ext4: Add support FALLOC_FL_COLLAPSE_RANGE for fallocate
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
65eddb56
YY
147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
148 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
ac27a0ec
DK
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
5dc23bdd
JK
218
219 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
0930fcc1
AV
220 goto no_delete;
221 }
222
907f4554 223 if (!is_bad_inode(inode))
871a2931 224 dquot_initialize(inode);
907f4554 225
678aaf48
JK
226 if (ext4_should_order_data(inode))
227 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
228 truncate_inode_pages(&inode->i_data, 0);
229
5dc23bdd 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
ac27a0ec
DK
231 if (is_bad_inode(inode))
232 goto no_delete;
233
8e8ad8a5
JK
234 /*
235 * Protect us against freezing - iput() caller didn't have to have any
236 * protection against it
237 */
238 sb_start_intwrite(inode->i_sb);
9924a92a
TT
239 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
240 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 241 if (IS_ERR(handle)) {
bc965ab3 242 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
243 /*
244 * If we're going to skip the normal cleanup, we still need to
245 * make sure that the in-core orphan linked list is properly
246 * cleaned up.
247 */
617ba13b 248 ext4_orphan_del(NULL, inode);
8e8ad8a5 249 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
250 goto no_delete;
251 }
252
253 if (IS_SYNC(inode))
0390131b 254 ext4_handle_sync(handle);
ac27a0ec 255 inode->i_size = 0;
bc965ab3
TT
256 err = ext4_mark_inode_dirty(handle, inode);
257 if (err) {
12062ddd 258 ext4_warning(inode->i_sb,
bc965ab3
TT
259 "couldn't mark inode dirty (err %d)", err);
260 goto stop_handle;
261 }
ac27a0ec 262 if (inode->i_blocks)
617ba13b 263 ext4_truncate(inode);
bc965ab3
TT
264
265 /*
266 * ext4_ext_truncate() doesn't reserve any slop when it
267 * restarts journal transactions; therefore there may not be
268 * enough credits left in the handle to remove the inode from
269 * the orphan list and set the dtime field.
270 */
0390131b 271 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
272 err = ext4_journal_extend(handle, 3);
273 if (err > 0)
274 err = ext4_journal_restart(handle, 3);
275 if (err != 0) {
12062ddd 276 ext4_warning(inode->i_sb,
bc965ab3
TT
277 "couldn't extend journal (err %d)", err);
278 stop_handle:
279 ext4_journal_stop(handle);
45388219 280 ext4_orphan_del(NULL, inode);
8e8ad8a5 281 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
282 goto no_delete;
283 }
284 }
285
ac27a0ec 286 /*
617ba13b 287 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 288 * AKPM: I think this can be inside the above `if'.
617ba13b 289 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 290 * deletion of a non-existent orphan - this is because we don't
617ba13b 291 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
292 * (Well, we could do this if we need to, but heck - it works)
293 */
617ba13b
MC
294 ext4_orphan_del(handle, inode);
295 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
296
297 /*
298 * One subtle ordering requirement: if anything has gone wrong
299 * (transaction abort, IO errors, whatever), then we can still
300 * do these next steps (the fs will already have been marked as
301 * having errors), but we can't free the inode if the mark_dirty
302 * fails.
303 */
617ba13b 304 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 305 /* If that failed, just do the required in-core inode clear. */
0930fcc1 306 ext4_clear_inode(inode);
ac27a0ec 307 else
617ba13b
MC
308 ext4_free_inode(handle, inode);
309 ext4_journal_stop(handle);
8e8ad8a5 310 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
311 return;
312no_delete:
0930fcc1 313 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
314}
315
a9e7f447
DM
316#ifdef CONFIG_QUOTA
317qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 318{
a9e7f447 319 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 320}
a9e7f447 321#endif
9d0be502 322
12219aea
AK
323/*
324 * Calculate the number of metadata blocks need to reserve
9d0be502 325 * to allocate a block located at @lblock
12219aea 326 */
01f49d0b 327static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 328{
12e9b892 329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 330 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 331
8bb2b247 332 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
333}
334
0637c6f4
TT
335/*
336 * Called with i_data_sem down, which is important since we can call
337 * ext4_discard_preallocations() from here.
338 */
5f634d06
AK
339void ext4_da_update_reserve_space(struct inode *inode,
340 int used, int quota_claim)
12219aea
AK
341{
342 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 343 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
344
345 spin_lock(&ei->i_block_reservation_lock);
d8990240 346 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 347 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 348 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 349 "with only %d reserved data blocks",
0637c6f4
TT
350 __func__, inode->i_ino, used,
351 ei->i_reserved_data_blocks);
352 WARN_ON(1);
353 used = ei->i_reserved_data_blocks;
354 }
12219aea 355
97795d2a 356 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
357 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
358 "with only %d reserved metadata blocks "
359 "(releasing %d blocks with reserved %d data blocks)",
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks, used,
362 ei->i_reserved_data_blocks);
97795d2a
BF
363 WARN_ON(1);
364 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
365 }
366
0637c6f4
TT
367 /* Update per-inode reservations */
368 ei->i_reserved_data_blocks -= used;
0637c6f4 369 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 370 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 371 used + ei->i_allocated_meta_blocks);
0637c6f4 372 ei->i_allocated_meta_blocks = 0;
6bc6e63f 373
0637c6f4
TT
374 if (ei->i_reserved_data_blocks == 0) {
375 /*
376 * We can release all of the reserved metadata blocks
377 * only when we have written all of the delayed
378 * allocation blocks.
379 */
57042651 380 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 381 ei->i_reserved_meta_blocks);
ee5f4d9c 382 ei->i_reserved_meta_blocks = 0;
9d0be502 383 ei->i_da_metadata_calc_len = 0;
6bc6e63f 384 }
12219aea 385 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 386
72b8ab9d
ES
387 /* Update quota subsystem for data blocks */
388 if (quota_claim)
7b415bf6 389 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 390 else {
5f634d06
AK
391 /*
392 * We did fallocate with an offset that is already delayed
393 * allocated. So on delayed allocated writeback we should
72b8ab9d 394 * not re-claim the quota for fallocated blocks.
5f634d06 395 */
7b415bf6 396 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 397 }
d6014301
AK
398
399 /*
400 * If we have done all the pending block allocations and if
401 * there aren't any writers on the inode, we can discard the
402 * inode's preallocations.
403 */
0637c6f4
TT
404 if ((ei->i_reserved_data_blocks == 0) &&
405 (atomic_read(&inode->i_writecount) == 0))
d6014301 406 ext4_discard_preallocations(inode);
12219aea
AK
407}
408
e29136f8 409static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
410 unsigned int line,
411 struct ext4_map_blocks *map)
6fd058f7 412{
24676da4
TT
413 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
414 map->m_len)) {
c398eda0
TT
415 ext4_error_inode(inode, func, line, map->m_pblk,
416 "lblock %lu mapped to illegal pblock "
417 "(length %d)", (unsigned long) map->m_lblk,
418 map->m_len);
6fd058f7
TT
419 return -EIO;
420 }
421 return 0;
422}
423
e29136f8 424#define check_block_validity(inode, map) \
c398eda0 425 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 426
921f266b
DM
427#ifdef ES_AGGRESSIVE_TEST
428static void ext4_map_blocks_es_recheck(handle_t *handle,
429 struct inode *inode,
430 struct ext4_map_blocks *es_map,
431 struct ext4_map_blocks *map,
432 int flags)
433{
434 int retval;
435
436 map->m_flags = 0;
437 /*
438 * There is a race window that the result is not the same.
439 * e.g. xfstests #223 when dioread_nolock enables. The reason
440 * is that we lookup a block mapping in extent status tree with
441 * out taking i_data_sem. So at the time the unwritten extent
442 * could be converted.
443 */
444 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
445 down_read((&EXT4_I(inode)->i_data_sem));
446 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
447 retval = ext4_ext_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 } else {
450 retval = ext4_ind_map_blocks(handle, inode, map, flags &
451 EXT4_GET_BLOCKS_KEEP_SIZE);
452 }
453 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
454 up_read((&EXT4_I(inode)->i_data_sem));
455 /*
456 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
457 * because it shouldn't be marked in es_map->m_flags.
458 */
459 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
460
461 /*
462 * We don't check m_len because extent will be collpased in status
463 * tree. So the m_len might not equal.
464 */
465 if (es_map->m_lblk != map->m_lblk ||
466 es_map->m_flags != map->m_flags ||
467 es_map->m_pblk != map->m_pblk) {
bdafe42a 468 printk("ES cache assertion failed for inode: %lu "
921f266b
DM
469 "es_cached ex [%d/%d/%llu/%x] != "
470 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
471 inode->i_ino, es_map->m_lblk, es_map->m_len,
472 es_map->m_pblk, es_map->m_flags, map->m_lblk,
473 map->m_len, map->m_pblk, map->m_flags,
474 retval, flags);
475 }
476}
477#endif /* ES_AGGRESSIVE_TEST */
478
f5ab0d1f 479/*
e35fd660 480 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 481 * and returns if the blocks are already mapped.
f5ab0d1f 482 *
f5ab0d1f
MC
483 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
484 * and store the allocated blocks in the result buffer head and mark it
485 * mapped.
486 *
e35fd660
TT
487 * If file type is extents based, it will call ext4_ext_map_blocks(),
488 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
489 * based files
490 *
491 * On success, it returns the number of blocks being mapped or allocate.
492 * if create==0 and the blocks are pre-allocated and uninitialized block,
493 * the result buffer head is unmapped. If the create ==1, it will make sure
494 * the buffer head is mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 497 * that case, buffer head is unmapped
f5ab0d1f
MC
498 *
499 * It returns the error in case of allocation failure.
500 */
e35fd660
TT
501int ext4_map_blocks(handle_t *handle, struct inode *inode,
502 struct ext4_map_blocks *map, int flags)
0e855ac8 503{
d100eef2 504 struct extent_status es;
0e855ac8 505 int retval;
921f266b
DM
506#ifdef ES_AGGRESSIVE_TEST
507 struct ext4_map_blocks orig_map;
508
509 memcpy(&orig_map, map, sizeof(*map));
510#endif
f5ab0d1f 511
e35fd660
TT
512 map->m_flags = 0;
513 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
514 "logical block %lu\n", inode->i_ino, flags, map->m_len,
515 (unsigned long) map->m_lblk);
d100eef2 516
e861b5e9
TT
517 /*
518 * ext4_map_blocks returns an int, and m_len is an unsigned int
519 */
520 if (unlikely(map->m_len > INT_MAX))
521 map->m_len = INT_MAX;
522
d100eef2
ZL
523 /* Lookup extent status tree firstly */
524 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
63b99968 525 ext4_es_lru_add(inode);
d100eef2
ZL
526 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
527 map->m_pblk = ext4_es_pblock(&es) +
528 map->m_lblk - es.es_lblk;
529 map->m_flags |= ext4_es_is_written(&es) ?
530 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
531 retval = es.es_len - (map->m_lblk - es.es_lblk);
532 if (retval > map->m_len)
533 retval = map->m_len;
534 map->m_len = retval;
535 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
536 retval = 0;
537 } else {
538 BUG_ON(1);
539 }
921f266b
DM
540#ifdef ES_AGGRESSIVE_TEST
541 ext4_map_blocks_es_recheck(handle, inode, map,
542 &orig_map, flags);
543#endif
d100eef2
ZL
544 goto found;
545 }
546
4df3d265 547 /*
b920c755
TT
548 * Try to see if we can get the block without requesting a new
549 * file system block.
4df3d265 550 */
729f52c6
ZL
551 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
552 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 553 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
554 retval = ext4_ext_map_blocks(handle, inode, map, flags &
555 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 556 } else {
a4e5d88b
DM
557 retval = ext4_ind_map_blocks(handle, inode, map, flags &
558 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 559 }
f7fec032
ZL
560 if (retval > 0) {
561 int ret;
3be78c73 562 unsigned int status;
f7fec032 563
44fb851d
ZL
564 if (unlikely(retval != map->m_len)) {
565 ext4_warning(inode->i_sb,
566 "ES len assertion failed for inode "
567 "%lu: retval %d != map->m_len %d",
568 inode->i_ino, retval, map->m_len);
569 WARN_ON(1);
921f266b 570 }
921f266b 571
f7fec032
ZL
572 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
573 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
574 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
575 ext4_find_delalloc_range(inode, map->m_lblk,
576 map->m_lblk + map->m_len - 1))
577 status |= EXTENT_STATUS_DELAYED;
578 ret = ext4_es_insert_extent(inode, map->m_lblk,
579 map->m_len, map->m_pblk, status);
580 if (ret < 0)
581 retval = ret;
582 }
729f52c6
ZL
583 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
584 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 585
d100eef2 586found:
e35fd660 587 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 588 int ret = check_block_validity(inode, map);
6fd058f7
TT
589 if (ret != 0)
590 return ret;
591 }
592
f5ab0d1f 593 /* If it is only a block(s) look up */
c2177057 594 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
595 return retval;
596
597 /*
598 * Returns if the blocks have already allocated
599 *
600 * Note that if blocks have been preallocated
df3ab170 601 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
602 * with buffer head unmapped.
603 */
e35fd660 604 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
605 return retval;
606
2a8964d6 607 /*
a25a4e1a
ZL
608 * Here we clear m_flags because after allocating an new extent,
609 * it will be set again.
2a8964d6 610 */
a25a4e1a 611 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 612
4df3d265 613 /*
f5ab0d1f
MC
614 * New blocks allocate and/or writing to uninitialized extent
615 * will possibly result in updating i_data, so we take
616 * the write lock of i_data_sem, and call get_blocks()
617 * with create == 1 flag.
4df3d265
AK
618 */
619 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
620
621 /*
622 * if the caller is from delayed allocation writeout path
623 * we have already reserved fs blocks for allocation
624 * let the underlying get_block() function know to
625 * avoid double accounting
626 */
c2177057 627 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 628 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
629 /*
630 * We need to check for EXT4 here because migrate
631 * could have changed the inode type in between
632 */
12e9b892 633 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 634 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 635 } else {
e35fd660 636 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 637
e35fd660 638 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
639 /*
640 * We allocated new blocks which will result in
641 * i_data's format changing. Force the migrate
642 * to fail by clearing migrate flags
643 */
19f5fb7a 644 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 645 }
d2a17637 646
5f634d06
AK
647 /*
648 * Update reserved blocks/metadata blocks after successful
649 * block allocation which had been deferred till now. We don't
650 * support fallocate for non extent files. So we can update
651 * reserve space here.
652 */
653 if ((retval > 0) &&
1296cc85 654 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
655 ext4_da_update_reserve_space(inode, retval, 1);
656 }
f7fec032 657 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 658 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 659
f7fec032
ZL
660 if (retval > 0) {
661 int ret;
3be78c73 662 unsigned int status;
f7fec032 663
44fb851d
ZL
664 if (unlikely(retval != map->m_len)) {
665 ext4_warning(inode->i_sb,
666 "ES len assertion failed for inode "
667 "%lu: retval %d != map->m_len %d",
668 inode->i_ino, retval, map->m_len);
669 WARN_ON(1);
921f266b 670 }
921f266b 671
adb23551
ZL
672 /*
673 * If the extent has been zeroed out, we don't need to update
674 * extent status tree.
675 */
676 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
677 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
678 if (ext4_es_is_written(&es))
679 goto has_zeroout;
680 }
f7fec032
ZL
681 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
682 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
683 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
684 ext4_find_delalloc_range(inode, map->m_lblk,
685 map->m_lblk + map->m_len - 1))
686 status |= EXTENT_STATUS_DELAYED;
687 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
688 map->m_pblk, status);
689 if (ret < 0)
690 retval = ret;
5356f261
AK
691 }
692
adb23551 693has_zeroout:
4df3d265 694 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 695 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 696 int ret = check_block_validity(inode, map);
6fd058f7
TT
697 if (ret != 0)
698 return ret;
699 }
0e855ac8
AK
700 return retval;
701}
702
f3bd1f3f
MC
703/* Maximum number of blocks we map for direct IO at once. */
704#define DIO_MAX_BLOCKS 4096
705
2ed88685
TT
706static int _ext4_get_block(struct inode *inode, sector_t iblock,
707 struct buffer_head *bh, int flags)
ac27a0ec 708{
3e4fdaf8 709 handle_t *handle = ext4_journal_current_handle();
2ed88685 710 struct ext4_map_blocks map;
7fb5409d 711 int ret = 0, started = 0;
f3bd1f3f 712 int dio_credits;
ac27a0ec 713
46c7f254
TM
714 if (ext4_has_inline_data(inode))
715 return -ERANGE;
716
2ed88685
TT
717 map.m_lblk = iblock;
718 map.m_len = bh->b_size >> inode->i_blkbits;
719
8b0f165f 720 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 721 /* Direct IO write... */
2ed88685
TT
722 if (map.m_len > DIO_MAX_BLOCKS)
723 map.m_len = DIO_MAX_BLOCKS;
724 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
725 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
726 dio_credits);
7fb5409d 727 if (IS_ERR(handle)) {
ac27a0ec 728 ret = PTR_ERR(handle);
2ed88685 729 return ret;
ac27a0ec 730 }
7fb5409d 731 started = 1;
ac27a0ec
DK
732 }
733
2ed88685 734 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 735 if (ret > 0) {
7b7a8665
CH
736 ext4_io_end_t *io_end = ext4_inode_aio(inode);
737
2ed88685
TT
738 map_bh(bh, inode->i_sb, map.m_pblk);
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
7b7a8665
CH
740 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
741 set_buffer_defer_completion(bh);
2ed88685 742 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 743 ret = 0;
ac27a0ec 744 }
7fb5409d
JK
745 if (started)
746 ext4_journal_stop(handle);
ac27a0ec
DK
747 return ret;
748}
749
2ed88685
TT
750int ext4_get_block(struct inode *inode, sector_t iblock,
751 struct buffer_head *bh, int create)
752{
753 return _ext4_get_block(inode, iblock, bh,
754 create ? EXT4_GET_BLOCKS_CREATE : 0);
755}
756
ac27a0ec
DK
757/*
758 * `handle' can be NULL if create is zero
759 */
617ba13b 760struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 761 ext4_lblk_t block, int create, int *errp)
ac27a0ec 762{
2ed88685
TT
763 struct ext4_map_blocks map;
764 struct buffer_head *bh;
ac27a0ec
DK
765 int fatal = 0, err;
766
767 J_ASSERT(handle != NULL || create == 0);
768
2ed88685
TT
769 map.m_lblk = block;
770 map.m_len = 1;
771 err = ext4_map_blocks(handle, inode, &map,
772 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 773
90b0a973
CM
774 /* ensure we send some value back into *errp */
775 *errp = 0;
776
0f70b406
TT
777 if (create && err == 0)
778 err = -ENOSPC; /* should never happen */
2ed88685
TT
779 if (err < 0)
780 *errp = err;
781 if (err <= 0)
782 return NULL;
2ed88685
TT
783
784 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 785 if (unlikely(!bh)) {
860d21e2 786 *errp = -ENOMEM;
2ed88685 787 return NULL;
ac27a0ec 788 }
2ed88685
TT
789 if (map.m_flags & EXT4_MAP_NEW) {
790 J_ASSERT(create != 0);
791 J_ASSERT(handle != NULL);
ac27a0ec 792
2ed88685
TT
793 /*
794 * Now that we do not always journal data, we should
795 * keep in mind whether this should always journal the
796 * new buffer as metadata. For now, regular file
797 * writes use ext4_get_block instead, so it's not a
798 * problem.
799 */
800 lock_buffer(bh);
801 BUFFER_TRACE(bh, "call get_create_access");
802 fatal = ext4_journal_get_create_access(handle, bh);
803 if (!fatal && !buffer_uptodate(bh)) {
804 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
805 set_buffer_uptodate(bh);
ac27a0ec 806 }
2ed88685
TT
807 unlock_buffer(bh);
808 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
809 err = ext4_handle_dirty_metadata(handle, inode, bh);
810 if (!fatal)
811 fatal = err;
812 } else {
813 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 814 }
2ed88685
TT
815 if (fatal) {
816 *errp = fatal;
817 brelse(bh);
818 bh = NULL;
819 }
820 return bh;
ac27a0ec
DK
821}
822
617ba13b 823struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 824 ext4_lblk_t block, int create, int *err)
ac27a0ec 825{
af5bc92d 826 struct buffer_head *bh;
ac27a0ec 827
617ba13b 828 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
829 if (!bh)
830 return bh;
831 if (buffer_uptodate(bh))
832 return bh;
65299a3b 833 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
834 wait_on_buffer(bh);
835 if (buffer_uptodate(bh))
836 return bh;
837 put_bh(bh);
838 *err = -EIO;
839 return NULL;
840}
841
f19d5870
TM
842int ext4_walk_page_buffers(handle_t *handle,
843 struct buffer_head *head,
844 unsigned from,
845 unsigned to,
846 int *partial,
847 int (*fn)(handle_t *handle,
848 struct buffer_head *bh))
ac27a0ec
DK
849{
850 struct buffer_head *bh;
851 unsigned block_start, block_end;
852 unsigned blocksize = head->b_size;
853 int err, ret = 0;
854 struct buffer_head *next;
855
af5bc92d
TT
856 for (bh = head, block_start = 0;
857 ret == 0 && (bh != head || !block_start);
de9a55b8 858 block_start = block_end, bh = next) {
ac27a0ec
DK
859 next = bh->b_this_page;
860 block_end = block_start + blocksize;
861 if (block_end <= from || block_start >= to) {
862 if (partial && !buffer_uptodate(bh))
863 *partial = 1;
864 continue;
865 }
866 err = (*fn)(handle, bh);
867 if (!ret)
868 ret = err;
869 }
870 return ret;
871}
872
873/*
874 * To preserve ordering, it is essential that the hole instantiation and
875 * the data write be encapsulated in a single transaction. We cannot
617ba13b 876 * close off a transaction and start a new one between the ext4_get_block()
dab291af 877 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
878 * prepare_write() is the right place.
879 *
36ade451
JK
880 * Also, this function can nest inside ext4_writepage(). In that case, we
881 * *know* that ext4_writepage() has generated enough buffer credits to do the
882 * whole page. So we won't block on the journal in that case, which is good,
883 * because the caller may be PF_MEMALLOC.
ac27a0ec 884 *
617ba13b 885 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
886 * quota file writes. If we were to commit the transaction while thus
887 * reentered, there can be a deadlock - we would be holding a quota
888 * lock, and the commit would never complete if another thread had a
889 * transaction open and was blocking on the quota lock - a ranking
890 * violation.
891 *
dab291af 892 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
893 * will _not_ run commit under these circumstances because handle->h_ref
894 * is elevated. We'll still have enough credits for the tiny quotafile
895 * write.
896 */
f19d5870
TM
897int do_journal_get_write_access(handle_t *handle,
898 struct buffer_head *bh)
ac27a0ec 899{
56d35a4c
JK
900 int dirty = buffer_dirty(bh);
901 int ret;
902
ac27a0ec
DK
903 if (!buffer_mapped(bh) || buffer_freed(bh))
904 return 0;
56d35a4c 905 /*
ebdec241 906 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
907 * the dirty bit as jbd2_journal_get_write_access() could complain
908 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 909 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
910 * the bit before releasing a page lock and thus writeback cannot
911 * ever write the buffer.
912 */
913 if (dirty)
914 clear_buffer_dirty(bh);
915 ret = ext4_journal_get_write_access(handle, bh);
916 if (!ret && dirty)
917 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
918 return ret;
ac27a0ec
DK
919}
920
8b0f165f
AP
921static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
922 struct buffer_head *bh_result, int create);
bfc1af65 923static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
924 loff_t pos, unsigned len, unsigned flags,
925 struct page **pagep, void **fsdata)
ac27a0ec 926{
af5bc92d 927 struct inode *inode = mapping->host;
1938a150 928 int ret, needed_blocks;
ac27a0ec
DK
929 handle_t *handle;
930 int retries = 0;
af5bc92d 931 struct page *page;
de9a55b8 932 pgoff_t index;
af5bc92d 933 unsigned from, to;
bfc1af65 934
9bffad1e 935 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
936 /*
937 * Reserve one block more for addition to orphan list in case
938 * we allocate blocks but write fails for some reason
939 */
940 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 941 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
942 from = pos & (PAGE_CACHE_SIZE - 1);
943 to = from + len;
ac27a0ec 944
f19d5870
TM
945 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
946 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
947 flags, pagep);
948 if (ret < 0)
47564bfb
TT
949 return ret;
950 if (ret == 1)
951 return 0;
f19d5870
TM
952 }
953
47564bfb
TT
954 /*
955 * grab_cache_page_write_begin() can take a long time if the
956 * system is thrashing due to memory pressure, or if the page
957 * is being written back. So grab it first before we start
958 * the transaction handle. This also allows us to allocate
959 * the page (if needed) without using GFP_NOFS.
960 */
961retry_grab:
962 page = grab_cache_page_write_begin(mapping, index, flags);
963 if (!page)
964 return -ENOMEM;
965 unlock_page(page);
966
967retry_journal:
9924a92a 968 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 969 if (IS_ERR(handle)) {
47564bfb
TT
970 page_cache_release(page);
971 return PTR_ERR(handle);
7479d2b9 972 }
ac27a0ec 973
47564bfb
TT
974 lock_page(page);
975 if (page->mapping != mapping) {
976 /* The page got truncated from under us */
977 unlock_page(page);
978 page_cache_release(page);
cf108bca 979 ext4_journal_stop(handle);
47564bfb 980 goto retry_grab;
cf108bca 981 }
7afe5aa5
DM
982 /* In case writeback began while the page was unlocked */
983 wait_for_stable_page(page);
cf108bca 984
744692dc 985 if (ext4_should_dioread_nolock(inode))
6e1db88d 986 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 987 else
6e1db88d 988 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
989
990 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
991 ret = ext4_walk_page_buffers(handle, page_buffers(page),
992 from, to, NULL,
993 do_journal_get_write_access);
ac27a0ec 994 }
bfc1af65
NP
995
996 if (ret) {
af5bc92d 997 unlock_page(page);
ae4d5372 998 /*
6e1db88d 999 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1000 * outside i_size. Trim these off again. Don't need
1001 * i_size_read because we hold i_mutex.
1938a150
AK
1002 *
1003 * Add inode to orphan list in case we crash before
1004 * truncate finishes
ae4d5372 1005 */
ffacfa7a 1006 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1007 ext4_orphan_add(handle, inode);
1008
1009 ext4_journal_stop(handle);
1010 if (pos + len > inode->i_size) {
b9a4207d 1011 ext4_truncate_failed_write(inode);
de9a55b8 1012 /*
ffacfa7a 1013 * If truncate failed early the inode might
1938a150
AK
1014 * still be on the orphan list; we need to
1015 * make sure the inode is removed from the
1016 * orphan list in that case.
1017 */
1018 if (inode->i_nlink)
1019 ext4_orphan_del(NULL, inode);
1020 }
bfc1af65 1021
47564bfb
TT
1022 if (ret == -ENOSPC &&
1023 ext4_should_retry_alloc(inode->i_sb, &retries))
1024 goto retry_journal;
1025 page_cache_release(page);
1026 return ret;
1027 }
1028 *pagep = page;
ac27a0ec
DK
1029 return ret;
1030}
1031
bfc1af65
NP
1032/* For write_end() in data=journal mode */
1033static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1034{
13fca323 1035 int ret;
ac27a0ec
DK
1036 if (!buffer_mapped(bh) || buffer_freed(bh))
1037 return 0;
1038 set_buffer_uptodate(bh);
13fca323
TT
1039 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1040 clear_buffer_meta(bh);
1041 clear_buffer_prio(bh);
1042 return ret;
ac27a0ec
DK
1043}
1044
eed4333f
ZL
1045/*
1046 * We need to pick up the new inode size which generic_commit_write gave us
1047 * `file' can be NULL - eg, when called from page_symlink().
1048 *
1049 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1050 * buffers are managed internally.
1051 */
1052static int ext4_write_end(struct file *file,
1053 struct address_space *mapping,
1054 loff_t pos, unsigned len, unsigned copied,
1055 struct page *page, void *fsdata)
f8514083 1056{
f8514083 1057 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1058 struct inode *inode = mapping->host;
1059 int ret = 0, ret2;
1060 int i_size_changed = 0;
1061
1062 trace_ext4_write_end(inode, pos, len, copied);
1063 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1064 ret = ext4_jbd2_file_inode(handle, inode);
1065 if (ret) {
1066 unlock_page(page);
1067 page_cache_release(page);
1068 goto errout;
1069 }
1070 }
f8514083 1071
42c832de
TT
1072 if (ext4_has_inline_data(inode)) {
1073 ret = ext4_write_inline_data_end(inode, pos, len,
1074 copied, page);
1075 if (ret < 0)
1076 goto errout;
1077 copied = ret;
1078 } else
f19d5870
TM
1079 copied = block_write_end(file, mapping, pos,
1080 len, copied, page, fsdata);
f8514083
AK
1081
1082 /*
1083 * No need to use i_size_read() here, the i_size
eed4333f 1084 * cannot change under us because we hole i_mutex.
f8514083
AK
1085 *
1086 * But it's important to update i_size while still holding page lock:
1087 * page writeout could otherwise come in and zero beyond i_size.
1088 */
1089 if (pos + copied > inode->i_size) {
1090 i_size_write(inode, pos + copied);
1091 i_size_changed = 1;
1092 }
1093
eed4333f 1094 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1095 /* We need to mark inode dirty even if
1096 * new_i_size is less that inode->i_size
eed4333f 1097 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1098 */
1099 ext4_update_i_disksize(inode, (pos + copied));
1100 i_size_changed = 1;
1101 }
1102 unlock_page(page);
1103 page_cache_release(page);
1104
1105 /*
1106 * Don't mark the inode dirty under page lock. First, it unnecessarily
1107 * makes the holding time of page lock longer. Second, it forces lock
1108 * ordering of page lock and transaction start for journaling
1109 * filesystems.
1110 */
1111 if (i_size_changed)
1112 ext4_mark_inode_dirty(handle, inode);
1113
ffacfa7a 1114 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1115 /* if we have allocated more blocks and copied
1116 * less. We will have blocks allocated outside
1117 * inode->i_size. So truncate them
1118 */
1119 ext4_orphan_add(handle, inode);
74d553aa 1120errout:
617ba13b 1121 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1122 if (!ret)
1123 ret = ret2;
bfc1af65 1124
f8514083 1125 if (pos + len > inode->i_size) {
b9a4207d 1126 ext4_truncate_failed_write(inode);
de9a55b8 1127 /*
ffacfa7a 1128 * If truncate failed early the inode might still be
f8514083
AK
1129 * on the orphan list; we need to make sure the inode
1130 * is removed from the orphan list in that case.
1131 */
1132 if (inode->i_nlink)
1133 ext4_orphan_del(NULL, inode);
1134 }
1135
bfc1af65 1136 return ret ? ret : copied;
ac27a0ec
DK
1137}
1138
bfc1af65 1139static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1140 struct address_space *mapping,
1141 loff_t pos, unsigned len, unsigned copied,
1142 struct page *page, void *fsdata)
ac27a0ec 1143{
617ba13b 1144 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1145 struct inode *inode = mapping->host;
ac27a0ec
DK
1146 int ret = 0, ret2;
1147 int partial = 0;
bfc1af65 1148 unsigned from, to;
cf17fea6 1149 loff_t new_i_size;
ac27a0ec 1150
9bffad1e 1151 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1152 from = pos & (PAGE_CACHE_SIZE - 1);
1153 to = from + len;
1154
441c8508
CW
1155 BUG_ON(!ext4_handle_valid(handle));
1156
3fdcfb66
TM
1157 if (ext4_has_inline_data(inode))
1158 copied = ext4_write_inline_data_end(inode, pos, len,
1159 copied, page);
1160 else {
1161 if (copied < len) {
1162 if (!PageUptodate(page))
1163 copied = 0;
1164 page_zero_new_buffers(page, from+copied, to);
1165 }
ac27a0ec 1166
3fdcfb66
TM
1167 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1168 to, &partial, write_end_fn);
1169 if (!partial)
1170 SetPageUptodate(page);
1171 }
cf17fea6
AK
1172 new_i_size = pos + copied;
1173 if (new_i_size > inode->i_size)
bfc1af65 1174 i_size_write(inode, pos+copied);
19f5fb7a 1175 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1176 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1177 if (new_i_size > EXT4_I(inode)->i_disksize) {
1178 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1179 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1180 if (!ret)
1181 ret = ret2;
1182 }
bfc1af65 1183
cf108bca 1184 unlock_page(page);
f8514083 1185 page_cache_release(page);
ffacfa7a 1186 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1187 /* if we have allocated more blocks and copied
1188 * less. We will have blocks allocated outside
1189 * inode->i_size. So truncate them
1190 */
1191 ext4_orphan_add(handle, inode);
1192
617ba13b 1193 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1194 if (!ret)
1195 ret = ret2;
f8514083 1196 if (pos + len > inode->i_size) {
b9a4207d 1197 ext4_truncate_failed_write(inode);
de9a55b8 1198 /*
ffacfa7a 1199 * If truncate failed early the inode might still be
f8514083
AK
1200 * on the orphan list; we need to make sure the inode
1201 * is removed from the orphan list in that case.
1202 */
1203 if (inode->i_nlink)
1204 ext4_orphan_del(NULL, inode);
1205 }
bfc1af65
NP
1206
1207 return ret ? ret : copied;
ac27a0ec 1208}
d2a17637 1209
386ad67c
LC
1210/*
1211 * Reserve a metadata for a single block located at lblock
1212 */
1213static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1214{
386ad67c
LC
1215 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1216 struct ext4_inode_info *ei = EXT4_I(inode);
1217 unsigned int md_needed;
1218 ext4_lblk_t save_last_lblock;
1219 int save_len;
1220
1221 /*
1222 * recalculate the amount of metadata blocks to reserve
1223 * in order to allocate nrblocks
1224 * worse case is one extent per block
1225 */
386ad67c
LC
1226 spin_lock(&ei->i_block_reservation_lock);
1227 /*
1228 * ext4_calc_metadata_amount() has side effects, which we have
1229 * to be prepared undo if we fail to claim space.
1230 */
1231 save_len = ei->i_da_metadata_calc_len;
1232 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1233 md_needed = EXT4_NUM_B2C(sbi,
1234 ext4_calc_metadata_amount(inode, lblock));
1235 trace_ext4_da_reserve_space(inode, md_needed);
1236
1237 /*
1238 * We do still charge estimated metadata to the sb though;
1239 * we cannot afford to run out of free blocks.
1240 */
1241 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1242 ei->i_da_metadata_calc_len = save_len;
1243 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1244 spin_unlock(&ei->i_block_reservation_lock);
386ad67c
LC
1245 return -ENOSPC;
1246 }
1247 ei->i_reserved_meta_blocks += md_needed;
1248 spin_unlock(&ei->i_block_reservation_lock);
1249
1250 return 0; /* success */
1251}
1252
9d0be502 1253/*
7b415bf6 1254 * Reserve a single cluster located at lblock
9d0be502 1255 */
01f49d0b 1256static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1257{
60e58e0f 1258 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1259 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1260 unsigned int md_needed;
5dd4056d 1261 int ret;
03179fe9
TT
1262 ext4_lblk_t save_last_lblock;
1263 int save_len;
1264
1265 /*
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1269 */
1270 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1271 if (ret)
1272 return ret;
d2a17637
MC
1273
1274 /*
1275 * recalculate the amount of metadata blocks to reserve
1276 * in order to allocate nrblocks
1277 * worse case is one extent per block
1278 */
0637c6f4 1279 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1280 /*
1281 * ext4_calc_metadata_amount() has side effects, which we have
1282 * to be prepared undo if we fail to claim space.
1283 */
1284 save_len = ei->i_da_metadata_calc_len;
1285 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1286 md_needed = EXT4_NUM_B2C(sbi,
1287 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1288 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1289
72b8ab9d
ES
1290 /*
1291 * We do still charge estimated metadata to the sb though;
1292 * we cannot afford to run out of free blocks.
1293 */
e7d5f315 1294 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1295 ei->i_da_metadata_calc_len = save_len;
1296 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1297 spin_unlock(&ei->i_block_reservation_lock);
03179fe9 1298 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1299 return -ENOSPC;
1300 }
9d0be502 1301 ei->i_reserved_data_blocks++;
0637c6f4
TT
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1304
d2a17637
MC
1305 return 0; /* success */
1306}
1307
12219aea 1308static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1309{
1310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1311 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1312
cd213226
MC
1313 if (!to_free)
1314 return; /* Nothing to release, exit */
1315
d2a17637 1316 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1317
5a58ec87 1318 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1319 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1320 /*
0637c6f4
TT
1321 * if there aren't enough reserved blocks, then the
1322 * counter is messed up somewhere. Since this
1323 * function is called from invalidate page, it's
1324 * harmless to return without any action.
cd213226 1325 */
8de5c325 1326 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1327 "ino %lu, to_free %d with only %d reserved "
1084f252 1328 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1329 ei->i_reserved_data_blocks);
1330 WARN_ON(1);
1331 to_free = ei->i_reserved_data_blocks;
cd213226 1332 }
0637c6f4 1333 ei->i_reserved_data_blocks -= to_free;
cd213226 1334
0637c6f4
TT
1335 if (ei->i_reserved_data_blocks == 0) {
1336 /*
1337 * We can release all of the reserved metadata blocks
1338 * only when we have written all of the delayed
1339 * allocation blocks.
7b415bf6
AK
1340 * Note that in case of bigalloc, i_reserved_meta_blocks,
1341 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1342 */
57042651 1343 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1344 ei->i_reserved_meta_blocks);
ee5f4d9c 1345 ei->i_reserved_meta_blocks = 0;
9d0be502 1346 ei->i_da_metadata_calc_len = 0;
0637c6f4 1347 }
d2a17637 1348
72b8ab9d 1349 /* update fs dirty data blocks counter */
57042651 1350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1351
d2a17637 1352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1353
7b415bf6 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1355}
1356
1357static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1358 unsigned int offset,
1359 unsigned int length)
d2a17637
MC
1360{
1361 int to_release = 0;
1362 struct buffer_head *head, *bh;
1363 unsigned int curr_off = 0;
7b415bf6
AK
1364 struct inode *inode = page->mapping->host;
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1366 unsigned int stop = offset + length;
7b415bf6 1367 int num_clusters;
51865fda 1368 ext4_fsblk_t lblk;
d2a17637 1369
ca99fdd2
LC
1370 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
d2a17637
MC
1372 head = page_buffers(page);
1373 bh = head;
1374 do {
1375 unsigned int next_off = curr_off + bh->b_size;
1376
ca99fdd2
LC
1377 if (next_off > stop)
1378 break;
1379
d2a17637
MC
1380 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381 to_release++;
1382 clear_buffer_delay(bh);
1383 }
1384 curr_off = next_off;
1385 } while ((bh = bh->b_this_page) != head);
7b415bf6 1386
51865fda
ZL
1387 if (to_release) {
1388 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389 ext4_es_remove_extent(inode, lblk, to_release);
1390 }
1391
7b415bf6
AK
1392 /* If we have released all the blocks belonging to a cluster, then we
1393 * need to release the reserved space for that cluster. */
1394 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395 while (num_clusters > 0) {
7b415bf6
AK
1396 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397 ((num_clusters - 1) << sbi->s_cluster_bits);
1398 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1399 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1400 ext4_da_release_space(inode, 1);
1401
1402 num_clusters--;
1403 }
d2a17637 1404}
ac27a0ec 1405
64769240
AT
1406/*
1407 * Delayed allocation stuff
1408 */
1409
4e7ea81d
JK
1410struct mpage_da_data {
1411 struct inode *inode;
1412 struct writeback_control *wbc;
6b523df4 1413
4e7ea81d
JK
1414 pgoff_t first_page; /* The first page to write */
1415 pgoff_t next_page; /* Current page to examine */
1416 pgoff_t last_page; /* Last page to examine */
791b7f08 1417 /*
4e7ea81d
JK
1418 * Extent to map - this can be after first_page because that can be
1419 * fully mapped. We somewhat abuse m_flags to store whether the extent
1420 * is delalloc or unwritten.
791b7f08 1421 */
4e7ea81d
JK
1422 struct ext4_map_blocks map;
1423 struct ext4_io_submit io_submit; /* IO submission data */
1424};
64769240 1425
4e7ea81d
JK
1426static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1427 bool invalidate)
c4a0c46e
AK
1428{
1429 int nr_pages, i;
1430 pgoff_t index, end;
1431 struct pagevec pvec;
1432 struct inode *inode = mpd->inode;
1433 struct address_space *mapping = inode->i_mapping;
4e7ea81d
JK
1434
1435 /* This is necessary when next_page == 0. */
1436 if (mpd->first_page >= mpd->next_page)
1437 return;
c4a0c46e 1438
c7f5938a
CW
1439 index = mpd->first_page;
1440 end = mpd->next_page - 1;
4e7ea81d
JK
1441 if (invalidate) {
1442 ext4_lblk_t start, last;
1443 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1444 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1445 ext4_es_remove_extent(inode, start, last - start + 1);
1446 }
51865fda 1447
66bea92c 1448 pagevec_init(&pvec, 0);
c4a0c46e
AK
1449 while (index <= end) {
1450 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1451 if (nr_pages == 0)
1452 break;
1453 for (i = 0; i < nr_pages; i++) {
1454 struct page *page = pvec.pages[i];
9b1d0998 1455 if (page->index > end)
c4a0c46e 1456 break;
c4a0c46e
AK
1457 BUG_ON(!PageLocked(page));
1458 BUG_ON(PageWriteback(page));
4e7ea81d
JK
1459 if (invalidate) {
1460 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1461 ClearPageUptodate(page);
1462 }
c4a0c46e
AK
1463 unlock_page(page);
1464 }
9b1d0998
JK
1465 index = pvec.pages[nr_pages - 1]->index + 1;
1466 pagevec_release(&pvec);
c4a0c46e 1467 }
c4a0c46e
AK
1468}
1469
df22291f
AK
1470static void ext4_print_free_blocks(struct inode *inode)
1471{
1472 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1473 struct super_block *sb = inode->i_sb;
f78ee70d 1474 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1475
1476 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1477 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1478 ext4_count_free_clusters(sb)));
92b97816
TT
1479 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1480 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1481 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1482 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1483 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1484 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1485 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1486 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1487 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1488 ei->i_reserved_data_blocks);
92b97816 1489 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1490 ei->i_reserved_meta_blocks);
1491 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1492 ei->i_allocated_meta_blocks);
df22291f
AK
1493 return;
1494}
1495
c364b22c 1496static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1497{
c364b22c 1498 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1499}
1500
5356f261
AK
1501/*
1502 * This function is grabs code from the very beginning of
1503 * ext4_map_blocks, but assumes that the caller is from delayed write
1504 * time. This function looks up the requested blocks and sets the
1505 * buffer delay bit under the protection of i_data_sem.
1506 */
1507static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1508 struct ext4_map_blocks *map,
1509 struct buffer_head *bh)
1510{
d100eef2 1511 struct extent_status es;
5356f261
AK
1512 int retval;
1513 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1514#ifdef ES_AGGRESSIVE_TEST
1515 struct ext4_map_blocks orig_map;
1516
1517 memcpy(&orig_map, map, sizeof(*map));
1518#endif
5356f261
AK
1519
1520 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1521 invalid_block = ~0;
1522
1523 map->m_flags = 0;
1524 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1525 "logical block %lu\n", inode->i_ino, map->m_len,
1526 (unsigned long) map->m_lblk);
d100eef2
ZL
1527
1528 /* Lookup extent status tree firstly */
1529 if (ext4_es_lookup_extent(inode, iblock, &es)) {
63b99968 1530 ext4_es_lru_add(inode);
d100eef2
ZL
1531 if (ext4_es_is_hole(&es)) {
1532 retval = 0;
1533 down_read((&EXT4_I(inode)->i_data_sem));
1534 goto add_delayed;
1535 }
1536
1537 /*
1538 * Delayed extent could be allocated by fallocate.
1539 * So we need to check it.
1540 */
1541 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1542 map_bh(bh, inode->i_sb, invalid_block);
1543 set_buffer_new(bh);
1544 set_buffer_delay(bh);
1545 return 0;
1546 }
1547
1548 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1549 retval = es.es_len - (iblock - es.es_lblk);
1550 if (retval > map->m_len)
1551 retval = map->m_len;
1552 map->m_len = retval;
1553 if (ext4_es_is_written(&es))
1554 map->m_flags |= EXT4_MAP_MAPPED;
1555 else if (ext4_es_is_unwritten(&es))
1556 map->m_flags |= EXT4_MAP_UNWRITTEN;
1557 else
1558 BUG_ON(1);
1559
921f266b
DM
1560#ifdef ES_AGGRESSIVE_TEST
1561 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1562#endif
d100eef2
ZL
1563 return retval;
1564 }
1565
5356f261
AK
1566 /*
1567 * Try to see if we can get the block without requesting a new
1568 * file system block.
1569 */
1570 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1571 if (ext4_has_inline_data(inode)) {
1572 /*
1573 * We will soon create blocks for this page, and let
1574 * us pretend as if the blocks aren't allocated yet.
1575 * In case of clusters, we have to handle the work
1576 * of mapping from cluster so that the reserved space
1577 * is calculated properly.
1578 */
1579 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1580 ext4_find_delalloc_cluster(inode, map->m_lblk))
1581 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1582 retval = 0;
1583 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1584 retval = ext4_ext_map_blocks(NULL, inode, map,
1585 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1586 else
d100eef2
ZL
1587 retval = ext4_ind_map_blocks(NULL, inode, map,
1588 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1589
d100eef2 1590add_delayed:
5356f261 1591 if (retval == 0) {
f7fec032 1592 int ret;
5356f261
AK
1593 /*
1594 * XXX: __block_prepare_write() unmaps passed block,
1595 * is it OK?
1596 */
386ad67c
LC
1597 /*
1598 * If the block was allocated from previously allocated cluster,
1599 * then we don't need to reserve it again. However we still need
1600 * to reserve metadata for every block we're going to write.
1601 */
5356f261 1602 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1603 ret = ext4_da_reserve_space(inode, iblock);
1604 if (ret) {
5356f261 1605 /* not enough space to reserve */
f7fec032 1606 retval = ret;
5356f261 1607 goto out_unlock;
f7fec032 1608 }
386ad67c
LC
1609 } else {
1610 ret = ext4_da_reserve_metadata(inode, iblock);
1611 if (ret) {
1612 /* not enough space to reserve */
1613 retval = ret;
1614 goto out_unlock;
1615 }
5356f261
AK
1616 }
1617
f7fec032
ZL
1618 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1619 ~0, EXTENT_STATUS_DELAYED);
1620 if (ret) {
1621 retval = ret;
51865fda 1622 goto out_unlock;
f7fec032 1623 }
51865fda 1624
5356f261
AK
1625 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1626 * and it should not appear on the bh->b_state.
1627 */
1628 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1629
1630 map_bh(bh, inode->i_sb, invalid_block);
1631 set_buffer_new(bh);
1632 set_buffer_delay(bh);
f7fec032
ZL
1633 } else if (retval > 0) {
1634 int ret;
3be78c73 1635 unsigned int status;
f7fec032 1636
44fb851d
ZL
1637 if (unlikely(retval != map->m_len)) {
1638 ext4_warning(inode->i_sb,
1639 "ES len assertion failed for inode "
1640 "%lu: retval %d != map->m_len %d",
1641 inode->i_ino, retval, map->m_len);
1642 WARN_ON(1);
921f266b 1643 }
921f266b 1644
f7fec032
ZL
1645 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1646 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1647 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1648 map->m_pblk, status);
1649 if (ret != 0)
1650 retval = ret;
5356f261
AK
1651 }
1652
1653out_unlock:
1654 up_read((&EXT4_I(inode)->i_data_sem));
1655
1656 return retval;
1657}
1658
64769240 1659/*
b920c755
TT
1660 * This is a special get_blocks_t callback which is used by
1661 * ext4_da_write_begin(). It will either return mapped block or
1662 * reserve space for a single block.
29fa89d0
AK
1663 *
1664 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1665 * We also have b_blocknr = -1 and b_bdev initialized properly
1666 *
1667 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1668 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1669 * initialized properly.
64769240 1670 */
9c3569b5
TM
1671int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1672 struct buffer_head *bh, int create)
64769240 1673{
2ed88685 1674 struct ext4_map_blocks map;
64769240
AT
1675 int ret = 0;
1676
1677 BUG_ON(create == 0);
2ed88685
TT
1678 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1679
1680 map.m_lblk = iblock;
1681 map.m_len = 1;
64769240
AT
1682
1683 /*
1684 * first, we need to know whether the block is allocated already
1685 * preallocated blocks are unmapped but should treated
1686 * the same as allocated blocks.
1687 */
5356f261
AK
1688 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1689 if (ret <= 0)
2ed88685 1690 return ret;
64769240 1691
2ed88685
TT
1692 map_bh(bh, inode->i_sb, map.m_pblk);
1693 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1694
1695 if (buffer_unwritten(bh)) {
1696 /* A delayed write to unwritten bh should be marked
1697 * new and mapped. Mapped ensures that we don't do
1698 * get_block multiple times when we write to the same
1699 * offset and new ensures that we do proper zero out
1700 * for partial write.
1701 */
1702 set_buffer_new(bh);
c8205636 1703 set_buffer_mapped(bh);
2ed88685
TT
1704 }
1705 return 0;
64769240 1706}
61628a3f 1707
62e086be
AK
1708static int bget_one(handle_t *handle, struct buffer_head *bh)
1709{
1710 get_bh(bh);
1711 return 0;
1712}
1713
1714static int bput_one(handle_t *handle, struct buffer_head *bh)
1715{
1716 put_bh(bh);
1717 return 0;
1718}
1719
1720static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1721 unsigned int len)
1722{
1723 struct address_space *mapping = page->mapping;
1724 struct inode *inode = mapping->host;
3fdcfb66 1725 struct buffer_head *page_bufs = NULL;
62e086be 1726 handle_t *handle = NULL;
3fdcfb66
TM
1727 int ret = 0, err = 0;
1728 int inline_data = ext4_has_inline_data(inode);
1729 struct buffer_head *inode_bh = NULL;
62e086be 1730
cb20d518 1731 ClearPageChecked(page);
3fdcfb66
TM
1732
1733 if (inline_data) {
1734 BUG_ON(page->index != 0);
1735 BUG_ON(len > ext4_get_max_inline_size(inode));
1736 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1737 if (inode_bh == NULL)
1738 goto out;
1739 } else {
1740 page_bufs = page_buffers(page);
1741 if (!page_bufs) {
1742 BUG();
1743 goto out;
1744 }
1745 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1746 NULL, bget_one);
1747 }
62e086be
AK
1748 /* As soon as we unlock the page, it can go away, but we have
1749 * references to buffers so we are safe */
1750 unlock_page(page);
1751
9924a92a
TT
1752 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1753 ext4_writepage_trans_blocks(inode));
62e086be
AK
1754 if (IS_ERR(handle)) {
1755 ret = PTR_ERR(handle);
1756 goto out;
1757 }
1758
441c8508
CW
1759 BUG_ON(!ext4_handle_valid(handle));
1760
3fdcfb66
TM
1761 if (inline_data) {
1762 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 1763
3fdcfb66
TM
1764 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766 } else {
1767 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768 do_journal_get_write_access);
1769
1770 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771 write_end_fn);
1772 }
62e086be
AK
1773 if (ret == 0)
1774 ret = err;
2d859db3 1775 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1776 err = ext4_journal_stop(handle);
1777 if (!ret)
1778 ret = err;
1779
3fdcfb66 1780 if (!ext4_has_inline_data(inode))
8c9367fd 1781 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
3fdcfb66 1782 NULL, bput_one);
19f5fb7a 1783 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 1784out:
3fdcfb66 1785 brelse(inode_bh);
62e086be
AK
1786 return ret;
1787}
1788
61628a3f 1789/*
43ce1d23
AK
1790 * Note that we don't need to start a transaction unless we're journaling data
1791 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1792 * need to file the inode to the transaction's list in ordered mode because if
1793 * we are writing back data added by write(), the inode is already there and if
25985edc 1794 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1795 * transaction the data will hit the disk. In case we are journaling data, we
1796 * cannot start transaction directly because transaction start ranks above page
1797 * lock so we have to do some magic.
1798 *
b920c755 1799 * This function can get called via...
20970ba6 1800 * - ext4_writepages after taking page lock (have journal handle)
b920c755 1801 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1802 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1803 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1804 *
1805 * We don't do any block allocation in this function. If we have page with
1806 * multiple blocks we need to write those buffer_heads that are mapped. This
1807 * is important for mmaped based write. So if we do with blocksize 1K
1808 * truncate(f, 1024);
1809 * a = mmap(f, 0, 4096);
1810 * a[0] = 'a';
1811 * truncate(f, 4096);
1812 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1813 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1814 * do_wp_page). So writepage should write the first block. If we modify
1815 * the mmap area beyond 1024 we will again get a page_fault and the
1816 * page_mkwrite callback will do the block allocation and mark the
1817 * buffer_heads mapped.
1818 *
1819 * We redirty the page if we have any buffer_heads that is either delay or
1820 * unwritten in the page.
1821 *
1822 * We can get recursively called as show below.
1823 *
1824 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1825 * ext4_writepage()
1826 *
1827 * But since we don't do any block allocation we should not deadlock.
1828 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1829 */
43ce1d23 1830static int ext4_writepage(struct page *page,
62e086be 1831 struct writeback_control *wbc)
64769240 1832{
f8bec370 1833 int ret = 0;
61628a3f 1834 loff_t size;
498e5f24 1835 unsigned int len;
744692dc 1836 struct buffer_head *page_bufs = NULL;
61628a3f 1837 struct inode *inode = page->mapping->host;
36ade451 1838 struct ext4_io_submit io_submit;
61628a3f 1839
a9c667f8 1840 trace_ext4_writepage(page);
f0e6c985
AK
1841 size = i_size_read(inode);
1842 if (page->index == size >> PAGE_CACHE_SHIFT)
1843 len = size & ~PAGE_CACHE_MASK;
1844 else
1845 len = PAGE_CACHE_SIZE;
64769240 1846
a42afc5f 1847 page_bufs = page_buffers(page);
a42afc5f 1848 /*
fe386132
JK
1849 * We cannot do block allocation or other extent handling in this
1850 * function. If there are buffers needing that, we have to redirty
1851 * the page. But we may reach here when we do a journal commit via
1852 * journal_submit_inode_data_buffers() and in that case we must write
1853 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 1854 */
f19d5870
TM
1855 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1856 ext4_bh_delay_or_unwritten)) {
f8bec370 1857 redirty_page_for_writepage(wbc, page);
fe386132
JK
1858 if (current->flags & PF_MEMALLOC) {
1859 /*
1860 * For memory cleaning there's no point in writing only
1861 * some buffers. So just bail out. Warn if we came here
1862 * from direct reclaim.
1863 */
1864 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1865 == PF_MEMALLOC);
f0e6c985
AK
1866 unlock_page(page);
1867 return 0;
1868 }
a42afc5f 1869 }
64769240 1870
cb20d518 1871 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1872 /*
1873 * It's mmapped pagecache. Add buffers and journal it. There
1874 * doesn't seem much point in redirtying the page here.
1875 */
3f0ca309 1876 return __ext4_journalled_writepage(page, len);
43ce1d23 1877
97a851ed
JK
1878 ext4_io_submit_init(&io_submit, wbc);
1879 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1880 if (!io_submit.io_end) {
1881 redirty_page_for_writepage(wbc, page);
1882 unlock_page(page);
1883 return -ENOMEM;
1884 }
36ade451
JK
1885 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1886 ext4_io_submit(&io_submit);
97a851ed
JK
1887 /* Drop io_end reference we got from init */
1888 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
1889 return ret;
1890}
1891
5f1132b2
JK
1892static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1893{
1894 int len;
1895 loff_t size = i_size_read(mpd->inode);
1896 int err;
1897
1898 BUG_ON(page->index != mpd->first_page);
1899 if (page->index == size >> PAGE_CACHE_SHIFT)
1900 len = size & ~PAGE_CACHE_MASK;
1901 else
1902 len = PAGE_CACHE_SIZE;
1903 clear_page_dirty_for_io(page);
1904 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1905 if (!err)
1906 mpd->wbc->nr_to_write--;
1907 mpd->first_page++;
1908
1909 return err;
1910}
1911
4e7ea81d
JK
1912#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1913
61628a3f 1914/*
fffb2739
JK
1915 * mballoc gives us at most this number of blocks...
1916 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
70261f56 1917 * The rest of mballoc seems to handle chunks up to full group size.
61628a3f 1918 */
fffb2739 1919#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 1920
4e7ea81d
JK
1921/*
1922 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1923 *
1924 * @mpd - extent of blocks
1925 * @lblk - logical number of the block in the file
09930042 1926 * @bh - buffer head we want to add to the extent
4e7ea81d 1927 *
09930042
JK
1928 * The function is used to collect contig. blocks in the same state. If the
1929 * buffer doesn't require mapping for writeback and we haven't started the
1930 * extent of buffers to map yet, the function returns 'true' immediately - the
1931 * caller can write the buffer right away. Otherwise the function returns true
1932 * if the block has been added to the extent, false if the block couldn't be
1933 * added.
4e7ea81d 1934 */
09930042
JK
1935static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1936 struct buffer_head *bh)
4e7ea81d
JK
1937{
1938 struct ext4_map_blocks *map = &mpd->map;
1939
09930042
JK
1940 /* Buffer that doesn't need mapping for writeback? */
1941 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1942 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1943 /* So far no extent to map => we write the buffer right away */
1944 if (map->m_len == 0)
1945 return true;
1946 return false;
1947 }
4e7ea81d
JK
1948
1949 /* First block in the extent? */
1950 if (map->m_len == 0) {
1951 map->m_lblk = lblk;
1952 map->m_len = 1;
09930042
JK
1953 map->m_flags = bh->b_state & BH_FLAGS;
1954 return true;
4e7ea81d
JK
1955 }
1956
09930042
JK
1957 /* Don't go larger than mballoc is willing to allocate */
1958 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1959 return false;
1960
4e7ea81d
JK
1961 /* Can we merge the block to our big extent? */
1962 if (lblk == map->m_lblk + map->m_len &&
09930042 1963 (bh->b_state & BH_FLAGS) == map->m_flags) {
4e7ea81d 1964 map->m_len++;
09930042 1965 return true;
4e7ea81d 1966 }
09930042 1967 return false;
4e7ea81d
JK
1968}
1969
5f1132b2
JK
1970/*
1971 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1972 *
1973 * @mpd - extent of blocks for mapping
1974 * @head - the first buffer in the page
1975 * @bh - buffer we should start processing from
1976 * @lblk - logical number of the block in the file corresponding to @bh
1977 *
1978 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1979 * the page for IO if all buffers in this page were mapped and there's no
1980 * accumulated extent of buffers to map or add buffers in the page to the
1981 * extent of buffers to map. The function returns 1 if the caller can continue
1982 * by processing the next page, 0 if it should stop adding buffers to the
1983 * extent to map because we cannot extend it anymore. It can also return value
1984 * < 0 in case of error during IO submission.
1985 */
1986static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1987 struct buffer_head *head,
1988 struct buffer_head *bh,
1989 ext4_lblk_t lblk)
4e7ea81d
JK
1990{
1991 struct inode *inode = mpd->inode;
5f1132b2 1992 int err;
4e7ea81d
JK
1993 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1994 >> inode->i_blkbits;
1995
1996 do {
1997 BUG_ON(buffer_locked(bh));
1998
09930042 1999 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
4e7ea81d
JK
2000 /* Found extent to map? */
2001 if (mpd->map.m_len)
5f1132b2 2002 return 0;
09930042 2003 /* Everything mapped so far and we hit EOF */
5f1132b2 2004 break;
4e7ea81d 2005 }
4e7ea81d 2006 } while (lblk++, (bh = bh->b_this_page) != head);
5f1132b2
JK
2007 /* So far everything mapped? Submit the page for IO. */
2008 if (mpd->map.m_len == 0) {
2009 err = mpage_submit_page(mpd, head->b_page);
2010 if (err < 0)
2011 return err;
2012 }
2013 return lblk < blocks;
4e7ea81d
JK
2014}
2015
2016/*
2017 * mpage_map_buffers - update buffers corresponding to changed extent and
2018 * submit fully mapped pages for IO
2019 *
2020 * @mpd - description of extent to map, on return next extent to map
2021 *
2022 * Scan buffers corresponding to changed extent (we expect corresponding pages
2023 * to be already locked) and update buffer state according to new extent state.
2024 * We map delalloc buffers to their physical location, clear unwritten bits,
2025 * and mark buffers as uninit when we perform writes to uninitialized extents
2026 * and do extent conversion after IO is finished. If the last page is not fully
2027 * mapped, we update @map to the next extent in the last page that needs
2028 * mapping. Otherwise we submit the page for IO.
2029 */
2030static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2031{
2032 struct pagevec pvec;
2033 int nr_pages, i;
2034 struct inode *inode = mpd->inode;
2035 struct buffer_head *head, *bh;
2036 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
4e7ea81d
JK
2037 pgoff_t start, end;
2038 ext4_lblk_t lblk;
2039 sector_t pblock;
2040 int err;
2041
2042 start = mpd->map.m_lblk >> bpp_bits;
2043 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2044 lblk = start << bpp_bits;
2045 pblock = mpd->map.m_pblk;
2046
2047 pagevec_init(&pvec, 0);
2048 while (start <= end) {
2049 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2050 PAGEVEC_SIZE);
2051 if (nr_pages == 0)
2052 break;
2053 for (i = 0; i < nr_pages; i++) {
2054 struct page *page = pvec.pages[i];
2055
2056 if (page->index > end)
2057 break;
70261f56 2058 /* Up to 'end' pages must be contiguous */
4e7ea81d
JK
2059 BUG_ON(page->index != start);
2060 bh = head = page_buffers(page);
2061 do {
2062 if (lblk < mpd->map.m_lblk)
2063 continue;
2064 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2065 /*
2066 * Buffer after end of mapped extent.
2067 * Find next buffer in the page to map.
2068 */
2069 mpd->map.m_len = 0;
2070 mpd->map.m_flags = 0;
5f1132b2
JK
2071 /*
2072 * FIXME: If dioread_nolock supports
2073 * blocksize < pagesize, we need to make
2074 * sure we add size mapped so far to
2075 * io_end->size as the following call
2076 * can submit the page for IO.
2077 */
2078 err = mpage_process_page_bufs(mpd, head,
2079 bh, lblk);
4e7ea81d 2080 pagevec_release(&pvec);
5f1132b2
JK
2081 if (err > 0)
2082 err = 0;
2083 return err;
4e7ea81d
JK
2084 }
2085 if (buffer_delay(bh)) {
2086 clear_buffer_delay(bh);
2087 bh->b_blocknr = pblock++;
2088 }
4e7ea81d 2089 clear_buffer_unwritten(bh);
5f1132b2 2090 } while (lblk++, (bh = bh->b_this_page) != head);
4e7ea81d
JK
2091
2092 /*
2093 * FIXME: This is going to break if dioread_nolock
2094 * supports blocksize < pagesize as we will try to
2095 * convert potentially unmapped parts of inode.
2096 */
2097 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2098 /* Page fully mapped - let IO run! */
2099 err = mpage_submit_page(mpd, page);
2100 if (err < 0) {
2101 pagevec_release(&pvec);
2102 return err;
2103 }
2104 start++;
2105 }
2106 pagevec_release(&pvec);
2107 }
2108 /* Extent fully mapped and matches with page boundary. We are done. */
2109 mpd->map.m_len = 0;
2110 mpd->map.m_flags = 0;
2111 return 0;
2112}
2113
2114static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2115{
2116 struct inode *inode = mpd->inode;
2117 struct ext4_map_blocks *map = &mpd->map;
2118 int get_blocks_flags;
2119 int err;
2120
2121 trace_ext4_da_write_pages_extent(inode, map);
2122 /*
2123 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2124 * to convert an uninitialized extent to be initialized (in the case
2125 * where we have written into one or more preallocated blocks). It is
2126 * possible that we're going to need more metadata blocks than
2127 * previously reserved. However we must not fail because we're in
2128 * writeback and there is nothing we can do about it so it might result
2129 * in data loss. So use reserved blocks to allocate metadata if
2130 * possible.
2131 *
2132 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2133 * in question are delalloc blocks. This affects functions in many
2134 * different parts of the allocation call path. This flag exists
2135 * primarily because we don't want to change *many* call functions, so
2136 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2137 * once the inode's allocation semaphore is taken.
2138 */
2139 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2140 EXT4_GET_BLOCKS_METADATA_NOFAIL;
2141 if (ext4_should_dioread_nolock(inode))
2142 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2143 if (map->m_flags & (1 << BH_Delay))
2144 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2145
2146 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2147 if (err < 0)
2148 return err;
6b523df4
JK
2149 if (map->m_flags & EXT4_MAP_UNINIT) {
2150 if (!mpd->io_submit.io_end->handle &&
2151 ext4_handle_valid(handle)) {
2152 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2153 handle->h_rsv_handle = NULL;
2154 }
3613d228 2155 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
6b523df4 2156 }
4e7ea81d
JK
2157
2158 BUG_ON(map->m_len == 0);
2159 if (map->m_flags & EXT4_MAP_NEW) {
2160 struct block_device *bdev = inode->i_sb->s_bdev;
2161 int i;
2162
2163 for (i = 0; i < map->m_len; i++)
2164 unmap_underlying_metadata(bdev, map->m_pblk + i);
2165 }
2166 return 0;
2167}
2168
2169/*
2170 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2171 * mpd->len and submit pages underlying it for IO
2172 *
2173 * @handle - handle for journal operations
2174 * @mpd - extent to map
7534e854
JK
2175 * @give_up_on_write - we set this to true iff there is a fatal error and there
2176 * is no hope of writing the data. The caller should discard
2177 * dirty pages to avoid infinite loops.
4e7ea81d
JK
2178 *
2179 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2180 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2181 * them to initialized or split the described range from larger unwritten
2182 * extent. Note that we need not map all the described range since allocation
2183 * can return less blocks or the range is covered by more unwritten extents. We
2184 * cannot map more because we are limited by reserved transaction credits. On
2185 * the other hand we always make sure that the last touched page is fully
2186 * mapped so that it can be written out (and thus forward progress is
2187 * guaranteed). After mapping we submit all mapped pages for IO.
2188 */
2189static int mpage_map_and_submit_extent(handle_t *handle,
cb530541
TT
2190 struct mpage_da_data *mpd,
2191 bool *give_up_on_write)
4e7ea81d
JK
2192{
2193 struct inode *inode = mpd->inode;
2194 struct ext4_map_blocks *map = &mpd->map;
2195 int err;
2196 loff_t disksize;
2197
2198 mpd->io_submit.io_end->offset =
2199 ((loff_t)map->m_lblk) << inode->i_blkbits;
27d7c4ed 2200 do {
4e7ea81d
JK
2201 err = mpage_map_one_extent(handle, mpd);
2202 if (err < 0) {
2203 struct super_block *sb = inode->i_sb;
2204
cb530541
TT
2205 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2206 goto invalidate_dirty_pages;
4e7ea81d 2207 /*
cb530541
TT
2208 * Let the uper layers retry transient errors.
2209 * In the case of ENOSPC, if ext4_count_free_blocks()
2210 * is non-zero, a commit should free up blocks.
4e7ea81d 2211 */
cb530541
TT
2212 if ((err == -ENOMEM) ||
2213 (err == -ENOSPC && ext4_count_free_clusters(sb)))
2214 return err;
2215 ext4_msg(sb, KERN_CRIT,
2216 "Delayed block allocation failed for "
2217 "inode %lu at logical offset %llu with"
2218 " max blocks %u with error %d",
2219 inode->i_ino,
2220 (unsigned long long)map->m_lblk,
2221 (unsigned)map->m_len, -err);
2222 ext4_msg(sb, KERN_CRIT,
2223 "This should not happen!! Data will "
2224 "be lost\n");
2225 if (err == -ENOSPC)
2226 ext4_print_free_blocks(inode);
2227 invalidate_dirty_pages:
2228 *give_up_on_write = true;
4e7ea81d
JK
2229 return err;
2230 }
2231 /*
2232 * Update buffer state, submit mapped pages, and get us new
2233 * extent to map
2234 */
2235 err = mpage_map_and_submit_buffers(mpd);
2236 if (err < 0)
2237 return err;
27d7c4ed 2238 } while (map->m_len);
4e7ea81d
JK
2239
2240 /* Update on-disk size after IO is submitted */
2241 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
4e7ea81d
JK
2242 if (disksize > EXT4_I(inode)->i_disksize) {
2243 int err2;
2244
90e775b7 2245 ext4_wb_update_i_disksize(inode, disksize);
4e7ea81d
JK
2246 err2 = ext4_mark_inode_dirty(handle, inode);
2247 if (err2)
2248 ext4_error(inode->i_sb,
2249 "Failed to mark inode %lu dirty",
2250 inode->i_ino);
2251 if (!err)
2252 err = err2;
2253 }
2254 return err;
2255}
2256
fffb2739
JK
2257/*
2258 * Calculate the total number of credits to reserve for one writepages
20970ba6 2259 * iteration. This is called from ext4_writepages(). We map an extent of
70261f56 2260 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
fffb2739
JK
2261 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2262 * bpp - 1 blocks in bpp different extents.
2263 */
525f4ed8
MC
2264static int ext4_da_writepages_trans_blocks(struct inode *inode)
2265{
fffb2739 2266 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2267
fffb2739
JK
2268 return ext4_meta_trans_blocks(inode,
2269 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2270}
61628a3f 2271
8e48dcfb 2272/*
4e7ea81d
JK
2273 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2274 * and underlying extent to map
2275 *
2276 * @mpd - where to look for pages
2277 *
2278 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2279 * IO immediately. When we find a page which isn't mapped we start accumulating
2280 * extent of buffers underlying these pages that needs mapping (formed by
2281 * either delayed or unwritten buffers). We also lock the pages containing
2282 * these buffers. The extent found is returned in @mpd structure (starting at
2283 * mpd->lblk with length mpd->len blocks).
2284 *
2285 * Note that this function can attach bios to one io_end structure which are
2286 * neither logically nor physically contiguous. Although it may seem as an
2287 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2288 * case as we need to track IO to all buffers underlying a page in one io_end.
8e48dcfb 2289 */
4e7ea81d 2290static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
8e48dcfb 2291{
4e7ea81d
JK
2292 struct address_space *mapping = mpd->inode->i_mapping;
2293 struct pagevec pvec;
2294 unsigned int nr_pages;
aeac589a 2295 long left = mpd->wbc->nr_to_write;
4e7ea81d
JK
2296 pgoff_t index = mpd->first_page;
2297 pgoff_t end = mpd->last_page;
2298 int tag;
2299 int i, err = 0;
2300 int blkbits = mpd->inode->i_blkbits;
2301 ext4_lblk_t lblk;
2302 struct buffer_head *head;
8e48dcfb 2303
4e7ea81d 2304 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
5b41d924
ES
2305 tag = PAGECACHE_TAG_TOWRITE;
2306 else
2307 tag = PAGECACHE_TAG_DIRTY;
2308
4e7ea81d
JK
2309 pagevec_init(&pvec, 0);
2310 mpd->map.m_len = 0;
2311 mpd->next_page = index;
4f01b02c 2312 while (index <= end) {
5b41d924 2313 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2314 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2315 if (nr_pages == 0)
4e7ea81d 2316 goto out;
8e48dcfb
TT
2317
2318 for (i = 0; i < nr_pages; i++) {
2319 struct page *page = pvec.pages[i];
2320
2321 /*
2322 * At this point, the page may be truncated or
2323 * invalidated (changing page->mapping to NULL), or
2324 * even swizzled back from swapper_space to tmpfs file
2325 * mapping. However, page->index will not change
2326 * because we have a reference on the page.
2327 */
4f01b02c
TT
2328 if (page->index > end)
2329 goto out;
8e48dcfb 2330
aeac589a
ML
2331 /*
2332 * Accumulated enough dirty pages? This doesn't apply
2333 * to WB_SYNC_ALL mode. For integrity sync we have to
2334 * keep going because someone may be concurrently
2335 * dirtying pages, and we might have synced a lot of
2336 * newly appeared dirty pages, but have not synced all
2337 * of the old dirty pages.
2338 */
2339 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2340 goto out;
2341
4e7ea81d
JK
2342 /* If we can't merge this page, we are done. */
2343 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2344 goto out;
78aaced3 2345
8e48dcfb 2346 lock_page(page);
8e48dcfb 2347 /*
4e7ea81d
JK
2348 * If the page is no longer dirty, or its mapping no
2349 * longer corresponds to inode we are writing (which
2350 * means it has been truncated or invalidated), or the
2351 * page is already under writeback and we are not doing
2352 * a data integrity writeback, skip the page
8e48dcfb 2353 */
4f01b02c
TT
2354 if (!PageDirty(page) ||
2355 (PageWriteback(page) &&
4e7ea81d 2356 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
4f01b02c 2357 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2358 unlock_page(page);
2359 continue;
2360 }
2361
7cb1a535 2362 wait_on_page_writeback(page);
8e48dcfb 2363 BUG_ON(PageWriteback(page));
8e48dcfb 2364
4e7ea81d 2365 if (mpd->map.m_len == 0)
8eb9e5ce 2366 mpd->first_page = page->index;
8eb9e5ce 2367 mpd->next_page = page->index + 1;
f8bec370 2368 /* Add all dirty buffers to mpd */
4e7ea81d
JK
2369 lblk = ((ext4_lblk_t)page->index) <<
2370 (PAGE_CACHE_SHIFT - blkbits);
f8bec370 2371 head = page_buffers(page);
5f1132b2
JK
2372 err = mpage_process_page_bufs(mpd, head, head, lblk);
2373 if (err <= 0)
4e7ea81d 2374 goto out;
5f1132b2 2375 err = 0;
aeac589a 2376 left--;
8e48dcfb
TT
2377 }
2378 pagevec_release(&pvec);
2379 cond_resched();
2380 }
4f01b02c 2381 return 0;
8eb9e5ce
TT
2382out:
2383 pagevec_release(&pvec);
4e7ea81d 2384 return err;
8e48dcfb
TT
2385}
2386
20970ba6
TT
2387static int __writepage(struct page *page, struct writeback_control *wbc,
2388 void *data)
2389{
2390 struct address_space *mapping = data;
2391 int ret = ext4_writepage(page, wbc);
2392 mapping_set_error(mapping, ret);
2393 return ret;
2394}
2395
2396static int ext4_writepages(struct address_space *mapping,
2397 struct writeback_control *wbc)
64769240 2398{
4e7ea81d
JK
2399 pgoff_t writeback_index = 0;
2400 long nr_to_write = wbc->nr_to_write;
22208ded 2401 int range_whole = 0;
4e7ea81d 2402 int cycled = 1;
61628a3f 2403 handle_t *handle = NULL;
df22291f 2404 struct mpage_da_data mpd;
5e745b04 2405 struct inode *inode = mapping->host;
6b523df4 2406 int needed_blocks, rsv_blocks = 0, ret = 0;
5e745b04 2407 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
4e7ea81d 2408 bool done;
1bce63d1 2409 struct blk_plug plug;
cb530541 2410 bool give_up_on_write = false;
61628a3f 2411
20970ba6 2412 trace_ext4_writepages(inode, wbc);
ba80b101 2413
61628a3f
MC
2414 /*
2415 * No pages to write? This is mainly a kludge to avoid starting
2416 * a transaction for special inodes like journal inode on last iput()
2417 * because that could violate lock ordering on umount
2418 */
a1d6cc56 2419 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
bbf023c7 2420 goto out_writepages;
2a21e37e 2421
20970ba6
TT
2422 if (ext4_should_journal_data(inode)) {
2423 struct blk_plug plug;
20970ba6
TT
2424
2425 blk_start_plug(&plug);
2426 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2427 blk_finish_plug(&plug);
bbf023c7 2428 goto out_writepages;
20970ba6
TT
2429 }
2430
2a21e37e
TT
2431 /*
2432 * If the filesystem has aborted, it is read-only, so return
2433 * right away instead of dumping stack traces later on that
2434 * will obscure the real source of the problem. We test
4ab2f15b 2435 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e 2436 * the latter could be true if the filesystem is mounted
20970ba6 2437 * read-only, and in that case, ext4_writepages should
2a21e37e
TT
2438 * *never* be called, so if that ever happens, we would want
2439 * the stack trace.
2440 */
bbf023c7
ML
2441 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2442 ret = -EROFS;
2443 goto out_writepages;
2444 }
2a21e37e 2445
6b523df4
JK
2446 if (ext4_should_dioread_nolock(inode)) {
2447 /*
70261f56 2448 * We may need to convert up to one extent per block in
6b523df4
JK
2449 * the page and we may dirty the inode.
2450 */
2451 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2452 }
2453
4e7ea81d
JK
2454 /*
2455 * If we have inline data and arrive here, it means that
2456 * we will soon create the block for the 1st page, so
2457 * we'd better clear the inline data here.
2458 */
2459 if (ext4_has_inline_data(inode)) {
2460 /* Just inode will be modified... */
2461 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2462 if (IS_ERR(handle)) {
2463 ret = PTR_ERR(handle);
2464 goto out_writepages;
2465 }
2466 BUG_ON(ext4_test_inode_state(inode,
2467 EXT4_STATE_MAY_INLINE_DATA));
2468 ext4_destroy_inline_data(handle, inode);
2469 ext4_journal_stop(handle);
2470 }
2471
22208ded
AK
2472 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2473 range_whole = 1;
61628a3f 2474
2acf2c26 2475 if (wbc->range_cyclic) {
4e7ea81d
JK
2476 writeback_index = mapping->writeback_index;
2477 if (writeback_index)
2acf2c26 2478 cycled = 0;
4e7ea81d
JK
2479 mpd.first_page = writeback_index;
2480 mpd.last_page = -1;
5b41d924 2481 } else {
4e7ea81d
JK
2482 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2483 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
5b41d924 2484 }
a1d6cc56 2485
4e7ea81d
JK
2486 mpd.inode = inode;
2487 mpd.wbc = wbc;
2488 ext4_io_submit_init(&mpd.io_submit, wbc);
2acf2c26 2489retry:
6e6938b6 2490 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4e7ea81d
JK
2491 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2492 done = false;
1bce63d1 2493 blk_start_plug(&plug);
4e7ea81d
JK
2494 while (!done && mpd.first_page <= mpd.last_page) {
2495 /* For each extent of pages we use new io_end */
2496 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2497 if (!mpd.io_submit.io_end) {
2498 ret = -ENOMEM;
2499 break;
2500 }
a1d6cc56
AK
2501
2502 /*
4e7ea81d
JK
2503 * We have two constraints: We find one extent to map and we
2504 * must always write out whole page (makes a difference when
2505 * blocksize < pagesize) so that we don't block on IO when we
2506 * try to write out the rest of the page. Journalled mode is
2507 * not supported by delalloc.
a1d6cc56
AK
2508 */
2509 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2510 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2511
4e7ea81d 2512 /* start a new transaction */
6b523df4
JK
2513 handle = ext4_journal_start_with_reserve(inode,
2514 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
61628a3f
MC
2515 if (IS_ERR(handle)) {
2516 ret = PTR_ERR(handle);
1693918e 2517 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2518 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2519 wbc->nr_to_write, inode->i_ino, ret);
4e7ea81d
JK
2520 /* Release allocated io_end */
2521 ext4_put_io_end(mpd.io_submit.io_end);
2522 break;
61628a3f 2523 }
f63e6005 2524
4e7ea81d
JK
2525 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2526 ret = mpage_prepare_extent_to_map(&mpd);
2527 if (!ret) {
2528 if (mpd.map.m_len)
cb530541
TT
2529 ret = mpage_map_and_submit_extent(handle, &mpd,
2530 &give_up_on_write);
4e7ea81d
JK
2531 else {
2532 /*
2533 * We scanned the whole range (or exhausted
2534 * nr_to_write), submitted what was mapped and
2535 * didn't find anything needing mapping. We are
2536 * done.
2537 */
2538 done = true;
2539 }
f63e6005 2540 }
61628a3f 2541 ext4_journal_stop(handle);
4e7ea81d
JK
2542 /* Submit prepared bio */
2543 ext4_io_submit(&mpd.io_submit);
2544 /* Unlock pages we didn't use */
cb530541 2545 mpage_release_unused_pages(&mpd, give_up_on_write);
4e7ea81d
JK
2546 /* Drop our io_end reference we got from init */
2547 ext4_put_io_end(mpd.io_submit.io_end);
2548
2549 if (ret == -ENOSPC && sbi->s_journal) {
2550 /*
2551 * Commit the transaction which would
22208ded
AK
2552 * free blocks released in the transaction
2553 * and try again
2554 */
df22291f 2555 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded 2556 ret = 0;
4e7ea81d
JK
2557 continue;
2558 }
2559 /* Fatal error - ENOMEM, EIO... */
2560 if (ret)
61628a3f 2561 break;
a1d6cc56 2562 }
1bce63d1 2563 blk_finish_plug(&plug);
9c12a831 2564 if (!ret && !cycled && wbc->nr_to_write > 0) {
2acf2c26 2565 cycled = 1;
4e7ea81d
JK
2566 mpd.last_page = writeback_index - 1;
2567 mpd.first_page = 0;
2acf2c26
AK
2568 goto retry;
2569 }
22208ded
AK
2570
2571 /* Update index */
22208ded
AK
2572 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2573 /*
4e7ea81d 2574 * Set the writeback_index so that range_cyclic
22208ded
AK
2575 * mode will write it back later
2576 */
4e7ea81d 2577 mapping->writeback_index = mpd.first_page;
a1d6cc56 2578
61628a3f 2579out_writepages:
20970ba6
TT
2580 trace_ext4_writepages_result(inode, wbc, ret,
2581 nr_to_write - wbc->nr_to_write);
61628a3f 2582 return ret;
64769240
AT
2583}
2584
79f0be8d
AK
2585static int ext4_nonda_switch(struct super_block *sb)
2586{
5c1ff336 2587 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2588 struct ext4_sb_info *sbi = EXT4_SB(sb);
2589
2590 /*
2591 * switch to non delalloc mode if we are running low
2592 * on free block. The free block accounting via percpu
179f7ebf 2593 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2594 * accumulated on each CPU without updating global counters
2595 * Delalloc need an accurate free block accounting. So switch
2596 * to non delalloc when we are near to error range.
2597 */
5c1ff336
EW
2598 free_clusters =
2599 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2600 dirty_clusters =
2601 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2602 /*
2603 * Start pushing delalloc when 1/2 of free blocks are dirty.
2604 */
5c1ff336 2605 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2606 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2607
5c1ff336
EW
2608 if (2 * free_clusters < 3 * dirty_clusters ||
2609 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2610 /*
c8afb446
ES
2611 * free block count is less than 150% of dirty blocks
2612 * or free blocks is less than watermark
79f0be8d
AK
2613 */
2614 return 1;
2615 }
2616 return 0;
2617}
2618
64769240 2619static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2620 loff_t pos, unsigned len, unsigned flags,
2621 struct page **pagep, void **fsdata)
64769240 2622{
72b8ab9d 2623 int ret, retries = 0;
64769240
AT
2624 struct page *page;
2625 pgoff_t index;
64769240
AT
2626 struct inode *inode = mapping->host;
2627 handle_t *handle;
2628
2629 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2630
2631 if (ext4_nonda_switch(inode->i_sb)) {
2632 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2633 return ext4_write_begin(file, mapping, pos,
2634 len, flags, pagep, fsdata);
2635 }
2636 *fsdata = (void *)0;
9bffad1e 2637 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2638
2639 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2640 ret = ext4_da_write_inline_data_begin(mapping, inode,
2641 pos, len, flags,
2642 pagep, fsdata);
2643 if (ret < 0)
47564bfb
TT
2644 return ret;
2645 if (ret == 1)
2646 return 0;
9c3569b5
TM
2647 }
2648
47564bfb
TT
2649 /*
2650 * grab_cache_page_write_begin() can take a long time if the
2651 * system is thrashing due to memory pressure, or if the page
2652 * is being written back. So grab it first before we start
2653 * the transaction handle. This also allows us to allocate
2654 * the page (if needed) without using GFP_NOFS.
2655 */
2656retry_grab:
2657 page = grab_cache_page_write_begin(mapping, index, flags);
2658 if (!page)
2659 return -ENOMEM;
2660 unlock_page(page);
2661
64769240
AT
2662 /*
2663 * With delayed allocation, we don't log the i_disksize update
2664 * if there is delayed block allocation. But we still need
2665 * to journalling the i_disksize update if writes to the end
2666 * of file which has an already mapped buffer.
2667 */
47564bfb 2668retry_journal:
9924a92a 2669 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2670 if (IS_ERR(handle)) {
47564bfb
TT
2671 page_cache_release(page);
2672 return PTR_ERR(handle);
64769240
AT
2673 }
2674
47564bfb
TT
2675 lock_page(page);
2676 if (page->mapping != mapping) {
2677 /* The page got truncated from under us */
2678 unlock_page(page);
2679 page_cache_release(page);
d5a0d4f7 2680 ext4_journal_stop(handle);
47564bfb 2681 goto retry_grab;
d5a0d4f7 2682 }
47564bfb 2683 /* In case writeback began while the page was unlocked */
7afe5aa5 2684 wait_for_stable_page(page);
64769240 2685
6e1db88d 2686 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2687 if (ret < 0) {
2688 unlock_page(page);
2689 ext4_journal_stop(handle);
ae4d5372
AK
2690 /*
2691 * block_write_begin may have instantiated a few blocks
2692 * outside i_size. Trim these off again. Don't need
2693 * i_size_read because we hold i_mutex.
2694 */
2695 if (pos + len > inode->i_size)
b9a4207d 2696 ext4_truncate_failed_write(inode);
47564bfb
TT
2697
2698 if (ret == -ENOSPC &&
2699 ext4_should_retry_alloc(inode->i_sb, &retries))
2700 goto retry_journal;
2701
2702 page_cache_release(page);
2703 return ret;
64769240
AT
2704 }
2705
47564bfb 2706 *pagep = page;
64769240
AT
2707 return ret;
2708}
2709
632eaeab
MC
2710/*
2711 * Check if we should update i_disksize
2712 * when write to the end of file but not require block allocation
2713 */
2714static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2715 unsigned long offset)
632eaeab
MC
2716{
2717 struct buffer_head *bh;
2718 struct inode *inode = page->mapping->host;
2719 unsigned int idx;
2720 int i;
2721
2722 bh = page_buffers(page);
2723 idx = offset >> inode->i_blkbits;
2724
af5bc92d 2725 for (i = 0; i < idx; i++)
632eaeab
MC
2726 bh = bh->b_this_page;
2727
29fa89d0 2728 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2729 return 0;
2730 return 1;
2731}
2732
64769240 2733static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2734 struct address_space *mapping,
2735 loff_t pos, unsigned len, unsigned copied,
2736 struct page *page, void *fsdata)
64769240
AT
2737{
2738 struct inode *inode = mapping->host;
2739 int ret = 0, ret2;
2740 handle_t *handle = ext4_journal_current_handle();
2741 loff_t new_i_size;
632eaeab 2742 unsigned long start, end;
79f0be8d
AK
2743 int write_mode = (int)(unsigned long)fsdata;
2744
74d553aa
TT
2745 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2746 return ext4_write_end(file, mapping, pos,
2747 len, copied, page, fsdata);
632eaeab 2748
9bffad1e 2749 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2750 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2751 end = start + copied - 1;
64769240
AT
2752
2753 /*
2754 * generic_write_end() will run mark_inode_dirty() if i_size
2755 * changes. So let's piggyback the i_disksize mark_inode_dirty
2756 * into that.
2757 */
64769240 2758 new_i_size = pos + copied;
ea51d132 2759 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2760 if (ext4_has_inline_data(inode) ||
2761 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2762 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2763 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2764 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2765 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2766 /* We need to mark inode dirty even if
2767 * new_i_size is less that inode->i_size
2768 * bu greater than i_disksize.(hint delalloc)
2769 */
2770 ext4_mark_inode_dirty(handle, inode);
64769240 2771 }
632eaeab 2772 }
9c3569b5
TM
2773
2774 if (write_mode != CONVERT_INLINE_DATA &&
2775 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2776 ext4_has_inline_data(inode))
2777 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2778 page);
2779 else
2780 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2781 page, fsdata);
9c3569b5 2782
64769240
AT
2783 copied = ret2;
2784 if (ret2 < 0)
2785 ret = ret2;
2786 ret2 = ext4_journal_stop(handle);
2787 if (!ret)
2788 ret = ret2;
2789
2790 return ret ? ret : copied;
2791}
2792
d47992f8
LC
2793static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2794 unsigned int length)
64769240 2795{
64769240
AT
2796 /*
2797 * Drop reserved blocks
2798 */
2799 BUG_ON(!PageLocked(page));
2800 if (!page_has_buffers(page))
2801 goto out;
2802
ca99fdd2 2803 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2804
2805out:
d47992f8 2806 ext4_invalidatepage(page, offset, length);
64769240
AT
2807
2808 return;
2809}
2810
ccd2506b
TT
2811/*
2812 * Force all delayed allocation blocks to be allocated for a given inode.
2813 */
2814int ext4_alloc_da_blocks(struct inode *inode)
2815{
fb40ba0d
TT
2816 trace_ext4_alloc_da_blocks(inode);
2817
ccd2506b
TT
2818 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2819 !EXT4_I(inode)->i_reserved_meta_blocks)
2820 return 0;
2821
2822 /*
2823 * We do something simple for now. The filemap_flush() will
2824 * also start triggering a write of the data blocks, which is
2825 * not strictly speaking necessary (and for users of
2826 * laptop_mode, not even desirable). However, to do otherwise
2827 * would require replicating code paths in:
de9a55b8 2828 *
20970ba6 2829 * ext4_writepages() ->
ccd2506b
TT
2830 * write_cache_pages() ---> (via passed in callback function)
2831 * __mpage_da_writepage() -->
2832 * mpage_add_bh_to_extent()
2833 * mpage_da_map_blocks()
2834 *
2835 * The problem is that write_cache_pages(), located in
2836 * mm/page-writeback.c, marks pages clean in preparation for
2837 * doing I/O, which is not desirable if we're not planning on
2838 * doing I/O at all.
2839 *
2840 * We could call write_cache_pages(), and then redirty all of
380cf090 2841 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2842 * would be ugly in the extreme. So instead we would need to
2843 * replicate parts of the code in the above functions,
25985edc 2844 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2845 * write out the pages, but rather only collect contiguous
2846 * logical block extents, call the multi-block allocator, and
2847 * then update the buffer heads with the block allocations.
de9a55b8 2848 *
ccd2506b
TT
2849 * For now, though, we'll cheat by calling filemap_flush(),
2850 * which will map the blocks, and start the I/O, but not
2851 * actually wait for the I/O to complete.
2852 */
2853 return filemap_flush(inode->i_mapping);
2854}
64769240 2855
ac27a0ec
DK
2856/*
2857 * bmap() is special. It gets used by applications such as lilo and by
2858 * the swapper to find the on-disk block of a specific piece of data.
2859 *
2860 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2861 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2862 * filesystem and enables swap, then they may get a nasty shock when the
2863 * data getting swapped to that swapfile suddenly gets overwritten by
2864 * the original zero's written out previously to the journal and
2865 * awaiting writeback in the kernel's buffer cache.
2866 *
2867 * So, if we see any bmap calls here on a modified, data-journaled file,
2868 * take extra steps to flush any blocks which might be in the cache.
2869 */
617ba13b 2870static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2871{
2872 struct inode *inode = mapping->host;
2873 journal_t *journal;
2874 int err;
2875
46c7f254
TM
2876 /*
2877 * We can get here for an inline file via the FIBMAP ioctl
2878 */
2879 if (ext4_has_inline_data(inode))
2880 return 0;
2881
64769240
AT
2882 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2883 test_opt(inode->i_sb, DELALLOC)) {
2884 /*
2885 * With delalloc we want to sync the file
2886 * so that we can make sure we allocate
2887 * blocks for file
2888 */
2889 filemap_write_and_wait(mapping);
2890 }
2891
19f5fb7a
TT
2892 if (EXT4_JOURNAL(inode) &&
2893 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2894 /*
2895 * This is a REALLY heavyweight approach, but the use of
2896 * bmap on dirty files is expected to be extremely rare:
2897 * only if we run lilo or swapon on a freshly made file
2898 * do we expect this to happen.
2899 *
2900 * (bmap requires CAP_SYS_RAWIO so this does not
2901 * represent an unprivileged user DOS attack --- we'd be
2902 * in trouble if mortal users could trigger this path at
2903 * will.)
2904 *
617ba13b 2905 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2906 * regular files. If somebody wants to bmap a directory
2907 * or symlink and gets confused because the buffer
2908 * hasn't yet been flushed to disk, they deserve
2909 * everything they get.
2910 */
2911
19f5fb7a 2912 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2913 journal = EXT4_JOURNAL(inode);
dab291af
MC
2914 jbd2_journal_lock_updates(journal);
2915 err = jbd2_journal_flush(journal);
2916 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2917
2918 if (err)
2919 return 0;
2920 }
2921
af5bc92d 2922 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2923}
2924
617ba13b 2925static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2926{
46c7f254
TM
2927 int ret = -EAGAIN;
2928 struct inode *inode = page->mapping->host;
2929
0562e0ba 2930 trace_ext4_readpage(page);
46c7f254
TM
2931
2932 if (ext4_has_inline_data(inode))
2933 ret = ext4_readpage_inline(inode, page);
2934
2935 if (ret == -EAGAIN)
2936 return mpage_readpage(page, ext4_get_block);
2937
2938 return ret;
ac27a0ec
DK
2939}
2940
2941static int
617ba13b 2942ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2943 struct list_head *pages, unsigned nr_pages)
2944{
46c7f254
TM
2945 struct inode *inode = mapping->host;
2946
2947 /* If the file has inline data, no need to do readpages. */
2948 if (ext4_has_inline_data(inode))
2949 return 0;
2950
617ba13b 2951 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2952}
2953
d47992f8
LC
2954static void ext4_invalidatepage(struct page *page, unsigned int offset,
2955 unsigned int length)
ac27a0ec 2956{
ca99fdd2 2957 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2958
4520fb3c
JK
2959 /* No journalling happens on data buffers when this function is used */
2960 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2961
ca99fdd2 2962 block_invalidatepage(page, offset, length);
4520fb3c
JK
2963}
2964
53e87268 2965static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2966 unsigned int offset,
2967 unsigned int length)
4520fb3c
JK
2968{
2969 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2970
ca99fdd2 2971 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2972
ac27a0ec
DK
2973 /*
2974 * If it's a full truncate we just forget about the pending dirtying
2975 */
ca99fdd2 2976 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2977 ClearPageChecked(page);
2978
ca99fdd2 2979 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2980}
2981
2982/* Wrapper for aops... */
2983static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2984 unsigned int offset,
2985 unsigned int length)
53e87268 2986{
ca99fdd2 2987 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2988}
2989
617ba13b 2990static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2991{
617ba13b 2992 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2993
0562e0ba
JZ
2994 trace_ext4_releasepage(page);
2995
e1c36595
JK
2996 /* Page has dirty journalled data -> cannot release */
2997 if (PageChecked(page))
ac27a0ec 2998 return 0;
0390131b
FM
2999 if (journal)
3000 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3001 else
3002 return try_to_free_buffers(page);
ac27a0ec
DK
3003}
3004
2ed88685
TT
3005/*
3006 * ext4_get_block used when preparing for a DIO write or buffer write.
3007 * We allocate an uinitialized extent if blocks haven't been allocated.
3008 * The extent will be converted to initialized after the IO is complete.
3009 */
f19d5870 3010int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3011 struct buffer_head *bh_result, int create)
3012{
c7064ef1 3013 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3014 inode->i_ino, create);
2ed88685
TT
3015 return _ext4_get_block(inode, iblock, bh_result,
3016 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3017}
3018
729f52c6 3019static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3020 struct buffer_head *bh_result, int create)
729f52c6 3021{
8b0f165f
AP
3022 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3023 inode->i_ino, create);
3024 return _ext4_get_block(inode, iblock, bh_result,
3025 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3026}
3027
4c0425ff 3028static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
7b7a8665 3029 ssize_t size, void *private)
4c0425ff
MC
3030{
3031 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3032
97a851ed 3033 /* if not async direct IO just return */
7b7a8665 3034 if (!io_end)
97a851ed 3035 return;
4b70df18 3036
88635ca2 3037 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3038 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3039 iocb->private, io_end->inode->i_ino, iocb, offset,
3040 size);
8d5d02e6 3041
b5a7e970 3042 iocb->private = NULL;
4c0425ff
MC
3043 io_end->offset = offset;
3044 io_end->size = size;
7b7a8665 3045 ext4_put_io_end(io_end);
4c0425ff 3046}
c7064ef1 3047
4c0425ff
MC
3048/*
3049 * For ext4 extent files, ext4 will do direct-io write to holes,
3050 * preallocated extents, and those write extend the file, no need to
3051 * fall back to buffered IO.
3052 *
b595076a 3053 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3054 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3055 * still keep the range to write as uninitialized.
4c0425ff 3056 *
69c499d1 3057 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3058 * For async direct IO, since the IO may still pending when return, we
25985edc 3059 * set up an end_io call back function, which will do the conversion
8d5d02e6 3060 * when async direct IO completed.
4c0425ff
MC
3061 *
3062 * If the O_DIRECT write will extend the file then add this inode to the
3063 * orphan list. So recovery will truncate it back to the original size
3064 * if the machine crashes during the write.
3065 *
3066 */
3067static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3068 const struct iovec *iov, loff_t offset,
3069 unsigned long nr_segs)
3070{
3071 struct file *file = iocb->ki_filp;
3072 struct inode *inode = file->f_mapping->host;
3073 ssize_t ret;
3074 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3075 int overwrite = 0;
3076 get_block_t *get_block_func = NULL;
3077 int dio_flags = 0;
4c0425ff 3078 loff_t final_size = offset + count;
97a851ed 3079 ext4_io_end_t *io_end = NULL;
729f52c6 3080
69c499d1
TT
3081 /* Use the old path for reads and writes beyond i_size. */
3082 if (rw != WRITE || final_size > inode->i_size)
3083 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3084
69c499d1 3085 BUG_ON(iocb->private == NULL);
4bd809db 3086
e8340395
JK
3087 /*
3088 * Make all waiters for direct IO properly wait also for extent
3089 * conversion. This also disallows race between truncate() and
3090 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3091 */
3092 if (rw == WRITE)
3093 atomic_inc(&inode->i_dio_count);
3094
69c499d1
TT
3095 /* If we do a overwrite dio, i_mutex locking can be released */
3096 overwrite = *((int *)iocb->private);
4bd809db 3097
69c499d1 3098 if (overwrite) {
69c499d1
TT
3099 down_read(&EXT4_I(inode)->i_data_sem);
3100 mutex_unlock(&inode->i_mutex);
3101 }
8d5d02e6 3102
69c499d1
TT
3103 /*
3104 * We could direct write to holes and fallocate.
3105 *
3106 * Allocated blocks to fill the hole are marked as
3107 * uninitialized to prevent parallel buffered read to expose
3108 * the stale data before DIO complete the data IO.
3109 *
3110 * As to previously fallocated extents, ext4 get_block will
3111 * just simply mark the buffer mapped but still keep the
3112 * extents uninitialized.
3113 *
3114 * For non AIO case, we will convert those unwritten extents
3115 * to written after return back from blockdev_direct_IO.
3116 *
3117 * For async DIO, the conversion needs to be deferred when the
3118 * IO is completed. The ext4 end_io callback function will be
3119 * called to take care of the conversion work. Here for async
3120 * case, we allocate an io_end structure to hook to the iocb.
3121 */
3122 iocb->private = NULL;
3123 ext4_inode_aio_set(inode, NULL);
3124 if (!is_sync_kiocb(iocb)) {
97a851ed 3125 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3126 if (!io_end) {
3127 ret = -ENOMEM;
3128 goto retake_lock;
8b0f165f 3129 }
97a851ed
JK
3130 /*
3131 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3132 */
3133 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3134 /*
69c499d1
TT
3135 * we save the io structure for current async direct
3136 * IO, so that later ext4_map_blocks() could flag the
3137 * io structure whether there is a unwritten extents
3138 * needs to be converted when IO is completed.
8d5d02e6 3139 */
69c499d1
TT
3140 ext4_inode_aio_set(inode, io_end);
3141 }
4bd809db 3142
69c499d1
TT
3143 if (overwrite) {
3144 get_block_func = ext4_get_block_write_nolock;
3145 } else {
3146 get_block_func = ext4_get_block_write;
3147 dio_flags = DIO_LOCKING;
3148 }
3149 ret = __blockdev_direct_IO(rw, iocb, inode,
3150 inode->i_sb->s_bdev, iov,
3151 offset, nr_segs,
3152 get_block_func,
3153 ext4_end_io_dio,
3154 NULL,
3155 dio_flags);
3156
69c499d1 3157 /*
97a851ed
JK
3158 * Put our reference to io_end. This can free the io_end structure e.g.
3159 * in sync IO case or in case of error. It can even perform extent
3160 * conversion if all bios we submitted finished before we got here.
3161 * Note that in that case iocb->private can be already set to NULL
3162 * here.
69c499d1 3163 */
97a851ed
JK
3164 if (io_end) {
3165 ext4_inode_aio_set(inode, NULL);
3166 ext4_put_io_end(io_end);
3167 /*
3168 * When no IO was submitted ext4_end_io_dio() was not
3169 * called so we have to put iocb's reference.
3170 */
3171 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3172 WARN_ON(iocb->private != io_end);
3173 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
97a851ed
JK
3174 ext4_put_io_end(io_end);
3175 iocb->private = NULL;
3176 }
3177 }
3178 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3179 EXT4_STATE_DIO_UNWRITTEN)) {
3180 int err;
3181 /*
3182 * for non AIO case, since the IO is already
3183 * completed, we could do the conversion right here
3184 */
6b523df4 3185 err = ext4_convert_unwritten_extents(NULL, inode,
69c499d1
TT
3186 offset, ret);
3187 if (err < 0)
3188 ret = err;
3189 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3190 }
4bd809db 3191
69c499d1 3192retake_lock:
e8340395
JK
3193 if (rw == WRITE)
3194 inode_dio_done(inode);
69c499d1
TT
3195 /* take i_mutex locking again if we do a ovewrite dio */
3196 if (overwrite) {
69c499d1
TT
3197 up_read(&EXT4_I(inode)->i_data_sem);
3198 mutex_lock(&inode->i_mutex);
4c0425ff 3199 }
8d5d02e6 3200
69c499d1 3201 return ret;
4c0425ff
MC
3202}
3203
3204static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3205 const struct iovec *iov, loff_t offset,
3206 unsigned long nr_segs)
3207{
3208 struct file *file = iocb->ki_filp;
3209 struct inode *inode = file->f_mapping->host;
0562e0ba 3210 ssize_t ret;
4c0425ff 3211
84ebd795
TT
3212 /*
3213 * If we are doing data journalling we don't support O_DIRECT
3214 */
3215 if (ext4_should_journal_data(inode))
3216 return 0;
3217
46c7f254
TM
3218 /* Let buffer I/O handle the inline data case. */
3219 if (ext4_has_inline_data(inode))
3220 return 0;
3221
0562e0ba 3222 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3223 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3224 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3225 else
3226 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3227 trace_ext4_direct_IO_exit(inode, offset,
3228 iov_length(iov, nr_segs), rw, ret);
3229 return ret;
4c0425ff
MC
3230}
3231
ac27a0ec 3232/*
617ba13b 3233 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3234 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3235 * much here because ->set_page_dirty is called under VFS locks. The page is
3236 * not necessarily locked.
3237 *
3238 * We cannot just dirty the page and leave attached buffers clean, because the
3239 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3240 * or jbddirty because all the journalling code will explode.
3241 *
3242 * So what we do is to mark the page "pending dirty" and next time writepage
3243 * is called, propagate that into the buffers appropriately.
3244 */
617ba13b 3245static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3246{
3247 SetPageChecked(page);
3248 return __set_page_dirty_nobuffers(page);
3249}
3250
74d553aa 3251static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3252 .readpage = ext4_readpage,
3253 .readpages = ext4_readpages,
43ce1d23 3254 .writepage = ext4_writepage,
20970ba6 3255 .writepages = ext4_writepages,
8ab22b9a 3256 .write_begin = ext4_write_begin,
74d553aa 3257 .write_end = ext4_write_end,
8ab22b9a
HH
3258 .bmap = ext4_bmap,
3259 .invalidatepage = ext4_invalidatepage,
3260 .releasepage = ext4_releasepage,
3261 .direct_IO = ext4_direct_IO,
3262 .migratepage = buffer_migrate_page,
3263 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3264 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3265};
3266
617ba13b 3267static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3268 .readpage = ext4_readpage,
3269 .readpages = ext4_readpages,
43ce1d23 3270 .writepage = ext4_writepage,
20970ba6 3271 .writepages = ext4_writepages,
8ab22b9a
HH
3272 .write_begin = ext4_write_begin,
3273 .write_end = ext4_journalled_write_end,
3274 .set_page_dirty = ext4_journalled_set_page_dirty,
3275 .bmap = ext4_bmap,
4520fb3c 3276 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3277 .releasepage = ext4_releasepage,
84ebd795 3278 .direct_IO = ext4_direct_IO,
8ab22b9a 3279 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3280 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3281};
3282
64769240 3283static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3284 .readpage = ext4_readpage,
3285 .readpages = ext4_readpages,
43ce1d23 3286 .writepage = ext4_writepage,
20970ba6 3287 .writepages = ext4_writepages,
8ab22b9a
HH
3288 .write_begin = ext4_da_write_begin,
3289 .write_end = ext4_da_write_end,
3290 .bmap = ext4_bmap,
3291 .invalidatepage = ext4_da_invalidatepage,
3292 .releasepage = ext4_releasepage,
3293 .direct_IO = ext4_direct_IO,
3294 .migratepage = buffer_migrate_page,
3295 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3296 .error_remove_page = generic_error_remove_page,
64769240
AT
3297};
3298
617ba13b 3299void ext4_set_aops(struct inode *inode)
ac27a0ec 3300{
3d2b1582
LC
3301 switch (ext4_inode_journal_mode(inode)) {
3302 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3303 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3304 break;
3305 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3306 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3307 break;
3308 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3309 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3310 return;
3d2b1582
LC
3311 default:
3312 BUG();
3313 }
74d553aa
TT
3314 if (test_opt(inode->i_sb, DELALLOC))
3315 inode->i_mapping->a_ops = &ext4_da_aops;
3316 else
3317 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3318}
3319
d863dc36
LC
3320/*
3321 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3322 * up to the end of the block which corresponds to `from'.
3323 * This required during truncate. We need to physically zero the tail end
3324 * of that block so it doesn't yield old data if the file is later grown.
3325 */
3326int ext4_block_truncate_page(handle_t *handle,
3327 struct address_space *mapping, loff_t from)
3328{
3329 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3330 unsigned length;
3331 unsigned blocksize;
3332 struct inode *inode = mapping->host;
3333
3334 blocksize = inode->i_sb->s_blocksize;
3335 length = blocksize - (offset & (blocksize - 1));
3336
3337 return ext4_block_zero_page_range(handle, mapping, from, length);
3338}
3339
3340/*
3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342 * starting from file offset 'from'. The range to be zero'd must
3343 * be contained with in one block. If the specified range exceeds
3344 * the end of the block it will be shortened to end of the block
3345 * that cooresponds to 'from'
3346 */
3347int ext4_block_zero_page_range(handle_t *handle,
3348 struct address_space *mapping, loff_t from, loff_t length)
3349{
3350 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352 unsigned blocksize, max, pos;
3353 ext4_lblk_t iblock;
3354 struct inode *inode = mapping->host;
3355 struct buffer_head *bh;
3356 struct page *page;
3357 int err = 0;
3358
3359 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360 mapping_gfp_mask(mapping) & ~__GFP_FS);
3361 if (!page)
3362 return -ENOMEM;
3363
3364 blocksize = inode->i_sb->s_blocksize;
3365 max = blocksize - (offset & (blocksize - 1));
3366
3367 /*
3368 * correct length if it does not fall between
3369 * 'from' and the end of the block
3370 */
3371 if (length > max || length < 0)
3372 length = max;
3373
3374 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376 if (!page_has_buffers(page))
3377 create_empty_buffers(page, blocksize, 0);
3378
3379 /* Find the buffer that contains "offset" */
3380 bh = page_buffers(page);
3381 pos = blocksize;
3382 while (offset >= pos) {
3383 bh = bh->b_this_page;
3384 iblock++;
3385 pos += blocksize;
3386 }
d863dc36
LC
3387 if (buffer_freed(bh)) {
3388 BUFFER_TRACE(bh, "freed: skip");
3389 goto unlock;
3390 }
d863dc36
LC
3391 if (!buffer_mapped(bh)) {
3392 BUFFER_TRACE(bh, "unmapped");
3393 ext4_get_block(inode, iblock, bh, 0);
3394 /* unmapped? It's a hole - nothing to do */
3395 if (!buffer_mapped(bh)) {
3396 BUFFER_TRACE(bh, "still unmapped");
3397 goto unlock;
3398 }
3399 }
3400
3401 /* Ok, it's mapped. Make sure it's up-to-date */
3402 if (PageUptodate(page))
3403 set_buffer_uptodate(bh);
3404
3405 if (!buffer_uptodate(bh)) {
3406 err = -EIO;
3407 ll_rw_block(READ, 1, &bh);
3408 wait_on_buffer(bh);
3409 /* Uhhuh. Read error. Complain and punt. */
3410 if (!buffer_uptodate(bh))
3411 goto unlock;
3412 }
d863dc36
LC
3413 if (ext4_should_journal_data(inode)) {
3414 BUFFER_TRACE(bh, "get write access");
3415 err = ext4_journal_get_write_access(handle, bh);
3416 if (err)
3417 goto unlock;
3418 }
d863dc36 3419 zero_user(page, offset, length);
d863dc36
LC
3420 BUFFER_TRACE(bh, "zeroed end of block");
3421
d863dc36
LC
3422 if (ext4_should_journal_data(inode)) {
3423 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3424 } else {
353eefd3 3425 err = 0;
d863dc36 3426 mark_buffer_dirty(bh);
0713ed0c
LC
3427 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428 err = ext4_jbd2_file_inode(handle, inode);
3429 }
d863dc36
LC
3430
3431unlock:
3432 unlock_page(page);
3433 page_cache_release(page);
3434 return err;
3435}
3436
a87dd18c
LC
3437int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3438 loff_t lstart, loff_t length)
3439{
3440 struct super_block *sb = inode->i_sb;
3441 struct address_space *mapping = inode->i_mapping;
e1be3a92 3442 unsigned partial_start, partial_end;
a87dd18c
LC
3443 ext4_fsblk_t start, end;
3444 loff_t byte_end = (lstart + length - 1);
3445 int err = 0;
3446
e1be3a92
LC
3447 partial_start = lstart & (sb->s_blocksize - 1);
3448 partial_end = byte_end & (sb->s_blocksize - 1);
3449
a87dd18c
LC
3450 start = lstart >> sb->s_blocksize_bits;
3451 end = byte_end >> sb->s_blocksize_bits;
3452
3453 /* Handle partial zero within the single block */
e1be3a92
LC
3454 if (start == end &&
3455 (partial_start || (partial_end != sb->s_blocksize - 1))) {
a87dd18c
LC
3456 err = ext4_block_zero_page_range(handle, mapping,
3457 lstart, length);
3458 return err;
3459 }
3460 /* Handle partial zero out on the start of the range */
e1be3a92 3461 if (partial_start) {
a87dd18c
LC
3462 err = ext4_block_zero_page_range(handle, mapping,
3463 lstart, sb->s_blocksize);
3464 if (err)
3465 return err;
3466 }
3467 /* Handle partial zero out on the end of the range */
e1be3a92 3468 if (partial_end != sb->s_blocksize - 1)
a87dd18c 3469 err = ext4_block_zero_page_range(handle, mapping,
e1be3a92
LC
3470 byte_end - partial_end,
3471 partial_end + 1);
a87dd18c
LC
3472 return err;
3473}
3474
91ef4caf
DG
3475int ext4_can_truncate(struct inode *inode)
3476{
91ef4caf
DG
3477 if (S_ISREG(inode->i_mode))
3478 return 1;
3479 if (S_ISDIR(inode->i_mode))
3480 return 1;
3481 if (S_ISLNK(inode->i_mode))
3482 return !ext4_inode_is_fast_symlink(inode);
3483 return 0;
3484}
3485
a4bb6b64
AH
3486/*
3487 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3488 * associated with the given offset and length
3489 *
3490 * @inode: File inode
3491 * @offset: The offset where the hole will begin
3492 * @len: The length of the hole
3493 *
4907cb7b 3494 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3495 */
3496
aeb2817a 3497int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
a4bb6b64 3498{
26a4c0c6
TT
3499 struct super_block *sb = inode->i_sb;
3500 ext4_lblk_t first_block, stop_block;
3501 struct address_space *mapping = inode->i_mapping;
a87dd18c 3502 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3503 handle_t *handle;
3504 unsigned int credits;
3505 int ret = 0;
3506
a4bb6b64 3507 if (!S_ISREG(inode->i_mode))
73355192 3508 return -EOPNOTSUPP;
a4bb6b64 3509
aaddea81
ZL
3510 trace_ext4_punch_hole(inode, offset, length);
3511
26a4c0c6
TT
3512 /*
3513 * Write out all dirty pages to avoid race conditions
3514 * Then release them.
3515 */
3516 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3517 ret = filemap_write_and_wait_range(mapping, offset,
3518 offset + length - 1);
3519 if (ret)
3520 return ret;
3521 }
3522
3523 mutex_lock(&inode->i_mutex);
3524 /* It's not possible punch hole on append only file */
3525 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3526 ret = -EPERM;
3527 goto out_mutex;
3528 }
3529 if (IS_SWAPFILE(inode)) {
3530 ret = -ETXTBSY;
3531 goto out_mutex;
3532 }
3533
3534 /* No need to punch hole beyond i_size */
3535 if (offset >= inode->i_size)
3536 goto out_mutex;
3537
3538 /*
3539 * If the hole extends beyond i_size, set the hole
3540 * to end after the page that contains i_size
3541 */
3542 if (offset + length > inode->i_size) {
3543 length = inode->i_size +
3544 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3545 offset;
3546 }
3547
a361293f
JK
3548 if (offset & (sb->s_blocksize - 1) ||
3549 (offset + length) & (sb->s_blocksize - 1)) {
3550 /*
3551 * Attach jinode to inode for jbd2 if we do any zeroing of
3552 * partial block
3553 */
3554 ret = ext4_inode_attach_jinode(inode);
3555 if (ret < 0)
3556 goto out_mutex;
3557
3558 }
3559
a87dd18c
LC
3560 first_block_offset = round_up(offset, sb->s_blocksize);
3561 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3562
a87dd18c
LC
3563 /* Now release the pages and zero block aligned part of pages*/
3564 if (last_block_offset > first_block_offset)
3565 truncate_pagecache_range(inode, first_block_offset,
3566 last_block_offset);
26a4c0c6
TT
3567
3568 /* Wait all existing dio workers, newcomers will block on i_mutex */
3569 ext4_inode_block_unlocked_dio(inode);
26a4c0c6
TT
3570 inode_dio_wait(inode);
3571
3572 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3573 credits = ext4_writepage_trans_blocks(inode);
3574 else
3575 credits = ext4_blocks_for_truncate(inode);
3576 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3577 if (IS_ERR(handle)) {
3578 ret = PTR_ERR(handle);
3579 ext4_std_error(sb, ret);
3580 goto out_dio;
3581 }
3582
a87dd18c
LC
3583 ret = ext4_zero_partial_blocks(handle, inode, offset,
3584 length);
3585 if (ret)
3586 goto out_stop;
26a4c0c6
TT
3587
3588 first_block = (offset + sb->s_blocksize - 1) >>
3589 EXT4_BLOCK_SIZE_BITS(sb);
3590 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3591
3592 /* If there are no blocks to remove, return now */
3593 if (first_block >= stop_block)
3594 goto out_stop;
3595
3596 down_write(&EXT4_I(inode)->i_data_sem);
3597 ext4_discard_preallocations(inode);
3598
3599 ret = ext4_es_remove_extent(inode, first_block,
3600 stop_block - first_block);
3601 if (ret) {
3602 up_write(&EXT4_I(inode)->i_data_sem);
3603 goto out_stop;
3604 }
3605
3606 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3607 ret = ext4_ext_remove_space(inode, first_block,
3608 stop_block - 1);
3609 else
3610 ret = ext4_free_hole_blocks(handle, inode, first_block,
3611 stop_block);
3612
3613 ext4_discard_preallocations(inode);
819c4920 3614 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3615 if (IS_SYNC(inode))
3616 ext4_handle_sync(handle);
e251f9bc
MP
3617
3618 /* Now release the pages again to reduce race window */
3619 if (last_block_offset > first_block_offset)
3620 truncate_pagecache_range(inode, first_block_offset,
3621 last_block_offset);
3622
26a4c0c6
TT
3623 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3624 ext4_mark_inode_dirty(handle, inode);
3625out_stop:
3626 ext4_journal_stop(handle);
3627out_dio:
3628 ext4_inode_resume_unlocked_dio(inode);
3629out_mutex:
3630 mutex_unlock(&inode->i_mutex);
3631 return ret;
a4bb6b64
AH
3632}
3633
a361293f
JK
3634int ext4_inode_attach_jinode(struct inode *inode)
3635{
3636 struct ext4_inode_info *ei = EXT4_I(inode);
3637 struct jbd2_inode *jinode;
3638
3639 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3640 return 0;
3641
3642 jinode = jbd2_alloc_inode(GFP_KERNEL);
3643 spin_lock(&inode->i_lock);
3644 if (!ei->jinode) {
3645 if (!jinode) {
3646 spin_unlock(&inode->i_lock);
3647 return -ENOMEM;
3648 }
3649 ei->jinode = jinode;
3650 jbd2_journal_init_jbd_inode(ei->jinode, inode);
3651 jinode = NULL;
3652 }
3653 spin_unlock(&inode->i_lock);
3654 if (unlikely(jinode != NULL))
3655 jbd2_free_inode(jinode);
3656 return 0;
3657}
3658
ac27a0ec 3659/*
617ba13b 3660 * ext4_truncate()
ac27a0ec 3661 *
617ba13b
MC
3662 * We block out ext4_get_block() block instantiations across the entire
3663 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3664 * simultaneously on behalf of the same inode.
3665 *
42b2aa86 3666 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3667 * is one core, guiding principle: the file's tree must always be consistent on
3668 * disk. We must be able to restart the truncate after a crash.
3669 *
3670 * The file's tree may be transiently inconsistent in memory (although it
3671 * probably isn't), but whenever we close off and commit a journal transaction,
3672 * the contents of (the filesystem + the journal) must be consistent and
3673 * restartable. It's pretty simple, really: bottom up, right to left (although
3674 * left-to-right works OK too).
3675 *
3676 * Note that at recovery time, journal replay occurs *before* the restart of
3677 * truncate against the orphan inode list.
3678 *
3679 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3680 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3681 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3682 * ext4_truncate() to have another go. So there will be instantiated blocks
3683 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3684 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3685 * ext4_truncate() run will find them and release them.
ac27a0ec 3686 */
617ba13b 3687void ext4_truncate(struct inode *inode)
ac27a0ec 3688{
819c4920
TT
3689 struct ext4_inode_info *ei = EXT4_I(inode);
3690 unsigned int credits;
3691 handle_t *handle;
3692 struct address_space *mapping = inode->i_mapping;
819c4920 3693
19b5ef61
TT
3694 /*
3695 * There is a possibility that we're either freeing the inode
3696 * or it completely new indode. In those cases we might not
3697 * have i_mutex locked because it's not necessary.
3698 */
3699 if (!(inode->i_state & (I_NEW|I_FREEING)))
3700 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3701 trace_ext4_truncate_enter(inode);
3702
91ef4caf 3703 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3704 return;
3705
12e9b892 3706 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3707
5534fb5b 3708 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3709 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3710
aef1c851
TM
3711 if (ext4_has_inline_data(inode)) {
3712 int has_inline = 1;
3713
3714 ext4_inline_data_truncate(inode, &has_inline);
3715 if (has_inline)
3716 return;
3717 }
3718
a361293f
JK
3719 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3720 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3721 if (ext4_inode_attach_jinode(inode) < 0)
3722 return;
3723 }
3724
819c4920
TT
3725 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3726 credits = ext4_writepage_trans_blocks(inode);
3727 else
3728 credits = ext4_blocks_for_truncate(inode);
3729
3730 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3731 if (IS_ERR(handle)) {
3732 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3733 return;
3734 }
3735
eb3544c6
LC
3736 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3737 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3738
3739 /*
3740 * We add the inode to the orphan list, so that if this
3741 * truncate spans multiple transactions, and we crash, we will
3742 * resume the truncate when the filesystem recovers. It also
3743 * marks the inode dirty, to catch the new size.
3744 *
3745 * Implication: the file must always be in a sane, consistent
3746 * truncatable state while each transaction commits.
3747 */
3748 if (ext4_orphan_add(handle, inode))
3749 goto out_stop;
3750
3751 down_write(&EXT4_I(inode)->i_data_sem);
3752
3753 ext4_discard_preallocations(inode);
3754
ff9893dc 3755 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3756 ext4_ext_truncate(handle, inode);
ff9893dc 3757 else
819c4920
TT
3758 ext4_ind_truncate(handle, inode);
3759
3760 up_write(&ei->i_data_sem);
3761
3762 if (IS_SYNC(inode))
3763 ext4_handle_sync(handle);
3764
3765out_stop:
3766 /*
3767 * If this was a simple ftruncate() and the file will remain alive,
3768 * then we need to clear up the orphan record which we created above.
3769 * However, if this was a real unlink then we were called by
3770 * ext4_delete_inode(), and we allow that function to clean up the
3771 * orphan info for us.
3772 */
3773 if (inode->i_nlink)
3774 ext4_orphan_del(handle, inode);
3775
3776 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3777 ext4_mark_inode_dirty(handle, inode);
3778 ext4_journal_stop(handle);
ac27a0ec 3779
0562e0ba 3780 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3781}
3782
ac27a0ec 3783/*
617ba13b 3784 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3785 * underlying buffer_head on success. If 'in_mem' is true, we have all
3786 * data in memory that is needed to recreate the on-disk version of this
3787 * inode.
3788 */
617ba13b
MC
3789static int __ext4_get_inode_loc(struct inode *inode,
3790 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3791{
240799cd
TT
3792 struct ext4_group_desc *gdp;
3793 struct buffer_head *bh;
3794 struct super_block *sb = inode->i_sb;
3795 ext4_fsblk_t block;
3796 int inodes_per_block, inode_offset;
3797
3a06d778 3798 iloc->bh = NULL;
240799cd
TT
3799 if (!ext4_valid_inum(sb, inode->i_ino))
3800 return -EIO;
ac27a0ec 3801
240799cd
TT
3802 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3803 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3804 if (!gdp)
ac27a0ec
DK
3805 return -EIO;
3806
240799cd
TT
3807 /*
3808 * Figure out the offset within the block group inode table
3809 */
00d09882 3810 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3811 inode_offset = ((inode->i_ino - 1) %
3812 EXT4_INODES_PER_GROUP(sb));
3813 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3814 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3815
3816 bh = sb_getblk(sb, block);
aebf0243 3817 if (unlikely(!bh))
860d21e2 3818 return -ENOMEM;
ac27a0ec
DK
3819 if (!buffer_uptodate(bh)) {
3820 lock_buffer(bh);
9c83a923
HK
3821
3822 /*
3823 * If the buffer has the write error flag, we have failed
3824 * to write out another inode in the same block. In this
3825 * case, we don't have to read the block because we may
3826 * read the old inode data successfully.
3827 */
3828 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3829 set_buffer_uptodate(bh);
3830
ac27a0ec
DK
3831 if (buffer_uptodate(bh)) {
3832 /* someone brought it uptodate while we waited */
3833 unlock_buffer(bh);
3834 goto has_buffer;
3835 }
3836
3837 /*
3838 * If we have all information of the inode in memory and this
3839 * is the only valid inode in the block, we need not read the
3840 * block.
3841 */
3842 if (in_mem) {
3843 struct buffer_head *bitmap_bh;
240799cd 3844 int i, start;
ac27a0ec 3845
240799cd 3846 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3847
240799cd
TT
3848 /* Is the inode bitmap in cache? */
3849 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3850 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3851 goto make_io;
3852
3853 /*
3854 * If the inode bitmap isn't in cache then the
3855 * optimisation may end up performing two reads instead
3856 * of one, so skip it.
3857 */
3858 if (!buffer_uptodate(bitmap_bh)) {
3859 brelse(bitmap_bh);
3860 goto make_io;
3861 }
240799cd 3862 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3863 if (i == inode_offset)
3864 continue;
617ba13b 3865 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3866 break;
3867 }
3868 brelse(bitmap_bh);
240799cd 3869 if (i == start + inodes_per_block) {
ac27a0ec
DK
3870 /* all other inodes are free, so skip I/O */
3871 memset(bh->b_data, 0, bh->b_size);
3872 set_buffer_uptodate(bh);
3873 unlock_buffer(bh);
3874 goto has_buffer;
3875 }
3876 }
3877
3878make_io:
240799cd
TT
3879 /*
3880 * If we need to do any I/O, try to pre-readahead extra
3881 * blocks from the inode table.
3882 */
3883 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3884 ext4_fsblk_t b, end, table;
3885 unsigned num;
0d606e2c 3886 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3887
3888 table = ext4_inode_table(sb, gdp);
b713a5ec 3889 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3890 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3891 if (table > b)
3892 b = table;
0d606e2c 3893 end = b + ra_blks;
240799cd 3894 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3895 if (ext4_has_group_desc_csum(sb))
560671a0 3896 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3897 table += num / inodes_per_block;
3898 if (end > table)
3899 end = table;
3900 while (b <= end)
3901 sb_breadahead(sb, b++);
3902 }
3903
ac27a0ec
DK
3904 /*
3905 * There are other valid inodes in the buffer, this inode
3906 * has in-inode xattrs, or we don't have this inode in memory.
3907 * Read the block from disk.
3908 */
0562e0ba 3909 trace_ext4_load_inode(inode);
ac27a0ec
DK
3910 get_bh(bh);
3911 bh->b_end_io = end_buffer_read_sync;
65299a3b 3912 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3913 wait_on_buffer(bh);
3914 if (!buffer_uptodate(bh)) {
c398eda0
TT
3915 EXT4_ERROR_INODE_BLOCK(inode, block,
3916 "unable to read itable block");
ac27a0ec
DK
3917 brelse(bh);
3918 return -EIO;
3919 }
3920 }
3921has_buffer:
3922 iloc->bh = bh;
3923 return 0;
3924}
3925
617ba13b 3926int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3927{
3928 /* We have all inode data except xattrs in memory here. */
617ba13b 3929 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3930 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3931}
3932
617ba13b 3933void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3934{
617ba13b 3935 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3936
3937 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3938 if (flags & EXT4_SYNC_FL)
ac27a0ec 3939 inode->i_flags |= S_SYNC;
617ba13b 3940 if (flags & EXT4_APPEND_FL)
ac27a0ec 3941 inode->i_flags |= S_APPEND;
617ba13b 3942 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3943 inode->i_flags |= S_IMMUTABLE;
617ba13b 3944 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3945 inode->i_flags |= S_NOATIME;
617ba13b 3946 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3947 inode->i_flags |= S_DIRSYNC;
3948}
3949
ff9ddf7e
JK
3950/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3951void ext4_get_inode_flags(struct ext4_inode_info *ei)
3952{
84a8dce2
DM
3953 unsigned int vfs_fl;
3954 unsigned long old_fl, new_fl;
3955
3956 do {
3957 vfs_fl = ei->vfs_inode.i_flags;
3958 old_fl = ei->i_flags;
3959 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3960 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3961 EXT4_DIRSYNC_FL);
3962 if (vfs_fl & S_SYNC)
3963 new_fl |= EXT4_SYNC_FL;
3964 if (vfs_fl & S_APPEND)
3965 new_fl |= EXT4_APPEND_FL;
3966 if (vfs_fl & S_IMMUTABLE)
3967 new_fl |= EXT4_IMMUTABLE_FL;
3968 if (vfs_fl & S_NOATIME)
3969 new_fl |= EXT4_NOATIME_FL;
3970 if (vfs_fl & S_DIRSYNC)
3971 new_fl |= EXT4_DIRSYNC_FL;
3972 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3973}
de9a55b8 3974
0fc1b451 3975static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3976 struct ext4_inode_info *ei)
0fc1b451
AK
3977{
3978 blkcnt_t i_blocks ;
8180a562
AK
3979 struct inode *inode = &(ei->vfs_inode);
3980 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3981
3982 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3983 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3984 /* we are using combined 48 bit field */
3985 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3986 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3987 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3988 /* i_blocks represent file system block size */
3989 return i_blocks << (inode->i_blkbits - 9);
3990 } else {
3991 return i_blocks;
3992 }
0fc1b451
AK
3993 } else {
3994 return le32_to_cpu(raw_inode->i_blocks_lo);
3995 }
3996}
ff9ddf7e 3997
152a7b0a
TM
3998static inline void ext4_iget_extra_inode(struct inode *inode,
3999 struct ext4_inode *raw_inode,
4000 struct ext4_inode_info *ei)
4001{
4002 __le32 *magic = (void *)raw_inode +
4003 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4004 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4005 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4006 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4007 } else
4008 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4009}
4010
1d1fe1ee 4011struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4012{
617ba13b
MC
4013 struct ext4_iloc iloc;
4014 struct ext4_inode *raw_inode;
1d1fe1ee 4015 struct ext4_inode_info *ei;
1d1fe1ee 4016 struct inode *inode;
b436b9be 4017 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4018 long ret;
ac27a0ec 4019 int block;
08cefc7a
EB
4020 uid_t i_uid;
4021 gid_t i_gid;
ac27a0ec 4022
1d1fe1ee
DH
4023 inode = iget_locked(sb, ino);
4024 if (!inode)
4025 return ERR_PTR(-ENOMEM);
4026 if (!(inode->i_state & I_NEW))
4027 return inode;
4028
4029 ei = EXT4_I(inode);
7dc57615 4030 iloc.bh = NULL;
ac27a0ec 4031
1d1fe1ee
DH
4032 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4033 if (ret < 0)
ac27a0ec 4034 goto bad_inode;
617ba13b 4035 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4036
4037 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4038 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4039 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4040 EXT4_INODE_SIZE(inode->i_sb)) {
4041 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4042 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4043 EXT4_INODE_SIZE(inode->i_sb));
4044 ret = -EIO;
4045 goto bad_inode;
4046 }
4047 } else
4048 ei->i_extra_isize = 0;
4049
4050 /* Precompute checksum seed for inode metadata */
4051 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4052 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4053 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4054 __u32 csum;
4055 __le32 inum = cpu_to_le32(inode->i_ino);
4056 __le32 gen = raw_inode->i_generation;
4057 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4058 sizeof(inum));
4059 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4060 sizeof(gen));
4061 }
4062
4063 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4064 EXT4_ERROR_INODE(inode, "checksum invalid");
4065 ret = -EIO;
4066 goto bad_inode;
4067 }
4068
ac27a0ec 4069 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4070 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4071 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4072 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4073 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4074 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4075 }
08cefc7a
EB
4076 i_uid_write(inode, i_uid);
4077 i_gid_write(inode, i_gid);
bfe86848 4078 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4079
353eb83c 4080 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4081 ei->i_inline_off = 0;
ac27a0ec
DK
4082 ei->i_dir_start_lookup = 0;
4083 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4084 /* We now have enough fields to check if the inode was active or not.
4085 * This is needed because nfsd might try to access dead inodes
4086 * the test is that same one that e2fsck uses
4087 * NeilBrown 1999oct15
4088 */
4089 if (inode->i_nlink == 0) {
393d1d1d
DTB
4090 if ((inode->i_mode == 0 ||
4091 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4092 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4093 /* this inode is deleted */
1d1fe1ee 4094 ret = -ESTALE;
ac27a0ec
DK
4095 goto bad_inode;
4096 }
4097 /* The only unlinked inodes we let through here have
4098 * valid i_mode and are being read by the orphan
4099 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4100 * the process of deleting those.
4101 * OR it is the EXT4_BOOT_LOADER_INO which is
4102 * not initialized on a new filesystem. */
ac27a0ec 4103 }
ac27a0ec 4104 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4105 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4106 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4107 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4108 ei->i_file_acl |=
4109 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4110 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4111 ei->i_disksize = inode->i_size;
a9e7f447
DM
4112#ifdef CONFIG_QUOTA
4113 ei->i_reserved_quota = 0;
4114#endif
ac27a0ec
DK
4115 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4116 ei->i_block_group = iloc.block_group;
a4912123 4117 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4118 /*
4119 * NOTE! The in-memory inode i_data array is in little-endian order
4120 * even on big-endian machines: we do NOT byteswap the block numbers!
4121 */
617ba13b 4122 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4123 ei->i_data[block] = raw_inode->i_block[block];
4124 INIT_LIST_HEAD(&ei->i_orphan);
4125
b436b9be
JK
4126 /*
4127 * Set transaction id's of transactions that have to be committed
4128 * to finish f[data]sync. We set them to currently running transaction
4129 * as we cannot be sure that the inode or some of its metadata isn't
4130 * part of the transaction - the inode could have been reclaimed and
4131 * now it is reread from disk.
4132 */
4133 if (journal) {
4134 transaction_t *transaction;
4135 tid_t tid;
4136
a931da6a 4137 read_lock(&journal->j_state_lock);
b436b9be
JK
4138 if (journal->j_running_transaction)
4139 transaction = journal->j_running_transaction;
4140 else
4141 transaction = journal->j_committing_transaction;
4142 if (transaction)
4143 tid = transaction->t_tid;
4144 else
4145 tid = journal->j_commit_sequence;
a931da6a 4146 read_unlock(&journal->j_state_lock);
b436b9be
JK
4147 ei->i_sync_tid = tid;
4148 ei->i_datasync_tid = tid;
4149 }
4150
0040d987 4151 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4152 if (ei->i_extra_isize == 0) {
4153 /* The extra space is currently unused. Use it. */
617ba13b
MC
4154 ei->i_extra_isize = sizeof(struct ext4_inode) -
4155 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4156 } else {
152a7b0a 4157 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4158 }
814525f4 4159 }
ac27a0ec 4160
ef7f3835
KS
4161 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4162 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4163 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4164 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4165
25ec56b5
JNC
4166 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4167 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4168 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4169 inode->i_version |=
4170 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4171 }
4172
c4b5a614 4173 ret = 0;
485c26ec 4174 if (ei->i_file_acl &&
1032988c 4175 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4176 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4177 ei->i_file_acl);
485c26ec
TT
4178 ret = -EIO;
4179 goto bad_inode;
f19d5870
TM
4180 } else if (!ext4_has_inline_data(inode)) {
4181 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4182 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4183 (S_ISLNK(inode->i_mode) &&
4184 !ext4_inode_is_fast_symlink(inode))))
4185 /* Validate extent which is part of inode */
4186 ret = ext4_ext_check_inode(inode);
4187 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4188 (S_ISLNK(inode->i_mode) &&
4189 !ext4_inode_is_fast_symlink(inode))) {
4190 /* Validate block references which are part of inode */
4191 ret = ext4_ind_check_inode(inode);
4192 }
fe2c8191 4193 }
567f3e9a 4194 if (ret)
de9a55b8 4195 goto bad_inode;
7a262f7c 4196
ac27a0ec 4197 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4198 inode->i_op = &ext4_file_inode_operations;
4199 inode->i_fop = &ext4_file_operations;
4200 ext4_set_aops(inode);
ac27a0ec 4201 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4202 inode->i_op = &ext4_dir_inode_operations;
4203 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4204 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4205 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4206 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4207 nd_terminate_link(ei->i_data, inode->i_size,
4208 sizeof(ei->i_data) - 1);
4209 } else {
617ba13b
MC
4210 inode->i_op = &ext4_symlink_inode_operations;
4211 ext4_set_aops(inode);
ac27a0ec 4212 }
563bdd61
TT
4213 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4214 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4215 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4216 if (raw_inode->i_block[0])
4217 init_special_inode(inode, inode->i_mode,
4218 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4219 else
4220 init_special_inode(inode, inode->i_mode,
4221 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4222 } else if (ino == EXT4_BOOT_LOADER_INO) {
4223 make_bad_inode(inode);
563bdd61 4224 } else {
563bdd61 4225 ret = -EIO;
24676da4 4226 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4227 goto bad_inode;
ac27a0ec 4228 }
af5bc92d 4229 brelse(iloc.bh);
617ba13b 4230 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4231 unlock_new_inode(inode);
4232 return inode;
ac27a0ec
DK
4233
4234bad_inode:
567f3e9a 4235 brelse(iloc.bh);
1d1fe1ee
DH
4236 iget_failed(inode);
4237 return ERR_PTR(ret);
ac27a0ec
DK
4238}
4239
0fc1b451
AK
4240static int ext4_inode_blocks_set(handle_t *handle,
4241 struct ext4_inode *raw_inode,
4242 struct ext4_inode_info *ei)
4243{
4244 struct inode *inode = &(ei->vfs_inode);
4245 u64 i_blocks = inode->i_blocks;
4246 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4247
4248 if (i_blocks <= ~0U) {
4249 /*
4907cb7b 4250 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4251 * as multiple of 512 bytes
4252 */
8180a562 4253 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4254 raw_inode->i_blocks_high = 0;
84a8dce2 4255 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4256 return 0;
4257 }
4258 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4259 return -EFBIG;
4260
4261 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4262 /*
4263 * i_blocks can be represented in a 48 bit variable
4264 * as multiple of 512 bytes
4265 */
8180a562 4266 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4267 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4268 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4269 } else {
84a8dce2 4270 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4271 /* i_block is stored in file system block size */
4272 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4273 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4274 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4275 }
f287a1a5 4276 return 0;
0fc1b451
AK
4277}
4278
ac27a0ec
DK
4279/*
4280 * Post the struct inode info into an on-disk inode location in the
4281 * buffer-cache. This gobbles the caller's reference to the
4282 * buffer_head in the inode location struct.
4283 *
4284 * The caller must have write access to iloc->bh.
4285 */
617ba13b 4286static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4287 struct inode *inode,
830156c7 4288 struct ext4_iloc *iloc)
ac27a0ec 4289{
617ba13b
MC
4290 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4291 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4292 struct buffer_head *bh = iloc->bh;
4293 int err = 0, rc, block;
b71fc079 4294 int need_datasync = 0;
08cefc7a
EB
4295 uid_t i_uid;
4296 gid_t i_gid;
ac27a0ec
DK
4297
4298 /* For fields not not tracking in the in-memory inode,
4299 * initialise them to zero for new inodes. */
19f5fb7a 4300 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4301 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4302
ff9ddf7e 4303 ext4_get_inode_flags(ei);
ac27a0ec 4304 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4305 i_uid = i_uid_read(inode);
4306 i_gid = i_gid_read(inode);
af5bc92d 4307 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4308 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4309 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4310/*
4311 * Fix up interoperability with old kernels. Otherwise, old inodes get
4312 * re-used with the upper 16 bits of the uid/gid intact
4313 */
af5bc92d 4314 if (!ei->i_dtime) {
ac27a0ec 4315 raw_inode->i_uid_high =
08cefc7a 4316 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4317 raw_inode->i_gid_high =
08cefc7a 4318 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4319 } else {
4320 raw_inode->i_uid_high = 0;
4321 raw_inode->i_gid_high = 0;
4322 }
4323 } else {
08cefc7a
EB
4324 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4325 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4326 raw_inode->i_uid_high = 0;
4327 raw_inode->i_gid_high = 0;
4328 }
4329 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4330
4331 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4332 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4333 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4334 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4335
0fc1b451
AK
4336 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4337 goto out_brelse;
ac27a0ec 4338 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4339 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4340 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4341 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4342 raw_inode->i_file_acl_high =
4343 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4344 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4345 if (ei->i_disksize != ext4_isize(raw_inode)) {
4346 ext4_isize_set(raw_inode, ei->i_disksize);
4347 need_datasync = 1;
4348 }
a48380f7
AK
4349 if (ei->i_disksize > 0x7fffffffULL) {
4350 struct super_block *sb = inode->i_sb;
4351 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4352 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4353 EXT4_SB(sb)->s_es->s_rev_level ==
4354 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4355 /* If this is the first large file
4356 * created, add a flag to the superblock.
4357 */
4358 err = ext4_journal_get_write_access(handle,
4359 EXT4_SB(sb)->s_sbh);
4360 if (err)
4361 goto out_brelse;
4362 ext4_update_dynamic_rev(sb);
4363 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4364 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4365 ext4_handle_sync(handle);
b50924c2 4366 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4367 }
4368 }
4369 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4370 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4371 if (old_valid_dev(inode->i_rdev)) {
4372 raw_inode->i_block[0] =
4373 cpu_to_le32(old_encode_dev(inode->i_rdev));
4374 raw_inode->i_block[1] = 0;
4375 } else {
4376 raw_inode->i_block[0] = 0;
4377 raw_inode->i_block[1] =
4378 cpu_to_le32(new_encode_dev(inode->i_rdev));
4379 raw_inode->i_block[2] = 0;
4380 }
f19d5870 4381 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4382 for (block = 0; block < EXT4_N_BLOCKS; block++)
4383 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4384 }
ac27a0ec 4385
25ec56b5
JNC
4386 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4387 if (ei->i_extra_isize) {
4388 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4389 raw_inode->i_version_hi =
4390 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4391 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4392 }
4393
814525f4
DW
4394 ext4_inode_csum_set(inode, raw_inode, ei);
4395
830156c7 4396 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4397 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4398 if (!err)
4399 err = rc;
19f5fb7a 4400 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4401
b71fc079 4402 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4403out_brelse:
af5bc92d 4404 brelse(bh);
617ba13b 4405 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4406 return err;
4407}
4408
4409/*
617ba13b 4410 * ext4_write_inode()
ac27a0ec
DK
4411 *
4412 * We are called from a few places:
4413 *
4414 * - Within generic_file_write() for O_SYNC files.
4415 * Here, there will be no transaction running. We wait for any running
4907cb7b 4416 * transaction to commit.
ac27a0ec
DK
4417 *
4418 * - Within sys_sync(), kupdate and such.
4419 * We wait on commit, if tol to.
4420 *
4421 * - Within prune_icache() (PF_MEMALLOC == true)
4422 * Here we simply return. We can't afford to block kswapd on the
4423 * journal commit.
4424 *
4425 * In all cases it is actually safe for us to return without doing anything,
4426 * because the inode has been copied into a raw inode buffer in
617ba13b 4427 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4428 * knfsd.
4429 *
4430 * Note that we are absolutely dependent upon all inode dirtiers doing the
4431 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4432 * which we are interested.
4433 *
4434 * It would be a bug for them to not do this. The code:
4435 *
4436 * mark_inode_dirty(inode)
4437 * stuff();
4438 * inode->i_size = expr;
4439 *
4440 * is in error because a kswapd-driven write_inode() could occur while
4441 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4442 * will no longer be on the superblock's dirty inode list.
4443 */
a9185b41 4444int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4445{
91ac6f43
FM
4446 int err;
4447
ac27a0ec
DK
4448 if (current->flags & PF_MEMALLOC)
4449 return 0;
4450
91ac6f43
FM
4451 if (EXT4_SB(inode->i_sb)->s_journal) {
4452 if (ext4_journal_current_handle()) {
4453 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4454 dump_stack();
4455 return -EIO;
4456 }
ac27a0ec 4457
a9185b41 4458 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4459 return 0;
4460
4461 err = ext4_force_commit(inode->i_sb);
4462 } else {
4463 struct ext4_iloc iloc;
ac27a0ec 4464
8b472d73 4465 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4466 if (err)
4467 return err;
a9185b41 4468 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4469 sync_dirty_buffer(iloc.bh);
4470 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4471 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4472 "IO error syncing inode");
830156c7
FM
4473 err = -EIO;
4474 }
fd2dd9fb 4475 brelse(iloc.bh);
91ac6f43
FM
4476 }
4477 return err;
ac27a0ec
DK
4478}
4479
53e87268
JK
4480/*
4481 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4482 * buffers that are attached to a page stradding i_size and are undergoing
4483 * commit. In that case we have to wait for commit to finish and try again.
4484 */
4485static void ext4_wait_for_tail_page_commit(struct inode *inode)
4486{
4487 struct page *page;
4488 unsigned offset;
4489 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4490 tid_t commit_tid = 0;
4491 int ret;
4492
4493 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4494 /*
4495 * All buffers in the last page remain valid? Then there's nothing to
4496 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4497 * blocksize case
4498 */
4499 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4500 return;
4501 while (1) {
4502 page = find_lock_page(inode->i_mapping,
4503 inode->i_size >> PAGE_CACHE_SHIFT);
4504 if (!page)
4505 return;
ca99fdd2
LC
4506 ret = __ext4_journalled_invalidatepage(page, offset,
4507 PAGE_CACHE_SIZE - offset);
53e87268
JK
4508 unlock_page(page);
4509 page_cache_release(page);
4510 if (ret != -EBUSY)
4511 return;
4512 commit_tid = 0;
4513 read_lock(&journal->j_state_lock);
4514 if (journal->j_committing_transaction)
4515 commit_tid = journal->j_committing_transaction->t_tid;
4516 read_unlock(&journal->j_state_lock);
4517 if (commit_tid)
4518 jbd2_log_wait_commit(journal, commit_tid);
4519 }
4520}
4521
ac27a0ec 4522/*
617ba13b 4523 * ext4_setattr()
ac27a0ec
DK
4524 *
4525 * Called from notify_change.
4526 *
4527 * We want to trap VFS attempts to truncate the file as soon as
4528 * possible. In particular, we want to make sure that when the VFS
4529 * shrinks i_size, we put the inode on the orphan list and modify
4530 * i_disksize immediately, so that during the subsequent flushing of
4531 * dirty pages and freeing of disk blocks, we can guarantee that any
4532 * commit will leave the blocks being flushed in an unused state on
4533 * disk. (On recovery, the inode will get truncated and the blocks will
4534 * be freed, so we have a strong guarantee that no future commit will
4535 * leave these blocks visible to the user.)
4536 *
678aaf48
JK
4537 * Another thing we have to assure is that if we are in ordered mode
4538 * and inode is still attached to the committing transaction, we must
4539 * we start writeout of all the dirty pages which are being truncated.
4540 * This way we are sure that all the data written in the previous
4541 * transaction are already on disk (truncate waits for pages under
4542 * writeback).
4543 *
4544 * Called with inode->i_mutex down.
ac27a0ec 4545 */
617ba13b 4546int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4547{
4548 struct inode *inode = dentry->d_inode;
4549 int error, rc = 0;
3d287de3 4550 int orphan = 0;
ac27a0ec
DK
4551 const unsigned int ia_valid = attr->ia_valid;
4552
4553 error = inode_change_ok(inode, attr);
4554 if (error)
4555 return error;
4556
12755627 4557 if (is_quota_modification(inode, attr))
871a2931 4558 dquot_initialize(inode);
08cefc7a
EB
4559 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4560 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4561 handle_t *handle;
4562
4563 /* (user+group)*(old+new) structure, inode write (sb,
4564 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4565 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4566 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4567 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4568 if (IS_ERR(handle)) {
4569 error = PTR_ERR(handle);
4570 goto err_out;
4571 }
b43fa828 4572 error = dquot_transfer(inode, attr);
ac27a0ec 4573 if (error) {
617ba13b 4574 ext4_journal_stop(handle);
ac27a0ec
DK
4575 return error;
4576 }
4577 /* Update corresponding info in inode so that everything is in
4578 * one transaction */
4579 if (attr->ia_valid & ATTR_UID)
4580 inode->i_uid = attr->ia_uid;
4581 if (attr->ia_valid & ATTR_GID)
4582 inode->i_gid = attr->ia_gid;
617ba13b
MC
4583 error = ext4_mark_inode_dirty(handle, inode);
4584 ext4_journal_stop(handle);
ac27a0ec
DK
4585 }
4586
5208386c
JK
4587 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4588 handle_t *handle;
562c72aa 4589
12e9b892 4590 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592
0c095c7f
TT
4593 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4594 return -EFBIG;
e2b46574 4595 }
dff6efc3
CH
4596
4597 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4598 inode_inc_iversion(inode);
4599
5208386c
JK
4600 if (S_ISREG(inode->i_mode) &&
4601 (attr->ia_size < inode->i_size)) {
4602 if (ext4_should_order_data(inode)) {
4603 error = ext4_begin_ordered_truncate(inode,
678aaf48 4604 attr->ia_size);
5208386c 4605 if (error)
678aaf48 4606 goto err_out;
5208386c
JK
4607 }
4608 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4609 if (IS_ERR(handle)) {
4610 error = PTR_ERR(handle);
4611 goto err_out;
4612 }
4613 if (ext4_handle_valid(handle)) {
4614 error = ext4_orphan_add(handle, inode);
4615 orphan = 1;
4616 }
90e775b7 4617 down_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4618 EXT4_I(inode)->i_disksize = attr->ia_size;
4619 rc = ext4_mark_inode_dirty(handle, inode);
4620 if (!error)
4621 error = rc;
90e775b7
JK
4622 /*
4623 * We have to update i_size under i_data_sem together
4624 * with i_disksize to avoid races with writeback code
4625 * running ext4_wb_update_i_disksize().
4626 */
4627 if (!error)
4628 i_size_write(inode, attr->ia_size);
4629 up_write(&EXT4_I(inode)->i_data_sem);
5208386c
JK
4630 ext4_journal_stop(handle);
4631 if (error) {
4632 ext4_orphan_del(NULL, inode);
678aaf48
JK
4633 goto err_out;
4634 }
90e775b7
JK
4635 } else
4636 i_size_write(inode, attr->ia_size);
53e87268 4637
5208386c
JK
4638 /*
4639 * Blocks are going to be removed from the inode. Wait
4640 * for dio in flight. Temporarily disable
4641 * dioread_nolock to prevent livelock.
4642 */
4643 if (orphan) {
4644 if (!ext4_should_journal_data(inode)) {
4645 ext4_inode_block_unlocked_dio(inode);
4646 inode_dio_wait(inode);
4647 ext4_inode_resume_unlocked_dio(inode);
4648 } else
4649 ext4_wait_for_tail_page_commit(inode);
1c9114f9 4650 }
5208386c
JK
4651 /*
4652 * Truncate pagecache after we've waited for commit
4653 * in data=journal mode to make pages freeable.
4654 */
7caef267 4655 truncate_pagecache(inode, inode->i_size);
072bd7ea 4656 }
5208386c
JK
4657 /*
4658 * We want to call ext4_truncate() even if attr->ia_size ==
4659 * inode->i_size for cases like truncation of fallocated space
4660 */
4661 if (attr->ia_valid & ATTR_SIZE)
4662 ext4_truncate(inode);
ac27a0ec 4663
1025774c
CH
4664 if (!rc) {
4665 setattr_copy(inode, attr);
4666 mark_inode_dirty(inode);
4667 }
4668
4669 /*
4670 * If the call to ext4_truncate failed to get a transaction handle at
4671 * all, we need to clean up the in-core orphan list manually.
4672 */
3d287de3 4673 if (orphan && inode->i_nlink)
617ba13b 4674 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4675
4676 if (!rc && (ia_valid & ATTR_MODE))
64e178a7 4677 rc = posix_acl_chmod(inode, inode->i_mode);
ac27a0ec
DK
4678
4679err_out:
617ba13b 4680 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4681 if (!error)
4682 error = rc;
4683 return error;
4684}
4685
3e3398a0
MC
4686int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4687 struct kstat *stat)
4688{
4689 struct inode *inode;
8af8eecc 4690 unsigned long long delalloc_blocks;
3e3398a0
MC
4691
4692 inode = dentry->d_inode;
4693 generic_fillattr(inode, stat);
4694
9206c561
AD
4695 /*
4696 * If there is inline data in the inode, the inode will normally not
4697 * have data blocks allocated (it may have an external xattr block).
4698 * Report at least one sector for such files, so tools like tar, rsync,
4699 * others doen't incorrectly think the file is completely sparse.
4700 */
4701 if (unlikely(ext4_has_inline_data(inode)))
4702 stat->blocks += (stat->size + 511) >> 9;
4703
3e3398a0
MC
4704 /*
4705 * We can't update i_blocks if the block allocation is delayed
4706 * otherwise in the case of system crash before the real block
4707 * allocation is done, we will have i_blocks inconsistent with
4708 * on-disk file blocks.
4709 * We always keep i_blocks updated together with real
4710 * allocation. But to not confuse with user, stat
4711 * will return the blocks that include the delayed allocation
4712 * blocks for this file.
4713 */
96607551 4714 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
9206c561
AD
4715 EXT4_I(inode)->i_reserved_data_blocks);
4716 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
3e3398a0
MC
4717 return 0;
4718}
ac27a0ec 4719
fffb2739
JK
4720static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4721 int pextents)
a02908f1 4722{
12e9b892 4723 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4724 return ext4_ind_trans_blocks(inode, lblocks);
4725 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4726}
ac51d837 4727
ac27a0ec 4728/*
a02908f1
MC
4729 * Account for index blocks, block groups bitmaps and block group
4730 * descriptor blocks if modify datablocks and index blocks
4731 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4732 *
a02908f1 4733 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4734 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4735 * they could still across block group boundary.
ac27a0ec 4736 *
a02908f1
MC
4737 * Also account for superblock, inode, quota and xattr blocks
4738 */
fffb2739
JK
4739static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4740 int pextents)
a02908f1 4741{
8df9675f
TT
4742 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4743 int gdpblocks;
a02908f1
MC
4744 int idxblocks;
4745 int ret = 0;
4746
4747 /*
fffb2739
JK
4748 * How many index blocks need to touch to map @lblocks logical blocks
4749 * to @pextents physical extents?
a02908f1 4750 */
fffb2739 4751 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4752
4753 ret = idxblocks;
4754
4755 /*
4756 * Now let's see how many group bitmaps and group descriptors need
4757 * to account
4758 */
fffb2739 4759 groups = idxblocks + pextents;
a02908f1 4760 gdpblocks = groups;
8df9675f
TT
4761 if (groups > ngroups)
4762 groups = ngroups;
a02908f1
MC
4763 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4764 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4765
4766 /* bitmaps and block group descriptor blocks */
4767 ret += groups + gdpblocks;
4768
4769 /* Blocks for super block, inode, quota and xattr blocks */
4770 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4771
4772 return ret;
4773}
4774
4775/*
25985edc 4776 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4777 * the modification of a single pages into a single transaction,
4778 * which may include multiple chunks of block allocations.
ac27a0ec 4779 *
525f4ed8 4780 * This could be called via ext4_write_begin()
ac27a0ec 4781 *
525f4ed8 4782 * We need to consider the worse case, when
a02908f1 4783 * one new block per extent.
ac27a0ec 4784 */
a86c6181 4785int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4786{
617ba13b 4787 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4788 int ret;
4789
fffb2739 4790 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4791
a02908f1 4792 /* Account for data blocks for journalled mode */
617ba13b 4793 if (ext4_should_journal_data(inode))
a02908f1 4794 ret += bpp;
ac27a0ec
DK
4795 return ret;
4796}
f3bd1f3f
MC
4797
4798/*
4799 * Calculate the journal credits for a chunk of data modification.
4800 *
4801 * This is called from DIO, fallocate or whoever calling
79e83036 4802 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4803 *
4804 * journal buffers for data blocks are not included here, as DIO
4805 * and fallocate do no need to journal data buffers.
4806 */
4807int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4808{
4809 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4810}
4811
ac27a0ec 4812/*
617ba13b 4813 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4814 * Give this, we know that the caller already has write access to iloc->bh.
4815 */
617ba13b 4816int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4817 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4818{
4819 int err = 0;
4820
c64db50e 4821 if (IS_I_VERSION(inode))
25ec56b5
JNC
4822 inode_inc_iversion(inode);
4823
ac27a0ec
DK
4824 /* the do_update_inode consumes one bh->b_count */
4825 get_bh(iloc->bh);
4826
dab291af 4827 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4828 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4829 put_bh(iloc->bh);
4830 return err;
4831}
4832
4833/*
4834 * On success, We end up with an outstanding reference count against
4835 * iloc->bh. This _must_ be cleaned up later.
4836 */
4837
4838int
617ba13b
MC
4839ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4840 struct ext4_iloc *iloc)
ac27a0ec 4841{
0390131b
FM
4842 int err;
4843
4844 err = ext4_get_inode_loc(inode, iloc);
4845 if (!err) {
4846 BUFFER_TRACE(iloc->bh, "get_write_access");
4847 err = ext4_journal_get_write_access(handle, iloc->bh);
4848 if (err) {
4849 brelse(iloc->bh);
4850 iloc->bh = NULL;
ac27a0ec
DK
4851 }
4852 }
617ba13b 4853 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4854 return err;
4855}
4856
6dd4ee7c
KS
4857/*
4858 * Expand an inode by new_extra_isize bytes.
4859 * Returns 0 on success or negative error number on failure.
4860 */
1d03ec98
AK
4861static int ext4_expand_extra_isize(struct inode *inode,
4862 unsigned int new_extra_isize,
4863 struct ext4_iloc iloc,
4864 handle_t *handle)
6dd4ee7c
KS
4865{
4866 struct ext4_inode *raw_inode;
4867 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4868
4869 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4870 return 0;
4871
4872 raw_inode = ext4_raw_inode(&iloc);
4873
4874 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4875
4876 /* No extended attributes present */
19f5fb7a
TT
4877 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4878 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4879 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4880 new_extra_isize);
4881 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4882 return 0;
4883 }
4884
4885 /* try to expand with EAs present */
4886 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4887 raw_inode, handle);
4888}
4889
ac27a0ec
DK
4890/*
4891 * What we do here is to mark the in-core inode as clean with respect to inode
4892 * dirtiness (it may still be data-dirty).
4893 * This means that the in-core inode may be reaped by prune_icache
4894 * without having to perform any I/O. This is a very good thing,
4895 * because *any* task may call prune_icache - even ones which
4896 * have a transaction open against a different journal.
4897 *
4898 * Is this cheating? Not really. Sure, we haven't written the
4899 * inode out, but prune_icache isn't a user-visible syncing function.
4900 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4901 * we start and wait on commits.
ac27a0ec 4902 */
617ba13b 4903int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4904{
617ba13b 4905 struct ext4_iloc iloc;
6dd4ee7c
KS
4906 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4907 static unsigned int mnt_count;
4908 int err, ret;
ac27a0ec
DK
4909
4910 might_sleep();
7ff9c073 4911 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4912 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4913 if (ext4_handle_valid(handle) &&
4914 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4915 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4916 /*
4917 * We need extra buffer credits since we may write into EA block
4918 * with this same handle. If journal_extend fails, then it will
4919 * only result in a minor loss of functionality for that inode.
4920 * If this is felt to be critical, then e2fsck should be run to
4921 * force a large enough s_min_extra_isize.
4922 */
4923 if ((jbd2_journal_extend(handle,
4924 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4925 ret = ext4_expand_extra_isize(inode,
4926 sbi->s_want_extra_isize,
4927 iloc, handle);
4928 if (ret) {
19f5fb7a
TT
4929 ext4_set_inode_state(inode,
4930 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4931 if (mnt_count !=
4932 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4933 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4934 "Unable to expand inode %lu. Delete"
4935 " some EAs or run e2fsck.",
4936 inode->i_ino);
c1bddad9
AK
4937 mnt_count =
4938 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4939 }
4940 }
4941 }
4942 }
ac27a0ec 4943 if (!err)
617ba13b 4944 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4945 return err;
4946}
4947
4948/*
617ba13b 4949 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4950 *
4951 * We're really interested in the case where a file is being extended.
4952 * i_size has been changed by generic_commit_write() and we thus need
4953 * to include the updated inode in the current transaction.
4954 *
5dd4056d 4955 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4956 * are allocated to the file.
4957 *
4958 * If the inode is marked synchronous, we don't honour that here - doing
4959 * so would cause a commit on atime updates, which we don't bother doing.
4960 * We handle synchronous inodes at the highest possible level.
4961 */
aa385729 4962void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4963{
ac27a0ec
DK
4964 handle_t *handle;
4965
9924a92a 4966 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4967 if (IS_ERR(handle))
4968 goto out;
f3dc272f 4969
f3dc272f
CW
4970 ext4_mark_inode_dirty(handle, inode);
4971
617ba13b 4972 ext4_journal_stop(handle);
ac27a0ec
DK
4973out:
4974 return;
4975}
4976
4977#if 0
4978/*
4979 * Bind an inode's backing buffer_head into this transaction, to prevent
4980 * it from being flushed to disk early. Unlike
617ba13b 4981 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4982 * returns no iloc structure, so the caller needs to repeat the iloc
4983 * lookup to mark the inode dirty later.
4984 */
617ba13b 4985static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4986{
617ba13b 4987 struct ext4_iloc iloc;
ac27a0ec
DK
4988
4989 int err = 0;
4990 if (handle) {
617ba13b 4991 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4992 if (!err) {
4993 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4994 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4995 if (!err)
0390131b 4996 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4997 NULL,
0390131b 4998 iloc.bh);
ac27a0ec
DK
4999 brelse(iloc.bh);
5000 }
5001 }
617ba13b 5002 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5003 return err;
5004}
5005#endif
5006
617ba13b 5007int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5008{
5009 journal_t *journal;
5010 handle_t *handle;
5011 int err;
5012
5013 /*
5014 * We have to be very careful here: changing a data block's
5015 * journaling status dynamically is dangerous. If we write a
5016 * data block to the journal, change the status and then delete
5017 * that block, we risk forgetting to revoke the old log record
5018 * from the journal and so a subsequent replay can corrupt data.
5019 * So, first we make sure that the journal is empty and that
5020 * nobody is changing anything.
5021 */
5022
617ba13b 5023 journal = EXT4_JOURNAL(inode);
0390131b
FM
5024 if (!journal)
5025 return 0;
d699594d 5026 if (is_journal_aborted(journal))
ac27a0ec 5027 return -EROFS;
2aff57b0
YY
5028 /* We have to allocate physical blocks for delalloc blocks
5029 * before flushing journal. otherwise delalloc blocks can not
5030 * be allocated any more. even more truncate on delalloc blocks
5031 * could trigger BUG by flushing delalloc blocks in journal.
5032 * There is no delalloc block in non-journal data mode.
5033 */
5034 if (val && test_opt(inode->i_sb, DELALLOC)) {
5035 err = ext4_alloc_da_blocks(inode);
5036 if (err < 0)
5037 return err;
5038 }
ac27a0ec 5039
17335dcc
DM
5040 /* Wait for all existing dio workers */
5041 ext4_inode_block_unlocked_dio(inode);
5042 inode_dio_wait(inode);
5043
dab291af 5044 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5045
5046 /*
5047 * OK, there are no updates running now, and all cached data is
5048 * synced to disk. We are now in a completely consistent state
5049 * which doesn't have anything in the journal, and we know that
5050 * no filesystem updates are running, so it is safe to modify
5051 * the inode's in-core data-journaling state flag now.
5052 */
5053
5054 if (val)
12e9b892 5055 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5056 else {
5057 jbd2_journal_flush(journal);
12e9b892 5058 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5059 }
617ba13b 5060 ext4_set_aops(inode);
ac27a0ec 5061
dab291af 5062 jbd2_journal_unlock_updates(journal);
17335dcc 5063 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5064
5065 /* Finally we can mark the inode as dirty. */
5066
9924a92a 5067 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5068 if (IS_ERR(handle))
5069 return PTR_ERR(handle);
5070
617ba13b 5071 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5072 ext4_handle_sync(handle);
617ba13b
MC
5073 ext4_journal_stop(handle);
5074 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5075
5076 return err;
5077}
2e9ee850
AK
5078
5079static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5080{
5081 return !buffer_mapped(bh);
5082}
5083
c2ec175c 5084int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5085{
c2ec175c 5086 struct page *page = vmf->page;
2e9ee850
AK
5087 loff_t size;
5088 unsigned long len;
9ea7df53 5089 int ret;
2e9ee850 5090 struct file *file = vma->vm_file;
496ad9aa 5091 struct inode *inode = file_inode(file);
2e9ee850 5092 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5093 handle_t *handle;
5094 get_block_t *get_block;
5095 int retries = 0;
2e9ee850 5096
8e8ad8a5 5097 sb_start_pagefault(inode->i_sb);
041bbb6d 5098 file_update_time(vma->vm_file);
9ea7df53
JK
5099 /* Delalloc case is easy... */
5100 if (test_opt(inode->i_sb, DELALLOC) &&
5101 !ext4_should_journal_data(inode) &&
5102 !ext4_nonda_switch(inode->i_sb)) {
5103 do {
5104 ret = __block_page_mkwrite(vma, vmf,
5105 ext4_da_get_block_prep);
5106 } while (ret == -ENOSPC &&
5107 ext4_should_retry_alloc(inode->i_sb, &retries));
5108 goto out_ret;
2e9ee850 5109 }
0e499890
DW
5110
5111 lock_page(page);
9ea7df53
JK
5112 size = i_size_read(inode);
5113 /* Page got truncated from under us? */
5114 if (page->mapping != mapping || page_offset(page) > size) {
5115 unlock_page(page);
5116 ret = VM_FAULT_NOPAGE;
5117 goto out;
0e499890 5118 }
2e9ee850
AK
5119
5120 if (page->index == size >> PAGE_CACHE_SHIFT)
5121 len = size & ~PAGE_CACHE_MASK;
5122 else
5123 len = PAGE_CACHE_SIZE;
a827eaff 5124 /*
9ea7df53
JK
5125 * Return if we have all the buffers mapped. This avoids the need to do
5126 * journal_start/journal_stop which can block and take a long time
a827eaff 5127 */
2e9ee850 5128 if (page_has_buffers(page)) {
f19d5870
TM
5129 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5130 0, len, NULL,
5131 ext4_bh_unmapped)) {
9ea7df53 5132 /* Wait so that we don't change page under IO */
1d1d1a76 5133 wait_for_stable_page(page);
9ea7df53
JK
5134 ret = VM_FAULT_LOCKED;
5135 goto out;
a827eaff 5136 }
2e9ee850 5137 }
a827eaff 5138 unlock_page(page);
9ea7df53
JK
5139 /* OK, we need to fill the hole... */
5140 if (ext4_should_dioread_nolock(inode))
5141 get_block = ext4_get_block_write;
5142 else
5143 get_block = ext4_get_block;
5144retry_alloc:
9924a92a
TT
5145 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5146 ext4_writepage_trans_blocks(inode));
9ea7df53 5147 if (IS_ERR(handle)) {
c2ec175c 5148 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5149 goto out;
5150 }
5151 ret = __block_page_mkwrite(vma, vmf, get_block);
5152 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5153 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5154 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5155 unlock_page(page);
5156 ret = VM_FAULT_SIGBUS;
fcbb5515 5157 ext4_journal_stop(handle);
9ea7df53
JK
5158 goto out;
5159 }
5160 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5161 }
5162 ext4_journal_stop(handle);
5163 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5164 goto retry_alloc;
5165out_ret:
5166 ret = block_page_mkwrite_return(ret);
5167out:
8e8ad8a5 5168 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5169 return ret;
5170}
This page took 1.128862 seconds and 5 git commands to generate.