ext4/jbd2: don't wait (forever) for stale tid caused by wraparound
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int __ext4_journalled_writepage(struct page *page, unsigned int len);
136static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
137static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
138 struct inode *inode, struct page *page, loff_t from,
139 loff_t length, int flags);
64769240 140
ac27a0ec
DK
141/*
142 * Test whether an inode is a fast symlink.
143 */
617ba13b 144static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 145{
617ba13b 146 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
147 (inode->i_sb->s_blocksize >> 9) : 0;
148
149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
ac27a0ec
DK
152/*
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
fa5d1113 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 158 int nblocks)
ac27a0ec 159{
487caeef
JK
160 int ret;
161
162 /*
e35fd660 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
167 */
0390131b 168 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 169 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 170 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 171 ret = ext4_journal_restart(handle, nblocks);
487caeef 172 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 173 ext4_discard_preallocations(inode);
487caeef
JK
174
175 return ret;
ac27a0ec
DK
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
0930fcc1 181void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
182{
183 handle_t *handle;
bc965ab3 184 int err;
ac27a0ec 185
7ff9c073 186 trace_ext4_evict_inode(inode);
2581fdc8 187
0930fcc1 188 if (inode->i_nlink) {
2d859db3
JK
189 /*
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
203 *
204 * Note that directories do not have this problem because they
205 * don't use page cache.
206 */
207 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
d76a3a77 213 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
214 filemap_write_and_wait(&inode->i_data);
215 }
0930fcc1 216 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 217 ext4_ioend_shutdown(inode);
0930fcc1
AV
218 goto no_delete;
219 }
220
907f4554 221 if (!is_bad_inode(inode))
871a2931 222 dquot_initialize(inode);
907f4554 223
678aaf48
JK
224 if (ext4_should_order_data(inode))
225 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 226 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 227 ext4_ioend_shutdown(inode);
ac27a0ec
DK
228
229 if (is_bad_inode(inode))
230 goto no_delete;
231
8e8ad8a5
JK
232 /*
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
235 */
236 sb_start_intwrite(inode->i_sb);
9924a92a
TT
237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 239 if (IS_ERR(handle)) {
bc965ab3 240 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
241 /*
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
244 * cleaned up.
245 */
617ba13b 246 ext4_orphan_del(NULL, inode);
8e8ad8a5 247 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
248 goto no_delete;
249 }
250
251 if (IS_SYNC(inode))
0390131b 252 ext4_handle_sync(handle);
ac27a0ec 253 inode->i_size = 0;
bc965ab3
TT
254 err = ext4_mark_inode_dirty(handle, inode);
255 if (err) {
12062ddd 256 ext4_warning(inode->i_sb,
bc965ab3
TT
257 "couldn't mark inode dirty (err %d)", err);
258 goto stop_handle;
259 }
ac27a0ec 260 if (inode->i_blocks)
617ba13b 261 ext4_truncate(inode);
bc965ab3
TT
262
263 /*
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
268 */
0390131b 269 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
270 err = ext4_journal_extend(handle, 3);
271 if (err > 0)
272 err = ext4_journal_restart(handle, 3);
273 if (err != 0) {
12062ddd 274 ext4_warning(inode->i_sb,
bc965ab3
TT
275 "couldn't extend journal (err %d)", err);
276 stop_handle:
277 ext4_journal_stop(handle);
45388219 278 ext4_orphan_del(NULL, inode);
8e8ad8a5 279 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
280 goto no_delete;
281 }
282 }
283
ac27a0ec 284 /*
617ba13b 285 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 286 * AKPM: I think this can be inside the above `if'.
617ba13b 287 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 288 * deletion of a non-existent orphan - this is because we don't
617ba13b 289 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
290 * (Well, we could do this if we need to, but heck - it works)
291 */
617ba13b
MC
292 ext4_orphan_del(handle, inode);
293 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
294
295 /*
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
300 * fails.
301 */
617ba13b 302 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 303 /* If that failed, just do the required in-core inode clear. */
0930fcc1 304 ext4_clear_inode(inode);
ac27a0ec 305 else
617ba13b
MC
306 ext4_free_inode(handle, inode);
307 ext4_journal_stop(handle);
8e8ad8a5 308 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
309 return;
310no_delete:
0930fcc1 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
312}
313
a9e7f447
DM
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 316{
a9e7f447 317 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 318}
a9e7f447 319#endif
9d0be502 320
12219aea
AK
321/*
322 * Calculate the number of metadata blocks need to reserve
9d0be502 323 * to allocate a block located at @lblock
12219aea 324 */
01f49d0b 325static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 326{
12e9b892 327 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 328 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 329
8bb2b247 330 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
331}
332
0637c6f4
TT
333/*
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
336 */
5f634d06
AK
337void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
12219aea
AK
339{
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 341 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
342
343 spin_lock(&ei->i_block_reservation_lock);
d8990240 344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 345 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 347 "with only %d reserved data blocks",
0637c6f4
TT
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
352 }
12219aea 353
97795d2a 354 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
355 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
356 "with only %d reserved metadata blocks "
357 "(releasing %d blocks with reserved %d data blocks)",
358 inode->i_ino, ei->i_allocated_meta_blocks,
359 ei->i_reserved_meta_blocks, used,
360 ei->i_reserved_data_blocks);
97795d2a
BF
361 WARN_ON(1);
362 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
363 }
364
0637c6f4
TT
365 /* Update per-inode reservations */
366 ei->i_reserved_data_blocks -= used;
0637c6f4 367 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 368 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 369 used + ei->i_allocated_meta_blocks);
0637c6f4 370 ei->i_allocated_meta_blocks = 0;
6bc6e63f 371
0637c6f4
TT
372 if (ei->i_reserved_data_blocks == 0) {
373 /*
374 * We can release all of the reserved metadata blocks
375 * only when we have written all of the delayed
376 * allocation blocks.
377 */
57042651 378 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 379 ei->i_reserved_meta_blocks);
ee5f4d9c 380 ei->i_reserved_meta_blocks = 0;
9d0be502 381 ei->i_da_metadata_calc_len = 0;
6bc6e63f 382 }
12219aea 383 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 384
72b8ab9d
ES
385 /* Update quota subsystem for data blocks */
386 if (quota_claim)
7b415bf6 387 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 388 else {
5f634d06
AK
389 /*
390 * We did fallocate with an offset that is already delayed
391 * allocated. So on delayed allocated writeback we should
72b8ab9d 392 * not re-claim the quota for fallocated blocks.
5f634d06 393 */
7b415bf6 394 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 395 }
d6014301
AK
396
397 /*
398 * If we have done all the pending block allocations and if
399 * there aren't any writers on the inode, we can discard the
400 * inode's preallocations.
401 */
0637c6f4
TT
402 if ((ei->i_reserved_data_blocks == 0) &&
403 (atomic_read(&inode->i_writecount) == 0))
d6014301 404 ext4_discard_preallocations(inode);
12219aea
AK
405}
406
e29136f8 407static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
408 unsigned int line,
409 struct ext4_map_blocks *map)
6fd058f7 410{
24676da4
TT
411 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
412 map->m_len)) {
c398eda0
TT
413 ext4_error_inode(inode, func, line, map->m_pblk,
414 "lblock %lu mapped to illegal pblock "
415 "(length %d)", (unsigned long) map->m_lblk,
416 map->m_len);
6fd058f7
TT
417 return -EIO;
418 }
419 return 0;
420}
421
e29136f8 422#define check_block_validity(inode, map) \
c398eda0 423 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 424
55138e0b 425/*
1f94533d
TT
426 * Return the number of contiguous dirty pages in a given inode
427 * starting at page frame idx.
55138e0b
TT
428 */
429static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
430 unsigned int max_pages)
431{
432 struct address_space *mapping = inode->i_mapping;
433 pgoff_t index;
434 struct pagevec pvec;
435 pgoff_t num = 0;
436 int i, nr_pages, done = 0;
437
438 if (max_pages == 0)
439 return 0;
440 pagevec_init(&pvec, 0);
441 while (!done) {
442 index = idx;
443 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
444 PAGECACHE_TAG_DIRTY,
445 (pgoff_t)PAGEVEC_SIZE);
446 if (nr_pages == 0)
447 break;
448 for (i = 0; i < nr_pages; i++) {
449 struct page *page = pvec.pages[i];
450 struct buffer_head *bh, *head;
451
452 lock_page(page);
453 if (unlikely(page->mapping != mapping) ||
454 !PageDirty(page) ||
455 PageWriteback(page) ||
456 page->index != idx) {
457 done = 1;
458 unlock_page(page);
459 break;
460 }
1f94533d
TT
461 if (page_has_buffers(page)) {
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_delay(bh) &&
465 !buffer_unwritten(bh))
466 done = 1;
467 bh = bh->b_this_page;
468 } while (!done && (bh != head));
469 }
55138e0b
TT
470 unlock_page(page);
471 if (done)
472 break;
473 idx++;
474 num++;
659c6009
ES
475 if (num >= max_pages) {
476 done = 1;
55138e0b 477 break;
659c6009 478 }
55138e0b
TT
479 }
480 pagevec_release(&pvec);
481 }
482 return num;
483}
484
921f266b
DM
485#ifdef ES_AGGRESSIVE_TEST
486static void ext4_map_blocks_es_recheck(handle_t *handle,
487 struct inode *inode,
488 struct ext4_map_blocks *es_map,
489 struct ext4_map_blocks *map,
490 int flags)
491{
492 int retval;
493
494 map->m_flags = 0;
495 /*
496 * There is a race window that the result is not the same.
497 * e.g. xfstests #223 when dioread_nolock enables. The reason
498 * is that we lookup a block mapping in extent status tree with
499 * out taking i_data_sem. So at the time the unwritten extent
500 * could be converted.
501 */
502 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
503 down_read((&EXT4_I(inode)->i_data_sem));
504 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
505 retval = ext4_ext_map_blocks(handle, inode, map, flags &
506 EXT4_GET_BLOCKS_KEEP_SIZE);
507 } else {
508 retval = ext4_ind_map_blocks(handle, inode, map, flags &
509 EXT4_GET_BLOCKS_KEEP_SIZE);
510 }
511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512 up_read((&EXT4_I(inode)->i_data_sem));
513 /*
514 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
515 * because it shouldn't be marked in es_map->m_flags.
516 */
517 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
518
519 /*
520 * We don't check m_len because extent will be collpased in status
521 * tree. So the m_len might not equal.
522 */
523 if (es_map->m_lblk != map->m_lblk ||
524 es_map->m_flags != map->m_flags ||
525 es_map->m_pblk != map->m_pblk) {
526 printk("ES cache assertation failed for inode: %lu "
527 "es_cached ex [%d/%d/%llu/%x] != "
528 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
529 inode->i_ino, es_map->m_lblk, es_map->m_len,
530 es_map->m_pblk, es_map->m_flags, map->m_lblk,
531 map->m_len, map->m_pblk, map->m_flags,
532 retval, flags);
533 }
534}
535#endif /* ES_AGGRESSIVE_TEST */
536
f5ab0d1f 537/*
e35fd660 538 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 539 * and returns if the blocks are already mapped.
f5ab0d1f 540 *
f5ab0d1f
MC
541 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
542 * and store the allocated blocks in the result buffer head and mark it
543 * mapped.
544 *
e35fd660
TT
545 * If file type is extents based, it will call ext4_ext_map_blocks(),
546 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
547 * based files
548 *
549 * On success, it returns the number of blocks being mapped or allocate.
550 * if create==0 and the blocks are pre-allocated and uninitialized block,
551 * the result buffer head is unmapped. If the create ==1, it will make sure
552 * the buffer head is mapped.
553 *
554 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 555 * that case, buffer head is unmapped
f5ab0d1f
MC
556 *
557 * It returns the error in case of allocation failure.
558 */
e35fd660
TT
559int ext4_map_blocks(handle_t *handle, struct inode *inode,
560 struct ext4_map_blocks *map, int flags)
0e855ac8 561{
d100eef2 562 struct extent_status es;
0e855ac8 563 int retval;
921f266b
DM
564#ifdef ES_AGGRESSIVE_TEST
565 struct ext4_map_blocks orig_map;
566
567 memcpy(&orig_map, map, sizeof(*map));
568#endif
f5ab0d1f 569
e35fd660
TT
570 map->m_flags = 0;
571 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
572 "logical block %lu\n", inode->i_ino, flags, map->m_len,
573 (unsigned long) map->m_lblk);
d100eef2
ZL
574
575 /* Lookup extent status tree firstly */
576 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
577 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
578 map->m_pblk = ext4_es_pblock(&es) +
579 map->m_lblk - es.es_lblk;
580 map->m_flags |= ext4_es_is_written(&es) ?
581 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
582 retval = es.es_len - (map->m_lblk - es.es_lblk);
583 if (retval > map->m_len)
584 retval = map->m_len;
585 map->m_len = retval;
586 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
587 retval = 0;
588 } else {
589 BUG_ON(1);
590 }
921f266b
DM
591#ifdef ES_AGGRESSIVE_TEST
592 ext4_map_blocks_es_recheck(handle, inode, map,
593 &orig_map, flags);
594#endif
d100eef2
ZL
595 goto found;
596 }
597
4df3d265 598 /*
b920c755
TT
599 * Try to see if we can get the block without requesting a new
600 * file system block.
4df3d265 601 */
729f52c6
ZL
602 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
603 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 604 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
605 retval = ext4_ext_map_blocks(handle, inode, map, flags &
606 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 607 } else {
a4e5d88b
DM
608 retval = ext4_ind_map_blocks(handle, inode, map, flags &
609 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 610 }
f7fec032
ZL
611 if (retval > 0) {
612 int ret;
613 unsigned long long status;
614
921f266b
DM
615#ifdef ES_AGGRESSIVE_TEST
616 if (retval != map->m_len) {
617 printk("ES len assertation failed for inode: %lu "
618 "retval %d != map->m_len %d "
619 "in %s (lookup)\n", inode->i_ino, retval,
620 map->m_len, __func__);
621 }
622#endif
623
f7fec032
ZL
624 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
625 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
626 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
627 ext4_find_delalloc_range(inode, map->m_lblk,
628 map->m_lblk + map->m_len - 1))
629 status |= EXTENT_STATUS_DELAYED;
630 ret = ext4_es_insert_extent(inode, map->m_lblk,
631 map->m_len, map->m_pblk, status);
632 if (ret < 0)
633 retval = ret;
634 }
729f52c6
ZL
635 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
636 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 637
d100eef2 638found:
e35fd660 639 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 640 int ret = check_block_validity(inode, map);
6fd058f7
TT
641 if (ret != 0)
642 return ret;
643 }
644
f5ab0d1f 645 /* If it is only a block(s) look up */
c2177057 646 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
647 return retval;
648
649 /*
650 * Returns if the blocks have already allocated
651 *
652 * Note that if blocks have been preallocated
df3ab170 653 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
654 * with buffer head unmapped.
655 */
e35fd660 656 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
657 return retval;
658
2a8964d6 659 /*
a25a4e1a
ZL
660 * Here we clear m_flags because after allocating an new extent,
661 * it will be set again.
2a8964d6 662 */
a25a4e1a 663 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 664
4df3d265 665 /*
f5ab0d1f
MC
666 * New blocks allocate and/or writing to uninitialized extent
667 * will possibly result in updating i_data, so we take
668 * the write lock of i_data_sem, and call get_blocks()
669 * with create == 1 flag.
4df3d265
AK
670 */
671 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
672
673 /*
674 * if the caller is from delayed allocation writeout path
675 * we have already reserved fs blocks for allocation
676 * let the underlying get_block() function know to
677 * avoid double accounting
678 */
c2177057 679 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 680 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
681 /*
682 * We need to check for EXT4 here because migrate
683 * could have changed the inode type in between
684 */
12e9b892 685 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 686 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 687 } else {
e35fd660 688 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 689
e35fd660 690 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
691 /*
692 * We allocated new blocks which will result in
693 * i_data's format changing. Force the migrate
694 * to fail by clearing migrate flags
695 */
19f5fb7a 696 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 697 }
d2a17637 698
5f634d06
AK
699 /*
700 * Update reserved blocks/metadata blocks after successful
701 * block allocation which had been deferred till now. We don't
702 * support fallocate for non extent files. So we can update
703 * reserve space here.
704 */
705 if ((retval > 0) &&
1296cc85 706 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
707 ext4_da_update_reserve_space(inode, retval, 1);
708 }
f7fec032 709 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 710 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 711
f7fec032
ZL
712 if (retval > 0) {
713 int ret;
714 unsigned long long status;
715
921f266b
DM
716#ifdef ES_AGGRESSIVE_TEST
717 if (retval != map->m_len) {
718 printk("ES len assertation failed for inode: %lu "
719 "retval %d != map->m_len %d "
720 "in %s (allocation)\n", inode->i_ino, retval,
721 map->m_len, __func__);
722 }
723#endif
724
adb23551
ZL
725 /*
726 * If the extent has been zeroed out, we don't need to update
727 * extent status tree.
728 */
729 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
730 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
731 if (ext4_es_is_written(&es))
732 goto has_zeroout;
733 }
f7fec032
ZL
734 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
735 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
736 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
737 ext4_find_delalloc_range(inode, map->m_lblk,
738 map->m_lblk + map->m_len - 1))
739 status |= EXTENT_STATUS_DELAYED;
740 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
741 map->m_pblk, status);
742 if (ret < 0)
743 retval = ret;
5356f261
AK
744 }
745
adb23551 746has_zeroout:
4df3d265 747 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 748 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 749 int ret = check_block_validity(inode, map);
6fd058f7
TT
750 if (ret != 0)
751 return ret;
752 }
0e855ac8
AK
753 return retval;
754}
755
f3bd1f3f
MC
756/* Maximum number of blocks we map for direct IO at once. */
757#define DIO_MAX_BLOCKS 4096
758
2ed88685
TT
759static int _ext4_get_block(struct inode *inode, sector_t iblock,
760 struct buffer_head *bh, int flags)
ac27a0ec 761{
3e4fdaf8 762 handle_t *handle = ext4_journal_current_handle();
2ed88685 763 struct ext4_map_blocks map;
7fb5409d 764 int ret = 0, started = 0;
f3bd1f3f 765 int dio_credits;
ac27a0ec 766
46c7f254
TM
767 if (ext4_has_inline_data(inode))
768 return -ERANGE;
769
2ed88685
TT
770 map.m_lblk = iblock;
771 map.m_len = bh->b_size >> inode->i_blkbits;
772
8b0f165f 773 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 774 /* Direct IO write... */
2ed88685
TT
775 if (map.m_len > DIO_MAX_BLOCKS)
776 map.m_len = DIO_MAX_BLOCKS;
777 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
778 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
779 dio_credits);
7fb5409d 780 if (IS_ERR(handle)) {
ac27a0ec 781 ret = PTR_ERR(handle);
2ed88685 782 return ret;
ac27a0ec 783 }
7fb5409d 784 started = 1;
ac27a0ec
DK
785 }
786
2ed88685 787 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 788 if (ret > 0) {
2ed88685
TT
789 map_bh(bh, inode->i_sb, map.m_pblk);
790 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
791 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 792 ret = 0;
ac27a0ec 793 }
7fb5409d
JK
794 if (started)
795 ext4_journal_stop(handle);
ac27a0ec
DK
796 return ret;
797}
798
2ed88685
TT
799int ext4_get_block(struct inode *inode, sector_t iblock,
800 struct buffer_head *bh, int create)
801{
802 return _ext4_get_block(inode, iblock, bh,
803 create ? EXT4_GET_BLOCKS_CREATE : 0);
804}
805
ac27a0ec
DK
806/*
807 * `handle' can be NULL if create is zero
808 */
617ba13b 809struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 810 ext4_lblk_t block, int create, int *errp)
ac27a0ec 811{
2ed88685
TT
812 struct ext4_map_blocks map;
813 struct buffer_head *bh;
ac27a0ec
DK
814 int fatal = 0, err;
815
816 J_ASSERT(handle != NULL || create == 0);
817
2ed88685
TT
818 map.m_lblk = block;
819 map.m_len = 1;
820 err = ext4_map_blocks(handle, inode, &map,
821 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 822
90b0a973
CM
823 /* ensure we send some value back into *errp */
824 *errp = 0;
825
0f70b406
TT
826 if (create && err == 0)
827 err = -ENOSPC; /* should never happen */
2ed88685
TT
828 if (err < 0)
829 *errp = err;
830 if (err <= 0)
831 return NULL;
2ed88685
TT
832
833 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 834 if (unlikely(!bh)) {
860d21e2 835 *errp = -ENOMEM;
2ed88685 836 return NULL;
ac27a0ec 837 }
2ed88685
TT
838 if (map.m_flags & EXT4_MAP_NEW) {
839 J_ASSERT(create != 0);
840 J_ASSERT(handle != NULL);
ac27a0ec 841
2ed88685
TT
842 /*
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
847 * problem.
848 */
849 lock_buffer(bh);
850 BUFFER_TRACE(bh, "call get_create_access");
851 fatal = ext4_journal_get_create_access(handle, bh);
852 if (!fatal && !buffer_uptodate(bh)) {
853 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
854 set_buffer_uptodate(bh);
ac27a0ec 855 }
2ed88685
TT
856 unlock_buffer(bh);
857 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
858 err = ext4_handle_dirty_metadata(handle, inode, bh);
859 if (!fatal)
860 fatal = err;
861 } else {
862 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 863 }
2ed88685
TT
864 if (fatal) {
865 *errp = fatal;
866 brelse(bh);
867 bh = NULL;
868 }
869 return bh;
ac27a0ec
DK
870}
871
617ba13b 872struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 873 ext4_lblk_t block, int create, int *err)
ac27a0ec 874{
af5bc92d 875 struct buffer_head *bh;
ac27a0ec 876
617ba13b 877 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
878 if (!bh)
879 return bh;
880 if (buffer_uptodate(bh))
881 return bh;
65299a3b 882 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
883 wait_on_buffer(bh);
884 if (buffer_uptodate(bh))
885 return bh;
886 put_bh(bh);
887 *err = -EIO;
888 return NULL;
889}
890
f19d5870
TM
891int ext4_walk_page_buffers(handle_t *handle,
892 struct buffer_head *head,
893 unsigned from,
894 unsigned to,
895 int *partial,
896 int (*fn)(handle_t *handle,
897 struct buffer_head *bh))
ac27a0ec
DK
898{
899 struct buffer_head *bh;
900 unsigned block_start, block_end;
901 unsigned blocksize = head->b_size;
902 int err, ret = 0;
903 struct buffer_head *next;
904
af5bc92d
TT
905 for (bh = head, block_start = 0;
906 ret == 0 && (bh != head || !block_start);
de9a55b8 907 block_start = block_end, bh = next) {
ac27a0ec
DK
908 next = bh->b_this_page;
909 block_end = block_start + blocksize;
910 if (block_end <= from || block_start >= to) {
911 if (partial && !buffer_uptodate(bh))
912 *partial = 1;
913 continue;
914 }
915 err = (*fn)(handle, bh);
916 if (!ret)
917 ret = err;
918 }
919 return ret;
920}
921
922/*
923 * To preserve ordering, it is essential that the hole instantiation and
924 * the data write be encapsulated in a single transaction. We cannot
617ba13b 925 * close off a transaction and start a new one between the ext4_get_block()
dab291af 926 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
927 * prepare_write() is the right place.
928 *
36ade451
JK
929 * Also, this function can nest inside ext4_writepage(). In that case, we
930 * *know* that ext4_writepage() has generated enough buffer credits to do the
931 * whole page. So we won't block on the journal in that case, which is good,
932 * because the caller may be PF_MEMALLOC.
ac27a0ec 933 *
617ba13b 934 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
935 * quota file writes. If we were to commit the transaction while thus
936 * reentered, there can be a deadlock - we would be holding a quota
937 * lock, and the commit would never complete if another thread had a
938 * transaction open and was blocking on the quota lock - a ranking
939 * violation.
940 *
dab291af 941 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
942 * will _not_ run commit under these circumstances because handle->h_ref
943 * is elevated. We'll still have enough credits for the tiny quotafile
944 * write.
945 */
f19d5870
TM
946int do_journal_get_write_access(handle_t *handle,
947 struct buffer_head *bh)
ac27a0ec 948{
56d35a4c
JK
949 int dirty = buffer_dirty(bh);
950 int ret;
951
ac27a0ec
DK
952 if (!buffer_mapped(bh) || buffer_freed(bh))
953 return 0;
56d35a4c 954 /*
ebdec241 955 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
956 * the dirty bit as jbd2_journal_get_write_access() could complain
957 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 958 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
959 * the bit before releasing a page lock and thus writeback cannot
960 * ever write the buffer.
961 */
962 if (dirty)
963 clear_buffer_dirty(bh);
964 ret = ext4_journal_get_write_access(handle, bh);
965 if (!ret && dirty)
966 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
967 return ret;
ac27a0ec
DK
968}
969
8b0f165f
AP
970static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
971 struct buffer_head *bh_result, int create);
bfc1af65 972static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
973 loff_t pos, unsigned len, unsigned flags,
974 struct page **pagep, void **fsdata)
ac27a0ec 975{
af5bc92d 976 struct inode *inode = mapping->host;
1938a150 977 int ret, needed_blocks;
ac27a0ec
DK
978 handle_t *handle;
979 int retries = 0;
af5bc92d 980 struct page *page;
de9a55b8 981 pgoff_t index;
af5bc92d 982 unsigned from, to;
bfc1af65 983
9bffad1e 984 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
985 /*
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
988 */
989 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 990 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
991 from = pos & (PAGE_CACHE_SIZE - 1);
992 to = from + len;
ac27a0ec 993
f19d5870
TM
994 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
995 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
996 flags, pagep);
997 if (ret < 0)
47564bfb
TT
998 return ret;
999 if (ret == 1)
1000 return 0;
f19d5870
TM
1001 }
1002
47564bfb
TT
1003 /*
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1009 */
1010retry_grab:
1011 page = grab_cache_page_write_begin(mapping, index, flags);
1012 if (!page)
1013 return -ENOMEM;
1014 unlock_page(page);
1015
1016retry_journal:
9924a92a 1017 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 1018 if (IS_ERR(handle)) {
47564bfb
TT
1019 page_cache_release(page);
1020 return PTR_ERR(handle);
7479d2b9 1021 }
ac27a0ec 1022
47564bfb
TT
1023 lock_page(page);
1024 if (page->mapping != mapping) {
1025 /* The page got truncated from under us */
1026 unlock_page(page);
1027 page_cache_release(page);
cf108bca 1028 ext4_journal_stop(handle);
47564bfb 1029 goto retry_grab;
cf108bca 1030 }
47564bfb 1031 wait_on_page_writeback(page);
cf108bca 1032
744692dc 1033 if (ext4_should_dioread_nolock(inode))
6e1db88d 1034 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 1035 else
6e1db88d 1036 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
1037
1038 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
1039 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1040 from, to, NULL,
1041 do_journal_get_write_access);
ac27a0ec 1042 }
bfc1af65
NP
1043
1044 if (ret) {
af5bc92d 1045 unlock_page(page);
ae4d5372 1046 /*
6e1db88d 1047 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
1048 * outside i_size. Trim these off again. Don't need
1049 * i_size_read because we hold i_mutex.
1938a150
AK
1050 *
1051 * Add inode to orphan list in case we crash before
1052 * truncate finishes
ae4d5372 1053 */
ffacfa7a 1054 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
1055 ext4_orphan_add(handle, inode);
1056
1057 ext4_journal_stop(handle);
1058 if (pos + len > inode->i_size) {
b9a4207d 1059 ext4_truncate_failed_write(inode);
de9a55b8 1060 /*
ffacfa7a 1061 * If truncate failed early the inode might
1938a150
AK
1062 * still be on the orphan list; we need to
1063 * make sure the inode is removed from the
1064 * orphan list in that case.
1065 */
1066 if (inode->i_nlink)
1067 ext4_orphan_del(NULL, inode);
1068 }
bfc1af65 1069
47564bfb
TT
1070 if (ret == -ENOSPC &&
1071 ext4_should_retry_alloc(inode->i_sb, &retries))
1072 goto retry_journal;
1073 page_cache_release(page);
1074 return ret;
1075 }
1076 *pagep = page;
ac27a0ec
DK
1077 return ret;
1078}
1079
bfc1af65
NP
1080/* For write_end() in data=journal mode */
1081static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1082{
1083 if (!buffer_mapped(bh) || buffer_freed(bh))
1084 return 0;
1085 set_buffer_uptodate(bh);
0390131b 1086 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
1087}
1088
eed4333f
ZL
1089/*
1090 * We need to pick up the new inode size which generic_commit_write gave us
1091 * `file' can be NULL - eg, when called from page_symlink().
1092 *
1093 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1094 * buffers are managed internally.
1095 */
1096static int ext4_write_end(struct file *file,
1097 struct address_space *mapping,
1098 loff_t pos, unsigned len, unsigned copied,
1099 struct page *page, void *fsdata)
f8514083 1100{
f8514083 1101 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1102 struct inode *inode = mapping->host;
1103 int ret = 0, ret2;
1104 int i_size_changed = 0;
1105
1106 trace_ext4_write_end(inode, pos, len, copied);
1107 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1108 ret = ext4_jbd2_file_inode(handle, inode);
1109 if (ret) {
1110 unlock_page(page);
1111 page_cache_release(page);
1112 goto errout;
1113 }
1114 }
f8514083 1115
f19d5870
TM
1116 if (ext4_has_inline_data(inode))
1117 copied = ext4_write_inline_data_end(inode, pos, len,
1118 copied, page);
1119 else
1120 copied = block_write_end(file, mapping, pos,
1121 len, copied, page, fsdata);
f8514083
AK
1122
1123 /*
1124 * No need to use i_size_read() here, the i_size
eed4333f 1125 * cannot change under us because we hole i_mutex.
f8514083
AK
1126 *
1127 * But it's important to update i_size while still holding page lock:
1128 * page writeout could otherwise come in and zero beyond i_size.
1129 */
1130 if (pos + copied > inode->i_size) {
1131 i_size_write(inode, pos + copied);
1132 i_size_changed = 1;
1133 }
1134
eed4333f 1135 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1136 /* We need to mark inode dirty even if
1137 * new_i_size is less that inode->i_size
eed4333f 1138 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1139 */
1140 ext4_update_i_disksize(inode, (pos + copied));
1141 i_size_changed = 1;
1142 }
1143 unlock_page(page);
1144 page_cache_release(page);
1145
1146 /*
1147 * Don't mark the inode dirty under page lock. First, it unnecessarily
1148 * makes the holding time of page lock longer. Second, it forces lock
1149 * ordering of page lock and transaction start for journaling
1150 * filesystems.
1151 */
1152 if (i_size_changed)
1153 ext4_mark_inode_dirty(handle, inode);
1154
74d553aa
TT
1155 if (copied < 0)
1156 ret = copied;
ffacfa7a 1157 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1158 /* if we have allocated more blocks and copied
1159 * less. We will have blocks allocated outside
1160 * inode->i_size. So truncate them
1161 */
1162 ext4_orphan_add(handle, inode);
74d553aa 1163errout:
617ba13b 1164 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1165 if (!ret)
1166 ret = ret2;
bfc1af65 1167
f8514083 1168 if (pos + len > inode->i_size) {
b9a4207d 1169 ext4_truncate_failed_write(inode);
de9a55b8 1170 /*
ffacfa7a 1171 * If truncate failed early the inode might still be
f8514083
AK
1172 * on the orphan list; we need to make sure the inode
1173 * is removed from the orphan list in that case.
1174 */
1175 if (inode->i_nlink)
1176 ext4_orphan_del(NULL, inode);
1177 }
1178
bfc1af65 1179 return ret ? ret : copied;
ac27a0ec
DK
1180}
1181
bfc1af65 1182static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1183 struct address_space *mapping,
1184 loff_t pos, unsigned len, unsigned copied,
1185 struct page *page, void *fsdata)
ac27a0ec 1186{
617ba13b 1187 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1188 struct inode *inode = mapping->host;
ac27a0ec
DK
1189 int ret = 0, ret2;
1190 int partial = 0;
bfc1af65 1191 unsigned from, to;
cf17fea6 1192 loff_t new_i_size;
ac27a0ec 1193
9bffad1e 1194 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1195 from = pos & (PAGE_CACHE_SIZE - 1);
1196 to = from + len;
1197
441c8508
CW
1198 BUG_ON(!ext4_handle_valid(handle));
1199
3fdcfb66
TM
1200 if (ext4_has_inline_data(inode))
1201 copied = ext4_write_inline_data_end(inode, pos, len,
1202 copied, page);
1203 else {
1204 if (copied < len) {
1205 if (!PageUptodate(page))
1206 copied = 0;
1207 page_zero_new_buffers(page, from+copied, to);
1208 }
ac27a0ec 1209
3fdcfb66
TM
1210 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1211 to, &partial, write_end_fn);
1212 if (!partial)
1213 SetPageUptodate(page);
1214 }
cf17fea6
AK
1215 new_i_size = pos + copied;
1216 if (new_i_size > inode->i_size)
bfc1af65 1217 i_size_write(inode, pos+copied);
19f5fb7a 1218 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1219 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1220 if (new_i_size > EXT4_I(inode)->i_disksize) {
1221 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1222 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1223 if (!ret)
1224 ret = ret2;
1225 }
bfc1af65 1226
cf108bca 1227 unlock_page(page);
f8514083 1228 page_cache_release(page);
ffacfa7a 1229 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1230 /* if we have allocated more blocks and copied
1231 * less. We will have blocks allocated outside
1232 * inode->i_size. So truncate them
1233 */
1234 ext4_orphan_add(handle, inode);
1235
617ba13b 1236 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1237 if (!ret)
1238 ret = ret2;
f8514083 1239 if (pos + len > inode->i_size) {
b9a4207d 1240 ext4_truncate_failed_write(inode);
de9a55b8 1241 /*
ffacfa7a 1242 * If truncate failed early the inode might still be
f8514083
AK
1243 * on the orphan list; we need to make sure the inode
1244 * is removed from the orphan list in that case.
1245 */
1246 if (inode->i_nlink)
1247 ext4_orphan_del(NULL, inode);
1248 }
bfc1af65
NP
1249
1250 return ret ? ret : copied;
ac27a0ec 1251}
d2a17637 1252
386ad67c
LC
1253/*
1254 * Reserve a metadata for a single block located at lblock
1255 */
1256static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1257{
1258 int retries = 0;
1259 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1260 struct ext4_inode_info *ei = EXT4_I(inode);
1261 unsigned int md_needed;
1262 ext4_lblk_t save_last_lblock;
1263 int save_len;
1264
1265 /*
1266 * recalculate the amount of metadata blocks to reserve
1267 * in order to allocate nrblocks
1268 * worse case is one extent per block
1269 */
1270repeat:
1271 spin_lock(&ei->i_block_reservation_lock);
1272 /*
1273 * ext4_calc_metadata_amount() has side effects, which we have
1274 * to be prepared undo if we fail to claim space.
1275 */
1276 save_len = ei->i_da_metadata_calc_len;
1277 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1278 md_needed = EXT4_NUM_B2C(sbi,
1279 ext4_calc_metadata_amount(inode, lblock));
1280 trace_ext4_da_reserve_space(inode, md_needed);
1281
1282 /*
1283 * We do still charge estimated metadata to the sb though;
1284 * we cannot afford to run out of free blocks.
1285 */
1286 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1287 ei->i_da_metadata_calc_len = save_len;
1288 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1289 spin_unlock(&ei->i_block_reservation_lock);
1290 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1291 cond_resched();
1292 goto repeat;
1293 }
1294 return -ENOSPC;
1295 }
1296 ei->i_reserved_meta_blocks += md_needed;
1297 spin_unlock(&ei->i_block_reservation_lock);
1298
1299 return 0; /* success */
1300}
1301
9d0be502 1302/*
7b415bf6 1303 * Reserve a single cluster located at lblock
9d0be502 1304 */
01f49d0b 1305static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1306{
030ba6bc 1307 int retries = 0;
60e58e0f 1308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1309 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1310 unsigned int md_needed;
5dd4056d 1311 int ret;
03179fe9
TT
1312 ext4_lblk_t save_last_lblock;
1313 int save_len;
1314
1315 /*
1316 * We will charge metadata quota at writeout time; this saves
1317 * us from metadata over-estimation, though we may go over by
1318 * a small amount in the end. Here we just reserve for data.
1319 */
1320 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1321 if (ret)
1322 return ret;
d2a17637
MC
1323
1324 /*
1325 * recalculate the amount of metadata blocks to reserve
1326 * in order to allocate nrblocks
1327 * worse case is one extent per block
1328 */
030ba6bc 1329repeat:
0637c6f4 1330 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1331 /*
1332 * ext4_calc_metadata_amount() has side effects, which we have
1333 * to be prepared undo if we fail to claim space.
1334 */
1335 save_len = ei->i_da_metadata_calc_len;
1336 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1337 md_needed = EXT4_NUM_B2C(sbi,
1338 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1339 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1340
72b8ab9d
ES
1341 /*
1342 * We do still charge estimated metadata to the sb though;
1343 * we cannot afford to run out of free blocks.
1344 */
e7d5f315 1345 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1346 ei->i_da_metadata_calc_len = save_len;
1347 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1348 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1349 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1350 cond_resched();
030ba6bc
AK
1351 goto repeat;
1352 }
03179fe9 1353 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1354 return -ENOSPC;
1355 }
9d0be502 1356 ei->i_reserved_data_blocks++;
0637c6f4
TT
1357 ei->i_reserved_meta_blocks += md_needed;
1358 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1359
d2a17637
MC
1360 return 0; /* success */
1361}
1362
12219aea 1363static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1364{
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1366 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1367
cd213226
MC
1368 if (!to_free)
1369 return; /* Nothing to release, exit */
1370
d2a17637 1371 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1372
5a58ec87 1373 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1374 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1375 /*
0637c6f4
TT
1376 * if there aren't enough reserved blocks, then the
1377 * counter is messed up somewhere. Since this
1378 * function is called from invalidate page, it's
1379 * harmless to return without any action.
cd213226 1380 */
8de5c325 1381 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1382 "ino %lu, to_free %d with only %d reserved "
1084f252 1383 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1384 ei->i_reserved_data_blocks);
1385 WARN_ON(1);
1386 to_free = ei->i_reserved_data_blocks;
cd213226 1387 }
0637c6f4 1388 ei->i_reserved_data_blocks -= to_free;
cd213226 1389
0637c6f4
TT
1390 if (ei->i_reserved_data_blocks == 0) {
1391 /*
1392 * We can release all of the reserved metadata blocks
1393 * only when we have written all of the delayed
1394 * allocation blocks.
7b415bf6
AK
1395 * Note that in case of bigalloc, i_reserved_meta_blocks,
1396 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1397 */
57042651 1398 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1399 ei->i_reserved_meta_blocks);
ee5f4d9c 1400 ei->i_reserved_meta_blocks = 0;
9d0be502 1401 ei->i_da_metadata_calc_len = 0;
0637c6f4 1402 }
d2a17637 1403
72b8ab9d 1404 /* update fs dirty data blocks counter */
57042651 1405 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1406
d2a17637 1407 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1408
7b415bf6 1409 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1410}
1411
1412static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1413 unsigned long offset)
d2a17637
MC
1414{
1415 int to_release = 0;
1416 struct buffer_head *head, *bh;
1417 unsigned int curr_off = 0;
7b415bf6
AK
1418 struct inode *inode = page->mapping->host;
1419 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1420 int num_clusters;
51865fda 1421 ext4_fsblk_t lblk;
d2a17637
MC
1422
1423 head = page_buffers(page);
1424 bh = head;
1425 do {
1426 unsigned int next_off = curr_off + bh->b_size;
1427
1428 if ((offset <= curr_off) && (buffer_delay(bh))) {
1429 to_release++;
1430 clear_buffer_delay(bh);
1431 }
1432 curr_off = next_off;
1433 } while ((bh = bh->b_this_page) != head);
7b415bf6 1434
51865fda
ZL
1435 if (to_release) {
1436 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1437 ext4_es_remove_extent(inode, lblk, to_release);
1438 }
1439
7b415bf6
AK
1440 /* If we have released all the blocks belonging to a cluster, then we
1441 * need to release the reserved space for that cluster. */
1442 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1443 while (num_clusters > 0) {
7b415bf6
AK
1444 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1445 ((num_clusters - 1) << sbi->s_cluster_bits);
1446 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1447 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1448 ext4_da_release_space(inode, 1);
1449
1450 num_clusters--;
1451 }
d2a17637 1452}
ac27a0ec 1453
64769240
AT
1454/*
1455 * Delayed allocation stuff
1456 */
1457
64769240
AT
1458/*
1459 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1460 * them with writepage() call back
64769240
AT
1461 *
1462 * @mpd->inode: inode
1463 * @mpd->first_page: first page of the extent
1464 * @mpd->next_page: page after the last page of the extent
64769240
AT
1465 *
1466 * By the time mpage_da_submit_io() is called we expect all blocks
1467 * to be allocated. this may be wrong if allocation failed.
1468 *
1469 * As pages are already locked by write_cache_pages(), we can't use it
1470 */
1de3e3df
TT
1471static int mpage_da_submit_io(struct mpage_da_data *mpd,
1472 struct ext4_map_blocks *map)
64769240 1473{
791b7f08
AK
1474 struct pagevec pvec;
1475 unsigned long index, end;
1476 int ret = 0, err, nr_pages, i;
1477 struct inode *inode = mpd->inode;
1478 struct address_space *mapping = inode->i_mapping;
cb20d518 1479 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1480 unsigned int len, block_start;
1481 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1482 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1483 struct ext4_io_submit io_submit;
64769240
AT
1484
1485 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1486 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1487 /*
1488 * We need to start from the first_page to the next_page - 1
1489 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1490 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1491 * at the currently mapped buffer_heads.
1492 */
64769240
AT
1493 index = mpd->first_page;
1494 end = mpd->next_page - 1;
1495
791b7f08 1496 pagevec_init(&pvec, 0);
64769240 1497 while (index <= end) {
791b7f08 1498 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1499 if (nr_pages == 0)
1500 break;
1501 for (i = 0; i < nr_pages; i++) {
f8bec370 1502 int skip_page = 0;
64769240
AT
1503 struct page *page = pvec.pages[i];
1504
791b7f08
AK
1505 index = page->index;
1506 if (index > end)
1507 break;
cb20d518
TT
1508
1509 if (index == size >> PAGE_CACHE_SHIFT)
1510 len = size & ~PAGE_CACHE_MASK;
1511 else
1512 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1513 if (map) {
1514 cur_logical = index << (PAGE_CACHE_SHIFT -
1515 inode->i_blkbits);
1516 pblock = map->m_pblk + (cur_logical -
1517 map->m_lblk);
1518 }
791b7f08
AK
1519 index++;
1520
1521 BUG_ON(!PageLocked(page));
1522 BUG_ON(PageWriteback(page));
1523
3ecdb3a1
TT
1524 bh = page_bufs = page_buffers(page);
1525 block_start = 0;
64769240 1526 do {
1de3e3df
TT
1527 if (map && (cur_logical >= map->m_lblk) &&
1528 (cur_logical <= (map->m_lblk +
1529 (map->m_len - 1)))) {
29fa89d0
AK
1530 if (buffer_delay(bh)) {
1531 clear_buffer_delay(bh);
1532 bh->b_blocknr = pblock;
29fa89d0 1533 }
1de3e3df
TT
1534 if (buffer_unwritten(bh) ||
1535 buffer_mapped(bh))
1536 BUG_ON(bh->b_blocknr != pblock);
1537 if (map->m_flags & EXT4_MAP_UNINIT)
1538 set_buffer_uninit(bh);
1539 clear_buffer_unwritten(bh);
1540 }
29fa89d0 1541
13a79a47
YY
1542 /*
1543 * skip page if block allocation undone and
1544 * block is dirty
1545 */
1546 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1547 skip_page = 1;
3ecdb3a1
TT
1548 bh = bh->b_this_page;
1549 block_start += bh->b_size;
64769240
AT
1550 cur_logical++;
1551 pblock++;
1de3e3df
TT
1552 } while (bh != page_bufs);
1553
f8bec370
JK
1554 if (skip_page) {
1555 unlock_page(page);
1556 continue;
1557 }
cb20d518 1558
97498956 1559 clear_page_dirty_for_io(page);
fe089c77
JK
1560 err = ext4_bio_write_page(&io_submit, page, len,
1561 mpd->wbc);
cb20d518 1562 if (!err)
a1d6cc56 1563 mpd->pages_written++;
64769240
AT
1564 /*
1565 * In error case, we have to continue because
1566 * remaining pages are still locked
64769240
AT
1567 */
1568 if (ret == 0)
1569 ret = err;
64769240
AT
1570 }
1571 pagevec_release(&pvec);
1572 }
bd2d0210 1573 ext4_io_submit(&io_submit);
64769240 1574 return ret;
64769240
AT
1575}
1576
c7f5938a 1577static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1578{
1579 int nr_pages, i;
1580 pgoff_t index, end;
1581 struct pagevec pvec;
1582 struct inode *inode = mpd->inode;
1583 struct address_space *mapping = inode->i_mapping;
51865fda 1584 ext4_lblk_t start, last;
c4a0c46e 1585
c7f5938a
CW
1586 index = mpd->first_page;
1587 end = mpd->next_page - 1;
51865fda
ZL
1588
1589 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1590 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1591 ext4_es_remove_extent(inode, start, last - start + 1);
1592
66bea92c 1593 pagevec_init(&pvec, 0);
c4a0c46e
AK
1594 while (index <= end) {
1595 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1596 if (nr_pages == 0)
1597 break;
1598 for (i = 0; i < nr_pages; i++) {
1599 struct page *page = pvec.pages[i];
9b1d0998 1600 if (page->index > end)
c4a0c46e 1601 break;
c4a0c46e
AK
1602 BUG_ON(!PageLocked(page));
1603 BUG_ON(PageWriteback(page));
1604 block_invalidatepage(page, 0);
1605 ClearPageUptodate(page);
1606 unlock_page(page);
1607 }
9b1d0998
JK
1608 index = pvec.pages[nr_pages - 1]->index + 1;
1609 pagevec_release(&pvec);
c4a0c46e
AK
1610 }
1611 return;
1612}
1613
df22291f
AK
1614static void ext4_print_free_blocks(struct inode *inode)
1615{
1616 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1617 struct super_block *sb = inode->i_sb;
1618
1619 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1620 EXT4_C2B(EXT4_SB(inode->i_sb),
1621 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1622 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1623 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1624 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1625 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1626 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1627 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1628 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1629 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1630 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1631 EXT4_I(inode)->i_reserved_data_blocks);
1632 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1633 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1634 return;
1635}
1636
64769240 1637/*
5a87b7a5
TT
1638 * mpage_da_map_and_submit - go through given space, map them
1639 * if necessary, and then submit them for I/O
64769240 1640 *
8dc207c0 1641 * @mpd - bh describing space
64769240
AT
1642 *
1643 * The function skips space we know is already mapped to disk blocks.
1644 *
64769240 1645 */
5a87b7a5 1646static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1647{
2ac3b6e0 1648 int err, blks, get_blocks_flags;
1de3e3df 1649 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1650 sector_t next = mpd->b_blocknr;
1651 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1652 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1653 handle_t *handle = NULL;
64769240
AT
1654
1655 /*
5a87b7a5
TT
1656 * If the blocks are mapped already, or we couldn't accumulate
1657 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1658 */
5a87b7a5
TT
1659 if ((mpd->b_size == 0) ||
1660 ((mpd->b_state & (1 << BH_Mapped)) &&
1661 !(mpd->b_state & (1 << BH_Delay)) &&
1662 !(mpd->b_state & (1 << BH_Unwritten))))
1663 goto submit_io;
2fa3cdfb
TT
1664
1665 handle = ext4_journal_current_handle();
1666 BUG_ON(!handle);
1667
79ffab34 1668 /*
79e83036 1669 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1670 * blocks, or to convert an uninitialized extent to be
1671 * initialized (in the case where we have written into
1672 * one or more preallocated blocks).
1673 *
1674 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1675 * indicate that we are on the delayed allocation path. This
1676 * affects functions in many different parts of the allocation
1677 * call path. This flag exists primarily because we don't
79e83036 1678 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1679 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1680 * inode's allocation semaphore is taken.
1681 *
1682 * If the blocks in questions were delalloc blocks, set
1683 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1684 * variables are updated after the blocks have been allocated.
79ffab34 1685 */
2ed88685
TT
1686 map.m_lblk = next;
1687 map.m_len = max_blocks;
1296cc85 1688 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1689 if (ext4_should_dioread_nolock(mpd->inode))
1690 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1691 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1692 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1693
2ed88685 1694 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1695 if (blks < 0) {
e3570639
ES
1696 struct super_block *sb = mpd->inode->i_sb;
1697
2fa3cdfb 1698 err = blks;
ed5bde0b 1699 /*
5a87b7a5 1700 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1701 * appears to be free blocks we will just let
1702 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1703 */
1704 if (err == -EAGAIN)
5a87b7a5 1705 goto submit_io;
df22291f 1706
5dee5437 1707 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1708 mpd->retval = err;
5a87b7a5 1709 goto submit_io;
df22291f
AK
1710 }
1711
c4a0c46e 1712 /*
ed5bde0b
TT
1713 * get block failure will cause us to loop in
1714 * writepages, because a_ops->writepage won't be able
1715 * to make progress. The page will be redirtied by
1716 * writepage and writepages will again try to write
1717 * the same.
c4a0c46e 1718 */
e3570639
ES
1719 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1720 ext4_msg(sb, KERN_CRIT,
1721 "delayed block allocation failed for inode %lu "
1722 "at logical offset %llu with max blocks %zd "
1723 "with error %d", mpd->inode->i_ino,
1724 (unsigned long long) next,
1725 mpd->b_size >> mpd->inode->i_blkbits, err);
1726 ext4_msg(sb, KERN_CRIT,
01a523eb 1727 "This should not happen!! Data will be lost");
e3570639
ES
1728 if (err == -ENOSPC)
1729 ext4_print_free_blocks(mpd->inode);
030ba6bc 1730 }
2fa3cdfb 1731 /* invalidate all the pages */
c7f5938a 1732 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1733
1734 /* Mark this page range as having been completed */
1735 mpd->io_done = 1;
5a87b7a5 1736 return;
c4a0c46e 1737 }
2fa3cdfb
TT
1738 BUG_ON(blks == 0);
1739
1de3e3df 1740 mapp = &map;
2ed88685
TT
1741 if (map.m_flags & EXT4_MAP_NEW) {
1742 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1743 int i;
64769240 1744
2ed88685
TT
1745 for (i = 0; i < map.m_len; i++)
1746 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1747 }
1748
1749 /*
03f5d8bc 1750 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1751 */
1752 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1753 if (disksize > i_size_read(mpd->inode))
1754 disksize = i_size_read(mpd->inode);
1755 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1756 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1757 err = ext4_mark_inode_dirty(handle, mpd->inode);
1758 if (err)
1759 ext4_error(mpd->inode->i_sb,
1760 "Failed to mark inode %lu dirty",
1761 mpd->inode->i_ino);
2fa3cdfb
TT
1762 }
1763
5a87b7a5 1764submit_io:
1de3e3df 1765 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1766 mpd->io_done = 1;
64769240
AT
1767}
1768
bf068ee2
AK
1769#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1770 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1771
1772/*
1773 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1774 *
1775 * @mpd->lbh - extent of blocks
1776 * @logical - logical number of the block in the file
b6a8e62f 1777 * @b_state - b_state of the buffer head added
64769240
AT
1778 *
1779 * the function is used to collect contig. blocks in same state
1780 */
b6a8e62f 1781static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1782 unsigned long b_state)
64769240 1783{
64769240 1784 sector_t next;
b6a8e62f
JK
1785 int blkbits = mpd->inode->i_blkbits;
1786 int nrblocks = mpd->b_size >> blkbits;
64769240 1787
c445e3e0
ES
1788 /*
1789 * XXX Don't go larger than mballoc is willing to allocate
1790 * This is a stopgap solution. We eventually need to fold
1791 * mpage_da_submit_io() into this function and then call
79e83036 1792 * ext4_map_blocks() multiple times in a loop
c445e3e0 1793 */
b6a8e62f 1794 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1795 goto flush_it;
1796
b6a8e62f
JK
1797 /* check if the reserved journal credits might overflow */
1798 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1799 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1800 /*
1801 * With non-extent format we are limited by the journal
1802 * credit available. Total credit needed to insert
1803 * nrblocks contiguous blocks is dependent on the
1804 * nrblocks. So limit nrblocks.
1805 */
1806 goto flush_it;
525f4ed8
MC
1807 }
1808 }
64769240
AT
1809 /*
1810 * First block in the extent
1811 */
8dc207c0
TT
1812 if (mpd->b_size == 0) {
1813 mpd->b_blocknr = logical;
b6a8e62f 1814 mpd->b_size = 1 << blkbits;
8dc207c0 1815 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1816 return;
1817 }
1818
8dc207c0 1819 next = mpd->b_blocknr + nrblocks;
64769240
AT
1820 /*
1821 * Can we merge the block to our big extent?
1822 */
8dc207c0 1823 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1824 mpd->b_size += 1 << blkbits;
64769240
AT
1825 return;
1826 }
1827
525f4ed8 1828flush_it:
64769240
AT
1829 /*
1830 * We couldn't merge the block to our extent, so we
1831 * need to flush current extent and start new one
1832 */
5a87b7a5 1833 mpage_da_map_and_submit(mpd);
a1d6cc56 1834 return;
64769240
AT
1835}
1836
c364b22c 1837static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1838{
c364b22c 1839 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1840}
1841
5356f261
AK
1842/*
1843 * This function is grabs code from the very beginning of
1844 * ext4_map_blocks, but assumes that the caller is from delayed write
1845 * time. This function looks up the requested blocks and sets the
1846 * buffer delay bit under the protection of i_data_sem.
1847 */
1848static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1849 struct ext4_map_blocks *map,
1850 struct buffer_head *bh)
1851{
d100eef2 1852 struct extent_status es;
5356f261
AK
1853 int retval;
1854 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1855#ifdef ES_AGGRESSIVE_TEST
1856 struct ext4_map_blocks orig_map;
1857
1858 memcpy(&orig_map, map, sizeof(*map));
1859#endif
5356f261
AK
1860
1861 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1862 invalid_block = ~0;
1863
1864 map->m_flags = 0;
1865 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1866 "logical block %lu\n", inode->i_ino, map->m_len,
1867 (unsigned long) map->m_lblk);
d100eef2
ZL
1868
1869 /* Lookup extent status tree firstly */
1870 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1871
1872 if (ext4_es_is_hole(&es)) {
1873 retval = 0;
1874 down_read((&EXT4_I(inode)->i_data_sem));
1875 goto add_delayed;
1876 }
1877
1878 /*
1879 * Delayed extent could be allocated by fallocate.
1880 * So we need to check it.
1881 */
1882 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1883 map_bh(bh, inode->i_sb, invalid_block);
1884 set_buffer_new(bh);
1885 set_buffer_delay(bh);
1886 return 0;
1887 }
1888
1889 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1890 retval = es.es_len - (iblock - es.es_lblk);
1891 if (retval > map->m_len)
1892 retval = map->m_len;
1893 map->m_len = retval;
1894 if (ext4_es_is_written(&es))
1895 map->m_flags |= EXT4_MAP_MAPPED;
1896 else if (ext4_es_is_unwritten(&es))
1897 map->m_flags |= EXT4_MAP_UNWRITTEN;
1898 else
1899 BUG_ON(1);
1900
921f266b
DM
1901#ifdef ES_AGGRESSIVE_TEST
1902 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1903#endif
d100eef2
ZL
1904 return retval;
1905 }
1906
5356f261
AK
1907 /*
1908 * Try to see if we can get the block without requesting a new
1909 * file system block.
1910 */
1911 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1912 if (ext4_has_inline_data(inode)) {
1913 /*
1914 * We will soon create blocks for this page, and let
1915 * us pretend as if the blocks aren't allocated yet.
1916 * In case of clusters, we have to handle the work
1917 * of mapping from cluster so that the reserved space
1918 * is calculated properly.
1919 */
1920 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1921 ext4_find_delalloc_cluster(inode, map->m_lblk))
1922 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1923 retval = 0;
1924 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1925 retval = ext4_ext_map_blocks(NULL, inode, map,
1926 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1927 else
d100eef2
ZL
1928 retval = ext4_ind_map_blocks(NULL, inode, map,
1929 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1930
d100eef2 1931add_delayed:
5356f261 1932 if (retval == 0) {
f7fec032 1933 int ret;
5356f261
AK
1934 /*
1935 * XXX: __block_prepare_write() unmaps passed block,
1936 * is it OK?
1937 */
386ad67c
LC
1938 /*
1939 * If the block was allocated from previously allocated cluster,
1940 * then we don't need to reserve it again. However we still need
1941 * to reserve metadata for every block we're going to write.
1942 */
5356f261 1943 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1944 ret = ext4_da_reserve_space(inode, iblock);
1945 if (ret) {
5356f261 1946 /* not enough space to reserve */
f7fec032 1947 retval = ret;
5356f261 1948 goto out_unlock;
f7fec032 1949 }
386ad67c
LC
1950 } else {
1951 ret = ext4_da_reserve_metadata(inode, iblock);
1952 if (ret) {
1953 /* not enough space to reserve */
1954 retval = ret;
1955 goto out_unlock;
1956 }
5356f261
AK
1957 }
1958
f7fec032
ZL
1959 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1960 ~0, EXTENT_STATUS_DELAYED);
1961 if (ret) {
1962 retval = ret;
51865fda 1963 goto out_unlock;
f7fec032 1964 }
51865fda 1965
5356f261
AK
1966 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1967 * and it should not appear on the bh->b_state.
1968 */
1969 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1970
1971 map_bh(bh, inode->i_sb, invalid_block);
1972 set_buffer_new(bh);
1973 set_buffer_delay(bh);
f7fec032
ZL
1974 } else if (retval > 0) {
1975 int ret;
1976 unsigned long long status;
1977
921f266b
DM
1978#ifdef ES_AGGRESSIVE_TEST
1979 if (retval != map->m_len) {
1980 printk("ES len assertation failed for inode: %lu "
1981 "retval %d != map->m_len %d "
1982 "in %s (lookup)\n", inode->i_ino, retval,
1983 map->m_len, __func__);
1984 }
1985#endif
1986
f7fec032
ZL
1987 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1988 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1989 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1990 map->m_pblk, status);
1991 if (ret != 0)
1992 retval = ret;
5356f261
AK
1993 }
1994
1995out_unlock:
1996 up_read((&EXT4_I(inode)->i_data_sem));
1997
1998 return retval;
1999}
2000
64769240 2001/*
b920c755
TT
2002 * This is a special get_blocks_t callback which is used by
2003 * ext4_da_write_begin(). It will either return mapped block or
2004 * reserve space for a single block.
29fa89d0
AK
2005 *
2006 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2007 * We also have b_blocknr = -1 and b_bdev initialized properly
2008 *
2009 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2010 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2011 * initialized properly.
64769240 2012 */
9c3569b5
TM
2013int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2014 struct buffer_head *bh, int create)
64769240 2015{
2ed88685 2016 struct ext4_map_blocks map;
64769240
AT
2017 int ret = 0;
2018
2019 BUG_ON(create == 0);
2ed88685
TT
2020 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2021
2022 map.m_lblk = iblock;
2023 map.m_len = 1;
64769240
AT
2024
2025 /*
2026 * first, we need to know whether the block is allocated already
2027 * preallocated blocks are unmapped but should treated
2028 * the same as allocated blocks.
2029 */
5356f261
AK
2030 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2031 if (ret <= 0)
2ed88685 2032 return ret;
64769240 2033
2ed88685
TT
2034 map_bh(bh, inode->i_sb, map.m_pblk);
2035 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2036
2037 if (buffer_unwritten(bh)) {
2038 /* A delayed write to unwritten bh should be marked
2039 * new and mapped. Mapped ensures that we don't do
2040 * get_block multiple times when we write to the same
2041 * offset and new ensures that we do proper zero out
2042 * for partial write.
2043 */
2044 set_buffer_new(bh);
c8205636 2045 set_buffer_mapped(bh);
2ed88685
TT
2046 }
2047 return 0;
64769240 2048}
61628a3f 2049
62e086be
AK
2050static int bget_one(handle_t *handle, struct buffer_head *bh)
2051{
2052 get_bh(bh);
2053 return 0;
2054}
2055
2056static int bput_one(handle_t *handle, struct buffer_head *bh)
2057{
2058 put_bh(bh);
2059 return 0;
2060}
2061
2062static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2063 unsigned int len)
2064{
2065 struct address_space *mapping = page->mapping;
2066 struct inode *inode = mapping->host;
3fdcfb66 2067 struct buffer_head *page_bufs = NULL;
62e086be 2068 handle_t *handle = NULL;
3fdcfb66
TM
2069 int ret = 0, err = 0;
2070 int inline_data = ext4_has_inline_data(inode);
2071 struct buffer_head *inode_bh = NULL;
62e086be 2072
cb20d518 2073 ClearPageChecked(page);
3fdcfb66
TM
2074
2075 if (inline_data) {
2076 BUG_ON(page->index != 0);
2077 BUG_ON(len > ext4_get_max_inline_size(inode));
2078 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2079 if (inode_bh == NULL)
2080 goto out;
2081 } else {
2082 page_bufs = page_buffers(page);
2083 if (!page_bufs) {
2084 BUG();
2085 goto out;
2086 }
2087 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2088 NULL, bget_one);
2089 }
62e086be
AK
2090 /* As soon as we unlock the page, it can go away, but we have
2091 * references to buffers so we are safe */
2092 unlock_page(page);
2093
9924a92a
TT
2094 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2095 ext4_writepage_trans_blocks(inode));
62e086be
AK
2096 if (IS_ERR(handle)) {
2097 ret = PTR_ERR(handle);
2098 goto out;
2099 }
2100
441c8508
CW
2101 BUG_ON(!ext4_handle_valid(handle));
2102
3fdcfb66
TM
2103 if (inline_data) {
2104 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2105
3fdcfb66
TM
2106 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2107
2108 } else {
2109 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2110 do_journal_get_write_access);
2111
2112 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2113 write_end_fn);
2114 }
62e086be
AK
2115 if (ret == 0)
2116 ret = err;
2d859db3 2117 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2118 err = ext4_journal_stop(handle);
2119 if (!ret)
2120 ret = err;
2121
3fdcfb66
TM
2122 if (!ext4_has_inline_data(inode))
2123 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2124 NULL, bput_one);
19f5fb7a 2125 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2126out:
3fdcfb66 2127 brelse(inode_bh);
62e086be
AK
2128 return ret;
2129}
2130
61628a3f 2131/*
43ce1d23
AK
2132 * Note that we don't need to start a transaction unless we're journaling data
2133 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2134 * need to file the inode to the transaction's list in ordered mode because if
2135 * we are writing back data added by write(), the inode is already there and if
25985edc 2136 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2137 * transaction the data will hit the disk. In case we are journaling data, we
2138 * cannot start transaction directly because transaction start ranks above page
2139 * lock so we have to do some magic.
2140 *
b920c755
TT
2141 * This function can get called via...
2142 * - ext4_da_writepages after taking page lock (have journal handle)
2143 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2144 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2145 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2146 *
2147 * We don't do any block allocation in this function. If we have page with
2148 * multiple blocks we need to write those buffer_heads that are mapped. This
2149 * is important for mmaped based write. So if we do with blocksize 1K
2150 * truncate(f, 1024);
2151 * a = mmap(f, 0, 4096);
2152 * a[0] = 'a';
2153 * truncate(f, 4096);
2154 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2155 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2156 * do_wp_page). So writepage should write the first block. If we modify
2157 * the mmap area beyond 1024 we will again get a page_fault and the
2158 * page_mkwrite callback will do the block allocation and mark the
2159 * buffer_heads mapped.
2160 *
2161 * We redirty the page if we have any buffer_heads that is either delay or
2162 * unwritten in the page.
2163 *
2164 * We can get recursively called as show below.
2165 *
2166 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2167 * ext4_writepage()
2168 *
2169 * But since we don't do any block allocation we should not deadlock.
2170 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2171 */
43ce1d23 2172static int ext4_writepage(struct page *page,
62e086be 2173 struct writeback_control *wbc)
64769240 2174{
f8bec370 2175 int ret = 0;
61628a3f 2176 loff_t size;
498e5f24 2177 unsigned int len;
744692dc 2178 struct buffer_head *page_bufs = NULL;
61628a3f 2179 struct inode *inode = page->mapping->host;
36ade451 2180 struct ext4_io_submit io_submit;
61628a3f 2181
a9c667f8 2182 trace_ext4_writepage(page);
f0e6c985
AK
2183 size = i_size_read(inode);
2184 if (page->index == size >> PAGE_CACHE_SHIFT)
2185 len = size & ~PAGE_CACHE_MASK;
2186 else
2187 len = PAGE_CACHE_SIZE;
64769240 2188
a42afc5f 2189 page_bufs = page_buffers(page);
a42afc5f 2190 /*
fe386132
JK
2191 * We cannot do block allocation or other extent handling in this
2192 * function. If there are buffers needing that, we have to redirty
2193 * the page. But we may reach here when we do a journal commit via
2194 * journal_submit_inode_data_buffers() and in that case we must write
2195 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2196 */
f19d5870
TM
2197 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2198 ext4_bh_delay_or_unwritten)) {
f8bec370 2199 redirty_page_for_writepage(wbc, page);
fe386132
JK
2200 if (current->flags & PF_MEMALLOC) {
2201 /*
2202 * For memory cleaning there's no point in writing only
2203 * some buffers. So just bail out. Warn if we came here
2204 * from direct reclaim.
2205 */
2206 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2207 == PF_MEMALLOC);
f0e6c985
AK
2208 unlock_page(page);
2209 return 0;
2210 }
a42afc5f 2211 }
64769240 2212
cb20d518 2213 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2214 /*
2215 * It's mmapped pagecache. Add buffers and journal it. There
2216 * doesn't seem much point in redirtying the page here.
2217 */
3f0ca309 2218 return __ext4_journalled_writepage(page, len);
43ce1d23 2219
36ade451
JK
2220 memset(&io_submit, 0, sizeof(io_submit));
2221 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2222 ext4_io_submit(&io_submit);
64769240
AT
2223 return ret;
2224}
2225
61628a3f 2226/*
525f4ed8 2227 * This is called via ext4_da_writepages() to
25985edc 2228 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2229 * a single extent allocation into a single transaction,
2230 * ext4_da_writpeages() will loop calling this before
2231 * the block allocation.
61628a3f 2232 */
525f4ed8
MC
2233
2234static int ext4_da_writepages_trans_blocks(struct inode *inode)
2235{
2236 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2237
2238 /*
2239 * With non-extent format the journal credit needed to
2240 * insert nrblocks contiguous block is dependent on
2241 * number of contiguous block. So we will limit
2242 * number of contiguous block to a sane value
2243 */
12e9b892 2244 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2245 (max_blocks > EXT4_MAX_TRANS_DATA))
2246 max_blocks = EXT4_MAX_TRANS_DATA;
2247
2248 return ext4_chunk_trans_blocks(inode, max_blocks);
2249}
61628a3f 2250
8e48dcfb
TT
2251/*
2252 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2253 * address space and accumulate pages that need writing, and call
168fc022
TT
2254 * mpage_da_map_and_submit to map a single contiguous memory region
2255 * and then write them.
8e48dcfb 2256 */
9c3569b5
TM
2257static int write_cache_pages_da(handle_t *handle,
2258 struct address_space *mapping,
8e48dcfb 2259 struct writeback_control *wbc,
72f84e65
ES
2260 struct mpage_da_data *mpd,
2261 pgoff_t *done_index)
8e48dcfb 2262{
4f01b02c 2263 struct buffer_head *bh, *head;
168fc022 2264 struct inode *inode = mapping->host;
4f01b02c
TT
2265 struct pagevec pvec;
2266 unsigned int nr_pages;
2267 sector_t logical;
2268 pgoff_t index, end;
2269 long nr_to_write = wbc->nr_to_write;
2270 int i, tag, ret = 0;
8e48dcfb 2271
168fc022
TT
2272 memset(mpd, 0, sizeof(struct mpage_da_data));
2273 mpd->wbc = wbc;
2274 mpd->inode = inode;
8e48dcfb
TT
2275 pagevec_init(&pvec, 0);
2276 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2277 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2278
6e6938b6 2279 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2280 tag = PAGECACHE_TAG_TOWRITE;
2281 else
2282 tag = PAGECACHE_TAG_DIRTY;
2283
72f84e65 2284 *done_index = index;
4f01b02c 2285 while (index <= end) {
5b41d924 2286 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2288 if (nr_pages == 0)
4f01b02c 2289 return 0;
8e48dcfb
TT
2290
2291 for (i = 0; i < nr_pages; i++) {
2292 struct page *page = pvec.pages[i];
2293
2294 /*
2295 * At this point, the page may be truncated or
2296 * invalidated (changing page->mapping to NULL), or
2297 * even swizzled back from swapper_space to tmpfs file
2298 * mapping. However, page->index will not change
2299 * because we have a reference on the page.
2300 */
4f01b02c
TT
2301 if (page->index > end)
2302 goto out;
8e48dcfb 2303
72f84e65
ES
2304 *done_index = page->index + 1;
2305
78aaced3
TT
2306 /*
2307 * If we can't merge this page, and we have
2308 * accumulated an contiguous region, write it
2309 */
2310 if ((mpd->next_page != page->index) &&
2311 (mpd->next_page != mpd->first_page)) {
2312 mpage_da_map_and_submit(mpd);
2313 goto ret_extent_tail;
2314 }
2315
8e48dcfb
TT
2316 lock_page(page);
2317
2318 /*
4f01b02c
TT
2319 * If the page is no longer dirty, or its
2320 * mapping no longer corresponds to inode we
2321 * are writing (which means it has been
2322 * truncated or invalidated), or the page is
2323 * already under writeback and we are not
2324 * doing a data integrity writeback, skip the page
8e48dcfb 2325 */
4f01b02c
TT
2326 if (!PageDirty(page) ||
2327 (PageWriteback(page) &&
2328 (wbc->sync_mode == WB_SYNC_NONE)) ||
2329 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2330 unlock_page(page);
2331 continue;
2332 }
2333
7cb1a535 2334 wait_on_page_writeback(page);
8e48dcfb 2335 BUG_ON(PageWriteback(page));
8e48dcfb 2336
9c3569b5
TM
2337 /*
2338 * If we have inline data and arrive here, it means that
2339 * we will soon create the block for the 1st page, so
2340 * we'd better clear the inline data here.
2341 */
2342 if (ext4_has_inline_data(inode)) {
2343 BUG_ON(ext4_test_inode_state(inode,
2344 EXT4_STATE_MAY_INLINE_DATA));
2345 ext4_destroy_inline_data(handle, inode);
2346 }
2347
168fc022 2348 if (mpd->next_page != page->index)
8eb9e5ce 2349 mpd->first_page = page->index;
8eb9e5ce
TT
2350 mpd->next_page = page->index + 1;
2351 logical = (sector_t) page->index <<
2352 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2353
f8bec370
JK
2354 /* Add all dirty buffers to mpd */
2355 head = page_buffers(page);
2356 bh = head;
2357 do {
2358 BUG_ON(buffer_locked(bh));
8eb9e5ce 2359 /*
f8bec370
JK
2360 * We need to try to allocate unmapped blocks
2361 * in the same page. Otherwise we won't make
2362 * progress with the page in ext4_writepage
8eb9e5ce 2363 */
f8bec370
JK
2364 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2365 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2366 bh->b_state);
2367 if (mpd->io_done)
2368 goto ret_extent_tail;
2369 } else if (buffer_dirty(bh) &&
2370 buffer_mapped(bh)) {
8eb9e5ce 2371 /*
f8bec370
JK
2372 * mapped dirty buffer. We need to
2373 * update the b_state because we look
2374 * at b_state in mpage_da_map_blocks.
2375 * We don't update b_size because if we
2376 * find an unmapped buffer_head later
2377 * we need to use the b_state flag of
2378 * that buffer_head.
8eb9e5ce 2379 */
f8bec370
JK
2380 if (mpd->b_size == 0)
2381 mpd->b_state =
2382 bh->b_state & BH_FLAGS;
2383 }
2384 logical++;
2385 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2386
2387 if (nr_to_write > 0) {
2388 nr_to_write--;
2389 if (nr_to_write == 0 &&
4f01b02c 2390 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2391 /*
2392 * We stop writing back only if we are
2393 * not doing integrity sync. In case of
2394 * integrity sync we have to keep going
2395 * because someone may be concurrently
2396 * dirtying pages, and we might have
2397 * synced a lot of newly appeared dirty
2398 * pages, but have not synced all of the
2399 * old dirty pages.
2400 */
4f01b02c 2401 goto out;
8e48dcfb
TT
2402 }
2403 }
2404 pagevec_release(&pvec);
2405 cond_resched();
2406 }
4f01b02c
TT
2407 return 0;
2408ret_extent_tail:
2409 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2410out:
2411 pagevec_release(&pvec);
2412 cond_resched();
8e48dcfb
TT
2413 return ret;
2414}
2415
2416
64769240 2417static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2418 struct writeback_control *wbc)
64769240 2419{
22208ded
AK
2420 pgoff_t index;
2421 int range_whole = 0;
61628a3f 2422 handle_t *handle = NULL;
df22291f 2423 struct mpage_da_data mpd;
5e745b04 2424 struct inode *inode = mapping->host;
498e5f24 2425 int pages_written = 0;
55138e0b 2426 unsigned int max_pages;
2acf2c26 2427 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2428 int needed_blocks, ret = 0;
2429 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2430 loff_t range_start = wbc->range_start;
5e745b04 2431 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2432 pgoff_t done_index = 0;
5b41d924 2433 pgoff_t end;
1bce63d1 2434 struct blk_plug plug;
61628a3f 2435
9bffad1e 2436 trace_ext4_da_writepages(inode, wbc);
ba80b101 2437
61628a3f
MC
2438 /*
2439 * No pages to write? This is mainly a kludge to avoid starting
2440 * a transaction for special inodes like journal inode on last iput()
2441 * because that could violate lock ordering on umount
2442 */
a1d6cc56 2443 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2444 return 0;
2a21e37e
TT
2445
2446 /*
2447 * If the filesystem has aborted, it is read-only, so return
2448 * right away instead of dumping stack traces later on that
2449 * will obscure the real source of the problem. We test
4ab2f15b 2450 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2451 * the latter could be true if the filesystem is mounted
2452 * read-only, and in that case, ext4_da_writepages should
2453 * *never* be called, so if that ever happens, we would want
2454 * the stack trace.
2455 */
4ab2f15b 2456 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2457 return -EROFS;
2458
22208ded
AK
2459 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2460 range_whole = 1;
61628a3f 2461
2acf2c26
AK
2462 range_cyclic = wbc->range_cyclic;
2463 if (wbc->range_cyclic) {
22208ded 2464 index = mapping->writeback_index;
2acf2c26
AK
2465 if (index)
2466 cycled = 0;
2467 wbc->range_start = index << PAGE_CACHE_SHIFT;
2468 wbc->range_end = LLONG_MAX;
2469 wbc->range_cyclic = 0;
5b41d924
ES
2470 end = -1;
2471 } else {
22208ded 2472 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2473 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2474 }
a1d6cc56 2475
55138e0b
TT
2476 /*
2477 * This works around two forms of stupidity. The first is in
2478 * the writeback code, which caps the maximum number of pages
2479 * written to be 1024 pages. This is wrong on multiple
2480 * levels; different architectues have a different page size,
2481 * which changes the maximum amount of data which gets
2482 * written. Secondly, 4 megabytes is way too small. XFS
2483 * forces this value to be 16 megabytes by multiplying
2484 * nr_to_write parameter by four, and then relies on its
2485 * allocator to allocate larger extents to make them
2486 * contiguous. Unfortunately this brings us to the second
2487 * stupidity, which is that ext4's mballoc code only allocates
2488 * at most 2048 blocks. So we force contiguous writes up to
2489 * the number of dirty blocks in the inode, or
2490 * sbi->max_writeback_mb_bump whichever is smaller.
2491 */
2492 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2493 if (!range_cyclic && range_whole) {
2494 if (wbc->nr_to_write == LONG_MAX)
2495 desired_nr_to_write = wbc->nr_to_write;
2496 else
2497 desired_nr_to_write = wbc->nr_to_write * 8;
2498 } else
55138e0b
TT
2499 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2500 max_pages);
2501 if (desired_nr_to_write > max_pages)
2502 desired_nr_to_write = max_pages;
2503
2504 if (wbc->nr_to_write < desired_nr_to_write) {
2505 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2506 wbc->nr_to_write = desired_nr_to_write;
2507 }
2508
2acf2c26 2509retry:
6e6938b6 2510 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2511 tag_pages_for_writeback(mapping, index, end);
2512
1bce63d1 2513 blk_start_plug(&plug);
22208ded 2514 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2515
2516 /*
2517 * we insert one extent at a time. So we need
2518 * credit needed for single extent allocation.
2519 * journalled mode is currently not supported
2520 * by delalloc
2521 */
2522 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2523 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2524
61628a3f 2525 /* start a new transaction*/
9924a92a
TT
2526 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2527 needed_blocks);
61628a3f
MC
2528 if (IS_ERR(handle)) {
2529 ret = PTR_ERR(handle);
1693918e 2530 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2531 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2532 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2533 blk_finish_plug(&plug);
61628a3f
MC
2534 goto out_writepages;
2535 }
f63e6005
TT
2536
2537 /*
8eb9e5ce 2538 * Now call write_cache_pages_da() to find the next
f63e6005 2539 * contiguous region of logical blocks that need
8eb9e5ce 2540 * blocks to be allocated by ext4 and submit them.
f63e6005 2541 */
9c3569b5
TM
2542 ret = write_cache_pages_da(handle, mapping,
2543 wbc, &mpd, &done_index);
f63e6005 2544 /*
af901ca1 2545 * If we have a contiguous extent of pages and we
f63e6005
TT
2546 * haven't done the I/O yet, map the blocks and submit
2547 * them for I/O.
2548 */
2549 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2550 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2551 ret = MPAGE_DA_EXTENT_TAIL;
2552 }
b3a3ca8c 2553 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2554 wbc->nr_to_write -= mpd.pages_written;
df22291f 2555
61628a3f 2556 ext4_journal_stop(handle);
df22291f 2557
8f64b32e 2558 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2559 /* commit the transaction which would
2560 * free blocks released in the transaction
2561 * and try again
2562 */
df22291f 2563 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2564 ret = 0;
2565 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2566 /*
8de49e67
KM
2567 * Got one extent now try with rest of the pages.
2568 * If mpd.retval is set -EIO, journal is aborted.
2569 * So we don't need to write any more.
a1d6cc56 2570 */
22208ded 2571 pages_written += mpd.pages_written;
8de49e67 2572 ret = mpd.retval;
2acf2c26 2573 io_done = 1;
22208ded 2574 } else if (wbc->nr_to_write)
61628a3f
MC
2575 /*
2576 * There is no more writeout needed
2577 * or we requested for a noblocking writeout
2578 * and we found the device congested
2579 */
61628a3f 2580 break;
a1d6cc56 2581 }
1bce63d1 2582 blk_finish_plug(&plug);
2acf2c26
AK
2583 if (!io_done && !cycled) {
2584 cycled = 1;
2585 index = 0;
2586 wbc->range_start = index << PAGE_CACHE_SHIFT;
2587 wbc->range_end = mapping->writeback_index - 1;
2588 goto retry;
2589 }
22208ded
AK
2590
2591 /* Update index */
2acf2c26 2592 wbc->range_cyclic = range_cyclic;
22208ded
AK
2593 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2594 /*
2595 * set the writeback_index so that range_cyclic
2596 * mode will write it back later
2597 */
72f84e65 2598 mapping->writeback_index = done_index;
a1d6cc56 2599
61628a3f 2600out_writepages:
2faf2e19 2601 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2602 wbc->range_start = range_start;
9bffad1e 2603 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2604 return ret;
64769240
AT
2605}
2606
79f0be8d
AK
2607static int ext4_nonda_switch(struct super_block *sb)
2608{
2609 s64 free_blocks, dirty_blocks;
2610 struct ext4_sb_info *sbi = EXT4_SB(sb);
2611
2612 /*
2613 * switch to non delalloc mode if we are running low
2614 * on free block. The free block accounting via percpu
179f7ebf 2615 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2616 * accumulated on each CPU without updating global counters
2617 * Delalloc need an accurate free block accounting. So switch
2618 * to non delalloc when we are near to error range.
2619 */
57042651
TT
2620 free_blocks = EXT4_C2B(sbi,
2621 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2622 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2623 /*
2624 * Start pushing delalloc when 1/2 of free blocks are dirty.
2625 */
10ee27a0
MX
2626 if (dirty_blocks && (free_blocks < 2 * dirty_blocks))
2627 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2628
79f0be8d 2629 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2630 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2631 /*
c8afb446
ES
2632 * free block count is less than 150% of dirty blocks
2633 * or free blocks is less than watermark
79f0be8d
AK
2634 */
2635 return 1;
2636 }
2637 return 0;
2638}
2639
64769240 2640static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2641 loff_t pos, unsigned len, unsigned flags,
2642 struct page **pagep, void **fsdata)
64769240 2643{
72b8ab9d 2644 int ret, retries = 0;
64769240
AT
2645 struct page *page;
2646 pgoff_t index;
64769240
AT
2647 struct inode *inode = mapping->host;
2648 handle_t *handle;
2649
2650 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2651
2652 if (ext4_nonda_switch(inode->i_sb)) {
2653 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2654 return ext4_write_begin(file, mapping, pos,
2655 len, flags, pagep, fsdata);
2656 }
2657 *fsdata = (void *)0;
9bffad1e 2658 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2659
2660 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2661 ret = ext4_da_write_inline_data_begin(mapping, inode,
2662 pos, len, flags,
2663 pagep, fsdata);
2664 if (ret < 0)
47564bfb
TT
2665 return ret;
2666 if (ret == 1)
2667 return 0;
9c3569b5
TM
2668 }
2669
47564bfb
TT
2670 /*
2671 * grab_cache_page_write_begin() can take a long time if the
2672 * system is thrashing due to memory pressure, or if the page
2673 * is being written back. So grab it first before we start
2674 * the transaction handle. This also allows us to allocate
2675 * the page (if needed) without using GFP_NOFS.
2676 */
2677retry_grab:
2678 page = grab_cache_page_write_begin(mapping, index, flags);
2679 if (!page)
2680 return -ENOMEM;
2681 unlock_page(page);
2682
64769240
AT
2683 /*
2684 * With delayed allocation, we don't log the i_disksize update
2685 * if there is delayed block allocation. But we still need
2686 * to journalling the i_disksize update if writes to the end
2687 * of file which has an already mapped buffer.
2688 */
47564bfb 2689retry_journal:
9924a92a 2690 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2691 if (IS_ERR(handle)) {
47564bfb
TT
2692 page_cache_release(page);
2693 return PTR_ERR(handle);
64769240
AT
2694 }
2695
47564bfb
TT
2696 lock_page(page);
2697 if (page->mapping != mapping) {
2698 /* The page got truncated from under us */
2699 unlock_page(page);
2700 page_cache_release(page);
d5a0d4f7 2701 ext4_journal_stop(handle);
47564bfb 2702 goto retry_grab;
d5a0d4f7 2703 }
47564bfb
TT
2704 /* In case writeback began while the page was unlocked */
2705 wait_on_page_writeback(page);
64769240 2706
6e1db88d 2707 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2708 if (ret < 0) {
2709 unlock_page(page);
2710 ext4_journal_stop(handle);
ae4d5372
AK
2711 /*
2712 * block_write_begin may have instantiated a few blocks
2713 * outside i_size. Trim these off again. Don't need
2714 * i_size_read because we hold i_mutex.
2715 */
2716 if (pos + len > inode->i_size)
b9a4207d 2717 ext4_truncate_failed_write(inode);
47564bfb
TT
2718
2719 if (ret == -ENOSPC &&
2720 ext4_should_retry_alloc(inode->i_sb, &retries))
2721 goto retry_journal;
2722
2723 page_cache_release(page);
2724 return ret;
64769240
AT
2725 }
2726
47564bfb 2727 *pagep = page;
64769240
AT
2728 return ret;
2729}
2730
632eaeab
MC
2731/*
2732 * Check if we should update i_disksize
2733 * when write to the end of file but not require block allocation
2734 */
2735static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2736 unsigned long offset)
632eaeab
MC
2737{
2738 struct buffer_head *bh;
2739 struct inode *inode = page->mapping->host;
2740 unsigned int idx;
2741 int i;
2742
2743 bh = page_buffers(page);
2744 idx = offset >> inode->i_blkbits;
2745
af5bc92d 2746 for (i = 0; i < idx; i++)
632eaeab
MC
2747 bh = bh->b_this_page;
2748
29fa89d0 2749 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2750 return 0;
2751 return 1;
2752}
2753
64769240 2754static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2755 struct address_space *mapping,
2756 loff_t pos, unsigned len, unsigned copied,
2757 struct page *page, void *fsdata)
64769240
AT
2758{
2759 struct inode *inode = mapping->host;
2760 int ret = 0, ret2;
2761 handle_t *handle = ext4_journal_current_handle();
2762 loff_t new_i_size;
632eaeab 2763 unsigned long start, end;
79f0be8d
AK
2764 int write_mode = (int)(unsigned long)fsdata;
2765
74d553aa
TT
2766 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2767 return ext4_write_end(file, mapping, pos,
2768 len, copied, page, fsdata);
632eaeab 2769
9bffad1e 2770 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2771 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2772 end = start + copied - 1;
64769240
AT
2773
2774 /*
2775 * generic_write_end() will run mark_inode_dirty() if i_size
2776 * changes. So let's piggyback the i_disksize mark_inode_dirty
2777 * into that.
2778 */
64769240 2779 new_i_size = pos + copied;
ea51d132 2780 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2781 if (ext4_has_inline_data(inode) ||
2782 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2783 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2784 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2785 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2786 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2787 /* We need to mark inode dirty even if
2788 * new_i_size is less that inode->i_size
2789 * bu greater than i_disksize.(hint delalloc)
2790 */
2791 ext4_mark_inode_dirty(handle, inode);
64769240 2792 }
632eaeab 2793 }
9c3569b5
TM
2794
2795 if (write_mode != CONVERT_INLINE_DATA &&
2796 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2797 ext4_has_inline_data(inode))
2798 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2799 page);
2800 else
2801 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2802 page, fsdata);
9c3569b5 2803
64769240
AT
2804 copied = ret2;
2805 if (ret2 < 0)
2806 ret = ret2;
2807 ret2 = ext4_journal_stop(handle);
2808 if (!ret)
2809 ret = ret2;
2810
2811 return ret ? ret : copied;
2812}
2813
2814static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2815{
64769240
AT
2816 /*
2817 * Drop reserved blocks
2818 */
2819 BUG_ON(!PageLocked(page));
2820 if (!page_has_buffers(page))
2821 goto out;
2822
d2a17637 2823 ext4_da_page_release_reservation(page, offset);
64769240
AT
2824
2825out:
2826 ext4_invalidatepage(page, offset);
2827
2828 return;
2829}
2830
ccd2506b
TT
2831/*
2832 * Force all delayed allocation blocks to be allocated for a given inode.
2833 */
2834int ext4_alloc_da_blocks(struct inode *inode)
2835{
fb40ba0d
TT
2836 trace_ext4_alloc_da_blocks(inode);
2837
ccd2506b
TT
2838 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839 !EXT4_I(inode)->i_reserved_meta_blocks)
2840 return 0;
2841
2842 /*
2843 * We do something simple for now. The filemap_flush() will
2844 * also start triggering a write of the data blocks, which is
2845 * not strictly speaking necessary (and for users of
2846 * laptop_mode, not even desirable). However, to do otherwise
2847 * would require replicating code paths in:
de9a55b8 2848 *
ccd2506b
TT
2849 * ext4_da_writepages() ->
2850 * write_cache_pages() ---> (via passed in callback function)
2851 * __mpage_da_writepage() -->
2852 * mpage_add_bh_to_extent()
2853 * mpage_da_map_blocks()
2854 *
2855 * The problem is that write_cache_pages(), located in
2856 * mm/page-writeback.c, marks pages clean in preparation for
2857 * doing I/O, which is not desirable if we're not planning on
2858 * doing I/O at all.
2859 *
2860 * We could call write_cache_pages(), and then redirty all of
380cf090 2861 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2862 * would be ugly in the extreme. So instead we would need to
2863 * replicate parts of the code in the above functions,
25985edc 2864 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2865 * write out the pages, but rather only collect contiguous
2866 * logical block extents, call the multi-block allocator, and
2867 * then update the buffer heads with the block allocations.
de9a55b8 2868 *
ccd2506b
TT
2869 * For now, though, we'll cheat by calling filemap_flush(),
2870 * which will map the blocks, and start the I/O, but not
2871 * actually wait for the I/O to complete.
2872 */
2873 return filemap_flush(inode->i_mapping);
2874}
64769240 2875
ac27a0ec
DK
2876/*
2877 * bmap() is special. It gets used by applications such as lilo and by
2878 * the swapper to find the on-disk block of a specific piece of data.
2879 *
2880 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2881 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2882 * filesystem and enables swap, then they may get a nasty shock when the
2883 * data getting swapped to that swapfile suddenly gets overwritten by
2884 * the original zero's written out previously to the journal and
2885 * awaiting writeback in the kernel's buffer cache.
2886 *
2887 * So, if we see any bmap calls here on a modified, data-journaled file,
2888 * take extra steps to flush any blocks which might be in the cache.
2889 */
617ba13b 2890static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2891{
2892 struct inode *inode = mapping->host;
2893 journal_t *journal;
2894 int err;
2895
46c7f254
TM
2896 /*
2897 * We can get here for an inline file via the FIBMAP ioctl
2898 */
2899 if (ext4_has_inline_data(inode))
2900 return 0;
2901
64769240
AT
2902 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903 test_opt(inode->i_sb, DELALLOC)) {
2904 /*
2905 * With delalloc we want to sync the file
2906 * so that we can make sure we allocate
2907 * blocks for file
2908 */
2909 filemap_write_and_wait(mapping);
2910 }
2911
19f5fb7a
TT
2912 if (EXT4_JOURNAL(inode) &&
2913 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2914 /*
2915 * This is a REALLY heavyweight approach, but the use of
2916 * bmap on dirty files is expected to be extremely rare:
2917 * only if we run lilo or swapon on a freshly made file
2918 * do we expect this to happen.
2919 *
2920 * (bmap requires CAP_SYS_RAWIO so this does not
2921 * represent an unprivileged user DOS attack --- we'd be
2922 * in trouble if mortal users could trigger this path at
2923 * will.)
2924 *
617ba13b 2925 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2926 * regular files. If somebody wants to bmap a directory
2927 * or symlink and gets confused because the buffer
2928 * hasn't yet been flushed to disk, they deserve
2929 * everything they get.
2930 */
2931
19f5fb7a 2932 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2933 journal = EXT4_JOURNAL(inode);
dab291af
MC
2934 jbd2_journal_lock_updates(journal);
2935 err = jbd2_journal_flush(journal);
2936 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2937
2938 if (err)
2939 return 0;
2940 }
2941
af5bc92d 2942 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2943}
2944
617ba13b 2945static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2946{
46c7f254
TM
2947 int ret = -EAGAIN;
2948 struct inode *inode = page->mapping->host;
2949
0562e0ba 2950 trace_ext4_readpage(page);
46c7f254
TM
2951
2952 if (ext4_has_inline_data(inode))
2953 ret = ext4_readpage_inline(inode, page);
2954
2955 if (ret == -EAGAIN)
2956 return mpage_readpage(page, ext4_get_block);
2957
2958 return ret;
ac27a0ec
DK
2959}
2960
2961static int
617ba13b 2962ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2963 struct list_head *pages, unsigned nr_pages)
2964{
46c7f254
TM
2965 struct inode *inode = mapping->host;
2966
2967 /* If the file has inline data, no need to do readpages. */
2968 if (ext4_has_inline_data(inode))
2969 return 0;
2970
617ba13b 2971 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2972}
2973
617ba13b 2974static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2975{
0562e0ba
JZ
2976 trace_ext4_invalidatepage(page, offset);
2977
4520fb3c
JK
2978 /* No journalling happens on data buffers when this function is used */
2979 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2980
2981 block_invalidatepage(page, offset);
2982}
2983
53e87268
JK
2984static int __ext4_journalled_invalidatepage(struct page *page,
2985 unsigned long offset)
4520fb3c
JK
2986{
2987 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2988
2989 trace_ext4_journalled_invalidatepage(page, offset);
2990
ac27a0ec
DK
2991 /*
2992 * If it's a full truncate we just forget about the pending dirtying
2993 */
2994 if (offset == 0)
2995 ClearPageChecked(page);
2996
53e87268
JK
2997 return jbd2_journal_invalidatepage(journal, page, offset);
2998}
2999
3000/* Wrapper for aops... */
3001static void ext4_journalled_invalidatepage(struct page *page,
3002 unsigned long offset)
3003{
3004 WARN_ON(__ext4_journalled_invalidatepage(page, offset) < 0);
ac27a0ec
DK
3005}
3006
617ba13b 3007static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 3008{
617ba13b 3009 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 3010
0562e0ba
JZ
3011 trace_ext4_releasepage(page);
3012
e1c36595
JK
3013 /* Page has dirty journalled data -> cannot release */
3014 if (PageChecked(page))
ac27a0ec 3015 return 0;
0390131b
FM
3016 if (journal)
3017 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3018 else
3019 return try_to_free_buffers(page);
ac27a0ec
DK
3020}
3021
2ed88685
TT
3022/*
3023 * ext4_get_block used when preparing for a DIO write or buffer write.
3024 * We allocate an uinitialized extent if blocks haven't been allocated.
3025 * The extent will be converted to initialized after the IO is complete.
3026 */
f19d5870 3027int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
3028 struct buffer_head *bh_result, int create)
3029{
c7064ef1 3030 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 3031 inode->i_ino, create);
2ed88685
TT
3032 return _ext4_get_block(inode, iblock, bh_result,
3033 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
3034}
3035
729f52c6 3036static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 3037 struct buffer_head *bh_result, int create)
729f52c6 3038{
8b0f165f
AP
3039 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3040 inode->i_ino, create);
3041 return _ext4_get_block(inode, iblock, bh_result,
3042 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
3043}
3044
4c0425ff 3045static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
3046 ssize_t size, void *private, int ret,
3047 bool is_async)
4c0425ff 3048{
496ad9aa 3049 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 3050 ext4_io_end_t *io_end = iocb->private;
4c0425ff 3051
4b70df18
M
3052 /* if not async direct IO or dio with 0 bytes write, just return */
3053 if (!io_end || !size)
552ef802 3054 goto out;
4b70df18 3055
88635ca2 3056 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3057 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3058 iocb->private, io_end->inode->i_ino, iocb, offset,
3059 size);
8d5d02e6 3060
b5a7e970
TT
3061 iocb->private = NULL;
3062
8d5d02e6 3063 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 3064 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 3065 ext4_free_io_end(io_end);
5b3ff237 3066out:
091e26df 3067 inode_dio_done(inode);
5b3ff237
JZ
3068 if (is_async)
3069 aio_complete(iocb, ret, 0);
3070 return;
8d5d02e6
MC
3071 }
3072
4c0425ff
MC
3073 io_end->offset = offset;
3074 io_end->size = size;
5b3ff237
JZ
3075 if (is_async) {
3076 io_end->iocb = iocb;
3077 io_end->result = ret;
3078 }
4c0425ff 3079
28a535f9 3080 ext4_add_complete_io(io_end);
4c0425ff 3081}
c7064ef1 3082
4c0425ff
MC
3083/*
3084 * For ext4 extent files, ext4 will do direct-io write to holes,
3085 * preallocated extents, and those write extend the file, no need to
3086 * fall back to buffered IO.
3087 *
b595076a 3088 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3089 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3090 * still keep the range to write as uninitialized.
4c0425ff 3091 *
69c499d1 3092 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3093 * For async direct IO, since the IO may still pending when return, we
25985edc 3094 * set up an end_io call back function, which will do the conversion
8d5d02e6 3095 * when async direct IO completed.
4c0425ff
MC
3096 *
3097 * If the O_DIRECT write will extend the file then add this inode to the
3098 * orphan list. So recovery will truncate it back to the original size
3099 * if the machine crashes during the write.
3100 *
3101 */
3102static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3103 const struct iovec *iov, loff_t offset,
3104 unsigned long nr_segs)
3105{
3106 struct file *file = iocb->ki_filp;
3107 struct inode *inode = file->f_mapping->host;
3108 ssize_t ret;
3109 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3110 int overwrite = 0;
3111 get_block_t *get_block_func = NULL;
3112 int dio_flags = 0;
4c0425ff 3113 loff_t final_size = offset + count;
729f52c6 3114
69c499d1
TT
3115 /* Use the old path for reads and writes beyond i_size. */
3116 if (rw != WRITE || final_size > inode->i_size)
3117 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3118
69c499d1 3119 BUG_ON(iocb->private == NULL);
4bd809db 3120
69c499d1
TT
3121 /* If we do a overwrite dio, i_mutex locking can be released */
3122 overwrite = *((int *)iocb->private);
4bd809db 3123
69c499d1
TT
3124 if (overwrite) {
3125 atomic_inc(&inode->i_dio_count);
3126 down_read(&EXT4_I(inode)->i_data_sem);
3127 mutex_unlock(&inode->i_mutex);
3128 }
8d5d02e6 3129
69c499d1
TT
3130 /*
3131 * We could direct write to holes and fallocate.
3132 *
3133 * Allocated blocks to fill the hole are marked as
3134 * uninitialized to prevent parallel buffered read to expose
3135 * the stale data before DIO complete the data IO.
3136 *
3137 * As to previously fallocated extents, ext4 get_block will
3138 * just simply mark the buffer mapped but still keep the
3139 * extents uninitialized.
3140 *
3141 * For non AIO case, we will convert those unwritten extents
3142 * to written after return back from blockdev_direct_IO.
3143 *
3144 * For async DIO, the conversion needs to be deferred when the
3145 * IO is completed. The ext4 end_io callback function will be
3146 * called to take care of the conversion work. Here for async
3147 * case, we allocate an io_end structure to hook to the iocb.
3148 */
3149 iocb->private = NULL;
3150 ext4_inode_aio_set(inode, NULL);
3151 if (!is_sync_kiocb(iocb)) {
3152 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3153 if (!io_end) {
3154 ret = -ENOMEM;
3155 goto retake_lock;
8b0f165f 3156 }
69c499d1
TT
3157 io_end->flag |= EXT4_IO_END_DIRECT;
3158 iocb->private = io_end;
8d5d02e6 3159 /*
69c499d1
TT
3160 * we save the io structure for current async direct
3161 * IO, so that later ext4_map_blocks() could flag the
3162 * io structure whether there is a unwritten extents
3163 * needs to be converted when IO is completed.
8d5d02e6 3164 */
69c499d1
TT
3165 ext4_inode_aio_set(inode, io_end);
3166 }
4bd809db 3167
69c499d1
TT
3168 if (overwrite) {
3169 get_block_func = ext4_get_block_write_nolock;
3170 } else {
3171 get_block_func = ext4_get_block_write;
3172 dio_flags = DIO_LOCKING;
3173 }
3174 ret = __blockdev_direct_IO(rw, iocb, inode,
3175 inode->i_sb->s_bdev, iov,
3176 offset, nr_segs,
3177 get_block_func,
3178 ext4_end_io_dio,
3179 NULL,
3180 dio_flags);
3181
3182 if (iocb->private)
3183 ext4_inode_aio_set(inode, NULL);
3184 /*
3185 * The io_end structure takes a reference to the inode, that
3186 * structure needs to be destroyed and the reference to the
3187 * inode need to be dropped, when IO is complete, even with 0
3188 * byte write, or failed.
3189 *
3190 * In the successful AIO DIO case, the io_end structure will
3191 * be destroyed and the reference to the inode will be dropped
3192 * after the end_io call back function is called.
3193 *
3194 * In the case there is 0 byte write, or error case, since VFS
3195 * direct IO won't invoke the end_io call back function, we
3196 * need to free the end_io structure here.
3197 */
3198 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3199 ext4_free_io_end(iocb->private);
3200 iocb->private = NULL;
3201 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3202 EXT4_STATE_DIO_UNWRITTEN)) {
3203 int err;
3204 /*
3205 * for non AIO case, since the IO is already
3206 * completed, we could do the conversion right here
3207 */
3208 err = ext4_convert_unwritten_extents(inode,
3209 offset, ret);
3210 if (err < 0)
3211 ret = err;
3212 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3213 }
4bd809db 3214
69c499d1
TT
3215retake_lock:
3216 /* take i_mutex locking again if we do a ovewrite dio */
3217 if (overwrite) {
3218 inode_dio_done(inode);
3219 up_read(&EXT4_I(inode)->i_data_sem);
3220 mutex_lock(&inode->i_mutex);
4c0425ff 3221 }
8d5d02e6 3222
69c499d1 3223 return ret;
4c0425ff
MC
3224}
3225
3226static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3227 const struct iovec *iov, loff_t offset,
3228 unsigned long nr_segs)
3229{
3230 struct file *file = iocb->ki_filp;
3231 struct inode *inode = file->f_mapping->host;
0562e0ba 3232 ssize_t ret;
4c0425ff 3233
84ebd795
TT
3234 /*
3235 * If we are doing data journalling we don't support O_DIRECT
3236 */
3237 if (ext4_should_journal_data(inode))
3238 return 0;
3239
46c7f254
TM
3240 /* Let buffer I/O handle the inline data case. */
3241 if (ext4_has_inline_data(inode))
3242 return 0;
3243
0562e0ba 3244 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3245 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3246 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3247 else
3248 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3249 trace_ext4_direct_IO_exit(inode, offset,
3250 iov_length(iov, nr_segs), rw, ret);
3251 return ret;
4c0425ff
MC
3252}
3253
ac27a0ec 3254/*
617ba13b 3255 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3256 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3257 * much here because ->set_page_dirty is called under VFS locks. The page is
3258 * not necessarily locked.
3259 *
3260 * We cannot just dirty the page and leave attached buffers clean, because the
3261 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3262 * or jbddirty because all the journalling code will explode.
3263 *
3264 * So what we do is to mark the page "pending dirty" and next time writepage
3265 * is called, propagate that into the buffers appropriately.
3266 */
617ba13b 3267static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3268{
3269 SetPageChecked(page);
3270 return __set_page_dirty_nobuffers(page);
3271}
3272
74d553aa 3273static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3274 .readpage = ext4_readpage,
3275 .readpages = ext4_readpages,
43ce1d23 3276 .writepage = ext4_writepage,
8ab22b9a 3277 .write_begin = ext4_write_begin,
74d553aa 3278 .write_end = ext4_write_end,
8ab22b9a
HH
3279 .bmap = ext4_bmap,
3280 .invalidatepage = ext4_invalidatepage,
3281 .releasepage = ext4_releasepage,
3282 .direct_IO = ext4_direct_IO,
3283 .migratepage = buffer_migrate_page,
3284 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3285 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3286};
3287
617ba13b 3288static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3289 .readpage = ext4_readpage,
3290 .readpages = ext4_readpages,
43ce1d23 3291 .writepage = ext4_writepage,
8ab22b9a
HH
3292 .write_begin = ext4_write_begin,
3293 .write_end = ext4_journalled_write_end,
3294 .set_page_dirty = ext4_journalled_set_page_dirty,
3295 .bmap = ext4_bmap,
4520fb3c 3296 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3297 .releasepage = ext4_releasepage,
84ebd795 3298 .direct_IO = ext4_direct_IO,
8ab22b9a 3299 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3300 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3301};
3302
64769240 3303static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3304 .readpage = ext4_readpage,
3305 .readpages = ext4_readpages,
43ce1d23 3306 .writepage = ext4_writepage,
8ab22b9a 3307 .writepages = ext4_da_writepages,
8ab22b9a
HH
3308 .write_begin = ext4_da_write_begin,
3309 .write_end = ext4_da_write_end,
3310 .bmap = ext4_bmap,
3311 .invalidatepage = ext4_da_invalidatepage,
3312 .releasepage = ext4_releasepage,
3313 .direct_IO = ext4_direct_IO,
3314 .migratepage = buffer_migrate_page,
3315 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3316 .error_remove_page = generic_error_remove_page,
64769240
AT
3317};
3318
617ba13b 3319void ext4_set_aops(struct inode *inode)
ac27a0ec 3320{
3d2b1582
LC
3321 switch (ext4_inode_journal_mode(inode)) {
3322 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3323 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3324 break;
3325 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3326 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3327 break;
3328 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3329 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3330 return;
3d2b1582
LC
3331 default:
3332 BUG();
3333 }
74d553aa
TT
3334 if (test_opt(inode->i_sb, DELALLOC))
3335 inode->i_mapping->a_ops = &ext4_da_aops;
3336 else
3337 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3338}
3339
4e96b2db
AH
3340
3341/*
3342 * ext4_discard_partial_page_buffers()
3343 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3344 * This function finds and locks the page containing the offset
3345 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3346 * Calling functions that already have the page locked should call
3347 * ext4_discard_partial_page_buffers_no_lock directly.
3348 */
3349int ext4_discard_partial_page_buffers(handle_t *handle,
3350 struct address_space *mapping, loff_t from,
3351 loff_t length, int flags)
3352{
3353 struct inode *inode = mapping->host;
3354 struct page *page;
3355 int err = 0;
3356
3357 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3358 mapping_gfp_mask(mapping) & ~__GFP_FS);
3359 if (!page)
5129d05f 3360 return -ENOMEM;
4e96b2db
AH
3361
3362 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3363 from, length, flags);
3364
3365 unlock_page(page);
3366 page_cache_release(page);
3367 return err;
3368}
3369
3370/*
3371 * ext4_discard_partial_page_buffers_no_lock()
3372 * Zeros a page range of length 'length' starting from offset 'from'.
3373 * Buffer heads that correspond to the block aligned regions of the
3374 * zeroed range will be unmapped. Unblock aligned regions
3375 * will have the corresponding buffer head mapped if needed so that
3376 * that region of the page can be updated with the partial zero out.
3377 *
3378 * This function assumes that the page has already been locked. The
3379 * The range to be discarded must be contained with in the given page.
3380 * If the specified range exceeds the end of the page it will be shortened
3381 * to the end of the page that corresponds to 'from'. This function is
3382 * appropriate for updating a page and it buffer heads to be unmapped and
3383 * zeroed for blocks that have been either released, or are going to be
3384 * released.
3385 *
3386 * handle: The journal handle
3387 * inode: The files inode
3388 * page: A locked page that contains the offset "from"
4907cb7b 3389 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3390 * to begin discarding
3391 * len: The length of bytes to discard
3392 * flags: Optional flags that may be used:
3393 *
3394 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3395 * Only zero the regions of the page whose buffer heads
3396 * have already been unmapped. This flag is appropriate
4907cb7b 3397 * for updating the contents of a page whose blocks may
4e96b2db
AH
3398 * have already been released, and we only want to zero
3399 * out the regions that correspond to those released blocks.
3400 *
4907cb7b 3401 * Returns zero on success or negative on failure.
4e96b2db 3402 */
5f163cc7 3403static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3404 struct inode *inode, struct page *page, loff_t from,
3405 loff_t length, int flags)
3406{
3407 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3408 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3409 unsigned int blocksize, max, pos;
4e96b2db
AH
3410 ext4_lblk_t iblock;
3411 struct buffer_head *bh;
3412 int err = 0;
3413
3414 blocksize = inode->i_sb->s_blocksize;
3415 max = PAGE_CACHE_SIZE - offset;
3416
3417 if (index != page->index)
3418 return -EINVAL;
3419
3420 /*
3421 * correct length if it does not fall between
3422 * 'from' and the end of the page
3423 */
3424 if (length > max || length < 0)
3425 length = max;
3426
3427 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3428
093e6e36
YY
3429 if (!page_has_buffers(page))
3430 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3431
3432 /* Find the buffer that contains "offset" */
3433 bh = page_buffers(page);
3434 pos = blocksize;
3435 while (offset >= pos) {
3436 bh = bh->b_this_page;
3437 iblock++;
3438 pos += blocksize;
3439 }
3440
3441 pos = offset;
3442 while (pos < offset + length) {
e260daf2
YY
3443 unsigned int end_of_block, range_to_discard;
3444
4e96b2db
AH
3445 err = 0;
3446
3447 /* The length of space left to zero and unmap */
3448 range_to_discard = offset + length - pos;
3449
3450 /* The length of space until the end of the block */
3451 end_of_block = blocksize - (pos & (blocksize-1));
3452
3453 /*
3454 * Do not unmap or zero past end of block
3455 * for this buffer head
3456 */
3457 if (range_to_discard > end_of_block)
3458 range_to_discard = end_of_block;
3459
3460
3461 /*
3462 * Skip this buffer head if we are only zeroing unampped
3463 * regions of the page
3464 */
3465 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3466 buffer_mapped(bh))
3467 goto next;
3468
3469 /* If the range is block aligned, unmap */
3470 if (range_to_discard == blocksize) {
3471 clear_buffer_dirty(bh);
3472 bh->b_bdev = NULL;
3473 clear_buffer_mapped(bh);
3474 clear_buffer_req(bh);
3475 clear_buffer_new(bh);
3476 clear_buffer_delay(bh);
3477 clear_buffer_unwritten(bh);
3478 clear_buffer_uptodate(bh);
3479 zero_user(page, pos, range_to_discard);
3480 BUFFER_TRACE(bh, "Buffer discarded");
3481 goto next;
3482 }
3483
3484 /*
3485 * If this block is not completely contained in the range
3486 * to be discarded, then it is not going to be released. Because
3487 * we need to keep this block, we need to make sure this part
3488 * of the page is uptodate before we modify it by writeing
3489 * partial zeros on it.
3490 */
3491 if (!buffer_mapped(bh)) {
3492 /*
3493 * Buffer head must be mapped before we can read
3494 * from the block
3495 */
3496 BUFFER_TRACE(bh, "unmapped");
3497 ext4_get_block(inode, iblock, bh, 0);
3498 /* unmapped? It's a hole - nothing to do */
3499 if (!buffer_mapped(bh)) {
3500 BUFFER_TRACE(bh, "still unmapped");
3501 goto next;
3502 }
3503 }
3504
3505 /* Ok, it's mapped. Make sure it's up-to-date */
3506 if (PageUptodate(page))
3507 set_buffer_uptodate(bh);
3508
3509 if (!buffer_uptodate(bh)) {
3510 err = -EIO;
3511 ll_rw_block(READ, 1, &bh);
3512 wait_on_buffer(bh);
3513 /* Uhhuh. Read error. Complain and punt.*/
3514 if (!buffer_uptodate(bh))
3515 goto next;
3516 }
3517
3518 if (ext4_should_journal_data(inode)) {
3519 BUFFER_TRACE(bh, "get write access");
3520 err = ext4_journal_get_write_access(handle, bh);
3521 if (err)
3522 goto next;
3523 }
3524
3525 zero_user(page, pos, range_to_discard);
3526
3527 err = 0;
3528 if (ext4_should_journal_data(inode)) {
3529 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3530 } else
4e96b2db 3531 mark_buffer_dirty(bh);
4e96b2db
AH
3532
3533 BUFFER_TRACE(bh, "Partial buffer zeroed");
3534next:
3535 bh = bh->b_this_page;
3536 iblock++;
3537 pos += range_to_discard;
3538 }
3539
3540 return err;
3541}
3542
91ef4caf
DG
3543int ext4_can_truncate(struct inode *inode)
3544{
91ef4caf
DG
3545 if (S_ISREG(inode->i_mode))
3546 return 1;
3547 if (S_ISDIR(inode->i_mode))
3548 return 1;
3549 if (S_ISLNK(inode->i_mode))
3550 return !ext4_inode_is_fast_symlink(inode);
3551 return 0;
3552}
3553
a4bb6b64
AH
3554/*
3555 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3556 * associated with the given offset and length
3557 *
3558 * @inode: File inode
3559 * @offset: The offset where the hole will begin
3560 * @len: The length of the hole
3561 *
4907cb7b 3562 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3563 */
3564
3565int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3566{
496ad9aa 3567 struct inode *inode = file_inode(file);
26a4c0c6
TT
3568 struct super_block *sb = inode->i_sb;
3569 ext4_lblk_t first_block, stop_block;
3570 struct address_space *mapping = inode->i_mapping;
3571 loff_t first_page, last_page, page_len;
3572 loff_t first_page_offset, last_page_offset;
3573 handle_t *handle;
3574 unsigned int credits;
3575 int ret = 0;
3576
a4bb6b64 3577 if (!S_ISREG(inode->i_mode))
73355192 3578 return -EOPNOTSUPP;
a4bb6b64 3579
26a4c0c6 3580 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3581 /* TODO: Add support for bigalloc file systems */
73355192 3582 return -EOPNOTSUPP;
bab08ab9
TT
3583 }
3584
aaddea81
ZL
3585 trace_ext4_punch_hole(inode, offset, length);
3586
26a4c0c6
TT
3587 /*
3588 * Write out all dirty pages to avoid race conditions
3589 * Then release them.
3590 */
3591 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3592 ret = filemap_write_and_wait_range(mapping, offset,
3593 offset + length - 1);
3594 if (ret)
3595 return ret;
3596 }
3597
3598 mutex_lock(&inode->i_mutex);
3599 /* It's not possible punch hole on append only file */
3600 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3601 ret = -EPERM;
3602 goto out_mutex;
3603 }
3604 if (IS_SWAPFILE(inode)) {
3605 ret = -ETXTBSY;
3606 goto out_mutex;
3607 }
3608
3609 /* No need to punch hole beyond i_size */
3610 if (offset >= inode->i_size)
3611 goto out_mutex;
3612
3613 /*
3614 * If the hole extends beyond i_size, set the hole
3615 * to end after the page that contains i_size
3616 */
3617 if (offset + length > inode->i_size) {
3618 length = inode->i_size +
3619 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3620 offset;
3621 }
3622
3623 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
3624 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
3625
3626 first_page_offset = first_page << PAGE_CACHE_SHIFT;
3627 last_page_offset = last_page << PAGE_CACHE_SHIFT;
3628
3629 /* Now release the pages */
3630 if (last_page_offset > first_page_offset) {
3631 truncate_pagecache_range(inode, first_page_offset,
3632 last_page_offset - 1);
3633 }
3634
3635 /* Wait all existing dio workers, newcomers will block on i_mutex */
3636 ext4_inode_block_unlocked_dio(inode);
3637 ret = ext4_flush_unwritten_io(inode);
3638 if (ret)
3639 goto out_dio;
3640 inode_dio_wait(inode);
3641
3642 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3643 credits = ext4_writepage_trans_blocks(inode);
3644 else
3645 credits = ext4_blocks_for_truncate(inode);
3646 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3647 if (IS_ERR(handle)) {
3648 ret = PTR_ERR(handle);
3649 ext4_std_error(sb, ret);
3650 goto out_dio;
3651 }
3652
3653 /*
3654 * Now we need to zero out the non-page-aligned data in the
3655 * pages at the start and tail of the hole, and unmap the
3656 * buffer heads for the block aligned regions of the page that
3657 * were completely zeroed.
3658 */
3659 if (first_page > last_page) {
3660 /*
3661 * If the file space being truncated is contained
3662 * within a page just zero out and unmap the middle of
3663 * that page
3664 */
3665 ret = ext4_discard_partial_page_buffers(handle,
3666 mapping, offset, length, 0);
3667
3668 if (ret)
3669 goto out_stop;
3670 } else {
3671 /*
3672 * zero out and unmap the partial page that contains
3673 * the start of the hole
3674 */
3675 page_len = first_page_offset - offset;
3676 if (page_len > 0) {
3677 ret = ext4_discard_partial_page_buffers(handle, mapping,
3678 offset, page_len, 0);
3679 if (ret)
3680 goto out_stop;
3681 }
3682
3683 /*
3684 * zero out and unmap the partial page that contains
3685 * the end of the hole
3686 */
3687 page_len = offset + length - last_page_offset;
3688 if (page_len > 0) {
3689 ret = ext4_discard_partial_page_buffers(handle, mapping,
3690 last_page_offset, page_len, 0);
3691 if (ret)
3692 goto out_stop;
3693 }
3694 }
3695
3696 /*
3697 * If i_size is contained in the last page, we need to
3698 * unmap and zero the partial page after i_size
3699 */
3700 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
3701 inode->i_size % PAGE_CACHE_SIZE != 0) {
3702 page_len = PAGE_CACHE_SIZE -
3703 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3704
3705 if (page_len > 0) {
3706 ret = ext4_discard_partial_page_buffers(handle,
3707 mapping, inode->i_size, page_len, 0);
3708
3709 if (ret)
3710 goto out_stop;
3711 }
3712 }
3713
3714 first_block = (offset + sb->s_blocksize - 1) >>
3715 EXT4_BLOCK_SIZE_BITS(sb);
3716 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3717
3718 /* If there are no blocks to remove, return now */
3719 if (first_block >= stop_block)
3720 goto out_stop;
3721
3722 down_write(&EXT4_I(inode)->i_data_sem);
3723 ext4_discard_preallocations(inode);
3724
3725 ret = ext4_es_remove_extent(inode, first_block,
3726 stop_block - first_block);
3727 if (ret) {
3728 up_write(&EXT4_I(inode)->i_data_sem);
3729 goto out_stop;
3730 }
3731
3732 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3733 ret = ext4_ext_remove_space(inode, first_block,
3734 stop_block - 1);
3735 else
3736 ret = ext4_free_hole_blocks(handle, inode, first_block,
3737 stop_block);
3738
3739 ext4_discard_preallocations(inode);
819c4920 3740 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3741 if (IS_SYNC(inode))
3742 ext4_handle_sync(handle);
26a4c0c6
TT
3743 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3744 ext4_mark_inode_dirty(handle, inode);
3745out_stop:
3746 ext4_journal_stop(handle);
3747out_dio:
3748 ext4_inode_resume_unlocked_dio(inode);
3749out_mutex:
3750 mutex_unlock(&inode->i_mutex);
3751 return ret;
a4bb6b64
AH
3752}
3753
ac27a0ec 3754/*
617ba13b 3755 * ext4_truncate()
ac27a0ec 3756 *
617ba13b
MC
3757 * We block out ext4_get_block() block instantiations across the entire
3758 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3759 * simultaneously on behalf of the same inode.
3760 *
42b2aa86 3761 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3762 * is one core, guiding principle: the file's tree must always be consistent on
3763 * disk. We must be able to restart the truncate after a crash.
3764 *
3765 * The file's tree may be transiently inconsistent in memory (although it
3766 * probably isn't), but whenever we close off and commit a journal transaction,
3767 * the contents of (the filesystem + the journal) must be consistent and
3768 * restartable. It's pretty simple, really: bottom up, right to left (although
3769 * left-to-right works OK too).
3770 *
3771 * Note that at recovery time, journal replay occurs *before* the restart of
3772 * truncate against the orphan inode list.
3773 *
3774 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3775 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3776 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3777 * ext4_truncate() to have another go. So there will be instantiated blocks
3778 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3779 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3780 * ext4_truncate() run will find them and release them.
ac27a0ec 3781 */
617ba13b 3782void ext4_truncate(struct inode *inode)
ac27a0ec 3783{
819c4920
TT
3784 struct ext4_inode_info *ei = EXT4_I(inode);
3785 unsigned int credits;
3786 handle_t *handle;
3787 struct address_space *mapping = inode->i_mapping;
3788 loff_t page_len;
3789
19b5ef61
TT
3790 /*
3791 * There is a possibility that we're either freeing the inode
3792 * or it completely new indode. In those cases we might not
3793 * have i_mutex locked because it's not necessary.
3794 */
3795 if (!(inode->i_state & (I_NEW|I_FREEING)))
3796 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3797 trace_ext4_truncate_enter(inode);
3798
91ef4caf 3799 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3800 return;
3801
12e9b892 3802 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3803
5534fb5b 3804 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3805 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3806
aef1c851
TM
3807 if (ext4_has_inline_data(inode)) {
3808 int has_inline = 1;
3809
3810 ext4_inline_data_truncate(inode, &has_inline);
3811 if (has_inline)
3812 return;
3813 }
3814
819c4920
TT
3815 /*
3816 * finish any pending end_io work so we won't run the risk of
3817 * converting any truncated blocks to initialized later
3818 */
3819 ext4_flush_unwritten_io(inode);
3820
3821 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3822 credits = ext4_writepage_trans_blocks(inode);
3823 else
3824 credits = ext4_blocks_for_truncate(inode);
3825
3826 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3827 if (IS_ERR(handle)) {
3828 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3829 return;
3830 }
3831
3832 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
3833 page_len = PAGE_CACHE_SIZE -
3834 (inode->i_size & (PAGE_CACHE_SIZE - 1));
3835
3836 if (ext4_discard_partial_page_buffers(handle,
3837 mapping, inode->i_size, page_len, 0))
3838 goto out_stop;
3839 }
3840
3841 /*
3842 * We add the inode to the orphan list, so that if this
3843 * truncate spans multiple transactions, and we crash, we will
3844 * resume the truncate when the filesystem recovers. It also
3845 * marks the inode dirty, to catch the new size.
3846 *
3847 * Implication: the file must always be in a sane, consistent
3848 * truncatable state while each transaction commits.
3849 */
3850 if (ext4_orphan_add(handle, inode))
3851 goto out_stop;
3852
3853 down_write(&EXT4_I(inode)->i_data_sem);
3854
3855 ext4_discard_preallocations(inode);
3856
ff9893dc 3857 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3858 ext4_ext_truncate(handle, inode);
ff9893dc 3859 else
819c4920
TT
3860 ext4_ind_truncate(handle, inode);
3861
3862 up_write(&ei->i_data_sem);
3863
3864 if (IS_SYNC(inode))
3865 ext4_handle_sync(handle);
3866
3867out_stop:
3868 /*
3869 * If this was a simple ftruncate() and the file will remain alive,
3870 * then we need to clear up the orphan record which we created above.
3871 * However, if this was a real unlink then we were called by
3872 * ext4_delete_inode(), and we allow that function to clean up the
3873 * orphan info for us.
3874 */
3875 if (inode->i_nlink)
3876 ext4_orphan_del(handle, inode);
3877
3878 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3879 ext4_mark_inode_dirty(handle, inode);
3880 ext4_journal_stop(handle);
ac27a0ec 3881
0562e0ba 3882 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3883}
3884
ac27a0ec 3885/*
617ba13b 3886 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3887 * underlying buffer_head on success. If 'in_mem' is true, we have all
3888 * data in memory that is needed to recreate the on-disk version of this
3889 * inode.
3890 */
617ba13b
MC
3891static int __ext4_get_inode_loc(struct inode *inode,
3892 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3893{
240799cd
TT
3894 struct ext4_group_desc *gdp;
3895 struct buffer_head *bh;
3896 struct super_block *sb = inode->i_sb;
3897 ext4_fsblk_t block;
3898 int inodes_per_block, inode_offset;
3899
3a06d778 3900 iloc->bh = NULL;
240799cd
TT
3901 if (!ext4_valid_inum(sb, inode->i_ino))
3902 return -EIO;
ac27a0ec 3903
240799cd
TT
3904 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3905 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3906 if (!gdp)
ac27a0ec
DK
3907 return -EIO;
3908
240799cd
TT
3909 /*
3910 * Figure out the offset within the block group inode table
3911 */
00d09882 3912 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3913 inode_offset = ((inode->i_ino - 1) %
3914 EXT4_INODES_PER_GROUP(sb));
3915 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3916 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3917
3918 bh = sb_getblk(sb, block);
aebf0243 3919 if (unlikely(!bh))
860d21e2 3920 return -ENOMEM;
ac27a0ec
DK
3921 if (!buffer_uptodate(bh)) {
3922 lock_buffer(bh);
9c83a923
HK
3923
3924 /*
3925 * If the buffer has the write error flag, we have failed
3926 * to write out another inode in the same block. In this
3927 * case, we don't have to read the block because we may
3928 * read the old inode data successfully.
3929 */
3930 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3931 set_buffer_uptodate(bh);
3932
ac27a0ec
DK
3933 if (buffer_uptodate(bh)) {
3934 /* someone brought it uptodate while we waited */
3935 unlock_buffer(bh);
3936 goto has_buffer;
3937 }
3938
3939 /*
3940 * If we have all information of the inode in memory and this
3941 * is the only valid inode in the block, we need not read the
3942 * block.
3943 */
3944 if (in_mem) {
3945 struct buffer_head *bitmap_bh;
240799cd 3946 int i, start;
ac27a0ec 3947
240799cd 3948 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3949
240799cd
TT
3950 /* Is the inode bitmap in cache? */
3951 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3952 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3953 goto make_io;
3954
3955 /*
3956 * If the inode bitmap isn't in cache then the
3957 * optimisation may end up performing two reads instead
3958 * of one, so skip it.
3959 */
3960 if (!buffer_uptodate(bitmap_bh)) {
3961 brelse(bitmap_bh);
3962 goto make_io;
3963 }
240799cd 3964 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3965 if (i == inode_offset)
3966 continue;
617ba13b 3967 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3968 break;
3969 }
3970 brelse(bitmap_bh);
240799cd 3971 if (i == start + inodes_per_block) {
ac27a0ec
DK
3972 /* all other inodes are free, so skip I/O */
3973 memset(bh->b_data, 0, bh->b_size);
3974 set_buffer_uptodate(bh);
3975 unlock_buffer(bh);
3976 goto has_buffer;
3977 }
3978 }
3979
3980make_io:
240799cd
TT
3981 /*
3982 * If we need to do any I/O, try to pre-readahead extra
3983 * blocks from the inode table.
3984 */
3985 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3986 ext4_fsblk_t b, end, table;
3987 unsigned num;
3988
3989 table = ext4_inode_table(sb, gdp);
b713a5ec 3990 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3991 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3992 if (table > b)
3993 b = table;
3994 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3995 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3996 if (ext4_has_group_desc_csum(sb))
560671a0 3997 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3998 table += num / inodes_per_block;
3999 if (end > table)
4000 end = table;
4001 while (b <= end)
4002 sb_breadahead(sb, b++);
4003 }
4004
ac27a0ec
DK
4005 /*
4006 * There are other valid inodes in the buffer, this inode
4007 * has in-inode xattrs, or we don't have this inode in memory.
4008 * Read the block from disk.
4009 */
0562e0ba 4010 trace_ext4_load_inode(inode);
ac27a0ec
DK
4011 get_bh(bh);
4012 bh->b_end_io = end_buffer_read_sync;
65299a3b 4013 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
4014 wait_on_buffer(bh);
4015 if (!buffer_uptodate(bh)) {
c398eda0
TT
4016 EXT4_ERROR_INODE_BLOCK(inode, block,
4017 "unable to read itable block");
ac27a0ec
DK
4018 brelse(bh);
4019 return -EIO;
4020 }
4021 }
4022has_buffer:
4023 iloc->bh = bh;
4024 return 0;
4025}
4026
617ba13b 4027int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4028{
4029 /* We have all inode data except xattrs in memory here. */
617ba13b 4030 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 4031 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
4032}
4033
617ba13b 4034void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 4035{
617ba13b 4036 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
4037
4038 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 4039 if (flags & EXT4_SYNC_FL)
ac27a0ec 4040 inode->i_flags |= S_SYNC;
617ba13b 4041 if (flags & EXT4_APPEND_FL)
ac27a0ec 4042 inode->i_flags |= S_APPEND;
617ba13b 4043 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 4044 inode->i_flags |= S_IMMUTABLE;
617ba13b 4045 if (flags & EXT4_NOATIME_FL)
ac27a0ec 4046 inode->i_flags |= S_NOATIME;
617ba13b 4047 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
4048 inode->i_flags |= S_DIRSYNC;
4049}
4050
ff9ddf7e
JK
4051/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4052void ext4_get_inode_flags(struct ext4_inode_info *ei)
4053{
84a8dce2
DM
4054 unsigned int vfs_fl;
4055 unsigned long old_fl, new_fl;
4056
4057 do {
4058 vfs_fl = ei->vfs_inode.i_flags;
4059 old_fl = ei->i_flags;
4060 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4061 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4062 EXT4_DIRSYNC_FL);
4063 if (vfs_fl & S_SYNC)
4064 new_fl |= EXT4_SYNC_FL;
4065 if (vfs_fl & S_APPEND)
4066 new_fl |= EXT4_APPEND_FL;
4067 if (vfs_fl & S_IMMUTABLE)
4068 new_fl |= EXT4_IMMUTABLE_FL;
4069 if (vfs_fl & S_NOATIME)
4070 new_fl |= EXT4_NOATIME_FL;
4071 if (vfs_fl & S_DIRSYNC)
4072 new_fl |= EXT4_DIRSYNC_FL;
4073 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 4074}
de9a55b8 4075
0fc1b451 4076static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 4077 struct ext4_inode_info *ei)
0fc1b451
AK
4078{
4079 blkcnt_t i_blocks ;
8180a562
AK
4080 struct inode *inode = &(ei->vfs_inode);
4081 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4082
4083 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4084 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4085 /* we are using combined 48 bit field */
4086 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4087 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 4088 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
4089 /* i_blocks represent file system block size */
4090 return i_blocks << (inode->i_blkbits - 9);
4091 } else {
4092 return i_blocks;
4093 }
0fc1b451
AK
4094 } else {
4095 return le32_to_cpu(raw_inode->i_blocks_lo);
4096 }
4097}
ff9ddf7e 4098
152a7b0a
TM
4099static inline void ext4_iget_extra_inode(struct inode *inode,
4100 struct ext4_inode *raw_inode,
4101 struct ext4_inode_info *ei)
4102{
4103 __le32 *magic = (void *)raw_inode +
4104 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 4105 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 4106 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 4107 ext4_find_inline_data_nolock(inode);
f19d5870
TM
4108 } else
4109 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
4110}
4111
1d1fe1ee 4112struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 4113{
617ba13b
MC
4114 struct ext4_iloc iloc;
4115 struct ext4_inode *raw_inode;
1d1fe1ee 4116 struct ext4_inode_info *ei;
1d1fe1ee 4117 struct inode *inode;
b436b9be 4118 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 4119 long ret;
ac27a0ec 4120 int block;
08cefc7a
EB
4121 uid_t i_uid;
4122 gid_t i_gid;
ac27a0ec 4123
1d1fe1ee
DH
4124 inode = iget_locked(sb, ino);
4125 if (!inode)
4126 return ERR_PTR(-ENOMEM);
4127 if (!(inode->i_state & I_NEW))
4128 return inode;
4129
4130 ei = EXT4_I(inode);
7dc57615 4131 iloc.bh = NULL;
ac27a0ec 4132
1d1fe1ee
DH
4133 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4134 if (ret < 0)
ac27a0ec 4135 goto bad_inode;
617ba13b 4136 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
4137
4138 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4139 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4140 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4141 EXT4_INODE_SIZE(inode->i_sb)) {
4142 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4143 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4144 EXT4_INODE_SIZE(inode->i_sb));
4145 ret = -EIO;
4146 goto bad_inode;
4147 }
4148 } else
4149 ei->i_extra_isize = 0;
4150
4151 /* Precompute checksum seed for inode metadata */
4152 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4153 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4154 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4155 __u32 csum;
4156 __le32 inum = cpu_to_le32(inode->i_ino);
4157 __le32 gen = raw_inode->i_generation;
4158 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4159 sizeof(inum));
4160 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4161 sizeof(gen));
4162 }
4163
4164 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4165 EXT4_ERROR_INODE(inode, "checksum invalid");
4166 ret = -EIO;
4167 goto bad_inode;
4168 }
4169
ac27a0ec 4170 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4171 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4172 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4173 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4174 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4175 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4176 }
08cefc7a
EB
4177 i_uid_write(inode, i_uid);
4178 i_gid_write(inode, i_gid);
bfe86848 4179 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4180
353eb83c 4181 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4182 ei->i_inline_off = 0;
ac27a0ec
DK
4183 ei->i_dir_start_lookup = 0;
4184 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4185 /* We now have enough fields to check if the inode was active or not.
4186 * This is needed because nfsd might try to access dead inodes
4187 * the test is that same one that e2fsck uses
4188 * NeilBrown 1999oct15
4189 */
4190 if (inode->i_nlink == 0) {
4191 if (inode->i_mode == 0 ||
617ba13b 4192 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 4193 /* this inode is deleted */
1d1fe1ee 4194 ret = -ESTALE;
ac27a0ec
DK
4195 goto bad_inode;
4196 }
4197 /* The only unlinked inodes we let through here have
4198 * valid i_mode and are being read by the orphan
4199 * recovery code: that's fine, we're about to complete
4200 * the process of deleting those. */
4201 }
ac27a0ec 4202 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4203 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4204 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4205 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4206 ei->i_file_acl |=
4207 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4208 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4209 ei->i_disksize = inode->i_size;
a9e7f447
DM
4210#ifdef CONFIG_QUOTA
4211 ei->i_reserved_quota = 0;
4212#endif
ac27a0ec
DK
4213 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4214 ei->i_block_group = iloc.block_group;
a4912123 4215 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4216 /*
4217 * NOTE! The in-memory inode i_data array is in little-endian order
4218 * even on big-endian machines: we do NOT byteswap the block numbers!
4219 */
617ba13b 4220 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4221 ei->i_data[block] = raw_inode->i_block[block];
4222 INIT_LIST_HEAD(&ei->i_orphan);
4223
b436b9be
JK
4224 /*
4225 * Set transaction id's of transactions that have to be committed
4226 * to finish f[data]sync. We set them to currently running transaction
4227 * as we cannot be sure that the inode or some of its metadata isn't
4228 * part of the transaction - the inode could have been reclaimed and
4229 * now it is reread from disk.
4230 */
4231 if (journal) {
4232 transaction_t *transaction;
4233 tid_t tid;
4234
a931da6a 4235 read_lock(&journal->j_state_lock);
b436b9be
JK
4236 if (journal->j_running_transaction)
4237 transaction = journal->j_running_transaction;
4238 else
4239 transaction = journal->j_committing_transaction;
4240 if (transaction)
4241 tid = transaction->t_tid;
4242 else
4243 tid = journal->j_commit_sequence;
a931da6a 4244 read_unlock(&journal->j_state_lock);
b436b9be
JK
4245 ei->i_sync_tid = tid;
4246 ei->i_datasync_tid = tid;
4247 }
4248
0040d987 4249 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4250 if (ei->i_extra_isize == 0) {
4251 /* The extra space is currently unused. Use it. */
617ba13b
MC
4252 ei->i_extra_isize = sizeof(struct ext4_inode) -
4253 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4254 } else {
152a7b0a 4255 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4256 }
814525f4 4257 }
ac27a0ec 4258
ef7f3835
KS
4259 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4260 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4261 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4262 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4263
25ec56b5
JNC
4264 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4265 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4266 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4267 inode->i_version |=
4268 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4269 }
4270
c4b5a614 4271 ret = 0;
485c26ec 4272 if (ei->i_file_acl &&
1032988c 4273 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4274 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4275 ei->i_file_acl);
485c26ec
TT
4276 ret = -EIO;
4277 goto bad_inode;
f19d5870
TM
4278 } else if (!ext4_has_inline_data(inode)) {
4279 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4280 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4281 (S_ISLNK(inode->i_mode) &&
4282 !ext4_inode_is_fast_symlink(inode))))
4283 /* Validate extent which is part of inode */
4284 ret = ext4_ext_check_inode(inode);
4285 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4286 (S_ISLNK(inode->i_mode) &&
4287 !ext4_inode_is_fast_symlink(inode))) {
4288 /* Validate block references which are part of inode */
4289 ret = ext4_ind_check_inode(inode);
4290 }
fe2c8191 4291 }
567f3e9a 4292 if (ret)
de9a55b8 4293 goto bad_inode;
7a262f7c 4294
ac27a0ec 4295 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4296 inode->i_op = &ext4_file_inode_operations;
4297 inode->i_fop = &ext4_file_operations;
4298 ext4_set_aops(inode);
ac27a0ec 4299 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4300 inode->i_op = &ext4_dir_inode_operations;
4301 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4302 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4303 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4304 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4305 nd_terminate_link(ei->i_data, inode->i_size,
4306 sizeof(ei->i_data) - 1);
4307 } else {
617ba13b
MC
4308 inode->i_op = &ext4_symlink_inode_operations;
4309 ext4_set_aops(inode);
ac27a0ec 4310 }
563bdd61
TT
4311 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4312 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4313 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4314 if (raw_inode->i_block[0])
4315 init_special_inode(inode, inode->i_mode,
4316 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4317 else
4318 init_special_inode(inode, inode->i_mode,
4319 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 4320 } else {
563bdd61 4321 ret = -EIO;
24676da4 4322 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4323 goto bad_inode;
ac27a0ec 4324 }
af5bc92d 4325 brelse(iloc.bh);
617ba13b 4326 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4327 unlock_new_inode(inode);
4328 return inode;
ac27a0ec
DK
4329
4330bad_inode:
567f3e9a 4331 brelse(iloc.bh);
1d1fe1ee
DH
4332 iget_failed(inode);
4333 return ERR_PTR(ret);
ac27a0ec
DK
4334}
4335
0fc1b451
AK
4336static int ext4_inode_blocks_set(handle_t *handle,
4337 struct ext4_inode *raw_inode,
4338 struct ext4_inode_info *ei)
4339{
4340 struct inode *inode = &(ei->vfs_inode);
4341 u64 i_blocks = inode->i_blocks;
4342 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4343
4344 if (i_blocks <= ~0U) {
4345 /*
4907cb7b 4346 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4347 * as multiple of 512 bytes
4348 */
8180a562 4349 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4350 raw_inode->i_blocks_high = 0;
84a8dce2 4351 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4352 return 0;
4353 }
4354 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4355 return -EFBIG;
4356
4357 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4358 /*
4359 * i_blocks can be represented in a 48 bit variable
4360 * as multiple of 512 bytes
4361 */
8180a562 4362 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4363 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4364 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4365 } else {
84a8dce2 4366 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4367 /* i_block is stored in file system block size */
4368 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4369 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4370 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4371 }
f287a1a5 4372 return 0;
0fc1b451
AK
4373}
4374
ac27a0ec
DK
4375/*
4376 * Post the struct inode info into an on-disk inode location in the
4377 * buffer-cache. This gobbles the caller's reference to the
4378 * buffer_head in the inode location struct.
4379 *
4380 * The caller must have write access to iloc->bh.
4381 */
617ba13b 4382static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4383 struct inode *inode,
830156c7 4384 struct ext4_iloc *iloc)
ac27a0ec 4385{
617ba13b
MC
4386 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4387 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4388 struct buffer_head *bh = iloc->bh;
4389 int err = 0, rc, block;
b71fc079 4390 int need_datasync = 0;
08cefc7a
EB
4391 uid_t i_uid;
4392 gid_t i_gid;
ac27a0ec
DK
4393
4394 /* For fields not not tracking in the in-memory inode,
4395 * initialise them to zero for new inodes. */
19f5fb7a 4396 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4397 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4398
ff9ddf7e 4399 ext4_get_inode_flags(ei);
ac27a0ec 4400 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4401 i_uid = i_uid_read(inode);
4402 i_gid = i_gid_read(inode);
af5bc92d 4403 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4404 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4405 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4406/*
4407 * Fix up interoperability with old kernels. Otherwise, old inodes get
4408 * re-used with the upper 16 bits of the uid/gid intact
4409 */
af5bc92d 4410 if (!ei->i_dtime) {
ac27a0ec 4411 raw_inode->i_uid_high =
08cefc7a 4412 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4413 raw_inode->i_gid_high =
08cefc7a 4414 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4415 } else {
4416 raw_inode->i_uid_high = 0;
4417 raw_inode->i_gid_high = 0;
4418 }
4419 } else {
08cefc7a
EB
4420 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4421 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4422 raw_inode->i_uid_high = 0;
4423 raw_inode->i_gid_high = 0;
4424 }
4425 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4426
4427 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4428 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4429 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4430 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4431
0fc1b451
AK
4432 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4433 goto out_brelse;
ac27a0ec 4434 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4435 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4436 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4437 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4438 raw_inode->i_file_acl_high =
4439 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4440 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4441 if (ei->i_disksize != ext4_isize(raw_inode)) {
4442 ext4_isize_set(raw_inode, ei->i_disksize);
4443 need_datasync = 1;
4444 }
a48380f7
AK
4445 if (ei->i_disksize > 0x7fffffffULL) {
4446 struct super_block *sb = inode->i_sb;
4447 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4448 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4449 EXT4_SB(sb)->s_es->s_rev_level ==
4450 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4451 /* If this is the first large file
4452 * created, add a flag to the superblock.
4453 */
4454 err = ext4_journal_get_write_access(handle,
4455 EXT4_SB(sb)->s_sbh);
4456 if (err)
4457 goto out_brelse;
4458 ext4_update_dynamic_rev(sb);
4459 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4460 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4461 ext4_handle_sync(handle);
b50924c2 4462 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4463 }
4464 }
4465 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4466 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4467 if (old_valid_dev(inode->i_rdev)) {
4468 raw_inode->i_block[0] =
4469 cpu_to_le32(old_encode_dev(inode->i_rdev));
4470 raw_inode->i_block[1] = 0;
4471 } else {
4472 raw_inode->i_block[0] = 0;
4473 raw_inode->i_block[1] =
4474 cpu_to_le32(new_encode_dev(inode->i_rdev));
4475 raw_inode->i_block[2] = 0;
4476 }
f19d5870 4477 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4478 for (block = 0; block < EXT4_N_BLOCKS; block++)
4479 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4480 }
ac27a0ec 4481
25ec56b5
JNC
4482 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4483 if (ei->i_extra_isize) {
4484 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4485 raw_inode->i_version_hi =
4486 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4487 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4488 }
4489
814525f4
DW
4490 ext4_inode_csum_set(inode, raw_inode, ei);
4491
830156c7 4492 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4493 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4494 if (!err)
4495 err = rc;
19f5fb7a 4496 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4497
b71fc079 4498 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4499out_brelse:
af5bc92d 4500 brelse(bh);
617ba13b 4501 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4502 return err;
4503}
4504
4505/*
617ba13b 4506 * ext4_write_inode()
ac27a0ec
DK
4507 *
4508 * We are called from a few places:
4509 *
4510 * - Within generic_file_write() for O_SYNC files.
4511 * Here, there will be no transaction running. We wait for any running
4907cb7b 4512 * transaction to commit.
ac27a0ec
DK
4513 *
4514 * - Within sys_sync(), kupdate and such.
4515 * We wait on commit, if tol to.
4516 *
4517 * - Within prune_icache() (PF_MEMALLOC == true)
4518 * Here we simply return. We can't afford to block kswapd on the
4519 * journal commit.
4520 *
4521 * In all cases it is actually safe for us to return without doing anything,
4522 * because the inode has been copied into a raw inode buffer in
617ba13b 4523 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4524 * knfsd.
4525 *
4526 * Note that we are absolutely dependent upon all inode dirtiers doing the
4527 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4528 * which we are interested.
4529 *
4530 * It would be a bug for them to not do this. The code:
4531 *
4532 * mark_inode_dirty(inode)
4533 * stuff();
4534 * inode->i_size = expr;
4535 *
4536 * is in error because a kswapd-driven write_inode() could occur while
4537 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4538 * will no longer be on the superblock's dirty inode list.
4539 */
a9185b41 4540int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4541{
91ac6f43
FM
4542 int err;
4543
ac27a0ec
DK
4544 if (current->flags & PF_MEMALLOC)
4545 return 0;
4546
91ac6f43
FM
4547 if (EXT4_SB(inode->i_sb)->s_journal) {
4548 if (ext4_journal_current_handle()) {
4549 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4550 dump_stack();
4551 return -EIO;
4552 }
ac27a0ec 4553
a9185b41 4554 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4555 return 0;
4556
4557 err = ext4_force_commit(inode->i_sb);
4558 } else {
4559 struct ext4_iloc iloc;
ac27a0ec 4560
8b472d73 4561 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4562 if (err)
4563 return err;
a9185b41 4564 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4565 sync_dirty_buffer(iloc.bh);
4566 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4567 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4568 "IO error syncing inode");
830156c7
FM
4569 err = -EIO;
4570 }
fd2dd9fb 4571 brelse(iloc.bh);
91ac6f43
FM
4572 }
4573 return err;
ac27a0ec
DK
4574}
4575
53e87268
JK
4576/*
4577 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4578 * buffers that are attached to a page stradding i_size and are undergoing
4579 * commit. In that case we have to wait for commit to finish and try again.
4580 */
4581static void ext4_wait_for_tail_page_commit(struct inode *inode)
4582{
4583 struct page *page;
4584 unsigned offset;
4585 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4586 tid_t commit_tid = 0;
4587 int ret;
4588
4589 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4590 /*
4591 * All buffers in the last page remain valid? Then there's nothing to
4592 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4593 * blocksize case
4594 */
4595 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4596 return;
4597 while (1) {
4598 page = find_lock_page(inode->i_mapping,
4599 inode->i_size >> PAGE_CACHE_SHIFT);
4600 if (!page)
4601 return;
4602 ret = __ext4_journalled_invalidatepage(page, offset);
4603 unlock_page(page);
4604 page_cache_release(page);
4605 if (ret != -EBUSY)
4606 return;
4607 commit_tid = 0;
4608 read_lock(&journal->j_state_lock);
4609 if (journal->j_committing_transaction)
4610 commit_tid = journal->j_committing_transaction->t_tid;
4611 read_unlock(&journal->j_state_lock);
4612 if (commit_tid)
4613 jbd2_log_wait_commit(journal, commit_tid);
4614 }
4615}
4616
ac27a0ec 4617/*
617ba13b 4618 * ext4_setattr()
ac27a0ec
DK
4619 *
4620 * Called from notify_change.
4621 *
4622 * We want to trap VFS attempts to truncate the file as soon as
4623 * possible. In particular, we want to make sure that when the VFS
4624 * shrinks i_size, we put the inode on the orphan list and modify
4625 * i_disksize immediately, so that during the subsequent flushing of
4626 * dirty pages and freeing of disk blocks, we can guarantee that any
4627 * commit will leave the blocks being flushed in an unused state on
4628 * disk. (On recovery, the inode will get truncated and the blocks will
4629 * be freed, so we have a strong guarantee that no future commit will
4630 * leave these blocks visible to the user.)
4631 *
678aaf48
JK
4632 * Another thing we have to assure is that if we are in ordered mode
4633 * and inode is still attached to the committing transaction, we must
4634 * we start writeout of all the dirty pages which are being truncated.
4635 * This way we are sure that all the data written in the previous
4636 * transaction are already on disk (truncate waits for pages under
4637 * writeback).
4638 *
4639 * Called with inode->i_mutex down.
ac27a0ec 4640 */
617ba13b 4641int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4642{
4643 struct inode *inode = dentry->d_inode;
4644 int error, rc = 0;
3d287de3 4645 int orphan = 0;
ac27a0ec
DK
4646 const unsigned int ia_valid = attr->ia_valid;
4647
4648 error = inode_change_ok(inode, attr);
4649 if (error)
4650 return error;
4651
12755627 4652 if (is_quota_modification(inode, attr))
871a2931 4653 dquot_initialize(inode);
08cefc7a
EB
4654 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4655 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4656 handle_t *handle;
4657
4658 /* (user+group)*(old+new) structure, inode write (sb,
4659 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4660 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4661 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4662 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4663 if (IS_ERR(handle)) {
4664 error = PTR_ERR(handle);
4665 goto err_out;
4666 }
b43fa828 4667 error = dquot_transfer(inode, attr);
ac27a0ec 4668 if (error) {
617ba13b 4669 ext4_journal_stop(handle);
ac27a0ec
DK
4670 return error;
4671 }
4672 /* Update corresponding info in inode so that everything is in
4673 * one transaction */
4674 if (attr->ia_valid & ATTR_UID)
4675 inode->i_uid = attr->ia_uid;
4676 if (attr->ia_valid & ATTR_GID)
4677 inode->i_gid = attr->ia_gid;
617ba13b
MC
4678 error = ext4_mark_inode_dirty(handle, inode);
4679 ext4_journal_stop(handle);
ac27a0ec
DK
4680 }
4681
e2b46574 4682 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4683
12e9b892 4684 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4685 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4686
0c095c7f
TT
4687 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4688 return -EFBIG;
e2b46574
ES
4689 }
4690 }
4691
ac27a0ec 4692 if (S_ISREG(inode->i_mode) &&
c8d46e41 4693 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4694 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4695 handle_t *handle;
4696
9924a92a 4697 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4698 if (IS_ERR(handle)) {
4699 error = PTR_ERR(handle);
4700 goto err_out;
4701 }
3d287de3
DM
4702 if (ext4_handle_valid(handle)) {
4703 error = ext4_orphan_add(handle, inode);
4704 orphan = 1;
4705 }
617ba13b
MC
4706 EXT4_I(inode)->i_disksize = attr->ia_size;
4707 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4708 if (!error)
4709 error = rc;
617ba13b 4710 ext4_journal_stop(handle);
678aaf48
JK
4711
4712 if (ext4_should_order_data(inode)) {
4713 error = ext4_begin_ordered_truncate(inode,
4714 attr->ia_size);
4715 if (error) {
4716 /* Do as much error cleanup as possible */
9924a92a
TT
4717 handle = ext4_journal_start(inode,
4718 EXT4_HT_INODE, 3);
678aaf48
JK
4719 if (IS_ERR(handle)) {
4720 ext4_orphan_del(NULL, inode);
4721 goto err_out;
4722 }
4723 ext4_orphan_del(handle, inode);
3d287de3 4724 orphan = 0;
678aaf48
JK
4725 ext4_journal_stop(handle);
4726 goto err_out;
4727 }
4728 }
ac27a0ec
DK
4729 }
4730
072bd7ea 4731 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4732 if (attr->ia_size != inode->i_size) {
4733 loff_t oldsize = inode->i_size;
4734
4735 i_size_write(inode, attr->ia_size);
4736 /*
4737 * Blocks are going to be removed from the inode. Wait
4738 * for dio in flight. Temporarily disable
4739 * dioread_nolock to prevent livelock.
4740 */
1b65007e 4741 if (orphan) {
53e87268
JK
4742 if (!ext4_should_journal_data(inode)) {
4743 ext4_inode_block_unlocked_dio(inode);
4744 inode_dio_wait(inode);
4745 ext4_inode_resume_unlocked_dio(inode);
4746 } else
4747 ext4_wait_for_tail_page_commit(inode);
1b65007e 4748 }
53e87268
JK
4749 /*
4750 * Truncate pagecache after we've waited for commit
4751 * in data=journal mode to make pages freeable.
4752 */
4753 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4754 }
afcff5d8 4755 ext4_truncate(inode);
072bd7ea 4756 }
ac27a0ec 4757
1025774c
CH
4758 if (!rc) {
4759 setattr_copy(inode, attr);
4760 mark_inode_dirty(inode);
4761 }
4762
4763 /*
4764 * If the call to ext4_truncate failed to get a transaction handle at
4765 * all, we need to clean up the in-core orphan list manually.
4766 */
3d287de3 4767 if (orphan && inode->i_nlink)
617ba13b 4768 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4769
4770 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4771 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4772
4773err_out:
617ba13b 4774 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4775 if (!error)
4776 error = rc;
4777 return error;
4778}
4779
3e3398a0
MC
4780int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4781 struct kstat *stat)
4782{
4783 struct inode *inode;
4784 unsigned long delalloc_blocks;
4785
4786 inode = dentry->d_inode;
4787 generic_fillattr(inode, stat);
4788
4789 /*
4790 * We can't update i_blocks if the block allocation is delayed
4791 * otherwise in the case of system crash before the real block
4792 * allocation is done, we will have i_blocks inconsistent with
4793 * on-disk file blocks.
4794 * We always keep i_blocks updated together with real
4795 * allocation. But to not confuse with user, stat
4796 * will return the blocks that include the delayed allocation
4797 * blocks for this file.
4798 */
96607551
TM
4799 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4800 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4801
4802 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4803 return 0;
4804}
ac27a0ec 4805
a02908f1
MC
4806static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4807{
12e9b892 4808 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4809 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4810 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4811}
ac51d837 4812
ac27a0ec 4813/*
a02908f1
MC
4814 * Account for index blocks, block groups bitmaps and block group
4815 * descriptor blocks if modify datablocks and index blocks
4816 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4817 *
a02908f1 4818 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4819 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4820 * they could still across block group boundary.
ac27a0ec 4821 *
a02908f1
MC
4822 * Also account for superblock, inode, quota and xattr blocks
4823 */
1f109d5a 4824static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4825{
8df9675f
TT
4826 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4827 int gdpblocks;
a02908f1
MC
4828 int idxblocks;
4829 int ret = 0;
4830
4831 /*
4832 * How many index blocks need to touch to modify nrblocks?
4833 * The "Chunk" flag indicating whether the nrblocks is
4834 * physically contiguous on disk
4835 *
4836 * For Direct IO and fallocate, they calls get_block to allocate
4837 * one single extent at a time, so they could set the "Chunk" flag
4838 */
4839 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4840
4841 ret = idxblocks;
4842
4843 /*
4844 * Now let's see how many group bitmaps and group descriptors need
4845 * to account
4846 */
4847 groups = idxblocks;
4848 if (chunk)
4849 groups += 1;
4850 else
4851 groups += nrblocks;
4852
4853 gdpblocks = groups;
8df9675f
TT
4854 if (groups > ngroups)
4855 groups = ngroups;
a02908f1
MC
4856 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4857 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4858
4859 /* bitmaps and block group descriptor blocks */
4860 ret += groups + gdpblocks;
4861
4862 /* Blocks for super block, inode, quota and xattr blocks */
4863 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4864
4865 return ret;
4866}
4867
4868/*
25985edc 4869 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4870 * the modification of a single pages into a single transaction,
4871 * which may include multiple chunks of block allocations.
ac27a0ec 4872 *
525f4ed8 4873 * This could be called via ext4_write_begin()
ac27a0ec 4874 *
525f4ed8 4875 * We need to consider the worse case, when
a02908f1 4876 * one new block per extent.
ac27a0ec 4877 */
a86c6181 4878int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4879{
617ba13b 4880 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4881 int ret;
4882
a02908f1 4883 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4884
a02908f1 4885 /* Account for data blocks for journalled mode */
617ba13b 4886 if (ext4_should_journal_data(inode))
a02908f1 4887 ret += bpp;
ac27a0ec
DK
4888 return ret;
4889}
f3bd1f3f
MC
4890
4891/*
4892 * Calculate the journal credits for a chunk of data modification.
4893 *
4894 * This is called from DIO, fallocate or whoever calling
79e83036 4895 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4896 *
4897 * journal buffers for data blocks are not included here, as DIO
4898 * and fallocate do no need to journal data buffers.
4899 */
4900int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4901{
4902 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4903}
4904
ac27a0ec 4905/*
617ba13b 4906 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4907 * Give this, we know that the caller already has write access to iloc->bh.
4908 */
617ba13b 4909int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4910 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4911{
4912 int err = 0;
4913
c64db50e 4914 if (IS_I_VERSION(inode))
25ec56b5
JNC
4915 inode_inc_iversion(inode);
4916
ac27a0ec
DK
4917 /* the do_update_inode consumes one bh->b_count */
4918 get_bh(iloc->bh);
4919
dab291af 4920 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4921 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4922 put_bh(iloc->bh);
4923 return err;
4924}
4925
4926/*
4927 * On success, We end up with an outstanding reference count against
4928 * iloc->bh. This _must_ be cleaned up later.
4929 */
4930
4931int
617ba13b
MC
4932ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4933 struct ext4_iloc *iloc)
ac27a0ec 4934{
0390131b
FM
4935 int err;
4936
4937 err = ext4_get_inode_loc(inode, iloc);
4938 if (!err) {
4939 BUFFER_TRACE(iloc->bh, "get_write_access");
4940 err = ext4_journal_get_write_access(handle, iloc->bh);
4941 if (err) {
4942 brelse(iloc->bh);
4943 iloc->bh = NULL;
ac27a0ec
DK
4944 }
4945 }
617ba13b 4946 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4947 return err;
4948}
4949
6dd4ee7c
KS
4950/*
4951 * Expand an inode by new_extra_isize bytes.
4952 * Returns 0 on success or negative error number on failure.
4953 */
1d03ec98
AK
4954static int ext4_expand_extra_isize(struct inode *inode,
4955 unsigned int new_extra_isize,
4956 struct ext4_iloc iloc,
4957 handle_t *handle)
6dd4ee7c
KS
4958{
4959 struct ext4_inode *raw_inode;
4960 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4961
4962 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4963 return 0;
4964
4965 raw_inode = ext4_raw_inode(&iloc);
4966
4967 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4968
4969 /* No extended attributes present */
19f5fb7a
TT
4970 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4971 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4972 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4973 new_extra_isize);
4974 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4975 return 0;
4976 }
4977
4978 /* try to expand with EAs present */
4979 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4980 raw_inode, handle);
4981}
4982
ac27a0ec
DK
4983/*
4984 * What we do here is to mark the in-core inode as clean with respect to inode
4985 * dirtiness (it may still be data-dirty).
4986 * This means that the in-core inode may be reaped by prune_icache
4987 * without having to perform any I/O. This is a very good thing,
4988 * because *any* task may call prune_icache - even ones which
4989 * have a transaction open against a different journal.
4990 *
4991 * Is this cheating? Not really. Sure, we haven't written the
4992 * inode out, but prune_icache isn't a user-visible syncing function.
4993 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4994 * we start and wait on commits.
ac27a0ec 4995 */
617ba13b 4996int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4997{
617ba13b 4998 struct ext4_iloc iloc;
6dd4ee7c
KS
4999 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5000 static unsigned int mnt_count;
5001 int err, ret;
ac27a0ec
DK
5002
5003 might_sleep();
7ff9c073 5004 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 5005 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
5006 if (ext4_handle_valid(handle) &&
5007 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 5008 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
5009 /*
5010 * We need extra buffer credits since we may write into EA block
5011 * with this same handle. If journal_extend fails, then it will
5012 * only result in a minor loss of functionality for that inode.
5013 * If this is felt to be critical, then e2fsck should be run to
5014 * force a large enough s_min_extra_isize.
5015 */
5016 if ((jbd2_journal_extend(handle,
5017 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5018 ret = ext4_expand_extra_isize(inode,
5019 sbi->s_want_extra_isize,
5020 iloc, handle);
5021 if (ret) {
19f5fb7a
TT
5022 ext4_set_inode_state(inode,
5023 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
5024 if (mnt_count !=
5025 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 5026 ext4_warning(inode->i_sb,
6dd4ee7c
KS
5027 "Unable to expand inode %lu. Delete"
5028 " some EAs or run e2fsck.",
5029 inode->i_ino);
c1bddad9
AK
5030 mnt_count =
5031 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
5032 }
5033 }
5034 }
5035 }
ac27a0ec 5036 if (!err)
617ba13b 5037 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
5038 return err;
5039}
5040
5041/*
617ba13b 5042 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
5043 *
5044 * We're really interested in the case where a file is being extended.
5045 * i_size has been changed by generic_commit_write() and we thus need
5046 * to include the updated inode in the current transaction.
5047 *
5dd4056d 5048 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
5049 * are allocated to the file.
5050 *
5051 * If the inode is marked synchronous, we don't honour that here - doing
5052 * so would cause a commit on atime updates, which we don't bother doing.
5053 * We handle synchronous inodes at the highest possible level.
5054 */
aa385729 5055void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 5056{
ac27a0ec
DK
5057 handle_t *handle;
5058
9924a92a 5059 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
5060 if (IS_ERR(handle))
5061 goto out;
f3dc272f 5062
f3dc272f
CW
5063 ext4_mark_inode_dirty(handle, inode);
5064
617ba13b 5065 ext4_journal_stop(handle);
ac27a0ec
DK
5066out:
5067 return;
5068}
5069
5070#if 0
5071/*
5072 * Bind an inode's backing buffer_head into this transaction, to prevent
5073 * it from being flushed to disk early. Unlike
617ba13b 5074 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
5075 * returns no iloc structure, so the caller needs to repeat the iloc
5076 * lookup to mark the inode dirty later.
5077 */
617ba13b 5078static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 5079{
617ba13b 5080 struct ext4_iloc iloc;
ac27a0ec
DK
5081
5082 int err = 0;
5083 if (handle) {
617ba13b 5084 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
5085 if (!err) {
5086 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 5087 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 5088 if (!err)
0390131b 5089 err = ext4_handle_dirty_metadata(handle,
73b50c1c 5090 NULL,
0390131b 5091 iloc.bh);
ac27a0ec
DK
5092 brelse(iloc.bh);
5093 }
5094 }
617ba13b 5095 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5096 return err;
5097}
5098#endif
5099
617ba13b 5100int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
5101{
5102 journal_t *journal;
5103 handle_t *handle;
5104 int err;
5105
5106 /*
5107 * We have to be very careful here: changing a data block's
5108 * journaling status dynamically is dangerous. If we write a
5109 * data block to the journal, change the status and then delete
5110 * that block, we risk forgetting to revoke the old log record
5111 * from the journal and so a subsequent replay can corrupt data.
5112 * So, first we make sure that the journal is empty and that
5113 * nobody is changing anything.
5114 */
5115
617ba13b 5116 journal = EXT4_JOURNAL(inode);
0390131b
FM
5117 if (!journal)
5118 return 0;
d699594d 5119 if (is_journal_aborted(journal))
ac27a0ec 5120 return -EROFS;
2aff57b0
YY
5121 /* We have to allocate physical blocks for delalloc blocks
5122 * before flushing journal. otherwise delalloc blocks can not
5123 * be allocated any more. even more truncate on delalloc blocks
5124 * could trigger BUG by flushing delalloc blocks in journal.
5125 * There is no delalloc block in non-journal data mode.
5126 */
5127 if (val && test_opt(inode->i_sb, DELALLOC)) {
5128 err = ext4_alloc_da_blocks(inode);
5129 if (err < 0)
5130 return err;
5131 }
ac27a0ec 5132
17335dcc
DM
5133 /* Wait for all existing dio workers */
5134 ext4_inode_block_unlocked_dio(inode);
5135 inode_dio_wait(inode);
5136
dab291af 5137 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
5138
5139 /*
5140 * OK, there are no updates running now, and all cached data is
5141 * synced to disk. We are now in a completely consistent state
5142 * which doesn't have anything in the journal, and we know that
5143 * no filesystem updates are running, so it is safe to modify
5144 * the inode's in-core data-journaling state flag now.
5145 */
5146
5147 if (val)
12e9b892 5148 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
5149 else {
5150 jbd2_journal_flush(journal);
12e9b892 5151 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 5152 }
617ba13b 5153 ext4_set_aops(inode);
ac27a0ec 5154
dab291af 5155 jbd2_journal_unlock_updates(journal);
17335dcc 5156 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5157
5158 /* Finally we can mark the inode as dirty. */
5159
9924a92a 5160 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5161 if (IS_ERR(handle))
5162 return PTR_ERR(handle);
5163
617ba13b 5164 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5165 ext4_handle_sync(handle);
617ba13b
MC
5166 ext4_journal_stop(handle);
5167 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5168
5169 return err;
5170}
2e9ee850
AK
5171
5172static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5173{
5174 return !buffer_mapped(bh);
5175}
5176
c2ec175c 5177int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5178{
c2ec175c 5179 struct page *page = vmf->page;
2e9ee850
AK
5180 loff_t size;
5181 unsigned long len;
9ea7df53 5182 int ret;
2e9ee850 5183 struct file *file = vma->vm_file;
496ad9aa 5184 struct inode *inode = file_inode(file);
2e9ee850 5185 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5186 handle_t *handle;
5187 get_block_t *get_block;
5188 int retries = 0;
2e9ee850 5189
8e8ad8a5 5190 sb_start_pagefault(inode->i_sb);
041bbb6d 5191 file_update_time(vma->vm_file);
9ea7df53
JK
5192 /* Delalloc case is easy... */
5193 if (test_opt(inode->i_sb, DELALLOC) &&
5194 !ext4_should_journal_data(inode) &&
5195 !ext4_nonda_switch(inode->i_sb)) {
5196 do {
5197 ret = __block_page_mkwrite(vma, vmf,
5198 ext4_da_get_block_prep);
5199 } while (ret == -ENOSPC &&
5200 ext4_should_retry_alloc(inode->i_sb, &retries));
5201 goto out_ret;
2e9ee850 5202 }
0e499890
DW
5203
5204 lock_page(page);
9ea7df53
JK
5205 size = i_size_read(inode);
5206 /* Page got truncated from under us? */
5207 if (page->mapping != mapping || page_offset(page) > size) {
5208 unlock_page(page);
5209 ret = VM_FAULT_NOPAGE;
5210 goto out;
0e499890 5211 }
2e9ee850
AK
5212
5213 if (page->index == size >> PAGE_CACHE_SHIFT)
5214 len = size & ~PAGE_CACHE_MASK;
5215 else
5216 len = PAGE_CACHE_SIZE;
a827eaff 5217 /*
9ea7df53
JK
5218 * Return if we have all the buffers mapped. This avoids the need to do
5219 * journal_start/journal_stop which can block and take a long time
a827eaff 5220 */
2e9ee850 5221 if (page_has_buffers(page)) {
f19d5870
TM
5222 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5223 0, len, NULL,
5224 ext4_bh_unmapped)) {
9ea7df53 5225 /* Wait so that we don't change page under IO */
1d1d1a76 5226 wait_for_stable_page(page);
9ea7df53
JK
5227 ret = VM_FAULT_LOCKED;
5228 goto out;
a827eaff 5229 }
2e9ee850 5230 }
a827eaff 5231 unlock_page(page);
9ea7df53
JK
5232 /* OK, we need to fill the hole... */
5233 if (ext4_should_dioread_nolock(inode))
5234 get_block = ext4_get_block_write;
5235 else
5236 get_block = ext4_get_block;
5237retry_alloc:
9924a92a
TT
5238 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5239 ext4_writepage_trans_blocks(inode));
9ea7df53 5240 if (IS_ERR(handle)) {
c2ec175c 5241 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5242 goto out;
5243 }
5244 ret = __block_page_mkwrite(vma, vmf, get_block);
5245 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5246 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5247 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5248 unlock_page(page);
5249 ret = VM_FAULT_SIGBUS;
fcbb5515 5250 ext4_journal_stop(handle);
9ea7df53
JK
5251 goto out;
5252 }
5253 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5254 }
5255 ext4_journal_stop(handle);
5256 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5257 goto retry_alloc;
5258out_ret:
5259 ret = block_page_mkwrite_return(ret);
5260out:
8e8ad8a5 5261 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5262 return ret;
5263}
This page took 0.967011 seconds and 5 git commands to generate.