated to the file.
4627 *
4628 * If the inode is marked synchronous, we don't honour that here - doing
4629 * so would cause a commit on atime updates, which we don't bother doing.
4630 * We handle synchronous inodes at the highest possible level.
4631 */
aa385729 4632void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4633{
ac27a0ec
DK
4634 handle_t *handle;
4635
617ba13b 4636 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4637 if (IS_ERR(handle))
4638 goto out;
f3dc272f 4639
f3dc272f
CW
4640 ext4_mark_inode_dirty(handle, inode);
4641
617ba13b 4642 ext4_journal_stop(handle);
ac27a0ec
DK
4643out:
4644 return;
4645}
4646
4647#if 0
4648/*
4649 * Bind an inode's backing buffer_head into this transaction, to prevent
4650 * it from being flushed to disk early. Unlike
617ba13b 4651 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4652 * returns no iloc structure, so the caller needs to repeat the iloc
4653 * lookup to mark the inode dirty later.
4654 */
617ba13b 4655static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4656{
617ba13b 4657 struct ext4_iloc iloc;
ac27a0ec
DK
4658
4659 int err = 0;
4660 if (handle) {
617ba13b 4661 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4662 if (!err) {
4663 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4664 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4665 if (!err)
0390131b 4666 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4667 NULL,
0390131b 4668 iloc.bh);
ac27a0ec
DK
4669 brelse(iloc.bh);
4670 }
4671 }
617ba13b 4672 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4673 return err;
4674}
4675#endif
4676
617ba13b 4677int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4678{
4679 journal_t *journal;
4680 handle_t *handle;
4681 int err;
4682
4683 /*
4684 * We have to be very careful here: changing a data block's
4685 * journaling status dynamically is dangerous. If we write a
4686 * data block to the journal, change the status and then delete
4687 * that block, we risk forgetting to revoke the old log record
4688 * from the journal and so a subsequent replay can corrupt data.
4689 * So, first we make sure that the journal is empty and that
4690 * nobody is changing anything.
4691 */
4692
617ba13b 4693 journal = EXT4_JOURNAL(inode);
0390131b
FM
4694 if (!journal)
4695 return 0;
d699594d 4696 if (is_journal_aborted(journal))
ac27a0ec 4697 return -EROFS;
2aff57b0
YY
4698 /* We have to allocate physical blocks for delalloc blocks
4699 * before flushing journal. otherwise delalloc blocks can not
4700 * be allocated any more. even more truncate on delalloc blocks
4701 * could trigger BUG by flushing delalloc blocks in journal.
4702 * There is no delalloc block in non-journal data mode.
4703 */
4704 if (val && test_opt(inode->i_sb, DELALLOC)) {
4705 err = ext4_alloc_da_blocks(inode);
4706 if (err < 0)
4707 return err;
4708 }
ac27a0ec 4709
17335dcc
DM
4710 /* Wait for all existing dio workers */
4711 ext4_inode_block_unlocked_dio(inode);
4712 inode_dio_wait(inode);
4713
dab291af 4714 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4715
4716 /*
4717 * OK, there are no updates running now, and all cached data is
4718 * synced to disk. We are now in a completely consistent state
4719 * which doesn't have anything in the journal, and we know that
4720 * no filesystem updates are running, so it is safe to modify
4721 * the inode's in-core data-journaling state flag now.
4722 */
4723
4724 if (val)
12e9b892 4725 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4726 else {
4727 jbd2_journal_flush(journal);
12e9b892 4728 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4729 }
617ba13b 4730 ext4_set_aops(inode);
ac27a0ec 4731
dab291af 4732 jbd2_journal_unlock_updates(journal);
17335dcc 4733 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4734
4735 /* Finally we can mark the inode as dirty. */
4736
617ba13b 4737 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4738 if (IS_ERR(handle))
4739 return PTR_ERR(handle);
4740
617ba13b 4741 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4742 ext4_handle_sync(handle);
617ba13b
MC
4743 ext4_journal_stop(handle);
4744 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4745
4746 return err;
4747}
2e9ee850
AK
4748
4749static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4750{
4751 return !buffer_mapped(bh);
4752}
4753
c2ec175c 4754int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4755{
c2ec175c 4756 struct page *page = vmf->page;
2e9ee850
AK
4757 loff_t size;
4758 unsigned long len;
9ea7df53 4759 int ret;
2e9ee850
AK
4760 struct file *file = vma->vm_file;
4761 struct inode *inode = file->f_path.dentry->d_inode;
4762 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4763 handle_t *handle;
4764 get_block_t *get_block;
4765 int retries = 0;
2e9ee850 4766
8e8ad8a5 4767 sb_start_pagefault(inode->i_sb);
041bbb6d 4768 file_update_time(vma->vm_file);
9ea7df53
JK
4769 /* Delalloc case is easy... */
4770 if (test_opt(inode->i_sb, DELALLOC) &&
4771 !ext4_should_journal_data(inode) &&
4772 !ext4_nonda_switch(inode->i_sb)) {
4773 do {
4774 ret = __block_page_mkwrite(vma, vmf,
4775 ext4_da_get_block_prep);
4776 } while (ret == -ENOSPC &&
4777 ext4_should_retry_alloc(inode->i_sb, &retries));
4778 goto out_ret;
2e9ee850 4779 }
0e499890
DW
4780
4781 lock_page(page);
9ea7df53
JK
4782 size = i_size_read(inode);
4783 /* Page got truncated from under us? */
4784 if (page->mapping != mapping || page_offset(page) > size) {
4785 unlock_page(page);
4786 ret = VM_FAULT_NOPAGE;
4787 goto out;
0e499890 4788 }
2e9ee850
AK
4789
4790 if (page->index == size >> PAGE_CACHE_SHIFT)
4791 len = size & ~PAGE_CACHE_MASK;
4792 else
4793 len = PAGE_CACHE_SIZE;
a827eaff 4794 /*
9ea7df53
JK
4795 * Return if we have all the buffers mapped. This avoids the need to do
4796 * journal_start/journal_stop which can block and take a long time
a827eaff 4797 */
2e9ee850 4798 if (page_has_buffers(page)) {
2e9ee850 4799 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4800 ext4_bh_unmapped)) {
9ea7df53
JK
4801 /* Wait so that we don't change page under IO */
4802 wait_on_page_writeback(page);
4803 ret = VM_FAULT_LOCKED;
4804 goto out;
a827eaff 4805 }
2e9ee850 4806 }
a827eaff 4807 unlock_page(page);
9ea7df53
JK
4808 /* OK, we need to fill the hole... */
4809 if (ext4_should_dioread_nolock(inode))
4810 get_block = ext4_get_block_write;
4811 else
4812 get_block = ext4_get_block;
4813retry_alloc:
4814 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4815 if (IS_ERR(handle)) {
c2ec175c 4816 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4817 goto out;
4818 }
4819 ret = __block_page_mkwrite(vma, vmf, get_block);
4820 if (!ret && ext4_should_journal_data(inode)) {
4821 if (walk_page_buffers(handle, page_buffers(page), 0,
4822 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4823 unlock_page(page);
4824 ret = VM_FAULT_SIGBUS;
fcbb5515 4825 ext4_journal_stop(handle);
9ea7df53
JK
4826 goto out;
4827 }
4828 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4829 }
4830 ext4_journal_stop(handle);
4831 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4832 goto retry_alloc;
4833out_ret:
4834 ret = block_page_mkwrite_return(ret);
4835out:
8e8ad8a5 4836 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4837 return ret;
4838}
This page took 0.927463 seconds and 5 git commands to generate.