ext4: Don't claim block from group which has corrupt bitmap
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
617ba13b 22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
dab291af
MC
28#include <linux/ext4_jbd2.h>
29#include <linux/jbd2.h>
ac27a0ec
DK
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
38#include <linux/bio.h>
39#include "xattr.h"
40#include "acl.h"
41
ac27a0ec
DK
42/*
43 * Test whether an inode is a fast symlink.
44 */
617ba13b 45static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 46{
617ba13b 47 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
48 (inode->i_sb->s_blocksize >> 9) : 0;
49
50 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
51}
52
53/*
617ba13b 54 * The ext4 forget function must perform a revoke if we are freeing data
ac27a0ec
DK
55 * which has been journaled. Metadata (eg. indirect blocks) must be
56 * revoked in all cases.
57 *
58 * "bh" may be NULL: a metadata block may have been freed from memory
59 * but there may still be a record of it in the journal, and that record
60 * still needs to be revoked.
61 */
617ba13b
MC
62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
63 struct buffer_head *bh, ext4_fsblk_t blocknr)
ac27a0ec
DK
64{
65 int err;
66
67 might_sleep();
68
69 BUFFER_TRACE(bh, "enter");
70
71 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
72 "data mode %lx\n",
73 bh, is_metadata, inode->i_mode,
74 test_opt(inode->i_sb, DATA_FLAGS));
75
76 /* Never use the revoke function if we are doing full data
77 * journaling: there is no need to, and a V1 superblock won't
78 * support it. Otherwise, only skip the revoke on un-journaled
79 * data blocks. */
80
617ba13b
MC
81 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
82 (!is_metadata && !ext4_should_journal_data(inode))) {
ac27a0ec 83 if (bh) {
dab291af 84 BUFFER_TRACE(bh, "call jbd2_journal_forget");
617ba13b 85 return ext4_journal_forget(handle, bh);
ac27a0ec
DK
86 }
87 return 0;
88 }
89
90 /*
91 * data!=journal && (is_metadata || should_journal_data(inode))
92 */
617ba13b
MC
93 BUFFER_TRACE(bh, "call ext4_journal_revoke");
94 err = ext4_journal_revoke(handle, blocknr, bh);
ac27a0ec 95 if (err)
617ba13b 96 ext4_abort(inode->i_sb, __FUNCTION__,
ac27a0ec
DK
97 "error %d when attempting revoke", err);
98 BUFFER_TRACE(bh, "exit");
99 return err;
100}
101
102/*
103 * Work out how many blocks we need to proceed with the next chunk of a
104 * truncate transaction.
105 */
106static unsigned long blocks_for_truncate(struct inode *inode)
107{
725d26d3 108 ext4_lblk_t needed;
ac27a0ec
DK
109
110 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
111
112 /* Give ourselves just enough room to cope with inodes in which
113 * i_blocks is corrupt: we've seen disk corruptions in the past
114 * which resulted in random data in an inode which looked enough
617ba13b 115 * like a regular file for ext4 to try to delete it. Things
ac27a0ec
DK
116 * will go a bit crazy if that happens, but at least we should
117 * try not to panic the whole kernel. */
118 if (needed < 2)
119 needed = 2;
120
121 /* But we need to bound the transaction so we don't overflow the
122 * journal. */
617ba13b
MC
123 if (needed > EXT4_MAX_TRANS_DATA)
124 needed = EXT4_MAX_TRANS_DATA;
ac27a0ec 125
617ba13b 126 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
ac27a0ec
DK
127}
128
129/*
130 * Truncate transactions can be complex and absolutely huge. So we need to
131 * be able to restart the transaction at a conventient checkpoint to make
132 * sure we don't overflow the journal.
133 *
134 * start_transaction gets us a new handle for a truncate transaction,
135 * and extend_transaction tries to extend the existing one a bit. If
136 * extend fails, we need to propagate the failure up and restart the
137 * transaction in the top-level truncate loop. --sct
138 */
139static handle_t *start_transaction(struct inode *inode)
140{
141 handle_t *result;
142
617ba13b 143 result = ext4_journal_start(inode, blocks_for_truncate(inode));
ac27a0ec
DK
144 if (!IS_ERR(result))
145 return result;
146
617ba13b 147 ext4_std_error(inode->i_sb, PTR_ERR(result));
ac27a0ec
DK
148 return result;
149}
150
151/*
152 * Try to extend this transaction for the purposes of truncation.
153 *
154 * Returns 0 if we managed to create more room. If we can't create more
155 * room, and the transaction must be restarted we return 1.
156 */
157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
158{
617ba13b 159 if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
ac27a0ec 160 return 0;
617ba13b 161 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
ac27a0ec
DK
162 return 0;
163 return 1;
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
617ba13b 171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
ac27a0ec
DK
172{
173 jbd_debug(2, "restarting handle %p\n", handle);
617ba13b 174 return ext4_journal_restart(handle, blocks_for_truncate(inode));
ac27a0ec
DK
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
617ba13b 180void ext4_delete_inode (struct inode * inode)
ac27a0ec
DK
181{
182 handle_t *handle;
183
184 truncate_inode_pages(&inode->i_data, 0);
185
186 if (is_bad_inode(inode))
187 goto no_delete;
188
189 handle = start_transaction(inode);
190 if (IS_ERR(handle)) {
191 /*
192 * If we're going to skip the normal cleanup, we still need to
193 * make sure that the in-core orphan linked list is properly
194 * cleaned up.
195 */
617ba13b 196 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
197 goto no_delete;
198 }
199
200 if (IS_SYNC(inode))
201 handle->h_sync = 1;
202 inode->i_size = 0;
203 if (inode->i_blocks)
617ba13b 204 ext4_truncate(inode);
ac27a0ec 205 /*
617ba13b 206 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 207 * AKPM: I think this can be inside the above `if'.
617ba13b 208 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 209 * deletion of a non-existent orphan - this is because we don't
617ba13b 210 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
211 * (Well, we could do this if we need to, but heck - it works)
212 */
617ba13b
MC
213 ext4_orphan_del(handle, inode);
214 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
215
216 /*
217 * One subtle ordering requirement: if anything has gone wrong
218 * (transaction abort, IO errors, whatever), then we can still
219 * do these next steps (the fs will already have been marked as
220 * having errors), but we can't free the inode if the mark_dirty
221 * fails.
222 */
617ba13b 223 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec
DK
224 /* If that failed, just do the required in-core inode clear. */
225 clear_inode(inode);
226 else
617ba13b
MC
227 ext4_free_inode(handle, inode);
228 ext4_journal_stop(handle);
ac27a0ec
DK
229 return;
230no_delete:
231 clear_inode(inode); /* We must guarantee clearing of inode... */
232}
233
234typedef struct {
235 __le32 *p;
236 __le32 key;
237 struct buffer_head *bh;
238} Indirect;
239
240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
241{
242 p->key = *(p->p = v);
243 p->bh = bh;
244}
245
ac27a0ec 246/**
617ba13b 247 * ext4_block_to_path - parse the block number into array of offsets
ac27a0ec
DK
248 * @inode: inode in question (we are only interested in its superblock)
249 * @i_block: block number to be parsed
250 * @offsets: array to store the offsets in
8c55e204
DK
251 * @boundary: set this non-zero if the referred-to block is likely to be
252 * followed (on disk) by an indirect block.
ac27a0ec 253 *
617ba13b 254 * To store the locations of file's data ext4 uses a data structure common
ac27a0ec
DK
255 * for UNIX filesystems - tree of pointers anchored in the inode, with
256 * data blocks at leaves and indirect blocks in intermediate nodes.
257 * This function translates the block number into path in that tree -
258 * return value is the path length and @offsets[n] is the offset of
259 * pointer to (n+1)th node in the nth one. If @block is out of range
260 * (negative or too large) warning is printed and zero returned.
261 *
262 * Note: function doesn't find node addresses, so no IO is needed. All
263 * we need to know is the capacity of indirect blocks (taken from the
264 * inode->i_sb).
265 */
266
267/*
268 * Portability note: the last comparison (check that we fit into triple
269 * indirect block) is spelled differently, because otherwise on an
270 * architecture with 32-bit longs and 8Kb pages we might get into trouble
271 * if our filesystem had 8Kb blocks. We might use long long, but that would
272 * kill us on x86. Oh, well, at least the sign propagation does not matter -
273 * i_block would have to be negative in the very beginning, so we would not
274 * get there at all.
275 */
276
617ba13b 277static int ext4_block_to_path(struct inode *inode,
725d26d3
AK
278 ext4_lblk_t i_block,
279 ext4_lblk_t offsets[4], int *boundary)
ac27a0ec 280{
617ba13b
MC
281 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
282 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
283 const long direct_blocks = EXT4_NDIR_BLOCKS,
ac27a0ec
DK
284 indirect_blocks = ptrs,
285 double_blocks = (1 << (ptrs_bits * 2));
286 int n = 0;
287 int final = 0;
288
289 if (i_block < 0) {
617ba13b 290 ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
ac27a0ec
DK
291 } else if (i_block < direct_blocks) {
292 offsets[n++] = i_block;
293 final = direct_blocks;
294 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
617ba13b 295 offsets[n++] = EXT4_IND_BLOCK;
ac27a0ec
DK
296 offsets[n++] = i_block;
297 final = ptrs;
298 } else if ((i_block -= indirect_blocks) < double_blocks) {
617ba13b 299 offsets[n++] = EXT4_DIND_BLOCK;
ac27a0ec
DK
300 offsets[n++] = i_block >> ptrs_bits;
301 offsets[n++] = i_block & (ptrs - 1);
302 final = ptrs;
303 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
617ba13b 304 offsets[n++] = EXT4_TIND_BLOCK;
ac27a0ec
DK
305 offsets[n++] = i_block >> (ptrs_bits * 2);
306 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
307 offsets[n++] = i_block & (ptrs - 1);
308 final = ptrs;
309 } else {
e2b46574 310 ext4_warning(inode->i_sb, "ext4_block_to_path",
0e855ac8 311 "block %lu > max",
e2b46574
ES
312 i_block + direct_blocks +
313 indirect_blocks + double_blocks);
ac27a0ec
DK
314 }
315 if (boundary)
316 *boundary = final - 1 - (i_block & (ptrs - 1));
317 return n;
318}
319
320/**
617ba13b 321 * ext4_get_branch - read the chain of indirect blocks leading to data
ac27a0ec
DK
322 * @inode: inode in question
323 * @depth: depth of the chain (1 - direct pointer, etc.)
324 * @offsets: offsets of pointers in inode/indirect blocks
325 * @chain: place to store the result
326 * @err: here we store the error value
327 *
328 * Function fills the array of triples <key, p, bh> and returns %NULL
329 * if everything went OK or the pointer to the last filled triple
330 * (incomplete one) otherwise. Upon the return chain[i].key contains
331 * the number of (i+1)-th block in the chain (as it is stored in memory,
332 * i.e. little-endian 32-bit), chain[i].p contains the address of that
333 * number (it points into struct inode for i==0 and into the bh->b_data
334 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
335 * block for i>0 and NULL for i==0. In other words, it holds the block
336 * numbers of the chain, addresses they were taken from (and where we can
337 * verify that chain did not change) and buffer_heads hosting these
338 * numbers.
339 *
340 * Function stops when it stumbles upon zero pointer (absent block)
341 * (pointer to last triple returned, *@err == 0)
342 * or when it gets an IO error reading an indirect block
343 * (ditto, *@err == -EIO)
ac27a0ec
DK
344 * or when it reads all @depth-1 indirect blocks successfully and finds
345 * the whole chain, all way to the data (returns %NULL, *err == 0).
c278bfec
AK
346 *
347 * Need to be called with
0e855ac8 348 * down_read(&EXT4_I(inode)->i_data_sem)
ac27a0ec 349 */
725d26d3
AK
350static Indirect *ext4_get_branch(struct inode *inode, int depth,
351 ext4_lblk_t *offsets,
ac27a0ec
DK
352 Indirect chain[4], int *err)
353{
354 struct super_block *sb = inode->i_sb;
355 Indirect *p = chain;
356 struct buffer_head *bh;
357
358 *err = 0;
359 /* i_data is not going away, no lock needed */
617ba13b 360 add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
ac27a0ec
DK
361 if (!p->key)
362 goto no_block;
363 while (--depth) {
364 bh = sb_bread(sb, le32_to_cpu(p->key));
365 if (!bh)
366 goto failure;
ac27a0ec
DK
367 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
368 /* Reader: end */
369 if (!p->key)
370 goto no_block;
371 }
372 return NULL;
373
ac27a0ec
DK
374failure:
375 *err = -EIO;
376no_block:
377 return p;
378}
379
380/**
617ba13b 381 * ext4_find_near - find a place for allocation with sufficient locality
ac27a0ec
DK
382 * @inode: owner
383 * @ind: descriptor of indirect block.
384 *
385 * This function returns the prefered place for block allocation.
386 * It is used when heuristic for sequential allocation fails.
387 * Rules are:
388 * + if there is a block to the left of our position - allocate near it.
389 * + if pointer will live in indirect block - allocate near that block.
390 * + if pointer will live in inode - allocate in the same
391 * cylinder group.
392 *
393 * In the latter case we colour the starting block by the callers PID to
394 * prevent it from clashing with concurrent allocations for a different inode
395 * in the same block group. The PID is used here so that functionally related
396 * files will be close-by on-disk.
397 *
398 * Caller must make sure that @ind is valid and will stay that way.
399 */
617ba13b 400static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
ac27a0ec 401{
617ba13b 402 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
403 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
404 __le32 *p;
617ba13b
MC
405 ext4_fsblk_t bg_start;
406 ext4_grpblk_t colour;
ac27a0ec
DK
407
408 /* Try to find previous block */
409 for (p = ind->p - 1; p >= start; p--) {
410 if (*p)
411 return le32_to_cpu(*p);
412 }
413
414 /* No such thing, so let's try location of indirect block */
415 if (ind->bh)
416 return ind->bh->b_blocknr;
417
418 /*
419 * It is going to be referred to from the inode itself? OK, just put it
420 * into the same cylinder group then.
421 */
617ba13b 422 bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
ac27a0ec 423 colour = (current->pid % 16) *
617ba13b 424 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
ac27a0ec
DK
425 return bg_start + colour;
426}
427
428/**
617ba13b 429 * ext4_find_goal - find a prefered place for allocation.
ac27a0ec
DK
430 * @inode: owner
431 * @block: block we want
ac27a0ec 432 * @partial: pointer to the last triple within a chain
ac27a0ec
DK
433 *
434 * Normally this function find the prefered place for block allocation,
fb01bfda 435 * returns it.
ac27a0ec 436 */
725d26d3 437static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
fb01bfda 438 Indirect *partial)
ac27a0ec 439{
617ba13b 440 struct ext4_block_alloc_info *block_i;
ac27a0ec 441
617ba13b 442 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
443
444 /*
445 * try the heuristic for sequential allocation,
446 * failing that at least try to get decent locality.
447 */
448 if (block_i && (block == block_i->last_alloc_logical_block + 1)
449 && (block_i->last_alloc_physical_block != 0)) {
450 return block_i->last_alloc_physical_block + 1;
451 }
452
617ba13b 453 return ext4_find_near(inode, partial);
ac27a0ec
DK
454}
455
456/**
617ba13b 457 * ext4_blks_to_allocate: Look up the block map and count the number
ac27a0ec
DK
458 * of direct blocks need to be allocated for the given branch.
459 *
460 * @branch: chain of indirect blocks
461 * @k: number of blocks need for indirect blocks
462 * @blks: number of data blocks to be mapped.
463 * @blocks_to_boundary: the offset in the indirect block
464 *
465 * return the total number of blocks to be allocate, including the
466 * direct and indirect blocks.
467 */
617ba13b 468static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
ac27a0ec
DK
469 int blocks_to_boundary)
470{
471 unsigned long count = 0;
472
473 /*
474 * Simple case, [t,d]Indirect block(s) has not allocated yet
475 * then it's clear blocks on that path have not allocated
476 */
477 if (k > 0) {
478 /* right now we don't handle cross boundary allocation */
479 if (blks < blocks_to_boundary + 1)
480 count += blks;
481 else
482 count += blocks_to_boundary + 1;
483 return count;
484 }
485
486 count++;
487 while (count < blks && count <= blocks_to_boundary &&
488 le32_to_cpu(*(branch[0].p + count)) == 0) {
489 count++;
490 }
491 return count;
492}
493
494/**
617ba13b 495 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
ac27a0ec
DK
496 * @indirect_blks: the number of blocks need to allocate for indirect
497 * blocks
498 *
499 * @new_blocks: on return it will store the new block numbers for
500 * the indirect blocks(if needed) and the first direct block,
501 * @blks: on return it will store the total number of allocated
502 * direct blocks
503 */
617ba13b
MC
504static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
505 ext4_fsblk_t goal, int indirect_blks, int blks,
506 ext4_fsblk_t new_blocks[4], int *err)
ac27a0ec
DK
507{
508 int target, i;
509 unsigned long count = 0;
510 int index = 0;
617ba13b 511 ext4_fsblk_t current_block = 0;
ac27a0ec
DK
512 int ret = 0;
513
514 /*
515 * Here we try to allocate the requested multiple blocks at once,
516 * on a best-effort basis.
517 * To build a branch, we should allocate blocks for
518 * the indirect blocks(if not allocated yet), and at least
519 * the first direct block of this branch. That's the
520 * minimum number of blocks need to allocate(required)
521 */
522 target = blks + indirect_blks;
523
524 while (1) {
525 count = target;
526 /* allocating blocks for indirect blocks and direct blocks */
617ba13b 527 current_block = ext4_new_blocks(handle,inode,goal,&count,err);
ac27a0ec
DK
528 if (*err)
529 goto failed_out;
530
531 target -= count;
532 /* allocate blocks for indirect blocks */
533 while (index < indirect_blks && count) {
534 new_blocks[index++] = current_block++;
535 count--;
536 }
537
538 if (count > 0)
539 break;
540 }
541
542 /* save the new block number for the first direct block */
543 new_blocks[index] = current_block;
544
545 /* total number of blocks allocated for direct blocks */
546 ret = count;
547 *err = 0;
548 return ret;
549failed_out:
550 for (i = 0; i <index; i++)
c9de560d 551 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec
DK
552 return ret;
553}
554
555/**
617ba13b 556 * ext4_alloc_branch - allocate and set up a chain of blocks.
ac27a0ec
DK
557 * @inode: owner
558 * @indirect_blks: number of allocated indirect blocks
559 * @blks: number of allocated direct blocks
560 * @offsets: offsets (in the blocks) to store the pointers to next.
561 * @branch: place to store the chain in.
562 *
563 * This function allocates blocks, zeroes out all but the last one,
564 * links them into chain and (if we are synchronous) writes them to disk.
565 * In other words, it prepares a branch that can be spliced onto the
566 * inode. It stores the information about that chain in the branch[], in
617ba13b 567 * the same format as ext4_get_branch() would do. We are calling it after
ac27a0ec
DK
568 * we had read the existing part of chain and partial points to the last
569 * triple of that (one with zero ->key). Upon the exit we have the same
617ba13b 570 * picture as after the successful ext4_get_block(), except that in one
ac27a0ec
DK
571 * place chain is disconnected - *branch->p is still zero (we did not
572 * set the last link), but branch->key contains the number that should
573 * be placed into *branch->p to fill that gap.
574 *
575 * If allocation fails we free all blocks we've allocated (and forget
576 * their buffer_heads) and return the error value the from failed
617ba13b 577 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
ac27a0ec
DK
578 * as described above and return 0.
579 */
617ba13b
MC
580static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
581 int indirect_blks, int *blks, ext4_fsblk_t goal,
725d26d3 582 ext4_lblk_t *offsets, Indirect *branch)
ac27a0ec
DK
583{
584 int blocksize = inode->i_sb->s_blocksize;
585 int i, n = 0;
586 int err = 0;
587 struct buffer_head *bh;
588 int num;
617ba13b
MC
589 ext4_fsblk_t new_blocks[4];
590 ext4_fsblk_t current_block;
ac27a0ec 591
617ba13b 592 num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
ac27a0ec
DK
593 *blks, new_blocks, &err);
594 if (err)
595 return err;
596
597 branch[0].key = cpu_to_le32(new_blocks[0]);
598 /*
599 * metadata blocks and data blocks are allocated.
600 */
601 for (n = 1; n <= indirect_blks; n++) {
602 /*
603 * Get buffer_head for parent block, zero it out
604 * and set the pointer to new one, then send
605 * parent to disk.
606 */
607 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
608 branch[n].bh = bh;
609 lock_buffer(bh);
610 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 611 err = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
612 if (err) {
613 unlock_buffer(bh);
614 brelse(bh);
615 goto failed;
616 }
617
618 memset(bh->b_data, 0, blocksize);
619 branch[n].p = (__le32 *) bh->b_data + offsets[n];
620 branch[n].key = cpu_to_le32(new_blocks[n]);
621 *branch[n].p = branch[n].key;
622 if ( n == indirect_blks) {
623 current_block = new_blocks[n];
624 /*
625 * End of chain, update the last new metablock of
626 * the chain to point to the new allocated
627 * data blocks numbers
628 */
629 for (i=1; i < num; i++)
630 *(branch[n].p + i) = cpu_to_le32(++current_block);
631 }
632 BUFFER_TRACE(bh, "marking uptodate");
633 set_buffer_uptodate(bh);
634 unlock_buffer(bh);
635
617ba13b
MC
636 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
637 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
638 if (err)
639 goto failed;
640 }
641 *blks = num;
642 return err;
643failed:
644 /* Allocation failed, free what we already allocated */
645 for (i = 1; i <= n ; i++) {
dab291af 646 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
617ba13b 647 ext4_journal_forget(handle, branch[i].bh);
ac27a0ec
DK
648 }
649 for (i = 0; i <indirect_blks; i++)
c9de560d 650 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
ac27a0ec 651
c9de560d 652 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
ac27a0ec
DK
653
654 return err;
655}
656
657/**
617ba13b 658 * ext4_splice_branch - splice the allocated branch onto inode.
ac27a0ec
DK
659 * @inode: owner
660 * @block: (logical) number of block we are adding
661 * @chain: chain of indirect blocks (with a missing link - see
617ba13b 662 * ext4_alloc_branch)
ac27a0ec
DK
663 * @where: location of missing link
664 * @num: number of indirect blocks we are adding
665 * @blks: number of direct blocks we are adding
666 *
667 * This function fills the missing link and does all housekeeping needed in
668 * inode (->i_blocks, etc.). In case of success we end up with the full
669 * chain to new block and return 0.
670 */
617ba13b 671static int ext4_splice_branch(handle_t *handle, struct inode *inode,
725d26d3 672 ext4_lblk_t block, Indirect *where, int num, int blks)
ac27a0ec
DK
673{
674 int i;
675 int err = 0;
617ba13b
MC
676 struct ext4_block_alloc_info *block_i;
677 ext4_fsblk_t current_block;
ac27a0ec 678
617ba13b 679 block_i = EXT4_I(inode)->i_block_alloc_info;
ac27a0ec
DK
680 /*
681 * If we're splicing into a [td]indirect block (as opposed to the
682 * inode) then we need to get write access to the [td]indirect block
683 * before the splice.
684 */
685 if (where->bh) {
686 BUFFER_TRACE(where->bh, "get_write_access");
617ba13b 687 err = ext4_journal_get_write_access(handle, where->bh);
ac27a0ec
DK
688 if (err)
689 goto err_out;
690 }
691 /* That's it */
692
693 *where->p = where->key;
694
695 /*
696 * Update the host buffer_head or inode to point to more just allocated
697 * direct blocks blocks
698 */
699 if (num == 0 && blks > 1) {
700 current_block = le32_to_cpu(where->key) + 1;
701 for (i = 1; i < blks; i++)
702 *(where->p + i ) = cpu_to_le32(current_block++);
703 }
704
705 /*
706 * update the most recently allocated logical & physical block
707 * in i_block_alloc_info, to assist find the proper goal block for next
708 * allocation
709 */
710 if (block_i) {
711 block_i->last_alloc_logical_block = block + blks - 1;
712 block_i->last_alloc_physical_block =
713 le32_to_cpu(where[num].key) + blks - 1;
714 }
715
716 /* We are done with atomic stuff, now do the rest of housekeeping */
717
ef7f3835 718 inode->i_ctime = ext4_current_time(inode);
617ba13b 719 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
720
721 /* had we spliced it onto indirect block? */
722 if (where->bh) {
723 /*
724 * If we spliced it onto an indirect block, we haven't
725 * altered the inode. Note however that if it is being spliced
726 * onto an indirect block at the very end of the file (the
727 * file is growing) then we *will* alter the inode to reflect
728 * the new i_size. But that is not done here - it is done in
617ba13b 729 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
ac27a0ec
DK
730 */
731 jbd_debug(5, "splicing indirect only\n");
617ba13b
MC
732 BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
733 err = ext4_journal_dirty_metadata(handle, where->bh);
ac27a0ec
DK
734 if (err)
735 goto err_out;
736 } else {
737 /*
738 * OK, we spliced it into the inode itself on a direct block.
739 * Inode was dirtied above.
740 */
741 jbd_debug(5, "splicing direct\n");
742 }
743 return err;
744
745err_out:
746 for (i = 1; i <= num; i++) {
dab291af 747 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
617ba13b 748 ext4_journal_forget(handle, where[i].bh);
c9de560d
AT
749 ext4_free_blocks(handle, inode,
750 le32_to_cpu(where[i-1].key), 1, 0);
ac27a0ec 751 }
c9de560d 752 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
ac27a0ec
DK
753
754 return err;
755}
756
757/*
758 * Allocation strategy is simple: if we have to allocate something, we will
759 * have to go the whole way to leaf. So let's do it before attaching anything
760 * to tree, set linkage between the newborn blocks, write them if sync is
761 * required, recheck the path, free and repeat if check fails, otherwise
762 * set the last missing link (that will protect us from any truncate-generated
763 * removals - all blocks on the path are immune now) and possibly force the
764 * write on the parent block.
765 * That has a nice additional property: no special recovery from the failed
766 * allocations is needed - we simply release blocks and do not touch anything
767 * reachable from inode.
768 *
769 * `handle' can be NULL if create == 0.
770 *
ac27a0ec
DK
771 * return > 0, # of blocks mapped or allocated.
772 * return = 0, if plain lookup failed.
773 * return < 0, error case.
c278bfec
AK
774 *
775 *
776 * Need to be called with
0e855ac8
AK
777 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
778 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
ac27a0ec 779 */
617ba13b 780int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
725d26d3 781 ext4_lblk_t iblock, unsigned long maxblocks,
ac27a0ec
DK
782 struct buffer_head *bh_result,
783 int create, int extend_disksize)
784{
785 int err = -EIO;
725d26d3 786 ext4_lblk_t offsets[4];
ac27a0ec
DK
787 Indirect chain[4];
788 Indirect *partial;
617ba13b 789 ext4_fsblk_t goal;
ac27a0ec
DK
790 int indirect_blks;
791 int blocks_to_boundary = 0;
792 int depth;
617ba13b 793 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 794 int count = 0;
617ba13b 795 ext4_fsblk_t first_block = 0;
ac27a0ec
DK
796
797
a86c6181 798 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
ac27a0ec 799 J_ASSERT(handle != NULL || create == 0);
725d26d3
AK
800 depth = ext4_block_to_path(inode, iblock, offsets,
801 &blocks_to_boundary);
ac27a0ec
DK
802
803 if (depth == 0)
804 goto out;
805
617ba13b 806 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
ac27a0ec
DK
807
808 /* Simplest case - block found, no allocation needed */
809 if (!partial) {
810 first_block = le32_to_cpu(chain[depth - 1].key);
811 clear_buffer_new(bh_result);
812 count++;
813 /*map more blocks*/
814 while (count < maxblocks && count <= blocks_to_boundary) {
617ba13b 815 ext4_fsblk_t blk;
ac27a0ec 816
ac27a0ec
DK
817 blk = le32_to_cpu(*(chain[depth-1].p + count));
818
819 if (blk == first_block + count)
820 count++;
821 else
822 break;
823 }
c278bfec 824 goto got_it;
ac27a0ec
DK
825 }
826
827 /* Next simple case - plain lookup or failed read of indirect block */
828 if (!create || err == -EIO)
829 goto cleanup;
830
ac27a0ec
DK
831 /*
832 * Okay, we need to do block allocation. Lazily initialize the block
833 * allocation info here if necessary
834 */
835 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
617ba13b 836 ext4_init_block_alloc_info(inode);
ac27a0ec 837
fb01bfda 838 goal = ext4_find_goal(inode, iblock, partial);
ac27a0ec
DK
839
840 /* the number of blocks need to allocate for [d,t]indirect blocks */
841 indirect_blks = (chain + depth) - partial - 1;
842
843 /*
844 * Next look up the indirect map to count the totoal number of
845 * direct blocks to allocate for this branch.
846 */
617ba13b 847 count = ext4_blks_to_allocate(partial, indirect_blks,
ac27a0ec
DK
848 maxblocks, blocks_to_boundary);
849 /*
617ba13b 850 * Block out ext4_truncate while we alter the tree
ac27a0ec 851 */
617ba13b 852 err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
ac27a0ec
DK
853 offsets + (partial - chain), partial);
854
855 /*
617ba13b 856 * The ext4_splice_branch call will free and forget any buffers
ac27a0ec
DK
857 * on the new chain if there is a failure, but that risks using
858 * up transaction credits, especially for bitmaps where the
859 * credits cannot be returned. Can we handle this somehow? We
860 * may need to return -EAGAIN upwards in the worst case. --sct
861 */
862 if (!err)
617ba13b 863 err = ext4_splice_branch(handle, inode, iblock,
ac27a0ec
DK
864 partial, indirect_blks, count);
865 /*
0e855ac8 866 * i_disksize growing is protected by i_data_sem. Don't forget to
ac27a0ec 867 * protect it if you're about to implement concurrent
617ba13b 868 * ext4_get_block() -bzzz
ac27a0ec
DK
869 */
870 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
871 ei->i_disksize = inode->i_size;
ac27a0ec
DK
872 if (err)
873 goto cleanup;
874
875 set_buffer_new(bh_result);
876got_it:
877 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
878 if (count > blocks_to_boundary)
879 set_buffer_boundary(bh_result);
880 err = count;
881 /* Clean up and exit */
882 partial = chain + depth - 1; /* the whole chain */
883cleanup:
884 while (partial > chain) {
885 BUFFER_TRACE(partial->bh, "call brelse");
886 brelse(partial->bh);
887 partial--;
888 }
889 BUFFER_TRACE(bh_result, "returned");
890out:
891 return err;
892}
893
7fb5409d
JK
894/* Maximum number of blocks we map for direct IO at once. */
895#define DIO_MAX_BLOCKS 4096
896/*
897 * Number of credits we need for writing DIO_MAX_BLOCKS:
898 * We need sb + group descriptor + bitmap + inode -> 4
899 * For B blocks with A block pointers per block we need:
900 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
901 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
902 */
903#define DIO_CREDITS 25
ac27a0ec 904
0e855ac8
AK
905int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
906 unsigned long max_blocks, struct buffer_head *bh,
907 int create, int extend_disksize)
908{
909 int retval;
4df3d265
AK
910 /*
911 * Try to see if we can get the block without requesting
912 * for new file system block.
913 */
914 down_read((&EXT4_I(inode)->i_data_sem));
915 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
916 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
917 bh, 0, 0);
0e855ac8 918 } else {
4df3d265
AK
919 retval = ext4_get_blocks_handle(handle,
920 inode, block, max_blocks, bh, 0, 0);
0e855ac8 921 }
4df3d265
AK
922 up_read((&EXT4_I(inode)->i_data_sem));
923 if (!create || (retval > 0))
924 return retval;
925
926 /*
927 * We need to allocate new blocks which will result
928 * in i_data update
929 */
930 down_write((&EXT4_I(inode)->i_data_sem));
931 /*
932 * We need to check for EXT4 here because migrate
933 * could have changed the inode type in between
934 */
0e855ac8
AK
935 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
936 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
937 bh, create, extend_disksize);
938 } else {
939 retval = ext4_get_blocks_handle(handle, inode, block,
940 max_blocks, bh, create, extend_disksize);
941 }
4df3d265 942 up_write((&EXT4_I(inode)->i_data_sem));
0e855ac8
AK
943 return retval;
944}
945
617ba13b 946static int ext4_get_block(struct inode *inode, sector_t iblock,
ac27a0ec
DK
947 struct buffer_head *bh_result, int create)
948{
3e4fdaf8 949 handle_t *handle = ext4_journal_current_handle();
7fb5409d 950 int ret = 0, started = 0;
ac27a0ec
DK
951 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
952
7fb5409d
JK
953 if (create && !handle) {
954 /* Direct IO write... */
955 if (max_blocks > DIO_MAX_BLOCKS)
956 max_blocks = DIO_MAX_BLOCKS;
957 handle = ext4_journal_start(inode, DIO_CREDITS +
958 2 * EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb));
959 if (IS_ERR(handle)) {
ac27a0ec 960 ret = PTR_ERR(handle);
7fb5409d 961 goto out;
ac27a0ec 962 }
7fb5409d 963 started = 1;
ac27a0ec
DK
964 }
965
7fb5409d 966 ret = ext4_get_blocks_wrap(handle, inode, iblock,
ac27a0ec 967 max_blocks, bh_result, create, 0);
7fb5409d
JK
968 if (ret > 0) {
969 bh_result->b_size = (ret << inode->i_blkbits);
970 ret = 0;
ac27a0ec 971 }
7fb5409d
JK
972 if (started)
973 ext4_journal_stop(handle);
974out:
ac27a0ec
DK
975 return ret;
976}
977
978/*
979 * `handle' can be NULL if create is zero
980 */
617ba13b 981struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 982 ext4_lblk_t block, int create, int *errp)
ac27a0ec
DK
983{
984 struct buffer_head dummy;
985 int fatal = 0, err;
986
987 J_ASSERT(handle != NULL || create == 0);
988
989 dummy.b_state = 0;
990 dummy.b_blocknr = -1000;
991 buffer_trace_init(&dummy.b_history);
a86c6181 992 err = ext4_get_blocks_wrap(handle, inode, block, 1,
ac27a0ec
DK
993 &dummy, create, 1);
994 /*
617ba13b 995 * ext4_get_blocks_handle() returns number of blocks
ac27a0ec
DK
996 * mapped. 0 in case of a HOLE.
997 */
998 if (err > 0) {
999 if (err > 1)
1000 WARN_ON(1);
1001 err = 0;
1002 }
1003 *errp = err;
1004 if (!err && buffer_mapped(&dummy)) {
1005 struct buffer_head *bh;
1006 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1007 if (!bh) {
1008 *errp = -EIO;
1009 goto err;
1010 }
1011 if (buffer_new(&dummy)) {
1012 J_ASSERT(create != 0);
ac39849d 1013 J_ASSERT(handle != NULL);
ac27a0ec
DK
1014
1015 /*
1016 * Now that we do not always journal data, we should
1017 * keep in mind whether this should always journal the
1018 * new buffer as metadata. For now, regular file
617ba13b 1019 * writes use ext4_get_block instead, so it's not a
ac27a0ec
DK
1020 * problem.
1021 */
1022 lock_buffer(bh);
1023 BUFFER_TRACE(bh, "call get_create_access");
617ba13b 1024 fatal = ext4_journal_get_create_access(handle, bh);
ac27a0ec
DK
1025 if (!fatal && !buffer_uptodate(bh)) {
1026 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1027 set_buffer_uptodate(bh);
1028 }
1029 unlock_buffer(bh);
617ba13b
MC
1030 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1031 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1032 if (!fatal)
1033 fatal = err;
1034 } else {
1035 BUFFER_TRACE(bh, "not a new buffer");
1036 }
1037 if (fatal) {
1038 *errp = fatal;
1039 brelse(bh);
1040 bh = NULL;
1041 }
1042 return bh;
1043 }
1044err:
1045 return NULL;
1046}
1047
617ba13b 1048struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 1049 ext4_lblk_t block, int create, int *err)
ac27a0ec
DK
1050{
1051 struct buffer_head * bh;
1052
617ba13b 1053 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
1054 if (!bh)
1055 return bh;
1056 if (buffer_uptodate(bh))
1057 return bh;
1058 ll_rw_block(READ_META, 1, &bh);
1059 wait_on_buffer(bh);
1060 if (buffer_uptodate(bh))
1061 return bh;
1062 put_bh(bh);
1063 *err = -EIO;
1064 return NULL;
1065}
1066
1067static int walk_page_buffers( handle_t *handle,
1068 struct buffer_head *head,
1069 unsigned from,
1070 unsigned to,
1071 int *partial,
1072 int (*fn)( handle_t *handle,
1073 struct buffer_head *bh))
1074{
1075 struct buffer_head *bh;
1076 unsigned block_start, block_end;
1077 unsigned blocksize = head->b_size;
1078 int err, ret = 0;
1079 struct buffer_head *next;
1080
1081 for ( bh = head, block_start = 0;
1082 ret == 0 && (bh != head || !block_start);
1083 block_start = block_end, bh = next)
1084 {
1085 next = bh->b_this_page;
1086 block_end = block_start + blocksize;
1087 if (block_end <= from || block_start >= to) {
1088 if (partial && !buffer_uptodate(bh))
1089 *partial = 1;
1090 continue;
1091 }
1092 err = (*fn)(handle, bh);
1093 if (!ret)
1094 ret = err;
1095 }
1096 return ret;
1097}
1098
1099/*
1100 * To preserve ordering, it is essential that the hole instantiation and
1101 * the data write be encapsulated in a single transaction. We cannot
617ba13b 1102 * close off a transaction and start a new one between the ext4_get_block()
dab291af 1103 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
1104 * prepare_write() is the right place.
1105 *
617ba13b
MC
1106 * Also, this function can nest inside ext4_writepage() ->
1107 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
1108 * has generated enough buffer credits to do the whole page. So we won't
1109 * block on the journal in that case, which is good, because the caller may
1110 * be PF_MEMALLOC.
1111 *
617ba13b 1112 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
1113 * quota file writes. If we were to commit the transaction while thus
1114 * reentered, there can be a deadlock - we would be holding a quota
1115 * lock, and the commit would never complete if another thread had a
1116 * transaction open and was blocking on the quota lock - a ranking
1117 * violation.
1118 *
dab291af 1119 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
1120 * will _not_ run commit under these circumstances because handle->h_ref
1121 * is elevated. We'll still have enough credits for the tiny quotafile
1122 * write.
1123 */
1124static int do_journal_get_write_access(handle_t *handle,
1125 struct buffer_head *bh)
1126{
1127 if (!buffer_mapped(bh) || buffer_freed(bh))
1128 return 0;
617ba13b 1129 return ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1130}
1131
bfc1af65
NP
1132static int ext4_write_begin(struct file *file, struct address_space *mapping,
1133 loff_t pos, unsigned len, unsigned flags,
1134 struct page **pagep, void **fsdata)
ac27a0ec 1135{
bfc1af65 1136 struct inode *inode = mapping->host;
7479d2b9 1137 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
ac27a0ec
DK
1138 handle_t *handle;
1139 int retries = 0;
bfc1af65
NP
1140 struct page *page;
1141 pgoff_t index;
1142 unsigned from, to;
1143
1144 index = pos >> PAGE_CACHE_SHIFT;
1145 from = pos & (PAGE_CACHE_SIZE - 1);
1146 to = from + len;
ac27a0ec
DK
1147
1148retry:
bfc1af65
NP
1149 page = __grab_cache_page(mapping, index);
1150 if (!page)
1151 return -ENOMEM;
1152 *pagep = page;
1153
1154 handle = ext4_journal_start(inode, needed_blocks);
1155 if (IS_ERR(handle)) {
1156 unlock_page(page);
1157 page_cache_release(page);
1158 ret = PTR_ERR(handle);
1159 goto out;
7479d2b9 1160 }
ac27a0ec 1161
bfc1af65
NP
1162 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1163 ext4_get_block);
1164
1165 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
1166 ret = walk_page_buffers(handle, page_buffers(page),
1167 from, to, NULL, do_journal_get_write_access);
1168 }
bfc1af65
NP
1169
1170 if (ret) {
7479d2b9 1171 ext4_journal_stop(handle);
bfc1af65
NP
1172 unlock_page(page);
1173 page_cache_release(page);
1174 }
1175
617ba13b 1176 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 1177 goto retry;
7479d2b9 1178out:
ac27a0ec
DK
1179 return ret;
1180}
1181
617ba13b 1182int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1183{
dab291af 1184 int err = jbd2_journal_dirty_data(handle, bh);
ac27a0ec 1185 if (err)
617ba13b 1186 ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
bfc1af65 1187 bh, handle, err);
ac27a0ec
DK
1188 return err;
1189}
1190
bfc1af65
NP
1191/* For write_end() in data=journal mode */
1192static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1193{
1194 if (!buffer_mapped(bh) || buffer_freed(bh))
1195 return 0;
1196 set_buffer_uptodate(bh);
617ba13b 1197 return ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
1198}
1199
bfc1af65
NP
1200/*
1201 * Generic write_end handler for ordered and writeback ext4 journal modes.
1202 * We can't use generic_write_end, because that unlocks the page and we need to
1203 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1204 * after block_write_end.
1205 */
1206static int ext4_generic_write_end(struct file *file,
1207 struct address_space *mapping,
1208 loff_t pos, unsigned len, unsigned copied,
1209 struct page *page, void *fsdata)
1210{
1211 struct inode *inode = file->f_mapping->host;
1212
1213 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1214
1215 if (pos+copied > inode->i_size) {
1216 i_size_write(inode, pos+copied);
1217 mark_inode_dirty(inode);
1218 }
1219
1220 return copied;
1221}
1222
ac27a0ec
DK
1223/*
1224 * We need to pick up the new inode size which generic_commit_write gave us
1225 * `file' can be NULL - eg, when called from page_symlink().
1226 *
617ba13b 1227 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1228 * buffers are managed internally.
1229 */
bfc1af65
NP
1230static int ext4_ordered_write_end(struct file *file,
1231 struct address_space *mapping,
1232 loff_t pos, unsigned len, unsigned copied,
1233 struct page *page, void *fsdata)
ac27a0ec 1234{
617ba13b 1235 handle_t *handle = ext4_journal_current_handle();
bfc1af65
NP
1236 struct inode *inode = file->f_mapping->host;
1237 unsigned from, to;
ac27a0ec
DK
1238 int ret = 0, ret2;
1239
bfc1af65
NP
1240 from = pos & (PAGE_CACHE_SIZE - 1);
1241 to = from + len;
1242
ac27a0ec 1243 ret = walk_page_buffers(handle, page_buffers(page),
617ba13b 1244 from, to, NULL, ext4_journal_dirty_data);
ac27a0ec
DK
1245
1246 if (ret == 0) {
1247 /*
bfc1af65 1248 * generic_write_end() will run mark_inode_dirty() if i_size
ac27a0ec
DK
1249 * changes. So let's piggyback the i_disksize mark_inode_dirty
1250 * into that.
1251 */
1252 loff_t new_i_size;
1253
bfc1af65 1254 new_i_size = pos + copied;
617ba13b
MC
1255 if (new_i_size > EXT4_I(inode)->i_disksize)
1256 EXT4_I(inode)->i_disksize = new_i_size;
bfc1af65
NP
1257 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1258 page, fsdata);
1259 if (copied < 0)
1260 ret = copied;
ac27a0ec 1261 }
617ba13b 1262 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1263 if (!ret)
1264 ret = ret2;
bfc1af65
NP
1265 unlock_page(page);
1266 page_cache_release(page);
1267
1268 return ret ? ret : copied;
ac27a0ec
DK
1269}
1270
bfc1af65
NP
1271static int ext4_writeback_write_end(struct file *file,
1272 struct address_space *mapping,
1273 loff_t pos, unsigned len, unsigned copied,
1274 struct page *page, void *fsdata)
ac27a0ec 1275{
617ba13b 1276 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1277 struct inode *inode = file->f_mapping->host;
ac27a0ec
DK
1278 int ret = 0, ret2;
1279 loff_t new_i_size;
1280
bfc1af65 1281 new_i_size = pos + copied;
617ba13b
MC
1282 if (new_i_size > EXT4_I(inode)->i_disksize)
1283 EXT4_I(inode)->i_disksize = new_i_size;
ac27a0ec 1284
bfc1af65
NP
1285 copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1286 page, fsdata);
1287 if (copied < 0)
1288 ret = copied;
ac27a0ec 1289
617ba13b 1290 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1291 if (!ret)
1292 ret = ret2;
bfc1af65
NP
1293 unlock_page(page);
1294 page_cache_release(page);
1295
1296 return ret ? ret : copied;
ac27a0ec
DK
1297}
1298
bfc1af65
NP
1299static int ext4_journalled_write_end(struct file *file,
1300 struct address_space *mapping,
1301 loff_t pos, unsigned len, unsigned copied,
1302 struct page *page, void *fsdata)
ac27a0ec 1303{
617ba13b 1304 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1305 struct inode *inode = mapping->host;
ac27a0ec
DK
1306 int ret = 0, ret2;
1307 int partial = 0;
bfc1af65 1308 unsigned from, to;
ac27a0ec 1309
bfc1af65
NP
1310 from = pos & (PAGE_CACHE_SIZE - 1);
1311 to = from + len;
1312
1313 if (copied < len) {
1314 if (!PageUptodate(page))
1315 copied = 0;
1316 page_zero_new_buffers(page, from+copied, to);
1317 }
ac27a0ec
DK
1318
1319 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1320 to, &partial, write_end_fn);
ac27a0ec
DK
1321 if (!partial)
1322 SetPageUptodate(page);
bfc1af65
NP
1323 if (pos+copied > inode->i_size)
1324 i_size_write(inode, pos+copied);
617ba13b
MC
1325 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1326 if (inode->i_size > EXT4_I(inode)->i_disksize) {
1327 EXT4_I(inode)->i_disksize = inode->i_size;
1328 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1329 if (!ret)
1330 ret = ret2;
1331 }
bfc1af65 1332
617ba13b 1333 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1334 if (!ret)
1335 ret = ret2;
bfc1af65
NP
1336 unlock_page(page);
1337 page_cache_release(page);
1338
1339 return ret ? ret : copied;
ac27a0ec
DK
1340}
1341
1342/*
1343 * bmap() is special. It gets used by applications such as lilo and by
1344 * the swapper to find the on-disk block of a specific piece of data.
1345 *
1346 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 1347 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
1348 * filesystem and enables swap, then they may get a nasty shock when the
1349 * data getting swapped to that swapfile suddenly gets overwritten by
1350 * the original zero's written out previously to the journal and
1351 * awaiting writeback in the kernel's buffer cache.
1352 *
1353 * So, if we see any bmap calls here on a modified, data-journaled file,
1354 * take extra steps to flush any blocks which might be in the cache.
1355 */
617ba13b 1356static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
1357{
1358 struct inode *inode = mapping->host;
1359 journal_t *journal;
1360 int err;
1361
617ba13b 1362 if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
ac27a0ec
DK
1363 /*
1364 * This is a REALLY heavyweight approach, but the use of
1365 * bmap on dirty files is expected to be extremely rare:
1366 * only if we run lilo or swapon on a freshly made file
1367 * do we expect this to happen.
1368 *
1369 * (bmap requires CAP_SYS_RAWIO so this does not
1370 * represent an unprivileged user DOS attack --- we'd be
1371 * in trouble if mortal users could trigger this path at
1372 * will.)
1373 *
617ba13b 1374 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
1375 * regular files. If somebody wants to bmap a directory
1376 * or symlink and gets confused because the buffer
1377 * hasn't yet been flushed to disk, they deserve
1378 * everything they get.
1379 */
1380
617ba13b
MC
1381 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1382 journal = EXT4_JOURNAL(inode);
dab291af
MC
1383 jbd2_journal_lock_updates(journal);
1384 err = jbd2_journal_flush(journal);
1385 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
1386
1387 if (err)
1388 return 0;
1389 }
1390
617ba13b 1391 return generic_block_bmap(mapping,block,ext4_get_block);
ac27a0ec
DK
1392}
1393
1394static int bget_one(handle_t *handle, struct buffer_head *bh)
1395{
1396 get_bh(bh);
1397 return 0;
1398}
1399
1400static int bput_one(handle_t *handle, struct buffer_head *bh)
1401{
1402 put_bh(bh);
1403 return 0;
1404}
1405
dab291af 1406static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
1407{
1408 if (buffer_mapped(bh))
617ba13b 1409 return ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1410 return 0;
1411}
1412
1413/*
1414 * Note that we always start a transaction even if we're not journalling
1415 * data. This is to preserve ordering: any hole instantiation within
617ba13b 1416 * __block_write_full_page -> ext4_get_block() should be journalled
ac27a0ec
DK
1417 * along with the data so we don't crash and then get metadata which
1418 * refers to old data.
1419 *
1420 * In all journalling modes block_write_full_page() will start the I/O.
1421 *
1422 * Problem:
1423 *
617ba13b
MC
1424 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1425 * ext4_writepage()
ac27a0ec
DK
1426 *
1427 * Similar for:
1428 *
617ba13b 1429 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
ac27a0ec 1430 *
617ba13b 1431 * Same applies to ext4_get_block(). We will deadlock on various things like
0e855ac8 1432 * lock_journal and i_data_sem
ac27a0ec
DK
1433 *
1434 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1435 * allocations fail.
1436 *
1437 * 16May01: If we're reentered then journal_current_handle() will be
1438 * non-zero. We simply *return*.
1439 *
1440 * 1 July 2001: @@@ FIXME:
1441 * In journalled data mode, a data buffer may be metadata against the
1442 * current transaction. But the same file is part of a shared mapping
1443 * and someone does a writepage() on it.
1444 *
1445 * We will move the buffer onto the async_data list, but *after* it has
1446 * been dirtied. So there's a small window where we have dirty data on
1447 * BJ_Metadata.
1448 *
1449 * Note that this only applies to the last partial page in the file. The
1450 * bit which block_write_full_page() uses prepare/commit for. (That's
1451 * broken code anyway: it's wrong for msync()).
1452 *
1453 * It's a rare case: affects the final partial page, for journalled data
1454 * where the file is subject to bith write() and writepage() in the same
1455 * transction. To fix it we'll need a custom block_write_full_page().
1456 * We'll probably need that anyway for journalling writepage() output.
1457 *
1458 * We don't honour synchronous mounts for writepage(). That would be
1459 * disastrous. Any write() or metadata operation will sync the fs for
1460 * us.
1461 *
1462 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1463 * we don't need to open a transaction here.
1464 */
617ba13b 1465static int ext4_ordered_writepage(struct page *page,
ac27a0ec
DK
1466 struct writeback_control *wbc)
1467{
1468 struct inode *inode = page->mapping->host;
1469 struct buffer_head *page_bufs;
1470 handle_t *handle = NULL;
1471 int ret = 0;
1472 int err;
1473
1474 J_ASSERT(PageLocked(page));
1475
1476 /*
1477 * We give up here if we're reentered, because it might be for a
1478 * different filesystem.
1479 */
617ba13b 1480 if (ext4_journal_current_handle())
ac27a0ec
DK
1481 goto out_fail;
1482
617ba13b 1483 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1484
1485 if (IS_ERR(handle)) {
1486 ret = PTR_ERR(handle);
1487 goto out_fail;
1488 }
1489
1490 if (!page_has_buffers(page)) {
1491 create_empty_buffers(page, inode->i_sb->s_blocksize,
1492 (1 << BH_Dirty)|(1 << BH_Uptodate));
1493 }
1494 page_bufs = page_buffers(page);
1495 walk_page_buffers(handle, page_bufs, 0,
1496 PAGE_CACHE_SIZE, NULL, bget_one);
1497
617ba13b 1498 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec
DK
1499
1500 /*
1501 * The page can become unlocked at any point now, and
1502 * truncate can then come in and change things. So we
1503 * can't touch *page from now on. But *page_bufs is
1504 * safe due to elevated refcount.
1505 */
1506
1507 /*
1508 * And attach them to the current transaction. But only if
1509 * block_write_full_page() succeeded. Otherwise they are unmapped,
1510 * and generally junk.
1511 */
1512 if (ret == 0) {
1513 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
dab291af 1514 NULL, jbd2_journal_dirty_data_fn);
ac27a0ec
DK
1515 if (!ret)
1516 ret = err;
1517 }
1518 walk_page_buffers(handle, page_bufs, 0,
1519 PAGE_CACHE_SIZE, NULL, bput_one);
617ba13b 1520 err = ext4_journal_stop(handle);
ac27a0ec
DK
1521 if (!ret)
1522 ret = err;
1523 return ret;
1524
1525out_fail:
1526 redirty_page_for_writepage(wbc, page);
1527 unlock_page(page);
1528 return ret;
1529}
1530
617ba13b 1531static int ext4_writeback_writepage(struct page *page,
ac27a0ec
DK
1532 struct writeback_control *wbc)
1533{
1534 struct inode *inode = page->mapping->host;
1535 handle_t *handle = NULL;
1536 int ret = 0;
1537 int err;
1538
617ba13b 1539 if (ext4_journal_current_handle())
ac27a0ec
DK
1540 goto out_fail;
1541
617ba13b 1542 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1543 if (IS_ERR(handle)) {
1544 ret = PTR_ERR(handle);
1545 goto out_fail;
1546 }
1547
617ba13b
MC
1548 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1549 ret = nobh_writepage(page, ext4_get_block, wbc);
ac27a0ec 1550 else
617ba13b 1551 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1552
617ba13b 1553 err = ext4_journal_stop(handle);
ac27a0ec
DK
1554 if (!ret)
1555 ret = err;
1556 return ret;
1557
1558out_fail:
1559 redirty_page_for_writepage(wbc, page);
1560 unlock_page(page);
1561 return ret;
1562}
1563
617ba13b 1564static int ext4_journalled_writepage(struct page *page,
ac27a0ec
DK
1565 struct writeback_control *wbc)
1566{
1567 struct inode *inode = page->mapping->host;
1568 handle_t *handle = NULL;
1569 int ret = 0;
1570 int err;
1571
617ba13b 1572 if (ext4_journal_current_handle())
ac27a0ec
DK
1573 goto no_write;
1574
617ba13b 1575 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
ac27a0ec
DK
1576 if (IS_ERR(handle)) {
1577 ret = PTR_ERR(handle);
1578 goto no_write;
1579 }
1580
1581 if (!page_has_buffers(page) || PageChecked(page)) {
1582 /*
1583 * It's mmapped pagecache. Add buffers and journal it. There
1584 * doesn't seem much point in redirtying the page here.
1585 */
1586 ClearPageChecked(page);
1587 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
617ba13b 1588 ext4_get_block);
ac27a0ec 1589 if (ret != 0) {
617ba13b 1590 ext4_journal_stop(handle);
ac27a0ec
DK
1591 goto out_unlock;
1592 }
1593 ret = walk_page_buffers(handle, page_buffers(page), 0,
1594 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1595
1596 err = walk_page_buffers(handle, page_buffers(page), 0,
bfc1af65 1597 PAGE_CACHE_SIZE, NULL, write_end_fn);
ac27a0ec
DK
1598 if (ret == 0)
1599 ret = err;
617ba13b 1600 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
ac27a0ec
DK
1601 unlock_page(page);
1602 } else {
1603 /*
1604 * It may be a page full of checkpoint-mode buffers. We don't
1605 * really know unless we go poke around in the buffer_heads.
1606 * But block_write_full_page will do the right thing.
1607 */
617ba13b 1608 ret = block_write_full_page(page, ext4_get_block, wbc);
ac27a0ec 1609 }
617ba13b 1610 err = ext4_journal_stop(handle);
ac27a0ec
DK
1611 if (!ret)
1612 ret = err;
1613out:
1614 return ret;
1615
1616no_write:
1617 redirty_page_for_writepage(wbc, page);
1618out_unlock:
1619 unlock_page(page);
1620 goto out;
1621}
1622
617ba13b 1623static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 1624{
617ba13b 1625 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
1626}
1627
1628static int
617ba13b 1629ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
1630 struct list_head *pages, unsigned nr_pages)
1631{
617ba13b 1632 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
1633}
1634
617ba13b 1635static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 1636{
617ba13b 1637 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1638
1639 /*
1640 * If it's a full truncate we just forget about the pending dirtying
1641 */
1642 if (offset == 0)
1643 ClearPageChecked(page);
1644
dab291af 1645 jbd2_journal_invalidatepage(journal, page, offset);
ac27a0ec
DK
1646}
1647
617ba13b 1648static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 1649{
617ba13b 1650 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec
DK
1651
1652 WARN_ON(PageChecked(page));
1653 if (!page_has_buffers(page))
1654 return 0;
dab291af 1655 return jbd2_journal_try_to_free_buffers(journal, page, wait);
ac27a0ec
DK
1656}
1657
1658/*
1659 * If the O_DIRECT write will extend the file then add this inode to the
1660 * orphan list. So recovery will truncate it back to the original size
1661 * if the machine crashes during the write.
1662 *
1663 * If the O_DIRECT write is intantiating holes inside i_size and the machine
7fb5409d
JK
1664 * crashes then stale disk data _may_ be exposed inside the file. But current
1665 * VFS code falls back into buffered path in that case so we are safe.
ac27a0ec 1666 */
617ba13b 1667static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
ac27a0ec
DK
1668 const struct iovec *iov, loff_t offset,
1669 unsigned long nr_segs)
1670{
1671 struct file *file = iocb->ki_filp;
1672 struct inode *inode = file->f_mapping->host;
617ba13b 1673 struct ext4_inode_info *ei = EXT4_I(inode);
7fb5409d 1674 handle_t *handle;
ac27a0ec
DK
1675 ssize_t ret;
1676 int orphan = 0;
1677 size_t count = iov_length(iov, nr_segs);
1678
1679 if (rw == WRITE) {
1680 loff_t final_size = offset + count;
1681
ac27a0ec 1682 if (final_size > inode->i_size) {
7fb5409d
JK
1683 /* Credits for sb + inode write */
1684 handle = ext4_journal_start(inode, 2);
1685 if (IS_ERR(handle)) {
1686 ret = PTR_ERR(handle);
1687 goto out;
1688 }
617ba13b 1689 ret = ext4_orphan_add(handle, inode);
7fb5409d
JK
1690 if (ret) {
1691 ext4_journal_stop(handle);
1692 goto out;
1693 }
ac27a0ec
DK
1694 orphan = 1;
1695 ei->i_disksize = inode->i_size;
7fb5409d 1696 ext4_journal_stop(handle);
ac27a0ec
DK
1697 }
1698 }
1699
1700 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1701 offset, nr_segs,
617ba13b 1702 ext4_get_block, NULL);
ac27a0ec 1703
7fb5409d 1704 if (orphan) {
ac27a0ec
DK
1705 int err;
1706
7fb5409d
JK
1707 /* Credits for sb + inode write */
1708 handle = ext4_journal_start(inode, 2);
1709 if (IS_ERR(handle)) {
1710 /* This is really bad luck. We've written the data
1711 * but cannot extend i_size. Bail out and pretend
1712 * the write failed... */
1713 ret = PTR_ERR(handle);
1714 goto out;
1715 }
1716 if (inode->i_nlink)
617ba13b 1717 ext4_orphan_del(handle, inode);
7fb5409d 1718 if (ret > 0) {
ac27a0ec
DK
1719 loff_t end = offset + ret;
1720 if (end > inode->i_size) {
1721 ei->i_disksize = end;
1722 i_size_write(inode, end);
1723 /*
1724 * We're going to return a positive `ret'
1725 * here due to non-zero-length I/O, so there's
1726 * no way of reporting error returns from
617ba13b 1727 * ext4_mark_inode_dirty() to userspace. So
ac27a0ec
DK
1728 * ignore it.
1729 */
617ba13b 1730 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1731 }
1732 }
617ba13b 1733 err = ext4_journal_stop(handle);
ac27a0ec
DK
1734 if (ret == 0)
1735 ret = err;
1736 }
1737out:
1738 return ret;
1739}
1740
1741/*
617ba13b 1742 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
1743 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1744 * much here because ->set_page_dirty is called under VFS locks. The page is
1745 * not necessarily locked.
1746 *
1747 * We cannot just dirty the page and leave attached buffers clean, because the
1748 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1749 * or jbddirty because all the journalling code will explode.
1750 *
1751 * So what we do is to mark the page "pending dirty" and next time writepage
1752 * is called, propagate that into the buffers appropriately.
1753 */
617ba13b 1754static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
1755{
1756 SetPageChecked(page);
1757 return __set_page_dirty_nobuffers(page);
1758}
1759
617ba13b
MC
1760static const struct address_space_operations ext4_ordered_aops = {
1761 .readpage = ext4_readpage,
1762 .readpages = ext4_readpages,
1763 .writepage = ext4_ordered_writepage,
ac27a0ec 1764 .sync_page = block_sync_page,
bfc1af65
NP
1765 .write_begin = ext4_write_begin,
1766 .write_end = ext4_ordered_write_end,
617ba13b
MC
1767 .bmap = ext4_bmap,
1768 .invalidatepage = ext4_invalidatepage,
1769 .releasepage = ext4_releasepage,
1770 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1771 .migratepage = buffer_migrate_page,
1772};
1773
617ba13b
MC
1774static const struct address_space_operations ext4_writeback_aops = {
1775 .readpage = ext4_readpage,
1776 .readpages = ext4_readpages,
1777 .writepage = ext4_writeback_writepage,
ac27a0ec 1778 .sync_page = block_sync_page,
bfc1af65
NP
1779 .write_begin = ext4_write_begin,
1780 .write_end = ext4_writeback_write_end,
617ba13b
MC
1781 .bmap = ext4_bmap,
1782 .invalidatepage = ext4_invalidatepage,
1783 .releasepage = ext4_releasepage,
1784 .direct_IO = ext4_direct_IO,
ac27a0ec
DK
1785 .migratepage = buffer_migrate_page,
1786};
1787
617ba13b
MC
1788static const struct address_space_operations ext4_journalled_aops = {
1789 .readpage = ext4_readpage,
1790 .readpages = ext4_readpages,
1791 .writepage = ext4_journalled_writepage,
ac27a0ec 1792 .sync_page = block_sync_page,
bfc1af65
NP
1793 .write_begin = ext4_write_begin,
1794 .write_end = ext4_journalled_write_end,
617ba13b
MC
1795 .set_page_dirty = ext4_journalled_set_page_dirty,
1796 .bmap = ext4_bmap,
1797 .invalidatepage = ext4_invalidatepage,
1798 .releasepage = ext4_releasepage,
ac27a0ec
DK
1799};
1800
617ba13b 1801void ext4_set_aops(struct inode *inode)
ac27a0ec 1802{
617ba13b
MC
1803 if (ext4_should_order_data(inode))
1804 inode->i_mapping->a_ops = &ext4_ordered_aops;
1805 else if (ext4_should_writeback_data(inode))
1806 inode->i_mapping->a_ops = &ext4_writeback_aops;
ac27a0ec 1807 else
617ba13b 1808 inode->i_mapping->a_ops = &ext4_journalled_aops;
ac27a0ec
DK
1809}
1810
1811/*
617ba13b 1812 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
ac27a0ec
DK
1813 * up to the end of the block which corresponds to `from'.
1814 * This required during truncate. We need to physically zero the tail end
1815 * of that block so it doesn't yield old data if the file is later grown.
1816 */
a86c6181 1817int ext4_block_truncate_page(handle_t *handle, struct page *page,
ac27a0ec
DK
1818 struct address_space *mapping, loff_t from)
1819{
617ba13b 1820 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
ac27a0ec 1821 unsigned offset = from & (PAGE_CACHE_SIZE-1);
725d26d3
AK
1822 unsigned blocksize, length, pos;
1823 ext4_lblk_t iblock;
ac27a0ec
DK
1824 struct inode *inode = mapping->host;
1825 struct buffer_head *bh;
1826 int err = 0;
ac27a0ec
DK
1827
1828 blocksize = inode->i_sb->s_blocksize;
1829 length = blocksize - (offset & (blocksize - 1));
1830 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1831
1832 /*
1833 * For "nobh" option, we can only work if we don't need to
1834 * read-in the page - otherwise we create buffers to do the IO.
1835 */
1836 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
617ba13b 1837 ext4_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1838 zero_user(page, offset, length);
ac27a0ec
DK
1839 set_page_dirty(page);
1840 goto unlock;
1841 }
1842
1843 if (!page_has_buffers(page))
1844 create_empty_buffers(page, blocksize, 0);
1845
1846 /* Find the buffer that contains "offset" */
1847 bh = page_buffers(page);
1848 pos = blocksize;
1849 while (offset >= pos) {
1850 bh = bh->b_this_page;
1851 iblock++;
1852 pos += blocksize;
1853 }
1854
1855 err = 0;
1856 if (buffer_freed(bh)) {
1857 BUFFER_TRACE(bh, "freed: skip");
1858 goto unlock;
1859 }
1860
1861 if (!buffer_mapped(bh)) {
1862 BUFFER_TRACE(bh, "unmapped");
617ba13b 1863 ext4_get_block(inode, iblock, bh, 0);
ac27a0ec
DK
1864 /* unmapped? It's a hole - nothing to do */
1865 if (!buffer_mapped(bh)) {
1866 BUFFER_TRACE(bh, "still unmapped");
1867 goto unlock;
1868 }
1869 }
1870
1871 /* Ok, it's mapped. Make sure it's up-to-date */
1872 if (PageUptodate(page))
1873 set_buffer_uptodate(bh);
1874
1875 if (!buffer_uptodate(bh)) {
1876 err = -EIO;
1877 ll_rw_block(READ, 1, &bh);
1878 wait_on_buffer(bh);
1879 /* Uhhuh. Read error. Complain and punt. */
1880 if (!buffer_uptodate(bh))
1881 goto unlock;
1882 }
1883
617ba13b 1884 if (ext4_should_journal_data(inode)) {
ac27a0ec 1885 BUFFER_TRACE(bh, "get write access");
617ba13b 1886 err = ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
1887 if (err)
1888 goto unlock;
1889 }
1890
eebd2aa3 1891 zero_user(page, offset, length);
ac27a0ec
DK
1892
1893 BUFFER_TRACE(bh, "zeroed end of block");
1894
1895 err = 0;
617ba13b
MC
1896 if (ext4_should_journal_data(inode)) {
1897 err = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 1898 } else {
617ba13b
MC
1899 if (ext4_should_order_data(inode))
1900 err = ext4_journal_dirty_data(handle, bh);
ac27a0ec
DK
1901 mark_buffer_dirty(bh);
1902 }
1903
1904unlock:
1905 unlock_page(page);
1906 page_cache_release(page);
1907 return err;
1908}
1909
1910/*
1911 * Probably it should be a library function... search for first non-zero word
1912 * or memcmp with zero_page, whatever is better for particular architecture.
1913 * Linus?
1914 */
1915static inline int all_zeroes(__le32 *p, __le32 *q)
1916{
1917 while (p < q)
1918 if (*p++)
1919 return 0;
1920 return 1;
1921}
1922
1923/**
617ba13b 1924 * ext4_find_shared - find the indirect blocks for partial truncation.
ac27a0ec
DK
1925 * @inode: inode in question
1926 * @depth: depth of the affected branch
617ba13b 1927 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
ac27a0ec
DK
1928 * @chain: place to store the pointers to partial indirect blocks
1929 * @top: place to the (detached) top of branch
1930 *
617ba13b 1931 * This is a helper function used by ext4_truncate().
ac27a0ec
DK
1932 *
1933 * When we do truncate() we may have to clean the ends of several
1934 * indirect blocks but leave the blocks themselves alive. Block is
1935 * partially truncated if some data below the new i_size is refered
1936 * from it (and it is on the path to the first completely truncated
1937 * data block, indeed). We have to free the top of that path along
1938 * with everything to the right of the path. Since no allocation
617ba13b 1939 * past the truncation point is possible until ext4_truncate()
ac27a0ec
DK
1940 * finishes, we may safely do the latter, but top of branch may
1941 * require special attention - pageout below the truncation point
1942 * might try to populate it.
1943 *
1944 * We atomically detach the top of branch from the tree, store the
1945 * block number of its root in *@top, pointers to buffer_heads of
1946 * partially truncated blocks - in @chain[].bh and pointers to
1947 * their last elements that should not be removed - in
1948 * @chain[].p. Return value is the pointer to last filled element
1949 * of @chain.
1950 *
1951 * The work left to caller to do the actual freeing of subtrees:
1952 * a) free the subtree starting from *@top
1953 * b) free the subtrees whose roots are stored in
1954 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1955 * c) free the subtrees growing from the inode past the @chain[0].
1956 * (no partially truncated stuff there). */
1957
617ba13b 1958static Indirect *ext4_find_shared(struct inode *inode, int depth,
725d26d3 1959 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
ac27a0ec
DK
1960{
1961 Indirect *partial, *p;
1962 int k, err;
1963
1964 *top = 0;
1965 /* Make k index the deepest non-null offest + 1 */
1966 for (k = depth; k > 1 && !offsets[k-1]; k--)
1967 ;
617ba13b 1968 partial = ext4_get_branch(inode, k, offsets, chain, &err);
ac27a0ec
DK
1969 /* Writer: pointers */
1970 if (!partial)
1971 partial = chain + k-1;
1972 /*
1973 * If the branch acquired continuation since we've looked at it -
1974 * fine, it should all survive and (new) top doesn't belong to us.
1975 */
1976 if (!partial->key && *partial->p)
1977 /* Writer: end */
1978 goto no_top;
1979 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1980 ;
1981 /*
1982 * OK, we've found the last block that must survive. The rest of our
1983 * branch should be detached before unlocking. However, if that rest
1984 * of branch is all ours and does not grow immediately from the inode
1985 * it's easier to cheat and just decrement partial->p.
1986 */
1987 if (p == chain + k - 1 && p > chain) {
1988 p->p--;
1989 } else {
1990 *top = *p->p;
617ba13b 1991 /* Nope, don't do this in ext4. Must leave the tree intact */
ac27a0ec
DK
1992#if 0
1993 *p->p = 0;
1994#endif
1995 }
1996 /* Writer: end */
1997
1998 while(partial > p) {
1999 brelse(partial->bh);
2000 partial--;
2001 }
2002no_top:
2003 return partial;
2004}
2005
2006/*
2007 * Zero a number of block pointers in either an inode or an indirect block.
2008 * If we restart the transaction we must again get write access to the
2009 * indirect block for further modification.
2010 *
2011 * We release `count' blocks on disk, but (last - first) may be greater
2012 * than `count' because there can be holes in there.
2013 */
617ba13b
MC
2014static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2015 struct buffer_head *bh, ext4_fsblk_t block_to_free,
ac27a0ec
DK
2016 unsigned long count, __le32 *first, __le32 *last)
2017{
2018 __le32 *p;
2019 if (try_to_extend_transaction(handle, inode)) {
2020 if (bh) {
617ba13b
MC
2021 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2022 ext4_journal_dirty_metadata(handle, bh);
ac27a0ec 2023 }
617ba13b
MC
2024 ext4_mark_inode_dirty(handle, inode);
2025 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2026 if (bh) {
2027 BUFFER_TRACE(bh, "retaking write access");
617ba13b 2028 ext4_journal_get_write_access(handle, bh);
ac27a0ec
DK
2029 }
2030 }
2031
2032 /*
2033 * Any buffers which are on the journal will be in memory. We find
dab291af 2034 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
ac27a0ec 2035 * on them. We've already detached each block from the file, so
dab291af 2036 * bforget() in jbd2_journal_forget() should be safe.
ac27a0ec 2037 *
dab291af 2038 * AKPM: turn on bforget in jbd2_journal_forget()!!!
ac27a0ec
DK
2039 */
2040 for (p = first; p < last; p++) {
2041 u32 nr = le32_to_cpu(*p);
2042 if (nr) {
1d03ec98 2043 struct buffer_head *tbh;
ac27a0ec
DK
2044
2045 *p = 0;
1d03ec98
AK
2046 tbh = sb_find_get_block(inode->i_sb, nr);
2047 ext4_forget(handle, 0, inode, tbh, nr);
ac27a0ec
DK
2048 }
2049 }
2050
c9de560d 2051 ext4_free_blocks(handle, inode, block_to_free, count, 0);
ac27a0ec
DK
2052}
2053
2054/**
617ba13b 2055 * ext4_free_data - free a list of data blocks
ac27a0ec
DK
2056 * @handle: handle for this transaction
2057 * @inode: inode we are dealing with
2058 * @this_bh: indirect buffer_head which contains *@first and *@last
2059 * @first: array of block numbers
2060 * @last: points immediately past the end of array
2061 *
2062 * We are freeing all blocks refered from that array (numbers are stored as
2063 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2064 *
2065 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2066 * blocks are contiguous then releasing them at one time will only affect one
2067 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2068 * actually use a lot of journal space.
2069 *
2070 * @this_bh will be %NULL if @first and @last point into the inode's direct
2071 * block pointers.
2072 */
617ba13b 2073static void ext4_free_data(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2074 struct buffer_head *this_bh,
2075 __le32 *first, __le32 *last)
2076{
617ba13b 2077 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
ac27a0ec
DK
2078 unsigned long count = 0; /* Number of blocks in the run */
2079 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2080 corresponding to
2081 block_to_free */
617ba13b 2082 ext4_fsblk_t nr; /* Current block # */
ac27a0ec
DK
2083 __le32 *p; /* Pointer into inode/ind
2084 for current block */
2085 int err;
2086
2087 if (this_bh) { /* For indirect block */
2088 BUFFER_TRACE(this_bh, "get_write_access");
617ba13b 2089 err = ext4_journal_get_write_access(handle, this_bh);
ac27a0ec
DK
2090 /* Important: if we can't update the indirect pointers
2091 * to the blocks, we can't free them. */
2092 if (err)
2093 return;
2094 }
2095
2096 for (p = first; p < last; p++) {
2097 nr = le32_to_cpu(*p);
2098 if (nr) {
2099 /* accumulate blocks to free if they're contiguous */
2100 if (count == 0) {
2101 block_to_free = nr;
2102 block_to_free_p = p;
2103 count = 1;
2104 } else if (nr == block_to_free + count) {
2105 count++;
2106 } else {
617ba13b 2107 ext4_clear_blocks(handle, inode, this_bh,
ac27a0ec
DK
2108 block_to_free,
2109 count, block_to_free_p, p);
2110 block_to_free = nr;
2111 block_to_free_p = p;
2112 count = 1;
2113 }
2114 }
2115 }
2116
2117 if (count > 0)
617ba13b 2118 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
ac27a0ec
DK
2119 count, block_to_free_p, p);
2120
2121 if (this_bh) {
617ba13b
MC
2122 BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2123 ext4_journal_dirty_metadata(handle, this_bh);
ac27a0ec
DK
2124 }
2125}
2126
2127/**
617ba13b 2128 * ext4_free_branches - free an array of branches
ac27a0ec
DK
2129 * @handle: JBD handle for this transaction
2130 * @inode: inode we are dealing with
2131 * @parent_bh: the buffer_head which contains *@first and *@last
2132 * @first: array of block numbers
2133 * @last: pointer immediately past the end of array
2134 * @depth: depth of the branches to free
2135 *
2136 * We are freeing all blocks refered from these branches (numbers are
2137 * stored as little-endian 32-bit) and updating @inode->i_blocks
2138 * appropriately.
2139 */
617ba13b 2140static void ext4_free_branches(handle_t *handle, struct inode *inode,
ac27a0ec
DK
2141 struct buffer_head *parent_bh,
2142 __le32 *first, __le32 *last, int depth)
2143{
617ba13b 2144 ext4_fsblk_t nr;
ac27a0ec
DK
2145 __le32 *p;
2146
2147 if (is_handle_aborted(handle))
2148 return;
2149
2150 if (depth--) {
2151 struct buffer_head *bh;
617ba13b 2152 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec
DK
2153 p = last;
2154 while (--p >= first) {
2155 nr = le32_to_cpu(*p);
2156 if (!nr)
2157 continue; /* A hole */
2158
2159 /* Go read the buffer for the next level down */
2160 bh = sb_bread(inode->i_sb, nr);
2161
2162 /*
2163 * A read failure? Report error and clear slot
2164 * (should be rare).
2165 */
2166 if (!bh) {
617ba13b 2167 ext4_error(inode->i_sb, "ext4_free_branches",
2ae02107 2168 "Read failure, inode=%lu, block=%llu",
ac27a0ec
DK
2169 inode->i_ino, nr);
2170 continue;
2171 }
2172
2173 /* This zaps the entire block. Bottom up. */
2174 BUFFER_TRACE(bh, "free child branches");
617ba13b 2175 ext4_free_branches(handle, inode, bh,
ac27a0ec
DK
2176 (__le32*)bh->b_data,
2177 (__le32*)bh->b_data + addr_per_block,
2178 depth);
2179
2180 /*
2181 * We've probably journalled the indirect block several
2182 * times during the truncate. But it's no longer
2183 * needed and we now drop it from the transaction via
dab291af 2184 * jbd2_journal_revoke().
ac27a0ec
DK
2185 *
2186 * That's easy if it's exclusively part of this
2187 * transaction. But if it's part of the committing
dab291af 2188 * transaction then jbd2_journal_forget() will simply
ac27a0ec 2189 * brelse() it. That means that if the underlying
617ba13b 2190 * block is reallocated in ext4_get_block(),
ac27a0ec
DK
2191 * unmap_underlying_metadata() will find this block
2192 * and will try to get rid of it. damn, damn.
2193 *
2194 * If this block has already been committed to the
2195 * journal, a revoke record will be written. And
2196 * revoke records must be emitted *before* clearing
2197 * this block's bit in the bitmaps.
2198 */
617ba13b 2199 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
ac27a0ec
DK
2200
2201 /*
2202 * Everything below this this pointer has been
2203 * released. Now let this top-of-subtree go.
2204 *
2205 * We want the freeing of this indirect block to be
2206 * atomic in the journal with the updating of the
2207 * bitmap block which owns it. So make some room in
2208 * the journal.
2209 *
2210 * We zero the parent pointer *after* freeing its
2211 * pointee in the bitmaps, so if extend_transaction()
2212 * for some reason fails to put the bitmap changes and
2213 * the release into the same transaction, recovery
2214 * will merely complain about releasing a free block,
2215 * rather than leaking blocks.
2216 */
2217 if (is_handle_aborted(handle))
2218 return;
2219 if (try_to_extend_transaction(handle, inode)) {
617ba13b
MC
2220 ext4_mark_inode_dirty(handle, inode);
2221 ext4_journal_test_restart(handle, inode);
ac27a0ec
DK
2222 }
2223
c9de560d 2224 ext4_free_blocks(handle, inode, nr, 1, 1);
ac27a0ec
DK
2225
2226 if (parent_bh) {
2227 /*
2228 * The block which we have just freed is
2229 * pointed to by an indirect block: journal it
2230 */
2231 BUFFER_TRACE(parent_bh, "get_write_access");
617ba13b 2232 if (!ext4_journal_get_write_access(handle,
ac27a0ec
DK
2233 parent_bh)){
2234 *p = 0;
2235 BUFFER_TRACE(parent_bh,
617ba13b
MC
2236 "call ext4_journal_dirty_metadata");
2237 ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
2238 parent_bh);
2239 }
2240 }
2241 }
2242 } else {
2243 /* We have reached the bottom of the tree. */
2244 BUFFER_TRACE(parent_bh, "free data blocks");
617ba13b 2245 ext4_free_data(handle, inode, parent_bh, first, last);
ac27a0ec
DK
2246 }
2247}
2248
2249/*
617ba13b 2250 * ext4_truncate()
ac27a0ec 2251 *
617ba13b
MC
2252 * We block out ext4_get_block() block instantiations across the entire
2253 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
2254 * simultaneously on behalf of the same inode.
2255 *
2256 * As we work through the truncate and commmit bits of it to the journal there
2257 * is one core, guiding principle: the file's tree must always be consistent on
2258 * disk. We must be able to restart the truncate after a crash.
2259 *
2260 * The file's tree may be transiently inconsistent in memory (although it
2261 * probably isn't), but whenever we close off and commit a journal transaction,
2262 * the contents of (the filesystem + the journal) must be consistent and
2263 * restartable. It's pretty simple, really: bottom up, right to left (although
2264 * left-to-right works OK too).
2265 *
2266 * Note that at recovery time, journal replay occurs *before* the restart of
2267 * truncate against the orphan inode list.
2268 *
2269 * The committed inode has the new, desired i_size (which is the same as
617ba13b 2270 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 2271 * that this inode's truncate did not complete and it will again call
617ba13b
MC
2272 * ext4_truncate() to have another go. So there will be instantiated blocks
2273 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 2274 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 2275 * ext4_truncate() run will find them and release them.
ac27a0ec 2276 */
617ba13b 2277void ext4_truncate(struct inode *inode)
ac27a0ec
DK
2278{
2279 handle_t *handle;
617ba13b 2280 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec 2281 __le32 *i_data = ei->i_data;
617ba13b 2282 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
ac27a0ec 2283 struct address_space *mapping = inode->i_mapping;
725d26d3 2284 ext4_lblk_t offsets[4];
ac27a0ec
DK
2285 Indirect chain[4];
2286 Indirect *partial;
2287 __le32 nr = 0;
2288 int n;
725d26d3 2289 ext4_lblk_t last_block;
ac27a0ec
DK
2290 unsigned blocksize = inode->i_sb->s_blocksize;
2291 struct page *page;
2292
2293 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2294 S_ISLNK(inode->i_mode)))
2295 return;
617ba13b 2296 if (ext4_inode_is_fast_symlink(inode))
ac27a0ec
DK
2297 return;
2298 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2299 return;
2300
2301 /*
2302 * We have to lock the EOF page here, because lock_page() nests
dab291af 2303 * outside jbd2_journal_start().
ac27a0ec
DK
2304 */
2305 if ((inode->i_size & (blocksize - 1)) == 0) {
2306 /* Block boundary? Nothing to do */
2307 page = NULL;
2308 } else {
2309 page = grab_cache_page(mapping,
2310 inode->i_size >> PAGE_CACHE_SHIFT);
2311 if (!page)
2312 return;
2313 }
2314
1d03ec98
AK
2315 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
2316 ext4_ext_truncate(inode, page);
2317 return;
2318 }
a86c6181 2319
ac27a0ec
DK
2320 handle = start_transaction(inode);
2321 if (IS_ERR(handle)) {
2322 if (page) {
2323 clear_highpage(page);
2324 flush_dcache_page(page);
2325 unlock_page(page);
2326 page_cache_release(page);
2327 }
2328 return; /* AKPM: return what? */
2329 }
2330
2331 last_block = (inode->i_size + blocksize-1)
617ba13b 2332 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
ac27a0ec
DK
2333
2334 if (page)
617ba13b 2335 ext4_block_truncate_page(handle, page, mapping, inode->i_size);
ac27a0ec 2336
617ba13b 2337 n = ext4_block_to_path(inode, last_block, offsets, NULL);
ac27a0ec
DK
2338 if (n == 0)
2339 goto out_stop; /* error */
2340
2341 /*
2342 * OK. This truncate is going to happen. We add the inode to the
2343 * orphan list, so that if this truncate spans multiple transactions,
2344 * and we crash, we will resume the truncate when the filesystem
2345 * recovers. It also marks the inode dirty, to catch the new size.
2346 *
2347 * Implication: the file must always be in a sane, consistent
2348 * truncatable state while each transaction commits.
2349 */
617ba13b 2350 if (ext4_orphan_add(handle, inode))
ac27a0ec
DK
2351 goto out_stop;
2352
2353 /*
2354 * The orphan list entry will now protect us from any crash which
2355 * occurs before the truncate completes, so it is now safe to propagate
2356 * the new, shorter inode size (held for now in i_size) into the
2357 * on-disk inode. We do this via i_disksize, which is the value which
617ba13b 2358 * ext4 *really* writes onto the disk inode.
ac27a0ec
DK
2359 */
2360 ei->i_disksize = inode->i_size;
2361
2362 /*
617ba13b 2363 * From here we block out all ext4_get_block() callers who want to
ac27a0ec
DK
2364 * modify the block allocation tree.
2365 */
0e855ac8 2366 down_write(&ei->i_data_sem);
ac27a0ec
DK
2367
2368 if (n == 1) { /* direct blocks */
617ba13b
MC
2369 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2370 i_data + EXT4_NDIR_BLOCKS);
ac27a0ec
DK
2371 goto do_indirects;
2372 }
2373
617ba13b 2374 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
ac27a0ec
DK
2375 /* Kill the top of shared branch (not detached) */
2376 if (nr) {
2377 if (partial == chain) {
2378 /* Shared branch grows from the inode */
617ba13b 2379 ext4_free_branches(handle, inode, NULL,
ac27a0ec
DK
2380 &nr, &nr+1, (chain+n-1) - partial);
2381 *partial->p = 0;
2382 /*
2383 * We mark the inode dirty prior to restart,
2384 * and prior to stop. No need for it here.
2385 */
2386 } else {
2387 /* Shared branch grows from an indirect block */
2388 BUFFER_TRACE(partial->bh, "get_write_access");
617ba13b 2389 ext4_free_branches(handle, inode, partial->bh,
ac27a0ec
DK
2390 partial->p,
2391 partial->p+1, (chain+n-1) - partial);
2392 }
2393 }
2394 /* Clear the ends of indirect blocks on the shared branch */
2395 while (partial > chain) {
617ba13b 2396 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
ac27a0ec
DK
2397 (__le32*)partial->bh->b_data+addr_per_block,
2398 (chain+n-1) - partial);
2399 BUFFER_TRACE(partial->bh, "call brelse");
2400 brelse (partial->bh);
2401 partial--;
2402 }
2403do_indirects:
2404 /* Kill the remaining (whole) subtrees */
2405 switch (offsets[0]) {
2406 default:
617ba13b 2407 nr = i_data[EXT4_IND_BLOCK];
ac27a0ec 2408 if (nr) {
617ba13b
MC
2409 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2410 i_data[EXT4_IND_BLOCK] = 0;
ac27a0ec 2411 }
617ba13b
MC
2412 case EXT4_IND_BLOCK:
2413 nr = i_data[EXT4_DIND_BLOCK];
ac27a0ec 2414 if (nr) {
617ba13b
MC
2415 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2416 i_data[EXT4_DIND_BLOCK] = 0;
ac27a0ec 2417 }
617ba13b
MC
2418 case EXT4_DIND_BLOCK:
2419 nr = i_data[EXT4_TIND_BLOCK];
ac27a0ec 2420 if (nr) {
617ba13b
MC
2421 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2422 i_data[EXT4_TIND_BLOCK] = 0;
ac27a0ec 2423 }
617ba13b 2424 case EXT4_TIND_BLOCK:
ac27a0ec
DK
2425 ;
2426 }
2427
617ba13b 2428 ext4_discard_reservation(inode);
ac27a0ec 2429
0e855ac8 2430 up_write(&ei->i_data_sem);
ef7f3835 2431 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
617ba13b 2432 ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
2433
2434 /*
2435 * In a multi-transaction truncate, we only make the final transaction
2436 * synchronous
2437 */
2438 if (IS_SYNC(inode))
2439 handle->h_sync = 1;
2440out_stop:
2441 /*
2442 * If this was a simple ftruncate(), and the file will remain alive
2443 * then we need to clear up the orphan record which we created above.
2444 * However, if this was a real unlink then we were called by
617ba13b 2445 * ext4_delete_inode(), and we allow that function to clean up the
ac27a0ec
DK
2446 * orphan info for us.
2447 */
2448 if (inode->i_nlink)
617ba13b 2449 ext4_orphan_del(handle, inode);
ac27a0ec 2450
617ba13b 2451 ext4_journal_stop(handle);
ac27a0ec
DK
2452}
2453
617ba13b
MC
2454static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2455 unsigned long ino, struct ext4_iloc *iloc)
ac27a0ec 2456{
fd2d4291
AM
2457 unsigned long desc, group_desc;
2458 ext4_group_t block_group;
ac27a0ec 2459 unsigned long offset;
617ba13b 2460 ext4_fsblk_t block;
ac27a0ec 2461 struct buffer_head *bh;
617ba13b 2462 struct ext4_group_desc * gdp;
ac27a0ec 2463
617ba13b 2464 if (!ext4_valid_inum(sb, ino)) {
ac27a0ec
DK
2465 /*
2466 * This error is already checked for in namei.c unless we are
2467 * looking at an NFS filehandle, in which case no error
2468 * report is needed
2469 */
2470 return 0;
2471 }
2472
617ba13b
MC
2473 block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2474 if (block_group >= EXT4_SB(sb)->s_groups_count) {
2475 ext4_error(sb,"ext4_get_inode_block","group >= groups count");
ac27a0ec
DK
2476 return 0;
2477 }
2478 smp_rmb();
617ba13b
MC
2479 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2480 desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2481 bh = EXT4_SB(sb)->s_group_desc[group_desc];
ac27a0ec 2482 if (!bh) {
617ba13b 2483 ext4_error (sb, "ext4_get_inode_block",
ac27a0ec
DK
2484 "Descriptor not loaded");
2485 return 0;
2486 }
2487
0d1ee42f
AR
2488 gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2489 desc * EXT4_DESC_SIZE(sb));
ac27a0ec
DK
2490 /*
2491 * Figure out the offset within the block group inode table
2492 */
617ba13b
MC
2493 offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2494 EXT4_INODE_SIZE(sb);
8fadc143
AR
2495 block = ext4_inode_table(sb, gdp) +
2496 (offset >> EXT4_BLOCK_SIZE_BITS(sb));
ac27a0ec
DK
2497
2498 iloc->block_group = block_group;
617ba13b 2499 iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
ac27a0ec
DK
2500 return block;
2501}
2502
2503/*
617ba13b 2504 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
2505 * underlying buffer_head on success. If 'in_mem' is true, we have all
2506 * data in memory that is needed to recreate the on-disk version of this
2507 * inode.
2508 */
617ba13b
MC
2509static int __ext4_get_inode_loc(struct inode *inode,
2510 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 2511{
617ba13b 2512 ext4_fsblk_t block;
ac27a0ec
DK
2513 struct buffer_head *bh;
2514
617ba13b 2515 block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
ac27a0ec
DK
2516 if (!block)
2517 return -EIO;
2518
2519 bh = sb_getblk(inode->i_sb, block);
2520 if (!bh) {
617ba13b 2521 ext4_error (inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2522 "unable to read inode block - "
2ae02107 2523 "inode=%lu, block=%llu",
ac27a0ec
DK
2524 inode->i_ino, block);
2525 return -EIO;
2526 }
2527 if (!buffer_uptodate(bh)) {
2528 lock_buffer(bh);
2529 if (buffer_uptodate(bh)) {
2530 /* someone brought it uptodate while we waited */
2531 unlock_buffer(bh);
2532 goto has_buffer;
2533 }
2534
2535 /*
2536 * If we have all information of the inode in memory and this
2537 * is the only valid inode in the block, we need not read the
2538 * block.
2539 */
2540 if (in_mem) {
2541 struct buffer_head *bitmap_bh;
617ba13b 2542 struct ext4_group_desc *desc;
ac27a0ec
DK
2543 int inodes_per_buffer;
2544 int inode_offset, i;
fd2d4291 2545 ext4_group_t block_group;
ac27a0ec
DK
2546 int start;
2547
2548 block_group = (inode->i_ino - 1) /
617ba13b 2549 EXT4_INODES_PER_GROUP(inode->i_sb);
ac27a0ec 2550 inodes_per_buffer = bh->b_size /
617ba13b 2551 EXT4_INODE_SIZE(inode->i_sb);
ac27a0ec 2552 inode_offset = ((inode->i_ino - 1) %
617ba13b 2553 EXT4_INODES_PER_GROUP(inode->i_sb));
ac27a0ec
DK
2554 start = inode_offset & ~(inodes_per_buffer - 1);
2555
2556 /* Is the inode bitmap in cache? */
617ba13b 2557 desc = ext4_get_group_desc(inode->i_sb,
ac27a0ec
DK
2558 block_group, NULL);
2559 if (!desc)
2560 goto make_io;
2561
2562 bitmap_bh = sb_getblk(inode->i_sb,
8fadc143 2563 ext4_inode_bitmap(inode->i_sb, desc));
ac27a0ec
DK
2564 if (!bitmap_bh)
2565 goto make_io;
2566
2567 /*
2568 * If the inode bitmap isn't in cache then the
2569 * optimisation may end up performing two reads instead
2570 * of one, so skip it.
2571 */
2572 if (!buffer_uptodate(bitmap_bh)) {
2573 brelse(bitmap_bh);
2574 goto make_io;
2575 }
2576 for (i = start; i < start + inodes_per_buffer; i++) {
2577 if (i == inode_offset)
2578 continue;
617ba13b 2579 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
2580 break;
2581 }
2582 brelse(bitmap_bh);
2583 if (i == start + inodes_per_buffer) {
2584 /* all other inodes are free, so skip I/O */
2585 memset(bh->b_data, 0, bh->b_size);
2586 set_buffer_uptodate(bh);
2587 unlock_buffer(bh);
2588 goto has_buffer;
2589 }
2590 }
2591
2592make_io:
2593 /*
2594 * There are other valid inodes in the buffer, this inode
2595 * has in-inode xattrs, or we don't have this inode in memory.
2596 * Read the block from disk.
2597 */
2598 get_bh(bh);
2599 bh->b_end_io = end_buffer_read_sync;
2600 submit_bh(READ_META, bh);
2601 wait_on_buffer(bh);
2602 if (!buffer_uptodate(bh)) {
617ba13b 2603 ext4_error(inode->i_sb, "ext4_get_inode_loc",
ac27a0ec 2604 "unable to read inode block - "
2ae02107 2605 "inode=%lu, block=%llu",
ac27a0ec
DK
2606 inode->i_ino, block);
2607 brelse(bh);
2608 return -EIO;
2609 }
2610 }
2611has_buffer:
2612 iloc->bh = bh;
2613 return 0;
2614}
2615
617ba13b 2616int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
2617{
2618 /* We have all inode data except xattrs in memory here. */
617ba13b
MC
2619 return __ext4_get_inode_loc(inode, iloc,
2620 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
ac27a0ec
DK
2621}
2622
617ba13b 2623void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 2624{
617ba13b 2625 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
2626
2627 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 2628 if (flags & EXT4_SYNC_FL)
ac27a0ec 2629 inode->i_flags |= S_SYNC;
617ba13b 2630 if (flags & EXT4_APPEND_FL)
ac27a0ec 2631 inode->i_flags |= S_APPEND;
617ba13b 2632 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 2633 inode->i_flags |= S_IMMUTABLE;
617ba13b 2634 if (flags & EXT4_NOATIME_FL)
ac27a0ec 2635 inode->i_flags |= S_NOATIME;
617ba13b 2636 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
2637 inode->i_flags |= S_DIRSYNC;
2638}
2639
ff9ddf7e
JK
2640/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2641void ext4_get_inode_flags(struct ext4_inode_info *ei)
2642{
2643 unsigned int flags = ei->vfs_inode.i_flags;
2644
2645 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2646 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2647 if (flags & S_SYNC)
2648 ei->i_flags |= EXT4_SYNC_FL;
2649 if (flags & S_APPEND)
2650 ei->i_flags |= EXT4_APPEND_FL;
2651 if (flags & S_IMMUTABLE)
2652 ei->i_flags |= EXT4_IMMUTABLE_FL;
2653 if (flags & S_NOATIME)
2654 ei->i_flags |= EXT4_NOATIME_FL;
2655 if (flags & S_DIRSYNC)
2656 ei->i_flags |= EXT4_DIRSYNC_FL;
2657}
0fc1b451
AK
2658static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
2659 struct ext4_inode_info *ei)
2660{
2661 blkcnt_t i_blocks ;
8180a562
AK
2662 struct inode *inode = &(ei->vfs_inode);
2663 struct super_block *sb = inode->i_sb;
0fc1b451
AK
2664
2665 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2666 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2667 /* we are using combined 48 bit field */
2668 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
2669 le32_to_cpu(raw_inode->i_blocks_lo);
8180a562
AK
2670 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
2671 /* i_blocks represent file system block size */
2672 return i_blocks << (inode->i_blkbits - 9);
2673 } else {
2674 return i_blocks;
2675 }
0fc1b451
AK
2676 } else {
2677 return le32_to_cpu(raw_inode->i_blocks_lo);
2678 }
2679}
ff9ddf7e 2680
1d1fe1ee 2681struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 2682{
617ba13b
MC
2683 struct ext4_iloc iloc;
2684 struct ext4_inode *raw_inode;
1d1fe1ee 2685 struct ext4_inode_info *ei;
ac27a0ec 2686 struct buffer_head *bh;
1d1fe1ee
DH
2687 struct inode *inode;
2688 long ret;
ac27a0ec
DK
2689 int block;
2690
1d1fe1ee
DH
2691 inode = iget_locked(sb, ino);
2692 if (!inode)
2693 return ERR_PTR(-ENOMEM);
2694 if (!(inode->i_state & I_NEW))
2695 return inode;
2696
2697 ei = EXT4_I(inode);
617ba13b
MC
2698#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2699 ei->i_acl = EXT4_ACL_NOT_CACHED;
2700 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
ac27a0ec
DK
2701#endif
2702 ei->i_block_alloc_info = NULL;
2703
1d1fe1ee
DH
2704 ret = __ext4_get_inode_loc(inode, &iloc, 0);
2705 if (ret < 0)
ac27a0ec
DK
2706 goto bad_inode;
2707 bh = iloc.bh;
617ba13b 2708 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
2709 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2710 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2711 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2712 if(!(test_opt (inode->i_sb, NO_UID32))) {
2713 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2714 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2715 }
2716 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
ac27a0ec
DK
2717
2718 ei->i_state = 0;
2719 ei->i_dir_start_lookup = 0;
2720 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2721 /* We now have enough fields to check if the inode was active or not.
2722 * This is needed because nfsd might try to access dead inodes
2723 * the test is that same one that e2fsck uses
2724 * NeilBrown 1999oct15
2725 */
2726 if (inode->i_nlink == 0) {
2727 if (inode->i_mode == 0 ||
617ba13b 2728 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec
DK
2729 /* this inode is deleted */
2730 brelse (bh);
1d1fe1ee 2731 ret = -ESTALE;
ac27a0ec
DK
2732 goto bad_inode;
2733 }
2734 /* The only unlinked inodes we let through here have
2735 * valid i_mode and are being read by the orphan
2736 * recovery code: that's fine, we're about to complete
2737 * the process of deleting those. */
2738 }
ac27a0ec 2739 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 2740 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 2741 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
9b8f1f01 2742 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
a48380f7 2743 cpu_to_le32(EXT4_OS_HURD)) {
a1ddeb7e
BP
2744 ei->i_file_acl |=
2745 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
ac27a0ec 2746 }
a48380f7 2747 inode->i_size = ext4_isize(raw_inode);
ac27a0ec
DK
2748 ei->i_disksize = inode->i_size;
2749 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2750 ei->i_block_group = iloc.block_group;
2751 /*
2752 * NOTE! The in-memory inode i_data array is in little-endian order
2753 * even on big-endian machines: we do NOT byteswap the block numbers!
2754 */
617ba13b 2755 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2756 ei->i_data[block] = raw_inode->i_block[block];
2757 INIT_LIST_HEAD(&ei->i_orphan);
2758
0040d987 2759 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 2760 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 2761 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f
KK
2762 EXT4_INODE_SIZE(inode->i_sb)) {
2763 brelse (bh);
1d1fe1ee 2764 ret = -EIO;
ac27a0ec 2765 goto bad_inode;
e5d2861f 2766 }
ac27a0ec
DK
2767 if (ei->i_extra_isize == 0) {
2768 /* The extra space is currently unused. Use it. */
617ba13b
MC
2769 ei->i_extra_isize = sizeof(struct ext4_inode) -
2770 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
2771 } else {
2772 __le32 *magic = (void *)raw_inode +
617ba13b 2773 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 2774 ei->i_extra_isize;
617ba13b
MC
2775 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2776 ei->i_state |= EXT4_STATE_XATTR;
ac27a0ec
DK
2777 }
2778 } else
2779 ei->i_extra_isize = 0;
2780
ef7f3835
KS
2781 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2782 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2783 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2784 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2785
25ec56b5
JNC
2786 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
2787 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2788 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2789 inode->i_version |=
2790 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
2791 }
2792
ac27a0ec 2793 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
2794 inode->i_op = &ext4_file_inode_operations;
2795 inode->i_fop = &ext4_file_operations;
2796 ext4_set_aops(inode);
ac27a0ec 2797 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
2798 inode->i_op = &ext4_dir_inode_operations;
2799 inode->i_fop = &ext4_dir_operations;
ac27a0ec 2800 } else if (S_ISLNK(inode->i_mode)) {
617ba13b
MC
2801 if (ext4_inode_is_fast_symlink(inode))
2802 inode->i_op = &ext4_fast_symlink_inode_operations;
ac27a0ec 2803 else {
617ba13b
MC
2804 inode->i_op = &ext4_symlink_inode_operations;
2805 ext4_set_aops(inode);
ac27a0ec
DK
2806 }
2807 } else {
617ba13b 2808 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
2809 if (raw_inode->i_block[0])
2810 init_special_inode(inode, inode->i_mode,
2811 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2812 else
2813 init_special_inode(inode, inode->i_mode,
2814 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2815 }
2816 brelse (iloc.bh);
617ba13b 2817 ext4_set_inode_flags(inode);
1d1fe1ee
DH
2818 unlock_new_inode(inode);
2819 return inode;
ac27a0ec
DK
2820
2821bad_inode:
1d1fe1ee
DH
2822 iget_failed(inode);
2823 return ERR_PTR(ret);
ac27a0ec
DK
2824}
2825
0fc1b451
AK
2826static int ext4_inode_blocks_set(handle_t *handle,
2827 struct ext4_inode *raw_inode,
2828 struct ext4_inode_info *ei)
2829{
2830 struct inode *inode = &(ei->vfs_inode);
2831 u64 i_blocks = inode->i_blocks;
2832 struct super_block *sb = inode->i_sb;
2833 int err = 0;
2834
2835 if (i_blocks <= ~0U) {
2836 /*
2837 * i_blocks can be represnted in a 32 bit variable
2838 * as multiple of 512 bytes
2839 */
8180a562 2840 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2841 raw_inode->i_blocks_high = 0;
8180a562 2842 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451
AK
2843 } else if (i_blocks <= 0xffffffffffffULL) {
2844 /*
2845 * i_blocks can be represented in a 48 bit variable
2846 * as multiple of 512 bytes
2847 */
2848 err = ext4_update_rocompat_feature(handle, sb,
2849 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2850 if (err)
2851 goto err_out;
2852 /* i_block is stored in the split 48 bit fields */
8180a562 2853 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 2854 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
8180a562 2855 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
0fc1b451 2856 } else {
8180a562
AK
2857 /*
2858 * i_blocks should be represented in a 48 bit variable
2859 * as multiple of file system block size
2860 */
2861 err = ext4_update_rocompat_feature(handle, sb,
2862 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
2863 if (err)
2864 goto err_out;
2865 ei->i_flags |= EXT4_HUGE_FILE_FL;
2866 /* i_block is stored in file system block size */
2867 i_blocks = i_blocks >> (inode->i_blkbits - 9);
2868 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
2869 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451
AK
2870 }
2871err_out:
2872 return err;
2873}
2874
ac27a0ec
DK
2875/*
2876 * Post the struct inode info into an on-disk inode location in the
2877 * buffer-cache. This gobbles the caller's reference to the
2878 * buffer_head in the inode location struct.
2879 *
2880 * The caller must have write access to iloc->bh.
2881 */
617ba13b 2882static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 2883 struct inode *inode,
617ba13b 2884 struct ext4_iloc *iloc)
ac27a0ec 2885{
617ba13b
MC
2886 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2887 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
2888 struct buffer_head *bh = iloc->bh;
2889 int err = 0, rc, block;
2890
2891 /* For fields not not tracking in the in-memory inode,
2892 * initialise them to zero for new inodes. */
617ba13b
MC
2893 if (ei->i_state & EXT4_STATE_NEW)
2894 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 2895
ff9ddf7e 2896 ext4_get_inode_flags(ei);
ac27a0ec
DK
2897 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2898 if(!(test_opt(inode->i_sb, NO_UID32))) {
2899 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2900 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2901/*
2902 * Fix up interoperability with old kernels. Otherwise, old inodes get
2903 * re-used with the upper 16 bits of the uid/gid intact
2904 */
2905 if(!ei->i_dtime) {
2906 raw_inode->i_uid_high =
2907 cpu_to_le16(high_16_bits(inode->i_uid));
2908 raw_inode->i_gid_high =
2909 cpu_to_le16(high_16_bits(inode->i_gid));
2910 } else {
2911 raw_inode->i_uid_high = 0;
2912 raw_inode->i_gid_high = 0;
2913 }
2914 } else {
2915 raw_inode->i_uid_low =
2916 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2917 raw_inode->i_gid_low =
2918 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2919 raw_inode->i_uid_high = 0;
2920 raw_inode->i_gid_high = 0;
2921 }
2922 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
2923
2924 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2925 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2926 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2927 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2928
0fc1b451
AK
2929 if (ext4_inode_blocks_set(handle, raw_inode, ei))
2930 goto out_brelse;
ac27a0ec
DK
2931 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2932 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
9b8f1f01
MC
2933 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2934 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
2935 raw_inode->i_file_acl_high =
2936 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 2937 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
2938 ext4_isize_set(raw_inode, ei->i_disksize);
2939 if (ei->i_disksize > 0x7fffffffULL) {
2940 struct super_block *sb = inode->i_sb;
2941 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2942 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2943 EXT4_SB(sb)->s_es->s_rev_level ==
2944 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2945 /* If this is the first large file
2946 * created, add a flag to the superblock.
2947 */
2948 err = ext4_journal_get_write_access(handle,
2949 EXT4_SB(sb)->s_sbh);
2950 if (err)
2951 goto out_brelse;
2952 ext4_update_dynamic_rev(sb);
2953 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 2954 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7
AK
2955 sb->s_dirt = 1;
2956 handle->h_sync = 1;
2957 err = ext4_journal_dirty_metadata(handle,
2958 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
2959 }
2960 }
2961 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2962 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2963 if (old_valid_dev(inode->i_rdev)) {
2964 raw_inode->i_block[0] =
2965 cpu_to_le32(old_encode_dev(inode->i_rdev));
2966 raw_inode->i_block[1] = 0;
2967 } else {
2968 raw_inode->i_block[0] = 0;
2969 raw_inode->i_block[1] =
2970 cpu_to_le32(new_encode_dev(inode->i_rdev));
2971 raw_inode->i_block[2] = 0;
2972 }
617ba13b 2973 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
2974 raw_inode->i_block[block] = ei->i_data[block];
2975
25ec56b5
JNC
2976 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
2977 if (ei->i_extra_isize) {
2978 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
2979 raw_inode->i_version_hi =
2980 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 2981 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
2982 }
2983
ac27a0ec 2984
617ba13b
MC
2985 BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2986 rc = ext4_journal_dirty_metadata(handle, bh);
ac27a0ec
DK
2987 if (!err)
2988 err = rc;
617ba13b 2989 ei->i_state &= ~EXT4_STATE_NEW;
ac27a0ec
DK
2990
2991out_brelse:
2992 brelse (bh);
617ba13b 2993 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
2994 return err;
2995}
2996
2997/*
617ba13b 2998 * ext4_write_inode()
ac27a0ec
DK
2999 *
3000 * We are called from a few places:
3001 *
3002 * - Within generic_file_write() for O_SYNC files.
3003 * Here, there will be no transaction running. We wait for any running
3004 * trasnaction to commit.
3005 *
3006 * - Within sys_sync(), kupdate and such.
3007 * We wait on commit, if tol to.
3008 *
3009 * - Within prune_icache() (PF_MEMALLOC == true)
3010 * Here we simply return. We can't afford to block kswapd on the
3011 * journal commit.
3012 *
3013 * In all cases it is actually safe for us to return without doing anything,
3014 * because the inode has been copied into a raw inode buffer in
617ba13b 3015 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3016 * knfsd.
3017 *
3018 * Note that we are absolutely dependent upon all inode dirtiers doing the
3019 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3020 * which we are interested.
3021 *
3022 * It would be a bug for them to not do this. The code:
3023 *
3024 * mark_inode_dirty(inode)
3025 * stuff();
3026 * inode->i_size = expr;
3027 *
3028 * is in error because a kswapd-driven write_inode() could occur while
3029 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3030 * will no longer be on the superblock's dirty inode list.
3031 */
617ba13b 3032int ext4_write_inode(struct inode *inode, int wait)
ac27a0ec
DK
3033{
3034 if (current->flags & PF_MEMALLOC)
3035 return 0;
3036
617ba13b 3037 if (ext4_journal_current_handle()) {
b38bd33a 3038 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
ac27a0ec
DK
3039 dump_stack();
3040 return -EIO;
3041 }
3042
3043 if (!wait)
3044 return 0;
3045
617ba13b 3046 return ext4_force_commit(inode->i_sb);
ac27a0ec
DK
3047}
3048
3049/*
617ba13b 3050 * ext4_setattr()
ac27a0ec
DK
3051 *
3052 * Called from notify_change.
3053 *
3054 * We want to trap VFS attempts to truncate the file as soon as
3055 * possible. In particular, we want to make sure that when the VFS
3056 * shrinks i_size, we put the inode on the orphan list and modify
3057 * i_disksize immediately, so that during the subsequent flushing of
3058 * dirty pages and freeing of disk blocks, we can guarantee that any
3059 * commit will leave the blocks being flushed in an unused state on
3060 * disk. (On recovery, the inode will get truncated and the blocks will
3061 * be freed, so we have a strong guarantee that no future commit will
3062 * leave these blocks visible to the user.)
3063 *
3064 * Called with inode->sem down.
3065 */
617ba13b 3066int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
3067{
3068 struct inode *inode = dentry->d_inode;
3069 int error, rc = 0;
3070 const unsigned int ia_valid = attr->ia_valid;
3071
3072 error = inode_change_ok(inode, attr);
3073 if (error)
3074 return error;
3075
3076 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3077 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3078 handle_t *handle;
3079
3080 /* (user+group)*(old+new) structure, inode write (sb,
3081 * inode block, ? - but truncate inode update has it) */
617ba13b
MC
3082 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3083 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
3084 if (IS_ERR(handle)) {
3085 error = PTR_ERR(handle);
3086 goto err_out;
3087 }
3088 error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3089 if (error) {
617ba13b 3090 ext4_journal_stop(handle);
ac27a0ec
DK
3091 return error;
3092 }
3093 /* Update corresponding info in inode so that everything is in
3094 * one transaction */
3095 if (attr->ia_valid & ATTR_UID)
3096 inode->i_uid = attr->ia_uid;
3097 if (attr->ia_valid & ATTR_GID)
3098 inode->i_gid = attr->ia_gid;
617ba13b
MC
3099 error = ext4_mark_inode_dirty(handle, inode);
3100 ext4_journal_stop(handle);
ac27a0ec
DK
3101 }
3102
e2b46574
ES
3103 if (attr->ia_valid & ATTR_SIZE) {
3104 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
3105 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3106
3107 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
3108 error = -EFBIG;
3109 goto err_out;
3110 }
3111 }
3112 }
3113
ac27a0ec
DK
3114 if (S_ISREG(inode->i_mode) &&
3115 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3116 handle_t *handle;
3117
617ba13b 3118 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
3119 if (IS_ERR(handle)) {
3120 error = PTR_ERR(handle);
3121 goto err_out;
3122 }
3123
617ba13b
MC
3124 error = ext4_orphan_add(handle, inode);
3125 EXT4_I(inode)->i_disksize = attr->ia_size;
3126 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
3127 if (!error)
3128 error = rc;
617ba13b 3129 ext4_journal_stop(handle);
ac27a0ec
DK
3130 }
3131
3132 rc = inode_setattr(inode, attr);
3133
617ba13b 3134 /* If inode_setattr's call to ext4_truncate failed to get a
ac27a0ec
DK
3135 * transaction handle at all, we need to clean up the in-core
3136 * orphan list manually. */
3137 if (inode->i_nlink)
617ba13b 3138 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
3139
3140 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 3141 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
3142
3143err_out:
617ba13b 3144 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
3145 if (!error)
3146 error = rc;
3147 return error;
3148}
3149
3150
3151/*
3152 * How many blocks doth make a writepage()?
3153 *
3154 * With N blocks per page, it may be:
3155 * N data blocks
3156 * 2 indirect block
3157 * 2 dindirect
3158 * 1 tindirect
3159 * N+5 bitmap blocks (from the above)
3160 * N+5 group descriptor summary blocks
3161 * 1 inode block
3162 * 1 superblock.
617ba13b 3163 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
ac27a0ec 3164 *
617ba13b 3165 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
ac27a0ec
DK
3166 *
3167 * With ordered or writeback data it's the same, less the N data blocks.
3168 *
3169 * If the inode's direct blocks can hold an integral number of pages then a
3170 * page cannot straddle two indirect blocks, and we can only touch one indirect
3171 * and dindirect block, and the "5" above becomes "3".
3172 *
3173 * This still overestimates under most circumstances. If we were to pass the
3174 * start and end offsets in here as well we could do block_to_path() on each
3175 * block and work out the exact number of indirects which are touched. Pah.
3176 */
3177
a86c6181 3178int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 3179{
617ba13b
MC
3180 int bpp = ext4_journal_blocks_per_page(inode);
3181 int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
ac27a0ec
DK
3182 int ret;
3183
a86c6181
AT
3184 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3185 return ext4_ext_writepage_trans_blocks(inode, bpp);
3186
617ba13b 3187 if (ext4_should_journal_data(inode))
ac27a0ec
DK
3188 ret = 3 * (bpp + indirects) + 2;
3189 else
3190 ret = 2 * (bpp + indirects) + 2;
3191
3192#ifdef CONFIG_QUOTA
3193 /* We know that structure was already allocated during DQUOT_INIT so
3194 * we will be updating only the data blocks + inodes */
617ba13b 3195 ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
ac27a0ec
DK
3196#endif
3197
3198 return ret;
3199}
3200
3201/*
617ba13b 3202 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
3203 * Give this, we know that the caller already has write access to iloc->bh.
3204 */
617ba13b
MC
3205int ext4_mark_iloc_dirty(handle_t *handle,
3206 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3207{
3208 int err = 0;
3209
25ec56b5
JNC
3210 if (test_opt(inode->i_sb, I_VERSION))
3211 inode_inc_iversion(inode);
3212
ac27a0ec
DK
3213 /* the do_update_inode consumes one bh->b_count */
3214 get_bh(iloc->bh);
3215
dab291af 3216 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
617ba13b 3217 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
3218 put_bh(iloc->bh);
3219 return err;
3220}
3221
3222/*
3223 * On success, We end up with an outstanding reference count against
3224 * iloc->bh. This _must_ be cleaned up later.
3225 */
3226
3227int
617ba13b
MC
3228ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3229 struct ext4_iloc *iloc)
ac27a0ec
DK
3230{
3231 int err = 0;
3232 if (handle) {
617ba13b 3233 err = ext4_get_inode_loc(inode, iloc);
ac27a0ec
DK
3234 if (!err) {
3235 BUFFER_TRACE(iloc->bh, "get_write_access");
617ba13b 3236 err = ext4_journal_get_write_access(handle, iloc->bh);
ac27a0ec
DK
3237 if (err) {
3238 brelse(iloc->bh);
3239 iloc->bh = NULL;
3240 }
3241 }
3242 }
617ba13b 3243 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3244 return err;
3245}
3246
6dd4ee7c
KS
3247/*
3248 * Expand an inode by new_extra_isize bytes.
3249 * Returns 0 on success or negative error number on failure.
3250 */
1d03ec98
AK
3251static int ext4_expand_extra_isize(struct inode *inode,
3252 unsigned int new_extra_isize,
3253 struct ext4_iloc iloc,
3254 handle_t *handle)
6dd4ee7c
KS
3255{
3256 struct ext4_inode *raw_inode;
3257 struct ext4_xattr_ibody_header *header;
3258 struct ext4_xattr_entry *entry;
3259
3260 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3261 return 0;
3262
3263 raw_inode = ext4_raw_inode(&iloc);
3264
3265 header = IHDR(inode, raw_inode);
3266 entry = IFIRST(header);
3267
3268 /* No extended attributes present */
3269 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3270 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3271 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3272 new_extra_isize);
3273 EXT4_I(inode)->i_extra_isize = new_extra_isize;
3274 return 0;
3275 }
3276
3277 /* try to expand with EAs present */
3278 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3279 raw_inode, handle);
3280}
3281
ac27a0ec
DK
3282/*
3283 * What we do here is to mark the in-core inode as clean with respect to inode
3284 * dirtiness (it may still be data-dirty).
3285 * This means that the in-core inode may be reaped by prune_icache
3286 * without having to perform any I/O. This is a very good thing,
3287 * because *any* task may call prune_icache - even ones which
3288 * have a transaction open against a different journal.
3289 *
3290 * Is this cheating? Not really. Sure, we haven't written the
3291 * inode out, but prune_icache isn't a user-visible syncing function.
3292 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3293 * we start and wait on commits.
3294 *
3295 * Is this efficient/effective? Well, we're being nice to the system
3296 * by cleaning up our inodes proactively so they can be reaped
3297 * without I/O. But we are potentially leaving up to five seconds'
3298 * worth of inodes floating about which prune_icache wants us to
3299 * write out. One way to fix that would be to get prune_icache()
3300 * to do a write_super() to free up some memory. It has the desired
3301 * effect.
3302 */
617ba13b 3303int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 3304{
617ba13b 3305 struct ext4_iloc iloc;
6dd4ee7c
KS
3306 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3307 static unsigned int mnt_count;
3308 int err, ret;
ac27a0ec
DK
3309
3310 might_sleep();
617ba13b 3311 err = ext4_reserve_inode_write(handle, inode, &iloc);
6dd4ee7c
KS
3312 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3313 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3314 /*
3315 * We need extra buffer credits since we may write into EA block
3316 * with this same handle. If journal_extend fails, then it will
3317 * only result in a minor loss of functionality for that inode.
3318 * If this is felt to be critical, then e2fsck should be run to
3319 * force a large enough s_min_extra_isize.
3320 */
3321 if ((jbd2_journal_extend(handle,
3322 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3323 ret = ext4_expand_extra_isize(inode,
3324 sbi->s_want_extra_isize,
3325 iloc, handle);
3326 if (ret) {
3327 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
c1bddad9
AK
3328 if (mnt_count !=
3329 le16_to_cpu(sbi->s_es->s_mnt_count)) {
6dd4ee7c
KS
3330 ext4_warning(inode->i_sb, __FUNCTION__,
3331 "Unable to expand inode %lu. Delete"
3332 " some EAs or run e2fsck.",
3333 inode->i_ino);
c1bddad9
AK
3334 mnt_count =
3335 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
3336 }
3337 }
3338 }
3339 }
ac27a0ec 3340 if (!err)
617ba13b 3341 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
3342 return err;
3343}
3344
3345/*
617ba13b 3346 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
3347 *
3348 * We're really interested in the case where a file is being extended.
3349 * i_size has been changed by generic_commit_write() and we thus need
3350 * to include the updated inode in the current transaction.
3351 *
3352 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3353 * are allocated to the file.
3354 *
3355 * If the inode is marked synchronous, we don't honour that here - doing
3356 * so would cause a commit on atime updates, which we don't bother doing.
3357 * We handle synchronous inodes at the highest possible level.
3358 */
617ba13b 3359void ext4_dirty_inode(struct inode *inode)
ac27a0ec 3360{
617ba13b 3361 handle_t *current_handle = ext4_journal_current_handle();
ac27a0ec
DK
3362 handle_t *handle;
3363
617ba13b 3364 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
3365 if (IS_ERR(handle))
3366 goto out;
3367 if (current_handle &&
3368 current_handle->h_transaction != handle->h_transaction) {
3369 /* This task has a transaction open against a different fs */
3370 printk(KERN_EMERG "%s: transactions do not match!\n",
3371 __FUNCTION__);
3372 } else {
3373 jbd_debug(5, "marking dirty. outer handle=%p\n",
3374 current_handle);
617ba13b 3375 ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3376 }
617ba13b 3377 ext4_journal_stop(handle);
ac27a0ec
DK
3378out:
3379 return;
3380}
3381
3382#if 0
3383/*
3384 * Bind an inode's backing buffer_head into this transaction, to prevent
3385 * it from being flushed to disk early. Unlike
617ba13b 3386 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
3387 * returns no iloc structure, so the caller needs to repeat the iloc
3388 * lookup to mark the inode dirty later.
3389 */
617ba13b 3390static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 3391{
617ba13b 3392 struct ext4_iloc iloc;
ac27a0ec
DK
3393
3394 int err = 0;
3395 if (handle) {
617ba13b 3396 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
3397 if (!err) {
3398 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 3399 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 3400 if (!err)
617ba13b 3401 err = ext4_journal_dirty_metadata(handle,
ac27a0ec
DK
3402 iloc.bh);
3403 brelse(iloc.bh);
3404 }
3405 }
617ba13b 3406 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3407 return err;
3408}
3409#endif
3410
617ba13b 3411int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
3412{
3413 journal_t *journal;
3414 handle_t *handle;
3415 int err;
3416
3417 /*
3418 * We have to be very careful here: changing a data block's
3419 * journaling status dynamically is dangerous. If we write a
3420 * data block to the journal, change the status and then delete
3421 * that block, we risk forgetting to revoke the old log record
3422 * from the journal and so a subsequent replay can corrupt data.
3423 * So, first we make sure that the journal is empty and that
3424 * nobody is changing anything.
3425 */
3426
617ba13b 3427 journal = EXT4_JOURNAL(inode);
d699594d 3428 if (is_journal_aborted(journal))
ac27a0ec
DK
3429 return -EROFS;
3430
dab291af
MC
3431 jbd2_journal_lock_updates(journal);
3432 jbd2_journal_flush(journal);
ac27a0ec
DK
3433
3434 /*
3435 * OK, there are no updates running now, and all cached data is
3436 * synced to disk. We are now in a completely consistent state
3437 * which doesn't have anything in the journal, and we know that
3438 * no filesystem updates are running, so it is safe to modify
3439 * the inode's in-core data-journaling state flag now.
3440 */
3441
3442 if (val)
617ba13b 3443 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
ac27a0ec 3444 else
617ba13b
MC
3445 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3446 ext4_set_aops(inode);
ac27a0ec 3447
dab291af 3448 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
3449
3450 /* Finally we can mark the inode as dirty. */
3451
617ba13b 3452 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
3453 if (IS_ERR(handle))
3454 return PTR_ERR(handle);
3455
617ba13b 3456 err = ext4_mark_inode_dirty(handle, inode);
ac27a0ec 3457 handle->h_sync = 1;
617ba13b
MC
3458 ext4_journal_stop(handle);
3459 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3460
3461 return err;
3462}
This page took 0.469499 seconds and 5 git commands to generate.