ext4: add normal write support for inline data
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
814525f4
DW
50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52{
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75}
76
77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79{
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97}
98
99static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101{
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115}
116
678aaf48
JK
117static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119{
7ff9c073 120 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
678aaf48
JK
132}
133
64769240 134static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
135static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
141static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
64769240 144
ac27a0ec
DK
145/*
146 * Test whether an inode is a fast symlink.
147 */
617ba13b 148static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 149{
617ba13b 150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154}
155
ac27a0ec
DK
156/*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
fa5d1113 161int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 162 int nblocks)
ac27a0ec 163{
487caeef
JK
164 int ret;
165
166 /*
e35fd660 167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
0390131b 172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 173 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 174 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 175 ret = ext4_journal_restart(handle, nblocks);
487caeef 176 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 177 ext4_discard_preallocations(inode);
487caeef
JK
178
179 return ret;
ac27a0ec
DK
180}
181
182/*
183 * Called at the last iput() if i_nlink is zero.
184 */
0930fcc1 185void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
186{
187 handle_t *handle;
bc965ab3 188 int err;
ac27a0ec 189
7ff9c073 190 trace_ext4_evict_inode(inode);
2581fdc8 191
2581fdc8
JZ
192 ext4_ioend_wait(inode);
193
0930fcc1 194 if (inode->i_nlink) {
2d859db3
JK
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
0930fcc1
AV
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
907f4554 226 if (!is_bad_inode(inode))
871a2931 227 dquot_initialize(inode);
907f4554 228
678aaf48
JK
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
8e8ad8a5
JK
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
9f125d64 241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 242 if (IS_ERR(handle)) {
bc965ab3 243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
617ba13b 249 ext4_orphan_del(NULL, inode);
8e8ad8a5 250 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
0390131b 255 ext4_handle_sync(handle);
ac27a0ec 256 inode->i_size = 0;
bc965ab3
TT
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
12062ddd 259 ext4_warning(inode->i_sb,
bc965ab3
TT
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
ac27a0ec 263 if (inode->i_blocks)
617ba13b 264 ext4_truncate(inode);
bc965ab3
TT
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
0390131b 272 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
12062ddd 277 ext4_warning(inode->i_sb,
bc965ab3
TT
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
45388219 281 ext4_orphan_del(NULL, inode);
8e8ad8a5 282 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
283 goto no_delete;
284 }
285 }
286
ac27a0ec 287 /*
617ba13b 288 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 289 * AKPM: I think this can be inside the above `if'.
617ba13b 290 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 291 * deletion of a non-existent orphan - this is because we don't
617ba13b 292 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
293 * (Well, we could do this if we need to, but heck - it works)
294 */
617ba13b
MC
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
617ba13b 305 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 306 /* If that failed, just do the required in-core inode clear. */
0930fcc1 307 ext4_clear_inode(inode);
ac27a0ec 308 else
617ba13b
MC
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
8e8ad8a5 311 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
312 return;
313no_delete:
0930fcc1 314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
315}
316
a9e7f447
DM
317#ifdef CONFIG_QUOTA
318qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 319{
a9e7f447 320 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 321}
a9e7f447 322#endif
9d0be502 323
12219aea
AK
324/*
325 * Calculate the number of metadata blocks need to reserve
9d0be502 326 * to allocate a block located at @lblock
12219aea 327 */
01f49d0b 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 329{
12e9b892 330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 331 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 332
8bb2b247 333 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
334}
335
0637c6f4
TT
336/*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
5f634d06
AK
340void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
12219aea
AK
342{
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 344 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
345
346 spin_lock(&ei->i_block_reservation_lock);
d8990240 347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084f252 350 "with only %d reserved data blocks",
0637c6f4
TT
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
12219aea 356
97795d2a
BF
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
55138e0b 426/*
1f94533d
TT
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
55138e0b
TT
429 */
430static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432{
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
1f94533d
TT
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
55138e0b
TT
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
659c6009
ES
476 if (num >= max_pages) {
477 done = 1;
55138e0b 478 break;
659c6009 479 }
55138e0b
TT
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484}
485
f5ab0d1f 486/*
e35fd660 487 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 488 * and returns if the blocks are already mapped.
f5ab0d1f 489 *
f5ab0d1f
MC
490 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
491 * and store the allocated blocks in the result buffer head and mark it
492 * mapped.
493 *
e35fd660
TT
494 * If file type is extents based, it will call ext4_ext_map_blocks(),
495 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
496 * based files
497 *
498 * On success, it returns the number of blocks being mapped or allocate.
499 * if create==0 and the blocks are pre-allocated and uninitialized block,
500 * the result buffer head is unmapped. If the create ==1, it will make sure
501 * the buffer head is mapped.
502 *
503 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 504 * that case, buffer head is unmapped
f5ab0d1f
MC
505 *
506 * It returns the error in case of allocation failure.
507 */
e35fd660
TT
508int ext4_map_blocks(handle_t *handle, struct inode *inode,
509 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
510{
511 int retval;
f5ab0d1f 512
e35fd660
TT
513 map->m_flags = 0;
514 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
515 "logical block %lu\n", inode->i_ino, flags, map->m_len,
516 (unsigned long) map->m_lblk);
4df3d265 517 /*
b920c755
TT
518 * Try to see if we can get the block without requesting a new
519 * file system block.
4df3d265 520 */
729f52c6
ZL
521 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
522 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
524 retval = ext4_ext_map_blocks(handle, inode, map, flags &
525 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 526 } else {
a4e5d88b
DM
527 retval = ext4_ind_map_blocks(handle, inode, map, flags &
528 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 529 }
729f52c6
ZL
530 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
531 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 532
e35fd660 533 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
51865fda
ZL
534 int ret;
535 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
536 /* delayed alloc may be allocated by fallocate and
537 * coverted to initialized by directIO.
538 * we need to handle delayed extent here.
539 */
540 down_write((&EXT4_I(inode)->i_data_sem));
541 goto delayed_mapped;
542 }
543 ret = check_block_validity(inode, map);
6fd058f7
TT
544 if (ret != 0)
545 return ret;
546 }
547
f5ab0d1f 548 /* If it is only a block(s) look up */
c2177057 549 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
550 return retval;
551
552 /*
553 * Returns if the blocks have already allocated
554 *
555 * Note that if blocks have been preallocated
df3ab170 556 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
557 * with buffer head unmapped.
558 */
e35fd660 559 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
560 return retval;
561
2a8964d6
AK
562 /*
563 * When we call get_blocks without the create flag, the
564 * BH_Unwritten flag could have gotten set if the blocks
565 * requested were part of a uninitialized extent. We need to
566 * clear this flag now that we are committed to convert all or
567 * part of the uninitialized extent to be an initialized
568 * extent. This is because we need to avoid the combination
569 * of BH_Unwritten and BH_Mapped flags being simultaneously
570 * set on the buffer_head.
571 */
e35fd660 572 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 573
4df3d265 574 /*
f5ab0d1f
MC
575 * New blocks allocate and/or writing to uninitialized extent
576 * will possibly result in updating i_data, so we take
577 * the write lock of i_data_sem, and call get_blocks()
578 * with create == 1 flag.
4df3d265
AK
579 */
580 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
581
582 /*
583 * if the caller is from delayed allocation writeout path
584 * we have already reserved fs blocks for allocation
585 * let the underlying get_block() function know to
586 * avoid double accounting
587 */
c2177057 588 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 589 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
590 /*
591 * We need to check for EXT4 here because migrate
592 * could have changed the inode type in between
593 */
12e9b892 594 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 595 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 596 } else {
e35fd660 597 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 598
e35fd660 599 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
600 /*
601 * We allocated new blocks which will result in
602 * i_data's format changing. Force the migrate
603 * to fail by clearing migrate flags
604 */
19f5fb7a 605 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 606 }
d2a17637 607
5f634d06
AK
608 /*
609 * Update reserved blocks/metadata blocks after successful
610 * block allocation which had been deferred till now. We don't
611 * support fallocate for non extent files. So we can update
612 * reserve space here.
613 */
614 if ((retval > 0) &&
1296cc85 615 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
616 ext4_da_update_reserve_space(inode, retval, 1);
617 }
5356f261 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 619 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 620
51865fda
ZL
621 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
622 int ret;
51865fda
ZL
623delayed_mapped:
624 /* delayed allocation blocks has been allocated */
625 ret = ext4_es_remove_extent(inode, map->m_lblk,
626 map->m_len);
627 if (ret < 0)
628 retval = ret;
629 }
5356f261
AK
630 }
631
4df3d265 632 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 633 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 634 int ret = check_block_validity(inode, map);
6fd058f7
TT
635 if (ret != 0)
636 return ret;
637 }
0e855ac8
AK
638 return retval;
639}
640
f3bd1f3f
MC
641/* Maximum number of blocks we map for direct IO at once. */
642#define DIO_MAX_BLOCKS 4096
643
2ed88685
TT
644static int _ext4_get_block(struct inode *inode, sector_t iblock,
645 struct buffer_head *bh, int flags)
ac27a0ec 646{
3e4fdaf8 647 handle_t *handle = ext4_journal_current_handle();
2ed88685 648 struct ext4_map_blocks map;
7fb5409d 649 int ret = 0, started = 0;
f3bd1f3f 650 int dio_credits;
ac27a0ec 651
46c7f254
TM
652 if (ext4_has_inline_data(inode))
653 return -ERANGE;
654
2ed88685
TT
655 map.m_lblk = iblock;
656 map.m_len = bh->b_size >> inode->i_blkbits;
657
8b0f165f 658 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 659 /* Direct IO write... */
2ed88685
TT
660 if (map.m_len > DIO_MAX_BLOCKS)
661 map.m_len = DIO_MAX_BLOCKS;
662 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 663 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 664 if (IS_ERR(handle)) {
ac27a0ec 665 ret = PTR_ERR(handle);
2ed88685 666 return ret;
ac27a0ec 667 }
7fb5409d 668 started = 1;
ac27a0ec
DK
669 }
670
2ed88685 671 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 672 if (ret > 0) {
2ed88685
TT
673 map_bh(bh, inode->i_sb, map.m_pblk);
674 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
675 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 676 ret = 0;
ac27a0ec 677 }
7fb5409d
JK
678 if (started)
679 ext4_journal_stop(handle);
ac27a0ec
DK
680 return ret;
681}
682
2ed88685
TT
683int ext4_get_block(struct inode *inode, sector_t iblock,
684 struct buffer_head *bh, int create)
685{
686 return _ext4_get_block(inode, iblock, bh,
687 create ? EXT4_GET_BLOCKS_CREATE : 0);
688}
689
ac27a0ec
DK
690/*
691 * `handle' can be NULL if create is zero
692 */
617ba13b 693struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 694 ext4_lblk_t block, int create, int *errp)
ac27a0ec 695{
2ed88685
TT
696 struct ext4_map_blocks map;
697 struct buffer_head *bh;
ac27a0ec
DK
698 int fatal = 0, err;
699
700 J_ASSERT(handle != NULL || create == 0);
701
2ed88685
TT
702 map.m_lblk = block;
703 map.m_len = 1;
704 err = ext4_map_blocks(handle, inode, &map,
705 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 706
90b0a973
CM
707 /* ensure we send some value back into *errp */
708 *errp = 0;
709
2ed88685
TT
710 if (err < 0)
711 *errp = err;
712 if (err <= 0)
713 return NULL;
2ed88685
TT
714
715 bh = sb_getblk(inode->i_sb, map.m_pblk);
716 if (!bh) {
717 *errp = -EIO;
718 return NULL;
ac27a0ec 719 }
2ed88685
TT
720 if (map.m_flags & EXT4_MAP_NEW) {
721 J_ASSERT(create != 0);
722 J_ASSERT(handle != NULL);
ac27a0ec 723
2ed88685
TT
724 /*
725 * Now that we do not always journal data, we should
726 * keep in mind whether this should always journal the
727 * new buffer as metadata. For now, regular file
728 * writes use ext4_get_block instead, so it's not a
729 * problem.
730 */
731 lock_buffer(bh);
732 BUFFER_TRACE(bh, "call get_create_access");
733 fatal = ext4_journal_get_create_access(handle, bh);
734 if (!fatal && !buffer_uptodate(bh)) {
735 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
736 set_buffer_uptodate(bh);
ac27a0ec 737 }
2ed88685
TT
738 unlock_buffer(bh);
739 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
740 err = ext4_handle_dirty_metadata(handle, inode, bh);
741 if (!fatal)
742 fatal = err;
743 } else {
744 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 745 }
2ed88685
TT
746 if (fatal) {
747 *errp = fatal;
748 brelse(bh);
749 bh = NULL;
750 }
751 return bh;
ac27a0ec
DK
752}
753
617ba13b 754struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 755 ext4_lblk_t block, int create, int *err)
ac27a0ec 756{
af5bc92d 757 struct buffer_head *bh;
ac27a0ec 758
617ba13b 759 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
760 if (!bh)
761 return bh;
762 if (buffer_uptodate(bh))
763 return bh;
65299a3b 764 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
765 wait_on_buffer(bh);
766 if (buffer_uptodate(bh))
767 return bh;
768 put_bh(bh);
769 *err = -EIO;
770 return NULL;
771}
772
f19d5870
TM
773int ext4_walk_page_buffers(handle_t *handle,
774 struct buffer_head *head,
775 unsigned from,
776 unsigned to,
777 int *partial,
778 int (*fn)(handle_t *handle,
779 struct buffer_head *bh))
ac27a0ec
DK
780{
781 struct buffer_head *bh;
782 unsigned block_start, block_end;
783 unsigned blocksize = head->b_size;
784 int err, ret = 0;
785 struct buffer_head *next;
786
af5bc92d
TT
787 for (bh = head, block_start = 0;
788 ret == 0 && (bh != head || !block_start);
de9a55b8 789 block_start = block_end, bh = next) {
ac27a0ec
DK
790 next = bh->b_this_page;
791 block_end = block_start + blocksize;
792 if (block_end <= from || block_start >= to) {
793 if (partial && !buffer_uptodate(bh))
794 *partial = 1;
795 continue;
796 }
797 err = (*fn)(handle, bh);
798 if (!ret)
799 ret = err;
800 }
801 return ret;
802}
803
804/*
805 * To preserve ordering, it is essential that the hole instantiation and
806 * the data write be encapsulated in a single transaction. We cannot
617ba13b 807 * close off a transaction and start a new one between the ext4_get_block()
dab291af 808 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
809 * prepare_write() is the right place.
810 *
617ba13b
MC
811 * Also, this function can nest inside ext4_writepage() ->
812 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
813 * has generated enough buffer credits to do the whole page. So we won't
814 * block on the journal in that case, which is good, because the caller may
815 * be PF_MEMALLOC.
816 *
617ba13b 817 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
818 * quota file writes. If we were to commit the transaction while thus
819 * reentered, there can be a deadlock - we would be holding a quota
820 * lock, and the commit would never complete if another thread had a
821 * transaction open and was blocking on the quota lock - a ranking
822 * violation.
823 *
dab291af 824 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
825 * will _not_ run commit under these circumstances because handle->h_ref
826 * is elevated. We'll still have enough credits for the tiny quotafile
827 * write.
828 */
f19d5870
TM
829int do_journal_get_write_access(handle_t *handle,
830 struct buffer_head *bh)
ac27a0ec 831{
56d35a4c
JK
832 int dirty = buffer_dirty(bh);
833 int ret;
834
ac27a0ec
DK
835 if (!buffer_mapped(bh) || buffer_freed(bh))
836 return 0;
56d35a4c 837 /*
ebdec241 838 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
839 * the dirty bit as jbd2_journal_get_write_access() could complain
840 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 841 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
842 * the bit before releasing a page lock and thus writeback cannot
843 * ever write the buffer.
844 */
845 if (dirty)
846 clear_buffer_dirty(bh);
847 ret = ext4_journal_get_write_access(handle, bh);
848 if (!ret && dirty)
849 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
850 return ret;
ac27a0ec
DK
851}
852
8b0f165f
AP
853static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
854 struct buffer_head *bh_result, int create);
bfc1af65 855static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
856 loff_t pos, unsigned len, unsigned flags,
857 struct page **pagep, void **fsdata)
ac27a0ec 858{
af5bc92d 859 struct inode *inode = mapping->host;
1938a150 860 int ret, needed_blocks;
ac27a0ec
DK
861 handle_t *handle;
862 int retries = 0;
af5bc92d 863 struct page *page;
de9a55b8 864 pgoff_t index;
af5bc92d 865 unsigned from, to;
bfc1af65 866
9bffad1e 867 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
868 /*
869 * Reserve one block more for addition to orphan list in case
870 * we allocate blocks but write fails for some reason
871 */
872 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 873 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
874 from = pos & (PAGE_CACHE_SIZE - 1);
875 to = from + len;
ac27a0ec 876
f19d5870
TM
877 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
878 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
879 flags, pagep);
880 if (ret < 0)
881 goto out;
882 if (ret == 1) {
883 ret = 0;
884 goto out;
885 }
886 }
887
ac27a0ec 888retry:
af5bc92d
TT
889 handle = ext4_journal_start(inode, needed_blocks);
890 if (IS_ERR(handle)) {
891 ret = PTR_ERR(handle);
892 goto out;
7479d2b9 893 }
ac27a0ec 894
ebd3610b
JK
895 /* We cannot recurse into the filesystem as the transaction is already
896 * started */
897 flags |= AOP_FLAG_NOFS;
898
54566b2c 899 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
900 if (!page) {
901 ext4_journal_stop(handle);
902 ret = -ENOMEM;
903 goto out;
904 }
f19d5870 905
cf108bca
JK
906 *pagep = page;
907
744692dc 908 if (ext4_should_dioread_nolock(inode))
6e1db88d 909 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 910 else
6e1db88d 911 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
912
913 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
914 ret = ext4_walk_page_buffers(handle, page_buffers(page),
915 from, to, NULL,
916 do_journal_get_write_access);
ac27a0ec 917 }
bfc1af65
NP
918
919 if (ret) {
af5bc92d 920 unlock_page(page);
af5bc92d 921 page_cache_release(page);
ae4d5372 922 /*
6e1db88d 923 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
924 * outside i_size. Trim these off again. Don't need
925 * i_size_read because we hold i_mutex.
1938a150
AK
926 *
927 * Add inode to orphan list in case we crash before
928 * truncate finishes
ae4d5372 929 */
ffacfa7a 930 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
931 ext4_orphan_add(handle, inode);
932
933 ext4_journal_stop(handle);
934 if (pos + len > inode->i_size) {
b9a4207d 935 ext4_truncate_failed_write(inode);
de9a55b8 936 /*
ffacfa7a 937 * If truncate failed early the inode might
1938a150
AK
938 * still be on the orphan list; we need to
939 * make sure the inode is removed from the
940 * orphan list in that case.
941 */
942 if (inode->i_nlink)
943 ext4_orphan_del(NULL, inode);
944 }
bfc1af65
NP
945 }
946
617ba13b 947 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 948 goto retry;
7479d2b9 949out:
ac27a0ec
DK
950 return ret;
951}
952
bfc1af65
NP
953/* For write_end() in data=journal mode */
954static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
955{
956 if (!buffer_mapped(bh) || buffer_freed(bh))
957 return 0;
958 set_buffer_uptodate(bh);
0390131b 959 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
960}
961
f8514083 962static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
963 struct address_space *mapping,
964 loff_t pos, unsigned len, unsigned copied,
965 struct page *page, void *fsdata)
f8514083
AK
966{
967 int i_size_changed = 0;
968 struct inode *inode = mapping->host;
969 handle_t *handle = ext4_journal_current_handle();
970
f19d5870
TM
971 if (ext4_has_inline_data(inode))
972 copied = ext4_write_inline_data_end(inode, pos, len,
973 copied, page);
974 else
975 copied = block_write_end(file, mapping, pos,
976 len, copied, page, fsdata);
f8514083
AK
977
978 /*
979 * No need to use i_size_read() here, the i_size
980 * cannot change under us because we hold i_mutex.
981 *
982 * But it's important to update i_size while still holding page lock:
983 * page writeout could otherwise come in and zero beyond i_size.
984 */
985 if (pos + copied > inode->i_size) {
986 i_size_write(inode, pos + copied);
987 i_size_changed = 1;
988 }
989
990 if (pos + copied > EXT4_I(inode)->i_disksize) {
991 /* We need to mark inode dirty even if
992 * new_i_size is less that inode->i_size
993 * bu greater than i_disksize.(hint delalloc)
994 */
995 ext4_update_i_disksize(inode, (pos + copied));
996 i_size_changed = 1;
997 }
998 unlock_page(page);
999 page_cache_release(page);
1000
1001 /*
1002 * Don't mark the inode dirty under page lock. First, it unnecessarily
1003 * makes the holding time of page lock longer. Second, it forces lock
1004 * ordering of page lock and transaction start for journaling
1005 * filesystems.
1006 */
1007 if (i_size_changed)
1008 ext4_mark_inode_dirty(handle, inode);
1009
1010 return copied;
1011}
1012
ac27a0ec
DK
1013/*
1014 * We need to pick up the new inode size which generic_commit_write gave us
1015 * `file' can be NULL - eg, when called from page_symlink().
1016 *
617ba13b 1017 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
1018 * buffers are managed internally.
1019 */
bfc1af65 1020static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
1021 struct address_space *mapping,
1022 loff_t pos, unsigned len, unsigned copied,
1023 struct page *page, void *fsdata)
ac27a0ec 1024{
617ba13b 1025 handle_t *handle = ext4_journal_current_handle();
cf108bca 1026 struct inode *inode = mapping->host;
ac27a0ec
DK
1027 int ret = 0, ret2;
1028
9bffad1e 1029 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 1030 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
1031
1032 if (ret == 0) {
f8514083 1033 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1034 page, fsdata);
f8a87d89 1035 copied = ret2;
ffacfa7a 1036 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1037 /* if we have allocated more blocks and copied
1038 * less. We will have blocks allocated outside
1039 * inode->i_size. So truncate them
1040 */
1041 ext4_orphan_add(handle, inode);
f8a87d89
RK
1042 if (ret2 < 0)
1043 ret = ret2;
09e0834f
AF
1044 } else {
1045 unlock_page(page);
1046 page_cache_release(page);
ac27a0ec 1047 }
09e0834f 1048
617ba13b 1049 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1050 if (!ret)
1051 ret = ret2;
bfc1af65 1052
f8514083 1053 if (pos + len > inode->i_size) {
b9a4207d 1054 ext4_truncate_failed_write(inode);
de9a55b8 1055 /*
ffacfa7a 1056 * If truncate failed early the inode might still be
f8514083
AK
1057 * on the orphan list; we need to make sure the inode
1058 * is removed from the orphan list in that case.
1059 */
1060 if (inode->i_nlink)
1061 ext4_orphan_del(NULL, inode);
1062 }
1063
1064
bfc1af65 1065 return ret ? ret : copied;
ac27a0ec
DK
1066}
1067
bfc1af65 1068static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
1069 struct address_space *mapping,
1070 loff_t pos, unsigned len, unsigned copied,
1071 struct page *page, void *fsdata)
ac27a0ec 1072{
617ba13b 1073 handle_t *handle = ext4_journal_current_handle();
cf108bca 1074 struct inode *inode = mapping->host;
ac27a0ec 1075 int ret = 0, ret2;
ac27a0ec 1076
9bffad1e 1077 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1078 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1079 page, fsdata);
f8a87d89 1080 copied = ret2;
ffacfa7a 1081 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1082 /* if we have allocated more blocks and copied
1083 * less. We will have blocks allocated outside
1084 * inode->i_size. So truncate them
1085 */
1086 ext4_orphan_add(handle, inode);
1087
f8a87d89
RK
1088 if (ret2 < 0)
1089 ret = ret2;
ac27a0ec 1090
617ba13b 1091 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1092 if (!ret)
1093 ret = ret2;
bfc1af65 1094
f8514083 1095 if (pos + len > inode->i_size) {
b9a4207d 1096 ext4_truncate_failed_write(inode);
de9a55b8 1097 /*
ffacfa7a 1098 * If truncate failed early the inode might still be
f8514083
AK
1099 * on the orphan list; we need to make sure the inode
1100 * is removed from the orphan list in that case.
1101 */
1102 if (inode->i_nlink)
1103 ext4_orphan_del(NULL, inode);
1104 }
1105
bfc1af65 1106 return ret ? ret : copied;
ac27a0ec
DK
1107}
1108
bfc1af65 1109static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1110 struct address_space *mapping,
1111 loff_t pos, unsigned len, unsigned copied,
1112 struct page *page, void *fsdata)
ac27a0ec 1113{
617ba13b 1114 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1115 struct inode *inode = mapping->host;
ac27a0ec
DK
1116 int ret = 0, ret2;
1117 int partial = 0;
bfc1af65 1118 unsigned from, to;
cf17fea6 1119 loff_t new_i_size;
ac27a0ec 1120
9bffad1e 1121 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1122 from = pos & (PAGE_CACHE_SIZE - 1);
1123 to = from + len;
1124
441c8508
CW
1125 BUG_ON(!ext4_handle_valid(handle));
1126
bfc1af65
NP
1127 if (copied < len) {
1128 if (!PageUptodate(page))
1129 copied = 0;
1130 page_zero_new_buffers(page, from+copied, to);
1131 }
ac27a0ec 1132
f19d5870
TM
1133 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1134 to, &partial, write_end_fn);
ac27a0ec
DK
1135 if (!partial)
1136 SetPageUptodate(page);
cf17fea6
AK
1137 new_i_size = pos + copied;
1138 if (new_i_size > inode->i_size)
bfc1af65 1139 i_size_write(inode, pos+copied);
19f5fb7a 1140 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1141 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1142 if (new_i_size > EXT4_I(inode)->i_disksize) {
1143 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1144 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1145 if (!ret)
1146 ret = ret2;
1147 }
bfc1af65 1148
cf108bca 1149 unlock_page(page);
f8514083 1150 page_cache_release(page);
ffacfa7a 1151 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1152 /* if we have allocated more blocks and copied
1153 * less. We will have blocks allocated outside
1154 * inode->i_size. So truncate them
1155 */
1156 ext4_orphan_add(handle, inode);
1157
617ba13b 1158 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1159 if (!ret)
1160 ret = ret2;
f8514083 1161 if (pos + len > inode->i_size) {
b9a4207d 1162 ext4_truncate_failed_write(inode);
de9a55b8 1163 /*
ffacfa7a 1164 * If truncate failed early the inode might still be
f8514083
AK
1165 * on the orphan list; we need to make sure the inode
1166 * is removed from the orphan list in that case.
1167 */
1168 if (inode->i_nlink)
1169 ext4_orphan_del(NULL, inode);
1170 }
bfc1af65
NP
1171
1172 return ret ? ret : copied;
ac27a0ec 1173}
d2a17637 1174
9d0be502 1175/*
7b415bf6 1176 * Reserve a single cluster located at lblock
9d0be502 1177 */
01f49d0b 1178static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1179{
030ba6bc 1180 int retries = 0;
60e58e0f 1181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1182 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1183 unsigned int md_needed;
5dd4056d 1184 int ret;
03179fe9
TT
1185 ext4_lblk_t save_last_lblock;
1186 int save_len;
1187
1188 /*
1189 * We will charge metadata quota at writeout time; this saves
1190 * us from metadata over-estimation, though we may go over by
1191 * a small amount in the end. Here we just reserve for data.
1192 */
1193 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1194 if (ret)
1195 return ret;
d2a17637
MC
1196
1197 /*
1198 * recalculate the amount of metadata blocks to reserve
1199 * in order to allocate nrblocks
1200 * worse case is one extent per block
1201 */
030ba6bc 1202repeat:
0637c6f4 1203 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1204 /*
1205 * ext4_calc_metadata_amount() has side effects, which we have
1206 * to be prepared undo if we fail to claim space.
1207 */
1208 save_len = ei->i_da_metadata_calc_len;
1209 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1210 md_needed = EXT4_NUM_B2C(sbi,
1211 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1212 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1213
72b8ab9d
ES
1214 /*
1215 * We do still charge estimated metadata to the sb though;
1216 * we cannot afford to run out of free blocks.
1217 */
e7d5f315 1218 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1219 ei->i_da_metadata_calc_len = save_len;
1220 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1221 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc
AK
1222 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1223 yield();
1224 goto repeat;
1225 }
03179fe9 1226 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1227 return -ENOSPC;
1228 }
9d0be502 1229 ei->i_reserved_data_blocks++;
0637c6f4
TT
1230 ei->i_reserved_meta_blocks += md_needed;
1231 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1232
d2a17637
MC
1233 return 0; /* success */
1234}
1235
12219aea 1236static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1237{
1238 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1239 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1240
cd213226
MC
1241 if (!to_free)
1242 return; /* Nothing to release, exit */
1243
d2a17637 1244 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1245
5a58ec87 1246 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1247 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1248 /*
0637c6f4
TT
1249 * if there aren't enough reserved blocks, then the
1250 * counter is messed up somewhere. Since this
1251 * function is called from invalidate page, it's
1252 * harmless to return without any action.
cd213226 1253 */
0637c6f4
TT
1254 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1255 "ino %lu, to_free %d with only %d reserved "
1084f252 1256 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1257 ei->i_reserved_data_blocks);
1258 WARN_ON(1);
1259 to_free = ei->i_reserved_data_blocks;
cd213226 1260 }
0637c6f4 1261 ei->i_reserved_data_blocks -= to_free;
cd213226 1262
0637c6f4
TT
1263 if (ei->i_reserved_data_blocks == 0) {
1264 /*
1265 * We can release all of the reserved metadata blocks
1266 * only when we have written all of the delayed
1267 * allocation blocks.
7b415bf6
AK
1268 * Note that in case of bigalloc, i_reserved_meta_blocks,
1269 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1270 */
57042651 1271 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1272 ei->i_reserved_meta_blocks);
ee5f4d9c 1273 ei->i_reserved_meta_blocks = 0;
9d0be502 1274 ei->i_da_metadata_calc_len = 0;
0637c6f4 1275 }
d2a17637 1276
72b8ab9d 1277 /* update fs dirty data blocks counter */
57042651 1278 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1279
d2a17637 1280 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1281
7b415bf6 1282 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1283}
1284
1285static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1286 unsigned long offset)
d2a17637
MC
1287{
1288 int to_release = 0;
1289 struct buffer_head *head, *bh;
1290 unsigned int curr_off = 0;
7b415bf6
AK
1291 struct inode *inode = page->mapping->host;
1292 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1293 int num_clusters;
51865fda 1294 ext4_fsblk_t lblk;
d2a17637
MC
1295
1296 head = page_buffers(page);
1297 bh = head;
1298 do {
1299 unsigned int next_off = curr_off + bh->b_size;
1300
1301 if ((offset <= curr_off) && (buffer_delay(bh))) {
1302 to_release++;
1303 clear_buffer_delay(bh);
1304 }
1305 curr_off = next_off;
1306 } while ((bh = bh->b_this_page) != head);
7b415bf6 1307
51865fda
ZL
1308 if (to_release) {
1309 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1310 ext4_es_remove_extent(inode, lblk, to_release);
1311 }
1312
7b415bf6
AK
1313 /* If we have released all the blocks belonging to a cluster, then we
1314 * need to release the reserved space for that cluster. */
1315 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1316 while (num_clusters > 0) {
7b415bf6
AK
1317 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1318 ((num_clusters - 1) << sbi->s_cluster_bits);
1319 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1320 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1321 ext4_da_release_space(inode, 1);
1322
1323 num_clusters--;
1324 }
d2a17637 1325}
ac27a0ec 1326
64769240
AT
1327/*
1328 * Delayed allocation stuff
1329 */
1330
64769240
AT
1331/*
1332 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1333 * them with writepage() call back
64769240
AT
1334 *
1335 * @mpd->inode: inode
1336 * @mpd->first_page: first page of the extent
1337 * @mpd->next_page: page after the last page of the extent
64769240
AT
1338 *
1339 * By the time mpage_da_submit_io() is called we expect all blocks
1340 * to be allocated. this may be wrong if allocation failed.
1341 *
1342 * As pages are already locked by write_cache_pages(), we can't use it
1343 */
1de3e3df
TT
1344static int mpage_da_submit_io(struct mpage_da_data *mpd,
1345 struct ext4_map_blocks *map)
64769240 1346{
791b7f08
AK
1347 struct pagevec pvec;
1348 unsigned long index, end;
1349 int ret = 0, err, nr_pages, i;
1350 struct inode *inode = mpd->inode;
1351 struct address_space *mapping = inode->i_mapping;
cb20d518 1352 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1353 unsigned int len, block_start;
1354 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1355 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1356 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1357 struct ext4_io_submit io_submit;
64769240
AT
1358
1359 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1360 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1361 /*
1362 * We need to start from the first_page to the next_page - 1
1363 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1364 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1365 * at the currently mapped buffer_heads.
1366 */
64769240
AT
1367 index = mpd->first_page;
1368 end = mpd->next_page - 1;
1369
791b7f08 1370 pagevec_init(&pvec, 0);
64769240 1371 while (index <= end) {
791b7f08 1372 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1373 if (nr_pages == 0)
1374 break;
1375 for (i = 0; i < nr_pages; i++) {
97498956 1376 int commit_write = 0, skip_page = 0;
64769240
AT
1377 struct page *page = pvec.pages[i];
1378
791b7f08
AK
1379 index = page->index;
1380 if (index > end)
1381 break;
cb20d518
TT
1382
1383 if (index == size >> PAGE_CACHE_SHIFT)
1384 len = size & ~PAGE_CACHE_MASK;
1385 else
1386 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1387 if (map) {
1388 cur_logical = index << (PAGE_CACHE_SHIFT -
1389 inode->i_blkbits);
1390 pblock = map->m_pblk + (cur_logical -
1391 map->m_lblk);
1392 }
791b7f08
AK
1393 index++;
1394
1395 BUG_ON(!PageLocked(page));
1396 BUG_ON(PageWriteback(page));
1397
64769240 1398 /*
cb20d518
TT
1399 * If the page does not have buffers (for
1400 * whatever reason), try to create them using
a107e5a3 1401 * __block_write_begin. If this fails,
97498956 1402 * skip the page and move on.
64769240 1403 */
cb20d518 1404 if (!page_has_buffers(page)) {
a107e5a3 1405 if (__block_write_begin(page, 0, len,
cb20d518 1406 noalloc_get_block_write)) {
97498956 1407 skip_page:
cb20d518
TT
1408 unlock_page(page);
1409 continue;
1410 }
1411 commit_write = 1;
1412 }
64769240 1413
3ecdb3a1
TT
1414 bh = page_bufs = page_buffers(page);
1415 block_start = 0;
64769240 1416 do {
1de3e3df 1417 if (!bh)
97498956 1418 goto skip_page;
1de3e3df
TT
1419 if (map && (cur_logical >= map->m_lblk) &&
1420 (cur_logical <= (map->m_lblk +
1421 (map->m_len - 1)))) {
29fa89d0
AK
1422 if (buffer_delay(bh)) {
1423 clear_buffer_delay(bh);
1424 bh->b_blocknr = pblock;
29fa89d0 1425 }
1de3e3df
TT
1426 if (buffer_unwritten(bh) ||
1427 buffer_mapped(bh))
1428 BUG_ON(bh->b_blocknr != pblock);
1429 if (map->m_flags & EXT4_MAP_UNINIT)
1430 set_buffer_uninit(bh);
1431 clear_buffer_unwritten(bh);
1432 }
29fa89d0 1433
13a79a47
YY
1434 /*
1435 * skip page if block allocation undone and
1436 * block is dirty
1437 */
1438 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1439 skip_page = 1;
3ecdb3a1
TT
1440 bh = bh->b_this_page;
1441 block_start += bh->b_size;
64769240
AT
1442 cur_logical++;
1443 pblock++;
1de3e3df
TT
1444 } while (bh != page_bufs);
1445
97498956
TT
1446 if (skip_page)
1447 goto skip_page;
cb20d518
TT
1448
1449 if (commit_write)
1450 /* mark the buffer_heads as dirty & uptodate */
1451 block_commit_write(page, 0, len);
1452
97498956 1453 clear_page_dirty_for_io(page);
bd2d0210
TT
1454 /*
1455 * Delalloc doesn't support data journalling,
1456 * but eventually maybe we'll lift this
1457 * restriction.
1458 */
1459 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1460 err = __ext4_journalled_writepage(page, len);
1449032b 1461 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1462 err = ext4_bio_write_page(&io_submit, page,
1463 len, mpd->wbc);
9dd75f1f
TT
1464 else if (buffer_uninit(page_bufs)) {
1465 ext4_set_bh_endio(page_bufs, inode);
1466 err = block_write_full_page_endio(page,
1467 noalloc_get_block_write,
1468 mpd->wbc, ext4_end_io_buffer_write);
1469 } else
1449032b
TT
1470 err = block_write_full_page(page,
1471 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1472
1473 if (!err)
a1d6cc56 1474 mpd->pages_written++;
64769240
AT
1475 /*
1476 * In error case, we have to continue because
1477 * remaining pages are still locked
64769240
AT
1478 */
1479 if (ret == 0)
1480 ret = err;
64769240
AT
1481 }
1482 pagevec_release(&pvec);
1483 }
bd2d0210 1484 ext4_io_submit(&io_submit);
64769240 1485 return ret;
64769240
AT
1486}
1487
c7f5938a 1488static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1489{
1490 int nr_pages, i;
1491 pgoff_t index, end;
1492 struct pagevec pvec;
1493 struct inode *inode = mpd->inode;
1494 struct address_space *mapping = inode->i_mapping;
51865fda 1495 ext4_lblk_t start, last;
c4a0c46e 1496
c7f5938a
CW
1497 index = mpd->first_page;
1498 end = mpd->next_page - 1;
51865fda
ZL
1499
1500 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1501 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1502 ext4_es_remove_extent(inode, start, last - start + 1);
1503
66bea92c 1504 pagevec_init(&pvec, 0);
c4a0c46e
AK
1505 while (index <= end) {
1506 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1507 if (nr_pages == 0)
1508 break;
1509 for (i = 0; i < nr_pages; i++) {
1510 struct page *page = pvec.pages[i];
9b1d0998 1511 if (page->index > end)
c4a0c46e 1512 break;
c4a0c46e
AK
1513 BUG_ON(!PageLocked(page));
1514 BUG_ON(PageWriteback(page));
1515 block_invalidatepage(page, 0);
1516 ClearPageUptodate(page);
1517 unlock_page(page);
1518 }
9b1d0998
JK
1519 index = pvec.pages[nr_pages - 1]->index + 1;
1520 pagevec_release(&pvec);
c4a0c46e
AK
1521 }
1522 return;
1523}
1524
df22291f
AK
1525static void ext4_print_free_blocks(struct inode *inode)
1526{
1527 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816
TT
1528 struct super_block *sb = inode->i_sb;
1529
1530 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437
TT
1531 EXT4_C2B(EXT4_SB(inode->i_sb),
1532 ext4_count_free_clusters(inode->i_sb)));
92b97816
TT
1533 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1534 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
57042651
TT
1535 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1536 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1537 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
7b415bf6
AK
1538 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1539 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1540 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1541 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1542 EXT4_I(inode)->i_reserved_data_blocks);
1543 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1693918e 1544 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1545 return;
1546}
1547
64769240 1548/*
5a87b7a5
TT
1549 * mpage_da_map_and_submit - go through given space, map them
1550 * if necessary, and then submit them for I/O
64769240 1551 *
8dc207c0 1552 * @mpd - bh describing space
64769240
AT
1553 *
1554 * The function skips space we know is already mapped to disk blocks.
1555 *
64769240 1556 */
5a87b7a5 1557static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1558{
2ac3b6e0 1559 int err, blks, get_blocks_flags;
1de3e3df 1560 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1561 sector_t next = mpd->b_blocknr;
1562 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1563 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1564 handle_t *handle = NULL;
64769240
AT
1565
1566 /*
5a87b7a5
TT
1567 * If the blocks are mapped already, or we couldn't accumulate
1568 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1569 */
5a87b7a5
TT
1570 if ((mpd->b_size == 0) ||
1571 ((mpd->b_state & (1 << BH_Mapped)) &&
1572 !(mpd->b_state & (1 << BH_Delay)) &&
1573 !(mpd->b_state & (1 << BH_Unwritten))))
1574 goto submit_io;
2fa3cdfb
TT
1575
1576 handle = ext4_journal_current_handle();
1577 BUG_ON(!handle);
1578
79ffab34 1579 /*
79e83036 1580 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1581 * blocks, or to convert an uninitialized extent to be
1582 * initialized (in the case where we have written into
1583 * one or more preallocated blocks).
1584 *
1585 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1586 * indicate that we are on the delayed allocation path. This
1587 * affects functions in many different parts of the allocation
1588 * call path. This flag exists primarily because we don't
79e83036 1589 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1590 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1591 * inode's allocation semaphore is taken.
1592 *
1593 * If the blocks in questions were delalloc blocks, set
1594 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1595 * variables are updated after the blocks have been allocated.
79ffab34 1596 */
2ed88685
TT
1597 map.m_lblk = next;
1598 map.m_len = max_blocks;
1296cc85 1599 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1600 if (ext4_should_dioread_nolock(mpd->inode))
1601 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1602 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1603 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1604
2ed88685 1605 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1606 if (blks < 0) {
e3570639
ES
1607 struct super_block *sb = mpd->inode->i_sb;
1608
2fa3cdfb 1609 err = blks;
ed5bde0b 1610 /*
5a87b7a5 1611 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1612 * appears to be free blocks we will just let
1613 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1614 */
1615 if (err == -EAGAIN)
5a87b7a5 1616 goto submit_io;
df22291f 1617
5dee5437 1618 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1619 mpd->retval = err;
5a87b7a5 1620 goto submit_io;
df22291f
AK
1621 }
1622
c4a0c46e 1623 /*
ed5bde0b
TT
1624 * get block failure will cause us to loop in
1625 * writepages, because a_ops->writepage won't be able
1626 * to make progress. The page will be redirtied by
1627 * writepage and writepages will again try to write
1628 * the same.
c4a0c46e 1629 */
e3570639
ES
1630 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1631 ext4_msg(sb, KERN_CRIT,
1632 "delayed block allocation failed for inode %lu "
1633 "at logical offset %llu with max blocks %zd "
1634 "with error %d", mpd->inode->i_ino,
1635 (unsigned long long) next,
1636 mpd->b_size >> mpd->inode->i_blkbits, err);
1637 ext4_msg(sb, KERN_CRIT,
1638 "This should not happen!! Data will be lost\n");
1639 if (err == -ENOSPC)
1640 ext4_print_free_blocks(mpd->inode);
030ba6bc 1641 }
2fa3cdfb 1642 /* invalidate all the pages */
c7f5938a 1643 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1644
1645 /* Mark this page range as having been completed */
1646 mpd->io_done = 1;
5a87b7a5 1647 return;
c4a0c46e 1648 }
2fa3cdfb
TT
1649 BUG_ON(blks == 0);
1650
1de3e3df 1651 mapp = &map;
2ed88685
TT
1652 if (map.m_flags & EXT4_MAP_NEW) {
1653 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1654 int i;
64769240 1655
2ed88685
TT
1656 for (i = 0; i < map.m_len; i++)
1657 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1658 }
1659
1660 /*
03f5d8bc 1661 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1662 */
1663 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1664 if (disksize > i_size_read(mpd->inode))
1665 disksize = i_size_read(mpd->inode);
1666 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1667 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1668 err = ext4_mark_inode_dirty(handle, mpd->inode);
1669 if (err)
1670 ext4_error(mpd->inode->i_sb,
1671 "Failed to mark inode %lu dirty",
1672 mpd->inode->i_ino);
2fa3cdfb
TT
1673 }
1674
5a87b7a5 1675submit_io:
1de3e3df 1676 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1677 mpd->io_done = 1;
64769240
AT
1678}
1679
bf068ee2
AK
1680#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1681 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1682
1683/*
1684 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1685 *
1686 * @mpd->lbh - extent of blocks
1687 * @logical - logical number of the block in the file
1688 * @bh - bh of the block (used to access block's state)
1689 *
1690 * the function is used to collect contig. blocks in same state
1691 */
1692static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1693 sector_t logical, size_t b_size,
1694 unsigned long b_state)
64769240 1695{
64769240 1696 sector_t next;
8dc207c0 1697 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1698
c445e3e0
ES
1699 /*
1700 * XXX Don't go larger than mballoc is willing to allocate
1701 * This is a stopgap solution. We eventually need to fold
1702 * mpage_da_submit_io() into this function and then call
79e83036 1703 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1704 */
1705 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1706 goto flush_it;
1707
525f4ed8 1708 /* check if thereserved journal credits might overflow */
12e9b892 1709 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1710 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1711 /*
1712 * With non-extent format we are limited by the journal
1713 * credit available. Total credit needed to insert
1714 * nrblocks contiguous blocks is dependent on the
1715 * nrblocks. So limit nrblocks.
1716 */
1717 goto flush_it;
1718 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1719 EXT4_MAX_TRANS_DATA) {
1720 /*
1721 * Adding the new buffer_head would make it cross the
1722 * allowed limit for which we have journal credit
1723 * reserved. So limit the new bh->b_size
1724 */
1725 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1726 mpd->inode->i_blkbits;
1727 /* we will do mpage_da_submit_io in the next loop */
1728 }
1729 }
64769240
AT
1730 /*
1731 * First block in the extent
1732 */
8dc207c0
TT
1733 if (mpd->b_size == 0) {
1734 mpd->b_blocknr = logical;
1735 mpd->b_size = b_size;
1736 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1737 return;
1738 }
1739
8dc207c0 1740 next = mpd->b_blocknr + nrblocks;
64769240
AT
1741 /*
1742 * Can we merge the block to our big extent?
1743 */
8dc207c0
TT
1744 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1745 mpd->b_size += b_size;
64769240
AT
1746 return;
1747 }
1748
525f4ed8 1749flush_it:
64769240
AT
1750 /*
1751 * We couldn't merge the block to our extent, so we
1752 * need to flush current extent and start new one
1753 */
5a87b7a5 1754 mpage_da_map_and_submit(mpd);
a1d6cc56 1755 return;
64769240
AT
1756}
1757
c364b22c 1758static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1759{
c364b22c 1760 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1761}
1762
5356f261
AK
1763/*
1764 * This function is grabs code from the very beginning of
1765 * ext4_map_blocks, but assumes that the caller is from delayed write
1766 * time. This function looks up the requested blocks and sets the
1767 * buffer delay bit under the protection of i_data_sem.
1768 */
1769static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1770 struct ext4_map_blocks *map,
1771 struct buffer_head *bh)
1772{
1773 int retval;
1774 sector_t invalid_block = ~((sector_t) 0xffff);
1775
1776 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1777 invalid_block = ~0;
1778
1779 map->m_flags = 0;
1780 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1781 "logical block %lu\n", inode->i_ino, map->m_len,
1782 (unsigned long) map->m_lblk);
1783 /*
1784 * Try to see if we can get the block without requesting a new
1785 * file system block.
1786 */
1787 down_read((&EXT4_I(inode)->i_data_sem));
1788 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1789 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1790 else
1791 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1792
1793 if (retval == 0) {
1794 /*
1795 * XXX: __block_prepare_write() unmaps passed block,
1796 * is it OK?
1797 */
1798 /* If the block was allocated from previously allocated cluster,
1799 * then we dont need to reserve it again. */
1800 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1801 retval = ext4_da_reserve_space(inode, iblock);
1802 if (retval)
1803 /* not enough space to reserve */
1804 goto out_unlock;
1805 }
1806
51865fda
ZL
1807 retval = ext4_es_insert_extent(inode, map->m_lblk, map->m_len);
1808 if (retval)
1809 goto out_unlock;
1810
5356f261
AK
1811 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1812 * and it should not appear on the bh->b_state.
1813 */
1814 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1815
1816 map_bh(bh, inode->i_sb, invalid_block);
1817 set_buffer_new(bh);
1818 set_buffer_delay(bh);
1819 }
1820
1821out_unlock:
1822 up_read((&EXT4_I(inode)->i_data_sem));
1823
1824 return retval;
1825}
1826
64769240 1827/*
b920c755
TT
1828 * This is a special get_blocks_t callback which is used by
1829 * ext4_da_write_begin(). It will either return mapped block or
1830 * reserve space for a single block.
29fa89d0
AK
1831 *
1832 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1833 * We also have b_blocknr = -1 and b_bdev initialized properly
1834 *
1835 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1836 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1837 * initialized properly.
64769240
AT
1838 */
1839static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1840 struct buffer_head *bh, int create)
64769240 1841{
2ed88685 1842 struct ext4_map_blocks map;
64769240
AT
1843 int ret = 0;
1844
1845 BUG_ON(create == 0);
2ed88685
TT
1846 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1847
1848 map.m_lblk = iblock;
1849 map.m_len = 1;
64769240
AT
1850
1851 /*
1852 * first, we need to know whether the block is allocated already
1853 * preallocated blocks are unmapped but should treated
1854 * the same as allocated blocks.
1855 */
5356f261
AK
1856 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1857 if (ret <= 0)
2ed88685 1858 return ret;
64769240 1859
2ed88685
TT
1860 map_bh(bh, inode->i_sb, map.m_pblk);
1861 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1862
1863 if (buffer_unwritten(bh)) {
1864 /* A delayed write to unwritten bh should be marked
1865 * new and mapped. Mapped ensures that we don't do
1866 * get_block multiple times when we write to the same
1867 * offset and new ensures that we do proper zero out
1868 * for partial write.
1869 */
1870 set_buffer_new(bh);
c8205636 1871 set_buffer_mapped(bh);
2ed88685
TT
1872 }
1873 return 0;
64769240 1874}
61628a3f 1875
b920c755
TT
1876/*
1877 * This function is used as a standard get_block_t calback function
1878 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1879 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1880 * These functions should only try to map a single block at a time.
b920c755
TT
1881 *
1882 * Since this function doesn't do block allocations even if the caller
1883 * requests it by passing in create=1, it is critically important that
1884 * any caller checks to make sure that any buffer heads are returned
1885 * by this function are either all already mapped or marked for
206f7ab4
CH
1886 * delayed allocation before calling block_write_full_page(). Otherwise,
1887 * b_blocknr could be left unitialized, and the page write functions will
1888 * be taken by surprise.
b920c755
TT
1889 */
1890static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1891 struct buffer_head *bh_result, int create)
1892{
a2dc52b5 1893 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1894 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1895}
1896
62e086be
AK
1897static int bget_one(handle_t *handle, struct buffer_head *bh)
1898{
1899 get_bh(bh);
1900 return 0;
1901}
1902
1903static int bput_one(handle_t *handle, struct buffer_head *bh)
1904{
1905 put_bh(bh);
1906 return 0;
1907}
1908
1909static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1910 unsigned int len)
1911{
1912 struct address_space *mapping = page->mapping;
1913 struct inode *inode = mapping->host;
1914 struct buffer_head *page_bufs;
1915 handle_t *handle = NULL;
1916 int ret = 0;
1917 int err;
1918
cb20d518 1919 ClearPageChecked(page);
62e086be
AK
1920 page_bufs = page_buffers(page);
1921 BUG_ON(!page_bufs);
f19d5870 1922 ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
62e086be
AK
1923 /* As soon as we unlock the page, it can go away, but we have
1924 * references to buffers so we are safe */
1925 unlock_page(page);
1926
1927 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1928 if (IS_ERR(handle)) {
1929 ret = PTR_ERR(handle);
1930 goto out;
1931 }
1932
441c8508
CW
1933 BUG_ON(!ext4_handle_valid(handle));
1934
f19d5870
TM
1935 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1936 do_journal_get_write_access);
62e086be 1937
f19d5870
TM
1938 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1939 write_end_fn);
62e086be
AK
1940 if (ret == 0)
1941 ret = err;
2d859db3 1942 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1943 err = ext4_journal_stop(handle);
1944 if (!ret)
1945 ret = err;
1946
f19d5870 1947 ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1948 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1949out:
1950 return ret;
1951}
1952
61628a3f 1953/*
43ce1d23
AK
1954 * Note that we don't need to start a transaction unless we're journaling data
1955 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1956 * need to file the inode to the transaction's list in ordered mode because if
1957 * we are writing back data added by write(), the inode is already there and if
25985edc 1958 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1959 * transaction the data will hit the disk. In case we are journaling data, we
1960 * cannot start transaction directly because transaction start ranks above page
1961 * lock so we have to do some magic.
1962 *
b920c755
TT
1963 * This function can get called via...
1964 * - ext4_da_writepages after taking page lock (have journal handle)
1965 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 1966 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 1967 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1968 *
1969 * We don't do any block allocation in this function. If we have page with
1970 * multiple blocks we need to write those buffer_heads that are mapped. This
1971 * is important for mmaped based write. So if we do with blocksize 1K
1972 * truncate(f, 1024);
1973 * a = mmap(f, 0, 4096);
1974 * a[0] = 'a';
1975 * truncate(f, 4096);
1976 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1977 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1978 * do_wp_page). So writepage should write the first block. If we modify
1979 * the mmap area beyond 1024 we will again get a page_fault and the
1980 * page_mkwrite callback will do the block allocation and mark the
1981 * buffer_heads mapped.
1982 *
1983 * We redirty the page if we have any buffer_heads that is either delay or
1984 * unwritten in the page.
1985 *
1986 * We can get recursively called as show below.
1987 *
1988 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1989 * ext4_writepage()
1990 *
1991 * But since we don't do any block allocation we should not deadlock.
1992 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1993 */
43ce1d23 1994static int ext4_writepage(struct page *page,
62e086be 1995 struct writeback_control *wbc)
64769240 1996{
a42afc5f 1997 int ret = 0, commit_write = 0;
61628a3f 1998 loff_t size;
498e5f24 1999 unsigned int len;
744692dc 2000 struct buffer_head *page_bufs = NULL;
61628a3f
MC
2001 struct inode *inode = page->mapping->host;
2002
a9c667f8 2003 trace_ext4_writepage(page);
f0e6c985
AK
2004 size = i_size_read(inode);
2005 if (page->index == size >> PAGE_CACHE_SHIFT)
2006 len = size & ~PAGE_CACHE_MASK;
2007 else
2008 len = PAGE_CACHE_SIZE;
64769240 2009
a42afc5f
TT
2010 /*
2011 * If the page does not have buffers (for whatever reason),
a107e5a3 2012 * try to create them using __block_write_begin. If this
a42afc5f
TT
2013 * fails, redirty the page and move on.
2014 */
b1142e8f 2015 if (!page_has_buffers(page)) {
a107e5a3 2016 if (__block_write_begin(page, 0, len,
a42afc5f
TT
2017 noalloc_get_block_write)) {
2018 redirty_page:
f0e6c985
AK
2019 redirty_page_for_writepage(wbc, page);
2020 unlock_page(page);
2021 return 0;
2022 }
a42afc5f
TT
2023 commit_write = 1;
2024 }
2025 page_bufs = page_buffers(page);
f19d5870
TM
2026 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2027 ext4_bh_delay_or_unwritten)) {
f0e6c985 2028 /*
b1142e8f
TT
2029 * We don't want to do block allocation, so redirty
2030 * the page and return. We may reach here when we do
2031 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
2032 * We can also reach here via shrink_page_list but it
2033 * should never be for direct reclaim so warn if that
2034 * happens
f0e6c985 2035 */
966dbde2
MG
2036 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2037 PF_MEMALLOC);
a42afc5f
TT
2038 goto redirty_page;
2039 }
2040 if (commit_write)
ed9b3e33 2041 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 2042 block_commit_write(page, 0, len);
64769240 2043
cb20d518 2044 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2045 /*
2046 * It's mmapped pagecache. Add buffers and journal it. There
2047 * doesn't seem much point in redirtying the page here.
2048 */
3f0ca309 2049 return __ext4_journalled_writepage(page, len);
43ce1d23 2050
a42afc5f 2051 if (buffer_uninit(page_bufs)) {
744692dc
JZ
2052 ext4_set_bh_endio(page_bufs, inode);
2053 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2054 wbc, ext4_end_io_buffer_write);
2055 } else
b920c755
TT
2056 ret = block_write_full_page(page, noalloc_get_block_write,
2057 wbc);
64769240 2058
64769240
AT
2059 return ret;
2060}
2061
61628a3f 2062/*
525f4ed8 2063 * This is called via ext4_da_writepages() to
25985edc 2064 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2065 * a single extent allocation into a single transaction,
2066 * ext4_da_writpeages() will loop calling this before
2067 * the block allocation.
61628a3f 2068 */
525f4ed8
MC
2069
2070static int ext4_da_writepages_trans_blocks(struct inode *inode)
2071{
2072 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2073
2074 /*
2075 * With non-extent format the journal credit needed to
2076 * insert nrblocks contiguous block is dependent on
2077 * number of contiguous block. So we will limit
2078 * number of contiguous block to a sane value
2079 */
12e9b892 2080 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2081 (max_blocks > EXT4_MAX_TRANS_DATA))
2082 max_blocks = EXT4_MAX_TRANS_DATA;
2083
2084 return ext4_chunk_trans_blocks(inode, max_blocks);
2085}
61628a3f 2086
8e48dcfb
TT
2087/*
2088 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2089 * address space and accumulate pages that need writing, and call
168fc022
TT
2090 * mpage_da_map_and_submit to map a single contiguous memory region
2091 * and then write them.
8e48dcfb
TT
2092 */
2093static int write_cache_pages_da(struct address_space *mapping,
2094 struct writeback_control *wbc,
72f84e65
ES
2095 struct mpage_da_data *mpd,
2096 pgoff_t *done_index)
8e48dcfb 2097{
4f01b02c 2098 struct buffer_head *bh, *head;
168fc022 2099 struct inode *inode = mapping->host;
4f01b02c
TT
2100 struct pagevec pvec;
2101 unsigned int nr_pages;
2102 sector_t logical;
2103 pgoff_t index, end;
2104 long nr_to_write = wbc->nr_to_write;
2105 int i, tag, ret = 0;
8e48dcfb 2106
168fc022
TT
2107 memset(mpd, 0, sizeof(struct mpage_da_data));
2108 mpd->wbc = wbc;
2109 mpd->inode = inode;
8e48dcfb
TT
2110 pagevec_init(&pvec, 0);
2111 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2112 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2113
6e6938b6 2114 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2115 tag = PAGECACHE_TAG_TOWRITE;
2116 else
2117 tag = PAGECACHE_TAG_DIRTY;
2118
72f84e65 2119 *done_index = index;
4f01b02c 2120 while (index <= end) {
5b41d924 2121 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2122 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2123 if (nr_pages == 0)
4f01b02c 2124 return 0;
8e48dcfb
TT
2125
2126 for (i = 0; i < nr_pages; i++) {
2127 struct page *page = pvec.pages[i];
2128
2129 /*
2130 * At this point, the page may be truncated or
2131 * invalidated (changing page->mapping to NULL), or
2132 * even swizzled back from swapper_space to tmpfs file
2133 * mapping. However, page->index will not change
2134 * because we have a reference on the page.
2135 */
4f01b02c
TT
2136 if (page->index > end)
2137 goto out;
8e48dcfb 2138
72f84e65
ES
2139 *done_index = page->index + 1;
2140
78aaced3
TT
2141 /*
2142 * If we can't merge this page, and we have
2143 * accumulated an contiguous region, write it
2144 */
2145 if ((mpd->next_page != page->index) &&
2146 (mpd->next_page != mpd->first_page)) {
2147 mpage_da_map_and_submit(mpd);
2148 goto ret_extent_tail;
2149 }
2150
8e48dcfb
TT
2151 lock_page(page);
2152
2153 /*
4f01b02c
TT
2154 * If the page is no longer dirty, or its
2155 * mapping no longer corresponds to inode we
2156 * are writing (which means it has been
2157 * truncated or invalidated), or the page is
2158 * already under writeback and we are not
2159 * doing a data integrity writeback, skip the page
8e48dcfb 2160 */
4f01b02c
TT
2161 if (!PageDirty(page) ||
2162 (PageWriteback(page) &&
2163 (wbc->sync_mode == WB_SYNC_NONE)) ||
2164 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2165 unlock_page(page);
2166 continue;
2167 }
2168
7cb1a535 2169 wait_on_page_writeback(page);
8e48dcfb 2170 BUG_ON(PageWriteback(page));
8e48dcfb 2171
168fc022 2172 if (mpd->next_page != page->index)
8eb9e5ce 2173 mpd->first_page = page->index;
8eb9e5ce
TT
2174 mpd->next_page = page->index + 1;
2175 logical = (sector_t) page->index <<
2176 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2177
2178 if (!page_has_buffers(page)) {
4f01b02c
TT
2179 mpage_add_bh_to_extent(mpd, logical,
2180 PAGE_CACHE_SIZE,
8eb9e5ce 2181 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2182 if (mpd->io_done)
2183 goto ret_extent_tail;
8eb9e5ce
TT
2184 } else {
2185 /*
4f01b02c
TT
2186 * Page with regular buffer heads,
2187 * just add all dirty ones
8eb9e5ce
TT
2188 */
2189 head = page_buffers(page);
2190 bh = head;
2191 do {
2192 BUG_ON(buffer_locked(bh));
2193 /*
2194 * We need to try to allocate
2195 * unmapped blocks in the same page.
2196 * Otherwise we won't make progress
2197 * with the page in ext4_writepage
2198 */
2199 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2200 mpage_add_bh_to_extent(mpd, logical,
2201 bh->b_size,
2202 bh->b_state);
4f01b02c
TT
2203 if (mpd->io_done)
2204 goto ret_extent_tail;
8eb9e5ce
TT
2205 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2206 /*
4f01b02c
TT
2207 * mapped dirty buffer. We need
2208 * to update the b_state
2209 * because we look at b_state
2210 * in mpage_da_map_blocks. We
2211 * don't update b_size because
2212 * if we find an unmapped
2213 * buffer_head later we need to
2214 * use the b_state flag of that
2215 * buffer_head.
8eb9e5ce
TT
2216 */
2217 if (mpd->b_size == 0)
2218 mpd->b_state = bh->b_state & BH_FLAGS;
2219 }
2220 logical++;
2221 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2222 }
2223
2224 if (nr_to_write > 0) {
2225 nr_to_write--;
2226 if (nr_to_write == 0 &&
4f01b02c 2227 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2228 /*
2229 * We stop writing back only if we are
2230 * not doing integrity sync. In case of
2231 * integrity sync we have to keep going
2232 * because someone may be concurrently
2233 * dirtying pages, and we might have
2234 * synced a lot of newly appeared dirty
2235 * pages, but have not synced all of the
2236 * old dirty pages.
2237 */
4f01b02c 2238 goto out;
8e48dcfb
TT
2239 }
2240 }
2241 pagevec_release(&pvec);
2242 cond_resched();
2243 }
4f01b02c
TT
2244 return 0;
2245ret_extent_tail:
2246 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2247out:
2248 pagevec_release(&pvec);
2249 cond_resched();
8e48dcfb
TT
2250 return ret;
2251}
2252
2253
64769240 2254static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2255 struct writeback_control *wbc)
64769240 2256{
22208ded
AK
2257 pgoff_t index;
2258 int range_whole = 0;
61628a3f 2259 handle_t *handle = NULL;
df22291f 2260 struct mpage_da_data mpd;
5e745b04 2261 struct inode *inode = mapping->host;
498e5f24 2262 int pages_written = 0;
55138e0b 2263 unsigned int max_pages;
2acf2c26 2264 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2265 int needed_blocks, ret = 0;
2266 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2267 loff_t range_start = wbc->range_start;
5e745b04 2268 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2269 pgoff_t done_index = 0;
5b41d924 2270 pgoff_t end;
1bce63d1 2271 struct blk_plug plug;
61628a3f 2272
9bffad1e 2273 trace_ext4_da_writepages(inode, wbc);
ba80b101 2274
61628a3f
MC
2275 /*
2276 * No pages to write? This is mainly a kludge to avoid starting
2277 * a transaction for special inodes like journal inode on last iput()
2278 * because that could violate lock ordering on umount
2279 */
a1d6cc56 2280 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2281 return 0;
2a21e37e
TT
2282
2283 /*
2284 * If the filesystem has aborted, it is read-only, so return
2285 * right away instead of dumping stack traces later on that
2286 * will obscure the real source of the problem. We test
4ab2f15b 2287 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2288 * the latter could be true if the filesystem is mounted
2289 * read-only, and in that case, ext4_da_writepages should
2290 * *never* be called, so if that ever happens, we would want
2291 * the stack trace.
2292 */
4ab2f15b 2293 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2294 return -EROFS;
2295
22208ded
AK
2296 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2297 range_whole = 1;
61628a3f 2298
2acf2c26
AK
2299 range_cyclic = wbc->range_cyclic;
2300 if (wbc->range_cyclic) {
22208ded 2301 index = mapping->writeback_index;
2acf2c26
AK
2302 if (index)
2303 cycled = 0;
2304 wbc->range_start = index << PAGE_CACHE_SHIFT;
2305 wbc->range_end = LLONG_MAX;
2306 wbc->range_cyclic = 0;
5b41d924
ES
2307 end = -1;
2308 } else {
22208ded 2309 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2310 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2311 }
a1d6cc56 2312
55138e0b
TT
2313 /*
2314 * This works around two forms of stupidity. The first is in
2315 * the writeback code, which caps the maximum number of pages
2316 * written to be 1024 pages. This is wrong on multiple
2317 * levels; different architectues have a different page size,
2318 * which changes the maximum amount of data which gets
2319 * written. Secondly, 4 megabytes is way too small. XFS
2320 * forces this value to be 16 megabytes by multiplying
2321 * nr_to_write parameter by four, and then relies on its
2322 * allocator to allocate larger extents to make them
2323 * contiguous. Unfortunately this brings us to the second
2324 * stupidity, which is that ext4's mballoc code only allocates
2325 * at most 2048 blocks. So we force contiguous writes up to
2326 * the number of dirty blocks in the inode, or
2327 * sbi->max_writeback_mb_bump whichever is smaller.
2328 */
2329 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2330 if (!range_cyclic && range_whole) {
2331 if (wbc->nr_to_write == LONG_MAX)
2332 desired_nr_to_write = wbc->nr_to_write;
2333 else
2334 desired_nr_to_write = wbc->nr_to_write * 8;
2335 } else
55138e0b
TT
2336 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2337 max_pages);
2338 if (desired_nr_to_write > max_pages)
2339 desired_nr_to_write = max_pages;
2340
2341 if (wbc->nr_to_write < desired_nr_to_write) {
2342 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2343 wbc->nr_to_write = desired_nr_to_write;
2344 }
2345
2acf2c26 2346retry:
6e6938b6 2347 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2348 tag_pages_for_writeback(mapping, index, end);
2349
1bce63d1 2350 blk_start_plug(&plug);
22208ded 2351 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2352
2353 /*
2354 * we insert one extent at a time. So we need
2355 * credit needed for single extent allocation.
2356 * journalled mode is currently not supported
2357 * by delalloc
2358 */
2359 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2360 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2361
61628a3f
MC
2362 /* start a new transaction*/
2363 handle = ext4_journal_start(inode, needed_blocks);
2364 if (IS_ERR(handle)) {
2365 ret = PTR_ERR(handle);
1693918e 2366 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2367 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2368 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2369 blk_finish_plug(&plug);
61628a3f
MC
2370 goto out_writepages;
2371 }
f63e6005
TT
2372
2373 /*
8eb9e5ce 2374 * Now call write_cache_pages_da() to find the next
f63e6005 2375 * contiguous region of logical blocks that need
8eb9e5ce 2376 * blocks to be allocated by ext4 and submit them.
f63e6005 2377 */
72f84e65 2378 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2379 /*
af901ca1 2380 * If we have a contiguous extent of pages and we
f63e6005
TT
2381 * haven't done the I/O yet, map the blocks and submit
2382 * them for I/O.
2383 */
2384 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2385 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2386 ret = MPAGE_DA_EXTENT_TAIL;
2387 }
b3a3ca8c 2388 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2389 wbc->nr_to_write -= mpd.pages_written;
df22291f 2390
61628a3f 2391 ext4_journal_stop(handle);
df22291f 2392
8f64b32e 2393 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2394 /* commit the transaction which would
2395 * free blocks released in the transaction
2396 * and try again
2397 */
df22291f 2398 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2399 ret = 0;
2400 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2401 /*
8de49e67
KM
2402 * Got one extent now try with rest of the pages.
2403 * If mpd.retval is set -EIO, journal is aborted.
2404 * So we don't need to write any more.
a1d6cc56 2405 */
22208ded 2406 pages_written += mpd.pages_written;
8de49e67 2407 ret = mpd.retval;
2acf2c26 2408 io_done = 1;
22208ded 2409 } else if (wbc->nr_to_write)
61628a3f
MC
2410 /*
2411 * There is no more writeout needed
2412 * or we requested for a noblocking writeout
2413 * and we found the device congested
2414 */
61628a3f 2415 break;
a1d6cc56 2416 }
1bce63d1 2417 blk_finish_plug(&plug);
2acf2c26
AK
2418 if (!io_done && !cycled) {
2419 cycled = 1;
2420 index = 0;
2421 wbc->range_start = index << PAGE_CACHE_SHIFT;
2422 wbc->range_end = mapping->writeback_index - 1;
2423 goto retry;
2424 }
22208ded
AK
2425
2426 /* Update index */
2acf2c26 2427 wbc->range_cyclic = range_cyclic;
22208ded
AK
2428 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2429 /*
2430 * set the writeback_index so that range_cyclic
2431 * mode will write it back later
2432 */
72f84e65 2433 mapping->writeback_index = done_index;
a1d6cc56 2434
61628a3f 2435out_writepages:
2faf2e19 2436 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2437 wbc->range_start = range_start;
9bffad1e 2438 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2439 return ret;
64769240
AT
2440}
2441
79f0be8d
AK
2442#define FALL_BACK_TO_NONDELALLOC 1
2443static int ext4_nonda_switch(struct super_block *sb)
2444{
2445 s64 free_blocks, dirty_blocks;
2446 struct ext4_sb_info *sbi = EXT4_SB(sb);
2447
2448 /*
2449 * switch to non delalloc mode if we are running low
2450 * on free block. The free block accounting via percpu
179f7ebf 2451 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2452 * accumulated on each CPU without updating global counters
2453 * Delalloc need an accurate free block accounting. So switch
2454 * to non delalloc when we are near to error range.
2455 */
57042651
TT
2456 free_blocks = EXT4_C2B(sbi,
2457 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2458 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2459 /*
2460 * Start pushing delalloc when 1/2 of free blocks are dirty.
2461 */
2462 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2463 !writeback_in_progress(sb->s_bdi) &&
2464 down_read_trylock(&sb->s_umount)) {
2465 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2466 up_read(&sb->s_umount);
2467 }
2468
79f0be8d 2469 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2470 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2471 /*
c8afb446
ES
2472 * free block count is less than 150% of dirty blocks
2473 * or free blocks is less than watermark
79f0be8d
AK
2474 */
2475 return 1;
2476 }
2477 return 0;
2478}
2479
64769240 2480static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2481 loff_t pos, unsigned len, unsigned flags,
2482 struct page **pagep, void **fsdata)
64769240 2483{
72b8ab9d 2484 int ret, retries = 0;
64769240
AT
2485 struct page *page;
2486 pgoff_t index;
64769240
AT
2487 struct inode *inode = mapping->host;
2488 handle_t *handle;
2489
2490 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2491
2492 if (ext4_nonda_switch(inode->i_sb)) {
2493 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2494 return ext4_write_begin(file, mapping, pos,
2495 len, flags, pagep, fsdata);
2496 }
2497 *fsdata = (void *)0;
9bffad1e 2498 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2499retry:
64769240
AT
2500 /*
2501 * With delayed allocation, we don't log the i_disksize update
2502 * if there is delayed block allocation. But we still need
2503 * to journalling the i_disksize update if writes to the end
2504 * of file which has an already mapped buffer.
2505 */
2506 handle = ext4_journal_start(inode, 1);
2507 if (IS_ERR(handle)) {
2508 ret = PTR_ERR(handle);
2509 goto out;
2510 }
ebd3610b
JK
2511 /* We cannot recurse into the filesystem as the transaction is already
2512 * started */
2513 flags |= AOP_FLAG_NOFS;
64769240 2514
54566b2c 2515 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2516 if (!page) {
2517 ext4_journal_stop(handle);
2518 ret = -ENOMEM;
2519 goto out;
2520 }
64769240
AT
2521 *pagep = page;
2522
6e1db88d 2523 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2524 if (ret < 0) {
2525 unlock_page(page);
2526 ext4_journal_stop(handle);
2527 page_cache_release(page);
ae4d5372
AK
2528 /*
2529 * block_write_begin may have instantiated a few blocks
2530 * outside i_size. Trim these off again. Don't need
2531 * i_size_read because we hold i_mutex.
2532 */
2533 if (pos + len > inode->i_size)
b9a4207d 2534 ext4_truncate_failed_write(inode);
64769240
AT
2535 }
2536
d2a17637
MC
2537 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2538 goto retry;
64769240
AT
2539out:
2540 return ret;
2541}
2542
632eaeab
MC
2543/*
2544 * Check if we should update i_disksize
2545 * when write to the end of file but not require block allocation
2546 */
2547static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2548 unsigned long offset)
632eaeab
MC
2549{
2550 struct buffer_head *bh;
2551 struct inode *inode = page->mapping->host;
2552 unsigned int idx;
2553 int i;
2554
2555 bh = page_buffers(page);
2556 idx = offset >> inode->i_blkbits;
2557
af5bc92d 2558 for (i = 0; i < idx; i++)
632eaeab
MC
2559 bh = bh->b_this_page;
2560
29fa89d0 2561 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2562 return 0;
2563 return 1;
2564}
2565
64769240 2566static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2567 struct address_space *mapping,
2568 loff_t pos, unsigned len, unsigned copied,
2569 struct page *page, void *fsdata)
64769240
AT
2570{
2571 struct inode *inode = mapping->host;
2572 int ret = 0, ret2;
2573 handle_t *handle = ext4_journal_current_handle();
2574 loff_t new_i_size;
632eaeab 2575 unsigned long start, end;
79f0be8d
AK
2576 int write_mode = (int)(unsigned long)fsdata;
2577
2578 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2579 switch (ext4_inode_journal_mode(inode)) {
2580 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2581 return ext4_ordered_write_end(file, mapping, pos,
2582 len, copied, page, fsdata);
3d2b1582 2583 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2584 return ext4_writeback_write_end(file, mapping, pos,
2585 len, copied, page, fsdata);
3d2b1582 2586 default:
79f0be8d
AK
2587 BUG();
2588 }
2589 }
632eaeab 2590
9bffad1e 2591 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2592 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2593 end = start + copied - 1;
64769240
AT
2594
2595 /*
2596 * generic_write_end() will run mark_inode_dirty() if i_size
2597 * changes. So let's piggyback the i_disksize mark_inode_dirty
2598 * into that.
2599 */
2600
2601 new_i_size = pos + copied;
ea51d132 2602 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2603 if (ext4_da_should_update_i_disksize(page, end)) {
2604 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2605 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2606 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2607 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2608 /* We need to mark inode dirty even if
2609 * new_i_size is less that inode->i_size
2610 * bu greater than i_disksize.(hint delalloc)
2611 */
2612 ext4_mark_inode_dirty(handle, inode);
64769240 2613 }
632eaeab 2614 }
64769240
AT
2615 ret2 = generic_write_end(file, mapping, pos, len, copied,
2616 page, fsdata);
2617 copied = ret2;
2618 if (ret2 < 0)
2619 ret = ret2;
2620 ret2 = ext4_journal_stop(handle);
2621 if (!ret)
2622 ret = ret2;
2623
2624 return ret ? ret : copied;
2625}
2626
2627static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2628{
64769240
AT
2629 /*
2630 * Drop reserved blocks
2631 */
2632 BUG_ON(!PageLocked(page));
2633 if (!page_has_buffers(page))
2634 goto out;
2635
d2a17637 2636 ext4_da_page_release_reservation(page, offset);
64769240
AT
2637
2638out:
2639 ext4_invalidatepage(page, offset);
2640
2641 return;
2642}
2643
ccd2506b
TT
2644/*
2645 * Force all delayed allocation blocks to be allocated for a given inode.
2646 */
2647int ext4_alloc_da_blocks(struct inode *inode)
2648{
fb40ba0d
TT
2649 trace_ext4_alloc_da_blocks(inode);
2650
ccd2506b
TT
2651 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2652 !EXT4_I(inode)->i_reserved_meta_blocks)
2653 return 0;
2654
2655 /*
2656 * We do something simple for now. The filemap_flush() will
2657 * also start triggering a write of the data blocks, which is
2658 * not strictly speaking necessary (and for users of
2659 * laptop_mode, not even desirable). However, to do otherwise
2660 * would require replicating code paths in:
de9a55b8 2661 *
ccd2506b
TT
2662 * ext4_da_writepages() ->
2663 * write_cache_pages() ---> (via passed in callback function)
2664 * __mpage_da_writepage() -->
2665 * mpage_add_bh_to_extent()
2666 * mpage_da_map_blocks()
2667 *
2668 * The problem is that write_cache_pages(), located in
2669 * mm/page-writeback.c, marks pages clean in preparation for
2670 * doing I/O, which is not desirable if we're not planning on
2671 * doing I/O at all.
2672 *
2673 * We could call write_cache_pages(), and then redirty all of
380cf090 2674 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2675 * would be ugly in the extreme. So instead we would need to
2676 * replicate parts of the code in the above functions,
25985edc 2677 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2678 * write out the pages, but rather only collect contiguous
2679 * logical block extents, call the multi-block allocator, and
2680 * then update the buffer heads with the block allocations.
de9a55b8 2681 *
ccd2506b
TT
2682 * For now, though, we'll cheat by calling filemap_flush(),
2683 * which will map the blocks, and start the I/O, but not
2684 * actually wait for the I/O to complete.
2685 */
2686 return filemap_flush(inode->i_mapping);
2687}
64769240 2688
ac27a0ec
DK
2689/*
2690 * bmap() is special. It gets used by applications such as lilo and by
2691 * the swapper to find the on-disk block of a specific piece of data.
2692 *
2693 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2694 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2695 * filesystem and enables swap, then they may get a nasty shock when the
2696 * data getting swapped to that swapfile suddenly gets overwritten by
2697 * the original zero's written out previously to the journal and
2698 * awaiting writeback in the kernel's buffer cache.
2699 *
2700 * So, if we see any bmap calls here on a modified, data-journaled file,
2701 * take extra steps to flush any blocks which might be in the cache.
2702 */
617ba13b 2703static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2704{
2705 struct inode *inode = mapping->host;
2706 journal_t *journal;
2707 int err;
2708
46c7f254
TM
2709 /*
2710 * We can get here for an inline file via the FIBMAP ioctl
2711 */
2712 if (ext4_has_inline_data(inode))
2713 return 0;
2714
64769240
AT
2715 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2716 test_opt(inode->i_sb, DELALLOC)) {
2717 /*
2718 * With delalloc we want to sync the file
2719 * so that we can make sure we allocate
2720 * blocks for file
2721 */
2722 filemap_write_and_wait(mapping);
2723 }
2724
19f5fb7a
TT
2725 if (EXT4_JOURNAL(inode) &&
2726 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2727 /*
2728 * This is a REALLY heavyweight approach, but the use of
2729 * bmap on dirty files is expected to be extremely rare:
2730 * only if we run lilo or swapon on a freshly made file
2731 * do we expect this to happen.
2732 *
2733 * (bmap requires CAP_SYS_RAWIO so this does not
2734 * represent an unprivileged user DOS attack --- we'd be
2735 * in trouble if mortal users could trigger this path at
2736 * will.)
2737 *
617ba13b 2738 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2739 * regular files. If somebody wants to bmap a directory
2740 * or symlink and gets confused because the buffer
2741 * hasn't yet been flushed to disk, they deserve
2742 * everything they get.
2743 */
2744
19f5fb7a 2745 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2746 journal = EXT4_JOURNAL(inode);
dab291af
MC
2747 jbd2_journal_lock_updates(journal);
2748 err = jbd2_journal_flush(journal);
2749 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2750
2751 if (err)
2752 return 0;
2753 }
2754
af5bc92d 2755 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2756}
2757
617ba13b 2758static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2759{
46c7f254
TM
2760 int ret = -EAGAIN;
2761 struct inode *inode = page->mapping->host;
2762
0562e0ba 2763 trace_ext4_readpage(page);
46c7f254
TM
2764
2765 if (ext4_has_inline_data(inode))
2766 ret = ext4_readpage_inline(inode, page);
2767
2768 if (ret == -EAGAIN)
2769 return mpage_readpage(page, ext4_get_block);
2770
2771 return ret;
ac27a0ec
DK
2772}
2773
2774static int
617ba13b 2775ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2776 struct list_head *pages, unsigned nr_pages)
2777{
46c7f254
TM
2778 struct inode *inode = mapping->host;
2779
2780 /* If the file has inline data, no need to do readpages. */
2781 if (ext4_has_inline_data(inode))
2782 return 0;
2783
617ba13b 2784 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2785}
2786
744692dc
JZ
2787static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2788{
2789 struct buffer_head *head, *bh;
2790 unsigned int curr_off = 0;
2791
2792 if (!page_has_buffers(page))
2793 return;
2794 head = bh = page_buffers(page);
2795 do {
2796 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2797 && bh->b_private) {
2798 ext4_free_io_end(bh->b_private);
2799 bh->b_private = NULL;
2800 bh->b_end_io = NULL;
2801 }
2802 curr_off = curr_off + bh->b_size;
2803 bh = bh->b_this_page;
2804 } while (bh != head);
2805}
2806
617ba13b 2807static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2808{
617ba13b 2809 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2810
0562e0ba
JZ
2811 trace_ext4_invalidatepage(page, offset);
2812
744692dc
JZ
2813 /*
2814 * free any io_end structure allocated for buffers to be discarded
2815 */
2816 if (ext4_should_dioread_nolock(page->mapping->host))
2817 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2818 /*
2819 * If it's a full truncate we just forget about the pending dirtying
2820 */
2821 if (offset == 0)
2822 ClearPageChecked(page);
2823
0390131b
FM
2824 if (journal)
2825 jbd2_journal_invalidatepage(journal, page, offset);
2826 else
2827 block_invalidatepage(page, offset);
ac27a0ec
DK
2828}
2829
617ba13b 2830static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2831{
617ba13b 2832 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2833
0562e0ba
JZ
2834 trace_ext4_releasepage(page);
2835
ac27a0ec
DK
2836 WARN_ON(PageChecked(page));
2837 if (!page_has_buffers(page))
2838 return 0;
0390131b
FM
2839 if (journal)
2840 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2841 else
2842 return try_to_free_buffers(page);
ac27a0ec
DK
2843}
2844
2ed88685
TT
2845/*
2846 * ext4_get_block used when preparing for a DIO write or buffer write.
2847 * We allocate an uinitialized extent if blocks haven't been allocated.
2848 * The extent will be converted to initialized after the IO is complete.
2849 */
f19d5870 2850int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2851 struct buffer_head *bh_result, int create)
2852{
c7064ef1 2853 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2854 inode->i_ino, create);
2ed88685
TT
2855 return _ext4_get_block(inode, iblock, bh_result,
2856 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2857}
2858
729f52c6 2859static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2860 struct buffer_head *bh_result, int create)
729f52c6 2861{
8b0f165f
AP
2862 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2863 inode->i_ino, create);
2864 return _ext4_get_block(inode, iblock, bh_result,
2865 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2866}
2867
4c0425ff 2868static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2869 ssize_t size, void *private, int ret,
2870 bool is_async)
4c0425ff 2871{
72c5052d 2872 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff 2873 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2874
4b70df18
M
2875 /* if not async direct IO or dio with 0 bytes write, just return */
2876 if (!io_end || !size)
552ef802 2877 goto out;
4b70df18 2878
88635ca2 2879 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 2880 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
2881 iocb->private, io_end->inode->i_ino, iocb, offset,
2882 size);
8d5d02e6 2883
b5a7e970
TT
2884 iocb->private = NULL;
2885
8d5d02e6 2886 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2887 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2888 ext4_free_io_end(io_end);
5b3ff237
JZ
2889out:
2890 if (is_async)
2891 aio_complete(iocb, ret, 0);
72c5052d 2892 inode_dio_done(inode);
5b3ff237 2893 return;
8d5d02e6
MC
2894 }
2895
4c0425ff
MC
2896 io_end->offset = offset;
2897 io_end->size = size;
5b3ff237
JZ
2898 if (is_async) {
2899 io_end->iocb = iocb;
2900 io_end->result = ret;
2901 }
4c0425ff 2902
28a535f9 2903 ext4_add_complete_io(io_end);
4c0425ff 2904}
c7064ef1 2905
744692dc
JZ
2906static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2907{
2908 ext4_io_end_t *io_end = bh->b_private;
744692dc 2909 struct inode *inode;
744692dc
JZ
2910
2911 if (!test_clear_buffer_uninit(bh) || !io_end)
2912 goto out;
2913
2914 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
92b97816
TT
2915 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2916 "sb umounted, discard end_io request for inode %lu",
2917 io_end->inode->i_ino);
744692dc
JZ
2918 ext4_free_io_end(io_end);
2919 goto out;
2920 }
2921
32c80b32
TM
2922 /*
2923 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2924 * but being more careful is always safe for the future change.
2925 */
744692dc 2926 inode = io_end->inode;
0edeb71d 2927 ext4_set_io_unwritten_flag(inode, io_end);
28a535f9 2928 ext4_add_complete_io(io_end);
744692dc
JZ
2929out:
2930 bh->b_private = NULL;
2931 bh->b_end_io = NULL;
2932 clear_buffer_uninit(bh);
2933 end_buffer_async_write(bh, uptodate);
2934}
2935
2936static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2937{
2938 ext4_io_end_t *io_end;
2939 struct page *page = bh->b_page;
2940 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2941 size_t size = bh->b_size;
2942
2943retry:
2944 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2945 if (!io_end) {
6db26ffc 2946 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2947 schedule();
2948 goto retry;
2949 }
2950 io_end->offset = offset;
2951 io_end->size = size;
2952 /*
2953 * We need to hold a reference to the page to make sure it
2954 * doesn't get evicted before ext4_end_io_work() has a chance
2955 * to convert the extent from written to unwritten.
2956 */
2957 io_end->page = page;
2958 get_page(io_end->page);
2959
2960 bh->b_private = io_end;
2961 bh->b_end_io = ext4_end_io_buffer_write;
2962 return 0;
2963}
2964
4c0425ff
MC
2965/*
2966 * For ext4 extent files, ext4 will do direct-io write to holes,
2967 * preallocated extents, and those write extend the file, no need to
2968 * fall back to buffered IO.
2969 *
b595076a 2970 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 2971 * If those blocks were preallocated, we mark sure they are split, but
b595076a 2972 * still keep the range to write as uninitialized.
4c0425ff 2973 *
69c499d1 2974 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 2975 * For async direct IO, since the IO may still pending when return, we
25985edc 2976 * set up an end_io call back function, which will do the conversion
8d5d02e6 2977 * when async direct IO completed.
4c0425ff
MC
2978 *
2979 * If the O_DIRECT write will extend the file then add this inode to the
2980 * orphan list. So recovery will truncate it back to the original size
2981 * if the machine crashes during the write.
2982 *
2983 */
2984static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2985 const struct iovec *iov, loff_t offset,
2986 unsigned long nr_segs)
2987{
2988 struct file *file = iocb->ki_filp;
2989 struct inode *inode = file->f_mapping->host;
2990 ssize_t ret;
2991 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
2992 int overwrite = 0;
2993 get_block_t *get_block_func = NULL;
2994 int dio_flags = 0;
4c0425ff 2995 loff_t final_size = offset + count;
729f52c6 2996
69c499d1
TT
2997 /* Use the old path for reads and writes beyond i_size. */
2998 if (rw != WRITE || final_size > inode->i_size)
2999 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3000
69c499d1 3001 BUG_ON(iocb->private == NULL);
4bd809db 3002
69c499d1
TT
3003 /* If we do a overwrite dio, i_mutex locking can be released */
3004 overwrite = *((int *)iocb->private);
4bd809db 3005
69c499d1
TT
3006 if (overwrite) {
3007 atomic_inc(&inode->i_dio_count);
3008 down_read(&EXT4_I(inode)->i_data_sem);
3009 mutex_unlock(&inode->i_mutex);
3010 }
8d5d02e6 3011
69c499d1
TT
3012 /*
3013 * We could direct write to holes and fallocate.
3014 *
3015 * Allocated blocks to fill the hole are marked as
3016 * uninitialized to prevent parallel buffered read to expose
3017 * the stale data before DIO complete the data IO.
3018 *
3019 * As to previously fallocated extents, ext4 get_block will
3020 * just simply mark the buffer mapped but still keep the
3021 * extents uninitialized.
3022 *
3023 * For non AIO case, we will convert those unwritten extents
3024 * to written after return back from blockdev_direct_IO.
3025 *
3026 * For async DIO, the conversion needs to be deferred when the
3027 * IO is completed. The ext4 end_io callback function will be
3028 * called to take care of the conversion work. Here for async
3029 * case, we allocate an io_end structure to hook to the iocb.
3030 */
3031 iocb->private = NULL;
3032 ext4_inode_aio_set(inode, NULL);
3033 if (!is_sync_kiocb(iocb)) {
3034 ext4_io_end_t *io_end = ext4_init_io_end(inode, GFP_NOFS);
3035 if (!io_end) {
3036 ret = -ENOMEM;
3037 goto retake_lock;
8b0f165f 3038 }
69c499d1
TT
3039 io_end->flag |= EXT4_IO_END_DIRECT;
3040 iocb->private = io_end;
8d5d02e6 3041 /*
69c499d1
TT
3042 * we save the io structure for current async direct
3043 * IO, so that later ext4_map_blocks() could flag the
3044 * io structure whether there is a unwritten extents
3045 * needs to be converted when IO is completed.
8d5d02e6 3046 */
69c499d1
TT
3047 ext4_inode_aio_set(inode, io_end);
3048 }
4bd809db 3049
69c499d1
TT
3050 if (overwrite) {
3051 get_block_func = ext4_get_block_write_nolock;
3052 } else {
3053 get_block_func = ext4_get_block_write;
3054 dio_flags = DIO_LOCKING;
3055 }
3056 ret = __blockdev_direct_IO(rw, iocb, inode,
3057 inode->i_sb->s_bdev, iov,
3058 offset, nr_segs,
3059 get_block_func,
3060 ext4_end_io_dio,
3061 NULL,
3062 dio_flags);
3063
3064 if (iocb->private)
3065 ext4_inode_aio_set(inode, NULL);
3066 /*
3067 * The io_end structure takes a reference to the inode, that
3068 * structure needs to be destroyed and the reference to the
3069 * inode need to be dropped, when IO is complete, even with 0
3070 * byte write, or failed.
3071 *
3072 * In the successful AIO DIO case, the io_end structure will
3073 * be destroyed and the reference to the inode will be dropped
3074 * after the end_io call back function is called.
3075 *
3076 * In the case there is 0 byte write, or error case, since VFS
3077 * direct IO won't invoke the end_io call back function, we
3078 * need to free the end_io structure here.
3079 */
3080 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3081 ext4_free_io_end(iocb->private);
3082 iocb->private = NULL;
3083 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3084 EXT4_STATE_DIO_UNWRITTEN)) {
3085 int err;
3086 /*
3087 * for non AIO case, since the IO is already
3088 * completed, we could do the conversion right here
3089 */
3090 err = ext4_convert_unwritten_extents(inode,
3091 offset, ret);
3092 if (err < 0)
3093 ret = err;
3094 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3095 }
4bd809db 3096
69c499d1
TT
3097retake_lock:
3098 /* take i_mutex locking again if we do a ovewrite dio */
3099 if (overwrite) {
3100 inode_dio_done(inode);
3101 up_read(&EXT4_I(inode)->i_data_sem);
3102 mutex_lock(&inode->i_mutex);
4c0425ff 3103 }
8d5d02e6 3104
69c499d1 3105 return ret;
4c0425ff
MC
3106}
3107
3108static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3109 const struct iovec *iov, loff_t offset,
3110 unsigned long nr_segs)
3111{
3112 struct file *file = iocb->ki_filp;
3113 struct inode *inode = file->f_mapping->host;
0562e0ba 3114 ssize_t ret;
4c0425ff 3115
84ebd795
TT
3116 /*
3117 * If we are doing data journalling we don't support O_DIRECT
3118 */
3119 if (ext4_should_journal_data(inode))
3120 return 0;
3121
46c7f254
TM
3122 /* Let buffer I/O handle the inline data case. */
3123 if (ext4_has_inline_data(inode))
3124 return 0;
3125
0562e0ba 3126 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3127 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3128 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3129 else
3130 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3131 trace_ext4_direct_IO_exit(inode, offset,
3132 iov_length(iov, nr_segs), rw, ret);
3133 return ret;
4c0425ff
MC
3134}
3135
ac27a0ec 3136/*
617ba13b 3137 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3138 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3139 * much here because ->set_page_dirty is called under VFS locks. The page is
3140 * not necessarily locked.
3141 *
3142 * We cannot just dirty the page and leave attached buffers clean, because the
3143 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3144 * or jbddirty because all the journalling code will explode.
3145 *
3146 * So what we do is to mark the page "pending dirty" and next time writepage
3147 * is called, propagate that into the buffers appropriately.
3148 */
617ba13b 3149static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3150{
3151 SetPageChecked(page);
3152 return __set_page_dirty_nobuffers(page);
3153}
3154
617ba13b 3155static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3156 .readpage = ext4_readpage,
3157 .readpages = ext4_readpages,
43ce1d23 3158 .writepage = ext4_writepage,
8ab22b9a
HH
3159 .write_begin = ext4_write_begin,
3160 .write_end = ext4_ordered_write_end,
3161 .bmap = ext4_bmap,
3162 .invalidatepage = ext4_invalidatepage,
3163 .releasepage = ext4_releasepage,
3164 .direct_IO = ext4_direct_IO,
3165 .migratepage = buffer_migrate_page,
3166 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3167 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3168};
3169
617ba13b 3170static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3171 .readpage = ext4_readpage,
3172 .readpages = ext4_readpages,
43ce1d23 3173 .writepage = ext4_writepage,
8ab22b9a
HH
3174 .write_begin = ext4_write_begin,
3175 .write_end = ext4_writeback_write_end,
3176 .bmap = ext4_bmap,
3177 .invalidatepage = ext4_invalidatepage,
3178 .releasepage = ext4_releasepage,
3179 .direct_IO = ext4_direct_IO,
3180 .migratepage = buffer_migrate_page,
3181 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3182 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3183};
3184
617ba13b 3185static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3186 .readpage = ext4_readpage,
3187 .readpages = ext4_readpages,
43ce1d23 3188 .writepage = ext4_writepage,
8ab22b9a
HH
3189 .write_begin = ext4_write_begin,
3190 .write_end = ext4_journalled_write_end,
3191 .set_page_dirty = ext4_journalled_set_page_dirty,
3192 .bmap = ext4_bmap,
3193 .invalidatepage = ext4_invalidatepage,
3194 .releasepage = ext4_releasepage,
84ebd795 3195 .direct_IO = ext4_direct_IO,
8ab22b9a 3196 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3197 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3198};
3199
64769240 3200static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3201 .readpage = ext4_readpage,
3202 .readpages = ext4_readpages,
43ce1d23 3203 .writepage = ext4_writepage,
8ab22b9a 3204 .writepages = ext4_da_writepages,
8ab22b9a
HH
3205 .write_begin = ext4_da_write_begin,
3206 .write_end = ext4_da_write_end,
3207 .bmap = ext4_bmap,
3208 .invalidatepage = ext4_da_invalidatepage,
3209 .releasepage = ext4_releasepage,
3210 .direct_IO = ext4_direct_IO,
3211 .migratepage = buffer_migrate_page,
3212 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3213 .error_remove_page = generic_error_remove_page,
64769240
AT
3214};
3215
617ba13b 3216void ext4_set_aops(struct inode *inode)
ac27a0ec 3217{
3d2b1582
LC
3218 switch (ext4_inode_journal_mode(inode)) {
3219 case EXT4_INODE_ORDERED_DATA_MODE:
3220 if (test_opt(inode->i_sb, DELALLOC))
3221 inode->i_mapping->a_ops = &ext4_da_aops;
3222 else
3223 inode->i_mapping->a_ops = &ext4_ordered_aops;
3224 break;
3225 case EXT4_INODE_WRITEBACK_DATA_MODE:
3226 if (test_opt(inode->i_sb, DELALLOC))
3227 inode->i_mapping->a_ops = &ext4_da_aops;
3228 else
3229 inode->i_mapping->a_ops = &ext4_writeback_aops;
3230 break;
3231 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3232 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3233 break;
3234 default:
3235 BUG();
3236 }
ac27a0ec
DK
3237}
3238
4e96b2db
AH
3239
3240/*
3241 * ext4_discard_partial_page_buffers()
3242 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3243 * This function finds and locks the page containing the offset
3244 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3245 * Calling functions that already have the page locked should call
3246 * ext4_discard_partial_page_buffers_no_lock directly.
3247 */
3248int ext4_discard_partial_page_buffers(handle_t *handle,
3249 struct address_space *mapping, loff_t from,
3250 loff_t length, int flags)
3251{
3252 struct inode *inode = mapping->host;
3253 struct page *page;
3254 int err = 0;
3255
3256 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3257 mapping_gfp_mask(mapping) & ~__GFP_FS);
3258 if (!page)
5129d05f 3259 return -ENOMEM;
4e96b2db
AH
3260
3261 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3262 from, length, flags);
3263
3264 unlock_page(page);
3265 page_cache_release(page);
3266 return err;
3267}
3268
3269/*
3270 * ext4_discard_partial_page_buffers_no_lock()
3271 * Zeros a page range of length 'length' starting from offset 'from'.
3272 * Buffer heads that correspond to the block aligned regions of the
3273 * zeroed range will be unmapped. Unblock aligned regions
3274 * will have the corresponding buffer head mapped if needed so that
3275 * that region of the page can be updated with the partial zero out.
3276 *
3277 * This function assumes that the page has already been locked. The
3278 * The range to be discarded must be contained with in the given page.
3279 * If the specified range exceeds the end of the page it will be shortened
3280 * to the end of the page that corresponds to 'from'. This function is
3281 * appropriate for updating a page and it buffer heads to be unmapped and
3282 * zeroed for blocks that have been either released, or are going to be
3283 * released.
3284 *
3285 * handle: The journal handle
3286 * inode: The files inode
3287 * page: A locked page that contains the offset "from"
4907cb7b 3288 * from: The starting byte offset (from the beginning of the file)
4e96b2db
AH
3289 * to begin discarding
3290 * len: The length of bytes to discard
3291 * flags: Optional flags that may be used:
3292 *
3293 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3294 * Only zero the regions of the page whose buffer heads
3295 * have already been unmapped. This flag is appropriate
4907cb7b 3296 * for updating the contents of a page whose blocks may
4e96b2db
AH
3297 * have already been released, and we only want to zero
3298 * out the regions that correspond to those released blocks.
3299 *
4907cb7b 3300 * Returns zero on success or negative on failure.
4e96b2db 3301 */
5f163cc7 3302static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3303 struct inode *inode, struct page *page, loff_t from,
3304 loff_t length, int flags)
3305{
3306 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3307 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3308 unsigned int blocksize, max, pos;
4e96b2db
AH
3309 ext4_lblk_t iblock;
3310 struct buffer_head *bh;
3311 int err = 0;
3312
3313 blocksize = inode->i_sb->s_blocksize;
3314 max = PAGE_CACHE_SIZE - offset;
3315
3316 if (index != page->index)
3317 return -EINVAL;
3318
3319 /*
3320 * correct length if it does not fall between
3321 * 'from' and the end of the page
3322 */
3323 if (length > max || length < 0)
3324 length = max;
3325
3326 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3327
093e6e36
YY
3328 if (!page_has_buffers(page))
3329 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3330
3331 /* Find the buffer that contains "offset" */
3332 bh = page_buffers(page);
3333 pos = blocksize;
3334 while (offset >= pos) {
3335 bh = bh->b_this_page;
3336 iblock++;
3337 pos += blocksize;
3338 }
3339
3340 pos = offset;
3341 while (pos < offset + length) {
e260daf2
YY
3342 unsigned int end_of_block, range_to_discard;
3343
4e96b2db
AH
3344 err = 0;
3345
3346 /* The length of space left to zero and unmap */
3347 range_to_discard = offset + length - pos;
3348
3349 /* The length of space until the end of the block */
3350 end_of_block = blocksize - (pos & (blocksize-1));
3351
3352 /*
3353 * Do not unmap or zero past end of block
3354 * for this buffer head
3355 */
3356 if (range_to_discard > end_of_block)
3357 range_to_discard = end_of_block;
3358
3359
3360 /*
3361 * Skip this buffer head if we are only zeroing unampped
3362 * regions of the page
3363 */
3364 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3365 buffer_mapped(bh))
3366 goto next;
3367
3368 /* If the range is block aligned, unmap */
3369 if (range_to_discard == blocksize) {
3370 clear_buffer_dirty(bh);
3371 bh->b_bdev = NULL;
3372 clear_buffer_mapped(bh);
3373 clear_buffer_req(bh);
3374 clear_buffer_new(bh);
3375 clear_buffer_delay(bh);
3376 clear_buffer_unwritten(bh);
3377 clear_buffer_uptodate(bh);
3378 zero_user(page, pos, range_to_discard);
3379 BUFFER_TRACE(bh, "Buffer discarded");
3380 goto next;
3381 }
3382
3383 /*
3384 * If this block is not completely contained in the range
3385 * to be discarded, then it is not going to be released. Because
3386 * we need to keep this block, we need to make sure this part
3387 * of the page is uptodate before we modify it by writeing
3388 * partial zeros on it.
3389 */
3390 if (!buffer_mapped(bh)) {
3391 /*
3392 * Buffer head must be mapped before we can read
3393 * from the block
3394 */
3395 BUFFER_TRACE(bh, "unmapped");
3396 ext4_get_block(inode, iblock, bh, 0);
3397 /* unmapped? It's a hole - nothing to do */
3398 if (!buffer_mapped(bh)) {
3399 BUFFER_TRACE(bh, "still unmapped");
3400 goto next;
3401 }
3402 }
3403
3404 /* Ok, it's mapped. Make sure it's up-to-date */
3405 if (PageUptodate(page))
3406 set_buffer_uptodate(bh);
3407
3408 if (!buffer_uptodate(bh)) {
3409 err = -EIO;
3410 ll_rw_block(READ, 1, &bh);
3411 wait_on_buffer(bh);
3412 /* Uhhuh. Read error. Complain and punt.*/
3413 if (!buffer_uptodate(bh))
3414 goto next;
3415 }
3416
3417 if (ext4_should_journal_data(inode)) {
3418 BUFFER_TRACE(bh, "get write access");
3419 err = ext4_journal_get_write_access(handle, bh);
3420 if (err)
3421 goto next;
3422 }
3423
3424 zero_user(page, pos, range_to_discard);
3425
3426 err = 0;
3427 if (ext4_should_journal_data(inode)) {
3428 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3429 } else
4e96b2db 3430 mark_buffer_dirty(bh);
4e96b2db
AH
3431
3432 BUFFER_TRACE(bh, "Partial buffer zeroed");
3433next:
3434 bh = bh->b_this_page;
3435 iblock++;
3436 pos += range_to_discard;
3437 }
3438
3439 return err;
3440}
3441
91ef4caf
DG
3442int ext4_can_truncate(struct inode *inode)
3443{
91ef4caf
DG
3444 if (S_ISREG(inode->i_mode))
3445 return 1;
3446 if (S_ISDIR(inode->i_mode))
3447 return 1;
3448 if (S_ISLNK(inode->i_mode))
3449 return !ext4_inode_is_fast_symlink(inode);
3450 return 0;
3451}
3452
a4bb6b64
AH
3453/*
3454 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3455 * associated with the given offset and length
3456 *
3457 * @inode: File inode
3458 * @offset: The offset where the hole will begin
3459 * @len: The length of the hole
3460 *
4907cb7b 3461 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3462 */
3463
3464int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3465{
3466 struct inode *inode = file->f_path.dentry->d_inode;
3467 if (!S_ISREG(inode->i_mode))
73355192 3468 return -EOPNOTSUPP;
a4bb6b64
AH
3469
3470 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3471 /* TODO: Add support for non extent hole punching */
73355192 3472 return -EOPNOTSUPP;
a4bb6b64
AH
3473 }
3474
bab08ab9
TT
3475 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3476 /* TODO: Add support for bigalloc file systems */
73355192 3477 return -EOPNOTSUPP;
bab08ab9
TT
3478 }
3479
a4bb6b64
AH
3480 return ext4_ext_punch_hole(file, offset, length);
3481}
3482
ac27a0ec 3483/*
617ba13b 3484 * ext4_truncate()
ac27a0ec 3485 *
617ba13b
MC
3486 * We block out ext4_get_block() block instantiations across the entire
3487 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3488 * simultaneously on behalf of the same inode.
3489 *
42b2aa86 3490 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3491 * is one core, guiding principle: the file's tree must always be consistent on
3492 * disk. We must be able to restart the truncate after a crash.
3493 *
3494 * The file's tree may be transiently inconsistent in memory (although it
3495 * probably isn't), but whenever we close off and commit a journal transaction,
3496 * the contents of (the filesystem + the journal) must be consistent and
3497 * restartable. It's pretty simple, really: bottom up, right to left (although
3498 * left-to-right works OK too).
3499 *
3500 * Note that at recovery time, journal replay occurs *before* the restart of
3501 * truncate against the orphan inode list.
3502 *
3503 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3504 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3505 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3506 * ext4_truncate() to have another go. So there will be instantiated blocks
3507 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3508 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3509 * ext4_truncate() run will find them and release them.
ac27a0ec 3510 */
617ba13b 3511void ext4_truncate(struct inode *inode)
ac27a0ec 3512{
0562e0ba
JZ
3513 trace_ext4_truncate_enter(inode);
3514
91ef4caf 3515 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3516 return;
3517
12e9b892 3518 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3519
5534fb5b 3520 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3521 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3522
ff9893dc 3523 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3524 ext4_ext_truncate(inode);
ff9893dc
AG
3525 else
3526 ext4_ind_truncate(inode);
ac27a0ec 3527
0562e0ba 3528 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3529}
3530
ac27a0ec 3531/*
617ba13b 3532 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3533 * underlying buffer_head on success. If 'in_mem' is true, we have all
3534 * data in memory that is needed to recreate the on-disk version of this
3535 * inode.
3536 */
617ba13b
MC
3537static int __ext4_get_inode_loc(struct inode *inode,
3538 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3539{
240799cd
TT
3540 struct ext4_group_desc *gdp;
3541 struct buffer_head *bh;
3542 struct super_block *sb = inode->i_sb;
3543 ext4_fsblk_t block;
3544 int inodes_per_block, inode_offset;
3545
3a06d778 3546 iloc->bh = NULL;
240799cd
TT
3547 if (!ext4_valid_inum(sb, inode->i_ino))
3548 return -EIO;
ac27a0ec 3549
240799cd
TT
3550 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3551 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3552 if (!gdp)
ac27a0ec
DK
3553 return -EIO;
3554
240799cd
TT
3555 /*
3556 * Figure out the offset within the block group inode table
3557 */
00d09882 3558 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3559 inode_offset = ((inode->i_ino - 1) %
3560 EXT4_INODES_PER_GROUP(sb));
3561 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3562 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3563
3564 bh = sb_getblk(sb, block);
ac27a0ec 3565 if (!bh) {
c398eda0
TT
3566 EXT4_ERROR_INODE_BLOCK(inode, block,
3567 "unable to read itable block");
ac27a0ec
DK
3568 return -EIO;
3569 }
3570 if (!buffer_uptodate(bh)) {
3571 lock_buffer(bh);
9c83a923
HK
3572
3573 /*
3574 * If the buffer has the write error flag, we have failed
3575 * to write out another inode in the same block. In this
3576 * case, we don't have to read the block because we may
3577 * read the old inode data successfully.
3578 */
3579 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3580 set_buffer_uptodate(bh);
3581
ac27a0ec
DK
3582 if (buffer_uptodate(bh)) {
3583 /* someone brought it uptodate while we waited */
3584 unlock_buffer(bh);
3585 goto has_buffer;
3586 }
3587
3588 /*
3589 * If we have all information of the inode in memory and this
3590 * is the only valid inode in the block, we need not read the
3591 * block.
3592 */
3593 if (in_mem) {
3594 struct buffer_head *bitmap_bh;
240799cd 3595 int i, start;
ac27a0ec 3596
240799cd 3597 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3598
240799cd
TT
3599 /* Is the inode bitmap in cache? */
3600 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3601 if (!bitmap_bh)
3602 goto make_io;
3603
3604 /*
3605 * If the inode bitmap isn't in cache then the
3606 * optimisation may end up performing two reads instead
3607 * of one, so skip it.
3608 */
3609 if (!buffer_uptodate(bitmap_bh)) {
3610 brelse(bitmap_bh);
3611 goto make_io;
3612 }
240799cd 3613 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3614 if (i == inode_offset)
3615 continue;
617ba13b 3616 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3617 break;
3618 }
3619 brelse(bitmap_bh);
240799cd 3620 if (i == start + inodes_per_block) {
ac27a0ec
DK
3621 /* all other inodes are free, so skip I/O */
3622 memset(bh->b_data, 0, bh->b_size);
3623 set_buffer_uptodate(bh);
3624 unlock_buffer(bh);
3625 goto has_buffer;
3626 }
3627 }
3628
3629make_io:
240799cd
TT
3630 /*
3631 * If we need to do any I/O, try to pre-readahead extra
3632 * blocks from the inode table.
3633 */
3634 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3635 ext4_fsblk_t b, end, table;
3636 unsigned num;
3637
3638 table = ext4_inode_table(sb, gdp);
b713a5ec 3639 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3640 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3641 if (table > b)
3642 b = table;
3643 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3644 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3645 if (ext4_has_group_desc_csum(sb))
560671a0 3646 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3647 table += num / inodes_per_block;
3648 if (end > table)
3649 end = table;
3650 while (b <= end)
3651 sb_breadahead(sb, b++);
3652 }
3653
ac27a0ec
DK
3654 /*
3655 * There are other valid inodes in the buffer, this inode
3656 * has in-inode xattrs, or we don't have this inode in memory.
3657 * Read the block from disk.
3658 */
0562e0ba 3659 trace_ext4_load_inode(inode);
ac27a0ec
DK
3660 get_bh(bh);
3661 bh->b_end_io = end_buffer_read_sync;
65299a3b 3662 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3663 wait_on_buffer(bh);
3664 if (!buffer_uptodate(bh)) {
c398eda0
TT
3665 EXT4_ERROR_INODE_BLOCK(inode, block,
3666 "unable to read itable block");
ac27a0ec
DK
3667 brelse(bh);
3668 return -EIO;
3669 }
3670 }
3671has_buffer:
3672 iloc->bh = bh;
3673 return 0;
3674}
3675
617ba13b 3676int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3677{
3678 /* We have all inode data except xattrs in memory here. */
617ba13b 3679 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3680 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3681}
3682
617ba13b 3683void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3684{
617ba13b 3685 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3686
3687 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3688 if (flags & EXT4_SYNC_FL)
ac27a0ec 3689 inode->i_flags |= S_SYNC;
617ba13b 3690 if (flags & EXT4_APPEND_FL)
ac27a0ec 3691 inode->i_flags |= S_APPEND;
617ba13b 3692 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3693 inode->i_flags |= S_IMMUTABLE;
617ba13b 3694 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3695 inode->i_flags |= S_NOATIME;
617ba13b 3696 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3697 inode->i_flags |= S_DIRSYNC;
3698}
3699
ff9ddf7e
JK
3700/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3701void ext4_get_inode_flags(struct ext4_inode_info *ei)
3702{
84a8dce2
DM
3703 unsigned int vfs_fl;
3704 unsigned long old_fl, new_fl;
3705
3706 do {
3707 vfs_fl = ei->vfs_inode.i_flags;
3708 old_fl = ei->i_flags;
3709 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3710 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3711 EXT4_DIRSYNC_FL);
3712 if (vfs_fl & S_SYNC)
3713 new_fl |= EXT4_SYNC_FL;
3714 if (vfs_fl & S_APPEND)
3715 new_fl |= EXT4_APPEND_FL;
3716 if (vfs_fl & S_IMMUTABLE)
3717 new_fl |= EXT4_IMMUTABLE_FL;
3718 if (vfs_fl & S_NOATIME)
3719 new_fl |= EXT4_NOATIME_FL;
3720 if (vfs_fl & S_DIRSYNC)
3721 new_fl |= EXT4_DIRSYNC_FL;
3722 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3723}
de9a55b8 3724
0fc1b451 3725static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3726 struct ext4_inode_info *ei)
0fc1b451
AK
3727{
3728 blkcnt_t i_blocks ;
8180a562
AK
3729 struct inode *inode = &(ei->vfs_inode);
3730 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3731
3732 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3733 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3734 /* we are using combined 48 bit field */
3735 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3736 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3737 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3738 /* i_blocks represent file system block size */
3739 return i_blocks << (inode->i_blkbits - 9);
3740 } else {
3741 return i_blocks;
3742 }
0fc1b451
AK
3743 } else {
3744 return le32_to_cpu(raw_inode->i_blocks_lo);
3745 }
3746}
ff9ddf7e 3747
152a7b0a
TM
3748static inline void ext4_iget_extra_inode(struct inode *inode,
3749 struct ext4_inode *raw_inode,
3750 struct ext4_inode_info *ei)
3751{
3752 __le32 *magic = (void *)raw_inode +
3753 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3754 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3755 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3756 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3757 } else
3758 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3759}
3760
1d1fe1ee 3761struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3762{
617ba13b
MC
3763 struct ext4_iloc iloc;
3764 struct ext4_inode *raw_inode;
1d1fe1ee 3765 struct ext4_inode_info *ei;
1d1fe1ee 3766 struct inode *inode;
b436b9be 3767 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3768 long ret;
ac27a0ec 3769 int block;
08cefc7a
EB
3770 uid_t i_uid;
3771 gid_t i_gid;
ac27a0ec 3772
1d1fe1ee
DH
3773 inode = iget_locked(sb, ino);
3774 if (!inode)
3775 return ERR_PTR(-ENOMEM);
3776 if (!(inode->i_state & I_NEW))
3777 return inode;
3778
3779 ei = EXT4_I(inode);
7dc57615 3780 iloc.bh = NULL;
ac27a0ec 3781
1d1fe1ee
DH
3782 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3783 if (ret < 0)
ac27a0ec 3784 goto bad_inode;
617ba13b 3785 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3786
3787 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3788 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3789 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3790 EXT4_INODE_SIZE(inode->i_sb)) {
3791 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3792 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3793 EXT4_INODE_SIZE(inode->i_sb));
3794 ret = -EIO;
3795 goto bad_inode;
3796 }
3797 } else
3798 ei->i_extra_isize = 0;
3799
3800 /* Precompute checksum seed for inode metadata */
3801 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3802 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3803 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3804 __u32 csum;
3805 __le32 inum = cpu_to_le32(inode->i_ino);
3806 __le32 gen = raw_inode->i_generation;
3807 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3808 sizeof(inum));
3809 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3810 sizeof(gen));
3811 }
3812
3813 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3814 EXT4_ERROR_INODE(inode, "checksum invalid");
3815 ret = -EIO;
3816 goto bad_inode;
3817 }
3818
ac27a0ec 3819 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
3820 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3821 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3822 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
3823 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3824 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 3825 }
08cefc7a
EB
3826 i_uid_write(inode, i_uid);
3827 i_gid_write(inode, i_gid);
bfe86848 3828 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3829
353eb83c 3830 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 3831 ei->i_inline_off = 0;
ac27a0ec
DK
3832 ei->i_dir_start_lookup = 0;
3833 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3834 /* We now have enough fields to check if the inode was active or not.
3835 * This is needed because nfsd might try to access dead inodes
3836 * the test is that same one that e2fsck uses
3837 * NeilBrown 1999oct15
3838 */
3839 if (inode->i_nlink == 0) {
3840 if (inode->i_mode == 0 ||
617ba13b 3841 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3842 /* this inode is deleted */
1d1fe1ee 3843 ret = -ESTALE;
ac27a0ec
DK
3844 goto bad_inode;
3845 }
3846 /* The only unlinked inodes we let through here have
3847 * valid i_mode and are being read by the orphan
3848 * recovery code: that's fine, we're about to complete
3849 * the process of deleting those. */
3850 }
ac27a0ec 3851 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3852 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3853 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3854 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3855 ei->i_file_acl |=
3856 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3857 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3858 ei->i_disksize = inode->i_size;
a9e7f447
DM
3859#ifdef CONFIG_QUOTA
3860 ei->i_reserved_quota = 0;
3861#endif
ac27a0ec
DK
3862 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3863 ei->i_block_group = iloc.block_group;
a4912123 3864 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3865 /*
3866 * NOTE! The in-memory inode i_data array is in little-endian order
3867 * even on big-endian machines: we do NOT byteswap the block numbers!
3868 */
617ba13b 3869 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3870 ei->i_data[block] = raw_inode->i_block[block];
3871 INIT_LIST_HEAD(&ei->i_orphan);
3872
b436b9be
JK
3873 /*
3874 * Set transaction id's of transactions that have to be committed
3875 * to finish f[data]sync. We set them to currently running transaction
3876 * as we cannot be sure that the inode or some of its metadata isn't
3877 * part of the transaction - the inode could have been reclaimed and
3878 * now it is reread from disk.
3879 */
3880 if (journal) {
3881 transaction_t *transaction;
3882 tid_t tid;
3883
a931da6a 3884 read_lock(&journal->j_state_lock);
b436b9be
JK
3885 if (journal->j_running_transaction)
3886 transaction = journal->j_running_transaction;
3887 else
3888 transaction = journal->j_committing_transaction;
3889 if (transaction)
3890 tid = transaction->t_tid;
3891 else
3892 tid = journal->j_commit_sequence;
a931da6a 3893 read_unlock(&journal->j_state_lock);
b436b9be
JK
3894 ei->i_sync_tid = tid;
3895 ei->i_datasync_tid = tid;
3896 }
3897
0040d987 3898 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
3899 if (ei->i_extra_isize == 0) {
3900 /* The extra space is currently unused. Use it. */
617ba13b
MC
3901 ei->i_extra_isize = sizeof(struct ext4_inode) -
3902 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 3903 } else {
152a7b0a 3904 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 3905 }
814525f4 3906 }
ac27a0ec 3907
ef7f3835
KS
3908 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3909 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3910 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3911 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3912
25ec56b5
JNC
3913 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3914 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3915 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3916 inode->i_version |=
3917 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3918 }
3919
c4b5a614 3920 ret = 0;
485c26ec 3921 if (ei->i_file_acl &&
1032988c 3922 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3923 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3924 ei->i_file_acl);
485c26ec
TT
3925 ret = -EIO;
3926 goto bad_inode;
f19d5870
TM
3927 } else if (!ext4_has_inline_data(inode)) {
3928 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3929 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3930 (S_ISLNK(inode->i_mode) &&
3931 !ext4_inode_is_fast_symlink(inode))))
3932 /* Validate extent which is part of inode */
3933 ret = ext4_ext_check_inode(inode);
3934 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3935 (S_ISLNK(inode->i_mode) &&
3936 !ext4_inode_is_fast_symlink(inode))) {
3937 /* Validate block references which are part of inode */
3938 ret = ext4_ind_check_inode(inode);
3939 }
fe2c8191 3940 }
567f3e9a 3941 if (ret)
de9a55b8 3942 goto bad_inode;
7a262f7c 3943
ac27a0ec 3944 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3945 inode->i_op = &ext4_file_inode_operations;
3946 inode->i_fop = &ext4_file_operations;
3947 ext4_set_aops(inode);
ac27a0ec 3948 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3949 inode->i_op = &ext4_dir_inode_operations;
3950 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3951 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3952 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3953 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3954 nd_terminate_link(ei->i_data, inode->i_size,
3955 sizeof(ei->i_data) - 1);
3956 } else {
617ba13b
MC
3957 inode->i_op = &ext4_symlink_inode_operations;
3958 ext4_set_aops(inode);
ac27a0ec 3959 }
563bdd61
TT
3960 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3961 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3962 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3963 if (raw_inode->i_block[0])
3964 init_special_inode(inode, inode->i_mode,
3965 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3966 else
3967 init_special_inode(inode, inode->i_mode,
3968 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3969 } else {
563bdd61 3970 ret = -EIO;
24676da4 3971 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3972 goto bad_inode;
ac27a0ec 3973 }
af5bc92d 3974 brelse(iloc.bh);
617ba13b 3975 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3976 unlock_new_inode(inode);
3977 return inode;
ac27a0ec
DK
3978
3979bad_inode:
567f3e9a 3980 brelse(iloc.bh);
1d1fe1ee
DH
3981 iget_failed(inode);
3982 return ERR_PTR(ret);
ac27a0ec
DK
3983}
3984
0fc1b451
AK
3985static int ext4_inode_blocks_set(handle_t *handle,
3986 struct ext4_inode *raw_inode,
3987 struct ext4_inode_info *ei)
3988{
3989 struct inode *inode = &(ei->vfs_inode);
3990 u64 i_blocks = inode->i_blocks;
3991 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3992
3993 if (i_blocks <= ~0U) {
3994 /*
4907cb7b 3995 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
3996 * as multiple of 512 bytes
3997 */
8180a562 3998 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3999 raw_inode->i_blocks_high = 0;
84a8dce2 4000 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4001 return 0;
4002 }
4003 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4004 return -EFBIG;
4005
4006 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4007 /*
4008 * i_blocks can be represented in a 48 bit variable
4009 * as multiple of 512 bytes
4010 */
8180a562 4011 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4012 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4013 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4014 } else {
84a8dce2 4015 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4016 /* i_block is stored in file system block size */
4017 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4018 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4019 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4020 }
f287a1a5 4021 return 0;
0fc1b451
AK
4022}
4023
ac27a0ec
DK
4024/*
4025 * Post the struct inode info into an on-disk inode location in the
4026 * buffer-cache. This gobbles the caller's reference to the
4027 * buffer_head in the inode location struct.
4028 *
4029 * The caller must have write access to iloc->bh.
4030 */
617ba13b 4031static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4032 struct inode *inode,
830156c7 4033 struct ext4_iloc *iloc)
ac27a0ec 4034{
617ba13b
MC
4035 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4036 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4037 struct buffer_head *bh = iloc->bh;
4038 int err = 0, rc, block;
b71fc079 4039 int need_datasync = 0;
08cefc7a
EB
4040 uid_t i_uid;
4041 gid_t i_gid;
ac27a0ec
DK
4042
4043 /* For fields not not tracking in the in-memory inode,
4044 * initialise them to zero for new inodes. */
19f5fb7a 4045 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4046 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4047
ff9ddf7e 4048 ext4_get_inode_flags(ei);
ac27a0ec 4049 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4050 i_uid = i_uid_read(inode);
4051 i_gid = i_gid_read(inode);
af5bc92d 4052 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4053 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4054 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4055/*
4056 * Fix up interoperability with old kernels. Otherwise, old inodes get
4057 * re-used with the upper 16 bits of the uid/gid intact
4058 */
af5bc92d 4059 if (!ei->i_dtime) {
ac27a0ec 4060 raw_inode->i_uid_high =
08cefc7a 4061 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4062 raw_inode->i_gid_high =
08cefc7a 4063 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4064 } else {
4065 raw_inode->i_uid_high = 0;
4066 raw_inode->i_gid_high = 0;
4067 }
4068 } else {
08cefc7a
EB
4069 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4070 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4071 raw_inode->i_uid_high = 0;
4072 raw_inode->i_gid_high = 0;
4073 }
4074 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4075
4076 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4077 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4078 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4079 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4080
0fc1b451
AK
4081 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4082 goto out_brelse;
ac27a0ec 4083 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4084 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4085 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4086 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4087 raw_inode->i_file_acl_high =
4088 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4089 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4090 if (ei->i_disksize != ext4_isize(raw_inode)) {
4091 ext4_isize_set(raw_inode, ei->i_disksize);
4092 need_datasync = 1;
4093 }
a48380f7
AK
4094 if (ei->i_disksize > 0x7fffffffULL) {
4095 struct super_block *sb = inode->i_sb;
4096 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4097 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4098 EXT4_SB(sb)->s_es->s_rev_level ==
4099 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4100 /* If this is the first large file
4101 * created, add a flag to the superblock.
4102 */
4103 err = ext4_journal_get_write_access(handle,
4104 EXT4_SB(sb)->s_sbh);
4105 if (err)
4106 goto out_brelse;
4107 ext4_update_dynamic_rev(sb);
4108 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4109 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4110 ext4_handle_sync(handle);
b50924c2 4111 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4112 }
4113 }
4114 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4115 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4116 if (old_valid_dev(inode->i_rdev)) {
4117 raw_inode->i_block[0] =
4118 cpu_to_le32(old_encode_dev(inode->i_rdev));
4119 raw_inode->i_block[1] = 0;
4120 } else {
4121 raw_inode->i_block[0] = 0;
4122 raw_inode->i_block[1] =
4123 cpu_to_le32(new_encode_dev(inode->i_rdev));
4124 raw_inode->i_block[2] = 0;
4125 }
f19d5870 4126 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4127 for (block = 0; block < EXT4_N_BLOCKS; block++)
4128 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4129 }
ac27a0ec 4130
25ec56b5
JNC
4131 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4132 if (ei->i_extra_isize) {
4133 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4134 raw_inode->i_version_hi =
4135 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4136 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4137 }
4138
814525f4
DW
4139 ext4_inode_csum_set(inode, raw_inode, ei);
4140
830156c7 4141 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4142 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4143 if (!err)
4144 err = rc;
19f5fb7a 4145 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4146
b71fc079 4147 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4148out_brelse:
af5bc92d 4149 brelse(bh);
617ba13b 4150 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4151 return err;
4152}
4153
4154/*
617ba13b 4155 * ext4_write_inode()
ac27a0ec
DK
4156 *
4157 * We are called from a few places:
4158 *
4159 * - Within generic_file_write() for O_SYNC files.
4160 * Here, there will be no transaction running. We wait for any running
4907cb7b 4161 * transaction to commit.
ac27a0ec
DK
4162 *
4163 * - Within sys_sync(), kupdate and such.
4164 * We wait on commit, if tol to.
4165 *
4166 * - Within prune_icache() (PF_MEMALLOC == true)
4167 * Here we simply return. We can't afford to block kswapd on the
4168 * journal commit.
4169 *
4170 * In all cases it is actually safe for us to return without doing anything,
4171 * because the inode has been copied into a raw inode buffer in
617ba13b 4172 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4173 * knfsd.
4174 *
4175 * Note that we are absolutely dependent upon all inode dirtiers doing the
4176 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4177 * which we are interested.
4178 *
4179 * It would be a bug for them to not do this. The code:
4180 *
4181 * mark_inode_dirty(inode)
4182 * stuff();
4183 * inode->i_size = expr;
4184 *
4185 * is in error because a kswapd-driven write_inode() could occur while
4186 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4187 * will no longer be on the superblock's dirty inode list.
4188 */
a9185b41 4189int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4190{
91ac6f43
FM
4191 int err;
4192
ac27a0ec
DK
4193 if (current->flags & PF_MEMALLOC)
4194 return 0;
4195
91ac6f43
FM
4196 if (EXT4_SB(inode->i_sb)->s_journal) {
4197 if (ext4_journal_current_handle()) {
4198 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4199 dump_stack();
4200 return -EIO;
4201 }
ac27a0ec 4202
a9185b41 4203 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4204 return 0;
4205
4206 err = ext4_force_commit(inode->i_sb);
4207 } else {
4208 struct ext4_iloc iloc;
ac27a0ec 4209
8b472d73 4210 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4211 if (err)
4212 return err;
a9185b41 4213 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4214 sync_dirty_buffer(iloc.bh);
4215 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4216 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4217 "IO error syncing inode");
830156c7
FM
4218 err = -EIO;
4219 }
fd2dd9fb 4220 brelse(iloc.bh);
91ac6f43
FM
4221 }
4222 return err;
ac27a0ec
DK
4223}
4224
4225/*
617ba13b 4226 * ext4_setattr()
ac27a0ec
DK
4227 *
4228 * Called from notify_change.
4229 *
4230 * We want to trap VFS attempts to truncate the file as soon as
4231 * possible. In particular, we want to make sure that when the VFS
4232 * shrinks i_size, we put the inode on the orphan list and modify
4233 * i_disksize immediately, so that during the subsequent flushing of
4234 * dirty pages and freeing of disk blocks, we can guarantee that any
4235 * commit will leave the blocks being flushed in an unused state on
4236 * disk. (On recovery, the inode will get truncated and the blocks will
4237 * be freed, so we have a strong guarantee that no future commit will
4238 * leave these blocks visible to the user.)
4239 *
678aaf48
JK
4240 * Another thing we have to assure is that if we are in ordered mode
4241 * and inode is still attached to the committing transaction, we must
4242 * we start writeout of all the dirty pages which are being truncated.
4243 * This way we are sure that all the data written in the previous
4244 * transaction are already on disk (truncate waits for pages under
4245 * writeback).
4246 *
4247 * Called with inode->i_mutex down.
ac27a0ec 4248 */
617ba13b 4249int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4250{
4251 struct inode *inode = dentry->d_inode;
4252 int error, rc = 0;
3d287de3 4253 int orphan = 0;
ac27a0ec
DK
4254 const unsigned int ia_valid = attr->ia_valid;
4255
4256 error = inode_change_ok(inode, attr);
4257 if (error)
4258 return error;
4259
12755627 4260 if (is_quota_modification(inode, attr))
871a2931 4261 dquot_initialize(inode);
08cefc7a
EB
4262 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4263 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4264 handle_t *handle;
4265
4266 /* (user+group)*(old+new) structure, inode write (sb,
4267 * inode block, ? - but truncate inode update has it) */
5aca07eb 4268 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4269 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4270 if (IS_ERR(handle)) {
4271 error = PTR_ERR(handle);
4272 goto err_out;
4273 }
b43fa828 4274 error = dquot_transfer(inode, attr);
ac27a0ec 4275 if (error) {
617ba13b 4276 ext4_journal_stop(handle);
ac27a0ec
DK
4277 return error;
4278 }
4279 /* Update corresponding info in inode so that everything is in
4280 * one transaction */
4281 if (attr->ia_valid & ATTR_UID)
4282 inode->i_uid = attr->ia_uid;
4283 if (attr->ia_valid & ATTR_GID)
4284 inode->i_gid = attr->ia_gid;
617ba13b
MC
4285 error = ext4_mark_inode_dirty(handle, inode);
4286 ext4_journal_stop(handle);
ac27a0ec
DK
4287 }
4288
e2b46574 4289 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4290
12e9b892 4291 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4292 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4293
0c095c7f
TT
4294 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4295 return -EFBIG;
e2b46574
ES
4296 }
4297 }
4298
ac27a0ec 4299 if (S_ISREG(inode->i_mode) &&
c8d46e41 4300 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4301 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4302 handle_t *handle;
4303
617ba13b 4304 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4305 if (IS_ERR(handle)) {
4306 error = PTR_ERR(handle);
4307 goto err_out;
4308 }
3d287de3
DM
4309 if (ext4_handle_valid(handle)) {
4310 error = ext4_orphan_add(handle, inode);
4311 orphan = 1;
4312 }
617ba13b
MC
4313 EXT4_I(inode)->i_disksize = attr->ia_size;
4314 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4315 if (!error)
4316 error = rc;
617ba13b 4317 ext4_journal_stop(handle);
678aaf48
JK
4318
4319 if (ext4_should_order_data(inode)) {
4320 error = ext4_begin_ordered_truncate(inode,
4321 attr->ia_size);
4322 if (error) {
4323 /* Do as much error cleanup as possible */
4324 handle = ext4_journal_start(inode, 3);
4325 if (IS_ERR(handle)) {
4326 ext4_orphan_del(NULL, inode);
4327 goto err_out;
4328 }
4329 ext4_orphan_del(handle, inode);
3d287de3 4330 orphan = 0;
678aaf48
JK
4331 ext4_journal_stop(handle);
4332 goto err_out;
4333 }
4334 }
ac27a0ec
DK
4335 }
4336
072bd7ea 4337 if (attr->ia_valid & ATTR_SIZE) {
1c9114f9 4338 if (attr->ia_size != i_size_read(inode)) {
072bd7ea 4339 truncate_setsize(inode, attr->ia_size);
1b65007e
DM
4340 /* Inode size will be reduced, wait for dio in flight.
4341 * Temporarily disable dioread_nolock to prevent
4342 * livelock. */
4343 if (orphan) {
4344 ext4_inode_block_unlocked_dio(inode);
1c9114f9 4345 inode_dio_wait(inode);
1b65007e
DM
4346 ext4_inode_resume_unlocked_dio(inode);
4347 }
1c9114f9 4348 }
afcff5d8 4349 ext4_truncate(inode);
072bd7ea 4350 }
ac27a0ec 4351
1025774c
CH
4352 if (!rc) {
4353 setattr_copy(inode, attr);
4354 mark_inode_dirty(inode);
4355 }
4356
4357 /*
4358 * If the call to ext4_truncate failed to get a transaction handle at
4359 * all, we need to clean up the in-core orphan list manually.
4360 */
3d287de3 4361 if (orphan && inode->i_nlink)
617ba13b 4362 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4363
4364 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4365 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4366
4367err_out:
617ba13b 4368 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4369 if (!error)
4370 error = rc;
4371 return error;
4372}
4373
3e3398a0
MC
4374int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4375 struct kstat *stat)
4376{
4377 struct inode *inode;
4378 unsigned long delalloc_blocks;
4379
4380 inode = dentry->d_inode;
4381 generic_fillattr(inode, stat);
4382
4383 /*
4384 * We can't update i_blocks if the block allocation is delayed
4385 * otherwise in the case of system crash before the real block
4386 * allocation is done, we will have i_blocks inconsistent with
4387 * on-disk file blocks.
4388 * We always keep i_blocks updated together with real
4389 * allocation. But to not confuse with user, stat
4390 * will return the blocks that include the delayed allocation
4391 * blocks for this file.
4392 */
96607551
TM
4393 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4394 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0
MC
4395
4396 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4397 return 0;
4398}
ac27a0ec 4399
a02908f1
MC
4400static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4401{
12e9b892 4402 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4403 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4404 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4405}
ac51d837 4406
ac27a0ec 4407/*
a02908f1
MC
4408 * Account for index blocks, block groups bitmaps and block group
4409 * descriptor blocks if modify datablocks and index blocks
4410 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4411 *
a02908f1 4412 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4413 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4414 * they could still across block group boundary.
ac27a0ec 4415 *
a02908f1
MC
4416 * Also account for superblock, inode, quota and xattr blocks
4417 */
1f109d5a 4418static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4419{
8df9675f
TT
4420 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4421 int gdpblocks;
a02908f1
MC
4422 int idxblocks;
4423 int ret = 0;
4424
4425 /*
4426 * How many index blocks need to touch to modify nrblocks?
4427 * The "Chunk" flag indicating whether the nrblocks is
4428 * physically contiguous on disk
4429 *
4430 * For Direct IO and fallocate, they calls get_block to allocate
4431 * one single extent at a time, so they could set the "Chunk" flag
4432 */
4433 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4434
4435 ret = idxblocks;
4436
4437 /*
4438 * Now let's see how many group bitmaps and group descriptors need
4439 * to account
4440 */
4441 groups = idxblocks;
4442 if (chunk)
4443 groups += 1;
4444 else
4445 groups += nrblocks;
4446
4447 gdpblocks = groups;
8df9675f
TT
4448 if (groups > ngroups)
4449 groups = ngroups;
a02908f1
MC
4450 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4451 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4452
4453 /* bitmaps and block group descriptor blocks */
4454 ret += groups + gdpblocks;
4455
4456 /* Blocks for super block, inode, quota and xattr blocks */
4457 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4458
4459 return ret;
4460}
4461
4462/*
25985edc 4463 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4464 * the modification of a single pages into a single transaction,
4465 * which may include multiple chunks of block allocations.
ac27a0ec 4466 *
525f4ed8 4467 * This could be called via ext4_write_begin()
ac27a0ec 4468 *
525f4ed8 4469 * We need to consider the worse case, when
a02908f1 4470 * one new block per extent.
ac27a0ec 4471 */
a86c6181 4472int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4473{
617ba13b 4474 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4475 int ret;
4476
a02908f1 4477 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4478
a02908f1 4479 /* Account for data blocks for journalled mode */
617ba13b 4480 if (ext4_should_journal_data(inode))
a02908f1 4481 ret += bpp;
ac27a0ec
DK
4482 return ret;
4483}
f3bd1f3f
MC
4484
4485/*
4486 * Calculate the journal credits for a chunk of data modification.
4487 *
4488 * This is called from DIO, fallocate or whoever calling
79e83036 4489 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4490 *
4491 * journal buffers for data blocks are not included here, as DIO
4492 * and fallocate do no need to journal data buffers.
4493 */
4494int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4495{
4496 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4497}
4498
ac27a0ec 4499/*
617ba13b 4500 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4501 * Give this, we know that the caller already has write access to iloc->bh.
4502 */
617ba13b 4503int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4504 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4505{
4506 int err = 0;
4507
c64db50e 4508 if (IS_I_VERSION(inode))
25ec56b5
JNC
4509 inode_inc_iversion(inode);
4510
ac27a0ec
DK
4511 /* the do_update_inode consumes one bh->b_count */
4512 get_bh(iloc->bh);
4513
dab291af 4514 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4515 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4516 put_bh(iloc->bh);
4517 return err;
4518}
4519
4520/*
4521 * On success, We end up with an outstanding reference count against
4522 * iloc->bh. This _must_ be cleaned up later.
4523 */
4524
4525int
617ba13b
MC
4526ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4527 struct ext4_iloc *iloc)
ac27a0ec 4528{
0390131b
FM
4529 int err;
4530
4531 err = ext4_get_inode_loc(inode, iloc);
4532 if (!err) {
4533 BUFFER_TRACE(iloc->bh, "get_write_access");
4534 err = ext4_journal_get_write_access(handle, iloc->bh);
4535 if (err) {
4536 brelse(iloc->bh);
4537 iloc->bh = NULL;
ac27a0ec
DK
4538 }
4539 }
617ba13b 4540 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4541 return err;
4542}
4543
6dd4ee7c
KS
4544/*
4545 * Expand an inode by new_extra_isize bytes.
4546 * Returns 0 on success or negative error number on failure.
4547 */
1d03ec98
AK
4548static int ext4_expand_extra_isize(struct inode *inode,
4549 unsigned int new_extra_isize,
4550 struct ext4_iloc iloc,
4551 handle_t *handle)
6dd4ee7c
KS
4552{
4553 struct ext4_inode *raw_inode;
4554 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4555
4556 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4557 return 0;
4558
4559 raw_inode = ext4_raw_inode(&iloc);
4560
4561 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4562
4563 /* No extended attributes present */
19f5fb7a
TT
4564 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4565 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4566 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4567 new_extra_isize);
4568 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4569 return 0;
4570 }
4571
4572 /* try to expand with EAs present */
4573 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4574 raw_inode, handle);
4575}
4576
ac27a0ec
DK
4577/*
4578 * What we do here is to mark the in-core inode as clean with respect to inode
4579 * dirtiness (it may still be data-dirty).
4580 * This means that the in-core inode may be reaped by prune_icache
4581 * without having to perform any I/O. This is a very good thing,
4582 * because *any* task may call prune_icache - even ones which
4583 * have a transaction open against a different journal.
4584 *
4585 * Is this cheating? Not really. Sure, we haven't written the
4586 * inode out, but prune_icache isn't a user-visible syncing function.
4587 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4588 * we start and wait on commits.
ac27a0ec 4589 */
617ba13b 4590int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4591{
617ba13b 4592 struct ext4_iloc iloc;
6dd4ee7c
KS
4593 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4594 static unsigned int mnt_count;
4595 int err, ret;
ac27a0ec
DK
4596
4597 might_sleep();
7ff9c073 4598 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4599 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4600 if (ext4_handle_valid(handle) &&
4601 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4602 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4603 /*
4604 * We need extra buffer credits since we may write into EA block
4605 * with this same handle. If journal_extend fails, then it will
4606 * only result in a minor loss of functionality for that inode.
4607 * If this is felt to be critical, then e2fsck should be run to
4608 * force a large enough s_min_extra_isize.
4609 */
4610 if ((jbd2_journal_extend(handle,
4611 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4612 ret = ext4_expand_extra_isize(inode,
4613 sbi->s_want_extra_isize,
4614 iloc, handle);
4615 if (ret) {
19f5fb7a
TT
4616 ext4_set_inode_state(inode,
4617 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4618 if (mnt_count !=
4619 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4620 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4621 "Unable to expand inode %lu. Delete"
4622 " some EAs or run e2fsck.",
4623 inode->i_ino);
c1bddad9
AK
4624 mnt_count =
4625 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4626 }
4627 }
4628 }
4629 }
ac27a0ec 4630 if (!err)
617ba13b 4631 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4632 return err;
4633}
4634
4635/*
617ba13b 4636 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4637 *
4638 * We're really interested in the case where a file is being extended.
4639 * i_size has been changed by generic_commit_write() and we thus need
4640 * to include the updated inode in the current transaction.
4641 *
5dd4056d 4642 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4643 * are allocated to the file.
4644 *
4645 * If the inode is marked synchronous, we don't honour that here - doing
4646 * so would cause a commit on atime updates, which we don't bother doing.
4647 * We handle synchronous inodes at the highest possible level.
4648 */
aa385729 4649void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4650{
ac27a0ec
DK
4651 handle_t *handle;
4652
617ba13b 4653 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4654 if (IS_ERR(handle))
4655 goto out;
f3dc272f 4656
f3dc272f
CW
4657 ext4_mark_inode_dirty(handle, inode);
4658
617ba13b 4659 ext4_journal_stop(handle);
ac27a0ec
DK
4660out:
4661 return;
4662}
4663
4664#if 0
4665/*
4666 * Bind an inode's backing buffer_head into this transaction, to prevent
4667 * it from being flushed to disk early. Unlike
617ba13b 4668 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4669 * returns no iloc structure, so the caller needs to repeat the iloc
4670 * lookup to mark the inode dirty later.
4671 */
617ba13b 4672static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4673{
617ba13b 4674 struct ext4_iloc iloc;
ac27a0ec
DK
4675
4676 int err = 0;
4677 if (handle) {
617ba13b 4678 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4679 if (!err) {
4680 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4681 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4682 if (!err)
0390131b 4683 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4684 NULL,
0390131b 4685 iloc.bh);
ac27a0ec
DK
4686 brelse(iloc.bh);
4687 }
4688 }
617ba13b 4689 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4690 return err;
4691}
4692#endif
4693
617ba13b 4694int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4695{
4696 journal_t *journal;
4697 handle_t *handle;
4698 int err;
4699
4700 /*
4701 * We have to be very careful here: changing a data block's
4702 * journaling status dynamically is dangerous. If we write a
4703 * data block to the journal, change the status and then delete
4704 * that block, we risk forgetting to revoke the old log record
4705 * from the journal and so a subsequent replay can corrupt data.
4706 * So, first we make sure that the journal is empty and that
4707 * nobody is changing anything.
4708 */
4709
617ba13b 4710 journal = EXT4_JOURNAL(inode);
0390131b
FM
4711 if (!journal)
4712 return 0;
d699594d 4713 if (is_journal_aborted(journal))
ac27a0ec 4714 return -EROFS;
2aff57b0
YY
4715 /* We have to allocate physical blocks for delalloc blocks
4716 * before flushing journal. otherwise delalloc blocks can not
4717 * be allocated any more. even more truncate on delalloc blocks
4718 * could trigger BUG by flushing delalloc blocks in journal.
4719 * There is no delalloc block in non-journal data mode.
4720 */
4721 if (val && test_opt(inode->i_sb, DELALLOC)) {
4722 err = ext4_alloc_da_blocks(inode);
4723 if (err < 0)
4724 return err;
4725 }
ac27a0ec 4726
17335dcc
DM
4727 /* Wait for all existing dio workers */
4728 ext4_inode_block_unlocked_dio(inode);
4729 inode_dio_wait(inode);
4730
dab291af 4731 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4732
4733 /*
4734 * OK, there are no updates running now, and all cached data is
4735 * synced to disk. We are now in a completely consistent state
4736 * which doesn't have anything in the journal, and we know that
4737 * no filesystem updates are running, so it is safe to modify
4738 * the inode's in-core data-journaling state flag now.
4739 */
4740
4741 if (val)
12e9b892 4742 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4743 else {
4744 jbd2_journal_flush(journal);
12e9b892 4745 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4746 }
617ba13b 4747 ext4_set_aops(inode);
ac27a0ec 4748
dab291af 4749 jbd2_journal_unlock_updates(journal);
17335dcc 4750 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4751
4752 /* Finally we can mark the inode as dirty. */
4753
617ba13b 4754 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4755 if (IS_ERR(handle))
4756 return PTR_ERR(handle);
4757
617ba13b 4758 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4759 ext4_handle_sync(handle);
617ba13b
MC
4760 ext4_journal_stop(handle);
4761 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4762
4763 return err;
4764}
2e9ee850
AK
4765
4766static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4767{
4768 return !buffer_mapped(bh);
4769}
4770
c2ec175c 4771int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4772{
c2ec175c 4773 struct page *page = vmf->page;
2e9ee850
AK
4774 loff_t size;
4775 unsigned long len;
9ea7df53 4776 int ret;
2e9ee850
AK
4777 struct file *file = vma->vm_file;
4778 struct inode *inode = file->f_path.dentry->d_inode;
4779 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4780 handle_t *handle;
4781 get_block_t *get_block;
4782 int retries = 0;
2e9ee850 4783
8e8ad8a5 4784 sb_start_pagefault(inode->i_sb);
041bbb6d 4785 file_update_time(vma->vm_file);
9ea7df53
JK
4786 /* Delalloc case is easy... */
4787 if (test_opt(inode->i_sb, DELALLOC) &&
4788 !ext4_should_journal_data(inode) &&
4789 !ext4_nonda_switch(inode->i_sb)) {
4790 do {
4791 ret = __block_page_mkwrite(vma, vmf,
4792 ext4_da_get_block_prep);
4793 } while (ret == -ENOSPC &&
4794 ext4_should_retry_alloc(inode->i_sb, &retries));
4795 goto out_ret;
2e9ee850 4796 }
0e499890
DW
4797
4798 lock_page(page);
9ea7df53
JK
4799 size = i_size_read(inode);
4800 /* Page got truncated from under us? */
4801 if (page->mapping != mapping || page_offset(page) > size) {
4802 unlock_page(page);
4803 ret = VM_FAULT_NOPAGE;
4804 goto out;
0e499890 4805 }
2e9ee850
AK
4806
4807 if (page->index == size >> PAGE_CACHE_SHIFT)
4808 len = size & ~PAGE_CACHE_MASK;
4809 else
4810 len = PAGE_CACHE_SIZE;
a827eaff 4811 /*
9ea7df53
JK
4812 * Return if we have all the buffers mapped. This avoids the need to do
4813 * journal_start/journal_stop which can block and take a long time
a827eaff 4814 */
2e9ee850 4815 if (page_has_buffers(page)) {
f19d5870
TM
4816 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
4817 0, len, NULL,
4818 ext4_bh_unmapped)) {
9ea7df53
JK
4819 /* Wait so that we don't change page under IO */
4820 wait_on_page_writeback(page);
4821 ret = VM_FAULT_LOCKED;
4822 goto out;
a827eaff 4823 }
2e9ee850 4824 }
a827eaff 4825 unlock_page(page);
9ea7df53
JK
4826 /* OK, we need to fill the hole... */
4827 if (ext4_should_dioread_nolock(inode))
4828 get_block = ext4_get_block_write;
4829 else
4830 get_block = ext4_get_block;
4831retry_alloc:
4832 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4833 if (IS_ERR(handle)) {
c2ec175c 4834 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4835 goto out;
4836 }
4837 ret = __block_page_mkwrite(vma, vmf, get_block);
4838 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 4839 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
4840 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4841 unlock_page(page);
4842 ret = VM_FAULT_SIGBUS;
fcbb5515 4843 ext4_journal_stop(handle);
9ea7df53
JK
4844 goto out;
4845 }
4846 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4847 }
4848 ext4_journal_stop(handle);
4849 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4850 goto retry_alloc;
4851out_ret:
4852 ret = block_page_mkwrite_return(ret);
4853out:
8e8ad8a5 4854 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
4855 return ret;
4856}
This page took 0.973732 seconds and 5 git commands to generate.