ext4: improve writepage credit estimate for files with indirect blocks
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
64769240 139
ac27a0ec
DK
140/*
141 * Test whether an inode is a fast symlink.
142 */
617ba13b 143static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 144{
617ba13b 145 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
146 (inode->i_sb->s_blocksize >> 9) : 0;
147
148 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
149}
150
ac27a0ec
DK
151/*
152 * Restart the transaction associated with *handle. This does a commit,
153 * so before we call here everything must be consistently dirtied against
154 * this transaction.
155 */
fa5d1113 156int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 157 int nblocks)
ac27a0ec 158{
487caeef
JK
159 int ret;
160
161 /*
e35fd660 162 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
163 * moment, get_block can be called only for blocks inside i_size since
164 * page cache has been already dropped and writes are blocked by
165 * i_mutex. So we can safely drop the i_data_sem here.
166 */
0390131b 167 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 168 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 169 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 170 ret = ext4_journal_restart(handle, nblocks);
487caeef 171 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 172 ext4_discard_preallocations(inode);
487caeef
JK
173
174 return ret;
ac27a0ec
DK
175}
176
177/*
178 * Called at the last iput() if i_nlink is zero.
179 */
0930fcc1 180void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
181{
182 handle_t *handle;
bc965ab3 183 int err;
ac27a0ec 184
7ff9c073 185 trace_ext4_evict_inode(inode);
2581fdc8 186
0930fcc1 187 if (inode->i_nlink) {
2d859db3
JK
188 /*
189 * When journalling data dirty buffers are tracked only in the
190 * journal. So although mm thinks everything is clean and
191 * ready for reaping the inode might still have some pages to
192 * write in the running transaction or waiting to be
193 * checkpointed. Thus calling jbd2_journal_invalidatepage()
194 * (via truncate_inode_pages()) to discard these buffers can
195 * cause data loss. Also even if we did not discard these
196 * buffers, we would have no way to find them after the inode
197 * is reaped and thus user could see stale data if he tries to
198 * read them before the transaction is checkpointed. So be
199 * careful and force everything to disk here... We use
200 * ei->i_datasync_tid to store the newest transaction
201 * containing inode's data.
202 *
203 * Note that directories do not have this problem because they
204 * don't use page cache.
205 */
206 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
207 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
208 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
209 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
210 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
211
d76a3a77 212 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
213 filemap_write_and_wait(&inode->i_data);
214 }
0930fcc1 215 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 216 ext4_ioend_shutdown(inode);
0930fcc1
AV
217 goto no_delete;
218 }
219
907f4554 220 if (!is_bad_inode(inode))
871a2931 221 dquot_initialize(inode);
907f4554 222
678aaf48
JK
223 if (ext4_should_order_data(inode))
224 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 225 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 226 ext4_ioend_shutdown(inode);
ac27a0ec
DK
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230
8e8ad8a5
JK
231 /*
232 * Protect us against freezing - iput() caller didn't have to have any
233 * protection against it
234 */
235 sb_start_intwrite(inode->i_sb);
9924a92a
TT
236 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
237 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 238 if (IS_ERR(handle)) {
bc965ab3 239 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
240 /*
241 * If we're going to skip the normal cleanup, we still need to
242 * make sure that the in-core orphan linked list is properly
243 * cleaned up.
244 */
617ba13b 245 ext4_orphan_del(NULL, inode);
8e8ad8a5 246 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
247 goto no_delete;
248 }
249
250 if (IS_SYNC(inode))
0390131b 251 ext4_handle_sync(handle);
ac27a0ec 252 inode->i_size = 0;
bc965ab3
TT
253 err = ext4_mark_inode_dirty(handle, inode);
254 if (err) {
12062ddd 255 ext4_warning(inode->i_sb,
bc965ab3
TT
256 "couldn't mark inode dirty (err %d)", err);
257 goto stop_handle;
258 }
ac27a0ec 259 if (inode->i_blocks)
617ba13b 260 ext4_truncate(inode);
bc965ab3
TT
261
262 /*
263 * ext4_ext_truncate() doesn't reserve any slop when it
264 * restarts journal transactions; therefore there may not be
265 * enough credits left in the handle to remove the inode from
266 * the orphan list and set the dtime field.
267 */
0390131b 268 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
269 err = ext4_journal_extend(handle, 3);
270 if (err > 0)
271 err = ext4_journal_restart(handle, 3);
272 if (err != 0) {
12062ddd 273 ext4_warning(inode->i_sb,
bc965ab3
TT
274 "couldn't extend journal (err %d)", err);
275 stop_handle:
276 ext4_journal_stop(handle);
45388219 277 ext4_orphan_del(NULL, inode);
8e8ad8a5 278 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
279 goto no_delete;
280 }
281 }
282
ac27a0ec 283 /*
617ba13b 284 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 285 * AKPM: I think this can be inside the above `if'.
617ba13b 286 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 287 * deletion of a non-existent orphan - this is because we don't
617ba13b 288 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
289 * (Well, we could do this if we need to, but heck - it works)
290 */
617ba13b
MC
291 ext4_orphan_del(handle, inode);
292 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
293
294 /*
295 * One subtle ordering requirement: if anything has gone wrong
296 * (transaction abort, IO errors, whatever), then we can still
297 * do these next steps (the fs will already have been marked as
298 * having errors), but we can't free the inode if the mark_dirty
299 * fails.
300 */
617ba13b 301 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 302 /* If that failed, just do the required in-core inode clear. */
0930fcc1 303 ext4_clear_inode(inode);
ac27a0ec 304 else
617ba13b
MC
305 ext4_free_inode(handle, inode);
306 ext4_journal_stop(handle);
8e8ad8a5 307 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
308 return;
309no_delete:
0930fcc1 310 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
311}
312
a9e7f447
DM
313#ifdef CONFIG_QUOTA
314qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 315{
a9e7f447 316 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 317}
a9e7f447 318#endif
9d0be502 319
12219aea
AK
320/*
321 * Calculate the number of metadata blocks need to reserve
9d0be502 322 * to allocate a block located at @lblock
12219aea 323 */
01f49d0b 324static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 325{
12e9b892 326 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 327 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 328
8bb2b247 329 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
330}
331
0637c6f4
TT
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
5f634d06
AK
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
12219aea
AK
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 340 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
341
342 spin_lock(&ei->i_block_reservation_lock);
d8990240 343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 344 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 346 "with only %d reserved data blocks",
0637c6f4
TT
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
12219aea 352
97795d2a 353 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
354 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
355 "with only %d reserved metadata blocks "
356 "(releasing %d blocks with reserved %d data blocks)",
357 inode->i_ino, ei->i_allocated_meta_blocks,
358 ei->i_reserved_meta_blocks, used,
359 ei->i_reserved_data_blocks);
97795d2a
BF
360 WARN_ON(1);
361 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
362 }
363
0637c6f4
TT
364 /* Update per-inode reservations */
365 ei->i_reserved_data_blocks -= used;
0637c6f4 366 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 367 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 368 used + ei->i_allocated_meta_blocks);
0637c6f4 369 ei->i_allocated_meta_blocks = 0;
6bc6e63f 370
0637c6f4
TT
371 if (ei->i_reserved_data_blocks == 0) {
372 /*
373 * We can release all of the reserved metadata blocks
374 * only when we have written all of the delayed
375 * allocation blocks.
376 */
57042651 377 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 378 ei->i_reserved_meta_blocks);
ee5f4d9c 379 ei->i_reserved_meta_blocks = 0;
9d0be502 380 ei->i_da_metadata_calc_len = 0;
6bc6e63f 381 }
12219aea 382 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 383
72b8ab9d
ES
384 /* Update quota subsystem for data blocks */
385 if (quota_claim)
7b415bf6 386 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 387 else {
5f634d06
AK
388 /*
389 * We did fallocate with an offset that is already delayed
390 * allocated. So on delayed allocated writeback we should
72b8ab9d 391 * not re-claim the quota for fallocated blocks.
5f634d06 392 */
7b415bf6 393 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 394 }
d6014301
AK
395
396 /*
397 * If we have done all the pending block allocations and if
398 * there aren't any writers on the inode, we can discard the
399 * inode's preallocations.
400 */
0637c6f4
TT
401 if ((ei->i_reserved_data_blocks == 0) &&
402 (atomic_read(&inode->i_writecount) == 0))
d6014301 403 ext4_discard_preallocations(inode);
12219aea
AK
404}
405
e29136f8 406static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
407 unsigned int line,
408 struct ext4_map_blocks *map)
6fd058f7 409{
24676da4
TT
410 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
411 map->m_len)) {
c398eda0
TT
412 ext4_error_inode(inode, func, line, map->m_pblk,
413 "lblock %lu mapped to illegal pblock "
414 "(length %d)", (unsigned long) map->m_lblk,
415 map->m_len);
6fd058f7
TT
416 return -EIO;
417 }
418 return 0;
419}
420
e29136f8 421#define check_block_validity(inode, map) \
c398eda0 422 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 423
921f266b
DM
424#ifdef ES_AGGRESSIVE_TEST
425static void ext4_map_blocks_es_recheck(handle_t *handle,
426 struct inode *inode,
427 struct ext4_map_blocks *es_map,
428 struct ext4_map_blocks *map,
429 int flags)
430{
431 int retval;
432
433 map->m_flags = 0;
434 /*
435 * There is a race window that the result is not the same.
436 * e.g. xfstests #223 when dioread_nolock enables. The reason
437 * is that we lookup a block mapping in extent status tree with
438 * out taking i_data_sem. So at the time the unwritten extent
439 * could be converted.
440 */
441 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
442 down_read((&EXT4_I(inode)->i_data_sem));
443 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
444 retval = ext4_ext_map_blocks(handle, inode, map, flags &
445 EXT4_GET_BLOCKS_KEEP_SIZE);
446 } else {
447 retval = ext4_ind_map_blocks(handle, inode, map, flags &
448 EXT4_GET_BLOCKS_KEEP_SIZE);
449 }
450 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
451 up_read((&EXT4_I(inode)->i_data_sem));
452 /*
453 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
454 * because it shouldn't be marked in es_map->m_flags.
455 */
456 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
457
458 /*
459 * We don't check m_len because extent will be collpased in status
460 * tree. So the m_len might not equal.
461 */
462 if (es_map->m_lblk != map->m_lblk ||
463 es_map->m_flags != map->m_flags ||
464 es_map->m_pblk != map->m_pblk) {
465 printk("ES cache assertation failed for inode: %lu "
466 "es_cached ex [%d/%d/%llu/%x] != "
467 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
468 inode->i_ino, es_map->m_lblk, es_map->m_len,
469 es_map->m_pblk, es_map->m_flags, map->m_lblk,
470 map->m_len, map->m_pblk, map->m_flags,
471 retval, flags);
472 }
473}
474#endif /* ES_AGGRESSIVE_TEST */
475
f5ab0d1f 476/*
e35fd660 477 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 478 * and returns if the blocks are already mapped.
f5ab0d1f 479 *
f5ab0d1f
MC
480 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
481 * and store the allocated blocks in the result buffer head and mark it
482 * mapped.
483 *
e35fd660
TT
484 * If file type is extents based, it will call ext4_ext_map_blocks(),
485 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
486 * based files
487 *
488 * On success, it returns the number of blocks being mapped or allocate.
489 * if create==0 and the blocks are pre-allocated and uninitialized block,
490 * the result buffer head is unmapped. If the create ==1, it will make sure
491 * the buffer head is mapped.
492 *
493 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 494 * that case, buffer head is unmapped
f5ab0d1f
MC
495 *
496 * It returns the error in case of allocation failure.
497 */
e35fd660
TT
498int ext4_map_blocks(handle_t *handle, struct inode *inode,
499 struct ext4_map_blocks *map, int flags)
0e855ac8 500{
d100eef2 501 struct extent_status es;
0e855ac8 502 int retval;
921f266b
DM
503#ifdef ES_AGGRESSIVE_TEST
504 struct ext4_map_blocks orig_map;
505
506 memcpy(&orig_map, map, sizeof(*map));
507#endif
f5ab0d1f 508
e35fd660
TT
509 map->m_flags = 0;
510 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
511 "logical block %lu\n", inode->i_ino, flags, map->m_len,
512 (unsigned long) map->m_lblk);
d100eef2
ZL
513
514 /* Lookup extent status tree firstly */
515 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
516 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
517 map->m_pblk = ext4_es_pblock(&es) +
518 map->m_lblk - es.es_lblk;
519 map->m_flags |= ext4_es_is_written(&es) ?
520 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
526 retval = 0;
527 } else {
528 BUG_ON(1);
529 }
921f266b
DM
530#ifdef ES_AGGRESSIVE_TEST
531 ext4_map_blocks_es_recheck(handle, inode, map,
532 &orig_map, flags);
533#endif
d100eef2
ZL
534 goto found;
535 }
536
4df3d265 537 /*
b920c755
TT
538 * Try to see if we can get the block without requesting a new
539 * file system block.
4df3d265 540 */
729f52c6
ZL
541 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
542 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 543 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
544 retval = ext4_ext_map_blocks(handle, inode, map, flags &
545 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 546 } else {
a4e5d88b
DM
547 retval = ext4_ind_map_blocks(handle, inode, map, flags &
548 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 549 }
f7fec032
ZL
550 if (retval > 0) {
551 int ret;
552 unsigned long long status;
553
921f266b
DM
554#ifdef ES_AGGRESSIVE_TEST
555 if (retval != map->m_len) {
556 printk("ES len assertation failed for inode: %lu "
557 "retval %d != map->m_len %d "
558 "in %s (lookup)\n", inode->i_ino, retval,
559 map->m_len, __func__);
560 }
561#endif
562
f7fec032
ZL
563 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
564 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
565 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
566 ext4_find_delalloc_range(inode, map->m_lblk,
567 map->m_lblk + map->m_len - 1))
568 status |= EXTENT_STATUS_DELAYED;
569 ret = ext4_es_insert_extent(inode, map->m_lblk,
570 map->m_len, map->m_pblk, status);
571 if (ret < 0)
572 retval = ret;
573 }
729f52c6
ZL
574 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
575 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 576
d100eef2 577found:
e35fd660 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 579 int ret = check_block_validity(inode, map);
6fd058f7
TT
580 if (ret != 0)
581 return ret;
582 }
583
f5ab0d1f 584 /* If it is only a block(s) look up */
c2177057 585 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
586 return retval;
587
588 /*
589 * Returns if the blocks have already allocated
590 *
591 * Note that if blocks have been preallocated
df3ab170 592 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
593 * with buffer head unmapped.
594 */
e35fd660 595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
596 return retval;
597
2a8964d6 598 /*
a25a4e1a
ZL
599 * Here we clear m_flags because after allocating an new extent,
600 * it will be set again.
2a8964d6 601 */
a25a4e1a 602 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 603
4df3d265 604 /*
f5ab0d1f
MC
605 * New blocks allocate and/or writing to uninitialized extent
606 * will possibly result in updating i_data, so we take
607 * the write lock of i_data_sem, and call get_blocks()
608 * with create == 1 flag.
4df3d265
AK
609 */
610 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
611
612 /*
613 * if the caller is from delayed allocation writeout path
614 * we have already reserved fs blocks for allocation
615 * let the underlying get_block() function know to
616 * avoid double accounting
617 */
c2177057 618 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 619 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
620 /*
621 * We need to check for EXT4 here because migrate
622 * could have changed the inode type in between
623 */
12e9b892 624 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 625 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 626 } else {
e35fd660 627 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 628
e35fd660 629 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
630 /*
631 * We allocated new blocks which will result in
632 * i_data's format changing. Force the migrate
633 * to fail by clearing migrate flags
634 */
19f5fb7a 635 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 636 }
d2a17637 637
5f634d06
AK
638 /*
639 * Update reserved blocks/metadata blocks after successful
640 * block allocation which had been deferred till now. We don't
641 * support fallocate for non extent files. So we can update
642 * reserve space here.
643 */
644 if ((retval > 0) &&
1296cc85 645 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
646 ext4_da_update_reserve_space(inode, retval, 1);
647 }
f7fec032 648 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 649 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 650
f7fec032
ZL
651 if (retval > 0) {
652 int ret;
653 unsigned long long status;
654
921f266b
DM
655#ifdef ES_AGGRESSIVE_TEST
656 if (retval != map->m_len) {
657 printk("ES len assertation failed for inode: %lu "
658 "retval %d != map->m_len %d "
659 "in %s (allocation)\n", inode->i_ino, retval,
660 map->m_len, __func__);
661 }
662#endif
663
adb23551
ZL
664 /*
665 * If the extent has been zeroed out, we don't need to update
666 * extent status tree.
667 */
668 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
669 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
670 if (ext4_es_is_written(&es))
671 goto has_zeroout;
672 }
f7fec032
ZL
673 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
674 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
675 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
676 ext4_find_delalloc_range(inode, map->m_lblk,
677 map->m_lblk + map->m_len - 1))
678 status |= EXTENT_STATUS_DELAYED;
679 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
680 map->m_pblk, status);
681 if (ret < 0)
682 retval = ret;
5356f261
AK
683 }
684
adb23551 685has_zeroout:
4df3d265 686 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 687 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 688 int ret = check_block_validity(inode, map);
6fd058f7
TT
689 if (ret != 0)
690 return ret;
691 }
0e855ac8
AK
692 return retval;
693}
694
f3bd1f3f
MC
695/* Maximum number of blocks we map for direct IO at once. */
696#define DIO_MAX_BLOCKS 4096
697
2ed88685
TT
698static int _ext4_get_block(struct inode *inode, sector_t iblock,
699 struct buffer_head *bh, int flags)
ac27a0ec 700{
3e4fdaf8 701 handle_t *handle = ext4_journal_current_handle();
2ed88685 702 struct ext4_map_blocks map;
7fb5409d 703 int ret = 0, started = 0;
f3bd1f3f 704 int dio_credits;
ac27a0ec 705
46c7f254
TM
706 if (ext4_has_inline_data(inode))
707 return -ERANGE;
708
2ed88685
TT
709 map.m_lblk = iblock;
710 map.m_len = bh->b_size >> inode->i_blkbits;
711
8b0f165f 712 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 713 /* Direct IO write... */
2ed88685
TT
714 if (map.m_len > DIO_MAX_BLOCKS)
715 map.m_len = DIO_MAX_BLOCKS;
716 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
717 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
718 dio_credits);
7fb5409d 719 if (IS_ERR(handle)) {
ac27a0ec 720 ret = PTR_ERR(handle);
2ed88685 721 return ret;
ac27a0ec 722 }
7fb5409d 723 started = 1;
ac27a0ec
DK
724 }
725
2ed88685 726 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 727 if (ret > 0) {
2ed88685
TT
728 map_bh(bh, inode->i_sb, map.m_pblk);
729 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
730 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 731 ret = 0;
ac27a0ec 732 }
7fb5409d
JK
733 if (started)
734 ext4_journal_stop(handle);
ac27a0ec
DK
735 return ret;
736}
737
2ed88685
TT
738int ext4_get_block(struct inode *inode, sector_t iblock,
739 struct buffer_head *bh, int create)
740{
741 return _ext4_get_block(inode, iblock, bh,
742 create ? EXT4_GET_BLOCKS_CREATE : 0);
743}
744
ac27a0ec
DK
745/*
746 * `handle' can be NULL if create is zero
747 */
617ba13b 748struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 749 ext4_lblk_t block, int create, int *errp)
ac27a0ec 750{
2ed88685
TT
751 struct ext4_map_blocks map;
752 struct buffer_head *bh;
ac27a0ec
DK
753 int fatal = 0, err;
754
755 J_ASSERT(handle != NULL || create == 0);
756
2ed88685
TT
757 map.m_lblk = block;
758 map.m_len = 1;
759 err = ext4_map_blocks(handle, inode, &map,
760 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 761
90b0a973
CM
762 /* ensure we send some value back into *errp */
763 *errp = 0;
764
0f70b406
TT
765 if (create && err == 0)
766 err = -ENOSPC; /* should never happen */
2ed88685
TT
767 if (err < 0)
768 *errp = err;
769 if (err <= 0)
770 return NULL;
2ed88685
TT
771
772 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 773 if (unlikely(!bh)) {
860d21e2 774 *errp = -ENOMEM;
2ed88685 775 return NULL;
ac27a0ec 776 }
2ed88685
TT
777 if (map.m_flags & EXT4_MAP_NEW) {
778 J_ASSERT(create != 0);
779 J_ASSERT(handle != NULL);
ac27a0ec 780
2ed88685
TT
781 /*
782 * Now that we do not always journal data, we should
783 * keep in mind whether this should always journal the
784 * new buffer as metadata. For now, regular file
785 * writes use ext4_get_block instead, so it's not a
786 * problem.
787 */
788 lock_buffer(bh);
789 BUFFER_TRACE(bh, "call get_create_access");
790 fatal = ext4_journal_get_create_access(handle, bh);
791 if (!fatal && !buffer_uptodate(bh)) {
792 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
793 set_buffer_uptodate(bh);
ac27a0ec 794 }
2ed88685
TT
795 unlock_buffer(bh);
796 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
797 err = ext4_handle_dirty_metadata(handle, inode, bh);
798 if (!fatal)
799 fatal = err;
800 } else {
801 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 802 }
2ed88685
TT
803 if (fatal) {
804 *errp = fatal;
805 brelse(bh);
806 bh = NULL;
807 }
808 return bh;
ac27a0ec
DK
809}
810
617ba13b 811struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 812 ext4_lblk_t block, int create, int *err)
ac27a0ec 813{
af5bc92d 814 struct buffer_head *bh;
ac27a0ec 815
617ba13b 816 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
817 if (!bh)
818 return bh;
819 if (buffer_uptodate(bh))
820 return bh;
65299a3b 821 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
822 wait_on_buffer(bh);
823 if (buffer_uptodate(bh))
824 return bh;
825 put_bh(bh);
826 *err = -EIO;
827 return NULL;
828}
829
f19d5870
TM
830int ext4_walk_page_buffers(handle_t *handle,
831 struct buffer_head *head,
832 unsigned from,
833 unsigned to,
834 int *partial,
835 int (*fn)(handle_t *handle,
836 struct buffer_head *bh))
ac27a0ec
DK
837{
838 struct buffer_head *bh;
839 unsigned block_start, block_end;
840 unsigned blocksize = head->b_size;
841 int err, ret = 0;
842 struct buffer_head *next;
843
af5bc92d
TT
844 for (bh = head, block_start = 0;
845 ret == 0 && (bh != head || !block_start);
de9a55b8 846 block_start = block_end, bh = next) {
ac27a0ec
DK
847 next = bh->b_this_page;
848 block_end = block_start + blocksize;
849 if (block_end <= from || block_start >= to) {
850 if (partial && !buffer_uptodate(bh))
851 *partial = 1;
852 continue;
853 }
854 err = (*fn)(handle, bh);
855 if (!ret)
856 ret = err;
857 }
858 return ret;
859}
860
861/*
862 * To preserve ordering, it is essential that the hole instantiation and
863 * the data write be encapsulated in a single transaction. We cannot
617ba13b 864 * close off a transaction and start a new one between the ext4_get_block()
dab291af 865 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
866 * prepare_write() is the right place.
867 *
36ade451
JK
868 * Also, this function can nest inside ext4_writepage(). In that case, we
869 * *know* that ext4_writepage() has generated enough buffer credits to do the
870 * whole page. So we won't block on the journal in that case, which is good,
871 * because the caller may be PF_MEMALLOC.
ac27a0ec 872 *
617ba13b 873 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
874 * quota file writes. If we were to commit the transaction while thus
875 * reentered, there can be a deadlock - we would be holding a quota
876 * lock, and the commit would never complete if another thread had a
877 * transaction open and was blocking on the quota lock - a ranking
878 * violation.
879 *
dab291af 880 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
881 * will _not_ run commit under these circumstances because handle->h_ref
882 * is elevated. We'll still have enough credits for the tiny quotafile
883 * write.
884 */
f19d5870
TM
885int do_journal_get_write_access(handle_t *handle,
886 struct buffer_head *bh)
ac27a0ec 887{
56d35a4c
JK
888 int dirty = buffer_dirty(bh);
889 int ret;
890
ac27a0ec
DK
891 if (!buffer_mapped(bh) || buffer_freed(bh))
892 return 0;
56d35a4c 893 /*
ebdec241 894 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
895 * the dirty bit as jbd2_journal_get_write_access() could complain
896 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 897 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
898 * the bit before releasing a page lock and thus writeback cannot
899 * ever write the buffer.
900 */
901 if (dirty)
902 clear_buffer_dirty(bh);
903 ret = ext4_journal_get_write_access(handle, bh);
904 if (!ret && dirty)
905 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
906 return ret;
ac27a0ec
DK
907}
908
8b0f165f
AP
909static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
910 struct buffer_head *bh_result, int create);
bfc1af65 911static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
912 loff_t pos, unsigned len, unsigned flags,
913 struct page **pagep, void **fsdata)
ac27a0ec 914{
af5bc92d 915 struct inode *inode = mapping->host;
1938a150 916 int ret, needed_blocks;
ac27a0ec
DK
917 handle_t *handle;
918 int retries = 0;
af5bc92d 919 struct page *page;
de9a55b8 920 pgoff_t index;
af5bc92d 921 unsigned from, to;
bfc1af65 922
9bffad1e 923 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
924 /*
925 * Reserve one block more for addition to orphan list in case
926 * we allocate blocks but write fails for some reason
927 */
928 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 929 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
930 from = pos & (PAGE_CACHE_SIZE - 1);
931 to = from + len;
ac27a0ec 932
f19d5870
TM
933 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
934 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
935 flags, pagep);
936 if (ret < 0)
47564bfb
TT
937 return ret;
938 if (ret == 1)
939 return 0;
f19d5870
TM
940 }
941
47564bfb
TT
942 /*
943 * grab_cache_page_write_begin() can take a long time if the
944 * system is thrashing due to memory pressure, or if the page
945 * is being written back. So grab it first before we start
946 * the transaction handle. This also allows us to allocate
947 * the page (if needed) without using GFP_NOFS.
948 */
949retry_grab:
950 page = grab_cache_page_write_begin(mapping, index, flags);
951 if (!page)
952 return -ENOMEM;
953 unlock_page(page);
954
955retry_journal:
9924a92a 956 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 957 if (IS_ERR(handle)) {
47564bfb
TT
958 page_cache_release(page);
959 return PTR_ERR(handle);
7479d2b9 960 }
ac27a0ec 961
47564bfb
TT
962 lock_page(page);
963 if (page->mapping != mapping) {
964 /* The page got truncated from under us */
965 unlock_page(page);
966 page_cache_release(page);
cf108bca 967 ext4_journal_stop(handle);
47564bfb 968 goto retry_grab;
cf108bca 969 }
47564bfb 970 wait_on_page_writeback(page);
cf108bca 971
744692dc 972 if (ext4_should_dioread_nolock(inode))
6e1db88d 973 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 974 else
6e1db88d 975 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
976
977 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
978 ret = ext4_walk_page_buffers(handle, page_buffers(page),
979 from, to, NULL,
980 do_journal_get_write_access);
ac27a0ec 981 }
bfc1af65
NP
982
983 if (ret) {
af5bc92d 984 unlock_page(page);
ae4d5372 985 /*
6e1db88d 986 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
987 * outside i_size. Trim these off again. Don't need
988 * i_size_read because we hold i_mutex.
1938a150
AK
989 *
990 * Add inode to orphan list in case we crash before
991 * truncate finishes
ae4d5372 992 */
ffacfa7a 993 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
994 ext4_orphan_add(handle, inode);
995
996 ext4_journal_stop(handle);
997 if (pos + len > inode->i_size) {
b9a4207d 998 ext4_truncate_failed_write(inode);
de9a55b8 999 /*
ffacfa7a 1000 * If truncate failed early the inode might
1938a150
AK
1001 * still be on the orphan list; we need to
1002 * make sure the inode is removed from the
1003 * orphan list in that case.
1004 */
1005 if (inode->i_nlink)
1006 ext4_orphan_del(NULL, inode);
1007 }
bfc1af65 1008
47564bfb
TT
1009 if (ret == -ENOSPC &&
1010 ext4_should_retry_alloc(inode->i_sb, &retries))
1011 goto retry_journal;
1012 page_cache_release(page);
1013 return ret;
1014 }
1015 *pagep = page;
ac27a0ec
DK
1016 return ret;
1017}
1018
bfc1af65
NP
1019/* For write_end() in data=journal mode */
1020static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1021{
13fca323 1022 int ret;
ac27a0ec
DK
1023 if (!buffer_mapped(bh) || buffer_freed(bh))
1024 return 0;
1025 set_buffer_uptodate(bh);
13fca323
TT
1026 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1027 clear_buffer_meta(bh);
1028 clear_buffer_prio(bh);
1029 return ret;
ac27a0ec
DK
1030}
1031
eed4333f
ZL
1032/*
1033 * We need to pick up the new inode size which generic_commit_write gave us
1034 * `file' can be NULL - eg, when called from page_symlink().
1035 *
1036 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1037 * buffers are managed internally.
1038 */
1039static int ext4_write_end(struct file *file,
1040 struct address_space *mapping,
1041 loff_t pos, unsigned len, unsigned copied,
1042 struct page *page, void *fsdata)
f8514083 1043{
f8514083 1044 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1045 struct inode *inode = mapping->host;
1046 int ret = 0, ret2;
1047 int i_size_changed = 0;
1048
1049 trace_ext4_write_end(inode, pos, len, copied);
1050 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1051 ret = ext4_jbd2_file_inode(handle, inode);
1052 if (ret) {
1053 unlock_page(page);
1054 page_cache_release(page);
1055 goto errout;
1056 }
1057 }
f8514083 1058
f19d5870
TM
1059 if (ext4_has_inline_data(inode))
1060 copied = ext4_write_inline_data_end(inode, pos, len,
1061 copied, page);
1062 else
1063 copied = block_write_end(file, mapping, pos,
1064 len, copied, page, fsdata);
f8514083
AK
1065
1066 /*
1067 * No need to use i_size_read() here, the i_size
eed4333f 1068 * cannot change under us because we hole i_mutex.
f8514083
AK
1069 *
1070 * But it's important to update i_size while still holding page lock:
1071 * page writeout could otherwise come in and zero beyond i_size.
1072 */
1073 if (pos + copied > inode->i_size) {
1074 i_size_write(inode, pos + copied);
1075 i_size_changed = 1;
1076 }
1077
eed4333f 1078 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1079 /* We need to mark inode dirty even if
1080 * new_i_size is less that inode->i_size
eed4333f 1081 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1082 */
1083 ext4_update_i_disksize(inode, (pos + copied));
1084 i_size_changed = 1;
1085 }
1086 unlock_page(page);
1087 page_cache_release(page);
1088
1089 /*
1090 * Don't mark the inode dirty under page lock. First, it unnecessarily
1091 * makes the holding time of page lock longer. Second, it forces lock
1092 * ordering of page lock and transaction start for journaling
1093 * filesystems.
1094 */
1095 if (i_size_changed)
1096 ext4_mark_inode_dirty(handle, inode);
1097
74d553aa
TT
1098 if (copied < 0)
1099 ret = copied;
ffacfa7a 1100 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1101 /* if we have allocated more blocks and copied
1102 * less. We will have blocks allocated outside
1103 * inode->i_size. So truncate them
1104 */
1105 ext4_orphan_add(handle, inode);
74d553aa 1106errout:
617ba13b 1107 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1108 if (!ret)
1109 ret = ret2;
bfc1af65 1110
f8514083 1111 if (pos + len > inode->i_size) {
b9a4207d 1112 ext4_truncate_failed_write(inode);
de9a55b8 1113 /*
ffacfa7a 1114 * If truncate failed early the inode might still be
f8514083
AK
1115 * on the orphan list; we need to make sure the inode
1116 * is removed from the orphan list in that case.
1117 */
1118 if (inode->i_nlink)
1119 ext4_orphan_del(NULL, inode);
1120 }
1121
bfc1af65 1122 return ret ? ret : copied;
ac27a0ec
DK
1123}
1124
bfc1af65 1125static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1126 struct address_space *mapping,
1127 loff_t pos, unsigned len, unsigned copied,
1128 struct page *page, void *fsdata)
ac27a0ec 1129{
617ba13b 1130 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1131 struct inode *inode = mapping->host;
ac27a0ec
DK
1132 int ret = 0, ret2;
1133 int partial = 0;
bfc1af65 1134 unsigned from, to;
cf17fea6 1135 loff_t new_i_size;
ac27a0ec 1136
9bffad1e 1137 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1138 from = pos & (PAGE_CACHE_SIZE - 1);
1139 to = from + len;
1140
441c8508
CW
1141 BUG_ON(!ext4_handle_valid(handle));
1142
3fdcfb66
TM
1143 if (ext4_has_inline_data(inode))
1144 copied = ext4_write_inline_data_end(inode, pos, len,
1145 copied, page);
1146 else {
1147 if (copied < len) {
1148 if (!PageUptodate(page))
1149 copied = 0;
1150 page_zero_new_buffers(page, from+copied, to);
1151 }
ac27a0ec 1152
3fdcfb66
TM
1153 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1154 to, &partial, write_end_fn);
1155 if (!partial)
1156 SetPageUptodate(page);
1157 }
cf17fea6
AK
1158 new_i_size = pos + copied;
1159 if (new_i_size > inode->i_size)
bfc1af65 1160 i_size_write(inode, pos+copied);
19f5fb7a 1161 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1162 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1163 if (new_i_size > EXT4_I(inode)->i_disksize) {
1164 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1165 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1166 if (!ret)
1167 ret = ret2;
1168 }
bfc1af65 1169
cf108bca 1170 unlock_page(page);
f8514083 1171 page_cache_release(page);
ffacfa7a 1172 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1173 /* if we have allocated more blocks and copied
1174 * less. We will have blocks allocated outside
1175 * inode->i_size. So truncate them
1176 */
1177 ext4_orphan_add(handle, inode);
1178
617ba13b 1179 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1180 if (!ret)
1181 ret = ret2;
f8514083 1182 if (pos + len > inode->i_size) {
b9a4207d 1183 ext4_truncate_failed_write(inode);
de9a55b8 1184 /*
ffacfa7a 1185 * If truncate failed early the inode might still be
f8514083
AK
1186 * on the orphan list; we need to make sure the inode
1187 * is removed from the orphan list in that case.
1188 */
1189 if (inode->i_nlink)
1190 ext4_orphan_del(NULL, inode);
1191 }
bfc1af65
NP
1192
1193 return ret ? ret : copied;
ac27a0ec 1194}
d2a17637 1195
386ad67c
LC
1196/*
1197 * Reserve a metadata for a single block located at lblock
1198 */
1199static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1200{
1201 int retries = 0;
1202 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1203 struct ext4_inode_info *ei = EXT4_I(inode);
1204 unsigned int md_needed;
1205 ext4_lblk_t save_last_lblock;
1206 int save_len;
1207
1208 /*
1209 * recalculate the amount of metadata blocks to reserve
1210 * in order to allocate nrblocks
1211 * worse case is one extent per block
1212 */
1213repeat:
1214 spin_lock(&ei->i_block_reservation_lock);
1215 /*
1216 * ext4_calc_metadata_amount() has side effects, which we have
1217 * to be prepared undo if we fail to claim space.
1218 */
1219 save_len = ei->i_da_metadata_calc_len;
1220 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1221 md_needed = EXT4_NUM_B2C(sbi,
1222 ext4_calc_metadata_amount(inode, lblock));
1223 trace_ext4_da_reserve_space(inode, md_needed);
1224
1225 /*
1226 * We do still charge estimated metadata to the sb though;
1227 * we cannot afford to run out of free blocks.
1228 */
1229 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1230 ei->i_da_metadata_calc_len = save_len;
1231 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1232 spin_unlock(&ei->i_block_reservation_lock);
1233 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1234 cond_resched();
1235 goto repeat;
1236 }
1237 return -ENOSPC;
1238 }
1239 ei->i_reserved_meta_blocks += md_needed;
1240 spin_unlock(&ei->i_block_reservation_lock);
1241
1242 return 0; /* success */
1243}
1244
9d0be502 1245/*
7b415bf6 1246 * Reserve a single cluster located at lblock
9d0be502 1247 */
01f49d0b 1248static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1249{
030ba6bc 1250 int retries = 0;
60e58e0f 1251 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1252 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1253 unsigned int md_needed;
5dd4056d 1254 int ret;
03179fe9
TT
1255 ext4_lblk_t save_last_lblock;
1256 int save_len;
1257
1258 /*
1259 * We will charge metadata quota at writeout time; this saves
1260 * us from metadata over-estimation, though we may go over by
1261 * a small amount in the end. Here we just reserve for data.
1262 */
1263 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1264 if (ret)
1265 return ret;
d2a17637
MC
1266
1267 /*
1268 * recalculate the amount of metadata blocks to reserve
1269 * in order to allocate nrblocks
1270 * worse case is one extent per block
1271 */
030ba6bc 1272repeat:
0637c6f4 1273 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1274 /*
1275 * ext4_calc_metadata_amount() has side effects, which we have
1276 * to be prepared undo if we fail to claim space.
1277 */
1278 save_len = ei->i_da_metadata_calc_len;
1279 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1280 md_needed = EXT4_NUM_B2C(sbi,
1281 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1282 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1283
72b8ab9d
ES
1284 /*
1285 * We do still charge estimated metadata to the sb though;
1286 * we cannot afford to run out of free blocks.
1287 */
e7d5f315 1288 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1289 ei->i_da_metadata_calc_len = save_len;
1290 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1291 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1292 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1293 cond_resched();
030ba6bc
AK
1294 goto repeat;
1295 }
03179fe9 1296 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1297 return -ENOSPC;
1298 }
9d0be502 1299 ei->i_reserved_data_blocks++;
0637c6f4
TT
1300 ei->i_reserved_meta_blocks += md_needed;
1301 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1302
d2a17637
MC
1303 return 0; /* success */
1304}
1305
12219aea 1306static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1307{
1308 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1309 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1310
cd213226
MC
1311 if (!to_free)
1312 return; /* Nothing to release, exit */
1313
d2a17637 1314 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1315
5a58ec87 1316 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1317 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1318 /*
0637c6f4
TT
1319 * if there aren't enough reserved blocks, then the
1320 * counter is messed up somewhere. Since this
1321 * function is called from invalidate page, it's
1322 * harmless to return without any action.
cd213226 1323 */
8de5c325 1324 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1325 "ino %lu, to_free %d with only %d reserved "
1084f252 1326 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1327 ei->i_reserved_data_blocks);
1328 WARN_ON(1);
1329 to_free = ei->i_reserved_data_blocks;
cd213226 1330 }
0637c6f4 1331 ei->i_reserved_data_blocks -= to_free;
cd213226 1332
0637c6f4
TT
1333 if (ei->i_reserved_data_blocks == 0) {
1334 /*
1335 * We can release all of the reserved metadata blocks
1336 * only when we have written all of the delayed
1337 * allocation blocks.
7b415bf6
AK
1338 * Note that in case of bigalloc, i_reserved_meta_blocks,
1339 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1340 */
57042651 1341 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1342 ei->i_reserved_meta_blocks);
ee5f4d9c 1343 ei->i_reserved_meta_blocks = 0;
9d0be502 1344 ei->i_da_metadata_calc_len = 0;
0637c6f4 1345 }
d2a17637 1346
72b8ab9d 1347 /* update fs dirty data blocks counter */
57042651 1348 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1349
d2a17637 1350 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1351
7b415bf6 1352 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1353}
1354
1355static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1356 unsigned int offset,
1357 unsigned int length)
d2a17637
MC
1358{
1359 int to_release = 0;
1360 struct buffer_head *head, *bh;
1361 unsigned int curr_off = 0;
7b415bf6
AK
1362 struct inode *inode = page->mapping->host;
1363 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1364 unsigned int stop = offset + length;
7b415bf6 1365 int num_clusters;
51865fda 1366 ext4_fsblk_t lblk;
d2a17637 1367
ca99fdd2
LC
1368 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1369
d2a17637
MC
1370 head = page_buffers(page);
1371 bh = head;
1372 do {
1373 unsigned int next_off = curr_off + bh->b_size;
1374
ca99fdd2
LC
1375 if (next_off > stop)
1376 break;
1377
d2a17637
MC
1378 if ((offset <= curr_off) && (buffer_delay(bh))) {
1379 to_release++;
1380 clear_buffer_delay(bh);
1381 }
1382 curr_off = next_off;
1383 } while ((bh = bh->b_this_page) != head);
7b415bf6 1384
51865fda
ZL
1385 if (to_release) {
1386 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1387 ext4_es_remove_extent(inode, lblk, to_release);
1388 }
1389
7b415bf6
AK
1390 /* If we have released all the blocks belonging to a cluster, then we
1391 * need to release the reserved space for that cluster. */
1392 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1393 while (num_clusters > 0) {
7b415bf6
AK
1394 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1395 ((num_clusters - 1) << sbi->s_cluster_bits);
1396 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1397 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1398 ext4_da_release_space(inode, 1);
1399
1400 num_clusters--;
1401 }
d2a17637 1402}
ac27a0ec 1403
64769240
AT
1404/*
1405 * Delayed allocation stuff
1406 */
1407
97a851ed
JK
1408static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd);
1409
64769240
AT
1410/*
1411 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1412 * them with writepage() call back
64769240
AT
1413 *
1414 * @mpd->inode: inode
1415 * @mpd->first_page: first page of the extent
1416 * @mpd->next_page: page after the last page of the extent
64769240
AT
1417 *
1418 * By the time mpage_da_submit_io() is called we expect all blocks
1419 * to be allocated. this may be wrong if allocation failed.
1420 *
1421 * As pages are already locked by write_cache_pages(), we can't use it
1422 */
1de3e3df
TT
1423static int mpage_da_submit_io(struct mpage_da_data *mpd,
1424 struct ext4_map_blocks *map)
64769240 1425{
791b7f08
AK
1426 struct pagevec pvec;
1427 unsigned long index, end;
1428 int ret = 0, err, nr_pages, i;
1429 struct inode *inode = mpd->inode;
1430 struct address_space *mapping = inode->i_mapping;
cb20d518 1431 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1432 unsigned int len, block_start;
1433 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1434 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1435 struct ext4_io_submit io_submit;
64769240
AT
1436
1437 BUG_ON(mpd->next_page <= mpd->first_page);
97a851ed
JK
1438 ext4_io_submit_init(&io_submit, mpd->wbc);
1439 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1440 if (!io_submit.io_end) {
1441 ext4_da_block_invalidatepages(mpd);
1442 return -ENOMEM;
1443 }
791b7f08
AK
1444 /*
1445 * We need to start from the first_page to the next_page - 1
1446 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1447 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1448 * at the currently mapped buffer_heads.
1449 */
64769240
AT
1450 index = mpd->first_page;
1451 end = mpd->next_page - 1;
1452
791b7f08 1453 pagevec_init(&pvec, 0);
64769240 1454 while (index <= end) {
791b7f08 1455 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1456 if (nr_pages == 0)
1457 break;
1458 for (i = 0; i < nr_pages; i++) {
f8bec370 1459 int skip_page = 0;
64769240
AT
1460 struct page *page = pvec.pages[i];
1461
791b7f08
AK
1462 index = page->index;
1463 if (index > end)
1464 break;
cb20d518
TT
1465
1466 if (index == size >> PAGE_CACHE_SHIFT)
1467 len = size & ~PAGE_CACHE_MASK;
1468 else
1469 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1470 if (map) {
1471 cur_logical = index << (PAGE_CACHE_SHIFT -
1472 inode->i_blkbits);
1473 pblock = map->m_pblk + (cur_logical -
1474 map->m_lblk);
1475 }
791b7f08
AK
1476 index++;
1477
1478 BUG_ON(!PageLocked(page));
1479 BUG_ON(PageWriteback(page));
1480
3ecdb3a1
TT
1481 bh = page_bufs = page_buffers(page);
1482 block_start = 0;
64769240 1483 do {
1de3e3df
TT
1484 if (map && (cur_logical >= map->m_lblk) &&
1485 (cur_logical <= (map->m_lblk +
1486 (map->m_len - 1)))) {
29fa89d0
AK
1487 if (buffer_delay(bh)) {
1488 clear_buffer_delay(bh);
1489 bh->b_blocknr = pblock;
29fa89d0 1490 }
1de3e3df
TT
1491 if (buffer_unwritten(bh) ||
1492 buffer_mapped(bh))
1493 BUG_ON(bh->b_blocknr != pblock);
1494 if (map->m_flags & EXT4_MAP_UNINIT)
1495 set_buffer_uninit(bh);
1496 clear_buffer_unwritten(bh);
1497 }
29fa89d0 1498
13a79a47
YY
1499 /*
1500 * skip page if block allocation undone and
1501 * block is dirty
1502 */
1503 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1504 skip_page = 1;
3ecdb3a1
TT
1505 bh = bh->b_this_page;
1506 block_start += bh->b_size;
64769240
AT
1507 cur_logical++;
1508 pblock++;
1de3e3df
TT
1509 } while (bh != page_bufs);
1510
f8bec370
JK
1511 if (skip_page) {
1512 unlock_page(page);
1513 continue;
1514 }
cb20d518 1515
97498956 1516 clear_page_dirty_for_io(page);
fe089c77
JK
1517 err = ext4_bio_write_page(&io_submit, page, len,
1518 mpd->wbc);
cb20d518 1519 if (!err)
a1d6cc56 1520 mpd->pages_written++;
64769240
AT
1521 /*
1522 * In error case, we have to continue because
1523 * remaining pages are still locked
64769240
AT
1524 */
1525 if (ret == 0)
1526 ret = err;
64769240
AT
1527 }
1528 pagevec_release(&pvec);
1529 }
bd2d0210 1530 ext4_io_submit(&io_submit);
97a851ed
JK
1531 /* Drop io_end reference we got from init */
1532 ext4_put_io_end_defer(io_submit.io_end);
64769240 1533 return ret;
64769240
AT
1534}
1535
c7f5938a 1536static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1537{
1538 int nr_pages, i;
1539 pgoff_t index, end;
1540 struct pagevec pvec;
1541 struct inode *inode = mpd->inode;
1542 struct address_space *mapping = inode->i_mapping;
51865fda 1543 ext4_lblk_t start, last;
c4a0c46e 1544
c7f5938a
CW
1545 index = mpd->first_page;
1546 end = mpd->next_page - 1;
51865fda
ZL
1547
1548 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1549 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1550 ext4_es_remove_extent(inode, start, last - start + 1);
1551
66bea92c 1552 pagevec_init(&pvec, 0);
c4a0c46e
AK
1553 while (index <= end) {
1554 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1555 if (nr_pages == 0)
1556 break;
1557 for (i = 0; i < nr_pages; i++) {
1558 struct page *page = pvec.pages[i];
9b1d0998 1559 if (page->index > end)
c4a0c46e 1560 break;
c4a0c46e
AK
1561 BUG_ON(!PageLocked(page));
1562 BUG_ON(PageWriteback(page));
d47992f8 1563 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
c4a0c46e
AK
1564 ClearPageUptodate(page);
1565 unlock_page(page);
1566 }
9b1d0998
JK
1567 index = pvec.pages[nr_pages - 1]->index + 1;
1568 pagevec_release(&pvec);
c4a0c46e
AK
1569 }
1570 return;
1571}
1572
df22291f
AK
1573static void ext4_print_free_blocks(struct inode *inode)
1574{
1575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1576 struct super_block *sb = inode->i_sb;
f78ee70d 1577 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1578
1579 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1580 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1581 ext4_count_free_clusters(sb)));
92b97816
TT
1582 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1583 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1584 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1585 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1586 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1587 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1588 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1589 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1590 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1591 ei->i_reserved_data_blocks);
92b97816 1592 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1593 ei->i_reserved_meta_blocks);
1594 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1595 ei->i_allocated_meta_blocks);
df22291f
AK
1596 return;
1597}
1598
64769240 1599/*
5a87b7a5
TT
1600 * mpage_da_map_and_submit - go through given space, map them
1601 * if necessary, and then submit them for I/O
64769240 1602 *
8dc207c0 1603 * @mpd - bh describing space
64769240
AT
1604 *
1605 * The function skips space we know is already mapped to disk blocks.
1606 *
64769240 1607 */
5a87b7a5 1608static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1609{
2ac3b6e0 1610 int err, blks, get_blocks_flags;
1de3e3df 1611 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1612 sector_t next = mpd->b_blocknr;
1613 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1614 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1615 handle_t *handle = NULL;
64769240
AT
1616
1617 /*
5a87b7a5
TT
1618 * If the blocks are mapped already, or we couldn't accumulate
1619 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1620 */
5a87b7a5
TT
1621 if ((mpd->b_size == 0) ||
1622 ((mpd->b_state & (1 << BH_Mapped)) &&
1623 !(mpd->b_state & (1 << BH_Delay)) &&
1624 !(mpd->b_state & (1 << BH_Unwritten))))
1625 goto submit_io;
2fa3cdfb
TT
1626
1627 handle = ext4_journal_current_handle();
1628 BUG_ON(!handle);
1629
79ffab34 1630 /*
79e83036 1631 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1632 * blocks, or to convert an uninitialized extent to be
1633 * initialized (in the case where we have written into
1634 * one or more preallocated blocks).
1635 *
1636 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1637 * indicate that we are on the delayed allocation path. This
1638 * affects functions in many different parts of the allocation
1639 * call path. This flag exists primarily because we don't
79e83036 1640 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1641 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1642 * inode's allocation semaphore is taken.
1643 *
1644 * If the blocks in questions were delalloc blocks, set
1645 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1646 * variables are updated after the blocks have been allocated.
79ffab34 1647 */
2ed88685
TT
1648 map.m_lblk = next;
1649 map.m_len = max_blocks;
27dd4385
LC
1650 /*
1651 * We're in delalloc path and it is possible that we're going to
1652 * need more metadata blocks than previously reserved. However
1653 * we must not fail because we're in writeback and there is
1654 * nothing we can do about it so it might result in data loss.
1655 * So use reserved blocks to allocate metadata if possible.
1656 */
1657 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1658 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1659 if (ext4_should_dioread_nolock(mpd->inode))
1660 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1661 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1662 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1663
27dd4385 1664
2ed88685 1665 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1666 if (blks < 0) {
e3570639
ES
1667 struct super_block *sb = mpd->inode->i_sb;
1668
2fa3cdfb 1669 err = blks;
ed5bde0b 1670 /*
5a87b7a5 1671 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1672 * appears to be free blocks we will just let
1673 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1674 */
1675 if (err == -EAGAIN)
5a87b7a5 1676 goto submit_io;
df22291f 1677
5dee5437 1678 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1679 mpd->retval = err;
5a87b7a5 1680 goto submit_io;
df22291f
AK
1681 }
1682
c4a0c46e 1683 /*
ed5bde0b
TT
1684 * get block failure will cause us to loop in
1685 * writepages, because a_ops->writepage won't be able
1686 * to make progress. The page will be redirtied by
1687 * writepage and writepages will again try to write
1688 * the same.
c4a0c46e 1689 */
e3570639
ES
1690 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1691 ext4_msg(sb, KERN_CRIT,
1692 "delayed block allocation failed for inode %lu "
1693 "at logical offset %llu with max blocks %zd "
1694 "with error %d", mpd->inode->i_ino,
1695 (unsigned long long) next,
1696 mpd->b_size >> mpd->inode->i_blkbits, err);
1697 ext4_msg(sb, KERN_CRIT,
01a523eb 1698 "This should not happen!! Data will be lost");
e3570639
ES
1699 if (err == -ENOSPC)
1700 ext4_print_free_blocks(mpd->inode);
030ba6bc 1701 }
2fa3cdfb 1702 /* invalidate all the pages */
c7f5938a 1703 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1704
1705 /* Mark this page range as having been completed */
1706 mpd->io_done = 1;
5a87b7a5 1707 return;
c4a0c46e 1708 }
2fa3cdfb
TT
1709 BUG_ON(blks == 0);
1710
1de3e3df 1711 mapp = &map;
2ed88685
TT
1712 if (map.m_flags & EXT4_MAP_NEW) {
1713 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1714 int i;
64769240 1715
2ed88685
TT
1716 for (i = 0; i < map.m_len; i++)
1717 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1718 }
1719
1720 /*
03f5d8bc 1721 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1722 */
1723 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1724 if (disksize > i_size_read(mpd->inode))
1725 disksize = i_size_read(mpd->inode);
1726 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1727 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1728 err = ext4_mark_inode_dirty(handle, mpd->inode);
1729 if (err)
1730 ext4_error(mpd->inode->i_sb,
1731 "Failed to mark inode %lu dirty",
1732 mpd->inode->i_ino);
2fa3cdfb
TT
1733 }
1734
5a87b7a5 1735submit_io:
1de3e3df 1736 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1737 mpd->io_done = 1;
64769240
AT
1738}
1739
bf068ee2
AK
1740#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1741 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1742
1743/*
1744 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1745 *
1746 * @mpd->lbh - extent of blocks
1747 * @logical - logical number of the block in the file
b6a8e62f 1748 * @b_state - b_state of the buffer head added
64769240
AT
1749 *
1750 * the function is used to collect contig. blocks in same state
1751 */
b6a8e62f 1752static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1753 unsigned long b_state)
64769240 1754{
64769240 1755 sector_t next;
b6a8e62f
JK
1756 int blkbits = mpd->inode->i_blkbits;
1757 int nrblocks = mpd->b_size >> blkbits;
64769240 1758
c445e3e0
ES
1759 /*
1760 * XXX Don't go larger than mballoc is willing to allocate
1761 * This is a stopgap solution. We eventually need to fold
1762 * mpage_da_submit_io() into this function and then call
79e83036 1763 * ext4_map_blocks() multiple times in a loop
c445e3e0 1764 */
b6a8e62f 1765 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1766 goto flush_it;
1767
b6a8e62f
JK
1768 /* check if the reserved journal credits might overflow */
1769 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1770 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1771 /*
1772 * With non-extent format we are limited by the journal
1773 * credit available. Total credit needed to insert
1774 * nrblocks contiguous blocks is dependent on the
1775 * nrblocks. So limit nrblocks.
1776 */
1777 goto flush_it;
525f4ed8
MC
1778 }
1779 }
64769240
AT
1780 /*
1781 * First block in the extent
1782 */
8dc207c0
TT
1783 if (mpd->b_size == 0) {
1784 mpd->b_blocknr = logical;
b6a8e62f 1785 mpd->b_size = 1 << blkbits;
8dc207c0 1786 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1787 return;
1788 }
1789
8dc207c0 1790 next = mpd->b_blocknr + nrblocks;
64769240
AT
1791 /*
1792 * Can we merge the block to our big extent?
1793 */
8dc207c0 1794 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1795 mpd->b_size += 1 << blkbits;
64769240
AT
1796 return;
1797 }
1798
525f4ed8 1799flush_it:
64769240
AT
1800 /*
1801 * We couldn't merge the block to our extent, so we
1802 * need to flush current extent and start new one
1803 */
5a87b7a5 1804 mpage_da_map_and_submit(mpd);
a1d6cc56 1805 return;
64769240
AT
1806}
1807
c364b22c 1808static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1809{
c364b22c 1810 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1811}
1812
5356f261
AK
1813/*
1814 * This function is grabs code from the very beginning of
1815 * ext4_map_blocks, but assumes that the caller is from delayed write
1816 * time. This function looks up the requested blocks and sets the
1817 * buffer delay bit under the protection of i_data_sem.
1818 */
1819static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1820 struct ext4_map_blocks *map,
1821 struct buffer_head *bh)
1822{
d100eef2 1823 struct extent_status es;
5356f261
AK
1824 int retval;
1825 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1826#ifdef ES_AGGRESSIVE_TEST
1827 struct ext4_map_blocks orig_map;
1828
1829 memcpy(&orig_map, map, sizeof(*map));
1830#endif
5356f261
AK
1831
1832 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1833 invalid_block = ~0;
1834
1835 map->m_flags = 0;
1836 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1837 "logical block %lu\n", inode->i_ino, map->m_len,
1838 (unsigned long) map->m_lblk);
d100eef2
ZL
1839
1840 /* Lookup extent status tree firstly */
1841 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1842
1843 if (ext4_es_is_hole(&es)) {
1844 retval = 0;
1845 down_read((&EXT4_I(inode)->i_data_sem));
1846 goto add_delayed;
1847 }
1848
1849 /*
1850 * Delayed extent could be allocated by fallocate.
1851 * So we need to check it.
1852 */
1853 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1854 map_bh(bh, inode->i_sb, invalid_block);
1855 set_buffer_new(bh);
1856 set_buffer_delay(bh);
1857 return 0;
1858 }
1859
1860 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1861 retval = es.es_len - (iblock - es.es_lblk);
1862 if (retval > map->m_len)
1863 retval = map->m_len;
1864 map->m_len = retval;
1865 if (ext4_es_is_written(&es))
1866 map->m_flags |= EXT4_MAP_MAPPED;
1867 else if (ext4_es_is_unwritten(&es))
1868 map->m_flags |= EXT4_MAP_UNWRITTEN;
1869 else
1870 BUG_ON(1);
1871
921f266b
DM
1872#ifdef ES_AGGRESSIVE_TEST
1873 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1874#endif
d100eef2
ZL
1875 return retval;
1876 }
1877
5356f261
AK
1878 /*
1879 * Try to see if we can get the block without requesting a new
1880 * file system block.
1881 */
1882 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1883 if (ext4_has_inline_data(inode)) {
1884 /*
1885 * We will soon create blocks for this page, and let
1886 * us pretend as if the blocks aren't allocated yet.
1887 * In case of clusters, we have to handle the work
1888 * of mapping from cluster so that the reserved space
1889 * is calculated properly.
1890 */
1891 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1892 ext4_find_delalloc_cluster(inode, map->m_lblk))
1893 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1894 retval = 0;
1895 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1896 retval = ext4_ext_map_blocks(NULL, inode, map,
1897 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1898 else
d100eef2
ZL
1899 retval = ext4_ind_map_blocks(NULL, inode, map,
1900 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1901
d100eef2 1902add_delayed:
5356f261 1903 if (retval == 0) {
f7fec032 1904 int ret;
5356f261
AK
1905 /*
1906 * XXX: __block_prepare_write() unmaps passed block,
1907 * is it OK?
1908 */
386ad67c
LC
1909 /*
1910 * If the block was allocated from previously allocated cluster,
1911 * then we don't need to reserve it again. However we still need
1912 * to reserve metadata for every block we're going to write.
1913 */
5356f261 1914 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1915 ret = ext4_da_reserve_space(inode, iblock);
1916 if (ret) {
5356f261 1917 /* not enough space to reserve */
f7fec032 1918 retval = ret;
5356f261 1919 goto out_unlock;
f7fec032 1920 }
386ad67c
LC
1921 } else {
1922 ret = ext4_da_reserve_metadata(inode, iblock);
1923 if (ret) {
1924 /* not enough space to reserve */
1925 retval = ret;
1926 goto out_unlock;
1927 }
5356f261
AK
1928 }
1929
f7fec032
ZL
1930 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1931 ~0, EXTENT_STATUS_DELAYED);
1932 if (ret) {
1933 retval = ret;
51865fda 1934 goto out_unlock;
f7fec032 1935 }
51865fda 1936
5356f261
AK
1937 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1938 * and it should not appear on the bh->b_state.
1939 */
1940 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1941
1942 map_bh(bh, inode->i_sb, invalid_block);
1943 set_buffer_new(bh);
1944 set_buffer_delay(bh);
f7fec032
ZL
1945 } else if (retval > 0) {
1946 int ret;
1947 unsigned long long status;
1948
921f266b
DM
1949#ifdef ES_AGGRESSIVE_TEST
1950 if (retval != map->m_len) {
1951 printk("ES len assertation failed for inode: %lu "
1952 "retval %d != map->m_len %d "
1953 "in %s (lookup)\n", inode->i_ino, retval,
1954 map->m_len, __func__);
1955 }
1956#endif
1957
f7fec032
ZL
1958 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1959 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1960 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1961 map->m_pblk, status);
1962 if (ret != 0)
1963 retval = ret;
5356f261
AK
1964 }
1965
1966out_unlock:
1967 up_read((&EXT4_I(inode)->i_data_sem));
1968
1969 return retval;
1970}
1971
64769240 1972/*
b920c755
TT
1973 * This is a special get_blocks_t callback which is used by
1974 * ext4_da_write_begin(). It will either return mapped block or
1975 * reserve space for a single block.
29fa89d0
AK
1976 *
1977 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1978 * We also have b_blocknr = -1 and b_bdev initialized properly
1979 *
1980 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1981 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1982 * initialized properly.
64769240 1983 */
9c3569b5
TM
1984int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1985 struct buffer_head *bh, int create)
64769240 1986{
2ed88685 1987 struct ext4_map_blocks map;
64769240
AT
1988 int ret = 0;
1989
1990 BUG_ON(create == 0);
2ed88685
TT
1991 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1992
1993 map.m_lblk = iblock;
1994 map.m_len = 1;
64769240
AT
1995
1996 /*
1997 * first, we need to know whether the block is allocated already
1998 * preallocated blocks are unmapped but should treated
1999 * the same as allocated blocks.
2000 */
5356f261
AK
2001 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2002 if (ret <= 0)
2ed88685 2003 return ret;
64769240 2004
2ed88685
TT
2005 map_bh(bh, inode->i_sb, map.m_pblk);
2006 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2007
2008 if (buffer_unwritten(bh)) {
2009 /* A delayed write to unwritten bh should be marked
2010 * new and mapped. Mapped ensures that we don't do
2011 * get_block multiple times when we write to the same
2012 * offset and new ensures that we do proper zero out
2013 * for partial write.
2014 */
2015 set_buffer_new(bh);
c8205636 2016 set_buffer_mapped(bh);
2ed88685
TT
2017 }
2018 return 0;
64769240 2019}
61628a3f 2020
62e086be
AK
2021static int bget_one(handle_t *handle, struct buffer_head *bh)
2022{
2023 get_bh(bh);
2024 return 0;
2025}
2026
2027static int bput_one(handle_t *handle, struct buffer_head *bh)
2028{
2029 put_bh(bh);
2030 return 0;
2031}
2032
2033static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2034 unsigned int len)
2035{
2036 struct address_space *mapping = page->mapping;
2037 struct inode *inode = mapping->host;
3fdcfb66 2038 struct buffer_head *page_bufs = NULL;
62e086be 2039 handle_t *handle = NULL;
3fdcfb66
TM
2040 int ret = 0, err = 0;
2041 int inline_data = ext4_has_inline_data(inode);
2042 struct buffer_head *inode_bh = NULL;
62e086be 2043
cb20d518 2044 ClearPageChecked(page);
3fdcfb66
TM
2045
2046 if (inline_data) {
2047 BUG_ON(page->index != 0);
2048 BUG_ON(len > ext4_get_max_inline_size(inode));
2049 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2050 if (inode_bh == NULL)
2051 goto out;
2052 } else {
2053 page_bufs = page_buffers(page);
2054 if (!page_bufs) {
2055 BUG();
2056 goto out;
2057 }
2058 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2059 NULL, bget_one);
2060 }
62e086be
AK
2061 /* As soon as we unlock the page, it can go away, but we have
2062 * references to buffers so we are safe */
2063 unlock_page(page);
2064
9924a92a
TT
2065 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2066 ext4_writepage_trans_blocks(inode));
62e086be
AK
2067 if (IS_ERR(handle)) {
2068 ret = PTR_ERR(handle);
2069 goto out;
2070 }
2071
441c8508
CW
2072 BUG_ON(!ext4_handle_valid(handle));
2073
3fdcfb66
TM
2074 if (inline_data) {
2075 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2076
3fdcfb66
TM
2077 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2078
2079 } else {
2080 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2081 do_journal_get_write_access);
2082
2083 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2084 write_end_fn);
2085 }
62e086be
AK
2086 if (ret == 0)
2087 ret = err;
2d859db3 2088 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2089 err = ext4_journal_stop(handle);
2090 if (!ret)
2091 ret = err;
2092
3fdcfb66
TM
2093 if (!ext4_has_inline_data(inode))
2094 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2095 NULL, bput_one);
19f5fb7a 2096 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2097out:
3fdcfb66 2098 brelse(inode_bh);
62e086be
AK
2099 return ret;
2100}
2101
61628a3f 2102/*
43ce1d23
AK
2103 * Note that we don't need to start a transaction unless we're journaling data
2104 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2105 * need to file the inode to the transaction's list in ordered mode because if
2106 * we are writing back data added by write(), the inode is already there and if
25985edc 2107 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2108 * transaction the data will hit the disk. In case we are journaling data, we
2109 * cannot start transaction directly because transaction start ranks above page
2110 * lock so we have to do some magic.
2111 *
b920c755
TT
2112 * This function can get called via...
2113 * - ext4_da_writepages after taking page lock (have journal handle)
2114 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2115 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2116 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2117 *
2118 * We don't do any block allocation in this function. If we have page with
2119 * multiple blocks we need to write those buffer_heads that are mapped. This
2120 * is important for mmaped based write. So if we do with blocksize 1K
2121 * truncate(f, 1024);
2122 * a = mmap(f, 0, 4096);
2123 * a[0] = 'a';
2124 * truncate(f, 4096);
2125 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2126 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2127 * do_wp_page). So writepage should write the first block. If we modify
2128 * the mmap area beyond 1024 we will again get a page_fault and the
2129 * page_mkwrite callback will do the block allocation and mark the
2130 * buffer_heads mapped.
2131 *
2132 * We redirty the page if we have any buffer_heads that is either delay or
2133 * unwritten in the page.
2134 *
2135 * We can get recursively called as show below.
2136 *
2137 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2138 * ext4_writepage()
2139 *
2140 * But since we don't do any block allocation we should not deadlock.
2141 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2142 */
43ce1d23 2143static int ext4_writepage(struct page *page,
62e086be 2144 struct writeback_control *wbc)
64769240 2145{
f8bec370 2146 int ret = 0;
61628a3f 2147 loff_t size;
498e5f24 2148 unsigned int len;
744692dc 2149 struct buffer_head *page_bufs = NULL;
61628a3f 2150 struct inode *inode = page->mapping->host;
36ade451 2151 struct ext4_io_submit io_submit;
61628a3f 2152
a9c667f8 2153 trace_ext4_writepage(page);
f0e6c985
AK
2154 size = i_size_read(inode);
2155 if (page->index == size >> PAGE_CACHE_SHIFT)
2156 len = size & ~PAGE_CACHE_MASK;
2157 else
2158 len = PAGE_CACHE_SIZE;
64769240 2159
a42afc5f 2160 page_bufs = page_buffers(page);
a42afc5f 2161 /*
fe386132
JK
2162 * We cannot do block allocation or other extent handling in this
2163 * function. If there are buffers needing that, we have to redirty
2164 * the page. But we may reach here when we do a journal commit via
2165 * journal_submit_inode_data_buffers() and in that case we must write
2166 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2167 */
f19d5870
TM
2168 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2169 ext4_bh_delay_or_unwritten)) {
f8bec370 2170 redirty_page_for_writepage(wbc, page);
fe386132
JK
2171 if (current->flags & PF_MEMALLOC) {
2172 /*
2173 * For memory cleaning there's no point in writing only
2174 * some buffers. So just bail out. Warn if we came here
2175 * from direct reclaim.
2176 */
2177 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2178 == PF_MEMALLOC);
f0e6c985
AK
2179 unlock_page(page);
2180 return 0;
2181 }
a42afc5f 2182 }
64769240 2183
cb20d518 2184 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2185 /*
2186 * It's mmapped pagecache. Add buffers and journal it. There
2187 * doesn't seem much point in redirtying the page here.
2188 */
3f0ca309 2189 return __ext4_journalled_writepage(page, len);
43ce1d23 2190
97a851ed
JK
2191 ext4_io_submit_init(&io_submit, wbc);
2192 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2193 if (!io_submit.io_end) {
2194 redirty_page_for_writepage(wbc, page);
2195 unlock_page(page);
2196 return -ENOMEM;
2197 }
36ade451
JK
2198 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2199 ext4_io_submit(&io_submit);
97a851ed
JK
2200 /* Drop io_end reference we got from init */
2201 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2202 return ret;
2203}
2204
61628a3f 2205/*
525f4ed8 2206 * This is called via ext4_da_writepages() to
25985edc 2207 * calculate the total number of credits to reserve to fit
525f4ed8
MC
2208 * a single extent allocation into a single transaction,
2209 * ext4_da_writpeages() will loop calling this before
2210 * the block allocation.
61628a3f 2211 */
525f4ed8
MC
2212
2213static int ext4_da_writepages_trans_blocks(struct inode *inode)
2214{
2215 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2216
2217 /*
2218 * With non-extent format the journal credit needed to
2219 * insert nrblocks contiguous block is dependent on
2220 * number of contiguous block. So we will limit
2221 * number of contiguous block to a sane value
2222 */
12e9b892 2223 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
2224 (max_blocks > EXT4_MAX_TRANS_DATA))
2225 max_blocks = EXT4_MAX_TRANS_DATA;
2226
2227 return ext4_chunk_trans_blocks(inode, max_blocks);
2228}
61628a3f 2229
8e48dcfb
TT
2230/*
2231 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2232 * address space and accumulate pages that need writing, and call
168fc022
TT
2233 * mpage_da_map_and_submit to map a single contiguous memory region
2234 * and then write them.
8e48dcfb 2235 */
9c3569b5
TM
2236static int write_cache_pages_da(handle_t *handle,
2237 struct address_space *mapping,
8e48dcfb 2238 struct writeback_control *wbc,
72f84e65
ES
2239 struct mpage_da_data *mpd,
2240 pgoff_t *done_index)
8e48dcfb 2241{
4f01b02c 2242 struct buffer_head *bh, *head;
168fc022 2243 struct inode *inode = mapping->host;
4f01b02c
TT
2244 struct pagevec pvec;
2245 unsigned int nr_pages;
2246 sector_t logical;
2247 pgoff_t index, end;
2248 long nr_to_write = wbc->nr_to_write;
2249 int i, tag, ret = 0;
8e48dcfb 2250
168fc022
TT
2251 memset(mpd, 0, sizeof(struct mpage_da_data));
2252 mpd->wbc = wbc;
2253 mpd->inode = inode;
8e48dcfb
TT
2254 pagevec_init(&pvec, 0);
2255 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2256 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2257
6e6938b6 2258 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2259 tag = PAGECACHE_TAG_TOWRITE;
2260 else
2261 tag = PAGECACHE_TAG_DIRTY;
2262
72f84e65 2263 *done_index = index;
4f01b02c 2264 while (index <= end) {
5b41d924 2265 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2266 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2267 if (nr_pages == 0)
4f01b02c 2268 return 0;
8e48dcfb
TT
2269
2270 for (i = 0; i < nr_pages; i++) {
2271 struct page *page = pvec.pages[i];
2272
2273 /*
2274 * At this point, the page may be truncated or
2275 * invalidated (changing page->mapping to NULL), or
2276 * even swizzled back from swapper_space to tmpfs file
2277 * mapping. However, page->index will not change
2278 * because we have a reference on the page.
2279 */
4f01b02c
TT
2280 if (page->index > end)
2281 goto out;
8e48dcfb 2282
72f84e65
ES
2283 *done_index = page->index + 1;
2284
78aaced3
TT
2285 /*
2286 * If we can't merge this page, and we have
2287 * accumulated an contiguous region, write it
2288 */
2289 if ((mpd->next_page != page->index) &&
2290 (mpd->next_page != mpd->first_page)) {
2291 mpage_da_map_and_submit(mpd);
2292 goto ret_extent_tail;
2293 }
2294
8e48dcfb
TT
2295 lock_page(page);
2296
2297 /*
4f01b02c
TT
2298 * If the page is no longer dirty, or its
2299 * mapping no longer corresponds to inode we
2300 * are writing (which means it has been
2301 * truncated or invalidated), or the page is
2302 * already under writeback and we are not
2303 * doing a data integrity writeback, skip the page
8e48dcfb 2304 */
4f01b02c
TT
2305 if (!PageDirty(page) ||
2306 (PageWriteback(page) &&
2307 (wbc->sync_mode == WB_SYNC_NONE)) ||
2308 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2309 unlock_page(page);
2310 continue;
2311 }
2312
7cb1a535 2313 wait_on_page_writeback(page);
8e48dcfb 2314 BUG_ON(PageWriteback(page));
8e48dcfb 2315
9c3569b5
TM
2316 /*
2317 * If we have inline data and arrive here, it means that
2318 * we will soon create the block for the 1st page, so
2319 * we'd better clear the inline data here.
2320 */
2321 if (ext4_has_inline_data(inode)) {
2322 BUG_ON(ext4_test_inode_state(inode,
2323 EXT4_STATE_MAY_INLINE_DATA));
2324 ext4_destroy_inline_data(handle, inode);
2325 }
2326
168fc022 2327 if (mpd->next_page != page->index)
8eb9e5ce 2328 mpd->first_page = page->index;
8eb9e5ce
TT
2329 mpd->next_page = page->index + 1;
2330 logical = (sector_t) page->index <<
2331 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2332
f8bec370
JK
2333 /* Add all dirty buffers to mpd */
2334 head = page_buffers(page);
2335 bh = head;
2336 do {
2337 BUG_ON(buffer_locked(bh));
8eb9e5ce 2338 /*
f8bec370
JK
2339 * We need to try to allocate unmapped blocks
2340 * in the same page. Otherwise we won't make
2341 * progress with the page in ext4_writepage
8eb9e5ce 2342 */
f8bec370
JK
2343 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2344 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2345 bh->b_state);
2346 if (mpd->io_done)
2347 goto ret_extent_tail;
2348 } else if (buffer_dirty(bh) &&
2349 buffer_mapped(bh)) {
8eb9e5ce 2350 /*
f8bec370
JK
2351 * mapped dirty buffer. We need to
2352 * update the b_state because we look
2353 * at b_state in mpage_da_map_blocks.
2354 * We don't update b_size because if we
2355 * find an unmapped buffer_head later
2356 * we need to use the b_state flag of
2357 * that buffer_head.
8eb9e5ce 2358 */
f8bec370
JK
2359 if (mpd->b_size == 0)
2360 mpd->b_state =
2361 bh->b_state & BH_FLAGS;
2362 }
2363 logical++;
2364 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2365
2366 if (nr_to_write > 0) {
2367 nr_to_write--;
2368 if (nr_to_write == 0 &&
4f01b02c 2369 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2370 /*
2371 * We stop writing back only if we are
2372 * not doing integrity sync. In case of
2373 * integrity sync we have to keep going
2374 * because someone may be concurrently
2375 * dirtying pages, and we might have
2376 * synced a lot of newly appeared dirty
2377 * pages, but have not synced all of the
2378 * old dirty pages.
2379 */
4f01b02c 2380 goto out;
8e48dcfb
TT
2381 }
2382 }
2383 pagevec_release(&pvec);
2384 cond_resched();
2385 }
4f01b02c
TT
2386 return 0;
2387ret_extent_tail:
2388 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2389out:
2390 pagevec_release(&pvec);
2391 cond_resched();
8e48dcfb
TT
2392 return ret;
2393}
2394
2395
64769240 2396static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2397 struct writeback_control *wbc)
64769240 2398{
22208ded
AK
2399 pgoff_t index;
2400 int range_whole = 0;
61628a3f 2401 handle_t *handle = NULL;
df22291f 2402 struct mpage_da_data mpd;
5e745b04 2403 struct inode *inode = mapping->host;
498e5f24 2404 int pages_written = 0;
2acf2c26 2405 int range_cyclic, cycled = 1, io_done = 0;
55138e0b 2406 int needed_blocks, ret = 0;
de89de6e 2407 loff_t range_start = wbc->range_start;
5e745b04 2408 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2409 pgoff_t done_index = 0;
5b41d924 2410 pgoff_t end;
1bce63d1 2411 struct blk_plug plug;
61628a3f 2412
9bffad1e 2413 trace_ext4_da_writepages(inode, wbc);
ba80b101 2414
61628a3f
MC
2415 /*
2416 * No pages to write? This is mainly a kludge to avoid starting
2417 * a transaction for special inodes like journal inode on last iput()
2418 * because that could violate lock ordering on umount
2419 */
a1d6cc56 2420 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2421 return 0;
2a21e37e
TT
2422
2423 /*
2424 * If the filesystem has aborted, it is read-only, so return
2425 * right away instead of dumping stack traces later on that
2426 * will obscure the real source of the problem. We test
4ab2f15b 2427 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2428 * the latter could be true if the filesystem is mounted
2429 * read-only, and in that case, ext4_da_writepages should
2430 * *never* be called, so if that ever happens, we would want
2431 * the stack trace.
2432 */
4ab2f15b 2433 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2434 return -EROFS;
2435
22208ded
AK
2436 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2437 range_whole = 1;
61628a3f 2438
2acf2c26
AK
2439 range_cyclic = wbc->range_cyclic;
2440 if (wbc->range_cyclic) {
22208ded 2441 index = mapping->writeback_index;
2acf2c26
AK
2442 if (index)
2443 cycled = 0;
2444 wbc->range_start = index << PAGE_CACHE_SHIFT;
2445 wbc->range_end = LLONG_MAX;
2446 wbc->range_cyclic = 0;
5b41d924
ES
2447 end = -1;
2448 } else {
22208ded 2449 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2450 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2451 }
a1d6cc56 2452
2acf2c26 2453retry:
6e6938b6 2454 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2455 tag_pages_for_writeback(mapping, index, end);
2456
1bce63d1 2457 blk_start_plug(&plug);
22208ded 2458 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2459
2460 /*
2461 * we insert one extent at a time. So we need
2462 * credit needed for single extent allocation.
2463 * journalled mode is currently not supported
2464 * by delalloc
2465 */
2466 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2467 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2468
61628a3f 2469 /* start a new transaction*/
9924a92a
TT
2470 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2471 needed_blocks);
61628a3f
MC
2472 if (IS_ERR(handle)) {
2473 ret = PTR_ERR(handle);
1693918e 2474 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2475 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2476 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2477 blk_finish_plug(&plug);
61628a3f
MC
2478 goto out_writepages;
2479 }
f63e6005
TT
2480
2481 /*
8eb9e5ce 2482 * Now call write_cache_pages_da() to find the next
f63e6005 2483 * contiguous region of logical blocks that need
8eb9e5ce 2484 * blocks to be allocated by ext4 and submit them.
f63e6005 2485 */
9c3569b5
TM
2486 ret = write_cache_pages_da(handle, mapping,
2487 wbc, &mpd, &done_index);
f63e6005 2488 /*
af901ca1 2489 * If we have a contiguous extent of pages and we
f63e6005
TT
2490 * haven't done the I/O yet, map the blocks and submit
2491 * them for I/O.
2492 */
2493 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2494 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2495 ret = MPAGE_DA_EXTENT_TAIL;
2496 }
b3a3ca8c 2497 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2498 wbc->nr_to_write -= mpd.pages_written;
df22291f 2499
61628a3f 2500 ext4_journal_stop(handle);
df22291f 2501
8f64b32e 2502 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2503 /* commit the transaction which would
2504 * free blocks released in the transaction
2505 * and try again
2506 */
df22291f 2507 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2508 ret = 0;
2509 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2510 /*
8de49e67
KM
2511 * Got one extent now try with rest of the pages.
2512 * If mpd.retval is set -EIO, journal is aborted.
2513 * So we don't need to write any more.
a1d6cc56 2514 */
22208ded 2515 pages_written += mpd.pages_written;
8de49e67 2516 ret = mpd.retval;
2acf2c26 2517 io_done = 1;
22208ded 2518 } else if (wbc->nr_to_write)
61628a3f
MC
2519 /*
2520 * There is no more writeout needed
2521 * or we requested for a noblocking writeout
2522 * and we found the device congested
2523 */
61628a3f 2524 break;
a1d6cc56 2525 }
1bce63d1 2526 blk_finish_plug(&plug);
2acf2c26
AK
2527 if (!io_done && !cycled) {
2528 cycled = 1;
2529 index = 0;
2530 wbc->range_start = index << PAGE_CACHE_SHIFT;
2531 wbc->range_end = mapping->writeback_index - 1;
2532 goto retry;
2533 }
22208ded
AK
2534
2535 /* Update index */
2acf2c26 2536 wbc->range_cyclic = range_cyclic;
22208ded
AK
2537 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2538 /*
2539 * set the writeback_index so that range_cyclic
2540 * mode will write it back later
2541 */
72f84e65 2542 mapping->writeback_index = done_index;
a1d6cc56 2543
61628a3f 2544out_writepages:
de89de6e 2545 wbc->range_start = range_start;
9bffad1e 2546 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2547 return ret;
64769240
AT
2548}
2549
79f0be8d
AK
2550static int ext4_nonda_switch(struct super_block *sb)
2551{
5c1ff336 2552 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2553 struct ext4_sb_info *sbi = EXT4_SB(sb);
2554
2555 /*
2556 * switch to non delalloc mode if we are running low
2557 * on free block. The free block accounting via percpu
179f7ebf 2558 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2559 * accumulated on each CPU without updating global counters
2560 * Delalloc need an accurate free block accounting. So switch
2561 * to non delalloc when we are near to error range.
2562 */
5c1ff336
EW
2563 free_clusters =
2564 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2565 dirty_clusters =
2566 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2567 /*
2568 * Start pushing delalloc when 1/2 of free blocks are dirty.
2569 */
5c1ff336 2570 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2571 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2572
5c1ff336
EW
2573 if (2 * free_clusters < 3 * dirty_clusters ||
2574 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2575 /*
c8afb446
ES
2576 * free block count is less than 150% of dirty blocks
2577 * or free blocks is less than watermark
79f0be8d
AK
2578 */
2579 return 1;
2580 }
2581 return 0;
2582}
2583
64769240 2584static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2585 loff_t pos, unsigned len, unsigned flags,
2586 struct page **pagep, void **fsdata)
64769240 2587{
72b8ab9d 2588 int ret, retries = 0;
64769240
AT
2589 struct page *page;
2590 pgoff_t index;
64769240
AT
2591 struct inode *inode = mapping->host;
2592 handle_t *handle;
2593
2594 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2595
2596 if (ext4_nonda_switch(inode->i_sb)) {
2597 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2598 return ext4_write_begin(file, mapping, pos,
2599 len, flags, pagep, fsdata);
2600 }
2601 *fsdata = (void *)0;
9bffad1e 2602 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2603
2604 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2605 ret = ext4_da_write_inline_data_begin(mapping, inode,
2606 pos, len, flags,
2607 pagep, fsdata);
2608 if (ret < 0)
47564bfb
TT
2609 return ret;
2610 if (ret == 1)
2611 return 0;
9c3569b5
TM
2612 }
2613
47564bfb
TT
2614 /*
2615 * grab_cache_page_write_begin() can take a long time if the
2616 * system is thrashing due to memory pressure, or if the page
2617 * is being written back. So grab it first before we start
2618 * the transaction handle. This also allows us to allocate
2619 * the page (if needed) without using GFP_NOFS.
2620 */
2621retry_grab:
2622 page = grab_cache_page_write_begin(mapping, index, flags);
2623 if (!page)
2624 return -ENOMEM;
2625 unlock_page(page);
2626
64769240
AT
2627 /*
2628 * With delayed allocation, we don't log the i_disksize update
2629 * if there is delayed block allocation. But we still need
2630 * to journalling the i_disksize update if writes to the end
2631 * of file which has an already mapped buffer.
2632 */
47564bfb 2633retry_journal:
9924a92a 2634 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2635 if (IS_ERR(handle)) {
47564bfb
TT
2636 page_cache_release(page);
2637 return PTR_ERR(handle);
64769240
AT
2638 }
2639
47564bfb
TT
2640 lock_page(page);
2641 if (page->mapping != mapping) {
2642 /* The page got truncated from under us */
2643 unlock_page(page);
2644 page_cache_release(page);
d5a0d4f7 2645 ext4_journal_stop(handle);
47564bfb 2646 goto retry_grab;
d5a0d4f7 2647 }
47564bfb
TT
2648 /* In case writeback began while the page was unlocked */
2649 wait_on_page_writeback(page);
64769240 2650
6e1db88d 2651 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2652 if (ret < 0) {
2653 unlock_page(page);
2654 ext4_journal_stop(handle);
ae4d5372
AK
2655 /*
2656 * block_write_begin may have instantiated a few blocks
2657 * outside i_size. Trim these off again. Don't need
2658 * i_size_read because we hold i_mutex.
2659 */
2660 if (pos + len > inode->i_size)
b9a4207d 2661 ext4_truncate_failed_write(inode);
47564bfb
TT
2662
2663 if (ret == -ENOSPC &&
2664 ext4_should_retry_alloc(inode->i_sb, &retries))
2665 goto retry_journal;
2666
2667 page_cache_release(page);
2668 return ret;
64769240
AT
2669 }
2670
47564bfb 2671 *pagep = page;
64769240
AT
2672 return ret;
2673}
2674
632eaeab
MC
2675/*
2676 * Check if we should update i_disksize
2677 * when write to the end of file but not require block allocation
2678 */
2679static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2680 unsigned long offset)
632eaeab
MC
2681{
2682 struct buffer_head *bh;
2683 struct inode *inode = page->mapping->host;
2684 unsigned int idx;
2685 int i;
2686
2687 bh = page_buffers(page);
2688 idx = offset >> inode->i_blkbits;
2689
af5bc92d 2690 for (i = 0; i < idx; i++)
632eaeab
MC
2691 bh = bh->b_this_page;
2692
29fa89d0 2693 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2694 return 0;
2695 return 1;
2696}
2697
64769240 2698static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2699 struct address_space *mapping,
2700 loff_t pos, unsigned len, unsigned copied,
2701 struct page *page, void *fsdata)
64769240
AT
2702{
2703 struct inode *inode = mapping->host;
2704 int ret = 0, ret2;
2705 handle_t *handle = ext4_journal_current_handle();
2706 loff_t new_i_size;
632eaeab 2707 unsigned long start, end;
79f0be8d
AK
2708 int write_mode = (int)(unsigned long)fsdata;
2709
74d553aa
TT
2710 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2711 return ext4_write_end(file, mapping, pos,
2712 len, copied, page, fsdata);
632eaeab 2713
9bffad1e 2714 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2715 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2716 end = start + copied - 1;
64769240
AT
2717
2718 /*
2719 * generic_write_end() will run mark_inode_dirty() if i_size
2720 * changes. So let's piggyback the i_disksize mark_inode_dirty
2721 * into that.
2722 */
64769240 2723 new_i_size = pos + copied;
ea51d132 2724 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2725 if (ext4_has_inline_data(inode) ||
2726 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2727 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2728 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2729 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2730 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2731 /* We need to mark inode dirty even if
2732 * new_i_size is less that inode->i_size
2733 * bu greater than i_disksize.(hint delalloc)
2734 */
2735 ext4_mark_inode_dirty(handle, inode);
64769240 2736 }
632eaeab 2737 }
9c3569b5
TM
2738
2739 if (write_mode != CONVERT_INLINE_DATA &&
2740 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2741 ext4_has_inline_data(inode))
2742 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2743 page);
2744 else
2745 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2746 page, fsdata);
9c3569b5 2747
64769240
AT
2748 copied = ret2;
2749 if (ret2 < 0)
2750 ret = ret2;
2751 ret2 = ext4_journal_stop(handle);
2752 if (!ret)
2753 ret = ret2;
2754
2755 return ret ? ret : copied;
2756}
2757
d47992f8
LC
2758static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2759 unsigned int length)
64769240 2760{
64769240
AT
2761 /*
2762 * Drop reserved blocks
2763 */
2764 BUG_ON(!PageLocked(page));
2765 if (!page_has_buffers(page))
2766 goto out;
2767
ca99fdd2 2768 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2769
2770out:
d47992f8 2771 ext4_invalidatepage(page, offset, length);
64769240
AT
2772
2773 return;
2774}
2775
ccd2506b
TT
2776/*
2777 * Force all delayed allocation blocks to be allocated for a given inode.
2778 */
2779int ext4_alloc_da_blocks(struct inode *inode)
2780{
fb40ba0d
TT
2781 trace_ext4_alloc_da_blocks(inode);
2782
ccd2506b
TT
2783 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2784 !EXT4_I(inode)->i_reserved_meta_blocks)
2785 return 0;
2786
2787 /*
2788 * We do something simple for now. The filemap_flush() will
2789 * also start triggering a write of the data blocks, which is
2790 * not strictly speaking necessary (and for users of
2791 * laptop_mode, not even desirable). However, to do otherwise
2792 * would require replicating code paths in:
de9a55b8 2793 *
ccd2506b
TT
2794 * ext4_da_writepages() ->
2795 * write_cache_pages() ---> (via passed in callback function)
2796 * __mpage_da_writepage() -->
2797 * mpage_add_bh_to_extent()
2798 * mpage_da_map_blocks()
2799 *
2800 * The problem is that write_cache_pages(), located in
2801 * mm/page-writeback.c, marks pages clean in preparation for
2802 * doing I/O, which is not desirable if we're not planning on
2803 * doing I/O at all.
2804 *
2805 * We could call write_cache_pages(), and then redirty all of
380cf090 2806 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2807 * would be ugly in the extreme. So instead we would need to
2808 * replicate parts of the code in the above functions,
25985edc 2809 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2810 * write out the pages, but rather only collect contiguous
2811 * logical block extents, call the multi-block allocator, and
2812 * then update the buffer heads with the block allocations.
de9a55b8 2813 *
ccd2506b
TT
2814 * For now, though, we'll cheat by calling filemap_flush(),
2815 * which will map the blocks, and start the I/O, but not
2816 * actually wait for the I/O to complete.
2817 */
2818 return filemap_flush(inode->i_mapping);
2819}
64769240 2820
ac27a0ec
DK
2821/*
2822 * bmap() is special. It gets used by applications such as lilo and by
2823 * the swapper to find the on-disk block of a specific piece of data.
2824 *
2825 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2826 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2827 * filesystem and enables swap, then they may get a nasty shock when the
2828 * data getting swapped to that swapfile suddenly gets overwritten by
2829 * the original zero's written out previously to the journal and
2830 * awaiting writeback in the kernel's buffer cache.
2831 *
2832 * So, if we see any bmap calls here on a modified, data-journaled file,
2833 * take extra steps to flush any blocks which might be in the cache.
2834 */
617ba13b 2835static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2836{
2837 struct inode *inode = mapping->host;
2838 journal_t *journal;
2839 int err;
2840
46c7f254
TM
2841 /*
2842 * We can get here for an inline file via the FIBMAP ioctl
2843 */
2844 if (ext4_has_inline_data(inode))
2845 return 0;
2846
64769240
AT
2847 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2848 test_opt(inode->i_sb, DELALLOC)) {
2849 /*
2850 * With delalloc we want to sync the file
2851 * so that we can make sure we allocate
2852 * blocks for file
2853 */
2854 filemap_write_and_wait(mapping);
2855 }
2856
19f5fb7a
TT
2857 if (EXT4_JOURNAL(inode) &&
2858 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2859 /*
2860 * This is a REALLY heavyweight approach, but the use of
2861 * bmap on dirty files is expected to be extremely rare:
2862 * only if we run lilo or swapon on a freshly made file
2863 * do we expect this to happen.
2864 *
2865 * (bmap requires CAP_SYS_RAWIO so this does not
2866 * represent an unprivileged user DOS attack --- we'd be
2867 * in trouble if mortal users could trigger this path at
2868 * will.)
2869 *
617ba13b 2870 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2871 * regular files. If somebody wants to bmap a directory
2872 * or symlink and gets confused because the buffer
2873 * hasn't yet been flushed to disk, they deserve
2874 * everything they get.
2875 */
2876
19f5fb7a 2877 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2878 journal = EXT4_JOURNAL(inode);
dab291af
MC
2879 jbd2_journal_lock_updates(journal);
2880 err = jbd2_journal_flush(journal);
2881 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2882
2883 if (err)
2884 return 0;
2885 }
2886
af5bc92d 2887 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2888}
2889
617ba13b 2890static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2891{
46c7f254
TM
2892 int ret = -EAGAIN;
2893 struct inode *inode = page->mapping->host;
2894
0562e0ba 2895 trace_ext4_readpage(page);
46c7f254
TM
2896
2897 if (ext4_has_inline_data(inode))
2898 ret = ext4_readpage_inline(inode, page);
2899
2900 if (ret == -EAGAIN)
2901 return mpage_readpage(page, ext4_get_block);
2902
2903 return ret;
ac27a0ec
DK
2904}
2905
2906static int
617ba13b 2907ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2908 struct list_head *pages, unsigned nr_pages)
2909{
46c7f254
TM
2910 struct inode *inode = mapping->host;
2911
2912 /* If the file has inline data, no need to do readpages. */
2913 if (ext4_has_inline_data(inode))
2914 return 0;
2915
617ba13b 2916 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2917}
2918
d47992f8
LC
2919static void ext4_invalidatepage(struct page *page, unsigned int offset,
2920 unsigned int length)
ac27a0ec 2921{
ca99fdd2 2922 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2923
4520fb3c
JK
2924 /* No journalling happens on data buffers when this function is used */
2925 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2926
ca99fdd2 2927 block_invalidatepage(page, offset, length);
4520fb3c
JK
2928}
2929
53e87268 2930static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2931 unsigned int offset,
2932 unsigned int length)
4520fb3c
JK
2933{
2934 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2935
ca99fdd2 2936 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2937
ac27a0ec
DK
2938 /*
2939 * If it's a full truncate we just forget about the pending dirtying
2940 */
ca99fdd2 2941 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2942 ClearPageChecked(page);
2943
ca99fdd2 2944 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2945}
2946
2947/* Wrapper for aops... */
2948static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2949 unsigned int offset,
2950 unsigned int length)
53e87268 2951{
ca99fdd2 2952 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2953}
2954
617ba13b 2955static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2956{
617ba13b 2957 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2958
0562e0ba
JZ
2959 trace_ext4_releasepage(page);
2960
e1c36595
JK
2961 /* Page has dirty journalled data -> cannot release */
2962 if (PageChecked(page))
ac27a0ec 2963 return 0;
0390131b
FM
2964 if (journal)
2965 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2966 else
2967 return try_to_free_buffers(page);
ac27a0ec
DK
2968}
2969
2ed88685
TT
2970/*
2971 * ext4_get_block used when preparing for a DIO write or buffer write.
2972 * We allocate an uinitialized extent if blocks haven't been allocated.
2973 * The extent will be converted to initialized after the IO is complete.
2974 */
f19d5870 2975int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2976 struct buffer_head *bh_result, int create)
2977{
c7064ef1 2978 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2979 inode->i_ino, create);
2ed88685
TT
2980 return _ext4_get_block(inode, iblock, bh_result,
2981 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2982}
2983
729f52c6 2984static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2985 struct buffer_head *bh_result, int create)
729f52c6 2986{
8b0f165f
AP
2987 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2988 inode->i_ino, create);
2989 return _ext4_get_block(inode, iblock, bh_result,
2990 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2991}
2992
4c0425ff 2993static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2994 ssize_t size, void *private, int ret,
2995 bool is_async)
4c0425ff 2996{
496ad9aa 2997 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2998 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2999
97a851ed
JK
3000 /* if not async direct IO just return */
3001 if (!io_end) {
3002 inode_dio_done(inode);
3003 if (is_async)
3004 aio_complete(iocb, ret, 0);
3005 return;
3006 }
4b70df18 3007
88635ca2 3008 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3009 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3010 iocb->private, io_end->inode->i_ino, iocb, offset,
3011 size);
8d5d02e6 3012
b5a7e970 3013 iocb->private = NULL;
4c0425ff
MC
3014 io_end->offset = offset;
3015 io_end->size = size;
5b3ff237
JZ
3016 if (is_async) {
3017 io_end->iocb = iocb;
3018 io_end->result = ret;
3019 }
97a851ed 3020 ext4_put_io_end_defer(io_end);
4c0425ff 3021}
c7064ef1 3022
4c0425ff
MC
3023/*
3024 * For ext4 extent files, ext4 will do direct-io write to holes,
3025 * preallocated extents, and those write extend the file, no need to
3026 * fall back to buffered IO.
3027 *
b595076a 3028 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3029 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3030 * still keep the range to write as uninitialized.
4c0425ff 3031 *
69c499d1 3032 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3033 * For async direct IO, since the IO may still pending when return, we
25985edc 3034 * set up an end_io call back function, which will do the conversion
8d5d02e6 3035 * when async direct IO completed.
4c0425ff
MC
3036 *
3037 * If the O_DIRECT write will extend the file then add this inode to the
3038 * orphan list. So recovery will truncate it back to the original size
3039 * if the machine crashes during the write.
3040 *
3041 */
3042static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3043 const struct iovec *iov, loff_t offset,
3044 unsigned long nr_segs)
3045{
3046 struct file *file = iocb->ki_filp;
3047 struct inode *inode = file->f_mapping->host;
3048 ssize_t ret;
3049 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3050 int overwrite = 0;
3051 get_block_t *get_block_func = NULL;
3052 int dio_flags = 0;
4c0425ff 3053 loff_t final_size = offset + count;
97a851ed 3054 ext4_io_end_t *io_end = NULL;
729f52c6 3055
69c499d1
TT
3056 /* Use the old path for reads and writes beyond i_size. */
3057 if (rw != WRITE || final_size > inode->i_size)
3058 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3059
69c499d1 3060 BUG_ON(iocb->private == NULL);
4bd809db 3061
69c499d1
TT
3062 /* If we do a overwrite dio, i_mutex locking can be released */
3063 overwrite = *((int *)iocb->private);
4bd809db 3064
69c499d1
TT
3065 if (overwrite) {
3066 atomic_inc(&inode->i_dio_count);
3067 down_read(&EXT4_I(inode)->i_data_sem);
3068 mutex_unlock(&inode->i_mutex);
3069 }
8d5d02e6 3070
69c499d1
TT
3071 /*
3072 * We could direct write to holes and fallocate.
3073 *
3074 * Allocated blocks to fill the hole are marked as
3075 * uninitialized to prevent parallel buffered read to expose
3076 * the stale data before DIO complete the data IO.
3077 *
3078 * As to previously fallocated extents, ext4 get_block will
3079 * just simply mark the buffer mapped but still keep the
3080 * extents uninitialized.
3081 *
3082 * For non AIO case, we will convert those unwritten extents
3083 * to written after return back from blockdev_direct_IO.
3084 *
3085 * For async DIO, the conversion needs to be deferred when the
3086 * IO is completed. The ext4 end_io callback function will be
3087 * called to take care of the conversion work. Here for async
3088 * case, we allocate an io_end structure to hook to the iocb.
3089 */
3090 iocb->private = NULL;
3091 ext4_inode_aio_set(inode, NULL);
3092 if (!is_sync_kiocb(iocb)) {
97a851ed 3093 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3094 if (!io_end) {
3095 ret = -ENOMEM;
3096 goto retake_lock;
8b0f165f 3097 }
69c499d1 3098 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3099 /*
3100 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3101 */
3102 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3103 /*
69c499d1
TT
3104 * we save the io structure for current async direct
3105 * IO, so that later ext4_map_blocks() could flag the
3106 * io structure whether there is a unwritten extents
3107 * needs to be converted when IO is completed.
8d5d02e6 3108 */
69c499d1
TT
3109 ext4_inode_aio_set(inode, io_end);
3110 }
4bd809db 3111
69c499d1
TT
3112 if (overwrite) {
3113 get_block_func = ext4_get_block_write_nolock;
3114 } else {
3115 get_block_func = ext4_get_block_write;
3116 dio_flags = DIO_LOCKING;
3117 }
3118 ret = __blockdev_direct_IO(rw, iocb, inode,
3119 inode->i_sb->s_bdev, iov,
3120 offset, nr_segs,
3121 get_block_func,
3122 ext4_end_io_dio,
3123 NULL,
3124 dio_flags);
3125
69c499d1 3126 /*
97a851ed
JK
3127 * Put our reference to io_end. This can free the io_end structure e.g.
3128 * in sync IO case or in case of error. It can even perform extent
3129 * conversion if all bios we submitted finished before we got here.
3130 * Note that in that case iocb->private can be already set to NULL
3131 * here.
69c499d1 3132 */
97a851ed
JK
3133 if (io_end) {
3134 ext4_inode_aio_set(inode, NULL);
3135 ext4_put_io_end(io_end);
3136 /*
3137 * When no IO was submitted ext4_end_io_dio() was not
3138 * called so we have to put iocb's reference.
3139 */
3140 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3141 WARN_ON(iocb->private != io_end);
3142 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3143 WARN_ON(io_end->iocb);
3144 /*
3145 * Generic code already did inode_dio_done() so we
3146 * have to clear EXT4_IO_END_DIRECT to not do it for
3147 * the second time.
3148 */
3149 io_end->flag = 0;
3150 ext4_put_io_end(io_end);
3151 iocb->private = NULL;
3152 }
3153 }
3154 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3155 EXT4_STATE_DIO_UNWRITTEN)) {
3156 int err;
3157 /*
3158 * for non AIO case, since the IO is already
3159 * completed, we could do the conversion right here
3160 */
3161 err = ext4_convert_unwritten_extents(inode,
3162 offset, ret);
3163 if (err < 0)
3164 ret = err;
3165 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3166 }
4bd809db 3167
69c499d1
TT
3168retake_lock:
3169 /* take i_mutex locking again if we do a ovewrite dio */
3170 if (overwrite) {
3171 inode_dio_done(inode);
3172 up_read(&EXT4_I(inode)->i_data_sem);
3173 mutex_lock(&inode->i_mutex);
4c0425ff 3174 }
8d5d02e6 3175
69c499d1 3176 return ret;
4c0425ff
MC
3177}
3178
3179static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3180 const struct iovec *iov, loff_t offset,
3181 unsigned long nr_segs)
3182{
3183 struct file *file = iocb->ki_filp;
3184 struct inode *inode = file->f_mapping->host;
0562e0ba 3185 ssize_t ret;
4c0425ff 3186
84ebd795
TT
3187 /*
3188 * If we are doing data journalling we don't support O_DIRECT
3189 */
3190 if (ext4_should_journal_data(inode))
3191 return 0;
3192
46c7f254
TM
3193 /* Let buffer I/O handle the inline data case. */
3194 if (ext4_has_inline_data(inode))
3195 return 0;
3196
0562e0ba 3197 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3198 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3199 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3200 else
3201 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3202 trace_ext4_direct_IO_exit(inode, offset,
3203 iov_length(iov, nr_segs), rw, ret);
3204 return ret;
4c0425ff
MC
3205}
3206
ac27a0ec 3207/*
617ba13b 3208 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3209 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3210 * much here because ->set_page_dirty is called under VFS locks. The page is
3211 * not necessarily locked.
3212 *
3213 * We cannot just dirty the page and leave attached buffers clean, because the
3214 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3215 * or jbddirty because all the journalling code will explode.
3216 *
3217 * So what we do is to mark the page "pending dirty" and next time writepage
3218 * is called, propagate that into the buffers appropriately.
3219 */
617ba13b 3220static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3221{
3222 SetPageChecked(page);
3223 return __set_page_dirty_nobuffers(page);
3224}
3225
74d553aa 3226static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3227 .readpage = ext4_readpage,
3228 .readpages = ext4_readpages,
43ce1d23 3229 .writepage = ext4_writepage,
8ab22b9a 3230 .write_begin = ext4_write_begin,
74d553aa 3231 .write_end = ext4_write_end,
8ab22b9a
HH
3232 .bmap = ext4_bmap,
3233 .invalidatepage = ext4_invalidatepage,
3234 .releasepage = ext4_releasepage,
3235 .direct_IO = ext4_direct_IO,
3236 .migratepage = buffer_migrate_page,
3237 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3238 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3239};
3240
617ba13b 3241static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3242 .readpage = ext4_readpage,
3243 .readpages = ext4_readpages,
43ce1d23 3244 .writepage = ext4_writepage,
8ab22b9a
HH
3245 .write_begin = ext4_write_begin,
3246 .write_end = ext4_journalled_write_end,
3247 .set_page_dirty = ext4_journalled_set_page_dirty,
3248 .bmap = ext4_bmap,
4520fb3c 3249 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3250 .releasepage = ext4_releasepage,
84ebd795 3251 .direct_IO = ext4_direct_IO,
8ab22b9a 3252 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3253 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3254};
3255
64769240 3256static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3257 .readpage = ext4_readpage,
3258 .readpages = ext4_readpages,
43ce1d23 3259 .writepage = ext4_writepage,
8ab22b9a 3260 .writepages = ext4_da_writepages,
8ab22b9a
HH
3261 .write_begin = ext4_da_write_begin,
3262 .write_end = ext4_da_write_end,
3263 .bmap = ext4_bmap,
3264 .invalidatepage = ext4_da_invalidatepage,
3265 .releasepage = ext4_releasepage,
3266 .direct_IO = ext4_direct_IO,
3267 .migratepage = buffer_migrate_page,
3268 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3269 .error_remove_page = generic_error_remove_page,
64769240
AT
3270};
3271
617ba13b 3272void ext4_set_aops(struct inode *inode)
ac27a0ec 3273{
3d2b1582
LC
3274 switch (ext4_inode_journal_mode(inode)) {
3275 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3276 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3277 break;
3278 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3279 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3280 break;
3281 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3282 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3283 return;
3d2b1582
LC
3284 default:
3285 BUG();
3286 }
74d553aa
TT
3287 if (test_opt(inode->i_sb, DELALLOC))
3288 inode->i_mapping->a_ops = &ext4_da_aops;
3289 else
3290 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3291}
3292
d863dc36
LC
3293/*
3294 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3295 * up to the end of the block which corresponds to `from'.
3296 * This required during truncate. We need to physically zero the tail end
3297 * of that block so it doesn't yield old data if the file is later grown.
3298 */
3299int ext4_block_truncate_page(handle_t *handle,
3300 struct address_space *mapping, loff_t from)
3301{
3302 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3303 unsigned length;
3304 unsigned blocksize;
3305 struct inode *inode = mapping->host;
3306
3307 blocksize = inode->i_sb->s_blocksize;
3308 length = blocksize - (offset & (blocksize - 1));
3309
3310 return ext4_block_zero_page_range(handle, mapping, from, length);
3311}
3312
3313/*
3314 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3315 * starting from file offset 'from'. The range to be zero'd must
3316 * be contained with in one block. If the specified range exceeds
3317 * the end of the block it will be shortened to end of the block
3318 * that cooresponds to 'from'
3319 */
3320int ext4_block_zero_page_range(handle_t *handle,
3321 struct address_space *mapping, loff_t from, loff_t length)
3322{
3323 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3324 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3325 unsigned blocksize, max, pos;
3326 ext4_lblk_t iblock;
3327 struct inode *inode = mapping->host;
3328 struct buffer_head *bh;
3329 struct page *page;
3330 int err = 0;
3331
3332 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3333 mapping_gfp_mask(mapping) & ~__GFP_FS);
3334 if (!page)
3335 return -ENOMEM;
3336
3337 blocksize = inode->i_sb->s_blocksize;
3338 max = blocksize - (offset & (blocksize - 1));
3339
3340 /*
3341 * correct length if it does not fall between
3342 * 'from' and the end of the block
3343 */
3344 if (length > max || length < 0)
3345 length = max;
3346
3347 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3348
3349 if (!page_has_buffers(page))
3350 create_empty_buffers(page, blocksize, 0);
3351
3352 /* Find the buffer that contains "offset" */
3353 bh = page_buffers(page);
3354 pos = blocksize;
3355 while (offset >= pos) {
3356 bh = bh->b_this_page;
3357 iblock++;
3358 pos += blocksize;
3359 }
3360
3361 err = 0;
3362 if (buffer_freed(bh)) {
3363 BUFFER_TRACE(bh, "freed: skip");
3364 goto unlock;
3365 }
3366
3367 if (!buffer_mapped(bh)) {
3368 BUFFER_TRACE(bh, "unmapped");
3369 ext4_get_block(inode, iblock, bh, 0);
3370 /* unmapped? It's a hole - nothing to do */
3371 if (!buffer_mapped(bh)) {
3372 BUFFER_TRACE(bh, "still unmapped");
3373 goto unlock;
3374 }
3375 }
3376
3377 /* Ok, it's mapped. Make sure it's up-to-date */
3378 if (PageUptodate(page))
3379 set_buffer_uptodate(bh);
3380
3381 if (!buffer_uptodate(bh)) {
3382 err = -EIO;
3383 ll_rw_block(READ, 1, &bh);
3384 wait_on_buffer(bh);
3385 /* Uhhuh. Read error. Complain and punt. */
3386 if (!buffer_uptodate(bh))
3387 goto unlock;
3388 }
3389
3390 if (ext4_should_journal_data(inode)) {
3391 BUFFER_TRACE(bh, "get write access");
3392 err = ext4_journal_get_write_access(handle, bh);
3393 if (err)
3394 goto unlock;
3395 }
3396
3397 zero_user(page, offset, length);
3398
3399 BUFFER_TRACE(bh, "zeroed end of block");
3400
3401 err = 0;
3402 if (ext4_should_journal_data(inode)) {
3403 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3404 } else {
d863dc36 3405 mark_buffer_dirty(bh);
0713ed0c
LC
3406 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3407 err = ext4_jbd2_file_inode(handle, inode);
3408 }
d863dc36
LC
3409
3410unlock:
3411 unlock_page(page);
3412 page_cache_release(page);
3413 return err;
3414}
3415
a87dd18c
LC
3416int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3417 loff_t lstart, loff_t length)
3418{
3419 struct super_block *sb = inode->i_sb;
3420 struct address_space *mapping = inode->i_mapping;
3421 unsigned partial = lstart & (sb->s_blocksize - 1);
3422 ext4_fsblk_t start, end;
3423 loff_t byte_end = (lstart + length - 1);
3424 int err = 0;
3425
3426 start = lstart >> sb->s_blocksize_bits;
3427 end = byte_end >> sb->s_blocksize_bits;
3428
3429 /* Handle partial zero within the single block */
3430 if (start == end) {
3431 err = ext4_block_zero_page_range(handle, mapping,
3432 lstart, length);
3433 return err;
3434 }
3435 /* Handle partial zero out on the start of the range */
3436 if (partial) {
3437 err = ext4_block_zero_page_range(handle, mapping,
3438 lstart, sb->s_blocksize);
3439 if (err)
3440 return err;
3441 }
3442 /* Handle partial zero out on the end of the range */
3443 partial = byte_end & (sb->s_blocksize - 1);
3444 if (partial != sb->s_blocksize - 1)
3445 err = ext4_block_zero_page_range(handle, mapping,
3446 byte_end - partial,
3447 partial + 1);
3448 return err;
3449}
3450
91ef4caf
DG
3451int ext4_can_truncate(struct inode *inode)
3452{
91ef4caf
DG
3453 if (S_ISREG(inode->i_mode))
3454 return 1;
3455 if (S_ISDIR(inode->i_mode))
3456 return 1;
3457 if (S_ISLNK(inode->i_mode))
3458 return !ext4_inode_is_fast_symlink(inode);
3459 return 0;
3460}
3461
a4bb6b64
AH
3462/*
3463 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3464 * associated with the given offset and length
3465 *
3466 * @inode: File inode
3467 * @offset: The offset where the hole will begin
3468 * @len: The length of the hole
3469 *
4907cb7b 3470 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3471 */
3472
3473int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3474{
496ad9aa 3475 struct inode *inode = file_inode(file);
26a4c0c6
TT
3476 struct super_block *sb = inode->i_sb;
3477 ext4_lblk_t first_block, stop_block;
3478 struct address_space *mapping = inode->i_mapping;
a87dd18c 3479 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3480 handle_t *handle;
3481 unsigned int credits;
3482 int ret = 0;
3483
a4bb6b64 3484 if (!S_ISREG(inode->i_mode))
73355192 3485 return -EOPNOTSUPP;
a4bb6b64 3486
26a4c0c6 3487 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3488 /* TODO: Add support for bigalloc file systems */
73355192 3489 return -EOPNOTSUPP;
bab08ab9
TT
3490 }
3491
aaddea81
ZL
3492 trace_ext4_punch_hole(inode, offset, length);
3493
26a4c0c6
TT
3494 /*
3495 * Write out all dirty pages to avoid race conditions
3496 * Then release them.
3497 */
3498 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3499 ret = filemap_write_and_wait_range(mapping, offset,
3500 offset + length - 1);
3501 if (ret)
3502 return ret;
3503 }
3504
3505 mutex_lock(&inode->i_mutex);
3506 /* It's not possible punch hole on append only file */
3507 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3508 ret = -EPERM;
3509 goto out_mutex;
3510 }
3511 if (IS_SWAPFILE(inode)) {
3512 ret = -ETXTBSY;
3513 goto out_mutex;
3514 }
3515
3516 /* No need to punch hole beyond i_size */
3517 if (offset >= inode->i_size)
3518 goto out_mutex;
3519
3520 /*
3521 * If the hole extends beyond i_size, set the hole
3522 * to end after the page that contains i_size
3523 */
3524 if (offset + length > inode->i_size) {
3525 length = inode->i_size +
3526 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3527 offset;
3528 }
3529
a87dd18c
LC
3530 first_block_offset = round_up(offset, sb->s_blocksize);
3531 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3532
a87dd18c
LC
3533 /* Now release the pages and zero block aligned part of pages*/
3534 if (last_block_offset > first_block_offset)
3535 truncate_pagecache_range(inode, first_block_offset,
3536 last_block_offset);
26a4c0c6
TT
3537
3538 /* Wait all existing dio workers, newcomers will block on i_mutex */
3539 ext4_inode_block_unlocked_dio(inode);
3540 ret = ext4_flush_unwritten_io(inode);
3541 if (ret)
3542 goto out_dio;
3543 inode_dio_wait(inode);
3544
3545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3546 credits = ext4_writepage_trans_blocks(inode);
3547 else
3548 credits = ext4_blocks_for_truncate(inode);
3549 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3550 if (IS_ERR(handle)) {
3551 ret = PTR_ERR(handle);
3552 ext4_std_error(sb, ret);
3553 goto out_dio;
3554 }
3555
a87dd18c
LC
3556 ret = ext4_zero_partial_blocks(handle, inode, offset,
3557 length);
3558 if (ret)
3559 goto out_stop;
26a4c0c6
TT
3560
3561 first_block = (offset + sb->s_blocksize - 1) >>
3562 EXT4_BLOCK_SIZE_BITS(sb);
3563 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3564
3565 /* If there are no blocks to remove, return now */
3566 if (first_block >= stop_block)
3567 goto out_stop;
3568
3569 down_write(&EXT4_I(inode)->i_data_sem);
3570 ext4_discard_preallocations(inode);
3571
3572 ret = ext4_es_remove_extent(inode, first_block,
3573 stop_block - first_block);
3574 if (ret) {
3575 up_write(&EXT4_I(inode)->i_data_sem);
3576 goto out_stop;
3577 }
3578
3579 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3580 ret = ext4_ext_remove_space(inode, first_block,
3581 stop_block - 1);
3582 else
3583 ret = ext4_free_hole_blocks(handle, inode, first_block,
3584 stop_block);
3585
3586 ext4_discard_preallocations(inode);
819c4920 3587 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3588 if (IS_SYNC(inode))
3589 ext4_handle_sync(handle);
26a4c0c6
TT
3590 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3591 ext4_mark_inode_dirty(handle, inode);
3592out_stop:
3593 ext4_journal_stop(handle);
3594out_dio:
3595 ext4_inode_resume_unlocked_dio(inode);
3596out_mutex:
3597 mutex_unlock(&inode->i_mutex);
3598 return ret;
a4bb6b64
AH
3599}
3600
ac27a0ec 3601/*
617ba13b 3602 * ext4_truncate()
ac27a0ec 3603 *
617ba13b
MC
3604 * We block out ext4_get_block() block instantiations across the entire
3605 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3606 * simultaneously on behalf of the same inode.
3607 *
42b2aa86 3608 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3609 * is one core, guiding principle: the file's tree must always be consistent on
3610 * disk. We must be able to restart the truncate after a crash.
3611 *
3612 * The file's tree may be transiently inconsistent in memory (although it
3613 * probably isn't), but whenever we close off and commit a journal transaction,
3614 * the contents of (the filesystem + the journal) must be consistent and
3615 * restartable. It's pretty simple, really: bottom up, right to left (although
3616 * left-to-right works OK too).
3617 *
3618 * Note that at recovery time, journal replay occurs *before* the restart of
3619 * truncate against the orphan inode list.
3620 *
3621 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3622 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3623 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3624 * ext4_truncate() to have another go. So there will be instantiated blocks
3625 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3626 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3627 * ext4_truncate() run will find them and release them.
ac27a0ec 3628 */
617ba13b 3629void ext4_truncate(struct inode *inode)
ac27a0ec 3630{
819c4920
TT
3631 struct ext4_inode_info *ei = EXT4_I(inode);
3632 unsigned int credits;
3633 handle_t *handle;
3634 struct address_space *mapping = inode->i_mapping;
819c4920 3635
19b5ef61
TT
3636 /*
3637 * There is a possibility that we're either freeing the inode
3638 * or it completely new indode. In those cases we might not
3639 * have i_mutex locked because it's not necessary.
3640 */
3641 if (!(inode->i_state & (I_NEW|I_FREEING)))
3642 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3643 trace_ext4_truncate_enter(inode);
3644
91ef4caf 3645 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3646 return;
3647
12e9b892 3648 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3649
5534fb5b 3650 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3651 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3652
aef1c851
TM
3653 if (ext4_has_inline_data(inode)) {
3654 int has_inline = 1;
3655
3656 ext4_inline_data_truncate(inode, &has_inline);
3657 if (has_inline)
3658 return;
3659 }
3660
819c4920
TT
3661 /*
3662 * finish any pending end_io work so we won't run the risk of
3663 * converting any truncated blocks to initialized later
3664 */
3665 ext4_flush_unwritten_io(inode);
3666
3667 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3668 credits = ext4_writepage_trans_blocks(inode);
3669 else
3670 credits = ext4_blocks_for_truncate(inode);
3671
3672 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3673 if (IS_ERR(handle)) {
3674 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3675 return;
3676 }
3677
eb3544c6
LC
3678 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3679 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3680
3681 /*
3682 * We add the inode to the orphan list, so that if this
3683 * truncate spans multiple transactions, and we crash, we will
3684 * resume the truncate when the filesystem recovers. It also
3685 * marks the inode dirty, to catch the new size.
3686 *
3687 * Implication: the file must always be in a sane, consistent
3688 * truncatable state while each transaction commits.
3689 */
3690 if (ext4_orphan_add(handle, inode))
3691 goto out_stop;
3692
3693 down_write(&EXT4_I(inode)->i_data_sem);
3694
3695 ext4_discard_preallocations(inode);
3696
ff9893dc 3697 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3698 ext4_ext_truncate(handle, inode);
ff9893dc 3699 else
819c4920
TT
3700 ext4_ind_truncate(handle, inode);
3701
3702 up_write(&ei->i_data_sem);
3703
3704 if (IS_SYNC(inode))
3705 ext4_handle_sync(handle);
3706
3707out_stop:
3708 /*
3709 * If this was a simple ftruncate() and the file will remain alive,
3710 * then we need to clear up the orphan record which we created above.
3711 * However, if this was a real unlink then we were called by
3712 * ext4_delete_inode(), and we allow that function to clean up the
3713 * orphan info for us.
3714 */
3715 if (inode->i_nlink)
3716 ext4_orphan_del(handle, inode);
3717
3718 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3719 ext4_mark_inode_dirty(handle, inode);
3720 ext4_journal_stop(handle);
ac27a0ec 3721
0562e0ba 3722 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3723}
3724
ac27a0ec 3725/*
617ba13b 3726 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3727 * underlying buffer_head on success. If 'in_mem' is true, we have all
3728 * data in memory that is needed to recreate the on-disk version of this
3729 * inode.
3730 */
617ba13b
MC
3731static int __ext4_get_inode_loc(struct inode *inode,
3732 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3733{
240799cd
TT
3734 struct ext4_group_desc *gdp;
3735 struct buffer_head *bh;
3736 struct super_block *sb = inode->i_sb;
3737 ext4_fsblk_t block;
3738 int inodes_per_block, inode_offset;
3739
3a06d778 3740 iloc->bh = NULL;
240799cd
TT
3741 if (!ext4_valid_inum(sb, inode->i_ino))
3742 return -EIO;
ac27a0ec 3743
240799cd
TT
3744 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3745 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3746 if (!gdp)
ac27a0ec
DK
3747 return -EIO;
3748
240799cd
TT
3749 /*
3750 * Figure out the offset within the block group inode table
3751 */
00d09882 3752 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3753 inode_offset = ((inode->i_ino - 1) %
3754 EXT4_INODES_PER_GROUP(sb));
3755 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3756 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3757
3758 bh = sb_getblk(sb, block);
aebf0243 3759 if (unlikely(!bh))
860d21e2 3760 return -ENOMEM;
ac27a0ec
DK
3761 if (!buffer_uptodate(bh)) {
3762 lock_buffer(bh);
9c83a923
HK
3763
3764 /*
3765 * If the buffer has the write error flag, we have failed
3766 * to write out another inode in the same block. In this
3767 * case, we don't have to read the block because we may
3768 * read the old inode data successfully.
3769 */
3770 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3771 set_buffer_uptodate(bh);
3772
ac27a0ec
DK
3773 if (buffer_uptodate(bh)) {
3774 /* someone brought it uptodate while we waited */
3775 unlock_buffer(bh);
3776 goto has_buffer;
3777 }
3778
3779 /*
3780 * If we have all information of the inode in memory and this
3781 * is the only valid inode in the block, we need not read the
3782 * block.
3783 */
3784 if (in_mem) {
3785 struct buffer_head *bitmap_bh;
240799cd 3786 int i, start;
ac27a0ec 3787
240799cd 3788 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3789
240799cd
TT
3790 /* Is the inode bitmap in cache? */
3791 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3792 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3793 goto make_io;
3794
3795 /*
3796 * If the inode bitmap isn't in cache then the
3797 * optimisation may end up performing two reads instead
3798 * of one, so skip it.
3799 */
3800 if (!buffer_uptodate(bitmap_bh)) {
3801 brelse(bitmap_bh);
3802 goto make_io;
3803 }
240799cd 3804 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3805 if (i == inode_offset)
3806 continue;
617ba13b 3807 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3808 break;
3809 }
3810 brelse(bitmap_bh);
240799cd 3811 if (i == start + inodes_per_block) {
ac27a0ec
DK
3812 /* all other inodes are free, so skip I/O */
3813 memset(bh->b_data, 0, bh->b_size);
3814 set_buffer_uptodate(bh);
3815 unlock_buffer(bh);
3816 goto has_buffer;
3817 }
3818 }
3819
3820make_io:
240799cd
TT
3821 /*
3822 * If we need to do any I/O, try to pre-readahead extra
3823 * blocks from the inode table.
3824 */
3825 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3826 ext4_fsblk_t b, end, table;
3827 unsigned num;
0d606e2c 3828 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3829
3830 table = ext4_inode_table(sb, gdp);
b713a5ec 3831 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3832 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3833 if (table > b)
3834 b = table;
0d606e2c 3835 end = b + ra_blks;
240799cd 3836 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3837 if (ext4_has_group_desc_csum(sb))
560671a0 3838 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3839 table += num / inodes_per_block;
3840 if (end > table)
3841 end = table;
3842 while (b <= end)
3843 sb_breadahead(sb, b++);
3844 }
3845
ac27a0ec
DK
3846 /*
3847 * There are other valid inodes in the buffer, this inode
3848 * has in-inode xattrs, or we don't have this inode in memory.
3849 * Read the block from disk.
3850 */
0562e0ba 3851 trace_ext4_load_inode(inode);
ac27a0ec
DK
3852 get_bh(bh);
3853 bh->b_end_io = end_buffer_read_sync;
65299a3b 3854 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3855 wait_on_buffer(bh);
3856 if (!buffer_uptodate(bh)) {
c398eda0
TT
3857 EXT4_ERROR_INODE_BLOCK(inode, block,
3858 "unable to read itable block");
ac27a0ec
DK
3859 brelse(bh);
3860 return -EIO;
3861 }
3862 }
3863has_buffer:
3864 iloc->bh = bh;
3865 return 0;
3866}
3867
617ba13b 3868int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3869{
3870 /* We have all inode data except xattrs in memory here. */
617ba13b 3871 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3872 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3873}
3874
617ba13b 3875void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3876{
617ba13b 3877 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3878
3879 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3880 if (flags & EXT4_SYNC_FL)
ac27a0ec 3881 inode->i_flags |= S_SYNC;
617ba13b 3882 if (flags & EXT4_APPEND_FL)
ac27a0ec 3883 inode->i_flags |= S_APPEND;
617ba13b 3884 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3885 inode->i_flags |= S_IMMUTABLE;
617ba13b 3886 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3887 inode->i_flags |= S_NOATIME;
617ba13b 3888 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3889 inode->i_flags |= S_DIRSYNC;
3890}
3891
ff9ddf7e
JK
3892/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3893void ext4_get_inode_flags(struct ext4_inode_info *ei)
3894{
84a8dce2
DM
3895 unsigned int vfs_fl;
3896 unsigned long old_fl, new_fl;
3897
3898 do {
3899 vfs_fl = ei->vfs_inode.i_flags;
3900 old_fl = ei->i_flags;
3901 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3902 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3903 EXT4_DIRSYNC_FL);
3904 if (vfs_fl & S_SYNC)
3905 new_fl |= EXT4_SYNC_FL;
3906 if (vfs_fl & S_APPEND)
3907 new_fl |= EXT4_APPEND_FL;
3908 if (vfs_fl & S_IMMUTABLE)
3909 new_fl |= EXT4_IMMUTABLE_FL;
3910 if (vfs_fl & S_NOATIME)
3911 new_fl |= EXT4_NOATIME_FL;
3912 if (vfs_fl & S_DIRSYNC)
3913 new_fl |= EXT4_DIRSYNC_FL;
3914 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3915}
de9a55b8 3916
0fc1b451 3917static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3918 struct ext4_inode_info *ei)
0fc1b451
AK
3919{
3920 blkcnt_t i_blocks ;
8180a562
AK
3921 struct inode *inode = &(ei->vfs_inode);
3922 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3923
3924 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3925 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3926 /* we are using combined 48 bit field */
3927 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3928 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3929 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3930 /* i_blocks represent file system block size */
3931 return i_blocks << (inode->i_blkbits - 9);
3932 } else {
3933 return i_blocks;
3934 }
0fc1b451
AK
3935 } else {
3936 return le32_to_cpu(raw_inode->i_blocks_lo);
3937 }
3938}
ff9ddf7e 3939
152a7b0a
TM
3940static inline void ext4_iget_extra_inode(struct inode *inode,
3941 struct ext4_inode *raw_inode,
3942 struct ext4_inode_info *ei)
3943{
3944 __le32 *magic = (void *)raw_inode +
3945 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3946 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3947 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3948 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3949 } else
3950 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3951}
3952
1d1fe1ee 3953struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3954{
617ba13b
MC
3955 struct ext4_iloc iloc;
3956 struct ext4_inode *raw_inode;
1d1fe1ee 3957 struct ext4_inode_info *ei;
1d1fe1ee 3958 struct inode *inode;
b436b9be 3959 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3960 long ret;
ac27a0ec 3961 int block;
08cefc7a
EB
3962 uid_t i_uid;
3963 gid_t i_gid;
ac27a0ec 3964
1d1fe1ee
DH
3965 inode = iget_locked(sb, ino);
3966 if (!inode)
3967 return ERR_PTR(-ENOMEM);
3968 if (!(inode->i_state & I_NEW))
3969 return inode;
3970
3971 ei = EXT4_I(inode);
7dc57615 3972 iloc.bh = NULL;
ac27a0ec 3973
1d1fe1ee
DH
3974 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3975 if (ret < 0)
ac27a0ec 3976 goto bad_inode;
617ba13b 3977 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3978
3979 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3980 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3981 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3982 EXT4_INODE_SIZE(inode->i_sb)) {
3983 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3984 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3985 EXT4_INODE_SIZE(inode->i_sb));
3986 ret = -EIO;
3987 goto bad_inode;
3988 }
3989 } else
3990 ei->i_extra_isize = 0;
3991
3992 /* Precompute checksum seed for inode metadata */
3993 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3994 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3995 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3996 __u32 csum;
3997 __le32 inum = cpu_to_le32(inode->i_ino);
3998 __le32 gen = raw_inode->i_generation;
3999 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4000 sizeof(inum));
4001 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4002 sizeof(gen));
4003 }
4004
4005 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4006 EXT4_ERROR_INODE(inode, "checksum invalid");
4007 ret = -EIO;
4008 goto bad_inode;
4009 }
4010
ac27a0ec 4011 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4012 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4013 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4014 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4015 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4016 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4017 }
08cefc7a
EB
4018 i_uid_write(inode, i_uid);
4019 i_gid_write(inode, i_gid);
bfe86848 4020 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4021
353eb83c 4022 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4023 ei->i_inline_off = 0;
ac27a0ec
DK
4024 ei->i_dir_start_lookup = 0;
4025 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4026 /* We now have enough fields to check if the inode was active or not.
4027 * This is needed because nfsd might try to access dead inodes
4028 * the test is that same one that e2fsck uses
4029 * NeilBrown 1999oct15
4030 */
4031 if (inode->i_nlink == 0) {
393d1d1d
DTB
4032 if ((inode->i_mode == 0 ||
4033 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4034 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4035 /* this inode is deleted */
1d1fe1ee 4036 ret = -ESTALE;
ac27a0ec
DK
4037 goto bad_inode;
4038 }
4039 /* The only unlinked inodes we let through here have
4040 * valid i_mode and are being read by the orphan
4041 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4042 * the process of deleting those.
4043 * OR it is the EXT4_BOOT_LOADER_INO which is
4044 * not initialized on a new filesystem. */
ac27a0ec 4045 }
ac27a0ec 4046 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4047 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4048 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4049 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4050 ei->i_file_acl |=
4051 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4052 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4053 ei->i_disksize = inode->i_size;
a9e7f447
DM
4054#ifdef CONFIG_QUOTA
4055 ei->i_reserved_quota = 0;
4056#endif
ac27a0ec
DK
4057 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4058 ei->i_block_group = iloc.block_group;
a4912123 4059 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4060 /*
4061 * NOTE! The in-memory inode i_data array is in little-endian order
4062 * even on big-endian machines: we do NOT byteswap the block numbers!
4063 */
617ba13b 4064 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4065 ei->i_data[block] = raw_inode->i_block[block];
4066 INIT_LIST_HEAD(&ei->i_orphan);
4067
b436b9be
JK
4068 /*
4069 * Set transaction id's of transactions that have to be committed
4070 * to finish f[data]sync. We set them to currently running transaction
4071 * as we cannot be sure that the inode or some of its metadata isn't
4072 * part of the transaction - the inode could have been reclaimed and
4073 * now it is reread from disk.
4074 */
4075 if (journal) {
4076 transaction_t *transaction;
4077 tid_t tid;
4078
a931da6a 4079 read_lock(&journal->j_state_lock);
b436b9be
JK
4080 if (journal->j_running_transaction)
4081 transaction = journal->j_running_transaction;
4082 else
4083 transaction = journal->j_committing_transaction;
4084 if (transaction)
4085 tid = transaction->t_tid;
4086 else
4087 tid = journal->j_commit_sequence;
a931da6a 4088 read_unlock(&journal->j_state_lock);
b436b9be
JK
4089 ei->i_sync_tid = tid;
4090 ei->i_datasync_tid = tid;
4091 }
4092
0040d987 4093 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4094 if (ei->i_extra_isize == 0) {
4095 /* The extra space is currently unused. Use it. */
617ba13b
MC
4096 ei->i_extra_isize = sizeof(struct ext4_inode) -
4097 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4098 } else {
152a7b0a 4099 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4100 }
814525f4 4101 }
ac27a0ec 4102
ef7f3835
KS
4103 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4104 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4105 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4106 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4107
25ec56b5
JNC
4108 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4110 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4111 inode->i_version |=
4112 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4113 }
4114
c4b5a614 4115 ret = 0;
485c26ec 4116 if (ei->i_file_acl &&
1032988c 4117 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4118 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4119 ei->i_file_acl);
485c26ec
TT
4120 ret = -EIO;
4121 goto bad_inode;
f19d5870
TM
4122 } else if (!ext4_has_inline_data(inode)) {
4123 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4124 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4125 (S_ISLNK(inode->i_mode) &&
4126 !ext4_inode_is_fast_symlink(inode))))
4127 /* Validate extent which is part of inode */
4128 ret = ext4_ext_check_inode(inode);
4129 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4130 (S_ISLNK(inode->i_mode) &&
4131 !ext4_inode_is_fast_symlink(inode))) {
4132 /* Validate block references which are part of inode */
4133 ret = ext4_ind_check_inode(inode);
4134 }
fe2c8191 4135 }
567f3e9a 4136 if (ret)
de9a55b8 4137 goto bad_inode;
7a262f7c 4138
ac27a0ec 4139 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4140 inode->i_op = &ext4_file_inode_operations;
4141 inode->i_fop = &ext4_file_operations;
4142 ext4_set_aops(inode);
ac27a0ec 4143 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4144 inode->i_op = &ext4_dir_inode_operations;
4145 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4146 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4147 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4148 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4149 nd_terminate_link(ei->i_data, inode->i_size,
4150 sizeof(ei->i_data) - 1);
4151 } else {
617ba13b
MC
4152 inode->i_op = &ext4_symlink_inode_operations;
4153 ext4_set_aops(inode);
ac27a0ec 4154 }
563bdd61
TT
4155 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4156 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4157 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4158 if (raw_inode->i_block[0])
4159 init_special_inode(inode, inode->i_mode,
4160 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4161 else
4162 init_special_inode(inode, inode->i_mode,
4163 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4164 } else if (ino == EXT4_BOOT_LOADER_INO) {
4165 make_bad_inode(inode);
563bdd61 4166 } else {
563bdd61 4167 ret = -EIO;
24676da4 4168 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4169 goto bad_inode;
ac27a0ec 4170 }
af5bc92d 4171 brelse(iloc.bh);
617ba13b 4172 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4173 unlock_new_inode(inode);
4174 return inode;
ac27a0ec
DK
4175
4176bad_inode:
567f3e9a 4177 brelse(iloc.bh);
1d1fe1ee
DH
4178 iget_failed(inode);
4179 return ERR_PTR(ret);
ac27a0ec
DK
4180}
4181
0fc1b451
AK
4182static int ext4_inode_blocks_set(handle_t *handle,
4183 struct ext4_inode *raw_inode,
4184 struct ext4_inode_info *ei)
4185{
4186 struct inode *inode = &(ei->vfs_inode);
4187 u64 i_blocks = inode->i_blocks;
4188 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4189
4190 if (i_blocks <= ~0U) {
4191 /*
4907cb7b 4192 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4193 * as multiple of 512 bytes
4194 */
8180a562 4195 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4196 raw_inode->i_blocks_high = 0;
84a8dce2 4197 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4198 return 0;
4199 }
4200 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4201 return -EFBIG;
4202
4203 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4204 /*
4205 * i_blocks can be represented in a 48 bit variable
4206 * as multiple of 512 bytes
4207 */
8180a562 4208 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4209 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4210 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4211 } else {
84a8dce2 4212 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4213 /* i_block is stored in file system block size */
4214 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4215 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4216 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4217 }
f287a1a5 4218 return 0;
0fc1b451
AK
4219}
4220
ac27a0ec
DK
4221/*
4222 * Post the struct inode info into an on-disk inode location in the
4223 * buffer-cache. This gobbles the caller's reference to the
4224 * buffer_head in the inode location struct.
4225 *
4226 * The caller must have write access to iloc->bh.
4227 */
617ba13b 4228static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4229 struct inode *inode,
830156c7 4230 struct ext4_iloc *iloc)
ac27a0ec 4231{
617ba13b
MC
4232 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4233 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4234 struct buffer_head *bh = iloc->bh;
4235 int err = 0, rc, block;
b71fc079 4236 int need_datasync = 0;
08cefc7a
EB
4237 uid_t i_uid;
4238 gid_t i_gid;
ac27a0ec
DK
4239
4240 /* For fields not not tracking in the in-memory inode,
4241 * initialise them to zero for new inodes. */
19f5fb7a 4242 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4243 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4244
ff9ddf7e 4245 ext4_get_inode_flags(ei);
ac27a0ec 4246 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4247 i_uid = i_uid_read(inode);
4248 i_gid = i_gid_read(inode);
af5bc92d 4249 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4250 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4251 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4252/*
4253 * Fix up interoperability with old kernels. Otherwise, old inodes get
4254 * re-used with the upper 16 bits of the uid/gid intact
4255 */
af5bc92d 4256 if (!ei->i_dtime) {
ac27a0ec 4257 raw_inode->i_uid_high =
08cefc7a 4258 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4259 raw_inode->i_gid_high =
08cefc7a 4260 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4261 } else {
4262 raw_inode->i_uid_high = 0;
4263 raw_inode->i_gid_high = 0;
4264 }
4265 } else {
08cefc7a
EB
4266 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4267 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4268 raw_inode->i_uid_high = 0;
4269 raw_inode->i_gid_high = 0;
4270 }
4271 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4272
4273 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4274 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4275 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4276 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4277
0fc1b451
AK
4278 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4279 goto out_brelse;
ac27a0ec 4280 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4281 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4282 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4283 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4284 raw_inode->i_file_acl_high =
4285 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4286 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4287 if (ei->i_disksize != ext4_isize(raw_inode)) {
4288 ext4_isize_set(raw_inode, ei->i_disksize);
4289 need_datasync = 1;
4290 }
a48380f7
AK
4291 if (ei->i_disksize > 0x7fffffffULL) {
4292 struct super_block *sb = inode->i_sb;
4293 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4294 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4295 EXT4_SB(sb)->s_es->s_rev_level ==
4296 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4297 /* If this is the first large file
4298 * created, add a flag to the superblock.
4299 */
4300 err = ext4_journal_get_write_access(handle,
4301 EXT4_SB(sb)->s_sbh);
4302 if (err)
4303 goto out_brelse;
4304 ext4_update_dynamic_rev(sb);
4305 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4306 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4307 ext4_handle_sync(handle);
b50924c2 4308 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4309 }
4310 }
4311 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4312 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4313 if (old_valid_dev(inode->i_rdev)) {
4314 raw_inode->i_block[0] =
4315 cpu_to_le32(old_encode_dev(inode->i_rdev));
4316 raw_inode->i_block[1] = 0;
4317 } else {
4318 raw_inode->i_block[0] = 0;
4319 raw_inode->i_block[1] =
4320 cpu_to_le32(new_encode_dev(inode->i_rdev));
4321 raw_inode->i_block[2] = 0;
4322 }
f19d5870 4323 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4324 for (block = 0; block < EXT4_N_BLOCKS; block++)
4325 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4326 }
ac27a0ec 4327
25ec56b5
JNC
4328 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4329 if (ei->i_extra_isize) {
4330 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4331 raw_inode->i_version_hi =
4332 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4333 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4334 }
4335
814525f4
DW
4336 ext4_inode_csum_set(inode, raw_inode, ei);
4337
830156c7 4338 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4339 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4340 if (!err)
4341 err = rc;
19f5fb7a 4342 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4343
b71fc079 4344 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4345out_brelse:
af5bc92d 4346 brelse(bh);
617ba13b 4347 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4348 return err;
4349}
4350
4351/*
617ba13b 4352 * ext4_write_inode()
ac27a0ec
DK
4353 *
4354 * We are called from a few places:
4355 *
4356 * - Within generic_file_write() for O_SYNC files.
4357 * Here, there will be no transaction running. We wait for any running
4907cb7b 4358 * transaction to commit.
ac27a0ec
DK
4359 *
4360 * - Within sys_sync(), kupdate and such.
4361 * We wait on commit, if tol to.
4362 *
4363 * - Within prune_icache() (PF_MEMALLOC == true)
4364 * Here we simply return. We can't afford to block kswapd on the
4365 * journal commit.
4366 *
4367 * In all cases it is actually safe for us to return without doing anything,
4368 * because the inode has been copied into a raw inode buffer in
617ba13b 4369 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4370 * knfsd.
4371 *
4372 * Note that we are absolutely dependent upon all inode dirtiers doing the
4373 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4374 * which we are interested.
4375 *
4376 * It would be a bug for them to not do this. The code:
4377 *
4378 * mark_inode_dirty(inode)
4379 * stuff();
4380 * inode->i_size = expr;
4381 *
4382 * is in error because a kswapd-driven write_inode() could occur while
4383 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4384 * will no longer be on the superblock's dirty inode list.
4385 */
a9185b41 4386int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4387{
91ac6f43
FM
4388 int err;
4389
ac27a0ec
DK
4390 if (current->flags & PF_MEMALLOC)
4391 return 0;
4392
91ac6f43
FM
4393 if (EXT4_SB(inode->i_sb)->s_journal) {
4394 if (ext4_journal_current_handle()) {
4395 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4396 dump_stack();
4397 return -EIO;
4398 }
ac27a0ec 4399
a9185b41 4400 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4401 return 0;
4402
4403 err = ext4_force_commit(inode->i_sb);
4404 } else {
4405 struct ext4_iloc iloc;
ac27a0ec 4406
8b472d73 4407 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4408 if (err)
4409 return err;
a9185b41 4410 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4411 sync_dirty_buffer(iloc.bh);
4412 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4413 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4414 "IO error syncing inode");
830156c7
FM
4415 err = -EIO;
4416 }
fd2dd9fb 4417 brelse(iloc.bh);
91ac6f43
FM
4418 }
4419 return err;
ac27a0ec
DK
4420}
4421
53e87268
JK
4422/*
4423 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4424 * buffers that are attached to a page stradding i_size and are undergoing
4425 * commit. In that case we have to wait for commit to finish and try again.
4426 */
4427static void ext4_wait_for_tail_page_commit(struct inode *inode)
4428{
4429 struct page *page;
4430 unsigned offset;
4431 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4432 tid_t commit_tid = 0;
4433 int ret;
4434
4435 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4436 /*
4437 * All buffers in the last page remain valid? Then there's nothing to
4438 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4439 * blocksize case
4440 */
4441 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4442 return;
4443 while (1) {
4444 page = find_lock_page(inode->i_mapping,
4445 inode->i_size >> PAGE_CACHE_SHIFT);
4446 if (!page)
4447 return;
ca99fdd2
LC
4448 ret = __ext4_journalled_invalidatepage(page, offset,
4449 PAGE_CACHE_SIZE - offset);
53e87268
JK
4450 unlock_page(page);
4451 page_cache_release(page);
4452 if (ret != -EBUSY)
4453 return;
4454 commit_tid = 0;
4455 read_lock(&journal->j_state_lock);
4456 if (journal->j_committing_transaction)
4457 commit_tid = journal->j_committing_transaction->t_tid;
4458 read_unlock(&journal->j_state_lock);
4459 if (commit_tid)
4460 jbd2_log_wait_commit(journal, commit_tid);
4461 }
4462}
4463
ac27a0ec 4464/*
617ba13b 4465 * ext4_setattr()
ac27a0ec
DK
4466 *
4467 * Called from notify_change.
4468 *
4469 * We want to trap VFS attempts to truncate the file as soon as
4470 * possible. In particular, we want to make sure that when the VFS
4471 * shrinks i_size, we put the inode on the orphan list and modify
4472 * i_disksize immediately, so that during the subsequent flushing of
4473 * dirty pages and freeing of disk blocks, we can guarantee that any
4474 * commit will leave the blocks being flushed in an unused state on
4475 * disk. (On recovery, the inode will get truncated and the blocks will
4476 * be freed, so we have a strong guarantee that no future commit will
4477 * leave these blocks visible to the user.)
4478 *
678aaf48
JK
4479 * Another thing we have to assure is that if we are in ordered mode
4480 * and inode is still attached to the committing transaction, we must
4481 * we start writeout of all the dirty pages which are being truncated.
4482 * This way we are sure that all the data written in the previous
4483 * transaction are already on disk (truncate waits for pages under
4484 * writeback).
4485 *
4486 * Called with inode->i_mutex down.
ac27a0ec 4487 */
617ba13b 4488int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4489{
4490 struct inode *inode = dentry->d_inode;
4491 int error, rc = 0;
3d287de3 4492 int orphan = 0;
ac27a0ec
DK
4493 const unsigned int ia_valid = attr->ia_valid;
4494
4495 error = inode_change_ok(inode, attr);
4496 if (error)
4497 return error;
4498
12755627 4499 if (is_quota_modification(inode, attr))
871a2931 4500 dquot_initialize(inode);
08cefc7a
EB
4501 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4502 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4503 handle_t *handle;
4504
4505 /* (user+group)*(old+new) structure, inode write (sb,
4506 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4507 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4508 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4509 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4510 if (IS_ERR(handle)) {
4511 error = PTR_ERR(handle);
4512 goto err_out;
4513 }
b43fa828 4514 error = dquot_transfer(inode, attr);
ac27a0ec 4515 if (error) {
617ba13b 4516 ext4_journal_stop(handle);
ac27a0ec
DK
4517 return error;
4518 }
4519 /* Update corresponding info in inode so that everything is in
4520 * one transaction */
4521 if (attr->ia_valid & ATTR_UID)
4522 inode->i_uid = attr->ia_uid;
4523 if (attr->ia_valid & ATTR_GID)
4524 inode->i_gid = attr->ia_gid;
617ba13b
MC
4525 error = ext4_mark_inode_dirty(handle, inode);
4526 ext4_journal_stop(handle);
ac27a0ec
DK
4527 }
4528
e2b46574 4529 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4530
12e9b892 4531 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4532 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4533
0c095c7f
TT
4534 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4535 return -EFBIG;
e2b46574
ES
4536 }
4537 }
4538
ac27a0ec 4539 if (S_ISREG(inode->i_mode) &&
c8d46e41 4540 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4541 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4542 handle_t *handle;
4543
9924a92a 4544 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4545 if (IS_ERR(handle)) {
4546 error = PTR_ERR(handle);
4547 goto err_out;
4548 }
3d287de3
DM
4549 if (ext4_handle_valid(handle)) {
4550 error = ext4_orphan_add(handle, inode);
4551 orphan = 1;
4552 }
617ba13b
MC
4553 EXT4_I(inode)->i_disksize = attr->ia_size;
4554 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4555 if (!error)
4556 error = rc;
617ba13b 4557 ext4_journal_stop(handle);
678aaf48
JK
4558
4559 if (ext4_should_order_data(inode)) {
4560 error = ext4_begin_ordered_truncate(inode,
4561 attr->ia_size);
4562 if (error) {
4563 /* Do as much error cleanup as possible */
9924a92a
TT
4564 handle = ext4_journal_start(inode,
4565 EXT4_HT_INODE, 3);
678aaf48
JK
4566 if (IS_ERR(handle)) {
4567 ext4_orphan_del(NULL, inode);
4568 goto err_out;
4569 }
4570 ext4_orphan_del(handle, inode);
3d287de3 4571 orphan = 0;
678aaf48
JK
4572 ext4_journal_stop(handle);
4573 goto err_out;
4574 }
4575 }
ac27a0ec
DK
4576 }
4577
072bd7ea 4578 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4579 if (attr->ia_size != inode->i_size) {
4580 loff_t oldsize = inode->i_size;
4581
4582 i_size_write(inode, attr->ia_size);
4583 /*
4584 * Blocks are going to be removed from the inode. Wait
4585 * for dio in flight. Temporarily disable
4586 * dioread_nolock to prevent livelock.
4587 */
1b65007e 4588 if (orphan) {
53e87268
JK
4589 if (!ext4_should_journal_data(inode)) {
4590 ext4_inode_block_unlocked_dio(inode);
4591 inode_dio_wait(inode);
4592 ext4_inode_resume_unlocked_dio(inode);
4593 } else
4594 ext4_wait_for_tail_page_commit(inode);
1b65007e 4595 }
53e87268
JK
4596 /*
4597 * Truncate pagecache after we've waited for commit
4598 * in data=journal mode to make pages freeable.
4599 */
4600 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4601 }
afcff5d8 4602 ext4_truncate(inode);
072bd7ea 4603 }
ac27a0ec 4604
1025774c
CH
4605 if (!rc) {
4606 setattr_copy(inode, attr);
4607 mark_inode_dirty(inode);
4608 }
4609
4610 /*
4611 * If the call to ext4_truncate failed to get a transaction handle at
4612 * all, we need to clean up the in-core orphan list manually.
4613 */
3d287de3 4614 if (orphan && inode->i_nlink)
617ba13b 4615 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4616
4617 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4618 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4619
4620err_out:
617ba13b 4621 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4622 if (!error)
4623 error = rc;
4624 return error;
4625}
4626
3e3398a0
MC
4627int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4628 struct kstat *stat)
4629{
4630 struct inode *inode;
8af8eecc 4631 unsigned long long delalloc_blocks;
3e3398a0
MC
4632
4633 inode = dentry->d_inode;
4634 generic_fillattr(inode, stat);
4635
4636 /*
4637 * We can't update i_blocks if the block allocation is delayed
4638 * otherwise in the case of system crash before the real block
4639 * allocation is done, we will have i_blocks inconsistent with
4640 * on-disk file blocks.
4641 * We always keep i_blocks updated together with real
4642 * allocation. But to not confuse with user, stat
4643 * will return the blocks that include the delayed allocation
4644 * blocks for this file.
4645 */
96607551
TM
4646 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4647 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4648
8af8eecc 4649 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4650 return 0;
4651}
ac27a0ec 4652
a02908f1
MC
4653static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4654{
12e9b892 4655 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fa55a0ed 4656 return ext4_ind_trans_blocks(inode, nrblocks);
ac51d837 4657 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4658}
ac51d837 4659
ac27a0ec 4660/*
a02908f1
MC
4661 * Account for index blocks, block groups bitmaps and block group
4662 * descriptor blocks if modify datablocks and index blocks
4663 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4664 *
a02908f1 4665 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4666 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4667 * they could still across block group boundary.
ac27a0ec 4668 *
a02908f1
MC
4669 * Also account for superblock, inode, quota and xattr blocks
4670 */
1f109d5a 4671static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4672{
8df9675f
TT
4673 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4674 int gdpblocks;
a02908f1
MC
4675 int idxblocks;
4676 int ret = 0;
4677
4678 /*
4679 * How many index blocks need to touch to modify nrblocks?
4680 * The "Chunk" flag indicating whether the nrblocks is
4681 * physically contiguous on disk
4682 *
4683 * For Direct IO and fallocate, they calls get_block to allocate
4684 * one single extent at a time, so they could set the "Chunk" flag
4685 */
4686 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4687
4688 ret = idxblocks;
4689
4690 /*
4691 * Now let's see how many group bitmaps and group descriptors need
4692 * to account
4693 */
4694 groups = idxblocks;
4695 if (chunk)
4696 groups += 1;
4697 else
4698 groups += nrblocks;
4699
4700 gdpblocks = groups;
8df9675f
TT
4701 if (groups > ngroups)
4702 groups = ngroups;
a02908f1
MC
4703 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4704 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4705
4706 /* bitmaps and block group descriptor blocks */
4707 ret += groups + gdpblocks;
4708
4709 /* Blocks for super block, inode, quota and xattr blocks */
4710 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4711
4712 return ret;
4713}
4714
4715/*
25985edc 4716 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4717 * the modification of a single pages into a single transaction,
4718 * which may include multiple chunks of block allocations.
ac27a0ec 4719 *
525f4ed8 4720 * This could be called via ext4_write_begin()
ac27a0ec 4721 *
525f4ed8 4722 * We need to consider the worse case, when
a02908f1 4723 * one new block per extent.
ac27a0ec 4724 */
a86c6181 4725int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4726{
617ba13b 4727 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4728 int ret;
4729
a02908f1 4730 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4731
a02908f1 4732 /* Account for data blocks for journalled mode */
617ba13b 4733 if (ext4_should_journal_data(inode))
a02908f1 4734 ret += bpp;
ac27a0ec
DK
4735 return ret;
4736}
f3bd1f3f
MC
4737
4738/*
4739 * Calculate the journal credits for a chunk of data modification.
4740 *
4741 * This is called from DIO, fallocate or whoever calling
79e83036 4742 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4743 *
4744 * journal buffers for data blocks are not included here, as DIO
4745 * and fallocate do no need to journal data buffers.
4746 */
4747int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4748{
4749 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4750}
4751
ac27a0ec 4752/*
617ba13b 4753 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4754 * Give this, we know that the caller already has write access to iloc->bh.
4755 */
617ba13b 4756int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4757 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4758{
4759 int err = 0;
4760
c64db50e 4761 if (IS_I_VERSION(inode))
25ec56b5
JNC
4762 inode_inc_iversion(inode);
4763
ac27a0ec
DK
4764 /* the do_update_inode consumes one bh->b_count */
4765 get_bh(iloc->bh);
4766
dab291af 4767 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4768 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4769 put_bh(iloc->bh);
4770 return err;
4771}
4772
4773/*
4774 * On success, We end up with an outstanding reference count against
4775 * iloc->bh. This _must_ be cleaned up later.
4776 */
4777
4778int
617ba13b
MC
4779ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4780 struct ext4_iloc *iloc)
ac27a0ec 4781{
0390131b
FM
4782 int err;
4783
4784 err = ext4_get_inode_loc(inode, iloc);
4785 if (!err) {
4786 BUFFER_TRACE(iloc->bh, "get_write_access");
4787 err = ext4_journal_get_write_access(handle, iloc->bh);
4788 if (err) {
4789 brelse(iloc->bh);
4790 iloc->bh = NULL;
ac27a0ec
DK
4791 }
4792 }
617ba13b 4793 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4794 return err;
4795}
4796
6dd4ee7c
KS
4797/*
4798 * Expand an inode by new_extra_isize bytes.
4799 * Returns 0 on success or negative error number on failure.
4800 */
1d03ec98
AK
4801static int ext4_expand_extra_isize(struct inode *inode,
4802 unsigned int new_extra_isize,
4803 struct ext4_iloc iloc,
4804 handle_t *handle)
6dd4ee7c
KS
4805{
4806 struct ext4_inode *raw_inode;
4807 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4808
4809 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4810 return 0;
4811
4812 raw_inode = ext4_raw_inode(&iloc);
4813
4814 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4815
4816 /* No extended attributes present */
19f5fb7a
TT
4817 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4818 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4819 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4820 new_extra_isize);
4821 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4822 return 0;
4823 }
4824
4825 /* try to expand with EAs present */
4826 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4827 raw_inode, handle);
4828}
4829
ac27a0ec
DK
4830/*
4831 * What we do here is to mark the in-core inode as clean with respect to inode
4832 * dirtiness (it may still be data-dirty).
4833 * This means that the in-core inode may be reaped by prune_icache
4834 * without having to perform any I/O. This is a very good thing,
4835 * because *any* task may call prune_icache - even ones which
4836 * have a transaction open against a different journal.
4837 *
4838 * Is this cheating? Not really. Sure, we haven't written the
4839 * inode out, but prune_icache isn't a user-visible syncing function.
4840 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4841 * we start and wait on commits.
ac27a0ec 4842 */
617ba13b 4843int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4844{
617ba13b 4845 struct ext4_iloc iloc;
6dd4ee7c
KS
4846 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4847 static unsigned int mnt_count;
4848 int err, ret;
ac27a0ec
DK
4849
4850 might_sleep();
7ff9c073 4851 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4852 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4853 if (ext4_handle_valid(handle) &&
4854 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4855 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4856 /*
4857 * We need extra buffer credits since we may write into EA block
4858 * with this same handle. If journal_extend fails, then it will
4859 * only result in a minor loss of functionality for that inode.
4860 * If this is felt to be critical, then e2fsck should be run to
4861 * force a large enough s_min_extra_isize.
4862 */
4863 if ((jbd2_journal_extend(handle,
4864 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4865 ret = ext4_expand_extra_isize(inode,
4866 sbi->s_want_extra_isize,
4867 iloc, handle);
4868 if (ret) {
19f5fb7a
TT
4869 ext4_set_inode_state(inode,
4870 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4871 if (mnt_count !=
4872 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4873 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4874 "Unable to expand inode %lu. Delete"
4875 " some EAs or run e2fsck.",
4876 inode->i_ino);
c1bddad9
AK
4877 mnt_count =
4878 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4879 }
4880 }
4881 }
4882 }
ac27a0ec 4883 if (!err)
617ba13b 4884 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4885 return err;
4886}
4887
4888/*
617ba13b 4889 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4890 *
4891 * We're really interested in the case where a file is being extended.
4892 * i_size has been changed by generic_commit_write() and we thus need
4893 * to include the updated inode in the current transaction.
4894 *
5dd4056d 4895 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4896 * are allocated to the file.
4897 *
4898 * If the inode is marked synchronous, we don't honour that here - doing
4899 * so would cause a commit on atime updates, which we don't bother doing.
4900 * We handle synchronous inodes at the highest possible level.
4901 */
aa385729 4902void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4903{
ac27a0ec
DK
4904 handle_t *handle;
4905
9924a92a 4906 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4907 if (IS_ERR(handle))
4908 goto out;
f3dc272f 4909
f3dc272f
CW
4910 ext4_mark_inode_dirty(handle, inode);
4911
617ba13b 4912 ext4_journal_stop(handle);
ac27a0ec
DK
4913out:
4914 return;
4915}
4916
4917#if 0
4918/*
4919 * Bind an inode's backing buffer_head into this transaction, to prevent
4920 * it from being flushed to disk early. Unlike
617ba13b 4921 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4922 * returns no iloc structure, so the caller needs to repeat the iloc
4923 * lookup to mark the inode dirty later.
4924 */
617ba13b 4925static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4926{
617ba13b 4927 struct ext4_iloc iloc;
ac27a0ec
DK
4928
4929 int err = 0;
4930 if (handle) {
617ba13b 4931 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4932 if (!err) {
4933 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4934 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4935 if (!err)
0390131b 4936 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4937 NULL,
0390131b 4938 iloc.bh);
ac27a0ec
DK
4939 brelse(iloc.bh);
4940 }
4941 }
617ba13b 4942 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4943 return err;
4944}
4945#endif
4946
617ba13b 4947int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4948{
4949 journal_t *journal;
4950 handle_t *handle;
4951 int err;
4952
4953 /*
4954 * We have to be very careful here: changing a data block's
4955 * journaling status dynamically is dangerous. If we write a
4956 * data block to the journal, change the status and then delete
4957 * that block, we risk forgetting to revoke the old log record
4958 * from the journal and so a subsequent replay can corrupt data.
4959 * So, first we make sure that the journal is empty and that
4960 * nobody is changing anything.
4961 */
4962
617ba13b 4963 journal = EXT4_JOURNAL(inode);
0390131b
FM
4964 if (!journal)
4965 return 0;
d699594d 4966 if (is_journal_aborted(journal))
ac27a0ec 4967 return -EROFS;
2aff57b0
YY
4968 /* We have to allocate physical blocks for delalloc blocks
4969 * before flushing journal. otherwise delalloc blocks can not
4970 * be allocated any more. even more truncate on delalloc blocks
4971 * could trigger BUG by flushing delalloc blocks in journal.
4972 * There is no delalloc block in non-journal data mode.
4973 */
4974 if (val && test_opt(inode->i_sb, DELALLOC)) {
4975 err = ext4_alloc_da_blocks(inode);
4976 if (err < 0)
4977 return err;
4978 }
ac27a0ec 4979
17335dcc
DM
4980 /* Wait for all existing dio workers */
4981 ext4_inode_block_unlocked_dio(inode);
4982 inode_dio_wait(inode);
4983
dab291af 4984 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4985
4986 /*
4987 * OK, there are no updates running now, and all cached data is
4988 * synced to disk. We are now in a completely consistent state
4989 * which doesn't have anything in the journal, and we know that
4990 * no filesystem updates are running, so it is safe to modify
4991 * the inode's in-core data-journaling state flag now.
4992 */
4993
4994 if (val)
12e9b892 4995 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4996 else {
4997 jbd2_journal_flush(journal);
12e9b892 4998 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4999 }
617ba13b 5000 ext4_set_aops(inode);
ac27a0ec 5001
dab291af 5002 jbd2_journal_unlock_updates(journal);
17335dcc 5003 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
5004
5005 /* Finally we can mark the inode as dirty. */
5006
9924a92a 5007 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5008 if (IS_ERR(handle))
5009 return PTR_ERR(handle);
5010
617ba13b 5011 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5012 ext4_handle_sync(handle);
617ba13b
MC
5013 ext4_journal_stop(handle);
5014 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5015
5016 return err;
5017}
2e9ee850
AK
5018
5019static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5020{
5021 return !buffer_mapped(bh);
5022}
5023
c2ec175c 5024int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5025{
c2ec175c 5026 struct page *page = vmf->page;
2e9ee850
AK
5027 loff_t size;
5028 unsigned long len;
9ea7df53 5029 int ret;
2e9ee850 5030 struct file *file = vma->vm_file;
496ad9aa 5031 struct inode *inode = file_inode(file);
2e9ee850 5032 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5033 handle_t *handle;
5034 get_block_t *get_block;
5035 int retries = 0;
2e9ee850 5036
8e8ad8a5 5037 sb_start_pagefault(inode->i_sb);
041bbb6d 5038 file_update_time(vma->vm_file);
9ea7df53
JK
5039 /* Delalloc case is easy... */
5040 if (test_opt(inode->i_sb, DELALLOC) &&
5041 !ext4_should_journal_data(inode) &&
5042 !ext4_nonda_switch(inode->i_sb)) {
5043 do {
5044 ret = __block_page_mkwrite(vma, vmf,
5045 ext4_da_get_block_prep);
5046 } while (ret == -ENOSPC &&
5047 ext4_should_retry_alloc(inode->i_sb, &retries));
5048 goto out_ret;
2e9ee850 5049 }
0e499890
DW
5050
5051 lock_page(page);
9ea7df53
JK
5052 size = i_size_read(inode);
5053 /* Page got truncated from under us? */
5054 if (page->mapping != mapping || page_offset(page) > size) {
5055 unlock_page(page);
5056 ret = VM_FAULT_NOPAGE;
5057 goto out;
0e499890 5058 }
2e9ee850
AK
5059
5060 if (page->index == size >> PAGE_CACHE_SHIFT)
5061 len = size & ~PAGE_CACHE_MASK;
5062 else
5063 len = PAGE_CACHE_SIZE;
a827eaff 5064 /*
9ea7df53
JK
5065 * Return if we have all the buffers mapped. This avoids the need to do
5066 * journal_start/journal_stop which can block and take a long time
a827eaff 5067 */
2e9ee850 5068 if (page_has_buffers(page)) {
f19d5870
TM
5069 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5070 0, len, NULL,
5071 ext4_bh_unmapped)) {
9ea7df53 5072 /* Wait so that we don't change page under IO */
1d1d1a76 5073 wait_for_stable_page(page);
9ea7df53
JK
5074 ret = VM_FAULT_LOCKED;
5075 goto out;
a827eaff 5076 }
2e9ee850 5077 }
a827eaff 5078 unlock_page(page);
9ea7df53
JK
5079 /* OK, we need to fill the hole... */
5080 if (ext4_should_dioread_nolock(inode))
5081 get_block = ext4_get_block_write;
5082 else
5083 get_block = ext4_get_block;
5084retry_alloc:
9924a92a
TT
5085 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5086 ext4_writepage_trans_blocks(inode));
9ea7df53 5087 if (IS_ERR(handle)) {
c2ec175c 5088 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5089 goto out;
5090 }
5091 ret = __block_page_mkwrite(vma, vmf, get_block);
5092 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5093 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5094 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5095 unlock_page(page);
5096 ret = VM_FAULT_SIGBUS;
fcbb5515 5097 ext4_journal_stop(handle);
9ea7df53
JK
5098 goto out;
5099 }
5100 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5101 }
5102 ext4_journal_stop(handle);
5103 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5104 goto retry_alloc;
5105out_ret:
5106 ret = block_page_mkwrite_return(ret);
5107out:
8e8ad8a5 5108 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5109 return ret;
5110}
This page took 1.113841 seconds and 5 git commands to generate.