ext4: inline ext4_writepage() into mpage_da_submit_io()
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af 28#include <linux/jbd2.h>
ac27a0ec
DK
29#include <linux/highuid.h>
30#include <linux/pagemap.h>
31#include <linux/quotaops.h>
32#include <linux/string.h>
33#include <linux/buffer_head.h>
34#include <linux/writeback.h>
64769240 35#include <linux/pagevec.h>
ac27a0ec 36#include <linux/mpage.h>
e83c1397 37#include <linux/namei.h>
ac27a0ec
DK
38#include <linux/uio.h>
39#include <linux/bio.h>
4c0425ff 40#include <linux/workqueue.h>
744692dc 41#include <linux/kernel.h>
5a0e3ad6 42#include <linux/slab.h>
9bffad1e 43
3dcf5451 44#include "ext4_jbd2.h"
ac27a0ec
DK
45#include "xattr.h"
46#include "acl.h"
d2a17637 47#include "ext4_extents.h"
ac27a0ec 48
9bffad1e
TT
49#include <trace/events/ext4.h>
50
a1d6cc56
AK
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
678aaf48
JK
53static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55{
7f5aa215
JK
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
678aaf48
JK
60}
61
64769240 62static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
63static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
64 struct buffer_head *bh_result, int create);
65static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
66static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
67static int __ext4_journalled_writepage(struct page *page, unsigned int len);
68static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 69
ac27a0ec
DK
70/*
71 * Test whether an inode is a fast symlink.
72 */
617ba13b 73static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 74{
617ba13b 75 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
76 (inode->i_sb->s_blocksize >> 9) : 0;
77
78 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
79}
80
ac27a0ec
DK
81/*
82 * Work out how many blocks we need to proceed with the next chunk of a
83 * truncate transaction.
84 */
85static unsigned long blocks_for_truncate(struct inode *inode)
86{
725d26d3 87 ext4_lblk_t needed;
ac27a0ec
DK
88
89 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
90
91 /* Give ourselves just enough room to cope with inodes in which
92 * i_blocks is corrupt: we've seen disk corruptions in the past
93 * which resulted in random data in an inode which looked enough
617ba13b 94 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
95 * will go a bit crazy if that happens, but at least we should
96 * try not to panic the whole kernel. */
97 if (needed < 2)
98 needed = 2;
99
100 /* But we need to bound the transaction so we don't overflow the
101 * journal. */
617ba13b
MC
102 if (needed > EXT4_MAX_TRANS_DATA)
103 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 104
617ba13b 105 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
106}
107
108/*
109 * Truncate transactions can be complex and absolutely huge. So we need to
110 * be able to restart the transaction at a conventient checkpoint to make
111 * sure we don't overflow the journal.
112 *
113 * start_transaction gets us a new handle for a truncate transaction,
114 * and extend_transaction tries to extend the existing one a bit. If
115 * extend fails, we need to propagate the failure up and restart the
116 * transaction in the top-level truncate loop. --sct
117 */
118static handle_t *start_transaction(struct inode *inode)
119{
120 handle_t *result;
121
617ba13b 122 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
123 if (!IS_ERR(result))
124 return result;
125
617ba13b 126 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
127 return result;
128}
129
130/*
131 * Try to extend this transaction for the purposes of truncation.
132 *
133 * Returns 0 if we managed to create more room. If we can't create more
134 * room, and the transaction must be restarted we return 1.
135 */
136static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
137{
0390131b
FM
138 if (!ext4_handle_valid(handle))
139 return 0;
140 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
ac27a0ec 141 return 0;
617ba13b 142 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
143 return 0;
144 return 1;
145}
146
147/*
148 * Restart the transaction associated with *handle. This does a commit,
149 * so before we call here everything must be consistently dirtied against
150 * this transaction.
151 */
fa5d1113 152int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 153 int nblocks)
ac27a0ec 154{
487caeef
JK
155 int ret;
156
157 /*
e35fd660 158 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
159 * moment, get_block can be called only for blocks inside i_size since
160 * page cache has been already dropped and writes are blocked by
161 * i_mutex. So we can safely drop the i_data_sem here.
162 */
0390131b 163 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 164 jbd_debug(2, "restarting handle %p\n", handle);
487caeef
JK
165 up_write(&EXT4_I(inode)->i_data_sem);
166 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
167 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 168 ext4_discard_preallocations(inode);
487caeef
JK
169
170 return ret;
ac27a0ec
DK
171}
172
173/*
174 * Called at the last iput() if i_nlink is zero.
175 */
0930fcc1 176void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
177{
178 handle_t *handle;
bc965ab3 179 int err;
ac27a0ec 180
0930fcc1
AV
181 if (inode->i_nlink) {
182 truncate_inode_pages(&inode->i_data, 0);
183 goto no_delete;
184 }
185
907f4554 186 if (!is_bad_inode(inode))
871a2931 187 dquot_initialize(inode);
907f4554 188
678aaf48
JK
189 if (ext4_should_order_data(inode))
190 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
191 truncate_inode_pages(&inode->i_data, 0);
192
193 if (is_bad_inode(inode))
194 goto no_delete;
195
bc965ab3 196 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
ac27a0ec 197 if (IS_ERR(handle)) {
bc965ab3 198 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
199 /*
200 * If we're going to skip the normal cleanup, we still need to
201 * make sure that the in-core orphan linked list is properly
202 * cleaned up.
203 */
617ba13b 204 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
205 goto no_delete;
206 }
207
208 if (IS_SYNC(inode))
0390131b 209 ext4_handle_sync(handle);
ac27a0ec 210 inode->i_size = 0;
bc965ab3
TT
211 err = ext4_mark_inode_dirty(handle, inode);
212 if (err) {
12062ddd 213 ext4_warning(inode->i_sb,
bc965ab3
TT
214 "couldn't mark inode dirty (err %d)", err);
215 goto stop_handle;
216 }
ac27a0ec 217 if (inode->i_blocks)
617ba13b 218 ext4_truncate(inode);
bc965ab3
TT
219
220 /*
221 * ext4_ext_truncate() doesn't reserve any slop when it
222 * restarts journal transactions; therefore there may not be
223 * enough credits left in the handle to remove the inode from
224 * the orphan list and set the dtime field.
225 */
0390131b 226 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
227 err = ext4_journal_extend(handle, 3);
228 if (err > 0)
229 err = ext4_journal_restart(handle, 3);
230 if (err != 0) {
12062ddd 231 ext4_warning(inode->i_sb,
bc965ab3
TT
232 "couldn't extend journal (err %d)", err);
233 stop_handle:
234 ext4_journal_stop(handle);
45388219 235 ext4_orphan_del(NULL, inode);
bc965ab3
TT
236 goto no_delete;
237 }
238 }
239
ac27a0ec 240 /*
617ba13b 241 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 242 * AKPM: I think this can be inside the above `if'.
617ba13b 243 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 244 * deletion of a non-existent orphan - this is because we don't
617ba13b 245 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
246 * (Well, we could do this if we need to, but heck - it works)
247 */
617ba13b
MC
248 ext4_orphan_del(handle, inode);
249 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
250
251 /*
252 * One subtle ordering requirement: if anything has gone wrong
253 * (transaction abort, IO errors, whatever), then we can still
254 * do these next steps (the fs will already have been marked as
255 * having errors), but we can't free the inode if the mark_dirty
256 * fails.
257 */
617ba13b 258 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 259 /* If that failed, just do the required in-core inode clear. */
0930fcc1 260 ext4_clear_inode(inode);
ac27a0ec 261 else
617ba13b
MC
262 ext4_free_inode(handle, inode);
263 ext4_journal_stop(handle);
ac27a0ec
DK
264 return;
265no_delete:
0930fcc1 266 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
267}
268
269typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273} Indirect;
274
275static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
276{
277 p->key = *(p->p = v);
278 p->bh = bh;
279}
280
ac27a0ec 281/**
617ba13b 282 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
283 * @inode: inode in question (we are only interested in its superblock)
284 * @i_block: block number to be parsed
285 * @offsets: array to store the offsets in
8c55e204
DK
286 * @boundary: set this non-zero if the referred-to block is likely to be
287 * followed (on disk) by an indirect block.
ac27a0ec 288 *
617ba13b 289 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
290 * for UNIX filesystems - tree of pointers anchored in the inode, with
291 * data blocks at leaves and indirect blocks in intermediate nodes.
292 * This function translates the block number into path in that tree -
293 * return value is the path length and @offsets[n] is the offset of
294 * pointer to (n+1)th node in the nth one. If @block is out of range
295 * (negative or too large) warning is printed and zero returned.
296 *
297 * Note: function doesn't find node addresses, so no IO is needed. All
298 * we need to know is the capacity of indirect blocks (taken from the
299 * inode->i_sb).
300 */
301
302/*
303 * Portability note: the last comparison (check that we fit into triple
304 * indirect block) is spelled differently, because otherwise on an
305 * architecture with 32-bit longs and 8Kb pages we might get into trouble
306 * if our filesystem had 8Kb blocks. We might use long long, but that would
307 * kill us on x86. Oh, well, at least the sign propagation does not matter -
308 * i_block would have to be negative in the very beginning, so we would not
309 * get there at all.
310 */
311
617ba13b 312static int ext4_block_to_path(struct inode *inode,
de9a55b8
TT
313 ext4_lblk_t i_block,
314 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 315{
617ba13b
MC
316 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
317 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
318 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
319 indirect_blocks = ptrs,
320 double_blocks = (1 << (ptrs_bits * 2));
321 int n = 0;
322 int final = 0;
323
c333e073 324 if (i_block < direct_blocks) {
ac27a0ec
DK
325 offsets[n++] = i_block;
326 final = direct_blocks;
af5bc92d 327 } else if ((i_block -= direct_blocks) < indirect_blocks) {
617ba13b 328 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
329 offsets[n++] = i_block;
330 final = ptrs;
331 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 332 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
333 offsets[n++] = i_block >> ptrs_bits;
334 offsets[n++] = i_block & (ptrs - 1);
335 final = ptrs;
336 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 337 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
338 offsets[n++] = i_block >> (ptrs_bits * 2);
339 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
340 offsets[n++] = i_block & (ptrs - 1);
341 final = ptrs;
342 } else {
12062ddd 343 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
de9a55b8
TT
344 i_block + direct_blocks +
345 indirect_blocks + double_blocks, inode->i_ino);
ac27a0ec
DK
346 }
347 if (boundary)
348 *boundary = final - 1 - (i_block & (ptrs - 1));
349 return n;
350}
351
c398eda0
TT
352static int __ext4_check_blockref(const char *function, unsigned int line,
353 struct inode *inode,
6fd058f7
TT
354 __le32 *p, unsigned int max)
355{
1c13d5c0 356 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
f73953c0 357 __le32 *bref = p;
6fd058f7
TT
358 unsigned int blk;
359
fe2c8191 360 while (bref < p+max) {
6fd058f7 361 blk = le32_to_cpu(*bref++);
de9a55b8
TT
362 if (blk &&
363 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
6fd058f7 364 blk, 1))) {
1c13d5c0 365 es->s_last_error_block = cpu_to_le64(blk);
c398eda0
TT
366 ext4_error_inode(inode, function, line, blk,
367 "invalid block");
de9a55b8
TT
368 return -EIO;
369 }
370 }
371 return 0;
fe2c8191
TN
372}
373
374
375#define ext4_check_indirect_blockref(inode, bh) \
c398eda0
TT
376 __ext4_check_blockref(__func__, __LINE__, inode, \
377 (__le32 *)(bh)->b_data, \
fe2c8191
TN
378 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
379
380#define ext4_check_inode_blockref(inode) \
c398eda0
TT
381 __ext4_check_blockref(__func__, __LINE__, inode, \
382 EXT4_I(inode)->i_data, \
fe2c8191
TN
383 EXT4_NDIR_BLOCKS)
384
ac27a0ec 385/**
617ba13b 386 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
387 * @inode: inode in question
388 * @depth: depth of the chain (1 - direct pointer, etc.)
389 * @offsets: offsets of pointers in inode/indirect blocks
390 * @chain: place to store the result
391 * @err: here we store the error value
392 *
393 * Function fills the array of triples <key, p, bh> and returns %NULL
394 * if everything went OK or the pointer to the last filled triple
395 * (incomplete one) otherwise. Upon the return chain[i].key contains
396 * the number of (i+1)-th block in the chain (as it is stored in memory,
397 * i.e. little-endian 32-bit), chain[i].p contains the address of that
398 * number (it points into struct inode for i==0 and into the bh->b_data
399 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
400 * block for i>0 and NULL for i==0. In other words, it holds the block
401 * numbers of the chain, addresses they were taken from (and where we can
402 * verify that chain did not change) and buffer_heads hosting these
403 * numbers.
404 *
405 * Function stops when it stumbles upon zero pointer (absent block)
406 * (pointer to last triple returned, *@err == 0)
407 * or when it gets an IO error reading an indirect block
408 * (ditto, *@err == -EIO)
ac27a0ec
DK
409 * or when it reads all @depth-1 indirect blocks successfully and finds
410 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
411 *
412 * Need to be called with
0e855ac8 413 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 414 */
725d26d3
AK
415static Indirect *ext4_get_branch(struct inode *inode, int depth,
416 ext4_lblk_t *offsets,
ac27a0ec
DK
417 Indirect chain[4], int *err)
418{
419 struct super_block *sb = inode->i_sb;
420 Indirect *p = chain;
421 struct buffer_head *bh;
422
423 *err = 0;
424 /* i_data is not going away, no lock needed */
af5bc92d 425 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
426 if (!p->key)
427 goto no_block;
428 while (--depth) {
fe2c8191
TN
429 bh = sb_getblk(sb, le32_to_cpu(p->key));
430 if (unlikely(!bh))
ac27a0ec 431 goto failure;
de9a55b8 432
fe2c8191
TN
433 if (!bh_uptodate_or_lock(bh)) {
434 if (bh_submit_read(bh) < 0) {
435 put_bh(bh);
436 goto failure;
437 }
438 /* validate block references */
439 if (ext4_check_indirect_blockref(inode, bh)) {
440 put_bh(bh);
441 goto failure;
442 }
443 }
de9a55b8 444
af5bc92d 445 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
ac27a0ec
DK
446 /* Reader: end */
447 if (!p->key)
448 goto no_block;
449 }
450 return NULL;
451
ac27a0ec
DK
452failure:
453 *err = -EIO;
454no_block:
455 return p;
456}
457
458/**
617ba13b 459 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
460 * @inode: owner
461 * @ind: descriptor of indirect block.
462 *
1cc8dcf5 463 * This function returns the preferred place for block allocation.
ac27a0ec
DK
464 * It is used when heuristic for sequential allocation fails.
465 * Rules are:
466 * + if there is a block to the left of our position - allocate near it.
467 * + if pointer will live in indirect block - allocate near that block.
468 * + if pointer will live in inode - allocate in the same
469 * cylinder group.
470 *
471 * In the latter case we colour the starting block by the callers PID to
472 * prevent it from clashing with concurrent allocations for a different inode
473 * in the same block group. The PID is used here so that functionally related
474 * files will be close-by on-disk.
475 *
476 * Caller must make sure that @ind is valid and will stay that way.
477 */
617ba13b 478static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 479{
617ba13b 480 struct ext4_inode_info *ei = EXT4_I(inode);
af5bc92d 481 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
ac27a0ec 482 __le32 *p;
617ba13b 483 ext4_fsblk_t bg_start;
74d3487f 484 ext4_fsblk_t last_block;
617ba13b 485 ext4_grpblk_t colour;
a4912123
TT
486 ext4_group_t block_group;
487 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
ac27a0ec
DK
488
489 /* Try to find previous block */
490 for (p = ind->p - 1; p >= start; p--) {
491 if (*p)
492 return le32_to_cpu(*p);
493 }
494
495 /* No such thing, so let's try location of indirect block */
496 if (ind->bh)
497 return ind->bh->b_blocknr;
498
499 /*
500 * It is going to be referred to from the inode itself? OK, just put it
501 * into the same cylinder group then.
502 */
a4912123
TT
503 block_group = ei->i_block_group;
504 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
505 block_group &= ~(flex_size-1);
506 if (S_ISREG(inode->i_mode))
507 block_group++;
508 }
509 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
74d3487f
VC
510 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
511
a4912123
TT
512 /*
513 * If we are doing delayed allocation, we don't need take
514 * colour into account.
515 */
516 if (test_opt(inode->i_sb, DELALLOC))
517 return bg_start;
518
74d3487f
VC
519 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
520 colour = (current->pid % 16) *
617ba13b 521 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
74d3487f
VC
522 else
523 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
ac27a0ec
DK
524 return bg_start + colour;
525}
526
527/**
1cc8dcf5 528 * ext4_find_goal - find a preferred place for allocation.
ac27a0ec
DK
529 * @inode: owner
530 * @block: block we want
ac27a0ec 531 * @partial: pointer to the last triple within a chain
ac27a0ec 532 *
1cc8dcf5 533 * Normally this function find the preferred place for block allocation,
fb01bfda 534 * returns it.
fb0a387d
ES
535 * Because this is only used for non-extent files, we limit the block nr
536 * to 32 bits.
ac27a0ec 537 */
725d26d3 538static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
de9a55b8 539 Indirect *partial)
ac27a0ec 540{
fb0a387d
ES
541 ext4_fsblk_t goal;
542
ac27a0ec 543 /*
c2ea3fde 544 * XXX need to get goal block from mballoc's data structures
ac27a0ec 545 */
ac27a0ec 546
fb0a387d
ES
547 goal = ext4_find_near(inode, partial);
548 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
549 return goal;
ac27a0ec
DK
550}
551
552/**
617ba13b 553 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
554 * of direct blocks need to be allocated for the given branch.
555 *
556 * @branch: chain of indirect blocks
557 * @k: number of blocks need for indirect blocks
558 * @blks: number of data blocks to be mapped.
559 * @blocks_to_boundary: the offset in the indirect block
560 *
561 * return the total number of blocks to be allocate, including the
562 * direct and indirect blocks.
563 */
498e5f24 564static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
de9a55b8 565 int blocks_to_boundary)
ac27a0ec 566{
498e5f24 567 unsigned int count = 0;
ac27a0ec
DK
568
569 /*
570 * Simple case, [t,d]Indirect block(s) has not allocated yet
571 * then it's clear blocks on that path have not allocated
572 */
573 if (k > 0) {
574 /* right now we don't handle cross boundary allocation */
575 if (blks < blocks_to_boundary + 1)
576 count += blks;
577 else
578 count += blocks_to_boundary + 1;
579 return count;
580 }
581
582 count++;
583 while (count < blks && count <= blocks_to_boundary &&
584 le32_to_cpu(*(branch[0].p + count)) == 0) {
585 count++;
586 }
587 return count;
588}
589
590/**
617ba13b 591 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
592 * @indirect_blks: the number of blocks need to allocate for indirect
593 * blocks
594 *
595 * @new_blocks: on return it will store the new block numbers for
596 * the indirect blocks(if needed) and the first direct block,
597 * @blks: on return it will store the total number of allocated
598 * direct blocks
599 */
617ba13b 600static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
de9a55b8
TT
601 ext4_lblk_t iblock, ext4_fsblk_t goal,
602 int indirect_blks, int blks,
603 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec 604{
815a1130 605 struct ext4_allocation_request ar;
ac27a0ec 606 int target, i;
7061eba7 607 unsigned long count = 0, blk_allocated = 0;
ac27a0ec 608 int index = 0;
617ba13b 609 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
610 int ret = 0;
611
612 /*
613 * Here we try to allocate the requested multiple blocks at once,
614 * on a best-effort basis.
615 * To build a branch, we should allocate blocks for
616 * the indirect blocks(if not allocated yet), and at least
617 * the first direct block of this branch. That's the
618 * minimum number of blocks need to allocate(required)
619 */
7061eba7
AK
620 /* first we try to allocate the indirect blocks */
621 target = indirect_blks;
622 while (target > 0) {
ac27a0ec
DK
623 count = target;
624 /* allocating blocks for indirect blocks and direct blocks */
7061eba7
AK
625 current_block = ext4_new_meta_blocks(handle, inode,
626 goal, &count, err);
ac27a0ec
DK
627 if (*err)
628 goto failed_out;
629
273df556
FM
630 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
631 EXT4_ERROR_INODE(inode,
632 "current_block %llu + count %lu > %d!",
633 current_block, count,
634 EXT4_MAX_BLOCK_FILE_PHYS);
635 *err = -EIO;
636 goto failed_out;
637 }
fb0a387d 638
ac27a0ec
DK
639 target -= count;
640 /* allocate blocks for indirect blocks */
641 while (index < indirect_blks && count) {
642 new_blocks[index++] = current_block++;
643 count--;
644 }
7061eba7
AK
645 if (count > 0) {
646 /*
647 * save the new block number
648 * for the first direct block
649 */
650 new_blocks[index] = current_block;
651 printk(KERN_INFO "%s returned more blocks than "
652 "requested\n", __func__);
653 WARN_ON(1);
ac27a0ec 654 break;
7061eba7 655 }
ac27a0ec
DK
656 }
657
7061eba7
AK
658 target = blks - count ;
659 blk_allocated = count;
660 if (!target)
661 goto allocated;
662 /* Now allocate data blocks */
815a1130
TT
663 memset(&ar, 0, sizeof(ar));
664 ar.inode = inode;
665 ar.goal = goal;
666 ar.len = target;
667 ar.logical = iblock;
668 if (S_ISREG(inode->i_mode))
669 /* enable in-core preallocation only for regular files */
670 ar.flags = EXT4_MB_HINT_DATA;
671
672 current_block = ext4_mb_new_blocks(handle, &ar, err);
273df556
FM
673 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
674 EXT4_ERROR_INODE(inode,
675 "current_block %llu + ar.len %d > %d!",
676 current_block, ar.len,
677 EXT4_MAX_BLOCK_FILE_PHYS);
678 *err = -EIO;
679 goto failed_out;
680 }
815a1130 681
7061eba7
AK
682 if (*err && (target == blks)) {
683 /*
684 * if the allocation failed and we didn't allocate
685 * any blocks before
686 */
687 goto failed_out;
688 }
689 if (!*err) {
690 if (target == blks) {
de9a55b8
TT
691 /*
692 * save the new block number
693 * for the first direct block
694 */
7061eba7
AK
695 new_blocks[index] = current_block;
696 }
815a1130 697 blk_allocated += ar.len;
7061eba7
AK
698 }
699allocated:
ac27a0ec 700 /* total number of blocks allocated for direct blocks */
7061eba7 701 ret = blk_allocated;
ac27a0ec
DK
702 *err = 0;
703 return ret;
704failed_out:
af5bc92d 705 for (i = 0; i < index; i++)
e6362609 706 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec
DK
707 return ret;
708}
709
710/**
617ba13b 711 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
712 * @inode: owner
713 * @indirect_blks: number of allocated indirect blocks
714 * @blks: number of allocated direct blocks
715 * @offsets: offsets (in the blocks) to store the pointers to next.
716 * @branch: place to store the chain in.
717 *
718 * This function allocates blocks, zeroes out all but the last one,
719 * links them into chain and (if we are synchronous) writes them to disk.
720 * In other words, it prepares a branch that can be spliced onto the
721 * inode. It stores the information about that chain in the branch[], in
617ba13b 722 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
723 * we had read the existing part of chain and partial points to the last
724 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 725 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
726 * place chain is disconnected - *branch->p is still zero (we did not
727 * set the last link), but branch->key contains the number that should
728 * be placed into *branch->p to fill that gap.
729 *
730 * If allocation fails we free all blocks we've allocated (and forget
731 * their buffer_heads) and return the error value the from failed
617ba13b 732 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
733 * as described above and return 0.
734 */
617ba13b 735static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
736 ext4_lblk_t iblock, int indirect_blks,
737 int *blks, ext4_fsblk_t goal,
738 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
739{
740 int blocksize = inode->i_sb->s_blocksize;
741 int i, n = 0;
742 int err = 0;
743 struct buffer_head *bh;
744 int num;
617ba13b
MC
745 ext4_fsblk_t new_blocks[4];
746 ext4_fsblk_t current_block;
ac27a0ec 747
7061eba7 748 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
ac27a0ec
DK
749 *blks, new_blocks, &err);
750 if (err)
751 return err;
752
753 branch[0].key = cpu_to_le32(new_blocks[0]);
754 /*
755 * metadata blocks and data blocks are allocated.
756 */
757 for (n = 1; n <= indirect_blks; n++) {
758 /*
759 * Get buffer_head for parent block, zero it out
760 * and set the pointer to new one, then send
761 * parent to disk.
762 */
763 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
764 branch[n].bh = bh;
765 lock_buffer(bh);
766 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 767 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec 768 if (err) {
6487a9d3
CW
769 /* Don't brelse(bh) here; it's done in
770 * ext4_journal_forget() below */
ac27a0ec 771 unlock_buffer(bh);
ac27a0ec
DK
772 goto failed;
773 }
774
775 memset(bh->b_data, 0, blocksize);
776 branch[n].p = (__le32 *) bh->b_data + offsets[n];
777 branch[n].key = cpu_to_le32(new_blocks[n]);
778 *branch[n].p = branch[n].key;
af5bc92d 779 if (n == indirect_blks) {
ac27a0ec
DK
780 current_block = new_blocks[n];
781 /*
782 * End of chain, update the last new metablock of
783 * the chain to point to the new allocated
784 * data blocks numbers
785 */
de9a55b8 786 for (i = 1; i < num; i++)
ac27a0ec
DK
787 *(branch[n].p + i) = cpu_to_le32(++current_block);
788 }
789 BUFFER_TRACE(bh, "marking uptodate");
790 set_buffer_uptodate(bh);
791 unlock_buffer(bh);
792
0390131b
FM
793 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
794 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec
DK
795 if (err)
796 goto failed;
797 }
798 *blks = num;
799 return err;
800failed:
801 /* Allocation failed, free what we already allocated */
e6362609 802 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
ac27a0ec 803 for (i = 1; i <= n ; i++) {
60e6679e 804 /*
e6362609
TT
805 * branch[i].bh is newly allocated, so there is no
806 * need to revoke the block, which is why we don't
807 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 808 */
e6362609
TT
809 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
810 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 811 }
e6362609
TT
812 for (i = n+1; i < indirect_blks; i++)
813 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
ac27a0ec 814
e6362609 815 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
ac27a0ec
DK
816
817 return err;
818}
819
820/**
617ba13b 821 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
822 * @inode: owner
823 * @block: (logical) number of block we are adding
824 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 825 * ext4_alloc_branch)
ac27a0ec
DK
826 * @where: location of missing link
827 * @num: number of indirect blocks we are adding
828 * @blks: number of direct blocks we are adding
829 *
830 * This function fills the missing link and does all housekeeping needed in
831 * inode (->i_blocks, etc.). In case of success we end up with the full
832 * chain to new block and return 0.
833 */
617ba13b 834static int ext4_splice_branch(handle_t *handle, struct inode *inode,
de9a55b8
TT
835 ext4_lblk_t block, Indirect *where, int num,
836 int blks)
ac27a0ec
DK
837{
838 int i;
839 int err = 0;
617ba13b 840 ext4_fsblk_t current_block;
ac27a0ec 841
ac27a0ec
DK
842 /*
843 * If we're splicing into a [td]indirect block (as opposed to the
844 * inode) then we need to get write access to the [td]indirect block
845 * before the splice.
846 */
847 if (where->bh) {
848 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 849 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
850 if (err)
851 goto err_out;
852 }
853 /* That's it */
854
855 *where->p = where->key;
856
857 /*
858 * Update the host buffer_head or inode to point to more just allocated
859 * direct blocks blocks
860 */
861 if (num == 0 && blks > 1) {
862 current_block = le32_to_cpu(where->key) + 1;
863 for (i = 1; i < blks; i++)
af5bc92d 864 *(where->p + i) = cpu_to_le32(current_block++);
ac27a0ec
DK
865 }
866
ac27a0ec 867 /* We are done with atomic stuff, now do the rest of housekeeping */
ac27a0ec
DK
868 /* had we spliced it onto indirect block? */
869 if (where->bh) {
870 /*
871 * If we spliced it onto an indirect block, we haven't
872 * altered the inode. Note however that if it is being spliced
873 * onto an indirect block at the very end of the file (the
874 * file is growing) then we *will* alter the inode to reflect
875 * the new i_size. But that is not done here - it is done in
617ba13b 876 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
877 */
878 jbd_debug(5, "splicing indirect only\n");
0390131b
FM
879 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
880 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
ac27a0ec
DK
881 if (err)
882 goto err_out;
883 } else {
884 /*
885 * OK, we spliced it into the inode itself on a direct block.
ac27a0ec 886 */
41591750 887 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
888 jbd_debug(5, "splicing direct\n");
889 }
890 return err;
891
892err_out:
893 for (i = 1; i <= num; i++) {
60e6679e 894 /*
e6362609
TT
895 * branch[i].bh is newly allocated, so there is no
896 * need to revoke the block, which is why we don't
897 * need to set EXT4_FREE_BLOCKS_METADATA.
b7e57e7c 898 */
e6362609
TT
899 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
900 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec 901 }
e6362609
TT
902 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
903 blks, 0);
ac27a0ec
DK
904
905 return err;
906}
907
908/*
e35fd660 909 * The ext4_ind_map_blocks() function handles non-extents inodes
b920c755 910 * (i.e., using the traditional indirect/double-indirect i_blocks
e35fd660 911 * scheme) for ext4_map_blocks().
b920c755 912 *
ac27a0ec
DK
913 * Allocation strategy is simple: if we have to allocate something, we will
914 * have to go the whole way to leaf. So let's do it before attaching anything
915 * to tree, set linkage between the newborn blocks, write them if sync is
916 * required, recheck the path, free and repeat if check fails, otherwise
917 * set the last missing link (that will protect us from any truncate-generated
918 * removals - all blocks on the path are immune now) and possibly force the
919 * write on the parent block.
920 * That has a nice additional property: no special recovery from the failed
921 * allocations is needed - we simply release blocks and do not touch anything
922 * reachable from inode.
923 *
924 * `handle' can be NULL if create == 0.
925 *
ac27a0ec
DK
926 * return > 0, # of blocks mapped or allocated.
927 * return = 0, if plain lookup failed.
928 * return < 0, error case.
c278bfec 929 *
b920c755
TT
930 * The ext4_ind_get_blocks() function should be called with
931 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
932 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
933 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
934 * blocks.
ac27a0ec 935 */
e35fd660
TT
936static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
937 struct ext4_map_blocks *map,
de9a55b8 938 int flags)
ac27a0ec
DK
939{
940 int err = -EIO;
725d26d3 941 ext4_lblk_t offsets[4];
ac27a0ec
DK
942 Indirect chain[4];
943 Indirect *partial;
617ba13b 944 ext4_fsblk_t goal;
ac27a0ec
DK
945 int indirect_blks;
946 int blocks_to_boundary = 0;
947 int depth;
ac27a0ec 948 int count = 0;
617ba13b 949 ext4_fsblk_t first_block = 0;
ac27a0ec 950
12e9b892 951 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
c2177057 952 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
e35fd660 953 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
de9a55b8 954 &blocks_to_boundary);
ac27a0ec
DK
955
956 if (depth == 0)
957 goto out;
958
617ba13b 959 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
960
961 /* Simplest case - block found, no allocation needed */
962 if (!partial) {
963 first_block = le32_to_cpu(chain[depth - 1].key);
ac27a0ec
DK
964 count++;
965 /*map more blocks*/
e35fd660 966 while (count < map->m_len && count <= blocks_to_boundary) {
617ba13b 967 ext4_fsblk_t blk;
ac27a0ec 968
ac27a0ec
DK
969 blk = le32_to_cpu(*(chain[depth-1].p + count));
970
971 if (blk == first_block + count)
972 count++;
973 else
974 break;
975 }
c278bfec 976 goto got_it;
ac27a0ec
DK
977 }
978
979 /* Next simple case - plain lookup or failed read of indirect block */
c2177057 980 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
ac27a0ec
DK
981 goto cleanup;
982
ac27a0ec 983 /*
c2ea3fde 984 * Okay, we need to do block allocation.
ac27a0ec 985 */
e35fd660 986 goal = ext4_find_goal(inode, map->m_lblk, partial);
ac27a0ec
DK
987
988 /* the number of blocks need to allocate for [d,t]indirect blocks */
989 indirect_blks = (chain + depth) - partial - 1;
990
991 /*
992 * Next look up the indirect map to count the totoal number of
993 * direct blocks to allocate for this branch.
994 */
617ba13b 995 count = ext4_blks_to_allocate(partial, indirect_blks,
e35fd660 996 map->m_len, blocks_to_boundary);
ac27a0ec 997 /*
617ba13b 998 * Block out ext4_truncate while we alter the tree
ac27a0ec 999 */
e35fd660 1000 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
de9a55b8
TT
1001 &count, goal,
1002 offsets + (partial - chain), partial);
ac27a0ec
DK
1003
1004 /*
617ba13b 1005 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
1006 * on the new chain if there is a failure, but that risks using
1007 * up transaction credits, especially for bitmaps where the
1008 * credits cannot be returned. Can we handle this somehow? We
1009 * may need to return -EAGAIN upwards in the worst case. --sct
1010 */
1011 if (!err)
e35fd660 1012 err = ext4_splice_branch(handle, inode, map->m_lblk,
de9a55b8 1013 partial, indirect_blks, count);
2bba702d 1014 if (err)
ac27a0ec
DK
1015 goto cleanup;
1016
e35fd660 1017 map->m_flags |= EXT4_MAP_NEW;
b436b9be
JK
1018
1019 ext4_update_inode_fsync_trans(handle, inode, 1);
ac27a0ec 1020got_it:
e35fd660
TT
1021 map->m_flags |= EXT4_MAP_MAPPED;
1022 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1023 map->m_len = count;
ac27a0ec 1024 if (count > blocks_to_boundary)
e35fd660 1025 map->m_flags |= EXT4_MAP_BOUNDARY;
ac27a0ec
DK
1026 err = count;
1027 /* Clean up and exit */
1028 partial = chain + depth - 1; /* the whole chain */
1029cleanup:
1030 while (partial > chain) {
1031 BUFFER_TRACE(partial->bh, "call brelse");
1032 brelse(partial->bh);
1033 partial--;
1034 }
ac27a0ec
DK
1035out:
1036 return err;
1037}
1038
a9e7f447
DM
1039#ifdef CONFIG_QUOTA
1040qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 1041{
a9e7f447 1042 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 1043}
a9e7f447 1044#endif
9d0be502 1045
12219aea
AK
1046/*
1047 * Calculate the number of metadata blocks need to reserve
9d0be502 1048 * to allocate a new block at @lblocks for non extent file based file
12219aea 1049 */
9d0be502
TT
1050static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1051 sector_t lblock)
12219aea 1052{
9d0be502 1053 struct ext4_inode_info *ei = EXT4_I(inode);
d330a5be 1054 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
9d0be502 1055 int blk_bits;
12219aea 1056
9d0be502
TT
1057 if (lblock < EXT4_NDIR_BLOCKS)
1058 return 0;
12219aea 1059
9d0be502 1060 lblock -= EXT4_NDIR_BLOCKS;
12219aea 1061
9d0be502
TT
1062 if (ei->i_da_metadata_calc_len &&
1063 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1064 ei->i_da_metadata_calc_len++;
1065 return 0;
1066 }
1067 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1068 ei->i_da_metadata_calc_len = 1;
d330a5be 1069 blk_bits = order_base_2(lblock);
9d0be502 1070 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
12219aea
AK
1071}
1072
1073/*
1074 * Calculate the number of metadata blocks need to reserve
9d0be502 1075 * to allocate a block located at @lblock
12219aea 1076 */
9d0be502 1077static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
12219aea 1078{
12e9b892 1079 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 1080 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 1081
9d0be502 1082 return ext4_indirect_calc_metadata_amount(inode, lblock);
12219aea
AK
1083}
1084
0637c6f4
TT
1085/*
1086 * Called with i_data_sem down, which is important since we can call
1087 * ext4_discard_preallocations() from here.
1088 */
5f634d06
AK
1089void ext4_da_update_reserve_space(struct inode *inode,
1090 int used, int quota_claim)
12219aea
AK
1091{
1092 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1093 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
1094
1095 spin_lock(&ei->i_block_reservation_lock);
f8ec9d68 1096 trace_ext4_da_update_reserve_space(inode, used);
0637c6f4
TT
1097 if (unlikely(used > ei->i_reserved_data_blocks)) {
1098 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1099 "with only %d reserved data blocks\n",
1100 __func__, inode->i_ino, used,
1101 ei->i_reserved_data_blocks);
1102 WARN_ON(1);
1103 used = ei->i_reserved_data_blocks;
1104 }
12219aea 1105
0637c6f4
TT
1106 /* Update per-inode reservations */
1107 ei->i_reserved_data_blocks -= used;
0637c6f4 1108 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
72b8ab9d
ES
1109 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1110 used + ei->i_allocated_meta_blocks);
0637c6f4 1111 ei->i_allocated_meta_blocks = 0;
6bc6e63f 1112
0637c6f4
TT
1113 if (ei->i_reserved_data_blocks == 0) {
1114 /*
1115 * We can release all of the reserved metadata blocks
1116 * only when we have written all of the delayed
1117 * allocation blocks.
1118 */
72b8ab9d
ES
1119 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1120 ei->i_reserved_meta_blocks);
ee5f4d9c 1121 ei->i_reserved_meta_blocks = 0;
9d0be502 1122 ei->i_da_metadata_calc_len = 0;
6bc6e63f 1123 }
12219aea 1124 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1125
72b8ab9d
ES
1126 /* Update quota subsystem for data blocks */
1127 if (quota_claim)
5dd4056d 1128 dquot_claim_block(inode, used);
72b8ab9d 1129 else {
5f634d06
AK
1130 /*
1131 * We did fallocate with an offset that is already delayed
1132 * allocated. So on delayed allocated writeback we should
72b8ab9d 1133 * not re-claim the quota for fallocated blocks.
5f634d06 1134 */
72b8ab9d 1135 dquot_release_reservation_block(inode, used);
5f634d06 1136 }
d6014301
AK
1137
1138 /*
1139 * If we have done all the pending block allocations and if
1140 * there aren't any writers on the inode, we can discard the
1141 * inode's preallocations.
1142 */
0637c6f4
TT
1143 if ((ei->i_reserved_data_blocks == 0) &&
1144 (atomic_read(&inode->i_writecount) == 0))
d6014301 1145 ext4_discard_preallocations(inode);
12219aea
AK
1146}
1147
e29136f8 1148static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
1149 unsigned int line,
1150 struct ext4_map_blocks *map)
6fd058f7 1151{
24676da4
TT
1152 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1153 map->m_len)) {
c398eda0
TT
1154 ext4_error_inode(inode, func, line, map->m_pblk,
1155 "lblock %lu mapped to illegal pblock "
1156 "(length %d)", (unsigned long) map->m_lblk,
1157 map->m_len);
6fd058f7
TT
1158 return -EIO;
1159 }
1160 return 0;
1161}
1162
e29136f8 1163#define check_block_validity(inode, map) \
c398eda0 1164 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 1165
55138e0b 1166/*
1f94533d
TT
1167 * Return the number of contiguous dirty pages in a given inode
1168 * starting at page frame idx.
55138e0b
TT
1169 */
1170static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1171 unsigned int max_pages)
1172{
1173 struct address_space *mapping = inode->i_mapping;
1174 pgoff_t index;
1175 struct pagevec pvec;
1176 pgoff_t num = 0;
1177 int i, nr_pages, done = 0;
1178
1179 if (max_pages == 0)
1180 return 0;
1181 pagevec_init(&pvec, 0);
1182 while (!done) {
1183 index = idx;
1184 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1185 PAGECACHE_TAG_DIRTY,
1186 (pgoff_t)PAGEVEC_SIZE);
1187 if (nr_pages == 0)
1188 break;
1189 for (i = 0; i < nr_pages; i++) {
1190 struct page *page = pvec.pages[i];
1191 struct buffer_head *bh, *head;
1192
1193 lock_page(page);
1194 if (unlikely(page->mapping != mapping) ||
1195 !PageDirty(page) ||
1196 PageWriteback(page) ||
1197 page->index != idx) {
1198 done = 1;
1199 unlock_page(page);
1200 break;
1201 }
1f94533d
TT
1202 if (page_has_buffers(page)) {
1203 bh = head = page_buffers(page);
1204 do {
1205 if (!buffer_delay(bh) &&
1206 !buffer_unwritten(bh))
1207 done = 1;
1208 bh = bh->b_this_page;
1209 } while (!done && (bh != head));
1210 }
55138e0b
TT
1211 unlock_page(page);
1212 if (done)
1213 break;
1214 idx++;
1215 num++;
659c6009
ES
1216 if (num >= max_pages) {
1217 done = 1;
55138e0b 1218 break;
659c6009 1219 }
55138e0b
TT
1220 }
1221 pagevec_release(&pvec);
1222 }
1223 return num;
1224}
1225
f5ab0d1f 1226/*
e35fd660 1227 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 1228 * and returns if the blocks are already mapped.
f5ab0d1f 1229 *
f5ab0d1f
MC
1230 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1231 * and store the allocated blocks in the result buffer head and mark it
1232 * mapped.
1233 *
e35fd660
TT
1234 * If file type is extents based, it will call ext4_ext_map_blocks(),
1235 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
1236 * based files
1237 *
1238 * On success, it returns the number of blocks being mapped or allocate.
1239 * if create==0 and the blocks are pre-allocated and uninitialized block,
1240 * the result buffer head is unmapped. If the create ==1, it will make sure
1241 * the buffer head is mapped.
1242 *
1243 * It returns 0 if plain look up failed (blocks have not been allocated), in
1244 * that casem, buffer head is unmapped
1245 *
1246 * It returns the error in case of allocation failure.
1247 */
e35fd660
TT
1248int ext4_map_blocks(handle_t *handle, struct inode *inode,
1249 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
1250{
1251 int retval;
f5ab0d1f 1252
e35fd660
TT
1253 map->m_flags = 0;
1254 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1255 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1256 (unsigned long) map->m_lblk);
4df3d265 1257 /*
b920c755
TT
1258 * Try to see if we can get the block without requesting a new
1259 * file system block.
4df3d265
AK
1260 */
1261 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 1262 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1263 retval = ext4_ext_map_blocks(handle, inode, map, 0);
0e855ac8 1264 } else {
e35fd660 1265 retval = ext4_ind_map_blocks(handle, inode, map, 0);
0e855ac8 1266 }
4df3d265 1267 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 1268
e35fd660 1269 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1270 int ret = check_block_validity(inode, map);
6fd058f7
TT
1271 if (ret != 0)
1272 return ret;
1273 }
1274
f5ab0d1f 1275 /* If it is only a block(s) look up */
c2177057 1276 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
1277 return retval;
1278
1279 /*
1280 * Returns if the blocks have already allocated
1281 *
1282 * Note that if blocks have been preallocated
1283 * ext4_ext_get_block() returns th create = 0
1284 * with buffer head unmapped.
1285 */
e35fd660 1286 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
1287 return retval;
1288
2a8964d6
AK
1289 /*
1290 * When we call get_blocks without the create flag, the
1291 * BH_Unwritten flag could have gotten set if the blocks
1292 * requested were part of a uninitialized extent. We need to
1293 * clear this flag now that we are committed to convert all or
1294 * part of the uninitialized extent to be an initialized
1295 * extent. This is because we need to avoid the combination
1296 * of BH_Unwritten and BH_Mapped flags being simultaneously
1297 * set on the buffer_head.
1298 */
e35fd660 1299 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 1300
4df3d265 1301 /*
f5ab0d1f
MC
1302 * New blocks allocate and/or writing to uninitialized extent
1303 * will possibly result in updating i_data, so we take
1304 * the write lock of i_data_sem, and call get_blocks()
1305 * with create == 1 flag.
4df3d265
AK
1306 */
1307 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
1308
1309 /*
1310 * if the caller is from delayed allocation writeout path
1311 * we have already reserved fs blocks for allocation
1312 * let the underlying get_block() function know to
1313 * avoid double accounting
1314 */
c2177057 1315 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1316 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
4df3d265
AK
1317 /*
1318 * We need to check for EXT4 here because migrate
1319 * could have changed the inode type in between
1320 */
12e9b892 1321 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 1322 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 1323 } else {
e35fd660 1324 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 1325
e35fd660 1326 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
1327 /*
1328 * We allocated new blocks which will result in
1329 * i_data's format changing. Force the migrate
1330 * to fail by clearing migrate flags
1331 */
19f5fb7a 1332 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 1333 }
d2a17637 1334
5f634d06
AK
1335 /*
1336 * Update reserved blocks/metadata blocks after successful
1337 * block allocation which had been deferred till now. We don't
1338 * support fallocate for non extent files. So we can update
1339 * reserve space here.
1340 */
1341 if ((retval > 0) &&
1296cc85 1342 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
1343 ext4_da_update_reserve_space(inode, retval, 1);
1344 }
2ac3b6e0 1345 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
d2a17637 1346 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
2ac3b6e0 1347
4df3d265 1348 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 1349 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 1350 int ret = check_block_validity(inode, map);
6fd058f7
TT
1351 if (ret != 0)
1352 return ret;
1353 }
0e855ac8
AK
1354 return retval;
1355}
1356
f3bd1f3f
MC
1357/* Maximum number of blocks we map for direct IO at once. */
1358#define DIO_MAX_BLOCKS 4096
1359
2ed88685
TT
1360static int _ext4_get_block(struct inode *inode, sector_t iblock,
1361 struct buffer_head *bh, int flags)
ac27a0ec 1362{
3e4fdaf8 1363 handle_t *handle = ext4_journal_current_handle();
2ed88685 1364 struct ext4_map_blocks map;
7fb5409d 1365 int ret = 0, started = 0;
f3bd1f3f 1366 int dio_credits;
ac27a0ec 1367
2ed88685
TT
1368 map.m_lblk = iblock;
1369 map.m_len = bh->b_size >> inode->i_blkbits;
1370
1371 if (flags && !handle) {
7fb5409d 1372 /* Direct IO write... */
2ed88685
TT
1373 if (map.m_len > DIO_MAX_BLOCKS)
1374 map.m_len = DIO_MAX_BLOCKS;
1375 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 1376 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 1377 if (IS_ERR(handle)) {
ac27a0ec 1378 ret = PTR_ERR(handle);
2ed88685 1379 return ret;
ac27a0ec 1380 }
7fb5409d 1381 started = 1;
ac27a0ec
DK
1382 }
1383
2ed88685 1384 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 1385 if (ret > 0) {
2ed88685
TT
1386 map_bh(bh, inode->i_sb, map.m_pblk);
1387 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1388 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 1389 ret = 0;
ac27a0ec 1390 }
7fb5409d
JK
1391 if (started)
1392 ext4_journal_stop(handle);
ac27a0ec
DK
1393 return ret;
1394}
1395
2ed88685
TT
1396int ext4_get_block(struct inode *inode, sector_t iblock,
1397 struct buffer_head *bh, int create)
1398{
1399 return _ext4_get_block(inode, iblock, bh,
1400 create ? EXT4_GET_BLOCKS_CREATE : 0);
1401}
1402
ac27a0ec
DK
1403/*
1404 * `handle' can be NULL if create is zero
1405 */
617ba13b 1406struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 1407 ext4_lblk_t block, int create, int *errp)
ac27a0ec 1408{
2ed88685
TT
1409 struct ext4_map_blocks map;
1410 struct buffer_head *bh;
ac27a0ec
DK
1411 int fatal = 0, err;
1412
1413 J_ASSERT(handle != NULL || create == 0);
1414
2ed88685
TT
1415 map.m_lblk = block;
1416 map.m_len = 1;
1417 err = ext4_map_blocks(handle, inode, &map,
1418 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 1419
2ed88685
TT
1420 if (err < 0)
1421 *errp = err;
1422 if (err <= 0)
1423 return NULL;
1424 *errp = 0;
1425
1426 bh = sb_getblk(inode->i_sb, map.m_pblk);
1427 if (!bh) {
1428 *errp = -EIO;
1429 return NULL;
ac27a0ec 1430 }
2ed88685
TT
1431 if (map.m_flags & EXT4_MAP_NEW) {
1432 J_ASSERT(create != 0);
1433 J_ASSERT(handle != NULL);
ac27a0ec 1434
2ed88685
TT
1435 /*
1436 * Now that we do not always journal data, we should
1437 * keep in mind whether this should always journal the
1438 * new buffer as metadata. For now, regular file
1439 * writes use ext4_get_block instead, so it's not a
1440 * problem.
1441 */
1442 lock_buffer(bh);
1443 BUFFER_TRACE(bh, "call get_create_access");
1444 fatal = ext4_journal_get_create_access(handle, bh);
1445 if (!fatal && !buffer_uptodate(bh)) {
1446 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1447 set_buffer_uptodate(bh);
ac27a0ec 1448 }
2ed88685
TT
1449 unlock_buffer(bh);
1450 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1451 err = ext4_handle_dirty_metadata(handle, inode, bh);
1452 if (!fatal)
1453 fatal = err;
1454 } else {
1455 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 1456 }
2ed88685
TT
1457 if (fatal) {
1458 *errp = fatal;
1459 brelse(bh);
1460 bh = NULL;
1461 }
1462 return bh;
ac27a0ec
DK
1463}
1464
617ba13b 1465struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1466 ext4_lblk_t block, int create, int *err)
ac27a0ec 1467{
af5bc92d 1468 struct buffer_head *bh;
ac27a0ec 1469
617ba13b 1470 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1471 if (!bh)
1472 return bh;
1473 if (buffer_uptodate(bh))
1474 return bh;
1475 ll_rw_block(READ_META, 1, &bh);
1476 wait_on_buffer(bh);
1477 if (buffer_uptodate(bh))
1478 return bh;
1479 put_bh(bh);
1480 *err = -EIO;
1481 return NULL;
1482}
1483
af5bc92d
TT
1484static int walk_page_buffers(handle_t *handle,
1485 struct buffer_head *head,
1486 unsigned from,
1487 unsigned to,
1488 int *partial,
1489 int (*fn)(handle_t *handle,
1490 struct buffer_head *bh))
ac27a0ec
DK
1491{
1492 struct buffer_head *bh;
1493 unsigned block_start, block_end;
1494 unsigned blocksize = head->b_size;
1495 int err, ret = 0;
1496 struct buffer_head *next;
1497
af5bc92d
TT
1498 for (bh = head, block_start = 0;
1499 ret == 0 && (bh != head || !block_start);
de9a55b8 1500 block_start = block_end, bh = next) {
ac27a0ec
DK
1501 next = bh->b_this_page;
1502 block_end = block_start + blocksize;
1503 if (block_end <= from || block_start >= to) {
1504 if (partial && !buffer_uptodate(bh))
1505 *partial = 1;
1506 continue;
1507 }
1508 err = (*fn)(handle, bh);
1509 if (!ret)
1510 ret = err;
1511 }
1512 return ret;
1513}
1514
1515/*
1516 * To preserve ordering, it is essential that the hole instantiation and
1517 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1518 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1519 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1520 * prepare_write() is the right place.
1521 *
617ba13b
MC
1522 * Also, this function can nest inside ext4_writepage() ->
1523 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1524 * has generated enough buffer credits to do the whole page. So we won't
1525 * block on the journal in that case, which is good, because the caller may
1526 * be PF_MEMALLOC.
1527 *
617ba13b 1528 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1529 * quota file writes. If we were to commit the transaction while thus
1530 * reentered, there can be a deadlock - we would be holding a quota
1531 * lock, and the commit would never complete if another thread had a
1532 * transaction open and was blocking on the quota lock - a ranking
1533 * violation.
1534 *
dab291af 1535 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1536 * will _not_ run commit under these circumstances because handle->h_ref
1537 * is elevated. We'll still have enough credits for the tiny quotafile
1538 * write.
1539 */
1540static int do_journal_get_write_access(handle_t *handle,
de9a55b8 1541 struct buffer_head *bh)
ac27a0ec 1542{
56d35a4c
JK
1543 int dirty = buffer_dirty(bh);
1544 int ret;
1545
ac27a0ec
DK
1546 if (!buffer_mapped(bh) || buffer_freed(bh))
1547 return 0;
56d35a4c
JK
1548 /*
1549 * __block_prepare_write() could have dirtied some buffers. Clean
1550 * the dirty bit as jbd2_journal_get_write_access() could complain
1551 * otherwise about fs integrity issues. Setting of the dirty bit
1552 * by __block_prepare_write() isn't a real problem here as we clear
1553 * the bit before releasing a page lock and thus writeback cannot
1554 * ever write the buffer.
1555 */
1556 if (dirty)
1557 clear_buffer_dirty(bh);
1558 ret = ext4_journal_get_write_access(handle, bh);
1559 if (!ret && dirty)
1560 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1561 return ret;
ac27a0ec
DK
1562}
1563
b9a4207d
JK
1564/*
1565 * Truncate blocks that were not used by write. We have to truncate the
1566 * pagecache as well so that corresponding buffers get properly unmapped.
1567 */
1568static void ext4_truncate_failed_write(struct inode *inode)
1569{
1570 truncate_inode_pages(inode->i_mapping, inode->i_size);
1571 ext4_truncate(inode);
1572}
1573
744692dc
JZ
1574static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1575 struct buffer_head *bh_result, int create);
bfc1af65 1576static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
1577 loff_t pos, unsigned len, unsigned flags,
1578 struct page **pagep, void **fsdata)
ac27a0ec 1579{
af5bc92d 1580 struct inode *inode = mapping->host;
1938a150 1581 int ret, needed_blocks;
ac27a0ec
DK
1582 handle_t *handle;
1583 int retries = 0;
af5bc92d 1584 struct page *page;
de9a55b8 1585 pgoff_t index;
af5bc92d 1586 unsigned from, to;
bfc1af65 1587
9bffad1e 1588 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
1589 /*
1590 * Reserve one block more for addition to orphan list in case
1591 * we allocate blocks but write fails for some reason
1592 */
1593 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 1594 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
1595 from = pos & (PAGE_CACHE_SIZE - 1);
1596 to = from + len;
ac27a0ec
DK
1597
1598retry:
af5bc92d
TT
1599 handle = ext4_journal_start(inode, needed_blocks);
1600 if (IS_ERR(handle)) {
1601 ret = PTR_ERR(handle);
1602 goto out;
7479d2b9 1603 }
ac27a0ec 1604
ebd3610b
JK
1605 /* We cannot recurse into the filesystem as the transaction is already
1606 * started */
1607 flags |= AOP_FLAG_NOFS;
1608
54566b2c 1609 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
1610 if (!page) {
1611 ext4_journal_stop(handle);
1612 ret = -ENOMEM;
1613 goto out;
1614 }
1615 *pagep = page;
1616
744692dc 1617 if (ext4_should_dioread_nolock(inode))
6e1db88d 1618 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1619 else
6e1db88d 1620 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1621
1622 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1623 ret = walk_page_buffers(handle, page_buffers(page),
1624 from, to, NULL, do_journal_get_write_access);
1625 }
bfc1af65
NP
1626
1627 if (ret) {
af5bc92d 1628 unlock_page(page);
af5bc92d 1629 page_cache_release(page);
ae4d5372 1630 /*
6e1db88d 1631 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1632 * outside i_size. Trim these off again. Don't need
1633 * i_size_read because we hold i_mutex.
1938a150
AK
1634 *
1635 * Add inode to orphan list in case we crash before
1636 * truncate finishes
ae4d5372 1637 */
ffacfa7a 1638 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1639 ext4_orphan_add(handle, inode);
1640
1641 ext4_journal_stop(handle);
1642 if (pos + len > inode->i_size) {
b9a4207d 1643 ext4_truncate_failed_write(inode);
de9a55b8 1644 /*
ffacfa7a 1645 * If truncate failed early the inode might
1938a150
AK
1646 * still be on the orphan list; we need to
1647 * make sure the inode is removed from the
1648 * orphan list in that case.
1649 */
1650 if (inode->i_nlink)
1651 ext4_orphan_del(NULL, inode);
1652 }
bfc1af65
NP
1653 }
1654
617ba13b 1655 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1656 goto retry;
7479d2b9 1657out:
ac27a0ec
DK
1658 return ret;
1659}
1660
bfc1af65
NP
1661/* For write_end() in data=journal mode */
1662static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1663{
1664 if (!buffer_mapped(bh) || buffer_freed(bh))
1665 return 0;
1666 set_buffer_uptodate(bh);
0390131b 1667 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1668}
1669
f8514083 1670static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
1671 struct address_space *mapping,
1672 loff_t pos, unsigned len, unsigned copied,
1673 struct page *page, void *fsdata)
f8514083
AK
1674{
1675 int i_size_changed = 0;
1676 struct inode *inode = mapping->host;
1677 handle_t *handle = ext4_journal_current_handle();
1678
1679 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1680
1681 /*
1682 * No need to use i_size_read() here, the i_size
1683 * cannot change under us because we hold i_mutex.
1684 *
1685 * But it's important to update i_size while still holding page lock:
1686 * page writeout could otherwise come in and zero beyond i_size.
1687 */
1688 if (pos + copied > inode->i_size) {
1689 i_size_write(inode, pos + copied);
1690 i_size_changed = 1;
1691 }
1692
1693 if (pos + copied > EXT4_I(inode)->i_disksize) {
1694 /* We need to mark inode dirty even if
1695 * new_i_size is less that inode->i_size
1696 * bu greater than i_disksize.(hint delalloc)
1697 */
1698 ext4_update_i_disksize(inode, (pos + copied));
1699 i_size_changed = 1;
1700 }
1701 unlock_page(page);
1702 page_cache_release(page);
1703
1704 /*
1705 * Don't mark the inode dirty under page lock. First, it unnecessarily
1706 * makes the holding time of page lock longer. Second, it forces lock
1707 * ordering of page lock and transaction start for journaling
1708 * filesystems.
1709 */
1710 if (i_size_changed)
1711 ext4_mark_inode_dirty(handle, inode);
1712
1713 return copied;
1714}
1715
ac27a0ec
DK
1716/*
1717 * We need to pick up the new inode size which generic_commit_write gave us
1718 * `file' can be NULL - eg, when called from page_symlink().
1719 *
617ba13b 1720 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1721 * buffers are managed internally.
1722 */
bfc1af65 1723static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1724 struct address_space *mapping,
1725 loff_t pos, unsigned len, unsigned copied,
1726 struct page *page, void *fsdata)
ac27a0ec 1727{
617ba13b 1728 handle_t *handle = ext4_journal_current_handle();
cf108bca 1729 struct inode *inode = mapping->host;
ac27a0ec
DK
1730 int ret = 0, ret2;
1731
9bffad1e 1732 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1733 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1734
1735 if (ret == 0) {
f8514083 1736 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1737 page, fsdata);
f8a87d89 1738 copied = ret2;
ffacfa7a 1739 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1740 /* if we have allocated more blocks and copied
1741 * less. We will have blocks allocated outside
1742 * inode->i_size. So truncate them
1743 */
1744 ext4_orphan_add(handle, inode);
f8a87d89
RK
1745 if (ret2 < 0)
1746 ret = ret2;
ac27a0ec 1747 }
617ba13b 1748 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1749 if (!ret)
1750 ret = ret2;
bfc1af65 1751
f8514083 1752 if (pos + len > inode->i_size) {
b9a4207d 1753 ext4_truncate_failed_write(inode);
de9a55b8 1754 /*
ffacfa7a 1755 * If truncate failed early the inode might still be
f8514083
AK
1756 * on the orphan list; we need to make sure the inode
1757 * is removed from the orphan list in that case.
1758 */
1759 if (inode->i_nlink)
1760 ext4_orphan_del(NULL, inode);
1761 }
1762
1763
bfc1af65 1764 return ret ? ret : copied;
ac27a0ec
DK
1765}
1766
bfc1af65 1767static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1768 struct address_space *mapping,
1769 loff_t pos, unsigned len, unsigned copied,
1770 struct page *page, void *fsdata)
ac27a0ec 1771{
617ba13b 1772 handle_t *handle = ext4_journal_current_handle();
cf108bca 1773 struct inode *inode = mapping->host;
ac27a0ec 1774 int ret = 0, ret2;
ac27a0ec 1775
9bffad1e 1776 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1777 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1778 page, fsdata);
f8a87d89 1779 copied = ret2;
ffacfa7a 1780 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1781 /* if we have allocated more blocks and copied
1782 * less. We will have blocks allocated outside
1783 * inode->i_size. So truncate them
1784 */
1785 ext4_orphan_add(handle, inode);
1786
f8a87d89
RK
1787 if (ret2 < 0)
1788 ret = ret2;
ac27a0ec 1789
617ba13b 1790 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1791 if (!ret)
1792 ret = ret2;
bfc1af65 1793
f8514083 1794 if (pos + len > inode->i_size) {
b9a4207d 1795 ext4_truncate_failed_write(inode);
de9a55b8 1796 /*
ffacfa7a 1797 * If truncate failed early the inode might still be
f8514083
AK
1798 * on the orphan list; we need to make sure the inode
1799 * is removed from the orphan list in that case.
1800 */
1801 if (inode->i_nlink)
1802 ext4_orphan_del(NULL, inode);
1803 }
1804
bfc1af65 1805 return ret ? ret : copied;
ac27a0ec
DK
1806}
1807
bfc1af65 1808static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1809 struct address_space *mapping,
1810 loff_t pos, unsigned len, unsigned copied,
1811 struct page *page, void *fsdata)
ac27a0ec 1812{
617ba13b 1813 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1814 struct inode *inode = mapping->host;
ac27a0ec
DK
1815 int ret = 0, ret2;
1816 int partial = 0;
bfc1af65 1817 unsigned from, to;
cf17fea6 1818 loff_t new_i_size;
ac27a0ec 1819
9bffad1e 1820 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1821 from = pos & (PAGE_CACHE_SIZE - 1);
1822 to = from + len;
1823
1824 if (copied < len) {
1825 if (!PageUptodate(page))
1826 copied = 0;
1827 page_zero_new_buffers(page, from+copied, to);
1828 }
ac27a0ec
DK
1829
1830 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1831 to, &partial, write_end_fn);
ac27a0ec
DK
1832 if (!partial)
1833 SetPageUptodate(page);
cf17fea6
AK
1834 new_i_size = pos + copied;
1835 if (new_i_size > inode->i_size)
bfc1af65 1836 i_size_write(inode, pos+copied);
19f5fb7a 1837 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
cf17fea6
AK
1838 if (new_i_size > EXT4_I(inode)->i_disksize) {
1839 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1840 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1841 if (!ret)
1842 ret = ret2;
1843 }
bfc1af65 1844
cf108bca 1845 unlock_page(page);
f8514083 1846 page_cache_release(page);
ffacfa7a 1847 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1848 /* if we have allocated more blocks and copied
1849 * less. We will have blocks allocated outside
1850 * inode->i_size. So truncate them
1851 */
1852 ext4_orphan_add(handle, inode);
1853
617ba13b 1854 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1855 if (!ret)
1856 ret = ret2;
f8514083 1857 if (pos + len > inode->i_size) {
b9a4207d 1858 ext4_truncate_failed_write(inode);
de9a55b8 1859 /*
ffacfa7a 1860 * If truncate failed early the inode might still be
f8514083
AK
1861 * on the orphan list; we need to make sure the inode
1862 * is removed from the orphan list in that case.
1863 */
1864 if (inode->i_nlink)
1865 ext4_orphan_del(NULL, inode);
1866 }
bfc1af65
NP
1867
1868 return ret ? ret : copied;
ac27a0ec 1869}
d2a17637 1870
9d0be502
TT
1871/*
1872 * Reserve a single block located at lblock
1873 */
1874static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
d2a17637 1875{
030ba6bc 1876 int retries = 0;
60e58e0f 1877 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1878 struct ext4_inode_info *ei = EXT4_I(inode);
72b8ab9d 1879 unsigned long md_needed;
5dd4056d 1880 int ret;
d2a17637
MC
1881
1882 /*
1883 * recalculate the amount of metadata blocks to reserve
1884 * in order to allocate nrblocks
1885 * worse case is one extent per block
1886 */
030ba6bc 1887repeat:
0637c6f4 1888 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1889 md_needed = ext4_calc_metadata_amount(inode, lblock);
f8ec9d68 1890 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1891 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1892
60e58e0f 1893 /*
72b8ab9d
ES
1894 * We will charge metadata quota at writeout time; this saves
1895 * us from metadata over-estimation, though we may go over by
1896 * a small amount in the end. Here we just reserve for data.
60e58e0f 1897 */
72b8ab9d 1898 ret = dquot_reserve_block(inode, 1);
5dd4056d
CH
1899 if (ret)
1900 return ret;
72b8ab9d
ES
1901 /*
1902 * We do still charge estimated metadata to the sb though;
1903 * we cannot afford to run out of free blocks.
1904 */
9d0be502 1905 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
72b8ab9d 1906 dquot_release_reservation_block(inode, 1);
030ba6bc
AK
1907 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1908 yield();
1909 goto repeat;
1910 }
d2a17637
MC
1911 return -ENOSPC;
1912 }
0637c6f4 1913 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1914 ei->i_reserved_data_blocks++;
0637c6f4
TT
1915 ei->i_reserved_meta_blocks += md_needed;
1916 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1917
d2a17637
MC
1918 return 0; /* success */
1919}
1920
12219aea 1921static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1922{
1923 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1924 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1925
cd213226
MC
1926 if (!to_free)
1927 return; /* Nothing to release, exit */
1928
d2a17637 1929 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1930
5a58ec87 1931 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1932 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1933 /*
0637c6f4
TT
1934 * if there aren't enough reserved blocks, then the
1935 * counter is messed up somewhere. Since this
1936 * function is called from invalidate page, it's
1937 * harmless to return without any action.
cd213226 1938 */
0637c6f4
TT
1939 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1940 "ino %lu, to_free %d with only %d reserved "
1941 "data blocks\n", inode->i_ino, to_free,
1942 ei->i_reserved_data_blocks);
1943 WARN_ON(1);
1944 to_free = ei->i_reserved_data_blocks;
cd213226 1945 }
0637c6f4 1946 ei->i_reserved_data_blocks -= to_free;
cd213226 1947
0637c6f4
TT
1948 if (ei->i_reserved_data_blocks == 0) {
1949 /*
1950 * We can release all of the reserved metadata blocks
1951 * only when we have written all of the delayed
1952 * allocation blocks.
1953 */
72b8ab9d
ES
1954 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1955 ei->i_reserved_meta_blocks);
ee5f4d9c 1956 ei->i_reserved_meta_blocks = 0;
9d0be502 1957 ei->i_da_metadata_calc_len = 0;
0637c6f4 1958 }
d2a17637 1959
72b8ab9d 1960 /* update fs dirty data blocks counter */
0637c6f4 1961 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
d2a17637 1962
d2a17637 1963 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1964
5dd4056d 1965 dquot_release_reservation_block(inode, to_free);
d2a17637
MC
1966}
1967
1968static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1969 unsigned long offset)
d2a17637
MC
1970{
1971 int to_release = 0;
1972 struct buffer_head *head, *bh;
1973 unsigned int curr_off = 0;
1974
1975 head = page_buffers(page);
1976 bh = head;
1977 do {
1978 unsigned int next_off = curr_off + bh->b_size;
1979
1980 if ((offset <= curr_off) && (buffer_delay(bh))) {
1981 to_release++;
1982 clear_buffer_delay(bh);
1983 }
1984 curr_off = next_off;
1985 } while ((bh = bh->b_this_page) != head);
12219aea 1986 ext4_da_release_space(page->mapping->host, to_release);
d2a17637 1987}
ac27a0ec 1988
64769240
AT
1989/*
1990 * Delayed allocation stuff
1991 */
1992
64769240
AT
1993/*
1994 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1995 * them with writepage() call back
64769240
AT
1996 *
1997 * @mpd->inode: inode
1998 * @mpd->first_page: first page of the extent
1999 * @mpd->next_page: page after the last page of the extent
64769240
AT
2000 *
2001 * By the time mpage_da_submit_io() is called we expect all blocks
2002 * to be allocated. this may be wrong if allocation failed.
2003 *
2004 * As pages are already locked by write_cache_pages(), we can't use it
2005 */
2006static int mpage_da_submit_io(struct mpage_da_data *mpd)
2007{
791b7f08
AK
2008 struct pagevec pvec;
2009 unsigned long index, end;
2010 int ret = 0, err, nr_pages, i;
2011 struct inode *inode = mpd->inode;
2012 struct address_space *mapping = inode->i_mapping;
cb20d518
TT
2013 loff_t size = i_size_read(inode);
2014 unsigned int len;
2015 struct buffer_head *page_bufs = NULL;
2016 int journal_data = ext4_should_journal_data(inode);
64769240
AT
2017
2018 BUG_ON(mpd->next_page <= mpd->first_page);
791b7f08
AK
2019 /*
2020 * We need to start from the first_page to the next_page - 1
2021 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 2022 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
2023 * at the currently mapped buffer_heads.
2024 */
64769240
AT
2025 index = mpd->first_page;
2026 end = mpd->next_page - 1;
2027
791b7f08 2028 pagevec_init(&pvec, 0);
64769240 2029 while (index <= end) {
791b7f08 2030 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
2031 if (nr_pages == 0)
2032 break;
2033 for (i = 0; i < nr_pages; i++) {
cb20d518 2034 int commit_write = 0;
64769240
AT
2035 struct page *page = pvec.pages[i];
2036
791b7f08
AK
2037 index = page->index;
2038 if (index > end)
2039 break;
cb20d518
TT
2040
2041 if (index == size >> PAGE_CACHE_SHIFT)
2042 len = size & ~PAGE_CACHE_MASK;
2043 else
2044 len = PAGE_CACHE_SIZE;
791b7f08
AK
2045 index++;
2046
2047 BUG_ON(!PageLocked(page));
2048 BUG_ON(PageWriteback(page));
2049
cb20d518
TT
2050 /*
2051 * If the page does not have buffers (for
2052 * whatever reason), try to create them using
2053 * block_prepare_write. If this fails,
2054 * redirty the page and move on.
2055 */
2056 if (!page_has_buffers(page)) {
2057 if (block_prepare_write(page, 0, len,
2058 noalloc_get_block_write)) {
2059 redirty_page:
2060 redirty_page_for_writepage(mpd->wbc,
2061 page);
2062 unlock_page(page);
2063 continue;
2064 }
2065 commit_write = 1;
2066 }
2067 page_bufs = page_buffers(page);
2068 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2069 ext4_bh_delay_or_unwritten)) {
22208ded 2070 /*
cb20d518
TT
2071 * We couldn't do block allocation for
2072 * some reason.
22208ded 2073 */
cb20d518
TT
2074 goto redirty_page;
2075 }
2076
2077 if (commit_write)
2078 /* mark the buffer_heads as dirty & uptodate */
2079 block_commit_write(page, 0, len);
2080
2081 if (journal_data && PageChecked(page))
2082 err = __ext4_journalled_writepage(page, len);
2083 else if (buffer_uninit(page_bufs)) {
2084 ext4_set_bh_endio(page_bufs, inode);
2085 err = block_write_full_page_endio(page,
2086 noalloc_get_block_write,
2087 mpd->wbc, ext4_end_io_buffer_write);
2088 } else
2089 err = block_write_full_page(page,
2090 noalloc_get_block_write, mpd->wbc);
2091
2092 if (!err)
a1d6cc56 2093 mpd->pages_written++;
64769240
AT
2094 /*
2095 * In error case, we have to continue because
2096 * remaining pages are still locked
64769240
AT
2097 */
2098 if (ret == 0)
2099 ret = err;
2100 }
2101 pagevec_release(&pvec);
2102 }
64769240
AT
2103 return ret;
2104}
2105
2106/*
2107 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2108 *
64769240 2109 * the function goes through all passed space and put actual disk
29fa89d0 2110 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
64769240 2111 */
2ed88685
TT
2112static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2113 struct ext4_map_blocks *map)
64769240
AT
2114{
2115 struct inode *inode = mpd->inode;
2116 struct address_space *mapping = inode->i_mapping;
2ed88685
TT
2117 int blocks = map->m_len;
2118 sector_t pblock = map->m_pblk, cur_logical;
64769240 2119 struct buffer_head *head, *bh;
a1d6cc56 2120 pgoff_t index, end;
64769240
AT
2121 struct pagevec pvec;
2122 int nr_pages, i;
2123
2ed88685
TT
2124 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2125 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
64769240
AT
2126 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2127
2128 pagevec_init(&pvec, 0);
2129
2130 while (index <= end) {
2131 /* XXX: optimize tail */
2132 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2133 if (nr_pages == 0)
2134 break;
2135 for (i = 0; i < nr_pages; i++) {
2136 struct page *page = pvec.pages[i];
2137
2138 index = page->index;
2139 if (index > end)
2140 break;
2141 index++;
2142
2143 BUG_ON(!PageLocked(page));
2144 BUG_ON(PageWriteback(page));
2145 BUG_ON(!page_has_buffers(page));
2146
2147 bh = page_buffers(page);
2148 head = bh;
2149
2150 /* skip blocks out of the range */
2151 do {
2ed88685 2152 if (cur_logical >= map->m_lblk)
64769240
AT
2153 break;
2154 cur_logical++;
2155 } while ((bh = bh->b_this_page) != head);
2156
2157 do {
0c9169cc 2158 if (cur_logical > map->m_lblk + (blocks - 1))
64769240 2159 break;
29fa89d0 2160
2ed88685 2161 if (buffer_delay(bh) || buffer_unwritten(bh)) {
29fa89d0
AK
2162
2163 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2164
2165 if (buffer_delay(bh)) {
2166 clear_buffer_delay(bh);
2167 bh->b_blocknr = pblock;
2168 } else {
2169 /*
2170 * unwritten already should have
2171 * blocknr assigned. Verify that
2172 */
2173 clear_buffer_unwritten(bh);
2174 BUG_ON(bh->b_blocknr != pblock);
2175 }
2176
61628a3f 2177 } else if (buffer_mapped(bh))
64769240 2178 BUG_ON(bh->b_blocknr != pblock);
64769240 2179
2ed88685 2180 if (map->m_flags & EXT4_MAP_UNINIT)
744692dc 2181 set_buffer_uninit(bh);
64769240
AT
2182 cur_logical++;
2183 pblock++;
2184 } while ((bh = bh->b_this_page) != head);
2185 }
2186 pagevec_release(&pvec);
2187 }
2188}
2189
2190
c4a0c46e
AK
2191static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2192 sector_t logical, long blk_cnt)
2193{
2194 int nr_pages, i;
2195 pgoff_t index, end;
2196 struct pagevec pvec;
2197 struct inode *inode = mpd->inode;
2198 struct address_space *mapping = inode->i_mapping;
2199
2200 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2201 end = (logical + blk_cnt - 1) >>
2202 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2203 while (index <= end) {
2204 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2205 if (nr_pages == 0)
2206 break;
2207 for (i = 0; i < nr_pages; i++) {
2208 struct page *page = pvec.pages[i];
9b1d0998 2209 if (page->index > end)
c4a0c46e 2210 break;
c4a0c46e
AK
2211 BUG_ON(!PageLocked(page));
2212 BUG_ON(PageWriteback(page));
2213 block_invalidatepage(page, 0);
2214 ClearPageUptodate(page);
2215 unlock_page(page);
2216 }
9b1d0998
JK
2217 index = pvec.pages[nr_pages - 1]->index + 1;
2218 pagevec_release(&pvec);
c4a0c46e
AK
2219 }
2220 return;
2221}
2222
df22291f
AK
2223static void ext4_print_free_blocks(struct inode *inode)
2224{
2225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e
TT
2226 printk(KERN_CRIT "Total free blocks count %lld\n",
2227 ext4_count_free_blocks(inode->i_sb));
2228 printk(KERN_CRIT "Free/Dirty block details\n");
2229 printk(KERN_CRIT "free_blocks=%lld\n",
2230 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2231 printk(KERN_CRIT "dirty_blocks=%lld\n",
2232 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2233 printk(KERN_CRIT "Block reservation details\n");
2234 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2235 EXT4_I(inode)->i_reserved_data_blocks);
2236 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2237 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
2238 return;
2239}
2240
64769240 2241/*
5a87b7a5
TT
2242 * mpage_da_map_and_submit - go through given space, map them
2243 * if necessary, and then submit them for I/O
64769240 2244 *
8dc207c0 2245 * @mpd - bh describing space
64769240
AT
2246 *
2247 * The function skips space we know is already mapped to disk blocks.
2248 *
64769240 2249 */
5a87b7a5 2250static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 2251{
2ac3b6e0 2252 int err, blks, get_blocks_flags;
2ed88685 2253 struct ext4_map_blocks map;
2fa3cdfb
TT
2254 sector_t next = mpd->b_blocknr;
2255 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2256 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2257 handle_t *handle = NULL;
64769240
AT
2258
2259 /*
5a87b7a5
TT
2260 * If the blocks are mapped already, or we couldn't accumulate
2261 * any blocks, then proceed immediately to the submission stage.
64769240 2262 */
5a87b7a5
TT
2263 if ((mpd->b_size == 0) ||
2264 ((mpd->b_state & (1 << BH_Mapped)) &&
2265 !(mpd->b_state & (1 << BH_Delay)) &&
2266 !(mpd->b_state & (1 << BH_Unwritten))))
2267 goto submit_io;
2fa3cdfb
TT
2268
2269 handle = ext4_journal_current_handle();
2270 BUG_ON(!handle);
2271
79ffab34 2272 /*
79e83036 2273 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
2274 * blocks, or to convert an uninitialized extent to be
2275 * initialized (in the case where we have written into
2276 * one or more preallocated blocks).
2277 *
2278 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2279 * indicate that we are on the delayed allocation path. This
2280 * affects functions in many different parts of the allocation
2281 * call path. This flag exists primarily because we don't
79e83036 2282 * want to change *many* call functions, so ext4_map_blocks()
2ac3b6e0
TT
2283 * will set the magic i_delalloc_reserved_flag once the
2284 * inode's allocation semaphore is taken.
2285 *
2286 * If the blocks in questions were delalloc blocks, set
2287 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2288 * variables are updated after the blocks have been allocated.
79ffab34 2289 */
2ed88685
TT
2290 map.m_lblk = next;
2291 map.m_len = max_blocks;
1296cc85 2292 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
2293 if (ext4_should_dioread_nolock(mpd->inode))
2294 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 2295 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
2296 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2297
2ed88685 2298 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 2299 if (blks < 0) {
e3570639
ES
2300 struct super_block *sb = mpd->inode->i_sb;
2301
2fa3cdfb 2302 err = blks;
ed5bde0b 2303 /*
5a87b7a5
TT
2304 * If get block returns EAGAIN or ENOSPC and there
2305 * appears to be free blocks we will call
2306 * ext4_writepage() for all of the pages which will
2307 * just redirty the pages.
c4a0c46e
AK
2308 */
2309 if (err == -EAGAIN)
5a87b7a5 2310 goto submit_io;
df22291f
AK
2311
2312 if (err == -ENOSPC &&
e3570639 2313 ext4_count_free_blocks(sb)) {
df22291f 2314 mpd->retval = err;
5a87b7a5 2315 goto submit_io;
df22291f
AK
2316 }
2317
c4a0c46e 2318 /*
ed5bde0b
TT
2319 * get block failure will cause us to loop in
2320 * writepages, because a_ops->writepage won't be able
2321 * to make progress. The page will be redirtied by
2322 * writepage and writepages will again try to write
2323 * the same.
c4a0c46e 2324 */
e3570639
ES
2325 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2326 ext4_msg(sb, KERN_CRIT,
2327 "delayed block allocation failed for inode %lu "
2328 "at logical offset %llu with max blocks %zd "
2329 "with error %d", mpd->inode->i_ino,
2330 (unsigned long long) next,
2331 mpd->b_size >> mpd->inode->i_blkbits, err);
2332 ext4_msg(sb, KERN_CRIT,
2333 "This should not happen!! Data will be lost\n");
2334 if (err == -ENOSPC)
2335 ext4_print_free_blocks(mpd->inode);
030ba6bc 2336 }
2fa3cdfb 2337 /* invalidate all the pages */
c4a0c46e 2338 ext4_da_block_invalidatepages(mpd, next,
8dc207c0 2339 mpd->b_size >> mpd->inode->i_blkbits);
5a87b7a5 2340 return;
c4a0c46e 2341 }
2fa3cdfb
TT
2342 BUG_ON(blks == 0);
2343
2ed88685
TT
2344 if (map.m_flags & EXT4_MAP_NEW) {
2345 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2346 int i;
64769240 2347
2ed88685
TT
2348 for (i = 0; i < map.m_len; i++)
2349 unmap_underlying_metadata(bdev, map.m_pblk + i);
2350 }
64769240 2351
a1d6cc56
AK
2352 /*
2353 * If blocks are delayed marked, we need to
2354 * put actual blocknr and drop delayed bit
2355 */
8dc207c0
TT
2356 if ((mpd->b_state & (1 << BH_Delay)) ||
2357 (mpd->b_state & (1 << BH_Unwritten)))
2ed88685 2358 mpage_put_bnr_to_bhs(mpd, &map);
64769240 2359
2fa3cdfb
TT
2360 if (ext4_should_order_data(mpd->inode)) {
2361 err = ext4_jbd2_file_inode(handle, mpd->inode);
2362 if (err)
5a87b7a5
TT
2363 /* This only happens if the journal is aborted */
2364 return;
2fa3cdfb
TT
2365 }
2366
2367 /*
03f5d8bc 2368 * Update on-disk size along with block allocation.
2fa3cdfb
TT
2369 */
2370 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2371 if (disksize > i_size_read(mpd->inode))
2372 disksize = i_size_read(mpd->inode);
2373 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2374 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
2375 err = ext4_mark_inode_dirty(handle, mpd->inode);
2376 if (err)
2377 ext4_error(mpd->inode->i_sb,
2378 "Failed to mark inode %lu dirty",
2379 mpd->inode->i_ino);
2fa3cdfb
TT
2380 }
2381
5a87b7a5
TT
2382submit_io:
2383 mpage_da_submit_io(mpd);
2384 mpd->io_done = 1;
64769240
AT
2385}
2386
bf068ee2
AK
2387#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2388 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
2389
2390/*
2391 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2392 *
2393 * @mpd->lbh - extent of blocks
2394 * @logical - logical number of the block in the file
2395 * @bh - bh of the block (used to access block's state)
2396 *
2397 * the function is used to collect contig. blocks in same state
2398 */
2399static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
2400 sector_t logical, size_t b_size,
2401 unsigned long b_state)
64769240 2402{
64769240 2403 sector_t next;
8dc207c0 2404 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 2405
c445e3e0
ES
2406 /*
2407 * XXX Don't go larger than mballoc is willing to allocate
2408 * This is a stopgap solution. We eventually need to fold
2409 * mpage_da_submit_io() into this function and then call
79e83036 2410 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
2411 */
2412 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2413 goto flush_it;
2414
525f4ed8 2415 /* check if thereserved journal credits might overflow */
12e9b892 2416 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
2417 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2418 /*
2419 * With non-extent format we are limited by the journal
2420 * credit available. Total credit needed to insert
2421 * nrblocks contiguous blocks is dependent on the
2422 * nrblocks. So limit nrblocks.
2423 */
2424 goto flush_it;
2425 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2426 EXT4_MAX_TRANS_DATA) {
2427 /*
2428 * Adding the new buffer_head would make it cross the
2429 * allowed limit for which we have journal credit
2430 * reserved. So limit the new bh->b_size
2431 */
2432 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2433 mpd->inode->i_blkbits;
2434 /* we will do mpage_da_submit_io in the next loop */
2435 }
2436 }
64769240
AT
2437 /*
2438 * First block in the extent
2439 */
8dc207c0
TT
2440 if (mpd->b_size == 0) {
2441 mpd->b_blocknr = logical;
2442 mpd->b_size = b_size;
2443 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
2444 return;
2445 }
2446
8dc207c0 2447 next = mpd->b_blocknr + nrblocks;
64769240
AT
2448 /*
2449 * Can we merge the block to our big extent?
2450 */
8dc207c0
TT
2451 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2452 mpd->b_size += b_size;
64769240
AT
2453 return;
2454 }
2455
525f4ed8 2456flush_it:
64769240
AT
2457 /*
2458 * We couldn't merge the block to our extent, so we
2459 * need to flush current extent and start new one
2460 */
5a87b7a5 2461 mpage_da_map_and_submit(mpd);
a1d6cc56 2462 return;
64769240
AT
2463}
2464
c364b22c 2465static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 2466{
c364b22c 2467 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
2468}
2469
64769240
AT
2470/*
2471 * __mpage_da_writepage - finds extent of pages and blocks
2472 *
2473 * @page: page to consider
2474 * @wbc: not used, we just follow rules
2475 * @data: context
2476 *
2477 * The function finds extents of pages and scan them for all blocks.
2478 */
2479static int __mpage_da_writepage(struct page *page,
2480 struct writeback_control *wbc, void *data)
2481{
2482 struct mpage_da_data *mpd = data;
2483 struct inode *inode = mpd->inode;
8dc207c0 2484 struct buffer_head *bh, *head;
64769240
AT
2485 sector_t logical;
2486
2487 /*
2488 * Can we merge this page to current extent?
2489 */
2490 if (mpd->next_page != page->index) {
2491 /*
2492 * Nope, we can't. So, we map non-allocated blocks
5a87b7a5 2493 * and start IO on them
64769240
AT
2494 */
2495 if (mpd->next_page != mpd->first_page) {
5a87b7a5 2496 mpage_da_map_and_submit(mpd);
a1d6cc56
AK
2497 /*
2498 * skip rest of the page in the page_vec
2499 */
a1d6cc56
AK
2500 redirty_page_for_writepage(wbc, page);
2501 unlock_page(page);
2502 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2503 }
2504
2505 /*
2506 * Start next extent of pages ...
2507 */
2508 mpd->first_page = page->index;
2509
2510 /*
2511 * ... and blocks
2512 */
8dc207c0
TT
2513 mpd->b_size = 0;
2514 mpd->b_state = 0;
2515 mpd->b_blocknr = 0;
64769240
AT
2516 }
2517
2518 mpd->next_page = page->index + 1;
2519 logical = (sector_t) page->index <<
2520 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2521
2522 if (!page_has_buffers(page)) {
8dc207c0
TT
2523 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2524 (1 << BH_Dirty) | (1 << BH_Uptodate));
a1d6cc56
AK
2525 if (mpd->io_done)
2526 return MPAGE_DA_EXTENT_TAIL;
64769240
AT
2527 } else {
2528 /*
2529 * Page with regular buffer heads, just add all dirty ones
2530 */
2531 head = page_buffers(page);
2532 bh = head;
2533 do {
2534 BUG_ON(buffer_locked(bh));
791b7f08
AK
2535 /*
2536 * We need to try to allocate
2537 * unmapped blocks in the same page.
2538 * Otherwise we won't make progress
43ce1d23 2539 * with the page in ext4_writepage
791b7f08 2540 */
c364b22c 2541 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
8dc207c0
TT
2542 mpage_add_bh_to_extent(mpd, logical,
2543 bh->b_size,
2544 bh->b_state);
a1d6cc56
AK
2545 if (mpd->io_done)
2546 return MPAGE_DA_EXTENT_TAIL;
791b7f08
AK
2547 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2548 /*
2549 * mapped dirty buffer. We need to update
2550 * the b_state because we look at
2551 * b_state in mpage_da_map_blocks. We don't
2552 * update b_size because if we find an
2553 * unmapped buffer_head later we need to
2554 * use the b_state flag of that buffer_head.
2555 */
8dc207c0
TT
2556 if (mpd->b_size == 0)
2557 mpd->b_state = bh->b_state & BH_FLAGS;
a1d6cc56 2558 }
64769240
AT
2559 logical++;
2560 } while ((bh = bh->b_this_page) != head);
2561 }
2562
2563 return 0;
2564}
2565
64769240 2566/*
b920c755
TT
2567 * This is a special get_blocks_t callback which is used by
2568 * ext4_da_write_begin(). It will either return mapped block or
2569 * reserve space for a single block.
29fa89d0
AK
2570 *
2571 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2572 * We also have b_blocknr = -1 and b_bdev initialized properly
2573 *
2574 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2575 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2576 * initialized properly.
64769240
AT
2577 */
2578static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 2579 struct buffer_head *bh, int create)
64769240 2580{
2ed88685 2581 struct ext4_map_blocks map;
64769240 2582 int ret = 0;
33b9817e
AK
2583 sector_t invalid_block = ~((sector_t) 0xffff);
2584
2585 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2586 invalid_block = ~0;
64769240
AT
2587
2588 BUG_ON(create == 0);
2ed88685
TT
2589 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2590
2591 map.m_lblk = iblock;
2592 map.m_len = 1;
64769240
AT
2593
2594 /*
2595 * first, we need to know whether the block is allocated already
2596 * preallocated blocks are unmapped but should treated
2597 * the same as allocated blocks.
2598 */
2ed88685
TT
2599 ret = ext4_map_blocks(NULL, inode, &map, 0);
2600 if (ret < 0)
2601 return ret;
2602 if (ret == 0) {
2603 if (buffer_delay(bh))
2604 return 0; /* Not sure this could or should happen */
64769240
AT
2605 /*
2606 * XXX: __block_prepare_write() unmaps passed block,
2607 * is it OK?
2608 */
9d0be502 2609 ret = ext4_da_reserve_space(inode, iblock);
d2a17637
MC
2610 if (ret)
2611 /* not enough space to reserve */
2612 return ret;
2613
2ed88685
TT
2614 map_bh(bh, inode->i_sb, invalid_block);
2615 set_buffer_new(bh);
2616 set_buffer_delay(bh);
2617 return 0;
64769240
AT
2618 }
2619
2ed88685
TT
2620 map_bh(bh, inode->i_sb, map.m_pblk);
2621 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2622
2623 if (buffer_unwritten(bh)) {
2624 /* A delayed write to unwritten bh should be marked
2625 * new and mapped. Mapped ensures that we don't do
2626 * get_block multiple times when we write to the same
2627 * offset and new ensures that we do proper zero out
2628 * for partial write.
2629 */
2630 set_buffer_new(bh);
2631 set_buffer_mapped(bh);
2632 }
2633 return 0;
64769240 2634}
61628a3f 2635
b920c755
TT
2636/*
2637 * This function is used as a standard get_block_t calback function
2638 * when there is no desire to allocate any blocks. It is used as a
206f7ab4
CH
2639 * callback function for block_prepare_write() and block_write_full_page().
2640 * These functions should only try to map a single block at a time.
b920c755
TT
2641 *
2642 * Since this function doesn't do block allocations even if the caller
2643 * requests it by passing in create=1, it is critically important that
2644 * any caller checks to make sure that any buffer heads are returned
2645 * by this function are either all already mapped or marked for
206f7ab4
CH
2646 * delayed allocation before calling block_write_full_page(). Otherwise,
2647 * b_blocknr could be left unitialized, and the page write functions will
2648 * be taken by surprise.
b920c755
TT
2649 */
2650static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
2651 struct buffer_head *bh_result, int create)
2652{
a2dc52b5 2653 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 2654 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
2655}
2656
62e086be
AK
2657static int bget_one(handle_t *handle, struct buffer_head *bh)
2658{
2659 get_bh(bh);
2660 return 0;
2661}
2662
2663static int bput_one(handle_t *handle, struct buffer_head *bh)
2664{
2665 put_bh(bh);
2666 return 0;
2667}
2668
2669static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2670 unsigned int len)
2671{
2672 struct address_space *mapping = page->mapping;
2673 struct inode *inode = mapping->host;
2674 struct buffer_head *page_bufs;
2675 handle_t *handle = NULL;
2676 int ret = 0;
2677 int err;
2678
cb20d518 2679 ClearPageChecked(page);
62e086be
AK
2680 page_bufs = page_buffers(page);
2681 BUG_ON(!page_bufs);
2682 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2683 /* As soon as we unlock the page, it can go away, but we have
2684 * references to buffers so we are safe */
2685 unlock_page(page);
2686
2687 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2688 if (IS_ERR(handle)) {
2689 ret = PTR_ERR(handle);
2690 goto out;
2691 }
2692
2693 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2694 do_journal_get_write_access);
2695
2696 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2697 write_end_fn);
2698 if (ret == 0)
2699 ret = err;
2700 err = ext4_journal_stop(handle);
2701 if (!ret)
2702 ret = err;
2703
2704 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 2705 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
2706out:
2707 return ret;
2708}
2709
744692dc
JZ
2710static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2711static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2712
61628a3f 2713/*
43ce1d23
AK
2714 * Note that we don't need to start a transaction unless we're journaling data
2715 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2716 * need to file the inode to the transaction's list in ordered mode because if
2717 * we are writing back data added by write(), the inode is already there and if
2718 * we are writing back data modified via mmap(), noone guarantees in which
2719 * transaction the data will hit the disk. In case we are journaling data, we
2720 * cannot start transaction directly because transaction start ranks above page
2721 * lock so we have to do some magic.
2722 *
b920c755
TT
2723 * This function can get called via...
2724 * - ext4_da_writepages after taking page lock (have journal handle)
2725 * - journal_submit_inode_data_buffers (no journal handle)
2726 * - shrink_page_list via pdflush (no journal handle)
2727 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2728 *
2729 * We don't do any block allocation in this function. If we have page with
2730 * multiple blocks we need to write those buffer_heads that are mapped. This
2731 * is important for mmaped based write. So if we do with blocksize 1K
2732 * truncate(f, 1024);
2733 * a = mmap(f, 0, 4096);
2734 * a[0] = 'a';
2735 * truncate(f, 4096);
2736 * we have in the page first buffer_head mapped via page_mkwrite call back
2737 * but other bufer_heads would be unmapped but dirty(dirty done via the
2738 * do_wp_page). So writepage should write the first block. If we modify
2739 * the mmap area beyond 1024 we will again get a page_fault and the
2740 * page_mkwrite callback will do the block allocation and mark the
2741 * buffer_heads mapped.
2742 *
2743 * We redirty the page if we have any buffer_heads that is either delay or
2744 * unwritten in the page.
2745 *
2746 * We can get recursively called as show below.
2747 *
2748 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2749 * ext4_writepage()
2750 *
2751 * But since we don't do any block allocation we should not deadlock.
2752 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2753 */
43ce1d23 2754static int ext4_writepage(struct page *page,
62e086be 2755 struct writeback_control *wbc)
64769240 2756{
a42afc5f 2757 int ret = 0, commit_write = 0;
61628a3f 2758 loff_t size;
498e5f24 2759 unsigned int len;
744692dc 2760 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2761 struct inode *inode = page->mapping->host;
2762
43ce1d23 2763 trace_ext4_writepage(inode, page);
f0e6c985
AK
2764 size = i_size_read(inode);
2765 if (page->index == size >> PAGE_CACHE_SHIFT)
2766 len = size & ~PAGE_CACHE_MASK;
2767 else
2768 len = PAGE_CACHE_SIZE;
64769240 2769
a42afc5f
TT
2770 /*
2771 * If the page does not have buffers (for whatever reason),
2772 * try to create them using block_prepare_write. If this
2773 * fails, redirty the page and move on.
2774 */
2775 if (!page_buffers(page)) {
2776 if (block_prepare_write(page, 0, len,
2777 noalloc_get_block_write)) {
2778 redirty_page:
f0e6c985
AK
2779 redirty_page_for_writepage(wbc, page);
2780 unlock_page(page);
2781 return 0;
2782 }
a42afc5f
TT
2783 commit_write = 1;
2784 }
2785 page_bufs = page_buffers(page);
2786 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2787 ext4_bh_delay_or_unwritten)) {
f0e6c985 2788 /*
a42afc5f
TT
2789 * We don't want to do block allocation So redirty the
2790 * page and return We may reach here when we do a
2791 * journal commit via
2792 * journal_submit_inode_data_buffers. If we don't
2793 * have mapping block we just ignore them. We can also
2794 * reach here via shrink_page_list
f0e6c985 2795 */
a42afc5f
TT
2796 goto redirty_page;
2797 }
2798 if (commit_write)
ed9b3e33 2799 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2800 block_commit_write(page, 0, len);
64769240 2801
cb20d518 2802 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2803 /*
2804 * It's mmapped pagecache. Add buffers and journal it. There
2805 * doesn't seem much point in redirtying the page here.
2806 */
3f0ca309 2807 return __ext4_journalled_writepage(page, len);
43ce1d23 2808
a42afc5f 2809 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2810 ext4_set_bh_endio(page_bufs, inode);
2811 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2812 wbc, ext4_end_io_buffer_write);
2813 } else
b920c755
TT
2814 ret = block_write_full_page(page, noalloc_get_block_write,
2815 wbc);
64769240 2816
64769240
AT
2817 return ret;
2818}
2819
61628a3f 2820/*
525f4ed8
MC
2821 * This is called via ext4_da_writepages() to
2822 * calulate the total number of credits to reserve to fit
2823 * a single extent allocation into a single transaction,
2824 * ext4_da_writpeages() will loop calling this before
2825 * the block allocation.
61628a3f 2826 */
525f4ed8
MC
2827
2828static int ext4_da_writepages_trans_blocks(struct inode *inode)
2829{
2830 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2831
2832 /*
2833 * With non-extent format the journal credit needed to
2834 * insert nrblocks contiguous block is dependent on
2835 * number of contiguous block. So we will limit
2836 * number of contiguous block to a sane value
2837 */
12e9b892 2838 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2839 (max_blocks > EXT4_MAX_TRANS_DATA))
2840 max_blocks = EXT4_MAX_TRANS_DATA;
2841
2842 return ext4_chunk_trans_blocks(inode, max_blocks);
2843}
61628a3f 2844
8e48dcfb
TT
2845/*
2846 * write_cache_pages_da - walk the list of dirty pages of the given
2847 * address space and call the callback function (which usually writes
2848 * the pages).
2849 *
2850 * This is a forked version of write_cache_pages(). Differences:
2851 * Range cyclic is ignored.
2852 * no_nrwrite_index_update is always presumed true
2853 */
2854static int write_cache_pages_da(struct address_space *mapping,
2855 struct writeback_control *wbc,
2856 struct mpage_da_data *mpd)
2857{
2858 int ret = 0;
2859 int done = 0;
2860 struct pagevec pvec;
2861 int nr_pages;
2862 pgoff_t index;
2863 pgoff_t end; /* Inclusive */
2864 long nr_to_write = wbc->nr_to_write;
2865
2866 pagevec_init(&pvec, 0);
2867 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2868 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2869
2870 while (!done && (index <= end)) {
2871 int i;
2872
2873 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2874 PAGECACHE_TAG_DIRTY,
2875 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2876 if (nr_pages == 0)
2877 break;
2878
2879 for (i = 0; i < nr_pages; i++) {
2880 struct page *page = pvec.pages[i];
2881
2882 /*
2883 * At this point, the page may be truncated or
2884 * invalidated (changing page->mapping to NULL), or
2885 * even swizzled back from swapper_space to tmpfs file
2886 * mapping. However, page->index will not change
2887 * because we have a reference on the page.
2888 */
2889 if (page->index > end) {
2890 done = 1;
2891 break;
2892 }
2893
2894 lock_page(page);
2895
2896 /*
2897 * Page truncated or invalidated. We can freely skip it
2898 * then, even for data integrity operations: the page
2899 * has disappeared concurrently, so there could be no
2900 * real expectation of this data interity operation
2901 * even if there is now a new, dirty page at the same
2902 * pagecache address.
2903 */
2904 if (unlikely(page->mapping != mapping)) {
2905continue_unlock:
2906 unlock_page(page);
2907 continue;
2908 }
2909
2910 if (!PageDirty(page)) {
2911 /* someone wrote it for us */
2912 goto continue_unlock;
2913 }
2914
2915 if (PageWriteback(page)) {
2916 if (wbc->sync_mode != WB_SYNC_NONE)
2917 wait_on_page_writeback(page);
2918 else
2919 goto continue_unlock;
2920 }
2921
2922 BUG_ON(PageWriteback(page));
2923 if (!clear_page_dirty_for_io(page))
2924 goto continue_unlock;
2925
2926 ret = __mpage_da_writepage(page, wbc, mpd);
2927 if (unlikely(ret)) {
2928 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2929 unlock_page(page);
2930 ret = 0;
2931 } else {
2932 done = 1;
2933 break;
2934 }
2935 }
2936
2937 if (nr_to_write > 0) {
2938 nr_to_write--;
2939 if (nr_to_write == 0 &&
2940 wbc->sync_mode == WB_SYNC_NONE) {
2941 /*
2942 * We stop writing back only if we are
2943 * not doing integrity sync. In case of
2944 * integrity sync we have to keep going
2945 * because someone may be concurrently
2946 * dirtying pages, and we might have
2947 * synced a lot of newly appeared dirty
2948 * pages, but have not synced all of the
2949 * old dirty pages.
2950 */
2951 done = 1;
2952 break;
2953 }
2954 }
2955 }
2956 pagevec_release(&pvec);
2957 cond_resched();
2958 }
2959 return ret;
2960}
2961
2962
64769240 2963static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2964 struct writeback_control *wbc)
64769240 2965{
22208ded
AK
2966 pgoff_t index;
2967 int range_whole = 0;
61628a3f 2968 handle_t *handle = NULL;
df22291f 2969 struct mpage_da_data mpd;
5e745b04 2970 struct inode *inode = mapping->host;
498e5f24
TT
2971 int pages_written = 0;
2972 long pages_skipped;
55138e0b 2973 unsigned int max_pages;
2acf2c26 2974 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2975 int needed_blocks, ret = 0;
2976 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2977 loff_t range_start = wbc->range_start;
5e745b04 2978 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
61628a3f 2979
9bffad1e 2980 trace_ext4_da_writepages(inode, wbc);
ba80b101 2981
61628a3f
MC
2982 /*
2983 * No pages to write? This is mainly a kludge to avoid starting
2984 * a transaction for special inodes like journal inode on last iput()
2985 * because that could violate lock ordering on umount
2986 */
a1d6cc56 2987 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2988 return 0;
2a21e37e
TT
2989
2990 /*
2991 * If the filesystem has aborted, it is read-only, so return
2992 * right away instead of dumping stack traces later on that
2993 * will obscure the real source of the problem. We test
4ab2f15b 2994 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2995 * the latter could be true if the filesystem is mounted
2996 * read-only, and in that case, ext4_da_writepages should
2997 * *never* be called, so if that ever happens, we would want
2998 * the stack trace.
2999 */
4ab2f15b 3000 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
3001 return -EROFS;
3002
22208ded
AK
3003 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3004 range_whole = 1;
61628a3f 3005
2acf2c26
AK
3006 range_cyclic = wbc->range_cyclic;
3007 if (wbc->range_cyclic) {
22208ded 3008 index = mapping->writeback_index;
2acf2c26
AK
3009 if (index)
3010 cycled = 0;
3011 wbc->range_start = index << PAGE_CACHE_SHIFT;
3012 wbc->range_end = LLONG_MAX;
3013 wbc->range_cyclic = 0;
3014 } else
22208ded 3015 index = wbc->range_start >> PAGE_CACHE_SHIFT;
a1d6cc56 3016
55138e0b
TT
3017 /*
3018 * This works around two forms of stupidity. The first is in
3019 * the writeback code, which caps the maximum number of pages
3020 * written to be 1024 pages. This is wrong on multiple
3021 * levels; different architectues have a different page size,
3022 * which changes the maximum amount of data which gets
3023 * written. Secondly, 4 megabytes is way too small. XFS
3024 * forces this value to be 16 megabytes by multiplying
3025 * nr_to_write parameter by four, and then relies on its
3026 * allocator to allocate larger extents to make them
3027 * contiguous. Unfortunately this brings us to the second
3028 * stupidity, which is that ext4's mballoc code only allocates
3029 * at most 2048 blocks. So we force contiguous writes up to
3030 * the number of dirty blocks in the inode, or
3031 * sbi->max_writeback_mb_bump whichever is smaller.
3032 */
3033 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
3034 if (!range_cyclic && range_whole) {
3035 if (wbc->nr_to_write == LONG_MAX)
3036 desired_nr_to_write = wbc->nr_to_write;
3037 else
3038 desired_nr_to_write = wbc->nr_to_write * 8;
3039 } else
55138e0b
TT
3040 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
3041 max_pages);
3042 if (desired_nr_to_write > max_pages)
3043 desired_nr_to_write = max_pages;
3044
3045 if (wbc->nr_to_write < desired_nr_to_write) {
3046 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
3047 wbc->nr_to_write = desired_nr_to_write;
3048 }
3049
df22291f
AK
3050 mpd.wbc = wbc;
3051 mpd.inode = mapping->host;
3052
22208ded
AK
3053 pages_skipped = wbc->pages_skipped;
3054
2acf2c26 3055retry:
22208ded 3056 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
3057
3058 /*
3059 * we insert one extent at a time. So we need
3060 * credit needed for single extent allocation.
3061 * journalled mode is currently not supported
3062 * by delalloc
3063 */
3064 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 3065 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 3066
61628a3f
MC
3067 /* start a new transaction*/
3068 handle = ext4_journal_start(inode, needed_blocks);
3069 if (IS_ERR(handle)) {
3070 ret = PTR_ERR(handle);
1693918e 3071 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 3072 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 3073 wbc->nr_to_write, inode->i_ino, ret);
61628a3f
MC
3074 goto out_writepages;
3075 }
f63e6005
TT
3076
3077 /*
3078 * Now call __mpage_da_writepage to find the next
3079 * contiguous region of logical blocks that need
3080 * blocks to be allocated by ext4. We don't actually
3081 * submit the blocks for I/O here, even though
3082 * write_cache_pages thinks it will, and will set the
3083 * pages as clean for write before calling
3084 * __mpage_da_writepage().
3085 */
3086 mpd.b_size = 0;
3087 mpd.b_state = 0;
3088 mpd.b_blocknr = 0;
3089 mpd.first_page = 0;
3090 mpd.next_page = 0;
3091 mpd.io_done = 0;
3092 mpd.pages_written = 0;
3093 mpd.retval = 0;
8e48dcfb 3094 ret = write_cache_pages_da(mapping, wbc, &mpd);
f63e6005 3095 /*
af901ca1 3096 * If we have a contiguous extent of pages and we
f63e6005
TT
3097 * haven't done the I/O yet, map the blocks and submit
3098 * them for I/O.
3099 */
3100 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 3101 mpage_da_map_and_submit(&mpd);
f63e6005
TT
3102 ret = MPAGE_DA_EXTENT_TAIL;
3103 }
b3a3ca8c 3104 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 3105 wbc->nr_to_write -= mpd.pages_written;
df22291f 3106
61628a3f 3107 ext4_journal_stop(handle);
df22291f 3108
8f64b32e 3109 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
3110 /* commit the transaction which would
3111 * free blocks released in the transaction
3112 * and try again
3113 */
df22291f 3114 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
3115 wbc->pages_skipped = pages_skipped;
3116 ret = 0;
3117 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56
AK
3118 /*
3119 * got one extent now try with
3120 * rest of the pages
3121 */
22208ded
AK
3122 pages_written += mpd.pages_written;
3123 wbc->pages_skipped = pages_skipped;
a1d6cc56 3124 ret = 0;
2acf2c26 3125 io_done = 1;
22208ded 3126 } else if (wbc->nr_to_write)
61628a3f
MC
3127 /*
3128 * There is no more writeout needed
3129 * or we requested for a noblocking writeout
3130 * and we found the device congested
3131 */
61628a3f 3132 break;
a1d6cc56 3133 }
2acf2c26
AK
3134 if (!io_done && !cycled) {
3135 cycled = 1;
3136 index = 0;
3137 wbc->range_start = index << PAGE_CACHE_SHIFT;
3138 wbc->range_end = mapping->writeback_index - 1;
3139 goto retry;
3140 }
22208ded 3141 if (pages_skipped != wbc->pages_skipped)
1693918e
TT
3142 ext4_msg(inode->i_sb, KERN_CRIT,
3143 "This should not happen leaving %s "
fbe845dd 3144 "with nr_to_write = %ld ret = %d",
1693918e 3145 __func__, wbc->nr_to_write, ret);
22208ded
AK
3146
3147 /* Update index */
3148 index += pages_written;
2acf2c26 3149 wbc->range_cyclic = range_cyclic;
22208ded
AK
3150 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3151 /*
3152 * set the writeback_index so that range_cyclic
3153 * mode will write it back later
3154 */
3155 mapping->writeback_index = index;
a1d6cc56 3156
61628a3f 3157out_writepages:
2faf2e19 3158 wbc->nr_to_write -= nr_to_writebump;
de89de6e 3159 wbc->range_start = range_start;
9bffad1e 3160 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 3161 return ret;
64769240
AT
3162}
3163
79f0be8d
AK
3164#define FALL_BACK_TO_NONDELALLOC 1
3165static int ext4_nonda_switch(struct super_block *sb)
3166{
3167 s64 free_blocks, dirty_blocks;
3168 struct ext4_sb_info *sbi = EXT4_SB(sb);
3169
3170 /*
3171 * switch to non delalloc mode if we are running low
3172 * on free block. The free block accounting via percpu
179f7ebf 3173 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
3174 * accumulated on each CPU without updating global counters
3175 * Delalloc need an accurate free block accounting. So switch
3176 * to non delalloc when we are near to error range.
3177 */
3178 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3179 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3180 if (2 * free_blocks < 3 * dirty_blocks ||
3181 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3182 /*
c8afb446
ES
3183 * free block count is less than 150% of dirty blocks
3184 * or free blocks is less than watermark
79f0be8d
AK
3185 */
3186 return 1;
3187 }
c8afb446
ES
3188 /*
3189 * Even if we don't switch but are nearing capacity,
3190 * start pushing delalloc when 1/2 of free blocks are dirty.
3191 */
3192 if (free_blocks < 2 * dirty_blocks)
3193 writeback_inodes_sb_if_idle(sb);
3194
79f0be8d
AK
3195 return 0;
3196}
3197
64769240 3198static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
3199 loff_t pos, unsigned len, unsigned flags,
3200 struct page **pagep, void **fsdata)
64769240 3201{
72b8ab9d 3202 int ret, retries = 0;
64769240
AT
3203 struct page *page;
3204 pgoff_t index;
64769240
AT
3205 struct inode *inode = mapping->host;
3206 handle_t *handle;
3207
3208 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
3209
3210 if (ext4_nonda_switch(inode->i_sb)) {
3211 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3212 return ext4_write_begin(file, mapping, pos,
3213 len, flags, pagep, fsdata);
3214 }
3215 *fsdata = (void *)0;
9bffad1e 3216 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 3217retry:
64769240
AT
3218 /*
3219 * With delayed allocation, we don't log the i_disksize update
3220 * if there is delayed block allocation. But we still need
3221 * to journalling the i_disksize update if writes to the end
3222 * of file which has an already mapped buffer.
3223 */
3224 handle = ext4_journal_start(inode, 1);
3225 if (IS_ERR(handle)) {
3226 ret = PTR_ERR(handle);
3227 goto out;
3228 }
ebd3610b
JK
3229 /* We cannot recurse into the filesystem as the transaction is already
3230 * started */
3231 flags |= AOP_FLAG_NOFS;
64769240 3232
54566b2c 3233 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
3234 if (!page) {
3235 ext4_journal_stop(handle);
3236 ret = -ENOMEM;
3237 goto out;
3238 }
64769240
AT
3239 *pagep = page;
3240
6e1db88d 3241 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
3242 if (ret < 0) {
3243 unlock_page(page);
3244 ext4_journal_stop(handle);
3245 page_cache_release(page);
ae4d5372
AK
3246 /*
3247 * block_write_begin may have instantiated a few blocks
3248 * outside i_size. Trim these off again. Don't need
3249 * i_size_read because we hold i_mutex.
3250 */
3251 if (pos + len > inode->i_size)
b9a4207d 3252 ext4_truncate_failed_write(inode);
64769240
AT
3253 }
3254
d2a17637
MC
3255 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3256 goto retry;
64769240
AT
3257out:
3258 return ret;
3259}
3260
632eaeab
MC
3261/*
3262 * Check if we should update i_disksize
3263 * when write to the end of file but not require block allocation
3264 */
3265static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 3266 unsigned long offset)
632eaeab
MC
3267{
3268 struct buffer_head *bh;
3269 struct inode *inode = page->mapping->host;
3270 unsigned int idx;
3271 int i;
3272
3273 bh = page_buffers(page);
3274 idx = offset >> inode->i_blkbits;
3275
af5bc92d 3276 for (i = 0; i < idx; i++)
632eaeab
MC
3277 bh = bh->b_this_page;
3278
29fa89d0 3279 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
3280 return 0;
3281 return 1;
3282}
3283
64769240 3284static int ext4_da_write_end(struct file *file,
de9a55b8
TT
3285 struct address_space *mapping,
3286 loff_t pos, unsigned len, unsigned copied,
3287 struct page *page, void *fsdata)
64769240
AT
3288{
3289 struct inode *inode = mapping->host;
3290 int ret = 0, ret2;
3291 handle_t *handle = ext4_journal_current_handle();
3292 loff_t new_i_size;
632eaeab 3293 unsigned long start, end;
79f0be8d
AK
3294 int write_mode = (int)(unsigned long)fsdata;
3295
3296 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3297 if (ext4_should_order_data(inode)) {
3298 return ext4_ordered_write_end(file, mapping, pos,
3299 len, copied, page, fsdata);
3300 } else if (ext4_should_writeback_data(inode)) {
3301 return ext4_writeback_write_end(file, mapping, pos,
3302 len, copied, page, fsdata);
3303 } else {
3304 BUG();
3305 }
3306 }
632eaeab 3307
9bffad1e 3308 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 3309 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 3310 end = start + copied - 1;
64769240
AT
3311
3312 /*
3313 * generic_write_end() will run mark_inode_dirty() if i_size
3314 * changes. So let's piggyback the i_disksize mark_inode_dirty
3315 * into that.
3316 */
3317
3318 new_i_size = pos + copied;
632eaeab
MC
3319 if (new_i_size > EXT4_I(inode)->i_disksize) {
3320 if (ext4_da_should_update_i_disksize(page, end)) {
3321 down_write(&EXT4_I(inode)->i_data_sem);
3322 if (new_i_size > EXT4_I(inode)->i_disksize) {
3323 /*
3324 * Updating i_disksize when extending file
3325 * without needing block allocation
3326 */
3327 if (ext4_should_order_data(inode))
3328 ret = ext4_jbd2_file_inode(handle,
3329 inode);
64769240 3330
632eaeab
MC
3331 EXT4_I(inode)->i_disksize = new_i_size;
3332 }
3333 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
3334 /* We need to mark inode dirty even if
3335 * new_i_size is less that inode->i_size
3336 * bu greater than i_disksize.(hint delalloc)
3337 */
3338 ext4_mark_inode_dirty(handle, inode);
64769240 3339 }
632eaeab 3340 }
64769240
AT
3341 ret2 = generic_write_end(file, mapping, pos, len, copied,
3342 page, fsdata);
3343 copied = ret2;
3344 if (ret2 < 0)
3345 ret = ret2;
3346 ret2 = ext4_journal_stop(handle);
3347 if (!ret)
3348 ret = ret2;
3349
3350 return ret ? ret : copied;
3351}
3352
3353static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3354{
64769240
AT
3355 /*
3356 * Drop reserved blocks
3357 */
3358 BUG_ON(!PageLocked(page));
3359 if (!page_has_buffers(page))
3360 goto out;
3361
d2a17637 3362 ext4_da_page_release_reservation(page, offset);
64769240
AT
3363
3364out:
3365 ext4_invalidatepage(page, offset);
3366
3367 return;
3368}
3369
ccd2506b
TT
3370/*
3371 * Force all delayed allocation blocks to be allocated for a given inode.
3372 */
3373int ext4_alloc_da_blocks(struct inode *inode)
3374{
fb40ba0d
TT
3375 trace_ext4_alloc_da_blocks(inode);
3376
ccd2506b
TT
3377 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3378 !EXT4_I(inode)->i_reserved_meta_blocks)
3379 return 0;
3380
3381 /*
3382 * We do something simple for now. The filemap_flush() will
3383 * also start triggering a write of the data blocks, which is
3384 * not strictly speaking necessary (and for users of
3385 * laptop_mode, not even desirable). However, to do otherwise
3386 * would require replicating code paths in:
de9a55b8 3387 *
ccd2506b
TT
3388 * ext4_da_writepages() ->
3389 * write_cache_pages() ---> (via passed in callback function)
3390 * __mpage_da_writepage() -->
3391 * mpage_add_bh_to_extent()
3392 * mpage_da_map_blocks()
3393 *
3394 * The problem is that write_cache_pages(), located in
3395 * mm/page-writeback.c, marks pages clean in preparation for
3396 * doing I/O, which is not desirable if we're not planning on
3397 * doing I/O at all.
3398 *
3399 * We could call write_cache_pages(), and then redirty all of
3400 * the pages by calling redirty_page_for_writeback() but that
3401 * would be ugly in the extreme. So instead we would need to
3402 * replicate parts of the code in the above functions,
3403 * simplifying them becuase we wouldn't actually intend to
3404 * write out the pages, but rather only collect contiguous
3405 * logical block extents, call the multi-block allocator, and
3406 * then update the buffer heads with the block allocations.
de9a55b8 3407 *
ccd2506b
TT
3408 * For now, though, we'll cheat by calling filemap_flush(),
3409 * which will map the blocks, and start the I/O, but not
3410 * actually wait for the I/O to complete.
3411 */
3412 return filemap_flush(inode->i_mapping);
3413}
64769240 3414
ac27a0ec
DK
3415/*
3416 * bmap() is special. It gets used by applications such as lilo and by
3417 * the swapper to find the on-disk block of a specific piece of data.
3418 *
3419 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 3420 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
3421 * filesystem and enables swap, then they may get a nasty shock when the
3422 * data getting swapped to that swapfile suddenly gets overwritten by
3423 * the original zero's written out previously to the journal and
3424 * awaiting writeback in the kernel's buffer cache.
3425 *
3426 * So, if we see any bmap calls here on a modified, data-journaled file,
3427 * take extra steps to flush any blocks which might be in the cache.
3428 */
617ba13b 3429static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
3430{
3431 struct inode *inode = mapping->host;
3432 journal_t *journal;
3433 int err;
3434
64769240
AT
3435 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3436 test_opt(inode->i_sb, DELALLOC)) {
3437 /*
3438 * With delalloc we want to sync the file
3439 * so that we can make sure we allocate
3440 * blocks for file
3441 */
3442 filemap_write_and_wait(mapping);
3443 }
3444
19f5fb7a
TT
3445 if (EXT4_JOURNAL(inode) &&
3446 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
3447 /*
3448 * This is a REALLY heavyweight approach, but the use of
3449 * bmap on dirty files is expected to be extremely rare:
3450 * only if we run lilo or swapon on a freshly made file
3451 * do we expect this to happen.
3452 *
3453 * (bmap requires CAP_SYS_RAWIO so this does not
3454 * represent an unprivileged user DOS attack --- we'd be
3455 * in trouble if mortal users could trigger this path at
3456 * will.)
3457 *
617ba13b 3458 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
3459 * regular files. If somebody wants to bmap a directory
3460 * or symlink and gets confused because the buffer
3461 * hasn't yet been flushed to disk, they deserve
3462 * everything they get.
3463 */
3464
19f5fb7a 3465 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 3466 journal = EXT4_JOURNAL(inode);
dab291af
MC
3467 jbd2_journal_lock_updates(journal);
3468 err = jbd2_journal_flush(journal);
3469 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3470
3471 if (err)
3472 return 0;
3473 }
3474
af5bc92d 3475 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
3476}
3477
617ba13b 3478static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 3479{
617ba13b 3480 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
3481}
3482
3483static int
617ba13b 3484ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
3485 struct list_head *pages, unsigned nr_pages)
3486{
617ba13b 3487 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
3488}
3489
744692dc
JZ
3490static void ext4_free_io_end(ext4_io_end_t *io)
3491{
3492 BUG_ON(!io);
3493 if (io->page)
3494 put_page(io->page);
3495 iput(io->inode);
3496 kfree(io);
3497}
3498
3499static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3500{
3501 struct buffer_head *head, *bh;
3502 unsigned int curr_off = 0;
3503
3504 if (!page_has_buffers(page))
3505 return;
3506 head = bh = page_buffers(page);
3507 do {
3508 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3509 && bh->b_private) {
3510 ext4_free_io_end(bh->b_private);
3511 bh->b_private = NULL;
3512 bh->b_end_io = NULL;
3513 }
3514 curr_off = curr_off + bh->b_size;
3515 bh = bh->b_this_page;
3516 } while (bh != head);
3517}
3518
617ba13b 3519static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 3520{
617ba13b 3521 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3522
744692dc
JZ
3523 /*
3524 * free any io_end structure allocated for buffers to be discarded
3525 */
3526 if (ext4_should_dioread_nolock(page->mapping->host))
3527 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
3528 /*
3529 * If it's a full truncate we just forget about the pending dirtying
3530 */
3531 if (offset == 0)
3532 ClearPageChecked(page);
3533
0390131b
FM
3534 if (journal)
3535 jbd2_journal_invalidatepage(journal, page, offset);
3536 else
3537 block_invalidatepage(page, offset);
ac27a0ec
DK
3538}
3539
617ba13b 3540static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3541{
617ba13b 3542 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
3543
3544 WARN_ON(PageChecked(page));
3545 if (!page_has_buffers(page))
3546 return 0;
0390131b
FM
3547 if (journal)
3548 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3549 else
3550 return try_to_free_buffers(page);
ac27a0ec
DK
3551}
3552
3553/*
4c0425ff
MC
3554 * O_DIRECT for ext3 (or indirect map) based files
3555 *
ac27a0ec
DK
3556 * If the O_DIRECT write will extend the file then add this inode to the
3557 * orphan list. So recovery will truncate it back to the original size
3558 * if the machine crashes during the write.
3559 *
3560 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
3561 * crashes then stale disk data _may_ be exposed inside the file. But current
3562 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 3563 */
4c0425ff 3564static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
de9a55b8
TT
3565 const struct iovec *iov, loff_t offset,
3566 unsigned long nr_segs)
ac27a0ec
DK
3567{
3568 struct file *file = iocb->ki_filp;
3569 struct inode *inode = file->f_mapping->host;
617ba13b 3570 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 3571 handle_t *handle;
ac27a0ec
DK
3572 ssize_t ret;
3573 int orphan = 0;
3574 size_t count = iov_length(iov, nr_segs);
fbbf6945 3575 int retries = 0;
ac27a0ec
DK
3576
3577 if (rw == WRITE) {
3578 loff_t final_size = offset + count;
3579
ac27a0ec 3580 if (final_size > inode->i_size) {
7fb5409d
JK
3581 /* Credits for sb + inode write */
3582 handle = ext4_journal_start(inode, 2);
3583 if (IS_ERR(handle)) {
3584 ret = PTR_ERR(handle);
3585 goto out;
3586 }
617ba13b 3587 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
3588 if (ret) {
3589 ext4_journal_stop(handle);
3590 goto out;
3591 }
ac27a0ec
DK
3592 orphan = 1;
3593 ei->i_disksize = inode->i_size;
7fb5409d 3594 ext4_journal_stop(handle);
ac27a0ec
DK
3595 }
3596 }
3597
fbbf6945 3598retry:
b7adc1f3 3599 if (rw == READ && ext4_should_dioread_nolock(inode))
eafdc7d1 3600 ret = __blockdev_direct_IO(rw, iocb, inode,
b7adc1f3
JZ
3601 inode->i_sb->s_bdev, iov,
3602 offset, nr_segs,
eafdc7d1
CH
3603 ext4_get_block, NULL, NULL, 0);
3604 else {
b7adc1f3
JZ
3605 ret = blockdev_direct_IO(rw, iocb, inode,
3606 inode->i_sb->s_bdev, iov,
ac27a0ec 3607 offset, nr_segs,
617ba13b 3608 ext4_get_block, NULL);
eafdc7d1
CH
3609
3610 if (unlikely((rw & WRITE) && ret < 0)) {
3611 loff_t isize = i_size_read(inode);
3612 loff_t end = offset + iov_length(iov, nr_segs);
3613
3614 if (end > isize)
3615 vmtruncate(inode, isize);
3616 }
3617 }
fbbf6945
ES
3618 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3619 goto retry;
ac27a0ec 3620
7fb5409d 3621 if (orphan) {
ac27a0ec
DK
3622 int err;
3623
7fb5409d
JK
3624 /* Credits for sb + inode write */
3625 handle = ext4_journal_start(inode, 2);
3626 if (IS_ERR(handle)) {
3627 /* This is really bad luck. We've written the data
3628 * but cannot extend i_size. Bail out and pretend
3629 * the write failed... */
3630 ret = PTR_ERR(handle);
da1dafca
DM
3631 if (inode->i_nlink)
3632 ext4_orphan_del(NULL, inode);
3633
7fb5409d
JK
3634 goto out;
3635 }
3636 if (inode->i_nlink)
617ba13b 3637 ext4_orphan_del(handle, inode);
7fb5409d 3638 if (ret > 0) {
ac27a0ec
DK
3639 loff_t end = offset + ret;
3640 if (end > inode->i_size) {
3641 ei->i_disksize = end;
3642 i_size_write(inode, end);
3643 /*
3644 * We're going to return a positive `ret'
3645 * here due to non-zero-length I/O, so there's
3646 * no way of reporting error returns from
617ba13b 3647 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
3648 * ignore it.
3649 */
617ba13b 3650 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3651 }
3652 }
617ba13b 3653 err = ext4_journal_stop(handle);
ac27a0ec
DK
3654 if (ret == 0)
3655 ret = err;
3656 }
3657out:
3658 return ret;
3659}
3660
2ed88685
TT
3661/*
3662 * ext4_get_block used when preparing for a DIO write or buffer write.
3663 * We allocate an uinitialized extent if blocks haven't been allocated.
3664 * The extent will be converted to initialized after the IO is complete.
3665 */
c7064ef1 3666static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3667 struct buffer_head *bh_result, int create)
3668{
c7064ef1 3669 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3670 inode->i_ino, create);
2ed88685
TT
3671 return _ext4_get_block(inode, iblock, bh_result,
3672 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3673}
3674
c7064ef1 3675static void dump_completed_IO(struct inode * inode)
8d5d02e6
MC
3676{
3677#ifdef EXT4_DEBUG
3678 struct list_head *cur, *before, *after;
3679 ext4_io_end_t *io, *io0, *io1;
744692dc 3680 unsigned long flags;
8d5d02e6 3681
c7064ef1
JZ
3682 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3683 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
8d5d02e6
MC
3684 return;
3685 }
3686
c7064ef1 3687 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
744692dc 3688 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
c7064ef1 3689 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
8d5d02e6
MC
3690 cur = &io->list;
3691 before = cur->prev;
3692 io0 = container_of(before, ext4_io_end_t, list);
3693 after = cur->next;
3694 io1 = container_of(after, ext4_io_end_t, list);
3695
3696 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3697 io, inode->i_ino, io0, io1);
3698 }
744692dc 3699 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
8d5d02e6
MC
3700#endif
3701}
4c0425ff
MC
3702
3703/*
4c0425ff
MC
3704 * check a range of space and convert unwritten extents to written.
3705 */
c7064ef1 3706static int ext4_end_io_nolock(ext4_io_end_t *io)
4c0425ff 3707{
4c0425ff
MC
3708 struct inode *inode = io->inode;
3709 loff_t offset = io->offset;
a1de02dc 3710 ssize_t size = io->size;
4c0425ff 3711 int ret = 0;
4c0425ff 3712
c7064ef1 3713 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
8d5d02e6
MC
3714 "list->prev 0x%p\n",
3715 io, inode->i_ino, io->list.next, io->list.prev);
3716
3717 if (list_empty(&io->list))
3718 return ret;
3719
c7064ef1 3720 if (io->flag != EXT4_IO_UNWRITTEN)
8d5d02e6
MC
3721 return ret;
3722
744692dc 3723 ret = ext4_convert_unwritten_extents(inode, offset, size);
8d5d02e6 3724 if (ret < 0) {
4c0425ff 3725 printk(KERN_EMERG "%s: failed to convert unwritten"
8d5d02e6
MC
3726 "extents to written extents, error is %d"
3727 " io is still on inode %lu aio dio list\n",
3728 __func__, ret, inode->i_ino);
3729 return ret;
3730 }
4c0425ff 3731
5b3ff237
JZ
3732 if (io->iocb)
3733 aio_complete(io->iocb, io->result, 0);
8d5d02e6
MC
3734 /* clear the DIO AIO unwritten flag */
3735 io->flag = 0;
3736 return ret;
4c0425ff 3737}
c7064ef1 3738
8d5d02e6
MC
3739/*
3740 * work on completed aio dio IO, to convert unwritten extents to extents
3741 */
c7064ef1 3742static void ext4_end_io_work(struct work_struct *work)
8d5d02e6 3743{
744692dc
JZ
3744 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3745 struct inode *inode = io->inode;
3746 struct ext4_inode_info *ei = EXT4_I(inode);
3747 unsigned long flags;
3748 int ret;
4c0425ff 3749
8d5d02e6 3750 mutex_lock(&inode->i_mutex);
c7064ef1 3751 ret = ext4_end_io_nolock(io);
744692dc
JZ
3752 if (ret < 0) {
3753 mutex_unlock(&inode->i_mutex);
3754 return;
8d5d02e6 3755 }
744692dc
JZ
3756
3757 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3758 if (!list_empty(&io->list))
3759 list_del_init(&io->list);
3760 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6 3761 mutex_unlock(&inode->i_mutex);
744692dc 3762 ext4_free_io_end(io);
8d5d02e6 3763}
c7064ef1 3764
8d5d02e6
MC
3765/*
3766 * This function is called from ext4_sync_file().
3767 *
c7064ef1
JZ
3768 * When IO is completed, the work to convert unwritten extents to
3769 * written is queued on workqueue but may not get immediately
8d5d02e6
MC
3770 * scheduled. When fsync is called, we need to ensure the
3771 * conversion is complete before fsync returns.
c7064ef1
JZ
3772 * The inode keeps track of a list of pending/completed IO that
3773 * might needs to do the conversion. This function walks through
3774 * the list and convert the related unwritten extents for completed IO
3775 * to written.
3776 * The function return the number of pending IOs on success.
8d5d02e6 3777 */
c7064ef1 3778int flush_completed_IO(struct inode *inode)
8d5d02e6
MC
3779{
3780 ext4_io_end_t *io;
744692dc
JZ
3781 struct ext4_inode_info *ei = EXT4_I(inode);
3782 unsigned long flags;
8d5d02e6
MC
3783 int ret = 0;
3784 int ret2 = 0;
3785
744692dc 3786 if (list_empty(&ei->i_completed_io_list))
8d5d02e6
MC
3787 return ret;
3788
c7064ef1 3789 dump_completed_IO(inode);
744692dc
JZ
3790 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3791 while (!list_empty(&ei->i_completed_io_list)){
3792 io = list_entry(ei->i_completed_io_list.next,
8d5d02e6
MC
3793 ext4_io_end_t, list);
3794 /*
c7064ef1 3795 * Calling ext4_end_io_nolock() to convert completed
8d5d02e6
MC
3796 * IO to written.
3797 *
3798 * When ext4_sync_file() is called, run_queue() may already
3799 * about to flush the work corresponding to this io structure.
3800 * It will be upset if it founds the io structure related
3801 * to the work-to-be schedule is freed.
3802 *
3803 * Thus we need to keep the io structure still valid here after
3804 * convertion finished. The io structure has a flag to
3805 * avoid double converting from both fsync and background work
3806 * queue work.
3807 */
744692dc 3808 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c7064ef1 3809 ret = ext4_end_io_nolock(io);
744692dc 3810 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3811 if (ret < 0)
3812 ret2 = ret;
3813 else
3814 list_del_init(&io->list);
3815 }
744692dc 3816 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
8d5d02e6
MC
3817 return (ret2 < 0) ? ret2 : 0;
3818}
3819
744692dc 3820static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
4c0425ff
MC
3821{
3822 ext4_io_end_t *io = NULL;
3823
744692dc 3824 io = kmalloc(sizeof(*io), flags);
4c0425ff
MC
3825
3826 if (io) {
8d5d02e6 3827 igrab(inode);
4c0425ff 3828 io->inode = inode;
8d5d02e6 3829 io->flag = 0;
4c0425ff
MC
3830 io->offset = 0;
3831 io->size = 0;
744692dc 3832 io->page = NULL;
5b3ff237
JZ
3833 io->iocb = NULL;
3834 io->result = 0;
c7064ef1 3835 INIT_WORK(&io->work, ext4_end_io_work);
8d5d02e6 3836 INIT_LIST_HEAD(&io->list);
4c0425ff
MC
3837 }
3838
3839 return io;
3840}
3841
3842static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3843 ssize_t size, void *private, int ret,
3844 bool is_async)
4c0425ff
MC
3845{
3846 ext4_io_end_t *io_end = iocb->private;
3847 struct workqueue_struct *wq;
744692dc
JZ
3848 unsigned long flags;
3849 struct ext4_inode_info *ei;
4c0425ff 3850
4b70df18
M
3851 /* if not async direct IO or dio with 0 bytes write, just return */
3852 if (!io_end || !size)
552ef802 3853 goto out;
4b70df18 3854
8d5d02e6
MC
3855 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3856 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3857 iocb->private, io_end->inode->i_ino, iocb, offset,
3858 size);
8d5d02e6
MC
3859
3860 /* if not aio dio with unwritten extents, just free io and return */
c7064ef1 3861 if (io_end->flag != EXT4_IO_UNWRITTEN){
8d5d02e6
MC
3862 ext4_free_io_end(io_end);
3863 iocb->private = NULL;
5b3ff237
JZ
3864out:
3865 if (is_async)
3866 aio_complete(iocb, ret, 0);
3867 return;
8d5d02e6
MC
3868 }
3869
4c0425ff
MC
3870 io_end->offset = offset;
3871 io_end->size = size;
5b3ff237
JZ
3872 if (is_async) {
3873 io_end->iocb = iocb;
3874 io_end->result = ret;
3875 }
4c0425ff
MC
3876 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3877
8d5d02e6 3878 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
3879 ei = EXT4_I(io_end->inode);
3880 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3881 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3882 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
3883
3884 /* queue the work to convert unwritten extents to written */
3885 queue_work(wq, &io_end->work);
4c0425ff
MC
3886 iocb->private = NULL;
3887}
c7064ef1 3888
744692dc
JZ
3889static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3890{
3891 ext4_io_end_t *io_end = bh->b_private;
3892 struct workqueue_struct *wq;
3893 struct inode *inode;
3894 unsigned long flags;
3895
3896 if (!test_clear_buffer_uninit(bh) || !io_end)
3897 goto out;
3898
3899 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3900 printk("sb umounted, discard end_io request for inode %lu\n",
3901 io_end->inode->i_ino);
3902 ext4_free_io_end(io_end);
3903 goto out;
3904 }
3905
3906 io_end->flag = EXT4_IO_UNWRITTEN;
3907 inode = io_end->inode;
3908
3909 /* Add the io_end to per-inode completed io list*/
3910 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3911 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3912 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3913
3914 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3915 /* queue the work to convert unwritten extents to written */
3916 queue_work(wq, &io_end->work);
3917out:
3918 bh->b_private = NULL;
3919 bh->b_end_io = NULL;
3920 clear_buffer_uninit(bh);
3921 end_buffer_async_write(bh, uptodate);
3922}
3923
3924static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3925{
3926 ext4_io_end_t *io_end;
3927 struct page *page = bh->b_page;
3928 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3929 size_t size = bh->b_size;
3930
3931retry:
3932 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3933 if (!io_end) {
3934 if (printk_ratelimit())
3935 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3936 schedule();
3937 goto retry;
3938 }
3939 io_end->offset = offset;
3940 io_end->size = size;
3941 /*
3942 * We need to hold a reference to the page to make sure it
3943 * doesn't get evicted before ext4_end_io_work() has a chance
3944 * to convert the extent from written to unwritten.
3945 */
3946 io_end->page = page;
3947 get_page(io_end->page);
3948
3949 bh->b_private = io_end;
3950 bh->b_end_io = ext4_end_io_buffer_write;
3951 return 0;
3952}
3953
4c0425ff
MC
3954/*
3955 * For ext4 extent files, ext4 will do direct-io write to holes,
3956 * preallocated extents, and those write extend the file, no need to
3957 * fall back to buffered IO.
3958 *
3959 * For holes, we fallocate those blocks, mark them as unintialized
3960 * If those blocks were preallocated, we mark sure they are splited, but
3961 * still keep the range to write as unintialized.
3962 *
8d5d02e6
MC
3963 * The unwrritten extents will be converted to written when DIO is completed.
3964 * For async direct IO, since the IO may still pending when return, we
3965 * set up an end_io call back function, which will do the convertion
3966 * when async direct IO completed.
4c0425ff
MC
3967 *
3968 * If the O_DIRECT write will extend the file then add this inode to the
3969 * orphan list. So recovery will truncate it back to the original size
3970 * if the machine crashes during the write.
3971 *
3972 */
3973static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3974 const struct iovec *iov, loff_t offset,
3975 unsigned long nr_segs)
3976{
3977 struct file *file = iocb->ki_filp;
3978 struct inode *inode = file->f_mapping->host;
3979 ssize_t ret;
3980 size_t count = iov_length(iov, nr_segs);
3981
3982 loff_t final_size = offset + count;
3983 if (rw == WRITE && final_size <= inode->i_size) {
3984 /*
8d5d02e6
MC
3985 * We could direct write to holes and fallocate.
3986 *
3987 * Allocated blocks to fill the hole are marked as uninitialized
4c0425ff
MC
3988 * to prevent paralel buffered read to expose the stale data
3989 * before DIO complete the data IO.
8d5d02e6
MC
3990 *
3991 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
3992 * will just simply mark the buffer mapped but still
3993 * keep the extents uninitialized.
3994 *
8d5d02e6
MC
3995 * for non AIO case, we will convert those unwritten extents
3996 * to written after return back from blockdev_direct_IO.
3997 *
3998 * for async DIO, the conversion needs to be defered when
3999 * the IO is completed. The ext4 end_io callback function
4000 * will be called to take care of the conversion work.
4001 * Here for async case, we allocate an io_end structure to
4002 * hook to the iocb.
4c0425ff 4003 */
8d5d02e6
MC
4004 iocb->private = NULL;
4005 EXT4_I(inode)->cur_aio_dio = NULL;
4006 if (!is_sync_kiocb(iocb)) {
744692dc 4007 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
8d5d02e6
MC
4008 if (!iocb->private)
4009 return -ENOMEM;
4010 /*
4011 * we save the io structure for current async
79e83036 4012 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
4013 * could flag the io structure whether there
4014 * is a unwritten extents needs to be converted
4015 * when IO is completed.
4016 */
4017 EXT4_I(inode)->cur_aio_dio = iocb->private;
4018 }
4019
4c0425ff
MC
4020 ret = blockdev_direct_IO(rw, iocb, inode,
4021 inode->i_sb->s_bdev, iov,
4022 offset, nr_segs,
c7064ef1 4023 ext4_get_block_write,
4c0425ff 4024 ext4_end_io_dio);
8d5d02e6
MC
4025 if (iocb->private)
4026 EXT4_I(inode)->cur_aio_dio = NULL;
4027 /*
4028 * The io_end structure takes a reference to the inode,
4029 * that structure needs to be destroyed and the
4030 * reference to the inode need to be dropped, when IO is
4031 * complete, even with 0 byte write, or failed.
4032 *
4033 * In the successful AIO DIO case, the io_end structure will be
4034 * desctroyed and the reference to the inode will be dropped
4035 * after the end_io call back function is called.
4036 *
4037 * In the case there is 0 byte write, or error case, since
4038 * VFS direct IO won't invoke the end_io call back function,
4039 * we need to free the end_io structure here.
4040 */
4041 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
4042 ext4_free_io_end(iocb->private);
4043 iocb->private = NULL;
19f5fb7a
TT
4044 } else if (ret > 0 && ext4_test_inode_state(inode,
4045 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 4046 int err;
8d5d02e6
MC
4047 /*
4048 * for non AIO case, since the IO is already
4049 * completed, we could do the convertion right here
4050 */
109f5565
M
4051 err = ext4_convert_unwritten_extents(inode,
4052 offset, ret);
4053 if (err < 0)
4054 ret = err;
19f5fb7a 4055 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 4056 }
4c0425ff
MC
4057 return ret;
4058 }
8d5d02e6
MC
4059
4060 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
4061 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4062}
4063
4064static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
4065 const struct iovec *iov, loff_t offset,
4066 unsigned long nr_segs)
4067{
4068 struct file *file = iocb->ki_filp;
4069 struct inode *inode = file->f_mapping->host;
4070
12e9b892 4071 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4c0425ff
MC
4072 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4073
4074 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4075}
4076
ac27a0ec 4077/*
617ba13b 4078 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
4079 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4080 * much here because ->set_page_dirty is called under VFS locks. The page is
4081 * not necessarily locked.
4082 *
4083 * We cannot just dirty the page and leave attached buffers clean, because the
4084 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4085 * or jbddirty because all the journalling code will explode.
4086 *
4087 * So what we do is to mark the page "pending dirty" and next time writepage
4088 * is called, propagate that into the buffers appropriately.
4089 */
617ba13b 4090static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
4091{
4092 SetPageChecked(page);
4093 return __set_page_dirty_nobuffers(page);
4094}
4095
617ba13b 4096static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
4097 .readpage = ext4_readpage,
4098 .readpages = ext4_readpages,
43ce1d23 4099 .writepage = ext4_writepage,
8ab22b9a
HH
4100 .sync_page = block_sync_page,
4101 .write_begin = ext4_write_begin,
4102 .write_end = ext4_ordered_write_end,
4103 .bmap = ext4_bmap,
4104 .invalidatepage = ext4_invalidatepage,
4105 .releasepage = ext4_releasepage,
4106 .direct_IO = ext4_direct_IO,
4107 .migratepage = buffer_migrate_page,
4108 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4109 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4110};
4111
617ba13b 4112static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
4113 .readpage = ext4_readpage,
4114 .readpages = ext4_readpages,
43ce1d23 4115 .writepage = ext4_writepage,
8ab22b9a
HH
4116 .sync_page = block_sync_page,
4117 .write_begin = ext4_write_begin,
4118 .write_end = ext4_writeback_write_end,
4119 .bmap = ext4_bmap,
4120 .invalidatepage = ext4_invalidatepage,
4121 .releasepage = ext4_releasepage,
4122 .direct_IO = ext4_direct_IO,
4123 .migratepage = buffer_migrate_page,
4124 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4125 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4126};
4127
617ba13b 4128static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
4129 .readpage = ext4_readpage,
4130 .readpages = ext4_readpages,
43ce1d23 4131 .writepage = ext4_writepage,
8ab22b9a
HH
4132 .sync_page = block_sync_page,
4133 .write_begin = ext4_write_begin,
4134 .write_end = ext4_journalled_write_end,
4135 .set_page_dirty = ext4_journalled_set_page_dirty,
4136 .bmap = ext4_bmap,
4137 .invalidatepage = ext4_invalidatepage,
4138 .releasepage = ext4_releasepage,
4139 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4140 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
4141};
4142
64769240 4143static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
4144 .readpage = ext4_readpage,
4145 .readpages = ext4_readpages,
43ce1d23 4146 .writepage = ext4_writepage,
8ab22b9a
HH
4147 .writepages = ext4_da_writepages,
4148 .sync_page = block_sync_page,
4149 .write_begin = ext4_da_write_begin,
4150 .write_end = ext4_da_write_end,
4151 .bmap = ext4_bmap,
4152 .invalidatepage = ext4_da_invalidatepage,
4153 .releasepage = ext4_releasepage,
4154 .direct_IO = ext4_direct_IO,
4155 .migratepage = buffer_migrate_page,
4156 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 4157 .error_remove_page = generic_error_remove_page,
64769240
AT
4158};
4159
617ba13b 4160void ext4_set_aops(struct inode *inode)
ac27a0ec 4161{
cd1aac32
AK
4162 if (ext4_should_order_data(inode) &&
4163 test_opt(inode->i_sb, DELALLOC))
4164 inode->i_mapping->a_ops = &ext4_da_aops;
4165 else if (ext4_should_order_data(inode))
617ba13b 4166 inode->i_mapping->a_ops = &ext4_ordered_aops;
64769240
AT
4167 else if (ext4_should_writeback_data(inode) &&
4168 test_opt(inode->i_sb, DELALLOC))
4169 inode->i_mapping->a_ops = &ext4_da_aops;
617ba13b
MC
4170 else if (ext4_should_writeback_data(inode))
4171 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 4172 else
617ba13b 4173 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
4174}
4175
4176/*
617ba13b 4177 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
4178 * up to the end of the block which corresponds to `from'.
4179 * This required during truncate. We need to physically zero the tail end
4180 * of that block so it doesn't yield old data if the file is later grown.
4181 */
cf108bca 4182int ext4_block_truncate_page(handle_t *handle,
ac27a0ec
DK
4183 struct address_space *mapping, loff_t from)
4184{
617ba13b 4185 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 4186 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
4187 unsigned blocksize, length, pos;
4188 ext4_lblk_t iblock;
ac27a0ec
DK
4189 struct inode *inode = mapping->host;
4190 struct buffer_head *bh;
cf108bca 4191 struct page *page;
ac27a0ec 4192 int err = 0;
ac27a0ec 4193
f4a01017
TT
4194 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4195 mapping_gfp_mask(mapping) & ~__GFP_FS);
cf108bca
JK
4196 if (!page)
4197 return -EINVAL;
4198
ac27a0ec
DK
4199 blocksize = inode->i_sb->s_blocksize;
4200 length = blocksize - (offset & (blocksize - 1));
4201 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4202
ac27a0ec
DK
4203 if (!page_has_buffers(page))
4204 create_empty_buffers(page, blocksize, 0);
4205
4206 /* Find the buffer that contains "offset" */
4207 bh = page_buffers(page);
4208 pos = blocksize;
4209 while (offset >= pos) {
4210 bh = bh->b_this_page;
4211 iblock++;
4212 pos += blocksize;
4213 }
4214
4215 err = 0;
4216 if (buffer_freed(bh)) {
4217 BUFFER_TRACE(bh, "freed: skip");
4218 goto unlock;
4219 }
4220
4221 if (!buffer_mapped(bh)) {
4222 BUFFER_TRACE(bh, "unmapped");
617ba13b 4223 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
4224 /* unmapped? It's a hole - nothing to do */
4225 if (!buffer_mapped(bh)) {
4226 BUFFER_TRACE(bh, "still unmapped");
4227 goto unlock;
4228 }
4229 }
4230
4231 /* Ok, it's mapped. Make sure it's up-to-date */
4232 if (PageUptodate(page))
4233 set_buffer_uptodate(bh);
4234
4235 if (!buffer_uptodate(bh)) {
4236 err = -EIO;
4237 ll_rw_block(READ, 1, &bh);
4238 wait_on_buffer(bh);
4239 /* Uhhuh. Read error. Complain and punt. */
4240 if (!buffer_uptodate(bh))
4241 goto unlock;
4242 }
4243
617ba13b 4244 if (ext4_should_journal_data(inode)) {
ac27a0ec 4245 BUFFER_TRACE(bh, "get write access");
617ba13b 4246 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4247 if (err)
4248 goto unlock;
4249 }
4250
eebd2aa3 4251 zero_user(page, offset, length);
ac27a0ec
DK
4252
4253 BUFFER_TRACE(bh, "zeroed end of block");
4254
4255 err = 0;
617ba13b 4256 if (ext4_should_journal_data(inode)) {
0390131b 4257 err = ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4258 } else {
617ba13b 4259 if (ext4_should_order_data(inode))
678aaf48 4260 err = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
4261 mark_buffer_dirty(bh);
4262 }
4263
4264unlock:
4265 unlock_page(page);
4266 page_cache_release(page);
4267 return err;
4268}
4269
4270/*
4271 * Probably it should be a library function... search for first non-zero word
4272 * or memcmp with zero_page, whatever is better for particular architecture.
4273 * Linus?
4274 */
4275static inline int all_zeroes(__le32 *p, __le32 *q)
4276{
4277 while (p < q)
4278 if (*p++)
4279 return 0;
4280 return 1;
4281}
4282
4283/**
617ba13b 4284 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
4285 * @inode: inode in question
4286 * @depth: depth of the affected branch
617ba13b 4287 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
4288 * @chain: place to store the pointers to partial indirect blocks
4289 * @top: place to the (detached) top of branch
4290 *
617ba13b 4291 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
4292 *
4293 * When we do truncate() we may have to clean the ends of several
4294 * indirect blocks but leave the blocks themselves alive. Block is
4295 * partially truncated if some data below the new i_size is refered
4296 * from it (and it is on the path to the first completely truncated
4297 * data block, indeed). We have to free the top of that path along
4298 * with everything to the right of the path. Since no allocation
617ba13b 4299 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
4300 * finishes, we may safely do the latter, but top of branch may
4301 * require special attention - pageout below the truncation point
4302 * might try to populate it.
4303 *
4304 * We atomically detach the top of branch from the tree, store the
4305 * block number of its root in *@top, pointers to buffer_heads of
4306 * partially truncated blocks - in @chain[].bh and pointers to
4307 * their last elements that should not be removed - in
4308 * @chain[].p. Return value is the pointer to last filled element
4309 * of @chain.
4310 *
4311 * The work left to caller to do the actual freeing of subtrees:
4312 * a) free the subtree starting from *@top
4313 * b) free the subtrees whose roots are stored in
4314 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4315 * c) free the subtrees growing from the inode past the @chain[0].
4316 * (no partially truncated stuff there). */
4317
617ba13b 4318static Indirect *ext4_find_shared(struct inode *inode, int depth,
de9a55b8
TT
4319 ext4_lblk_t offsets[4], Indirect chain[4],
4320 __le32 *top)
ac27a0ec
DK
4321{
4322 Indirect *partial, *p;
4323 int k, err;
4324
4325 *top = 0;
bf48aabb 4326 /* Make k index the deepest non-null offset + 1 */
ac27a0ec
DK
4327 for (k = depth; k > 1 && !offsets[k-1]; k--)
4328 ;
617ba13b 4329 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
4330 /* Writer: pointers */
4331 if (!partial)
4332 partial = chain + k-1;
4333 /*
4334 * If the branch acquired continuation since we've looked at it -
4335 * fine, it should all survive and (new) top doesn't belong to us.
4336 */
4337 if (!partial->key && *partial->p)
4338 /* Writer: end */
4339 goto no_top;
af5bc92d 4340 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
ac27a0ec
DK
4341 ;
4342 /*
4343 * OK, we've found the last block that must survive. The rest of our
4344 * branch should be detached before unlocking. However, if that rest
4345 * of branch is all ours and does not grow immediately from the inode
4346 * it's easier to cheat and just decrement partial->p.
4347 */
4348 if (p == chain + k - 1 && p > chain) {
4349 p->p--;
4350 } else {
4351 *top = *p->p;
617ba13b 4352 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
4353#if 0
4354 *p->p = 0;
4355#endif
4356 }
4357 /* Writer: end */
4358
af5bc92d 4359 while (partial > p) {
ac27a0ec
DK
4360 brelse(partial->bh);
4361 partial--;
4362 }
4363no_top:
4364 return partial;
4365}
4366
4367/*
4368 * Zero a number of block pointers in either an inode or an indirect block.
4369 * If we restart the transaction we must again get write access to the
4370 * indirect block for further modification.
4371 *
4372 * We release `count' blocks on disk, but (last - first) may be greater
4373 * than `count' because there can be holes in there.
4374 */
1f2acb60
TT
4375static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4376 struct buffer_head *bh,
4377 ext4_fsblk_t block_to_free,
4378 unsigned long count, __le32 *first,
4379 __le32 *last)
ac27a0ec
DK
4380{
4381 __le32 *p;
1f2acb60 4382 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
e6362609
TT
4383
4384 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4385 flags |= EXT4_FREE_BLOCKS_METADATA;
50689696 4386
1f2acb60
TT
4387 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4388 count)) {
24676da4
TT
4389 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4390 "blocks %llu len %lu",
4391 (unsigned long long) block_to_free, count);
1f2acb60
TT
4392 return 1;
4393 }
4394
ac27a0ec
DK
4395 if (try_to_extend_transaction(handle, inode)) {
4396 if (bh) {
0390131b
FM
4397 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4398 ext4_handle_dirty_metadata(handle, inode, bh);
ac27a0ec 4399 }
617ba13b 4400 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4401 ext4_truncate_restart_trans(handle, inode,
4402 blocks_for_truncate(inode));
ac27a0ec
DK
4403 if (bh) {
4404 BUFFER_TRACE(bh, "retaking write access");
617ba13b 4405 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
4406 }
4407 }
4408
e6362609
TT
4409 for (p = first; p < last; p++)
4410 *p = 0;
ac27a0ec 4411
e6362609 4412 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
1f2acb60 4413 return 0;
ac27a0ec
DK
4414}
4415
4416/**
617ba13b 4417 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
4418 * @handle: handle for this transaction
4419 * @inode: inode we are dealing with
4420 * @this_bh: indirect buffer_head which contains *@first and *@last
4421 * @first: array of block numbers
4422 * @last: points immediately past the end of array
4423 *
4424 * We are freeing all blocks refered from that array (numbers are stored as
4425 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4426 *
4427 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4428 * blocks are contiguous then releasing them at one time will only affect one
4429 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4430 * actually use a lot of journal space.
4431 *
4432 * @this_bh will be %NULL if @first and @last point into the inode's direct
4433 * block pointers.
4434 */
617ba13b 4435static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4436 struct buffer_head *this_bh,
4437 __le32 *first, __le32 *last)
4438{
617ba13b 4439 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
4440 unsigned long count = 0; /* Number of blocks in the run */
4441 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4442 corresponding to
4443 block_to_free */
617ba13b 4444 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
4445 __le32 *p; /* Pointer into inode/ind
4446 for current block */
4447 int err;
4448
4449 if (this_bh) { /* For indirect block */
4450 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 4451 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
4452 /* Important: if we can't update the indirect pointers
4453 * to the blocks, we can't free them. */
4454 if (err)
4455 return;
4456 }
4457
4458 for (p = first; p < last; p++) {
4459 nr = le32_to_cpu(*p);
4460 if (nr) {
4461 /* accumulate blocks to free if they're contiguous */
4462 if (count == 0) {
4463 block_to_free = nr;
4464 block_to_free_p = p;
4465 count = 1;
4466 } else if (nr == block_to_free + count) {
4467 count++;
4468 } else {
1f2acb60
TT
4469 if (ext4_clear_blocks(handle, inode, this_bh,
4470 block_to_free, count,
4471 block_to_free_p, p))
4472 break;
ac27a0ec
DK
4473 block_to_free = nr;
4474 block_to_free_p = p;
4475 count = 1;
4476 }
4477 }
4478 }
4479
4480 if (count > 0)
617ba13b 4481 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
4482 count, block_to_free_p, p);
4483
4484 if (this_bh) {
0390131b 4485 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
71dc8fbc
DG
4486
4487 /*
4488 * The buffer head should have an attached journal head at this
4489 * point. However, if the data is corrupted and an indirect
4490 * block pointed to itself, it would have been detached when
4491 * the block was cleared. Check for this instead of OOPSing.
4492 */
e7f07968 4493 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
0390131b 4494 ext4_handle_dirty_metadata(handle, inode, this_bh);
71dc8fbc 4495 else
24676da4
TT
4496 EXT4_ERROR_INODE(inode,
4497 "circular indirect block detected at "
4498 "block %llu",
4499 (unsigned long long) this_bh->b_blocknr);
ac27a0ec
DK
4500 }
4501}
4502
4503/**
617ba13b 4504 * ext4_free_branches - free an array of branches
ac27a0ec
DK
4505 * @handle: JBD handle for this transaction
4506 * @inode: inode we are dealing with
4507 * @parent_bh: the buffer_head which contains *@first and *@last
4508 * @first: array of block numbers
4509 * @last: pointer immediately past the end of array
4510 * @depth: depth of the branches to free
4511 *
4512 * We are freeing all blocks refered from these branches (numbers are
4513 * stored as little-endian 32-bit) and updating @inode->i_blocks
4514 * appropriately.
4515 */
617ba13b 4516static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
4517 struct buffer_head *parent_bh,
4518 __le32 *first, __le32 *last, int depth)
4519{
617ba13b 4520 ext4_fsblk_t nr;
ac27a0ec
DK
4521 __le32 *p;
4522
0390131b 4523 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4524 return;
4525
4526 if (depth--) {
4527 struct buffer_head *bh;
617ba13b 4528 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
4529 p = last;
4530 while (--p >= first) {
4531 nr = le32_to_cpu(*p);
4532 if (!nr)
4533 continue; /* A hole */
4534
1f2acb60
TT
4535 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4536 nr, 1)) {
24676da4
TT
4537 EXT4_ERROR_INODE(inode,
4538 "invalid indirect mapped "
4539 "block %lu (level %d)",
4540 (unsigned long) nr, depth);
1f2acb60
TT
4541 break;
4542 }
4543
ac27a0ec
DK
4544 /* Go read the buffer for the next level down */
4545 bh = sb_bread(inode->i_sb, nr);
4546
4547 /*
4548 * A read failure? Report error and clear slot
4549 * (should be rare).
4550 */
4551 if (!bh) {
c398eda0
TT
4552 EXT4_ERROR_INODE_BLOCK(inode, nr,
4553 "Read failure");
ac27a0ec
DK
4554 continue;
4555 }
4556
4557 /* This zaps the entire block. Bottom up. */
4558 BUFFER_TRACE(bh, "free child branches");
617ba13b 4559 ext4_free_branches(handle, inode, bh,
af5bc92d
TT
4560 (__le32 *) bh->b_data,
4561 (__le32 *) bh->b_data + addr_per_block,
4562 depth);
ac27a0ec 4563
ac27a0ec
DK
4564 /*
4565 * Everything below this this pointer has been
4566 * released. Now let this top-of-subtree go.
4567 *
4568 * We want the freeing of this indirect block to be
4569 * atomic in the journal with the updating of the
4570 * bitmap block which owns it. So make some room in
4571 * the journal.
4572 *
4573 * We zero the parent pointer *after* freeing its
4574 * pointee in the bitmaps, so if extend_transaction()
4575 * for some reason fails to put the bitmap changes and
4576 * the release into the same transaction, recovery
4577 * will merely complain about releasing a free block,
4578 * rather than leaking blocks.
4579 */
0390131b 4580 if (ext4_handle_is_aborted(handle))
ac27a0ec
DK
4581 return;
4582 if (try_to_extend_transaction(handle, inode)) {
617ba13b 4583 ext4_mark_inode_dirty(handle, inode);
487caeef
JK
4584 ext4_truncate_restart_trans(handle, inode,
4585 blocks_for_truncate(inode));
ac27a0ec
DK
4586 }
4587
40389687
A
4588 /*
4589 * The forget flag here is critical because if
4590 * we are journaling (and not doing data
4591 * journaling), we have to make sure a revoke
4592 * record is written to prevent the journal
4593 * replay from overwriting the (former)
4594 * indirect block if it gets reallocated as a
4595 * data block. This must happen in the same
4596 * transaction where the data blocks are
4597 * actually freed.
4598 */
e6362609 4599 ext4_free_blocks(handle, inode, 0, nr, 1,
40389687
A
4600 EXT4_FREE_BLOCKS_METADATA|
4601 EXT4_FREE_BLOCKS_FORGET);
ac27a0ec
DK
4602
4603 if (parent_bh) {
4604 /*
4605 * The block which we have just freed is
4606 * pointed to by an indirect block: journal it
4607 */
4608 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 4609 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
4610 parent_bh)){
4611 *p = 0;
4612 BUFFER_TRACE(parent_bh,
0390131b
FM
4613 "call ext4_handle_dirty_metadata");
4614 ext4_handle_dirty_metadata(handle,
4615 inode,
4616 parent_bh);
ac27a0ec
DK
4617 }
4618 }
4619 }
4620 } else {
4621 /* We have reached the bottom of the tree. */
4622 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 4623 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
4624 }
4625}
4626
91ef4caf
DG
4627int ext4_can_truncate(struct inode *inode)
4628{
4629 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4630 return 0;
4631 if (S_ISREG(inode->i_mode))
4632 return 1;
4633 if (S_ISDIR(inode->i_mode))
4634 return 1;
4635 if (S_ISLNK(inode->i_mode))
4636 return !ext4_inode_is_fast_symlink(inode);
4637 return 0;
4638}
4639
ac27a0ec 4640/*
617ba13b 4641 * ext4_truncate()
ac27a0ec 4642 *
617ba13b
MC
4643 * We block out ext4_get_block() block instantiations across the entire
4644 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
4645 * simultaneously on behalf of the same inode.
4646 *
4647 * As we work through the truncate and commmit bits of it to the journal there
4648 * is one core, guiding principle: the file's tree must always be consistent on
4649 * disk. We must be able to restart the truncate after a crash.
4650 *
4651 * The file's tree may be transiently inconsistent in memory (although it
4652 * probably isn't), but whenever we close off and commit a journal transaction,
4653 * the contents of (the filesystem + the journal) must be consistent and
4654 * restartable. It's pretty simple, really: bottom up, right to left (although
4655 * left-to-right works OK too).
4656 *
4657 * Note that at recovery time, journal replay occurs *before* the restart of
4658 * truncate against the orphan inode list.
4659 *
4660 * The committed inode has the new, desired i_size (which is the same as
617ba13b 4661 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 4662 * that this inode's truncate did not complete and it will again call
617ba13b
MC
4663 * ext4_truncate() to have another go. So there will be instantiated blocks
4664 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 4665 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 4666 * ext4_truncate() run will find them and release them.
ac27a0ec 4667 */
617ba13b 4668void ext4_truncate(struct inode *inode)
ac27a0ec
DK
4669{
4670 handle_t *handle;
617ba13b 4671 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 4672 __le32 *i_data = ei->i_data;
617ba13b 4673 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 4674 struct address_space *mapping = inode->i_mapping;
725d26d3 4675 ext4_lblk_t offsets[4];
ac27a0ec
DK
4676 Indirect chain[4];
4677 Indirect *partial;
4678 __le32 nr = 0;
4679 int n;
725d26d3 4680 ext4_lblk_t last_block;
ac27a0ec 4681 unsigned blocksize = inode->i_sb->s_blocksize;
ac27a0ec 4682
91ef4caf 4683 if (!ext4_can_truncate(inode))
ac27a0ec
DK
4684 return;
4685
12e9b892 4686 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 4687
5534fb5b 4688 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 4689 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 4690
12e9b892 4691 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
cf108bca 4692 ext4_ext_truncate(inode);
1d03ec98
AK
4693 return;
4694 }
a86c6181 4695
ac27a0ec 4696 handle = start_transaction(inode);
cf108bca 4697 if (IS_ERR(handle))
ac27a0ec 4698 return; /* AKPM: return what? */
ac27a0ec
DK
4699
4700 last_block = (inode->i_size + blocksize-1)
617ba13b 4701 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec 4702
cf108bca
JK
4703 if (inode->i_size & (blocksize - 1))
4704 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4705 goto out_stop;
ac27a0ec 4706
617ba13b 4707 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
4708 if (n == 0)
4709 goto out_stop; /* error */
4710
4711 /*
4712 * OK. This truncate is going to happen. We add the inode to the
4713 * orphan list, so that if this truncate spans multiple transactions,
4714 * and we crash, we will resume the truncate when the filesystem
4715 * recovers. It also marks the inode dirty, to catch the new size.
4716 *
4717 * Implication: the file must always be in a sane, consistent
4718 * truncatable state while each transaction commits.
4719 */
617ba13b 4720 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
4721 goto out_stop;
4722
632eaeab
MC
4723 /*
4724 * From here we block out all ext4_get_block() callers who want to
4725 * modify the block allocation tree.
4726 */
4727 down_write(&ei->i_data_sem);
b4df2030 4728
c2ea3fde 4729 ext4_discard_preallocations(inode);
b4df2030 4730
ac27a0ec
DK
4731 /*
4732 * The orphan list entry will now protect us from any crash which
4733 * occurs before the truncate completes, so it is now safe to propagate
4734 * the new, shorter inode size (held for now in i_size) into the
4735 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 4736 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
4737 */
4738 ei->i_disksize = inode->i_size;
4739
ac27a0ec 4740 if (n == 1) { /* direct blocks */
617ba13b
MC
4741 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4742 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
4743 goto do_indirects;
4744 }
4745
617ba13b 4746 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
4747 /* Kill the top of shared branch (not detached) */
4748 if (nr) {
4749 if (partial == chain) {
4750 /* Shared branch grows from the inode */
617ba13b 4751 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
4752 &nr, &nr+1, (chain+n-1) - partial);
4753 *partial->p = 0;
4754 /*
4755 * We mark the inode dirty prior to restart,
4756 * and prior to stop. No need for it here.
4757 */
4758 } else {
4759 /* Shared branch grows from an indirect block */
4760 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 4761 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
4762 partial->p,
4763 partial->p+1, (chain+n-1) - partial);
4764 }
4765 }
4766 /* Clear the ends of indirect blocks on the shared branch */
4767 while (partial > chain) {
617ba13b 4768 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
4769 (__le32*)partial->bh->b_data+addr_per_block,
4770 (chain+n-1) - partial);
4771 BUFFER_TRACE(partial->bh, "call brelse");
de9a55b8 4772 brelse(partial->bh);
ac27a0ec
DK
4773 partial--;
4774 }
4775do_indirects:
4776 /* Kill the remaining (whole) subtrees */
4777 switch (offsets[0]) {
4778 default:
617ba13b 4779 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 4780 if (nr) {
617ba13b
MC
4781 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4782 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 4783 }
617ba13b
MC
4784 case EXT4_IND_BLOCK:
4785 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 4786 if (nr) {
617ba13b
MC
4787 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4788 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 4789 }
617ba13b
MC
4790 case EXT4_DIND_BLOCK:
4791 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 4792 if (nr) {
617ba13b
MC
4793 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4794 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 4795 }
617ba13b 4796 case EXT4_TIND_BLOCK:
ac27a0ec
DK
4797 ;
4798 }
4799
0e855ac8 4800 up_write(&ei->i_data_sem);
ef7f3835 4801 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 4802 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4803
4804 /*
4805 * In a multi-transaction truncate, we only make the final transaction
4806 * synchronous
4807 */
4808 if (IS_SYNC(inode))
0390131b 4809 ext4_handle_sync(handle);
ac27a0ec
DK
4810out_stop:
4811 /*
4812 * If this was a simple ftruncate(), and the file will remain alive
4813 * then we need to clear up the orphan record which we created above.
4814 * However, if this was a real unlink then we were called by
617ba13b 4815 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
4816 * orphan info for us.
4817 */
4818 if (inode->i_nlink)
617ba13b 4819 ext4_orphan_del(handle, inode);
ac27a0ec 4820
617ba13b 4821 ext4_journal_stop(handle);
ac27a0ec
DK
4822}
4823
ac27a0ec 4824/*
617ba13b 4825 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
4826 * underlying buffer_head on success. If 'in_mem' is true, we have all
4827 * data in memory that is needed to recreate the on-disk version of this
4828 * inode.
4829 */
617ba13b
MC
4830static int __ext4_get_inode_loc(struct inode *inode,
4831 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 4832{
240799cd
TT
4833 struct ext4_group_desc *gdp;
4834 struct buffer_head *bh;
4835 struct super_block *sb = inode->i_sb;
4836 ext4_fsblk_t block;
4837 int inodes_per_block, inode_offset;
4838
3a06d778 4839 iloc->bh = NULL;
240799cd
TT
4840 if (!ext4_valid_inum(sb, inode->i_ino))
4841 return -EIO;
ac27a0ec 4842
240799cd
TT
4843 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4844 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4845 if (!gdp)
ac27a0ec
DK
4846 return -EIO;
4847
240799cd
TT
4848 /*
4849 * Figure out the offset within the block group inode table
4850 */
4851 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4852 inode_offset = ((inode->i_ino - 1) %
4853 EXT4_INODES_PER_GROUP(sb));
4854 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4855 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4856
4857 bh = sb_getblk(sb, block);
ac27a0ec 4858 if (!bh) {
c398eda0
TT
4859 EXT4_ERROR_INODE_BLOCK(inode, block,
4860 "unable to read itable block");
ac27a0ec
DK
4861 return -EIO;
4862 }
4863 if (!buffer_uptodate(bh)) {
4864 lock_buffer(bh);
9c83a923
HK
4865
4866 /*
4867 * If the buffer has the write error flag, we have failed
4868 * to write out another inode in the same block. In this
4869 * case, we don't have to read the block because we may
4870 * read the old inode data successfully.
4871 */
4872 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4873 set_buffer_uptodate(bh);
4874
ac27a0ec
DK
4875 if (buffer_uptodate(bh)) {
4876 /* someone brought it uptodate while we waited */
4877 unlock_buffer(bh);
4878 goto has_buffer;
4879 }
4880
4881 /*
4882 * If we have all information of the inode in memory and this
4883 * is the only valid inode in the block, we need not read the
4884 * block.
4885 */
4886 if (in_mem) {
4887 struct buffer_head *bitmap_bh;
240799cd 4888 int i, start;
ac27a0ec 4889
240799cd 4890 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 4891
240799cd
TT
4892 /* Is the inode bitmap in cache? */
4893 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
4894 if (!bitmap_bh)
4895 goto make_io;
4896
4897 /*
4898 * If the inode bitmap isn't in cache then the
4899 * optimisation may end up performing two reads instead
4900 * of one, so skip it.
4901 */
4902 if (!buffer_uptodate(bitmap_bh)) {
4903 brelse(bitmap_bh);
4904 goto make_io;
4905 }
240799cd 4906 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
4907 if (i == inode_offset)
4908 continue;
617ba13b 4909 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
4910 break;
4911 }
4912 brelse(bitmap_bh);
240799cd 4913 if (i == start + inodes_per_block) {
ac27a0ec
DK
4914 /* all other inodes are free, so skip I/O */
4915 memset(bh->b_data, 0, bh->b_size);
4916 set_buffer_uptodate(bh);
4917 unlock_buffer(bh);
4918 goto has_buffer;
4919 }
4920 }
4921
4922make_io:
240799cd
TT
4923 /*
4924 * If we need to do any I/O, try to pre-readahead extra
4925 * blocks from the inode table.
4926 */
4927 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4928 ext4_fsblk_t b, end, table;
4929 unsigned num;
4930
4931 table = ext4_inode_table(sb, gdp);
b713a5ec 4932 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
4933 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4934 if (table > b)
4935 b = table;
4936 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4937 num = EXT4_INODES_PER_GROUP(sb);
4938 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4939 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 4940 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
4941 table += num / inodes_per_block;
4942 if (end > table)
4943 end = table;
4944 while (b <= end)
4945 sb_breadahead(sb, b++);
4946 }
4947
ac27a0ec
DK
4948 /*
4949 * There are other valid inodes in the buffer, this inode
4950 * has in-inode xattrs, or we don't have this inode in memory.
4951 * Read the block from disk.
4952 */
4953 get_bh(bh);
4954 bh->b_end_io = end_buffer_read_sync;
4955 submit_bh(READ_META, bh);
4956 wait_on_buffer(bh);
4957 if (!buffer_uptodate(bh)) {
c398eda0
TT
4958 EXT4_ERROR_INODE_BLOCK(inode, block,
4959 "unable to read itable block");
ac27a0ec
DK
4960 brelse(bh);
4961 return -EIO;
4962 }
4963 }
4964has_buffer:
4965 iloc->bh = bh;
4966 return 0;
4967}
4968
617ba13b 4969int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4970{
4971 /* We have all inode data except xattrs in memory here. */
617ba13b 4972 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4973 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4974}
4975
617ba13b 4976void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4977{
617ba13b 4978 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4979
4980 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4981 if (flags & EXT4_SYNC_FL)
ac27a0ec 4982 inode->i_flags |= S_SYNC;
617ba13b 4983 if (flags & EXT4_APPEND_FL)
ac27a0ec 4984 inode->i_flags |= S_APPEND;
617ba13b 4985 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4986 inode->i_flags |= S_IMMUTABLE;
617ba13b 4987 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4988 inode->i_flags |= S_NOATIME;
617ba13b 4989 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4990 inode->i_flags |= S_DIRSYNC;
4991}
4992
ff9ddf7e
JK
4993/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4994void ext4_get_inode_flags(struct ext4_inode_info *ei)
4995{
84a8dce2
DM
4996 unsigned int vfs_fl;
4997 unsigned long old_fl, new_fl;
4998
4999 do {
5000 vfs_fl = ei->vfs_inode.i_flags;
5001 old_fl = ei->i_flags;
5002 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
5003 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
5004 EXT4_DIRSYNC_FL);
5005 if (vfs_fl & S_SYNC)
5006 new_fl |= EXT4_SYNC_FL;
5007 if (vfs_fl & S_APPEND)
5008 new_fl |= EXT4_APPEND_FL;
5009 if (vfs_fl & S_IMMUTABLE)
5010 new_fl |= EXT4_IMMUTABLE_FL;
5011 if (vfs_fl & S_NOATIME)
5012 new_fl |= EXT4_NOATIME_FL;
5013 if (vfs_fl & S_DIRSYNC)
5014 new_fl |= EXT4_DIRSYNC_FL;
5015 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 5016}
de9a55b8 5017
0fc1b451 5018static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 5019 struct ext4_inode_info *ei)
0fc1b451
AK
5020{
5021 blkcnt_t i_blocks ;
8180a562
AK
5022 struct inode *inode = &(ei->vfs_inode);
5023 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5024
5025 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
5026 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
5027 /* we are using combined 48 bit field */
5028 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
5029 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 5030 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
5031 /* i_blocks represent file system block size */
5032 return i_blocks << (inode->i_blkbits - 9);
5033 } else {
5034 return i_blocks;
5035 }
0fc1b451
AK
5036 } else {
5037 return le32_to_cpu(raw_inode->i_blocks_lo);
5038 }
5039}
ff9ddf7e 5040
1d1fe1ee 5041struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 5042{
617ba13b
MC
5043 struct ext4_iloc iloc;
5044 struct ext4_inode *raw_inode;
1d1fe1ee 5045 struct ext4_inode_info *ei;
1d1fe1ee 5046 struct inode *inode;
b436b9be 5047 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 5048 long ret;
ac27a0ec
DK
5049 int block;
5050
1d1fe1ee
DH
5051 inode = iget_locked(sb, ino);
5052 if (!inode)
5053 return ERR_PTR(-ENOMEM);
5054 if (!(inode->i_state & I_NEW))
5055 return inode;
5056
5057 ei = EXT4_I(inode);
567f3e9a 5058 iloc.bh = 0;
ac27a0ec 5059
1d1fe1ee
DH
5060 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5061 if (ret < 0)
ac27a0ec 5062 goto bad_inode;
617ba13b 5063 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
5064 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5065 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5066 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 5067 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5068 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5069 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5070 }
5071 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec 5072
19f5fb7a 5073 ei->i_state_flags = 0;
ac27a0ec
DK
5074 ei->i_dir_start_lookup = 0;
5075 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5076 /* We now have enough fields to check if the inode was active or not.
5077 * This is needed because nfsd might try to access dead inodes
5078 * the test is that same one that e2fsck uses
5079 * NeilBrown 1999oct15
5080 */
5081 if (inode->i_nlink == 0) {
5082 if (inode->i_mode == 0 ||
617ba13b 5083 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 5084 /* this inode is deleted */
1d1fe1ee 5085 ret = -ESTALE;
ac27a0ec
DK
5086 goto bad_inode;
5087 }
5088 /* The only unlinked inodes we let through here have
5089 * valid i_mode and are being read by the orphan
5090 * recovery code: that's fine, we're about to complete
5091 * the process of deleting those. */
5092 }
ac27a0ec 5093 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 5094 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 5095 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 5096 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
5097 ei->i_file_acl |=
5098 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 5099 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 5100 ei->i_disksize = inode->i_size;
a9e7f447
DM
5101#ifdef CONFIG_QUOTA
5102 ei->i_reserved_quota = 0;
5103#endif
ac27a0ec
DK
5104 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5105 ei->i_block_group = iloc.block_group;
a4912123 5106 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
5107 /*
5108 * NOTE! The in-memory inode i_data array is in little-endian order
5109 * even on big-endian machines: we do NOT byteswap the block numbers!
5110 */
617ba13b 5111 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
5112 ei->i_data[block] = raw_inode->i_block[block];
5113 INIT_LIST_HEAD(&ei->i_orphan);
5114
b436b9be
JK
5115 /*
5116 * Set transaction id's of transactions that have to be committed
5117 * to finish f[data]sync. We set them to currently running transaction
5118 * as we cannot be sure that the inode or some of its metadata isn't
5119 * part of the transaction - the inode could have been reclaimed and
5120 * now it is reread from disk.
5121 */
5122 if (journal) {
5123 transaction_t *transaction;
5124 tid_t tid;
5125
a931da6a 5126 read_lock(&journal->j_state_lock);
b436b9be
JK
5127 if (journal->j_running_transaction)
5128 transaction = journal->j_running_transaction;
5129 else
5130 transaction = journal->j_committing_transaction;
5131 if (transaction)
5132 tid = transaction->t_tid;
5133 else
5134 tid = journal->j_commit_sequence;
a931da6a 5135 read_unlock(&journal->j_state_lock);
b436b9be
JK
5136 ei->i_sync_tid = tid;
5137 ei->i_datasync_tid = tid;
5138 }
5139
0040d987 5140 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 5141 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 5142 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 5143 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 5144 ret = -EIO;
ac27a0ec 5145 goto bad_inode;
e5d2861f 5146 }
ac27a0ec
DK
5147 if (ei->i_extra_isize == 0) {
5148 /* The extra space is currently unused. Use it. */
617ba13b
MC
5149 ei->i_extra_isize = sizeof(struct ext4_inode) -
5150 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
5151 } else {
5152 __le32 *magic = (void *)raw_inode +
617ba13b 5153 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 5154 ei->i_extra_isize;
617ba13b 5155 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 5156 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
5157 }
5158 } else
5159 ei->i_extra_isize = 0;
5160
ef7f3835
KS
5161 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5162 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5163 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5164 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5165
25ec56b5
JNC
5166 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5167 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5168 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5169 inode->i_version |=
5170 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5171 }
5172
c4b5a614 5173 ret = 0;
485c26ec 5174 if (ei->i_file_acl &&
1032988c 5175 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
5176 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5177 ei->i_file_acl);
485c26ec
TT
5178 ret = -EIO;
5179 goto bad_inode;
07a03824 5180 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
5181 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5182 (S_ISLNK(inode->i_mode) &&
5183 !ext4_inode_is_fast_symlink(inode)))
5184 /* Validate extent which is part of inode */
5185 ret = ext4_ext_check_inode(inode);
de9a55b8 5186 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
5187 (S_ISLNK(inode->i_mode) &&
5188 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 5189 /* Validate block references which are part of inode */
fe2c8191
TN
5190 ret = ext4_check_inode_blockref(inode);
5191 }
567f3e9a 5192 if (ret)
de9a55b8 5193 goto bad_inode;
7a262f7c 5194
ac27a0ec 5195 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
5196 inode->i_op = &ext4_file_inode_operations;
5197 inode->i_fop = &ext4_file_operations;
5198 ext4_set_aops(inode);
ac27a0ec 5199 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
5200 inode->i_op = &ext4_dir_inode_operations;
5201 inode->i_fop = &ext4_dir_operations;
ac27a0ec 5202 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 5203 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 5204 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
5205 nd_terminate_link(ei->i_data, inode->i_size,
5206 sizeof(ei->i_data) - 1);
5207 } else {
617ba13b
MC
5208 inode->i_op = &ext4_symlink_inode_operations;
5209 ext4_set_aops(inode);
ac27a0ec 5210 }
563bdd61
TT
5211 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5212 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 5213 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
5214 if (raw_inode->i_block[0])
5215 init_special_inode(inode, inode->i_mode,
5216 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5217 else
5218 init_special_inode(inode, inode->i_mode,
5219 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 5220 } else {
563bdd61 5221 ret = -EIO;
24676da4 5222 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 5223 goto bad_inode;
ac27a0ec 5224 }
af5bc92d 5225 brelse(iloc.bh);
617ba13b 5226 ext4_set_inode_flags(inode);
1d1fe1ee
DH
5227 unlock_new_inode(inode);
5228 return inode;
ac27a0ec
DK
5229
5230bad_inode:
567f3e9a 5231 brelse(iloc.bh);
1d1fe1ee
DH
5232 iget_failed(inode);
5233 return ERR_PTR(ret);
ac27a0ec
DK
5234}
5235
0fc1b451
AK
5236static int ext4_inode_blocks_set(handle_t *handle,
5237 struct ext4_inode *raw_inode,
5238 struct ext4_inode_info *ei)
5239{
5240 struct inode *inode = &(ei->vfs_inode);
5241 u64 i_blocks = inode->i_blocks;
5242 struct super_block *sb = inode->i_sb;
0fc1b451
AK
5243
5244 if (i_blocks <= ~0U) {
5245 /*
5246 * i_blocks can be represnted in a 32 bit variable
5247 * as multiple of 512 bytes
5248 */
8180a562 5249 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5250 raw_inode->i_blocks_high = 0;
84a8dce2 5251 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
5252 return 0;
5253 }
5254 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5255 return -EFBIG;
5256
5257 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
5258 /*
5259 * i_blocks can be represented in a 48 bit variable
5260 * as multiple of 512 bytes
5261 */
8180a562 5262 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 5263 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 5264 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 5265 } else {
84a8dce2 5266 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
5267 /* i_block is stored in file system block size */
5268 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5269 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5270 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 5271 }
f287a1a5 5272 return 0;
0fc1b451
AK
5273}
5274
ac27a0ec
DK
5275/*
5276 * Post the struct inode info into an on-disk inode location in the
5277 * buffer-cache. This gobbles the caller's reference to the
5278 * buffer_head in the inode location struct.
5279 *
5280 * The caller must have write access to iloc->bh.
5281 */
617ba13b 5282static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 5283 struct inode *inode,
830156c7 5284 struct ext4_iloc *iloc)
ac27a0ec 5285{
617ba13b
MC
5286 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5287 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
5288 struct buffer_head *bh = iloc->bh;
5289 int err = 0, rc, block;
5290
5291 /* For fields not not tracking in the in-memory inode,
5292 * initialise them to zero for new inodes. */
19f5fb7a 5293 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 5294 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 5295
ff9ddf7e 5296 ext4_get_inode_flags(ei);
ac27a0ec 5297 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 5298 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
5299 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5300 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5301/*
5302 * Fix up interoperability with old kernels. Otherwise, old inodes get
5303 * re-used with the upper 16 bits of the uid/gid intact
5304 */
af5bc92d 5305 if (!ei->i_dtime) {
ac27a0ec
DK
5306 raw_inode->i_uid_high =
5307 cpu_to_le16(high_16_bits(inode->i_uid));
5308 raw_inode->i_gid_high =
5309 cpu_to_le16(high_16_bits(inode->i_gid));
5310 } else {
5311 raw_inode->i_uid_high = 0;
5312 raw_inode->i_gid_high = 0;
5313 }
5314 } else {
5315 raw_inode->i_uid_low =
5316 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5317 raw_inode->i_gid_low =
5318 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5319 raw_inode->i_uid_high = 0;
5320 raw_inode->i_gid_high = 0;
5321 }
5322 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
5323
5324 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5325 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5326 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5327 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5328
0fc1b451
AK
5329 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5330 goto out_brelse;
ac27a0ec 5331 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1b9c12f4 5332 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
5333 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5334 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
5335 raw_inode->i_file_acl_high =
5336 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 5337 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
5338 ext4_isize_set(raw_inode, ei->i_disksize);
5339 if (ei->i_disksize > 0x7fffffffULL) {
5340 struct super_block *sb = inode->i_sb;
5341 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5342 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5343 EXT4_SB(sb)->s_es->s_rev_level ==
5344 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5345 /* If this is the first large file
5346 * created, add a flag to the superblock.
5347 */
5348 err = ext4_journal_get_write_access(handle,
5349 EXT4_SB(sb)->s_sbh);
5350 if (err)
5351 goto out_brelse;
5352 ext4_update_dynamic_rev(sb);
5353 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 5354 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 5355 sb->s_dirt = 1;
0390131b 5356 ext4_handle_sync(handle);
73b50c1c 5357 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 5358 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
5359 }
5360 }
5361 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5362 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5363 if (old_valid_dev(inode->i_rdev)) {
5364 raw_inode->i_block[0] =
5365 cpu_to_le32(old_encode_dev(inode->i_rdev));
5366 raw_inode->i_block[1] = 0;
5367 } else {
5368 raw_inode->i_block[0] = 0;
5369 raw_inode->i_block[1] =
5370 cpu_to_le32(new_encode_dev(inode->i_rdev));
5371 raw_inode->i_block[2] = 0;
5372 }
de9a55b8
TT
5373 } else
5374 for (block = 0; block < EXT4_N_BLOCKS; block++)
5375 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 5376
25ec56b5
JNC
5377 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5378 if (ei->i_extra_isize) {
5379 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5380 raw_inode->i_version_hi =
5381 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 5382 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
5383 }
5384
830156c7 5385 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 5386 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
5387 if (!err)
5388 err = rc;
19f5fb7a 5389 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 5390
b436b9be 5391 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 5392out_brelse:
af5bc92d 5393 brelse(bh);
617ba13b 5394 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5395 return err;
5396}
5397
5398/*
617ba13b 5399 * ext4_write_inode()
ac27a0ec
DK
5400 *
5401 * We are called from a few places:
5402 *
5403 * - Within generic_file_write() for O_SYNC files.
5404 * Here, there will be no transaction running. We wait for any running
5405 * trasnaction to commit.
5406 *
5407 * - Within sys_sync(), kupdate and such.
5408 * We wait on commit, if tol to.
5409 *
5410 * - Within prune_icache() (PF_MEMALLOC == true)
5411 * Here we simply return. We can't afford to block kswapd on the
5412 * journal commit.
5413 *
5414 * In all cases it is actually safe for us to return without doing anything,
5415 * because the inode has been copied into a raw inode buffer in
617ba13b 5416 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
5417 * knfsd.
5418 *
5419 * Note that we are absolutely dependent upon all inode dirtiers doing the
5420 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5421 * which we are interested.
5422 *
5423 * It would be a bug for them to not do this. The code:
5424 *
5425 * mark_inode_dirty(inode)
5426 * stuff();
5427 * inode->i_size = expr;
5428 *
5429 * is in error because a kswapd-driven write_inode() could occur while
5430 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5431 * will no longer be on the superblock's dirty inode list.
5432 */
a9185b41 5433int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 5434{
91ac6f43
FM
5435 int err;
5436
ac27a0ec
DK
5437 if (current->flags & PF_MEMALLOC)
5438 return 0;
5439
91ac6f43
FM
5440 if (EXT4_SB(inode->i_sb)->s_journal) {
5441 if (ext4_journal_current_handle()) {
5442 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5443 dump_stack();
5444 return -EIO;
5445 }
ac27a0ec 5446
a9185b41 5447 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
5448 return 0;
5449
5450 err = ext4_force_commit(inode->i_sb);
5451 } else {
5452 struct ext4_iloc iloc;
ac27a0ec 5453
8b472d73 5454 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
5455 if (err)
5456 return err;
a9185b41 5457 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
5458 sync_dirty_buffer(iloc.bh);
5459 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
5460 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5461 "IO error syncing inode");
830156c7
FM
5462 err = -EIO;
5463 }
fd2dd9fb 5464 brelse(iloc.bh);
91ac6f43
FM
5465 }
5466 return err;
ac27a0ec
DK
5467}
5468
5469/*
617ba13b 5470 * ext4_setattr()
ac27a0ec
DK
5471 *
5472 * Called from notify_change.
5473 *
5474 * We want to trap VFS attempts to truncate the file as soon as
5475 * possible. In particular, we want to make sure that when the VFS
5476 * shrinks i_size, we put the inode on the orphan list and modify
5477 * i_disksize immediately, so that during the subsequent flushing of
5478 * dirty pages and freeing of disk blocks, we can guarantee that any
5479 * commit will leave the blocks being flushed in an unused state on
5480 * disk. (On recovery, the inode will get truncated and the blocks will
5481 * be freed, so we have a strong guarantee that no future commit will
5482 * leave these blocks visible to the user.)
5483 *
678aaf48
JK
5484 * Another thing we have to assure is that if we are in ordered mode
5485 * and inode is still attached to the committing transaction, we must
5486 * we start writeout of all the dirty pages which are being truncated.
5487 * This way we are sure that all the data written in the previous
5488 * transaction are already on disk (truncate waits for pages under
5489 * writeback).
5490 *
5491 * Called with inode->i_mutex down.
ac27a0ec 5492 */
617ba13b 5493int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
5494{
5495 struct inode *inode = dentry->d_inode;
5496 int error, rc = 0;
5497 const unsigned int ia_valid = attr->ia_valid;
5498
5499 error = inode_change_ok(inode, attr);
5500 if (error)
5501 return error;
5502
12755627 5503 if (is_quota_modification(inode, attr))
871a2931 5504 dquot_initialize(inode);
ac27a0ec
DK
5505 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5506 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5507 handle_t *handle;
5508
5509 /* (user+group)*(old+new) structure, inode write (sb,
5510 * inode block, ? - but truncate inode update has it) */
5aca07eb 5511 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 5512 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
5513 if (IS_ERR(handle)) {
5514 error = PTR_ERR(handle);
5515 goto err_out;
5516 }
b43fa828 5517 error = dquot_transfer(inode, attr);
ac27a0ec 5518 if (error) {
617ba13b 5519 ext4_journal_stop(handle);
ac27a0ec
DK
5520 return error;
5521 }
5522 /* Update corresponding info in inode so that everything is in
5523 * one transaction */
5524 if (attr->ia_valid & ATTR_UID)
5525 inode->i_uid = attr->ia_uid;
5526 if (attr->ia_valid & ATTR_GID)
5527 inode->i_gid = attr->ia_gid;
617ba13b
MC
5528 error = ext4_mark_inode_dirty(handle, inode);
5529 ext4_journal_stop(handle);
ac27a0ec
DK
5530 }
5531
e2b46574 5532 if (attr->ia_valid & ATTR_SIZE) {
12e9b892 5533 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
5534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5535
0c095c7f
TT
5536 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5537 return -EFBIG;
e2b46574
ES
5538 }
5539 }
5540
ac27a0ec 5541 if (S_ISREG(inode->i_mode) &&
c8d46e41
JZ
5542 attr->ia_valid & ATTR_SIZE &&
5543 (attr->ia_size < inode->i_size ||
12e9b892 5544 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
ac27a0ec
DK
5545 handle_t *handle;
5546
617ba13b 5547 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
5548 if (IS_ERR(handle)) {
5549 error = PTR_ERR(handle);
5550 goto err_out;
5551 }
5552
617ba13b
MC
5553 error = ext4_orphan_add(handle, inode);
5554 EXT4_I(inode)->i_disksize = attr->ia_size;
5555 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
5556 if (!error)
5557 error = rc;
617ba13b 5558 ext4_journal_stop(handle);
678aaf48
JK
5559
5560 if (ext4_should_order_data(inode)) {
5561 error = ext4_begin_ordered_truncate(inode,
5562 attr->ia_size);
5563 if (error) {
5564 /* Do as much error cleanup as possible */
5565 handle = ext4_journal_start(inode, 3);
5566 if (IS_ERR(handle)) {
5567 ext4_orphan_del(NULL, inode);
5568 goto err_out;
5569 }
5570 ext4_orphan_del(handle, inode);
5571 ext4_journal_stop(handle);
5572 goto err_out;
5573 }
5574 }
c8d46e41 5575 /* ext4_truncate will clear the flag */
12e9b892 5576 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
c8d46e41 5577 ext4_truncate(inode);
ac27a0ec
DK
5578 }
5579
1025774c
CH
5580 if ((attr->ia_valid & ATTR_SIZE) &&
5581 attr->ia_size != i_size_read(inode))
5582 rc = vmtruncate(inode, attr->ia_size);
ac27a0ec 5583
1025774c
CH
5584 if (!rc) {
5585 setattr_copy(inode, attr);
5586 mark_inode_dirty(inode);
5587 }
5588
5589 /*
5590 * If the call to ext4_truncate failed to get a transaction handle at
5591 * all, we need to clean up the in-core orphan list manually.
5592 */
ac27a0ec 5593 if (inode->i_nlink)
617ba13b 5594 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
5595
5596 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 5597 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
5598
5599err_out:
617ba13b 5600 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
5601 if (!error)
5602 error = rc;
5603 return error;
5604}
5605
3e3398a0
MC
5606int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5607 struct kstat *stat)
5608{
5609 struct inode *inode;
5610 unsigned long delalloc_blocks;
5611
5612 inode = dentry->d_inode;
5613 generic_fillattr(inode, stat);
5614
5615 /*
5616 * We can't update i_blocks if the block allocation is delayed
5617 * otherwise in the case of system crash before the real block
5618 * allocation is done, we will have i_blocks inconsistent with
5619 * on-disk file blocks.
5620 * We always keep i_blocks updated together with real
5621 * allocation. But to not confuse with user, stat
5622 * will return the blocks that include the delayed allocation
5623 * blocks for this file.
5624 */
5625 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5626 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5627 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5628
5629 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5630 return 0;
5631}
ac27a0ec 5632
a02908f1
MC
5633static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5634 int chunk)
5635{
5636 int indirects;
5637
5638 /* if nrblocks are contiguous */
5639 if (chunk) {
5640 /*
5641 * With N contiguous data blocks, it need at most
5642 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5643 * 2 dindirect blocks
5644 * 1 tindirect block
5645 */
5646 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5647 return indirects + 3;
5648 }
5649 /*
5650 * if nrblocks are not contiguous, worse case, each block touch
5651 * a indirect block, and each indirect block touch a double indirect
5652 * block, plus a triple indirect block
5653 */
5654 indirects = nrblocks * 2 + 1;
5655 return indirects;
5656}
5657
5658static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5659{
12e9b892 5660 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
ac51d837
TT
5661 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5662 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 5663}
ac51d837 5664
ac27a0ec 5665/*
a02908f1
MC
5666 * Account for index blocks, block groups bitmaps and block group
5667 * descriptor blocks if modify datablocks and index blocks
5668 * worse case, the indexs blocks spread over different block groups
ac27a0ec 5669 *
a02908f1 5670 * If datablocks are discontiguous, they are possible to spread over
af901ca1 5671 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 5672 * they could still across block group boundary.
ac27a0ec 5673 *
a02908f1
MC
5674 * Also account for superblock, inode, quota and xattr blocks
5675 */
5676int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5677{
8df9675f
TT
5678 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5679 int gdpblocks;
a02908f1
MC
5680 int idxblocks;
5681 int ret = 0;
5682
5683 /*
5684 * How many index blocks need to touch to modify nrblocks?
5685 * The "Chunk" flag indicating whether the nrblocks is
5686 * physically contiguous on disk
5687 *
5688 * For Direct IO and fallocate, they calls get_block to allocate
5689 * one single extent at a time, so they could set the "Chunk" flag
5690 */
5691 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5692
5693 ret = idxblocks;
5694
5695 /*
5696 * Now let's see how many group bitmaps and group descriptors need
5697 * to account
5698 */
5699 groups = idxblocks;
5700 if (chunk)
5701 groups += 1;
5702 else
5703 groups += nrblocks;
5704
5705 gdpblocks = groups;
8df9675f
TT
5706 if (groups > ngroups)
5707 groups = ngroups;
a02908f1
MC
5708 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5709 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5710
5711 /* bitmaps and block group descriptor blocks */
5712 ret += groups + gdpblocks;
5713
5714 /* Blocks for super block, inode, quota and xattr blocks */
5715 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5716
5717 return ret;
5718}
5719
5720/*
5721 * Calulate the total number of credits to reserve to fit
f3bd1f3f
MC
5722 * the modification of a single pages into a single transaction,
5723 * which may include multiple chunks of block allocations.
ac27a0ec 5724 *
525f4ed8 5725 * This could be called via ext4_write_begin()
ac27a0ec 5726 *
525f4ed8 5727 * We need to consider the worse case, when
a02908f1 5728 * one new block per extent.
ac27a0ec 5729 */
a86c6181 5730int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 5731{
617ba13b 5732 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
5733 int ret;
5734
a02908f1 5735 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 5736
a02908f1 5737 /* Account for data blocks for journalled mode */
617ba13b 5738 if (ext4_should_journal_data(inode))
a02908f1 5739 ret += bpp;
ac27a0ec
DK
5740 return ret;
5741}
f3bd1f3f
MC
5742
5743/*
5744 * Calculate the journal credits for a chunk of data modification.
5745 *
5746 * This is called from DIO, fallocate or whoever calling
79e83036 5747 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
5748 *
5749 * journal buffers for data blocks are not included here, as DIO
5750 * and fallocate do no need to journal data buffers.
5751 */
5752int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5753{
5754 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5755}
5756
ac27a0ec 5757/*
617ba13b 5758 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
5759 * Give this, we know that the caller already has write access to iloc->bh.
5760 */
617ba13b 5761int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 5762 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
5763{
5764 int err = 0;
5765
25ec56b5
JNC
5766 if (test_opt(inode->i_sb, I_VERSION))
5767 inode_inc_iversion(inode);
5768
ac27a0ec
DK
5769 /* the do_update_inode consumes one bh->b_count */
5770 get_bh(iloc->bh);
5771
dab291af 5772 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 5773 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
5774 put_bh(iloc->bh);
5775 return err;
5776}
5777
5778/*
5779 * On success, We end up with an outstanding reference count against
5780 * iloc->bh. This _must_ be cleaned up later.
5781 */
5782
5783int
617ba13b
MC
5784ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5785 struct ext4_iloc *iloc)
ac27a0ec 5786{
0390131b
FM
5787 int err;
5788
5789 err = ext4_get_inode_loc(inode, iloc);
5790 if (!err) {
5791 BUFFER_TRACE(iloc->bh, "get_write_access");
5792 err = ext4_journal_get_write_access(handle, iloc->bh);
5793 if (err) {
5794 brelse(iloc->bh);
5795 iloc->bh = NULL;
ac27a0ec
DK
5796 }
5797 }
617ba13b 5798 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5799 return err;
5800}
5801
6dd4ee7c
KS
5802/*
5803 * Expand an inode by new_extra_isize bytes.
5804 * Returns 0 on success or negative error number on failure.
5805 */
1d03ec98
AK
5806static int ext4_expand_extra_isize(struct inode *inode,
5807 unsigned int new_extra_isize,
5808 struct ext4_iloc iloc,
5809 handle_t *handle)
6dd4ee7c
KS
5810{
5811 struct ext4_inode *raw_inode;
5812 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
5813
5814 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5815 return 0;
5816
5817 raw_inode = ext4_raw_inode(&iloc);
5818
5819 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
5820
5821 /* No extended attributes present */
19f5fb7a
TT
5822 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5823 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
5824 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5825 new_extra_isize);
5826 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5827 return 0;
5828 }
5829
5830 /* try to expand with EAs present */
5831 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5832 raw_inode, handle);
5833}
5834
ac27a0ec
DK
5835/*
5836 * What we do here is to mark the in-core inode as clean with respect to inode
5837 * dirtiness (it may still be data-dirty).
5838 * This means that the in-core inode may be reaped by prune_icache
5839 * without having to perform any I/O. This is a very good thing,
5840 * because *any* task may call prune_icache - even ones which
5841 * have a transaction open against a different journal.
5842 *
5843 * Is this cheating? Not really. Sure, we haven't written the
5844 * inode out, but prune_icache isn't a user-visible syncing function.
5845 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5846 * we start and wait on commits.
5847 *
5848 * Is this efficient/effective? Well, we're being nice to the system
5849 * by cleaning up our inodes proactively so they can be reaped
5850 * without I/O. But we are potentially leaving up to five seconds'
5851 * worth of inodes floating about which prune_icache wants us to
5852 * write out. One way to fix that would be to get prune_icache()
5853 * to do a write_super() to free up some memory. It has the desired
5854 * effect.
5855 */
617ba13b 5856int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 5857{
617ba13b 5858 struct ext4_iloc iloc;
6dd4ee7c
KS
5859 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5860 static unsigned int mnt_count;
5861 int err, ret;
ac27a0ec
DK
5862
5863 might_sleep();
617ba13b 5864 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5865 if (ext4_handle_valid(handle) &&
5866 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5867 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5868 /*
5869 * We need extra buffer credits since we may write into EA block
5870 * with this same handle. If journal_extend fails, then it will
5871 * only result in a minor loss of functionality for that inode.
5872 * If this is felt to be critical, then e2fsck should be run to
5873 * force a large enough s_min_extra_isize.
5874 */
5875 if ((jbd2_journal_extend(handle,
5876 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5877 ret = ext4_expand_extra_isize(inode,
5878 sbi->s_want_extra_isize,
5879 iloc, handle);
5880 if (ret) {
19f5fb7a
TT
5881 ext4_set_inode_state(inode,
5882 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5883 if (mnt_count !=
5884 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5885 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5886 "Unable to expand inode %lu. Delete"
5887 " some EAs or run e2fsck.",
5888 inode->i_ino);
c1bddad9
AK
5889 mnt_count =
5890 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5891 }
5892 }
5893 }
5894 }
ac27a0ec 5895 if (!err)
617ba13b 5896 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5897 return err;
5898}
5899
5900/*
617ba13b 5901 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5902 *
5903 * We're really interested in the case where a file is being extended.
5904 * i_size has been changed by generic_commit_write() and we thus need
5905 * to include the updated inode in the current transaction.
5906 *
5dd4056d 5907 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5908 * are allocated to the file.
5909 *
5910 * If the inode is marked synchronous, we don't honour that here - doing
5911 * so would cause a commit on atime updates, which we don't bother doing.
5912 * We handle synchronous inodes at the highest possible level.
5913 */
617ba13b 5914void ext4_dirty_inode(struct inode *inode)
ac27a0ec 5915{
ac27a0ec
DK
5916 handle_t *handle;
5917
617ba13b 5918 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
5919 if (IS_ERR(handle))
5920 goto out;
f3dc272f 5921
f3dc272f
CW
5922 ext4_mark_inode_dirty(handle, inode);
5923
617ba13b 5924 ext4_journal_stop(handle);
ac27a0ec
DK
5925out:
5926 return;
5927}
5928
5929#if 0
5930/*
5931 * Bind an inode's backing buffer_head into this transaction, to prevent
5932 * it from being flushed to disk early. Unlike
617ba13b 5933 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5934 * returns no iloc structure, so the caller needs to repeat the iloc
5935 * lookup to mark the inode dirty later.
5936 */
617ba13b 5937static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5938{
617ba13b 5939 struct ext4_iloc iloc;
ac27a0ec
DK
5940
5941 int err = 0;
5942 if (handle) {
617ba13b 5943 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5944 if (!err) {
5945 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5946 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5947 if (!err)
0390131b 5948 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5949 NULL,
0390131b 5950 iloc.bh);
ac27a0ec
DK
5951 brelse(iloc.bh);
5952 }
5953 }
617ba13b 5954 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5955 return err;
5956}
5957#endif
5958
617ba13b 5959int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5960{
5961 journal_t *journal;
5962 handle_t *handle;
5963 int err;
5964
5965 /*
5966 * We have to be very careful here: changing a data block's
5967 * journaling status dynamically is dangerous. If we write a
5968 * data block to the journal, change the status and then delete
5969 * that block, we risk forgetting to revoke the old log record
5970 * from the journal and so a subsequent replay can corrupt data.
5971 * So, first we make sure that the journal is empty and that
5972 * nobody is changing anything.
5973 */
5974
617ba13b 5975 journal = EXT4_JOURNAL(inode);
0390131b
FM
5976 if (!journal)
5977 return 0;
d699594d 5978 if (is_journal_aborted(journal))
ac27a0ec
DK
5979 return -EROFS;
5980
dab291af
MC
5981 jbd2_journal_lock_updates(journal);
5982 jbd2_journal_flush(journal);
ac27a0ec
DK
5983
5984 /*
5985 * OK, there are no updates running now, and all cached data is
5986 * synced to disk. We are now in a completely consistent state
5987 * which doesn't have anything in the journal, and we know that
5988 * no filesystem updates are running, so it is safe to modify
5989 * the inode's in-core data-journaling state flag now.
5990 */
5991
5992 if (val)
12e9b892 5993 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
ac27a0ec 5994 else
12e9b892 5995 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
617ba13b 5996 ext4_set_aops(inode);
ac27a0ec 5997
dab291af 5998 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
5999
6000 /* Finally we can mark the inode as dirty. */
6001
617ba13b 6002 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
6003 if (IS_ERR(handle))
6004 return PTR_ERR(handle);
6005
617ba13b 6006 err = ext4_mark_inode_dirty(handle, inode);
0390131b 6007 ext4_handle_sync(handle);
617ba13b
MC
6008 ext4_journal_stop(handle);
6009 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
6010
6011 return err;
6012}
2e9ee850
AK
6013
6014static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6015{
6016 return !buffer_mapped(bh);
6017}
6018
c2ec175c 6019int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 6020{
c2ec175c 6021 struct page *page = vmf->page;
2e9ee850
AK
6022 loff_t size;
6023 unsigned long len;
6024 int ret = -EINVAL;
79f0be8d 6025 void *fsdata;
2e9ee850
AK
6026 struct file *file = vma->vm_file;
6027 struct inode *inode = file->f_path.dentry->d_inode;
6028 struct address_space *mapping = inode->i_mapping;
6029
6030 /*
6031 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
6032 * get i_mutex because we are already holding mmap_sem.
6033 */
6034 down_read(&inode->i_alloc_sem);
6035 size = i_size_read(inode);
6036 if (page->mapping != mapping || size <= page_offset(page)
6037 || !PageUptodate(page)) {
6038 /* page got truncated from under us? */
6039 goto out_unlock;
6040 }
6041 ret = 0;
6042 if (PageMappedToDisk(page))
6043 goto out_unlock;
6044
6045 if (page->index == size >> PAGE_CACHE_SHIFT)
6046 len = size & ~PAGE_CACHE_MASK;
6047 else
6048 len = PAGE_CACHE_SIZE;
6049
a827eaff
AK
6050 lock_page(page);
6051 /*
6052 * return if we have all the buffers mapped. This avoid
6053 * the need to call write_begin/write_end which does a
6054 * journal_start/journal_stop which can block and take
6055 * long time
6056 */
2e9ee850 6057 if (page_has_buffers(page)) {
2e9ee850 6058 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff
AK
6059 ext4_bh_unmapped)) {
6060 unlock_page(page);
2e9ee850 6061 goto out_unlock;
a827eaff 6062 }
2e9ee850 6063 }
a827eaff 6064 unlock_page(page);
2e9ee850
AK
6065 /*
6066 * OK, we need to fill the hole... Do write_begin write_end
6067 * to do block allocation/reservation.We are not holding
6068 * inode.i__mutex here. That allow * parallel write_begin,
6069 * write_end call. lock_page prevent this from happening
6070 * on the same page though
6071 */
6072 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
79f0be8d 6073 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
2e9ee850
AK
6074 if (ret < 0)
6075 goto out_unlock;
6076 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
79f0be8d 6077 len, len, page, fsdata);
2e9ee850
AK
6078 if (ret < 0)
6079 goto out_unlock;
6080 ret = 0;
6081out_unlock:
c2ec175c
NP
6082 if (ret)
6083 ret = VM_FAULT_SIGBUS;
2e9ee850
AK
6084 up_read(&inode->i_alloc_sem);
6085 return ret;
6086}
This page took 0.888096 seconds and 5 git commands to generate.