ext4: better estimate credits needed for ext4_da_writepages()
[deliverable/linux.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
a27bb332 40#include <linux/aio.h>
9bffad1e 41
3dcf5451 42#include "ext4_jbd2.h"
ac27a0ec
DK
43#include "xattr.h"
44#include "acl.h"
9f125d64 45#include "truncate.h"
ac27a0ec 46
9bffad1e
TT
47#include <trace/events/ext4.h>
48
a1d6cc56
AK
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
814525f4
DW
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u16 csum_lo;
56 __u16 csum_hi = 0;
57 __u32 csum;
58
171a7f21 59 csum_lo = le16_to_cpu(raw->i_checksum_lo);
814525f4
DW
60 raw->i_checksum_lo = 0;
61 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
62 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
171a7f21 63 csum_hi = le16_to_cpu(raw->i_checksum_hi);
814525f4
DW
64 raw->i_checksum_hi = 0;
65 }
66
67 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
68 EXT4_INODE_SIZE(inode->i_sb));
69
171a7f21 70 raw->i_checksum_lo = cpu_to_le16(csum_lo);
814525f4
DW
71 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
72 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
171a7f21 73 raw->i_checksum_hi = cpu_to_le16(csum_hi);
814525f4
DW
74
75 return csum;
76}
77
78static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
79 struct ext4_inode_info *ei)
80{
81 __u32 provided, calculated;
82
83 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
84 cpu_to_le32(EXT4_OS_LINUX) ||
85 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
86 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
87 return 1;
88
89 provided = le16_to_cpu(raw->i_checksum_lo);
90 calculated = ext4_inode_csum(inode, raw, ei);
91 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
92 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
93 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
94 else
95 calculated &= 0xFFFF;
96
97 return provided == calculated;
98}
99
100static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
101 struct ext4_inode_info *ei)
102{
103 __u32 csum;
104
105 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
106 cpu_to_le32(EXT4_OS_LINUX) ||
107 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
108 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
109 return;
110
111 csum = ext4_inode_csum(inode, raw, ei);
112 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
113 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
114 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
115 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
116}
117
678aaf48
JK
118static inline int ext4_begin_ordered_truncate(struct inode *inode,
119 loff_t new_size)
120{
7ff9c073 121 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
122 /*
123 * If jinode is zero, then we never opened the file for
124 * writing, so there's no need to call
125 * jbd2_journal_begin_ordered_truncate() since there's no
126 * outstanding writes we need to flush.
127 */
128 if (!EXT4_I(inode)->jinode)
129 return 0;
130 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
131 EXT4_I(inode)->jinode,
132 new_size);
678aaf48
JK
133}
134
d47992f8
LC
135static void ext4_invalidatepage(struct page *page, unsigned int offset,
136 unsigned int length);
cb20d518
TT
137static int __ext4_journalled_writepage(struct page *page, unsigned int len);
138static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
fffb2739
JK
139static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
140 int pextents);
64769240 141
ac27a0ec
DK
142/*
143 * Test whether an inode is a fast symlink.
144 */
617ba13b 145static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 146{
617ba13b 147 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
148 (inode->i_sb->s_blocksize >> 9) : 0;
149
150 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
151}
152
ac27a0ec
DK
153/*
154 * Restart the transaction associated with *handle. This does a commit,
155 * so before we call here everything must be consistently dirtied against
156 * this transaction.
157 */
fa5d1113 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 159 int nblocks)
ac27a0ec 160{
487caeef
JK
161 int ret;
162
163 /*
e35fd660 164 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
165 * moment, get_block can be called only for blocks inside i_size since
166 * page cache has been already dropped and writes are blocked by
167 * i_mutex. So we can safely drop the i_data_sem here.
168 */
0390131b 169 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 170 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 171 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 172 ret = ext4_journal_restart(handle, nblocks);
487caeef 173 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 174 ext4_discard_preallocations(inode);
487caeef
JK
175
176 return ret;
ac27a0ec
DK
177}
178
179/*
180 * Called at the last iput() if i_nlink is zero.
181 */
0930fcc1 182void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
183{
184 handle_t *handle;
bc965ab3 185 int err;
ac27a0ec 186
7ff9c073 187 trace_ext4_evict_inode(inode);
2581fdc8 188
0930fcc1 189 if (inode->i_nlink) {
2d859db3
JK
190 /*
191 * When journalling data dirty buffers are tracked only in the
192 * journal. So although mm thinks everything is clean and
193 * ready for reaping the inode might still have some pages to
194 * write in the running transaction or waiting to be
195 * checkpointed. Thus calling jbd2_journal_invalidatepage()
196 * (via truncate_inode_pages()) to discard these buffers can
197 * cause data loss. Also even if we did not discard these
198 * buffers, we would have no way to find them after the inode
199 * is reaped and thus user could see stale data if he tries to
200 * read them before the transaction is checkpointed. So be
201 * careful and force everything to disk here... We use
202 * ei->i_datasync_tid to store the newest transaction
203 * containing inode's data.
204 *
205 * Note that directories do not have this problem because they
206 * don't use page cache.
207 */
208 if (ext4_should_journal_data(inode) &&
2b405bfa
TT
209 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
210 inode->i_ino != EXT4_JOURNAL_INO) {
2d859db3
JK
211 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
212 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
213
d76a3a77 214 jbd2_complete_transaction(journal, commit_tid);
2d859db3
JK
215 filemap_write_and_wait(&inode->i_data);
216 }
0930fcc1 217 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 218 ext4_ioend_shutdown(inode);
0930fcc1
AV
219 goto no_delete;
220 }
221
907f4554 222 if (!is_bad_inode(inode))
871a2931 223 dquot_initialize(inode);
907f4554 224
678aaf48
JK
225 if (ext4_should_order_data(inode))
226 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec 227 truncate_inode_pages(&inode->i_data, 0);
1ada47d9 228 ext4_ioend_shutdown(inode);
ac27a0ec
DK
229
230 if (is_bad_inode(inode))
231 goto no_delete;
232
8e8ad8a5
JK
233 /*
234 * Protect us against freezing - iput() caller didn't have to have any
235 * protection against it
236 */
237 sb_start_intwrite(inode->i_sb);
9924a92a
TT
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode)+3);
ac27a0ec 240 if (IS_ERR(handle)) {
bc965ab3 241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
242 /*
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
246 */
617ba13b 247 ext4_orphan_del(NULL, inode);
8e8ad8a5 248 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
249 goto no_delete;
250 }
251
252 if (IS_SYNC(inode))
0390131b 253 ext4_handle_sync(handle);
ac27a0ec 254 inode->i_size = 0;
bc965ab3
TT
255 err = ext4_mark_inode_dirty(handle, inode);
256 if (err) {
12062ddd 257 ext4_warning(inode->i_sb,
bc965ab3
TT
258 "couldn't mark inode dirty (err %d)", err);
259 goto stop_handle;
260 }
ac27a0ec 261 if (inode->i_blocks)
617ba13b 262 ext4_truncate(inode);
bc965ab3
TT
263
264 /*
265 * ext4_ext_truncate() doesn't reserve any slop when it
266 * restarts journal transactions; therefore there may not be
267 * enough credits left in the handle to remove the inode from
268 * the orphan list and set the dtime field.
269 */
0390131b 270 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
271 err = ext4_journal_extend(handle, 3);
272 if (err > 0)
273 err = ext4_journal_restart(handle, 3);
274 if (err != 0) {
12062ddd 275 ext4_warning(inode->i_sb,
bc965ab3
TT
276 "couldn't extend journal (err %d)", err);
277 stop_handle:
278 ext4_journal_stop(handle);
45388219 279 ext4_orphan_del(NULL, inode);
8e8ad8a5 280 sb_end_intwrite(inode->i_sb);
bc965ab3
TT
281 goto no_delete;
282 }
283 }
284
ac27a0ec 285 /*
617ba13b 286 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 287 * AKPM: I think this can be inside the above `if'.
617ba13b 288 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 289 * deletion of a non-existent orphan - this is because we don't
617ba13b 290 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
291 * (Well, we could do this if we need to, but heck - it works)
292 */
617ba13b
MC
293 ext4_orphan_del(handle, inode);
294 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
295
296 /*
297 * One subtle ordering requirement: if anything has gone wrong
298 * (transaction abort, IO errors, whatever), then we can still
299 * do these next steps (the fs will already have been marked as
300 * having errors), but we can't free the inode if the mark_dirty
301 * fails.
302 */
617ba13b 303 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 304 /* If that failed, just do the required in-core inode clear. */
0930fcc1 305 ext4_clear_inode(inode);
ac27a0ec 306 else
617ba13b
MC
307 ext4_free_inode(handle, inode);
308 ext4_journal_stop(handle);
8e8ad8a5 309 sb_end_intwrite(inode->i_sb);
ac27a0ec
DK
310 return;
311no_delete:
0930fcc1 312 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
313}
314
a9e7f447
DM
315#ifdef CONFIG_QUOTA
316qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 317{
a9e7f447 318 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 319}
a9e7f447 320#endif
9d0be502 321
12219aea
AK
322/*
323 * Calculate the number of metadata blocks need to reserve
9d0be502 324 * to allocate a block located at @lblock
12219aea 325 */
01f49d0b 326static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 327{
12e9b892 328 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 329 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 330
8bb2b247 331 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
332}
333
0637c6f4
TT
334/*
335 * Called with i_data_sem down, which is important since we can call
336 * ext4_discard_preallocations() from here.
337 */
5f634d06
AK
338void ext4_da_update_reserve_space(struct inode *inode,
339 int used, int quota_claim)
12219aea
AK
340{
341 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 342 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
343
344 spin_lock(&ei->i_block_reservation_lock);
d8990240 345 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4 346 if (unlikely(used > ei->i_reserved_data_blocks)) {
8de5c325 347 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
1084f252 348 "with only %d reserved data blocks",
0637c6f4
TT
349 __func__, inode->i_ino, used,
350 ei->i_reserved_data_blocks);
351 WARN_ON(1);
352 used = ei->i_reserved_data_blocks;
353 }
12219aea 354
97795d2a 355 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
01a523eb
TT
356 ext4_warning(inode->i_sb, "ino %lu, allocated %d "
357 "with only %d reserved metadata blocks "
358 "(releasing %d blocks with reserved %d data blocks)",
359 inode->i_ino, ei->i_allocated_meta_blocks,
360 ei->i_reserved_meta_blocks, used,
361 ei->i_reserved_data_blocks);
97795d2a
BF
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
0637c6f4
TT
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
0637c6f4 368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 370 used + ei->i_allocated_meta_blocks);
0637c6f4 371 ei->i_allocated_meta_blocks = 0;
6bc6e63f 372
0637c6f4
TT
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
57042651 379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 380 ei->i_reserved_meta_blocks);
ee5f4d9c 381 ei->i_reserved_meta_blocks = 0;
9d0be502 382 ei->i_da_metadata_calc_len = 0;
6bc6e63f 383 }
12219aea 384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 385
72b8ab9d
ES
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
7b415bf6 388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 389 else {
5f634d06
AK
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
72b8ab9d 393 * not re-claim the quota for fallocated blocks.
5f634d06 394 */
7b415bf6 395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 396 }
d6014301
AK
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
0637c6f4
TT
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
d6014301 405 ext4_discard_preallocations(inode);
12219aea
AK
406}
407
e29136f8 408static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
409 unsigned int line,
410 struct ext4_map_blocks *map)
6fd058f7 411{
24676da4
TT
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
c398eda0
TT
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
6fd058f7
TT
418 return -EIO;
419 }
420 return 0;
421}
422
e29136f8 423#define check_block_validity(inode, map) \
c398eda0 424 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 425
921f266b
DM
426#ifdef ES_AGGRESSIVE_TEST
427static void ext4_map_blocks_es_recheck(handle_t *handle,
428 struct inode *inode,
429 struct ext4_map_blocks *es_map,
430 struct ext4_map_blocks *map,
431 int flags)
432{
433 int retval;
434
435 map->m_flags = 0;
436 /*
437 * There is a race window that the result is not the same.
438 * e.g. xfstests #223 when dioread_nolock enables. The reason
439 * is that we lookup a block mapping in extent status tree with
440 * out taking i_data_sem. So at the time the unwritten extent
441 * could be converted.
442 */
443 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
444 down_read((&EXT4_I(inode)->i_data_sem));
445 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
446 retval = ext4_ext_map_blocks(handle, inode, map, flags &
447 EXT4_GET_BLOCKS_KEEP_SIZE);
448 } else {
449 retval = ext4_ind_map_blocks(handle, inode, map, flags &
450 EXT4_GET_BLOCKS_KEEP_SIZE);
451 }
452 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
453 up_read((&EXT4_I(inode)->i_data_sem));
454 /*
455 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
456 * because it shouldn't be marked in es_map->m_flags.
457 */
458 map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
459
460 /*
461 * We don't check m_len because extent will be collpased in status
462 * tree. So the m_len might not equal.
463 */
464 if (es_map->m_lblk != map->m_lblk ||
465 es_map->m_flags != map->m_flags ||
466 es_map->m_pblk != map->m_pblk) {
467 printk("ES cache assertation failed for inode: %lu "
468 "es_cached ex [%d/%d/%llu/%x] != "
469 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
470 inode->i_ino, es_map->m_lblk, es_map->m_len,
471 es_map->m_pblk, es_map->m_flags, map->m_lblk,
472 map->m_len, map->m_pblk, map->m_flags,
473 retval, flags);
474 }
475}
476#endif /* ES_AGGRESSIVE_TEST */
477
f5ab0d1f 478/*
e35fd660 479 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 480 * and returns if the blocks are already mapped.
f5ab0d1f 481 *
f5ab0d1f
MC
482 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
483 * and store the allocated blocks in the result buffer head and mark it
484 * mapped.
485 *
e35fd660
TT
486 * If file type is extents based, it will call ext4_ext_map_blocks(),
487 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
488 * based files
489 *
490 * On success, it returns the number of blocks being mapped or allocate.
491 * if create==0 and the blocks are pre-allocated and uninitialized block,
492 * the result buffer head is unmapped. If the create ==1, it will make sure
493 * the buffer head is mapped.
494 *
495 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 496 * that case, buffer head is unmapped
f5ab0d1f
MC
497 *
498 * It returns the error in case of allocation failure.
499 */
e35fd660
TT
500int ext4_map_blocks(handle_t *handle, struct inode *inode,
501 struct ext4_map_blocks *map, int flags)
0e855ac8 502{
d100eef2 503 struct extent_status es;
0e855ac8 504 int retval;
921f266b
DM
505#ifdef ES_AGGRESSIVE_TEST
506 struct ext4_map_blocks orig_map;
507
508 memcpy(&orig_map, map, sizeof(*map));
509#endif
f5ab0d1f 510
e35fd660
TT
511 map->m_flags = 0;
512 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
513 "logical block %lu\n", inode->i_ino, flags, map->m_len,
514 (unsigned long) map->m_lblk);
d100eef2
ZL
515
516 /* Lookup extent status tree firstly */
517 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
518 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
519 map->m_pblk = ext4_es_pblock(&es) +
520 map->m_lblk - es.es_lblk;
521 map->m_flags |= ext4_es_is_written(&es) ?
522 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
523 retval = es.es_len - (map->m_lblk - es.es_lblk);
524 if (retval > map->m_len)
525 retval = map->m_len;
526 map->m_len = retval;
527 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
528 retval = 0;
529 } else {
530 BUG_ON(1);
531 }
921f266b
DM
532#ifdef ES_AGGRESSIVE_TEST
533 ext4_map_blocks_es_recheck(handle, inode, map,
534 &orig_map, flags);
535#endif
d100eef2
ZL
536 goto found;
537 }
538
4df3d265 539 /*
b920c755
TT
540 * Try to see if we can get the block without requesting a new
541 * file system block.
4df3d265 542 */
729f52c6
ZL
543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 545 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
546 retval = ext4_ext_map_blocks(handle, inode, map, flags &
547 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 548 } else {
a4e5d88b
DM
549 retval = ext4_ind_map_blocks(handle, inode, map, flags &
550 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 551 }
f7fec032
ZL
552 if (retval > 0) {
553 int ret;
554 unsigned long long status;
555
921f266b
DM
556#ifdef ES_AGGRESSIVE_TEST
557 if (retval != map->m_len) {
558 printk("ES len assertation failed for inode: %lu "
559 "retval %d != map->m_len %d "
560 "in %s (lookup)\n", inode->i_ino, retval,
561 map->m_len, __func__);
562 }
563#endif
564
f7fec032
ZL
565 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
566 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
567 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
568 ext4_find_delalloc_range(inode, map->m_lblk,
569 map->m_lblk + map->m_len - 1))
570 status |= EXTENT_STATUS_DELAYED;
571 ret = ext4_es_insert_extent(inode, map->m_lblk,
572 map->m_len, map->m_pblk, status);
573 if (ret < 0)
574 retval = ret;
575 }
729f52c6
ZL
576 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
577 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 578
d100eef2 579found:
e35fd660 580 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
f7fec032 581 int ret = check_block_validity(inode, map);
6fd058f7
TT
582 if (ret != 0)
583 return ret;
584 }
585
f5ab0d1f 586 /* If it is only a block(s) look up */
c2177057 587 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
588 return retval;
589
590 /*
591 * Returns if the blocks have already allocated
592 *
593 * Note that if blocks have been preallocated
df3ab170 594 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
595 * with buffer head unmapped.
596 */
e35fd660 597 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
598 return retval;
599
2a8964d6 600 /*
a25a4e1a
ZL
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
2a8964d6 603 */
a25a4e1a 604 map->m_flags &= ~EXT4_MAP_FLAGS;
2a8964d6 605
4df3d265 606 /*
f5ab0d1f
MC
607 * New blocks allocate and/or writing to uninitialized extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_blocks()
610 * with create == 1 flag.
4df3d265
AK
611 */
612 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
613
614 /*
615 * if the caller is from delayed allocation writeout path
616 * we have already reserved fs blocks for allocation
617 * let the underlying get_block() function know to
618 * avoid double accounting
619 */
c2177057 620 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 621 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
622 /*
623 * We need to check for EXT4 here because migrate
624 * could have changed the inode type in between
625 */
12e9b892 626 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 627 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 628 } else {
e35fd660 629 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 630
e35fd660 631 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
632 /*
633 * We allocated new blocks which will result in
634 * i_data's format changing. Force the migrate
635 * to fail by clearing migrate flags
636 */
19f5fb7a 637 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 638 }
d2a17637 639
5f634d06
AK
640 /*
641 * Update reserved blocks/metadata blocks after successful
642 * block allocation which had been deferred till now. We don't
643 * support fallocate for non extent files. So we can update
644 * reserve space here.
645 */
646 if ((retval > 0) &&
1296cc85 647 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
648 ext4_da_update_reserve_space(inode, retval, 1);
649 }
f7fec032 650 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 651 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 652
f7fec032
ZL
653 if (retval > 0) {
654 int ret;
655 unsigned long long status;
656
921f266b
DM
657#ifdef ES_AGGRESSIVE_TEST
658 if (retval != map->m_len) {
659 printk("ES len assertation failed for inode: %lu "
660 "retval %d != map->m_len %d "
661 "in %s (allocation)\n", inode->i_ino, retval,
662 map->m_len, __func__);
663 }
664#endif
665
adb23551
ZL
666 /*
667 * If the extent has been zeroed out, we don't need to update
668 * extent status tree.
669 */
670 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
671 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
672 if (ext4_es_is_written(&es))
673 goto has_zeroout;
674 }
f7fec032
ZL
675 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
676 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
677 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
678 ext4_find_delalloc_range(inode, map->m_lblk,
679 map->m_lblk + map->m_len - 1))
680 status |= EXTENT_STATUS_DELAYED;
681 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
682 map->m_pblk, status);
683 if (ret < 0)
684 retval = ret;
5356f261
AK
685 }
686
adb23551 687has_zeroout:
4df3d265 688 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 689 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 690 int ret = check_block_validity(inode, map);
6fd058f7
TT
691 if (ret != 0)
692 return ret;
693 }
0e855ac8
AK
694 return retval;
695}
696
f3bd1f3f
MC
697/* Maximum number of blocks we map for direct IO at once. */
698#define DIO_MAX_BLOCKS 4096
699
2ed88685
TT
700static int _ext4_get_block(struct inode *inode, sector_t iblock,
701 struct buffer_head *bh, int flags)
ac27a0ec 702{
3e4fdaf8 703 handle_t *handle = ext4_journal_current_handle();
2ed88685 704 struct ext4_map_blocks map;
7fb5409d 705 int ret = 0, started = 0;
f3bd1f3f 706 int dio_credits;
ac27a0ec 707
46c7f254
TM
708 if (ext4_has_inline_data(inode))
709 return -ERANGE;
710
2ed88685
TT
711 map.m_lblk = iblock;
712 map.m_len = bh->b_size >> inode->i_blkbits;
713
8b0f165f 714 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
7fb5409d 715 /* Direct IO write... */
2ed88685
TT
716 if (map.m_len > DIO_MAX_BLOCKS)
717 map.m_len = DIO_MAX_BLOCKS;
718 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
9924a92a
TT
719 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
720 dio_credits);
7fb5409d 721 if (IS_ERR(handle)) {
ac27a0ec 722 ret = PTR_ERR(handle);
2ed88685 723 return ret;
ac27a0ec 724 }
7fb5409d 725 started = 1;
ac27a0ec
DK
726 }
727
2ed88685 728 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 729 if (ret > 0) {
2ed88685
TT
730 map_bh(bh, inode->i_sb, map.m_pblk);
731 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
732 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 733 ret = 0;
ac27a0ec 734 }
7fb5409d
JK
735 if (started)
736 ext4_journal_stop(handle);
ac27a0ec
DK
737 return ret;
738}
739
2ed88685
TT
740int ext4_get_block(struct inode *inode, sector_t iblock,
741 struct buffer_head *bh, int create)
742{
743 return _ext4_get_block(inode, iblock, bh,
744 create ? EXT4_GET_BLOCKS_CREATE : 0);
745}
746
ac27a0ec
DK
747/*
748 * `handle' can be NULL if create is zero
749 */
617ba13b 750struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 751 ext4_lblk_t block, int create, int *errp)
ac27a0ec 752{
2ed88685
TT
753 struct ext4_map_blocks map;
754 struct buffer_head *bh;
ac27a0ec
DK
755 int fatal = 0, err;
756
757 J_ASSERT(handle != NULL || create == 0);
758
2ed88685
TT
759 map.m_lblk = block;
760 map.m_len = 1;
761 err = ext4_map_blocks(handle, inode, &map,
762 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 763
90b0a973
CM
764 /* ensure we send some value back into *errp */
765 *errp = 0;
766
0f70b406
TT
767 if (create && err == 0)
768 err = -ENOSPC; /* should never happen */
2ed88685
TT
769 if (err < 0)
770 *errp = err;
771 if (err <= 0)
772 return NULL;
2ed88685
TT
773
774 bh = sb_getblk(inode->i_sb, map.m_pblk);
aebf0243 775 if (unlikely(!bh)) {
860d21e2 776 *errp = -ENOMEM;
2ed88685 777 return NULL;
ac27a0ec 778 }
2ed88685
TT
779 if (map.m_flags & EXT4_MAP_NEW) {
780 J_ASSERT(create != 0);
781 J_ASSERT(handle != NULL);
ac27a0ec 782
2ed88685
TT
783 /*
784 * Now that we do not always journal data, we should
785 * keep in mind whether this should always journal the
786 * new buffer as metadata. For now, regular file
787 * writes use ext4_get_block instead, so it's not a
788 * problem.
789 */
790 lock_buffer(bh);
791 BUFFER_TRACE(bh, "call get_create_access");
792 fatal = ext4_journal_get_create_access(handle, bh);
793 if (!fatal && !buffer_uptodate(bh)) {
794 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
795 set_buffer_uptodate(bh);
ac27a0ec 796 }
2ed88685
TT
797 unlock_buffer(bh);
798 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
799 err = ext4_handle_dirty_metadata(handle, inode, bh);
800 if (!fatal)
801 fatal = err;
802 } else {
803 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 804 }
2ed88685
TT
805 if (fatal) {
806 *errp = fatal;
807 brelse(bh);
808 bh = NULL;
809 }
810 return bh;
ac27a0ec
DK
811}
812
617ba13b 813struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 814 ext4_lblk_t block, int create, int *err)
ac27a0ec 815{
af5bc92d 816 struct buffer_head *bh;
ac27a0ec 817
617ba13b 818 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
819 if (!bh)
820 return bh;
821 if (buffer_uptodate(bh))
822 return bh;
65299a3b 823 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
824 wait_on_buffer(bh);
825 if (buffer_uptodate(bh))
826 return bh;
827 put_bh(bh);
828 *err = -EIO;
829 return NULL;
830}
831
f19d5870
TM
832int ext4_walk_page_buffers(handle_t *handle,
833 struct buffer_head *head,
834 unsigned from,
835 unsigned to,
836 int *partial,
837 int (*fn)(handle_t *handle,
838 struct buffer_head *bh))
ac27a0ec
DK
839{
840 struct buffer_head *bh;
841 unsigned block_start, block_end;
842 unsigned blocksize = head->b_size;
843 int err, ret = 0;
844 struct buffer_head *next;
845
af5bc92d
TT
846 for (bh = head, block_start = 0;
847 ret == 0 && (bh != head || !block_start);
de9a55b8 848 block_start = block_end, bh = next) {
ac27a0ec
DK
849 next = bh->b_this_page;
850 block_end = block_start + blocksize;
851 if (block_end <= from || block_start >= to) {
852 if (partial && !buffer_uptodate(bh))
853 *partial = 1;
854 continue;
855 }
856 err = (*fn)(handle, bh);
857 if (!ret)
858 ret = err;
859 }
860 return ret;
861}
862
863/*
864 * To preserve ordering, it is essential that the hole instantiation and
865 * the data write be encapsulated in a single transaction. We cannot
617ba13b 866 * close off a transaction and start a new one between the ext4_get_block()
dab291af 867 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
868 * prepare_write() is the right place.
869 *
36ade451
JK
870 * Also, this function can nest inside ext4_writepage(). In that case, we
871 * *know* that ext4_writepage() has generated enough buffer credits to do the
872 * whole page. So we won't block on the journal in that case, which is good,
873 * because the caller may be PF_MEMALLOC.
ac27a0ec 874 *
617ba13b 875 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
876 * quota file writes. If we were to commit the transaction while thus
877 * reentered, there can be a deadlock - we would be holding a quota
878 * lock, and the commit would never complete if another thread had a
879 * transaction open and was blocking on the quota lock - a ranking
880 * violation.
881 *
dab291af 882 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
883 * will _not_ run commit under these circumstances because handle->h_ref
884 * is elevated. We'll still have enough credits for the tiny quotafile
885 * write.
886 */
f19d5870
TM
887int do_journal_get_write_access(handle_t *handle,
888 struct buffer_head *bh)
ac27a0ec 889{
56d35a4c
JK
890 int dirty = buffer_dirty(bh);
891 int ret;
892
ac27a0ec
DK
893 if (!buffer_mapped(bh) || buffer_freed(bh))
894 return 0;
56d35a4c 895 /*
ebdec241 896 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
897 * the dirty bit as jbd2_journal_get_write_access() could complain
898 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 899 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
900 * the bit before releasing a page lock and thus writeback cannot
901 * ever write the buffer.
902 */
903 if (dirty)
904 clear_buffer_dirty(bh);
905 ret = ext4_journal_get_write_access(handle, bh);
906 if (!ret && dirty)
907 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
908 return ret;
ac27a0ec
DK
909}
910
8b0f165f
AP
911static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
912 struct buffer_head *bh_result, int create);
bfc1af65 913static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
914 loff_t pos, unsigned len, unsigned flags,
915 struct page **pagep, void **fsdata)
ac27a0ec 916{
af5bc92d 917 struct inode *inode = mapping->host;
1938a150 918 int ret, needed_blocks;
ac27a0ec
DK
919 handle_t *handle;
920 int retries = 0;
af5bc92d 921 struct page *page;
de9a55b8 922 pgoff_t index;
af5bc92d 923 unsigned from, to;
bfc1af65 924
9bffad1e 925 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
926 /*
927 * Reserve one block more for addition to orphan list in case
928 * we allocate blocks but write fails for some reason
929 */
930 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 931 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
932 from = pos & (PAGE_CACHE_SIZE - 1);
933 to = from + len;
ac27a0ec 934
f19d5870
TM
935 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
936 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
937 flags, pagep);
938 if (ret < 0)
47564bfb
TT
939 return ret;
940 if (ret == 1)
941 return 0;
f19d5870
TM
942 }
943
47564bfb
TT
944 /*
945 * grab_cache_page_write_begin() can take a long time if the
946 * system is thrashing due to memory pressure, or if the page
947 * is being written back. So grab it first before we start
948 * the transaction handle. This also allows us to allocate
949 * the page (if needed) without using GFP_NOFS.
950 */
951retry_grab:
952 page = grab_cache_page_write_begin(mapping, index, flags);
953 if (!page)
954 return -ENOMEM;
955 unlock_page(page);
956
957retry_journal:
9924a92a 958 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
af5bc92d 959 if (IS_ERR(handle)) {
47564bfb
TT
960 page_cache_release(page);
961 return PTR_ERR(handle);
7479d2b9 962 }
ac27a0ec 963
47564bfb
TT
964 lock_page(page);
965 if (page->mapping != mapping) {
966 /* The page got truncated from under us */
967 unlock_page(page);
968 page_cache_release(page);
cf108bca 969 ext4_journal_stop(handle);
47564bfb 970 goto retry_grab;
cf108bca 971 }
47564bfb 972 wait_on_page_writeback(page);
cf108bca 973
744692dc 974 if (ext4_should_dioread_nolock(inode))
6e1db88d 975 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 976 else
6e1db88d 977 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
978
979 if (!ret && ext4_should_journal_data(inode)) {
f19d5870
TM
980 ret = ext4_walk_page_buffers(handle, page_buffers(page),
981 from, to, NULL,
982 do_journal_get_write_access);
ac27a0ec 983 }
bfc1af65
NP
984
985 if (ret) {
af5bc92d 986 unlock_page(page);
ae4d5372 987 /*
6e1db88d 988 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
989 * outside i_size. Trim these off again. Don't need
990 * i_size_read because we hold i_mutex.
1938a150
AK
991 *
992 * Add inode to orphan list in case we crash before
993 * truncate finishes
ae4d5372 994 */
ffacfa7a 995 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
996 ext4_orphan_add(handle, inode);
997
998 ext4_journal_stop(handle);
999 if (pos + len > inode->i_size) {
b9a4207d 1000 ext4_truncate_failed_write(inode);
de9a55b8 1001 /*
ffacfa7a 1002 * If truncate failed early the inode might
1938a150
AK
1003 * still be on the orphan list; we need to
1004 * make sure the inode is removed from the
1005 * orphan list in that case.
1006 */
1007 if (inode->i_nlink)
1008 ext4_orphan_del(NULL, inode);
1009 }
bfc1af65 1010
47564bfb
TT
1011 if (ret == -ENOSPC &&
1012 ext4_should_retry_alloc(inode->i_sb, &retries))
1013 goto retry_journal;
1014 page_cache_release(page);
1015 return ret;
1016 }
1017 *pagep = page;
ac27a0ec
DK
1018 return ret;
1019}
1020
bfc1af65
NP
1021/* For write_end() in data=journal mode */
1022static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec 1023{
13fca323 1024 int ret;
ac27a0ec
DK
1025 if (!buffer_mapped(bh) || buffer_freed(bh))
1026 return 0;
1027 set_buffer_uptodate(bh);
13fca323
TT
1028 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1029 clear_buffer_meta(bh);
1030 clear_buffer_prio(bh);
1031 return ret;
ac27a0ec
DK
1032}
1033
eed4333f
ZL
1034/*
1035 * We need to pick up the new inode size which generic_commit_write gave us
1036 * `file' can be NULL - eg, when called from page_symlink().
1037 *
1038 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1039 * buffers are managed internally.
1040 */
1041static int ext4_write_end(struct file *file,
1042 struct address_space *mapping,
1043 loff_t pos, unsigned len, unsigned copied,
1044 struct page *page, void *fsdata)
f8514083 1045{
f8514083 1046 handle_t *handle = ext4_journal_current_handle();
eed4333f
ZL
1047 struct inode *inode = mapping->host;
1048 int ret = 0, ret2;
1049 int i_size_changed = 0;
1050
1051 trace_ext4_write_end(inode, pos, len, copied);
1052 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1053 ret = ext4_jbd2_file_inode(handle, inode);
1054 if (ret) {
1055 unlock_page(page);
1056 page_cache_release(page);
1057 goto errout;
1058 }
1059 }
f8514083 1060
f19d5870
TM
1061 if (ext4_has_inline_data(inode))
1062 copied = ext4_write_inline_data_end(inode, pos, len,
1063 copied, page);
1064 else
1065 copied = block_write_end(file, mapping, pos,
1066 len, copied, page, fsdata);
f8514083
AK
1067
1068 /*
1069 * No need to use i_size_read() here, the i_size
eed4333f 1070 * cannot change under us because we hole i_mutex.
f8514083
AK
1071 *
1072 * But it's important to update i_size while still holding page lock:
1073 * page writeout could otherwise come in and zero beyond i_size.
1074 */
1075 if (pos + copied > inode->i_size) {
1076 i_size_write(inode, pos + copied);
1077 i_size_changed = 1;
1078 }
1079
eed4333f 1080 if (pos + copied > EXT4_I(inode)->i_disksize) {
f8514083
AK
1081 /* We need to mark inode dirty even if
1082 * new_i_size is less that inode->i_size
eed4333f 1083 * but greater than i_disksize. (hint delalloc)
f8514083
AK
1084 */
1085 ext4_update_i_disksize(inode, (pos + copied));
1086 i_size_changed = 1;
1087 }
1088 unlock_page(page);
1089 page_cache_release(page);
1090
1091 /*
1092 * Don't mark the inode dirty under page lock. First, it unnecessarily
1093 * makes the holding time of page lock longer. Second, it forces lock
1094 * ordering of page lock and transaction start for journaling
1095 * filesystems.
1096 */
1097 if (i_size_changed)
1098 ext4_mark_inode_dirty(handle, inode);
1099
74d553aa
TT
1100 if (copied < 0)
1101 ret = copied;
ffacfa7a 1102 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1103 /* if we have allocated more blocks and copied
1104 * less. We will have blocks allocated outside
1105 * inode->i_size. So truncate them
1106 */
1107 ext4_orphan_add(handle, inode);
74d553aa 1108errout:
617ba13b 1109 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1110 if (!ret)
1111 ret = ret2;
bfc1af65 1112
f8514083 1113 if (pos + len > inode->i_size) {
b9a4207d 1114 ext4_truncate_failed_write(inode);
de9a55b8 1115 /*
ffacfa7a 1116 * If truncate failed early the inode might still be
f8514083
AK
1117 * on the orphan list; we need to make sure the inode
1118 * is removed from the orphan list in that case.
1119 */
1120 if (inode->i_nlink)
1121 ext4_orphan_del(NULL, inode);
1122 }
1123
bfc1af65 1124 return ret ? ret : copied;
ac27a0ec
DK
1125}
1126
bfc1af65 1127static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1128 struct address_space *mapping,
1129 loff_t pos, unsigned len, unsigned copied,
1130 struct page *page, void *fsdata)
ac27a0ec 1131{
617ba13b 1132 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1133 struct inode *inode = mapping->host;
ac27a0ec
DK
1134 int ret = 0, ret2;
1135 int partial = 0;
bfc1af65 1136 unsigned from, to;
cf17fea6 1137 loff_t new_i_size;
ac27a0ec 1138
9bffad1e 1139 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1140 from = pos & (PAGE_CACHE_SIZE - 1);
1141 to = from + len;
1142
441c8508
CW
1143 BUG_ON(!ext4_handle_valid(handle));
1144
3fdcfb66
TM
1145 if (ext4_has_inline_data(inode))
1146 copied = ext4_write_inline_data_end(inode, pos, len,
1147 copied, page);
1148 else {
1149 if (copied < len) {
1150 if (!PageUptodate(page))
1151 copied = 0;
1152 page_zero_new_buffers(page, from+copied, to);
1153 }
ac27a0ec 1154
3fdcfb66
TM
1155 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1156 to, &partial, write_end_fn);
1157 if (!partial)
1158 SetPageUptodate(page);
1159 }
cf17fea6
AK
1160 new_i_size = pos + copied;
1161 if (new_i_size > inode->i_size)
bfc1af65 1162 i_size_write(inode, pos+copied);
19f5fb7a 1163 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1164 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1165 if (new_i_size > EXT4_I(inode)->i_disksize) {
1166 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1167 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1168 if (!ret)
1169 ret = ret2;
1170 }
bfc1af65 1171
cf108bca 1172 unlock_page(page);
f8514083 1173 page_cache_release(page);
ffacfa7a 1174 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1175 /* if we have allocated more blocks and copied
1176 * less. We will have blocks allocated outside
1177 * inode->i_size. So truncate them
1178 */
1179 ext4_orphan_add(handle, inode);
1180
617ba13b 1181 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1182 if (!ret)
1183 ret = ret2;
f8514083 1184 if (pos + len > inode->i_size) {
b9a4207d 1185 ext4_truncate_failed_write(inode);
de9a55b8 1186 /*
ffacfa7a 1187 * If truncate failed early the inode might still be
f8514083
AK
1188 * on the orphan list; we need to make sure the inode
1189 * is removed from the orphan list in that case.
1190 */
1191 if (inode->i_nlink)
1192 ext4_orphan_del(NULL, inode);
1193 }
bfc1af65
NP
1194
1195 return ret ? ret : copied;
ac27a0ec 1196}
d2a17637 1197
386ad67c
LC
1198/*
1199 * Reserve a metadata for a single block located at lblock
1200 */
1201static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1202{
1203 int retries = 0;
1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 struct ext4_inode_info *ei = EXT4_I(inode);
1206 unsigned int md_needed;
1207 ext4_lblk_t save_last_lblock;
1208 int save_len;
1209
1210 /*
1211 * recalculate the amount of metadata blocks to reserve
1212 * in order to allocate nrblocks
1213 * worse case is one extent per block
1214 */
1215repeat:
1216 spin_lock(&ei->i_block_reservation_lock);
1217 /*
1218 * ext4_calc_metadata_amount() has side effects, which we have
1219 * to be prepared undo if we fail to claim space.
1220 */
1221 save_len = ei->i_da_metadata_calc_len;
1222 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1223 md_needed = EXT4_NUM_B2C(sbi,
1224 ext4_calc_metadata_amount(inode, lblock));
1225 trace_ext4_da_reserve_space(inode, md_needed);
1226
1227 /*
1228 * We do still charge estimated metadata to the sb though;
1229 * we cannot afford to run out of free blocks.
1230 */
1231 if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1232 ei->i_da_metadata_calc_len = save_len;
1233 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1234 spin_unlock(&ei->i_block_reservation_lock);
1235 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1236 cond_resched();
1237 goto repeat;
1238 }
1239 return -ENOSPC;
1240 }
1241 ei->i_reserved_meta_blocks += md_needed;
1242 spin_unlock(&ei->i_block_reservation_lock);
1243
1244 return 0; /* success */
1245}
1246
9d0be502 1247/*
7b415bf6 1248 * Reserve a single cluster located at lblock
9d0be502 1249 */
01f49d0b 1250static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1251{
030ba6bc 1252 int retries = 0;
60e58e0f 1253 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1254 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1255 unsigned int md_needed;
5dd4056d 1256 int ret;
03179fe9
TT
1257 ext4_lblk_t save_last_lblock;
1258 int save_len;
1259
1260 /*
1261 * We will charge metadata quota at writeout time; this saves
1262 * us from metadata over-estimation, though we may go over by
1263 * a small amount in the end. Here we just reserve for data.
1264 */
1265 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1266 if (ret)
1267 return ret;
d2a17637
MC
1268
1269 /*
1270 * recalculate the amount of metadata blocks to reserve
1271 * in order to allocate nrblocks
1272 * worse case is one extent per block
1273 */
030ba6bc 1274repeat:
0637c6f4 1275 spin_lock(&ei->i_block_reservation_lock);
03179fe9
TT
1276 /*
1277 * ext4_calc_metadata_amount() has side effects, which we have
1278 * to be prepared undo if we fail to claim space.
1279 */
1280 save_len = ei->i_da_metadata_calc_len;
1281 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
7b415bf6
AK
1282 md_needed = EXT4_NUM_B2C(sbi,
1283 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1284 trace_ext4_da_reserve_space(inode, md_needed);
d2a17637 1285
72b8ab9d
ES
1286 /*
1287 * We do still charge estimated metadata to the sb though;
1288 * we cannot afford to run out of free blocks.
1289 */
e7d5f315 1290 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
03179fe9
TT
1291 ei->i_da_metadata_calc_len = save_len;
1292 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1293 spin_unlock(&ei->i_block_reservation_lock);
030ba6bc 1294 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
bb8b20ed 1295 cond_resched();
030ba6bc
AK
1296 goto repeat;
1297 }
03179fe9 1298 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
d2a17637
MC
1299 return -ENOSPC;
1300 }
9d0be502 1301 ei->i_reserved_data_blocks++;
0637c6f4
TT
1302 ei->i_reserved_meta_blocks += md_needed;
1303 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1304
d2a17637
MC
1305 return 0; /* success */
1306}
1307
12219aea 1308static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1309{
1310 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1311 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1312
cd213226
MC
1313 if (!to_free)
1314 return; /* Nothing to release, exit */
1315
d2a17637 1316 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1317
5a58ec87 1318 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1319 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1320 /*
0637c6f4
TT
1321 * if there aren't enough reserved blocks, then the
1322 * counter is messed up somewhere. Since this
1323 * function is called from invalidate page, it's
1324 * harmless to return without any action.
cd213226 1325 */
8de5c325 1326 ext4_warning(inode->i_sb, "ext4_da_release_space: "
0637c6f4 1327 "ino %lu, to_free %d with only %d reserved "
1084f252 1328 "data blocks", inode->i_ino, to_free,
0637c6f4
TT
1329 ei->i_reserved_data_blocks);
1330 WARN_ON(1);
1331 to_free = ei->i_reserved_data_blocks;
cd213226 1332 }
0637c6f4 1333 ei->i_reserved_data_blocks -= to_free;
cd213226 1334
0637c6f4
TT
1335 if (ei->i_reserved_data_blocks == 0) {
1336 /*
1337 * We can release all of the reserved metadata blocks
1338 * only when we have written all of the delayed
1339 * allocation blocks.
7b415bf6
AK
1340 * Note that in case of bigalloc, i_reserved_meta_blocks,
1341 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1342 */
57042651 1343 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1344 ei->i_reserved_meta_blocks);
ee5f4d9c 1345 ei->i_reserved_meta_blocks = 0;
9d0be502 1346 ei->i_da_metadata_calc_len = 0;
0637c6f4 1347 }
d2a17637 1348
72b8ab9d 1349 /* update fs dirty data blocks counter */
57042651 1350 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1351
d2a17637 1352 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1353
7b415bf6 1354 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1355}
1356
1357static void ext4_da_page_release_reservation(struct page *page,
ca99fdd2
LC
1358 unsigned int offset,
1359 unsigned int length)
d2a17637
MC
1360{
1361 int to_release = 0;
1362 struct buffer_head *head, *bh;
1363 unsigned int curr_off = 0;
7b415bf6
AK
1364 struct inode *inode = page->mapping->host;
1365 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
ca99fdd2 1366 unsigned int stop = offset + length;
7b415bf6 1367 int num_clusters;
51865fda 1368 ext4_fsblk_t lblk;
d2a17637 1369
ca99fdd2
LC
1370 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1371
d2a17637
MC
1372 head = page_buffers(page);
1373 bh = head;
1374 do {
1375 unsigned int next_off = curr_off + bh->b_size;
1376
ca99fdd2
LC
1377 if (next_off > stop)
1378 break;
1379
d2a17637
MC
1380 if ((offset <= curr_off) && (buffer_delay(bh))) {
1381 to_release++;
1382 clear_buffer_delay(bh);
1383 }
1384 curr_off = next_off;
1385 } while ((bh = bh->b_this_page) != head);
7b415bf6 1386
51865fda
ZL
1387 if (to_release) {
1388 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1389 ext4_es_remove_extent(inode, lblk, to_release);
1390 }
1391
7b415bf6
AK
1392 /* If we have released all the blocks belonging to a cluster, then we
1393 * need to release the reserved space for that cluster. */
1394 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1395 while (num_clusters > 0) {
7b415bf6
AK
1396 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1397 ((num_clusters - 1) << sbi->s_cluster_bits);
1398 if (sbi->s_cluster_ratio == 1 ||
7d1b1fbc 1399 !ext4_find_delalloc_cluster(inode, lblk))
7b415bf6
AK
1400 ext4_da_release_space(inode, 1);
1401
1402 num_clusters--;
1403 }
d2a17637 1404}
ac27a0ec 1405
64769240
AT
1406/*
1407 * Delayed allocation stuff
1408 */
1409
97a851ed
JK
1410static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd);
1411
64769240
AT
1412/*
1413 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1414 * them with writepage() call back
64769240
AT
1415 *
1416 * @mpd->inode: inode
1417 * @mpd->first_page: first page of the extent
1418 * @mpd->next_page: page after the last page of the extent
64769240
AT
1419 *
1420 * By the time mpage_da_submit_io() is called we expect all blocks
1421 * to be allocated. this may be wrong if allocation failed.
1422 *
1423 * As pages are already locked by write_cache_pages(), we can't use it
1424 */
1de3e3df
TT
1425static int mpage_da_submit_io(struct mpage_da_data *mpd,
1426 struct ext4_map_blocks *map)
64769240 1427{
791b7f08
AK
1428 struct pagevec pvec;
1429 unsigned long index, end;
1430 int ret = 0, err, nr_pages, i;
1431 struct inode *inode = mpd->inode;
1432 struct address_space *mapping = inode->i_mapping;
cb20d518 1433 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1434 unsigned int len, block_start;
1435 struct buffer_head *bh, *page_bufs = NULL;
1de3e3df 1436 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1437 struct ext4_io_submit io_submit;
64769240
AT
1438
1439 BUG_ON(mpd->next_page <= mpd->first_page);
97a851ed
JK
1440 ext4_io_submit_init(&io_submit, mpd->wbc);
1441 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1442 if (!io_submit.io_end) {
1443 ext4_da_block_invalidatepages(mpd);
1444 return -ENOMEM;
1445 }
791b7f08
AK
1446 /*
1447 * We need to start from the first_page to the next_page - 1
1448 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1449 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1450 * at the currently mapped buffer_heads.
1451 */
64769240
AT
1452 index = mpd->first_page;
1453 end = mpd->next_page - 1;
1454
791b7f08 1455 pagevec_init(&pvec, 0);
64769240 1456 while (index <= end) {
791b7f08 1457 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1458 if (nr_pages == 0)
1459 break;
1460 for (i = 0; i < nr_pages; i++) {
f8bec370 1461 int skip_page = 0;
64769240
AT
1462 struct page *page = pvec.pages[i];
1463
791b7f08
AK
1464 index = page->index;
1465 if (index > end)
1466 break;
cb20d518
TT
1467
1468 if (index == size >> PAGE_CACHE_SHIFT)
1469 len = size & ~PAGE_CACHE_MASK;
1470 else
1471 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1472 if (map) {
1473 cur_logical = index << (PAGE_CACHE_SHIFT -
1474 inode->i_blkbits);
1475 pblock = map->m_pblk + (cur_logical -
1476 map->m_lblk);
1477 }
791b7f08
AK
1478 index++;
1479
1480 BUG_ON(!PageLocked(page));
1481 BUG_ON(PageWriteback(page));
1482
3ecdb3a1
TT
1483 bh = page_bufs = page_buffers(page);
1484 block_start = 0;
64769240 1485 do {
1de3e3df
TT
1486 if (map && (cur_logical >= map->m_lblk) &&
1487 (cur_logical <= (map->m_lblk +
1488 (map->m_len - 1)))) {
29fa89d0
AK
1489 if (buffer_delay(bh)) {
1490 clear_buffer_delay(bh);
1491 bh->b_blocknr = pblock;
29fa89d0 1492 }
1de3e3df
TT
1493 if (buffer_unwritten(bh) ||
1494 buffer_mapped(bh))
1495 BUG_ON(bh->b_blocknr != pblock);
1496 if (map->m_flags & EXT4_MAP_UNINIT)
1497 set_buffer_uninit(bh);
1498 clear_buffer_unwritten(bh);
1499 }
29fa89d0 1500
13a79a47
YY
1501 /*
1502 * skip page if block allocation undone and
1503 * block is dirty
1504 */
1505 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1506 skip_page = 1;
3ecdb3a1
TT
1507 bh = bh->b_this_page;
1508 block_start += bh->b_size;
64769240
AT
1509 cur_logical++;
1510 pblock++;
1de3e3df
TT
1511 } while (bh != page_bufs);
1512
f8bec370
JK
1513 if (skip_page) {
1514 unlock_page(page);
1515 continue;
1516 }
cb20d518 1517
97498956 1518 clear_page_dirty_for_io(page);
fe089c77
JK
1519 err = ext4_bio_write_page(&io_submit, page, len,
1520 mpd->wbc);
cb20d518 1521 if (!err)
a1d6cc56 1522 mpd->pages_written++;
64769240
AT
1523 /*
1524 * In error case, we have to continue because
1525 * remaining pages are still locked
64769240
AT
1526 */
1527 if (ret == 0)
1528 ret = err;
64769240
AT
1529 }
1530 pagevec_release(&pvec);
1531 }
bd2d0210 1532 ext4_io_submit(&io_submit);
97a851ed
JK
1533 /* Drop io_end reference we got from init */
1534 ext4_put_io_end_defer(io_submit.io_end);
64769240 1535 return ret;
64769240
AT
1536}
1537
c7f5938a 1538static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1539{
1540 int nr_pages, i;
1541 pgoff_t index, end;
1542 struct pagevec pvec;
1543 struct inode *inode = mpd->inode;
1544 struct address_space *mapping = inode->i_mapping;
51865fda 1545 ext4_lblk_t start, last;
c4a0c46e 1546
c7f5938a
CW
1547 index = mpd->first_page;
1548 end = mpd->next_page - 1;
51865fda
ZL
1549
1550 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1551 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1552 ext4_es_remove_extent(inode, start, last - start + 1);
1553
66bea92c 1554 pagevec_init(&pvec, 0);
c4a0c46e
AK
1555 while (index <= end) {
1556 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1557 if (nr_pages == 0)
1558 break;
1559 for (i = 0; i < nr_pages; i++) {
1560 struct page *page = pvec.pages[i];
9b1d0998 1561 if (page->index > end)
c4a0c46e 1562 break;
c4a0c46e
AK
1563 BUG_ON(!PageLocked(page));
1564 BUG_ON(PageWriteback(page));
d47992f8 1565 block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
c4a0c46e
AK
1566 ClearPageUptodate(page);
1567 unlock_page(page);
1568 }
9b1d0998
JK
1569 index = pvec.pages[nr_pages - 1]->index + 1;
1570 pagevec_release(&pvec);
c4a0c46e
AK
1571 }
1572 return;
1573}
1574
df22291f
AK
1575static void ext4_print_free_blocks(struct inode *inode)
1576{
1577 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
92b97816 1578 struct super_block *sb = inode->i_sb;
f78ee70d 1579 struct ext4_inode_info *ei = EXT4_I(inode);
92b97816
TT
1580
1581 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
5dee5437 1582 EXT4_C2B(EXT4_SB(inode->i_sb),
f78ee70d 1583 ext4_count_free_clusters(sb)));
92b97816
TT
1584 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1585 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
f78ee70d 1586 (long long) EXT4_C2B(EXT4_SB(sb),
57042651 1587 percpu_counter_sum(&sbi->s_freeclusters_counter)));
92b97816 1588 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
f78ee70d 1589 (long long) EXT4_C2B(EXT4_SB(sb),
7b415bf6 1590 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
92b97816
TT
1591 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1592 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
f78ee70d 1593 ei->i_reserved_data_blocks);
92b97816 1594 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
f78ee70d
LC
1595 ei->i_reserved_meta_blocks);
1596 ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1597 ei->i_allocated_meta_blocks);
df22291f
AK
1598 return;
1599}
1600
64769240 1601/*
5a87b7a5
TT
1602 * mpage_da_map_and_submit - go through given space, map them
1603 * if necessary, and then submit them for I/O
64769240 1604 *
8dc207c0 1605 * @mpd - bh describing space
64769240
AT
1606 *
1607 * The function skips space we know is already mapped to disk blocks.
1608 *
64769240 1609 */
5a87b7a5 1610static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1611{
2ac3b6e0 1612 int err, blks, get_blocks_flags;
1de3e3df 1613 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1614 sector_t next = mpd->b_blocknr;
1615 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1616 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1617 handle_t *handle = NULL;
64769240
AT
1618
1619 /*
5a87b7a5
TT
1620 * If the blocks are mapped already, or we couldn't accumulate
1621 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1622 */
5a87b7a5
TT
1623 if ((mpd->b_size == 0) ||
1624 ((mpd->b_state & (1 << BH_Mapped)) &&
1625 !(mpd->b_state & (1 << BH_Delay)) &&
1626 !(mpd->b_state & (1 << BH_Unwritten))))
1627 goto submit_io;
2fa3cdfb
TT
1628
1629 handle = ext4_journal_current_handle();
1630 BUG_ON(!handle);
1631
79ffab34 1632 /*
79e83036 1633 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1634 * blocks, or to convert an uninitialized extent to be
1635 * initialized (in the case where we have written into
1636 * one or more preallocated blocks).
1637 *
1638 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1639 * indicate that we are on the delayed allocation path. This
1640 * affects functions in many different parts of the allocation
1641 * call path. This flag exists primarily because we don't
79e83036 1642 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1643 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1644 * inode's allocation semaphore is taken.
1645 *
1646 * If the blocks in questions were delalloc blocks, set
1647 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1648 * variables are updated after the blocks have been allocated.
79ffab34 1649 */
2ed88685
TT
1650 map.m_lblk = next;
1651 map.m_len = max_blocks;
27dd4385
LC
1652 /*
1653 * We're in delalloc path and it is possible that we're going to
1654 * need more metadata blocks than previously reserved. However
1655 * we must not fail because we're in writeback and there is
1656 * nothing we can do about it so it might result in data loss.
1657 * So use reserved blocks to allocate metadata if possible.
1658 */
1659 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
1660 EXT4_GET_BLOCKS_METADATA_NOFAIL;
744692dc
JZ
1661 if (ext4_should_dioread_nolock(mpd->inode))
1662 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1663 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1664 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1665
27dd4385 1666
2ed88685 1667 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1668 if (blks < 0) {
e3570639
ES
1669 struct super_block *sb = mpd->inode->i_sb;
1670
2fa3cdfb 1671 err = blks;
ed5bde0b 1672 /*
5a87b7a5 1673 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1674 * appears to be free blocks we will just let
1675 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1676 */
1677 if (err == -EAGAIN)
5a87b7a5 1678 goto submit_io;
df22291f 1679
5dee5437 1680 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1681 mpd->retval = err;
5a87b7a5 1682 goto submit_io;
df22291f
AK
1683 }
1684
c4a0c46e 1685 /*
ed5bde0b
TT
1686 * get block failure will cause us to loop in
1687 * writepages, because a_ops->writepage won't be able
1688 * to make progress. The page will be redirtied by
1689 * writepage and writepages will again try to write
1690 * the same.
c4a0c46e 1691 */
e3570639
ES
1692 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1693 ext4_msg(sb, KERN_CRIT,
1694 "delayed block allocation failed for inode %lu "
1695 "at logical offset %llu with max blocks %zd "
1696 "with error %d", mpd->inode->i_ino,
1697 (unsigned long long) next,
1698 mpd->b_size >> mpd->inode->i_blkbits, err);
1699 ext4_msg(sb, KERN_CRIT,
01a523eb 1700 "This should not happen!! Data will be lost");
e3570639
ES
1701 if (err == -ENOSPC)
1702 ext4_print_free_blocks(mpd->inode);
030ba6bc 1703 }
2fa3cdfb 1704 /* invalidate all the pages */
c7f5938a 1705 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1706
1707 /* Mark this page range as having been completed */
1708 mpd->io_done = 1;
5a87b7a5 1709 return;
c4a0c46e 1710 }
2fa3cdfb
TT
1711 BUG_ON(blks == 0);
1712
1de3e3df 1713 mapp = &map;
2ed88685
TT
1714 if (map.m_flags & EXT4_MAP_NEW) {
1715 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1716 int i;
64769240 1717
2ed88685
TT
1718 for (i = 0; i < map.m_len; i++)
1719 unmap_underlying_metadata(bdev, map.m_pblk + i);
2fa3cdfb
TT
1720 }
1721
1722 /*
03f5d8bc 1723 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1724 */
1725 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1726 if (disksize > i_size_read(mpd->inode))
1727 disksize = i_size_read(mpd->inode);
1728 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1729 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1730 err = ext4_mark_inode_dirty(handle, mpd->inode);
1731 if (err)
1732 ext4_error(mpd->inode->i_sb,
1733 "Failed to mark inode %lu dirty",
1734 mpd->inode->i_ino);
2fa3cdfb
TT
1735 }
1736
5a87b7a5 1737submit_io:
1de3e3df 1738 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1739 mpd->io_done = 1;
64769240
AT
1740}
1741
bf068ee2
AK
1742#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1743 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1744
1745/*
1746 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1747 *
1748 * @mpd->lbh - extent of blocks
1749 * @logical - logical number of the block in the file
b6a8e62f 1750 * @b_state - b_state of the buffer head added
64769240
AT
1751 *
1752 * the function is used to collect contig. blocks in same state
1753 */
b6a8e62f 1754static void mpage_add_bh_to_extent(struct mpage_da_data *mpd, sector_t logical,
8dc207c0 1755 unsigned long b_state)
64769240 1756{
64769240 1757 sector_t next;
b6a8e62f
JK
1758 int blkbits = mpd->inode->i_blkbits;
1759 int nrblocks = mpd->b_size >> blkbits;
64769240 1760
c445e3e0
ES
1761 /*
1762 * XXX Don't go larger than mballoc is willing to allocate
1763 * This is a stopgap solution. We eventually need to fold
1764 * mpage_da_submit_io() into this function and then call
79e83036 1765 * ext4_map_blocks() multiple times in a loop
c445e3e0 1766 */
b6a8e62f 1767 if (nrblocks >= (8*1024*1024 >> blkbits))
c445e3e0
ES
1768 goto flush_it;
1769
b6a8e62f
JK
1770 /* check if the reserved journal credits might overflow */
1771 if (!ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS)) {
525f4ed8
MC
1772 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1773 /*
1774 * With non-extent format we are limited by the journal
1775 * credit available. Total credit needed to insert
1776 * nrblocks contiguous blocks is dependent on the
1777 * nrblocks. So limit nrblocks.
1778 */
1779 goto flush_it;
525f4ed8
MC
1780 }
1781 }
64769240
AT
1782 /*
1783 * First block in the extent
1784 */
8dc207c0
TT
1785 if (mpd->b_size == 0) {
1786 mpd->b_blocknr = logical;
b6a8e62f 1787 mpd->b_size = 1 << blkbits;
8dc207c0 1788 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1789 return;
1790 }
1791
8dc207c0 1792 next = mpd->b_blocknr + nrblocks;
64769240
AT
1793 /*
1794 * Can we merge the block to our big extent?
1795 */
8dc207c0 1796 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
b6a8e62f 1797 mpd->b_size += 1 << blkbits;
64769240
AT
1798 return;
1799 }
1800
525f4ed8 1801flush_it:
64769240
AT
1802 /*
1803 * We couldn't merge the block to our extent, so we
1804 * need to flush current extent and start new one
1805 */
5a87b7a5 1806 mpage_da_map_and_submit(mpd);
a1d6cc56 1807 return;
64769240
AT
1808}
1809
c364b22c 1810static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1811{
c364b22c 1812 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1813}
1814
5356f261
AK
1815/*
1816 * This function is grabs code from the very beginning of
1817 * ext4_map_blocks, but assumes that the caller is from delayed write
1818 * time. This function looks up the requested blocks and sets the
1819 * buffer delay bit under the protection of i_data_sem.
1820 */
1821static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1822 struct ext4_map_blocks *map,
1823 struct buffer_head *bh)
1824{
d100eef2 1825 struct extent_status es;
5356f261
AK
1826 int retval;
1827 sector_t invalid_block = ~((sector_t) 0xffff);
921f266b
DM
1828#ifdef ES_AGGRESSIVE_TEST
1829 struct ext4_map_blocks orig_map;
1830
1831 memcpy(&orig_map, map, sizeof(*map));
1832#endif
5356f261
AK
1833
1834 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1835 invalid_block = ~0;
1836
1837 map->m_flags = 0;
1838 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1839 "logical block %lu\n", inode->i_ino, map->m_len,
1840 (unsigned long) map->m_lblk);
d100eef2
ZL
1841
1842 /* Lookup extent status tree firstly */
1843 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1844
1845 if (ext4_es_is_hole(&es)) {
1846 retval = 0;
1847 down_read((&EXT4_I(inode)->i_data_sem));
1848 goto add_delayed;
1849 }
1850
1851 /*
1852 * Delayed extent could be allocated by fallocate.
1853 * So we need to check it.
1854 */
1855 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1856 map_bh(bh, inode->i_sb, invalid_block);
1857 set_buffer_new(bh);
1858 set_buffer_delay(bh);
1859 return 0;
1860 }
1861
1862 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1863 retval = es.es_len - (iblock - es.es_lblk);
1864 if (retval > map->m_len)
1865 retval = map->m_len;
1866 map->m_len = retval;
1867 if (ext4_es_is_written(&es))
1868 map->m_flags |= EXT4_MAP_MAPPED;
1869 else if (ext4_es_is_unwritten(&es))
1870 map->m_flags |= EXT4_MAP_UNWRITTEN;
1871 else
1872 BUG_ON(1);
1873
921f266b
DM
1874#ifdef ES_AGGRESSIVE_TEST
1875 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1876#endif
d100eef2
ZL
1877 return retval;
1878 }
1879
5356f261
AK
1880 /*
1881 * Try to see if we can get the block without requesting a new
1882 * file system block.
1883 */
1884 down_read((&EXT4_I(inode)->i_data_sem));
9c3569b5
TM
1885 if (ext4_has_inline_data(inode)) {
1886 /*
1887 * We will soon create blocks for this page, and let
1888 * us pretend as if the blocks aren't allocated yet.
1889 * In case of clusters, we have to handle the work
1890 * of mapping from cluster so that the reserved space
1891 * is calculated properly.
1892 */
1893 if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1894 ext4_find_delalloc_cluster(inode, map->m_lblk))
1895 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1896 retval = 0;
1897 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
d100eef2
ZL
1898 retval = ext4_ext_map_blocks(NULL, inode, map,
1899 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1900 else
d100eef2
ZL
1901 retval = ext4_ind_map_blocks(NULL, inode, map,
1902 EXT4_GET_BLOCKS_NO_PUT_HOLE);
5356f261 1903
d100eef2 1904add_delayed:
5356f261 1905 if (retval == 0) {
f7fec032 1906 int ret;
5356f261
AK
1907 /*
1908 * XXX: __block_prepare_write() unmaps passed block,
1909 * is it OK?
1910 */
386ad67c
LC
1911 /*
1912 * If the block was allocated from previously allocated cluster,
1913 * then we don't need to reserve it again. However we still need
1914 * to reserve metadata for every block we're going to write.
1915 */
5356f261 1916 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
f7fec032
ZL
1917 ret = ext4_da_reserve_space(inode, iblock);
1918 if (ret) {
5356f261 1919 /* not enough space to reserve */
f7fec032 1920 retval = ret;
5356f261 1921 goto out_unlock;
f7fec032 1922 }
386ad67c
LC
1923 } else {
1924 ret = ext4_da_reserve_metadata(inode, iblock);
1925 if (ret) {
1926 /* not enough space to reserve */
1927 retval = ret;
1928 goto out_unlock;
1929 }
5356f261
AK
1930 }
1931
f7fec032
ZL
1932 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1933 ~0, EXTENT_STATUS_DELAYED);
1934 if (ret) {
1935 retval = ret;
51865fda 1936 goto out_unlock;
f7fec032 1937 }
51865fda 1938
5356f261
AK
1939 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1940 * and it should not appear on the bh->b_state.
1941 */
1942 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1943
1944 map_bh(bh, inode->i_sb, invalid_block);
1945 set_buffer_new(bh);
1946 set_buffer_delay(bh);
f7fec032
ZL
1947 } else if (retval > 0) {
1948 int ret;
1949 unsigned long long status;
1950
921f266b
DM
1951#ifdef ES_AGGRESSIVE_TEST
1952 if (retval != map->m_len) {
1953 printk("ES len assertation failed for inode: %lu "
1954 "retval %d != map->m_len %d "
1955 "in %s (lookup)\n", inode->i_ino, retval,
1956 map->m_len, __func__);
1957 }
1958#endif
1959
f7fec032
ZL
1960 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1961 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1962 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1963 map->m_pblk, status);
1964 if (ret != 0)
1965 retval = ret;
5356f261
AK
1966 }
1967
1968out_unlock:
1969 up_read((&EXT4_I(inode)->i_data_sem));
1970
1971 return retval;
1972}
1973
64769240 1974/*
b920c755
TT
1975 * This is a special get_blocks_t callback which is used by
1976 * ext4_da_write_begin(). It will either return mapped block or
1977 * reserve space for a single block.
29fa89d0
AK
1978 *
1979 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1980 * We also have b_blocknr = -1 and b_bdev initialized properly
1981 *
1982 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1983 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1984 * initialized properly.
64769240 1985 */
9c3569b5
TM
1986int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1987 struct buffer_head *bh, int create)
64769240 1988{
2ed88685 1989 struct ext4_map_blocks map;
64769240
AT
1990 int ret = 0;
1991
1992 BUG_ON(create == 0);
2ed88685
TT
1993 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1994
1995 map.m_lblk = iblock;
1996 map.m_len = 1;
64769240
AT
1997
1998 /*
1999 * first, we need to know whether the block is allocated already
2000 * preallocated blocks are unmapped but should treated
2001 * the same as allocated blocks.
2002 */
5356f261
AK
2003 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
2004 if (ret <= 0)
2ed88685 2005 return ret;
64769240 2006
2ed88685
TT
2007 map_bh(bh, inode->i_sb, map.m_pblk);
2008 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2009
2010 if (buffer_unwritten(bh)) {
2011 /* A delayed write to unwritten bh should be marked
2012 * new and mapped. Mapped ensures that we don't do
2013 * get_block multiple times when we write to the same
2014 * offset and new ensures that we do proper zero out
2015 * for partial write.
2016 */
2017 set_buffer_new(bh);
c8205636 2018 set_buffer_mapped(bh);
2ed88685
TT
2019 }
2020 return 0;
64769240 2021}
61628a3f 2022
62e086be
AK
2023static int bget_one(handle_t *handle, struct buffer_head *bh)
2024{
2025 get_bh(bh);
2026 return 0;
2027}
2028
2029static int bput_one(handle_t *handle, struct buffer_head *bh)
2030{
2031 put_bh(bh);
2032 return 0;
2033}
2034
2035static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
2036 unsigned int len)
2037{
2038 struct address_space *mapping = page->mapping;
2039 struct inode *inode = mapping->host;
3fdcfb66 2040 struct buffer_head *page_bufs = NULL;
62e086be 2041 handle_t *handle = NULL;
3fdcfb66
TM
2042 int ret = 0, err = 0;
2043 int inline_data = ext4_has_inline_data(inode);
2044 struct buffer_head *inode_bh = NULL;
62e086be 2045
cb20d518 2046 ClearPageChecked(page);
3fdcfb66
TM
2047
2048 if (inline_data) {
2049 BUG_ON(page->index != 0);
2050 BUG_ON(len > ext4_get_max_inline_size(inode));
2051 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2052 if (inode_bh == NULL)
2053 goto out;
2054 } else {
2055 page_bufs = page_buffers(page);
2056 if (!page_bufs) {
2057 BUG();
2058 goto out;
2059 }
2060 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2061 NULL, bget_one);
2062 }
62e086be
AK
2063 /* As soon as we unlock the page, it can go away, but we have
2064 * references to buffers so we are safe */
2065 unlock_page(page);
2066
9924a92a
TT
2067 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2068 ext4_writepage_trans_blocks(inode));
62e086be
AK
2069 if (IS_ERR(handle)) {
2070 ret = PTR_ERR(handle);
2071 goto out;
2072 }
2073
441c8508
CW
2074 BUG_ON(!ext4_handle_valid(handle));
2075
3fdcfb66
TM
2076 if (inline_data) {
2077 ret = ext4_journal_get_write_access(handle, inode_bh);
62e086be 2078
3fdcfb66
TM
2079 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
2080
2081 } else {
2082 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2083 do_journal_get_write_access);
2084
2085 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2086 write_end_fn);
2087 }
62e086be
AK
2088 if (ret == 0)
2089 ret = err;
2d859db3 2090 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
2091 err = ext4_journal_stop(handle);
2092 if (!ret)
2093 ret = err;
2094
3fdcfb66
TM
2095 if (!ext4_has_inline_data(inode))
2096 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2097 NULL, bput_one);
19f5fb7a 2098 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be 2099out:
3fdcfb66 2100 brelse(inode_bh);
62e086be
AK
2101 return ret;
2102}
2103
61628a3f 2104/*
43ce1d23
AK
2105 * Note that we don't need to start a transaction unless we're journaling data
2106 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2107 * need to file the inode to the transaction's list in ordered mode because if
2108 * we are writing back data added by write(), the inode is already there and if
25985edc 2109 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
2110 * transaction the data will hit the disk. In case we are journaling data, we
2111 * cannot start transaction directly because transaction start ranks above page
2112 * lock so we have to do some magic.
2113 *
b920c755
TT
2114 * This function can get called via...
2115 * - ext4_da_writepages after taking page lock (have journal handle)
2116 * - journal_submit_inode_data_buffers (no journal handle)
f6463b0d 2117 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
b920c755 2118 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
2119 *
2120 * We don't do any block allocation in this function. If we have page with
2121 * multiple blocks we need to write those buffer_heads that are mapped. This
2122 * is important for mmaped based write. So if we do with blocksize 1K
2123 * truncate(f, 1024);
2124 * a = mmap(f, 0, 4096);
2125 * a[0] = 'a';
2126 * truncate(f, 4096);
2127 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 2128 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
2129 * do_wp_page). So writepage should write the first block. If we modify
2130 * the mmap area beyond 1024 we will again get a page_fault and the
2131 * page_mkwrite callback will do the block allocation and mark the
2132 * buffer_heads mapped.
2133 *
2134 * We redirty the page if we have any buffer_heads that is either delay or
2135 * unwritten in the page.
2136 *
2137 * We can get recursively called as show below.
2138 *
2139 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2140 * ext4_writepage()
2141 *
2142 * But since we don't do any block allocation we should not deadlock.
2143 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 2144 */
43ce1d23 2145static int ext4_writepage(struct page *page,
62e086be 2146 struct writeback_control *wbc)
64769240 2147{
f8bec370 2148 int ret = 0;
61628a3f 2149 loff_t size;
498e5f24 2150 unsigned int len;
744692dc 2151 struct buffer_head *page_bufs = NULL;
61628a3f 2152 struct inode *inode = page->mapping->host;
36ade451 2153 struct ext4_io_submit io_submit;
61628a3f 2154
a9c667f8 2155 trace_ext4_writepage(page);
f0e6c985
AK
2156 size = i_size_read(inode);
2157 if (page->index == size >> PAGE_CACHE_SHIFT)
2158 len = size & ~PAGE_CACHE_MASK;
2159 else
2160 len = PAGE_CACHE_SIZE;
64769240 2161
a42afc5f 2162 page_bufs = page_buffers(page);
a42afc5f 2163 /*
fe386132
JK
2164 * We cannot do block allocation or other extent handling in this
2165 * function. If there are buffers needing that, we have to redirty
2166 * the page. But we may reach here when we do a journal commit via
2167 * journal_submit_inode_data_buffers() and in that case we must write
2168 * allocated buffers to achieve data=ordered mode guarantees.
a42afc5f 2169 */
f19d5870
TM
2170 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2171 ext4_bh_delay_or_unwritten)) {
f8bec370 2172 redirty_page_for_writepage(wbc, page);
fe386132
JK
2173 if (current->flags & PF_MEMALLOC) {
2174 /*
2175 * For memory cleaning there's no point in writing only
2176 * some buffers. So just bail out. Warn if we came here
2177 * from direct reclaim.
2178 */
2179 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2180 == PF_MEMALLOC);
f0e6c985
AK
2181 unlock_page(page);
2182 return 0;
2183 }
a42afc5f 2184 }
64769240 2185
cb20d518 2186 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
2187 /*
2188 * It's mmapped pagecache. Add buffers and journal it. There
2189 * doesn't seem much point in redirtying the page here.
2190 */
3f0ca309 2191 return __ext4_journalled_writepage(page, len);
43ce1d23 2192
97a851ed
JK
2193 ext4_io_submit_init(&io_submit, wbc);
2194 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2195 if (!io_submit.io_end) {
2196 redirty_page_for_writepage(wbc, page);
2197 unlock_page(page);
2198 return -ENOMEM;
2199 }
36ade451
JK
2200 ret = ext4_bio_write_page(&io_submit, page, len, wbc);
2201 ext4_io_submit(&io_submit);
97a851ed
JK
2202 /* Drop io_end reference we got from init */
2203 ext4_put_io_end_defer(io_submit.io_end);
64769240
AT
2204 return ret;
2205}
2206
61628a3f 2207/*
fffb2739
JK
2208 * mballoc gives us at most this number of blocks...
2209 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2210 * The rest of mballoc seems to handle chunks upto full group size.
61628a3f 2211 */
fffb2739 2212#define MAX_WRITEPAGES_EXTENT_LEN 2048
525f4ed8 2213
fffb2739
JK
2214/*
2215 * Calculate the total number of credits to reserve for one writepages
2216 * iteration. This is called from ext4_da_writepages(). We map an extent of
2217 * upto MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2218 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2219 * bpp - 1 blocks in bpp different extents.
2220 */
525f4ed8
MC
2221static int ext4_da_writepages_trans_blocks(struct inode *inode)
2222{
fffb2739 2223 int bpp = ext4_journal_blocks_per_page(inode);
525f4ed8 2224
fffb2739
JK
2225 return ext4_meta_trans_blocks(inode,
2226 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
525f4ed8 2227}
61628a3f 2228
8e48dcfb
TT
2229/*
2230 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 2231 * address space and accumulate pages that need writing, and call
168fc022
TT
2232 * mpage_da_map_and_submit to map a single contiguous memory region
2233 * and then write them.
8e48dcfb 2234 */
9c3569b5
TM
2235static int write_cache_pages_da(handle_t *handle,
2236 struct address_space *mapping,
8e48dcfb 2237 struct writeback_control *wbc,
72f84e65
ES
2238 struct mpage_da_data *mpd,
2239 pgoff_t *done_index)
8e48dcfb 2240{
4f01b02c 2241 struct buffer_head *bh, *head;
168fc022 2242 struct inode *inode = mapping->host;
4f01b02c
TT
2243 struct pagevec pvec;
2244 unsigned int nr_pages;
2245 sector_t logical;
2246 pgoff_t index, end;
2247 long nr_to_write = wbc->nr_to_write;
2248 int i, tag, ret = 0;
8e48dcfb 2249
168fc022
TT
2250 memset(mpd, 0, sizeof(struct mpage_da_data));
2251 mpd->wbc = wbc;
2252 mpd->inode = inode;
8e48dcfb
TT
2253 pagevec_init(&pvec, 0);
2254 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2255 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2256
6e6938b6 2257 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2258 tag = PAGECACHE_TAG_TOWRITE;
2259 else
2260 tag = PAGECACHE_TAG_DIRTY;
2261
72f84e65 2262 *done_index = index;
4f01b02c 2263 while (index <= end) {
5b41d924 2264 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2265 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2266 if (nr_pages == 0)
4f01b02c 2267 return 0;
8e48dcfb
TT
2268
2269 for (i = 0; i < nr_pages; i++) {
2270 struct page *page = pvec.pages[i];
2271
2272 /*
2273 * At this point, the page may be truncated or
2274 * invalidated (changing page->mapping to NULL), or
2275 * even swizzled back from swapper_space to tmpfs file
2276 * mapping. However, page->index will not change
2277 * because we have a reference on the page.
2278 */
4f01b02c
TT
2279 if (page->index > end)
2280 goto out;
8e48dcfb 2281
72f84e65
ES
2282 *done_index = page->index + 1;
2283
78aaced3
TT
2284 /*
2285 * If we can't merge this page, and we have
2286 * accumulated an contiguous region, write it
2287 */
2288 if ((mpd->next_page != page->index) &&
2289 (mpd->next_page != mpd->first_page)) {
2290 mpage_da_map_and_submit(mpd);
2291 goto ret_extent_tail;
2292 }
2293
8e48dcfb
TT
2294 lock_page(page);
2295
2296 /*
4f01b02c
TT
2297 * If the page is no longer dirty, or its
2298 * mapping no longer corresponds to inode we
2299 * are writing (which means it has been
2300 * truncated or invalidated), or the page is
2301 * already under writeback and we are not
2302 * doing a data integrity writeback, skip the page
8e48dcfb 2303 */
4f01b02c
TT
2304 if (!PageDirty(page) ||
2305 (PageWriteback(page) &&
2306 (wbc->sync_mode == WB_SYNC_NONE)) ||
2307 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2308 unlock_page(page);
2309 continue;
2310 }
2311
7cb1a535 2312 wait_on_page_writeback(page);
8e48dcfb 2313 BUG_ON(PageWriteback(page));
8e48dcfb 2314
9c3569b5
TM
2315 /*
2316 * If we have inline data and arrive here, it means that
2317 * we will soon create the block for the 1st page, so
2318 * we'd better clear the inline data here.
2319 */
2320 if (ext4_has_inline_data(inode)) {
2321 BUG_ON(ext4_test_inode_state(inode,
2322 EXT4_STATE_MAY_INLINE_DATA));
2323 ext4_destroy_inline_data(handle, inode);
2324 }
2325
168fc022 2326 if (mpd->next_page != page->index)
8eb9e5ce 2327 mpd->first_page = page->index;
8eb9e5ce
TT
2328 mpd->next_page = page->index + 1;
2329 logical = (sector_t) page->index <<
2330 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2331
f8bec370
JK
2332 /* Add all dirty buffers to mpd */
2333 head = page_buffers(page);
2334 bh = head;
2335 do {
2336 BUG_ON(buffer_locked(bh));
8eb9e5ce 2337 /*
f8bec370
JK
2338 * We need to try to allocate unmapped blocks
2339 * in the same page. Otherwise we won't make
2340 * progress with the page in ext4_writepage
8eb9e5ce 2341 */
f8bec370
JK
2342 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2343 mpage_add_bh_to_extent(mpd, logical,
f8bec370
JK
2344 bh->b_state);
2345 if (mpd->io_done)
2346 goto ret_extent_tail;
2347 } else if (buffer_dirty(bh) &&
2348 buffer_mapped(bh)) {
8eb9e5ce 2349 /*
f8bec370
JK
2350 * mapped dirty buffer. We need to
2351 * update the b_state because we look
2352 * at b_state in mpage_da_map_blocks.
2353 * We don't update b_size because if we
2354 * find an unmapped buffer_head later
2355 * we need to use the b_state flag of
2356 * that buffer_head.
8eb9e5ce 2357 */
f8bec370
JK
2358 if (mpd->b_size == 0)
2359 mpd->b_state =
2360 bh->b_state & BH_FLAGS;
2361 }
2362 logical++;
2363 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2364
2365 if (nr_to_write > 0) {
2366 nr_to_write--;
2367 if (nr_to_write == 0 &&
4f01b02c 2368 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2369 /*
2370 * We stop writing back only if we are
2371 * not doing integrity sync. In case of
2372 * integrity sync we have to keep going
2373 * because someone may be concurrently
2374 * dirtying pages, and we might have
2375 * synced a lot of newly appeared dirty
2376 * pages, but have not synced all of the
2377 * old dirty pages.
2378 */
4f01b02c 2379 goto out;
8e48dcfb
TT
2380 }
2381 }
2382 pagevec_release(&pvec);
2383 cond_resched();
2384 }
4f01b02c
TT
2385 return 0;
2386ret_extent_tail:
2387 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2388out:
2389 pagevec_release(&pvec);
2390 cond_resched();
8e48dcfb
TT
2391 return ret;
2392}
2393
2394
64769240 2395static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2396 struct writeback_control *wbc)
64769240 2397{
22208ded
AK
2398 pgoff_t index;
2399 int range_whole = 0;
61628a3f 2400 handle_t *handle = NULL;
df22291f 2401 struct mpage_da_data mpd;
5e745b04 2402 struct inode *inode = mapping->host;
498e5f24 2403 int pages_written = 0;
2acf2c26 2404 int range_cyclic, cycled = 1, io_done = 0;
55138e0b 2405 int needed_blocks, ret = 0;
de89de6e 2406 loff_t range_start = wbc->range_start;
5e745b04 2407 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2408 pgoff_t done_index = 0;
5b41d924 2409 pgoff_t end;
1bce63d1 2410 struct blk_plug plug;
61628a3f 2411
9bffad1e 2412 trace_ext4_da_writepages(inode, wbc);
ba80b101 2413
61628a3f
MC
2414 /*
2415 * No pages to write? This is mainly a kludge to avoid starting
2416 * a transaction for special inodes like journal inode on last iput()
2417 * because that could violate lock ordering on umount
2418 */
a1d6cc56 2419 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2420 return 0;
2a21e37e
TT
2421
2422 /*
2423 * If the filesystem has aborted, it is read-only, so return
2424 * right away instead of dumping stack traces later on that
2425 * will obscure the real source of the problem. We test
4ab2f15b 2426 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2427 * the latter could be true if the filesystem is mounted
2428 * read-only, and in that case, ext4_da_writepages should
2429 * *never* be called, so if that ever happens, we would want
2430 * the stack trace.
2431 */
4ab2f15b 2432 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2433 return -EROFS;
2434
22208ded
AK
2435 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2436 range_whole = 1;
61628a3f 2437
2acf2c26
AK
2438 range_cyclic = wbc->range_cyclic;
2439 if (wbc->range_cyclic) {
22208ded 2440 index = mapping->writeback_index;
2acf2c26
AK
2441 if (index)
2442 cycled = 0;
2443 wbc->range_start = index << PAGE_CACHE_SHIFT;
2444 wbc->range_end = LLONG_MAX;
2445 wbc->range_cyclic = 0;
5b41d924
ES
2446 end = -1;
2447 } else {
22208ded 2448 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2449 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2450 }
a1d6cc56 2451
2acf2c26 2452retry:
6e6938b6 2453 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2454 tag_pages_for_writeback(mapping, index, end);
2455
1bce63d1 2456 blk_start_plug(&plug);
22208ded 2457 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2458
2459 /*
2460 * we insert one extent at a time. So we need
2461 * credit needed for single extent allocation.
2462 * journalled mode is currently not supported
2463 * by delalloc
2464 */
2465 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2466 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2467
61628a3f 2468 /* start a new transaction*/
9924a92a
TT
2469 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2470 needed_blocks);
61628a3f
MC
2471 if (IS_ERR(handle)) {
2472 ret = PTR_ERR(handle);
1693918e 2473 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2474 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2475 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2476 blk_finish_plug(&plug);
61628a3f
MC
2477 goto out_writepages;
2478 }
f63e6005
TT
2479
2480 /*
8eb9e5ce 2481 * Now call write_cache_pages_da() to find the next
f63e6005 2482 * contiguous region of logical blocks that need
8eb9e5ce 2483 * blocks to be allocated by ext4 and submit them.
f63e6005 2484 */
9c3569b5
TM
2485 ret = write_cache_pages_da(handle, mapping,
2486 wbc, &mpd, &done_index);
f63e6005 2487 /*
af901ca1 2488 * If we have a contiguous extent of pages and we
f63e6005
TT
2489 * haven't done the I/O yet, map the blocks and submit
2490 * them for I/O.
2491 */
2492 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2493 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2494 ret = MPAGE_DA_EXTENT_TAIL;
2495 }
b3a3ca8c 2496 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2497 wbc->nr_to_write -= mpd.pages_written;
df22291f 2498
61628a3f 2499 ext4_journal_stop(handle);
df22291f 2500
8f64b32e 2501 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2502 /* commit the transaction which would
2503 * free blocks released in the transaction
2504 * and try again
2505 */
df22291f 2506 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2507 ret = 0;
2508 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2509 /*
8de49e67
KM
2510 * Got one extent now try with rest of the pages.
2511 * If mpd.retval is set -EIO, journal is aborted.
2512 * So we don't need to write any more.
a1d6cc56 2513 */
22208ded 2514 pages_written += mpd.pages_written;
8de49e67 2515 ret = mpd.retval;
2acf2c26 2516 io_done = 1;
22208ded 2517 } else if (wbc->nr_to_write)
61628a3f
MC
2518 /*
2519 * There is no more writeout needed
2520 * or we requested for a noblocking writeout
2521 * and we found the device congested
2522 */
61628a3f 2523 break;
a1d6cc56 2524 }
1bce63d1 2525 blk_finish_plug(&plug);
2acf2c26
AK
2526 if (!io_done && !cycled) {
2527 cycled = 1;
2528 index = 0;
2529 wbc->range_start = index << PAGE_CACHE_SHIFT;
2530 wbc->range_end = mapping->writeback_index - 1;
2531 goto retry;
2532 }
22208ded
AK
2533
2534 /* Update index */
2acf2c26 2535 wbc->range_cyclic = range_cyclic;
22208ded
AK
2536 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2537 /*
2538 * set the writeback_index so that range_cyclic
2539 * mode will write it back later
2540 */
72f84e65 2541 mapping->writeback_index = done_index;
a1d6cc56 2542
61628a3f 2543out_writepages:
de89de6e 2544 wbc->range_start = range_start;
9bffad1e 2545 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2546 return ret;
64769240
AT
2547}
2548
79f0be8d
AK
2549static int ext4_nonda_switch(struct super_block *sb)
2550{
5c1ff336 2551 s64 free_clusters, dirty_clusters;
79f0be8d
AK
2552 struct ext4_sb_info *sbi = EXT4_SB(sb);
2553
2554 /*
2555 * switch to non delalloc mode if we are running low
2556 * on free block. The free block accounting via percpu
179f7ebf 2557 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2558 * accumulated on each CPU without updating global counters
2559 * Delalloc need an accurate free block accounting. So switch
2560 * to non delalloc when we are near to error range.
2561 */
5c1ff336
EW
2562 free_clusters =
2563 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2564 dirty_clusters =
2565 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
00d4e736
TT
2566 /*
2567 * Start pushing delalloc when 1/2 of free blocks are dirty.
2568 */
5c1ff336 2569 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
10ee27a0 2570 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
00d4e736 2571
5c1ff336
EW
2572 if (2 * free_clusters < 3 * dirty_clusters ||
2573 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2574 /*
c8afb446
ES
2575 * free block count is less than 150% of dirty blocks
2576 * or free blocks is less than watermark
79f0be8d
AK
2577 */
2578 return 1;
2579 }
2580 return 0;
2581}
2582
64769240 2583static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2584 loff_t pos, unsigned len, unsigned flags,
2585 struct page **pagep, void **fsdata)
64769240 2586{
72b8ab9d 2587 int ret, retries = 0;
64769240
AT
2588 struct page *page;
2589 pgoff_t index;
64769240
AT
2590 struct inode *inode = mapping->host;
2591 handle_t *handle;
2592
2593 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2594
2595 if (ext4_nonda_switch(inode->i_sb)) {
2596 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2597 return ext4_write_begin(file, mapping, pos,
2598 len, flags, pagep, fsdata);
2599 }
2600 *fsdata = (void *)0;
9bffad1e 2601 trace_ext4_da_write_begin(inode, pos, len, flags);
9c3569b5
TM
2602
2603 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2604 ret = ext4_da_write_inline_data_begin(mapping, inode,
2605 pos, len, flags,
2606 pagep, fsdata);
2607 if (ret < 0)
47564bfb
TT
2608 return ret;
2609 if (ret == 1)
2610 return 0;
9c3569b5
TM
2611 }
2612
47564bfb
TT
2613 /*
2614 * grab_cache_page_write_begin() can take a long time if the
2615 * system is thrashing due to memory pressure, or if the page
2616 * is being written back. So grab it first before we start
2617 * the transaction handle. This also allows us to allocate
2618 * the page (if needed) without using GFP_NOFS.
2619 */
2620retry_grab:
2621 page = grab_cache_page_write_begin(mapping, index, flags);
2622 if (!page)
2623 return -ENOMEM;
2624 unlock_page(page);
2625
64769240
AT
2626 /*
2627 * With delayed allocation, we don't log the i_disksize update
2628 * if there is delayed block allocation. But we still need
2629 * to journalling the i_disksize update if writes to the end
2630 * of file which has an already mapped buffer.
2631 */
47564bfb 2632retry_journal:
9924a92a 2633 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
64769240 2634 if (IS_ERR(handle)) {
47564bfb
TT
2635 page_cache_release(page);
2636 return PTR_ERR(handle);
64769240
AT
2637 }
2638
47564bfb
TT
2639 lock_page(page);
2640 if (page->mapping != mapping) {
2641 /* The page got truncated from under us */
2642 unlock_page(page);
2643 page_cache_release(page);
d5a0d4f7 2644 ext4_journal_stop(handle);
47564bfb 2645 goto retry_grab;
d5a0d4f7 2646 }
47564bfb
TT
2647 /* In case writeback began while the page was unlocked */
2648 wait_on_page_writeback(page);
64769240 2649
6e1db88d 2650 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2651 if (ret < 0) {
2652 unlock_page(page);
2653 ext4_journal_stop(handle);
ae4d5372
AK
2654 /*
2655 * block_write_begin may have instantiated a few blocks
2656 * outside i_size. Trim these off again. Don't need
2657 * i_size_read because we hold i_mutex.
2658 */
2659 if (pos + len > inode->i_size)
b9a4207d 2660 ext4_truncate_failed_write(inode);
47564bfb
TT
2661
2662 if (ret == -ENOSPC &&
2663 ext4_should_retry_alloc(inode->i_sb, &retries))
2664 goto retry_journal;
2665
2666 page_cache_release(page);
2667 return ret;
64769240
AT
2668 }
2669
47564bfb 2670 *pagep = page;
64769240
AT
2671 return ret;
2672}
2673
632eaeab
MC
2674/*
2675 * Check if we should update i_disksize
2676 * when write to the end of file but not require block allocation
2677 */
2678static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2679 unsigned long offset)
632eaeab
MC
2680{
2681 struct buffer_head *bh;
2682 struct inode *inode = page->mapping->host;
2683 unsigned int idx;
2684 int i;
2685
2686 bh = page_buffers(page);
2687 idx = offset >> inode->i_blkbits;
2688
af5bc92d 2689 for (i = 0; i < idx; i++)
632eaeab
MC
2690 bh = bh->b_this_page;
2691
29fa89d0 2692 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2693 return 0;
2694 return 1;
2695}
2696
64769240 2697static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2698 struct address_space *mapping,
2699 loff_t pos, unsigned len, unsigned copied,
2700 struct page *page, void *fsdata)
64769240
AT
2701{
2702 struct inode *inode = mapping->host;
2703 int ret = 0, ret2;
2704 handle_t *handle = ext4_journal_current_handle();
2705 loff_t new_i_size;
632eaeab 2706 unsigned long start, end;
79f0be8d
AK
2707 int write_mode = (int)(unsigned long)fsdata;
2708
74d553aa
TT
2709 if (write_mode == FALL_BACK_TO_NONDELALLOC)
2710 return ext4_write_end(file, mapping, pos,
2711 len, copied, page, fsdata);
632eaeab 2712
9bffad1e 2713 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2714 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2715 end = start + copied - 1;
64769240
AT
2716
2717 /*
2718 * generic_write_end() will run mark_inode_dirty() if i_size
2719 * changes. So let's piggyback the i_disksize mark_inode_dirty
2720 * into that.
2721 */
64769240 2722 new_i_size = pos + copied;
ea51d132 2723 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
9c3569b5
TM
2724 if (ext4_has_inline_data(inode) ||
2725 ext4_da_should_update_i_disksize(page, end)) {
632eaeab 2726 down_write(&EXT4_I(inode)->i_data_sem);
f3b59291 2727 if (new_i_size > EXT4_I(inode)->i_disksize)
632eaeab 2728 EXT4_I(inode)->i_disksize = new_i_size;
632eaeab 2729 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2730 /* We need to mark inode dirty even if
2731 * new_i_size is less that inode->i_size
2732 * bu greater than i_disksize.(hint delalloc)
2733 */
2734 ext4_mark_inode_dirty(handle, inode);
64769240 2735 }
632eaeab 2736 }
9c3569b5
TM
2737
2738 if (write_mode != CONVERT_INLINE_DATA &&
2739 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2740 ext4_has_inline_data(inode))
2741 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2742 page);
2743 else
2744 ret2 = generic_write_end(file, mapping, pos, len, copied,
64769240 2745 page, fsdata);
9c3569b5 2746
64769240
AT
2747 copied = ret2;
2748 if (ret2 < 0)
2749 ret = ret2;
2750 ret2 = ext4_journal_stop(handle);
2751 if (!ret)
2752 ret = ret2;
2753
2754 return ret ? ret : copied;
2755}
2756
d47992f8
LC
2757static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2758 unsigned int length)
64769240 2759{
64769240
AT
2760 /*
2761 * Drop reserved blocks
2762 */
2763 BUG_ON(!PageLocked(page));
2764 if (!page_has_buffers(page))
2765 goto out;
2766
ca99fdd2 2767 ext4_da_page_release_reservation(page, offset, length);
64769240
AT
2768
2769out:
d47992f8 2770 ext4_invalidatepage(page, offset, length);
64769240
AT
2771
2772 return;
2773}
2774
ccd2506b
TT
2775/*
2776 * Force all delayed allocation blocks to be allocated for a given inode.
2777 */
2778int ext4_alloc_da_blocks(struct inode *inode)
2779{
fb40ba0d
TT
2780 trace_ext4_alloc_da_blocks(inode);
2781
ccd2506b
TT
2782 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2783 !EXT4_I(inode)->i_reserved_meta_blocks)
2784 return 0;
2785
2786 /*
2787 * We do something simple for now. The filemap_flush() will
2788 * also start triggering a write of the data blocks, which is
2789 * not strictly speaking necessary (and for users of
2790 * laptop_mode, not even desirable). However, to do otherwise
2791 * would require replicating code paths in:
de9a55b8 2792 *
ccd2506b
TT
2793 * ext4_da_writepages() ->
2794 * write_cache_pages() ---> (via passed in callback function)
2795 * __mpage_da_writepage() -->
2796 * mpage_add_bh_to_extent()
2797 * mpage_da_map_blocks()
2798 *
2799 * The problem is that write_cache_pages(), located in
2800 * mm/page-writeback.c, marks pages clean in preparation for
2801 * doing I/O, which is not desirable if we're not planning on
2802 * doing I/O at all.
2803 *
2804 * We could call write_cache_pages(), and then redirty all of
380cf090 2805 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2806 * would be ugly in the extreme. So instead we would need to
2807 * replicate parts of the code in the above functions,
25985edc 2808 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2809 * write out the pages, but rather only collect contiguous
2810 * logical block extents, call the multi-block allocator, and
2811 * then update the buffer heads with the block allocations.
de9a55b8 2812 *
ccd2506b
TT
2813 * For now, though, we'll cheat by calling filemap_flush(),
2814 * which will map the blocks, and start the I/O, but not
2815 * actually wait for the I/O to complete.
2816 */
2817 return filemap_flush(inode->i_mapping);
2818}
64769240 2819
ac27a0ec
DK
2820/*
2821 * bmap() is special. It gets used by applications such as lilo and by
2822 * the swapper to find the on-disk block of a specific piece of data.
2823 *
2824 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2825 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2826 * filesystem and enables swap, then they may get a nasty shock when the
2827 * data getting swapped to that swapfile suddenly gets overwritten by
2828 * the original zero's written out previously to the journal and
2829 * awaiting writeback in the kernel's buffer cache.
2830 *
2831 * So, if we see any bmap calls here on a modified, data-journaled file,
2832 * take extra steps to flush any blocks which might be in the cache.
2833 */
617ba13b 2834static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2835{
2836 struct inode *inode = mapping->host;
2837 journal_t *journal;
2838 int err;
2839
46c7f254
TM
2840 /*
2841 * We can get here for an inline file via the FIBMAP ioctl
2842 */
2843 if (ext4_has_inline_data(inode))
2844 return 0;
2845
64769240
AT
2846 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2847 test_opt(inode->i_sb, DELALLOC)) {
2848 /*
2849 * With delalloc we want to sync the file
2850 * so that we can make sure we allocate
2851 * blocks for file
2852 */
2853 filemap_write_and_wait(mapping);
2854 }
2855
19f5fb7a
TT
2856 if (EXT4_JOURNAL(inode) &&
2857 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2858 /*
2859 * This is a REALLY heavyweight approach, but the use of
2860 * bmap on dirty files is expected to be extremely rare:
2861 * only if we run lilo or swapon on a freshly made file
2862 * do we expect this to happen.
2863 *
2864 * (bmap requires CAP_SYS_RAWIO so this does not
2865 * represent an unprivileged user DOS attack --- we'd be
2866 * in trouble if mortal users could trigger this path at
2867 * will.)
2868 *
617ba13b 2869 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2870 * regular files. If somebody wants to bmap a directory
2871 * or symlink and gets confused because the buffer
2872 * hasn't yet been flushed to disk, they deserve
2873 * everything they get.
2874 */
2875
19f5fb7a 2876 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2877 journal = EXT4_JOURNAL(inode);
dab291af
MC
2878 jbd2_journal_lock_updates(journal);
2879 err = jbd2_journal_flush(journal);
2880 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2881
2882 if (err)
2883 return 0;
2884 }
2885
af5bc92d 2886 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2887}
2888
617ba13b 2889static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2890{
46c7f254
TM
2891 int ret = -EAGAIN;
2892 struct inode *inode = page->mapping->host;
2893
0562e0ba 2894 trace_ext4_readpage(page);
46c7f254
TM
2895
2896 if (ext4_has_inline_data(inode))
2897 ret = ext4_readpage_inline(inode, page);
2898
2899 if (ret == -EAGAIN)
2900 return mpage_readpage(page, ext4_get_block);
2901
2902 return ret;
ac27a0ec
DK
2903}
2904
2905static int
617ba13b 2906ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2907 struct list_head *pages, unsigned nr_pages)
2908{
46c7f254
TM
2909 struct inode *inode = mapping->host;
2910
2911 /* If the file has inline data, no need to do readpages. */
2912 if (ext4_has_inline_data(inode))
2913 return 0;
2914
617ba13b 2915 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2916}
2917
d47992f8
LC
2918static void ext4_invalidatepage(struct page *page, unsigned int offset,
2919 unsigned int length)
ac27a0ec 2920{
ca99fdd2 2921 trace_ext4_invalidatepage(page, offset, length);
0562e0ba 2922
4520fb3c
JK
2923 /* No journalling happens on data buffers when this function is used */
2924 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2925
ca99fdd2 2926 block_invalidatepage(page, offset, length);
4520fb3c
JK
2927}
2928
53e87268 2929static int __ext4_journalled_invalidatepage(struct page *page,
ca99fdd2
LC
2930 unsigned int offset,
2931 unsigned int length)
4520fb3c
JK
2932{
2933 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2934
ca99fdd2 2935 trace_ext4_journalled_invalidatepage(page, offset, length);
4520fb3c 2936
ac27a0ec
DK
2937 /*
2938 * If it's a full truncate we just forget about the pending dirtying
2939 */
ca99fdd2 2940 if (offset == 0 && length == PAGE_CACHE_SIZE)
ac27a0ec
DK
2941 ClearPageChecked(page);
2942
ca99fdd2 2943 return jbd2_journal_invalidatepage(journal, page, offset, length);
53e87268
JK
2944}
2945
2946/* Wrapper for aops... */
2947static void ext4_journalled_invalidatepage(struct page *page,
d47992f8
LC
2948 unsigned int offset,
2949 unsigned int length)
53e87268 2950{
ca99fdd2 2951 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
ac27a0ec
DK
2952}
2953
617ba13b 2954static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2955{
617ba13b 2956 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2957
0562e0ba
JZ
2958 trace_ext4_releasepage(page);
2959
e1c36595
JK
2960 /* Page has dirty journalled data -> cannot release */
2961 if (PageChecked(page))
ac27a0ec 2962 return 0;
0390131b
FM
2963 if (journal)
2964 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2965 else
2966 return try_to_free_buffers(page);
ac27a0ec
DK
2967}
2968
2ed88685
TT
2969/*
2970 * ext4_get_block used when preparing for a DIO write or buffer write.
2971 * We allocate an uinitialized extent if blocks haven't been allocated.
2972 * The extent will be converted to initialized after the IO is complete.
2973 */
f19d5870 2974int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2975 struct buffer_head *bh_result, int create)
2976{
c7064ef1 2977 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2978 inode->i_ino, create);
2ed88685
TT
2979 return _ext4_get_block(inode, iblock, bh_result,
2980 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2981}
2982
729f52c6 2983static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
8b0f165f 2984 struct buffer_head *bh_result, int create)
729f52c6 2985{
8b0f165f
AP
2986 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
2987 inode->i_ino, create);
2988 return _ext4_get_block(inode, iblock, bh_result,
2989 EXT4_GET_BLOCKS_NO_LOCK);
729f52c6
ZL
2990}
2991
4c0425ff 2992static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2993 ssize_t size, void *private, int ret,
2994 bool is_async)
4c0425ff 2995{
496ad9aa 2996 struct inode *inode = file_inode(iocb->ki_filp);
4c0425ff 2997 ext4_io_end_t *io_end = iocb->private;
4c0425ff 2998
97a851ed
JK
2999 /* if not async direct IO just return */
3000 if (!io_end) {
3001 inode_dio_done(inode);
3002 if (is_async)
3003 aio_complete(iocb, ret, 0);
3004 return;
3005 }
4b70df18 3006
88635ca2 3007 ext_debug("ext4_end_io_dio(): io_end 0x%p "
ace36ad4 3008 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
8d5d02e6
MC
3009 iocb->private, io_end->inode->i_ino, iocb, offset,
3010 size);
8d5d02e6 3011
b5a7e970 3012 iocb->private = NULL;
4c0425ff
MC
3013 io_end->offset = offset;
3014 io_end->size = size;
5b3ff237
JZ
3015 if (is_async) {
3016 io_end->iocb = iocb;
3017 io_end->result = ret;
3018 }
97a851ed 3019 ext4_put_io_end_defer(io_end);
4c0425ff 3020}
c7064ef1 3021
4c0425ff
MC
3022/*
3023 * For ext4 extent files, ext4 will do direct-io write to holes,
3024 * preallocated extents, and those write extend the file, no need to
3025 * fall back to buffered IO.
3026 *
b595076a 3027 * For holes, we fallocate those blocks, mark them as uninitialized
69c499d1 3028 * If those blocks were preallocated, we mark sure they are split, but
b595076a 3029 * still keep the range to write as uninitialized.
4c0425ff 3030 *
69c499d1 3031 * The unwritten extents will be converted to written when DIO is completed.
8d5d02e6 3032 * For async direct IO, since the IO may still pending when return, we
25985edc 3033 * set up an end_io call back function, which will do the conversion
8d5d02e6 3034 * when async direct IO completed.
4c0425ff
MC
3035 *
3036 * If the O_DIRECT write will extend the file then add this inode to the
3037 * orphan list. So recovery will truncate it back to the original size
3038 * if the machine crashes during the write.
3039 *
3040 */
3041static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3042 const struct iovec *iov, loff_t offset,
3043 unsigned long nr_segs)
3044{
3045 struct file *file = iocb->ki_filp;
3046 struct inode *inode = file->f_mapping->host;
3047 ssize_t ret;
3048 size_t count = iov_length(iov, nr_segs);
69c499d1
TT
3049 int overwrite = 0;
3050 get_block_t *get_block_func = NULL;
3051 int dio_flags = 0;
4c0425ff 3052 loff_t final_size = offset + count;
97a851ed 3053 ext4_io_end_t *io_end = NULL;
729f52c6 3054
69c499d1
TT
3055 /* Use the old path for reads and writes beyond i_size. */
3056 if (rw != WRITE || final_size > inode->i_size)
3057 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4bd809db 3058
69c499d1 3059 BUG_ON(iocb->private == NULL);
4bd809db 3060
69c499d1
TT
3061 /* If we do a overwrite dio, i_mutex locking can be released */
3062 overwrite = *((int *)iocb->private);
4bd809db 3063
69c499d1
TT
3064 if (overwrite) {
3065 atomic_inc(&inode->i_dio_count);
3066 down_read(&EXT4_I(inode)->i_data_sem);
3067 mutex_unlock(&inode->i_mutex);
3068 }
8d5d02e6 3069
69c499d1
TT
3070 /*
3071 * We could direct write to holes and fallocate.
3072 *
3073 * Allocated blocks to fill the hole are marked as
3074 * uninitialized to prevent parallel buffered read to expose
3075 * the stale data before DIO complete the data IO.
3076 *
3077 * As to previously fallocated extents, ext4 get_block will
3078 * just simply mark the buffer mapped but still keep the
3079 * extents uninitialized.
3080 *
3081 * For non AIO case, we will convert those unwritten extents
3082 * to written after return back from blockdev_direct_IO.
3083 *
3084 * For async DIO, the conversion needs to be deferred when the
3085 * IO is completed. The ext4 end_io callback function will be
3086 * called to take care of the conversion work. Here for async
3087 * case, we allocate an io_end structure to hook to the iocb.
3088 */
3089 iocb->private = NULL;
3090 ext4_inode_aio_set(inode, NULL);
3091 if (!is_sync_kiocb(iocb)) {
97a851ed 3092 io_end = ext4_init_io_end(inode, GFP_NOFS);
69c499d1
TT
3093 if (!io_end) {
3094 ret = -ENOMEM;
3095 goto retake_lock;
8b0f165f 3096 }
69c499d1 3097 io_end->flag |= EXT4_IO_END_DIRECT;
97a851ed
JK
3098 /*
3099 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3100 */
3101 iocb->private = ext4_get_io_end(io_end);
8d5d02e6 3102 /*
69c499d1
TT
3103 * we save the io structure for current async direct
3104 * IO, so that later ext4_map_blocks() could flag the
3105 * io structure whether there is a unwritten extents
3106 * needs to be converted when IO is completed.
8d5d02e6 3107 */
69c499d1
TT
3108 ext4_inode_aio_set(inode, io_end);
3109 }
4bd809db 3110
69c499d1
TT
3111 if (overwrite) {
3112 get_block_func = ext4_get_block_write_nolock;
3113 } else {
3114 get_block_func = ext4_get_block_write;
3115 dio_flags = DIO_LOCKING;
3116 }
3117 ret = __blockdev_direct_IO(rw, iocb, inode,
3118 inode->i_sb->s_bdev, iov,
3119 offset, nr_segs,
3120 get_block_func,
3121 ext4_end_io_dio,
3122 NULL,
3123 dio_flags);
3124
69c499d1 3125 /*
97a851ed
JK
3126 * Put our reference to io_end. This can free the io_end structure e.g.
3127 * in sync IO case or in case of error. It can even perform extent
3128 * conversion if all bios we submitted finished before we got here.
3129 * Note that in that case iocb->private can be already set to NULL
3130 * here.
69c499d1 3131 */
97a851ed
JK
3132 if (io_end) {
3133 ext4_inode_aio_set(inode, NULL);
3134 ext4_put_io_end(io_end);
3135 /*
3136 * When no IO was submitted ext4_end_io_dio() was not
3137 * called so we have to put iocb's reference.
3138 */
3139 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3140 WARN_ON(iocb->private != io_end);
3141 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3142 WARN_ON(io_end->iocb);
3143 /*
3144 * Generic code already did inode_dio_done() so we
3145 * have to clear EXT4_IO_END_DIRECT to not do it for
3146 * the second time.
3147 */
3148 io_end->flag = 0;
3149 ext4_put_io_end(io_end);
3150 iocb->private = NULL;
3151 }
3152 }
3153 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
69c499d1
TT
3154 EXT4_STATE_DIO_UNWRITTEN)) {
3155 int err;
3156 /*
3157 * for non AIO case, since the IO is already
3158 * completed, we could do the conversion right here
3159 */
3160 err = ext4_convert_unwritten_extents(inode,
3161 offset, ret);
3162 if (err < 0)
3163 ret = err;
3164 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3165 }
4bd809db 3166
69c499d1
TT
3167retake_lock:
3168 /* take i_mutex locking again if we do a ovewrite dio */
3169 if (overwrite) {
3170 inode_dio_done(inode);
3171 up_read(&EXT4_I(inode)->i_data_sem);
3172 mutex_lock(&inode->i_mutex);
4c0425ff 3173 }
8d5d02e6 3174
69c499d1 3175 return ret;
4c0425ff
MC
3176}
3177
3178static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3179 const struct iovec *iov, loff_t offset,
3180 unsigned long nr_segs)
3181{
3182 struct file *file = iocb->ki_filp;
3183 struct inode *inode = file->f_mapping->host;
0562e0ba 3184 ssize_t ret;
4c0425ff 3185
84ebd795
TT
3186 /*
3187 * If we are doing data journalling we don't support O_DIRECT
3188 */
3189 if (ext4_should_journal_data(inode))
3190 return 0;
3191
46c7f254
TM
3192 /* Let buffer I/O handle the inline data case. */
3193 if (ext4_has_inline_data(inode))
3194 return 0;
3195
0562e0ba 3196 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 3197 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3198 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3199 else
3200 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3201 trace_ext4_direct_IO_exit(inode, offset,
3202 iov_length(iov, nr_segs), rw, ret);
3203 return ret;
4c0425ff
MC
3204}
3205
ac27a0ec 3206/*
617ba13b 3207 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3208 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3209 * much here because ->set_page_dirty is called under VFS locks. The page is
3210 * not necessarily locked.
3211 *
3212 * We cannot just dirty the page and leave attached buffers clean, because the
3213 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3214 * or jbddirty because all the journalling code will explode.
3215 *
3216 * So what we do is to mark the page "pending dirty" and next time writepage
3217 * is called, propagate that into the buffers appropriately.
3218 */
617ba13b 3219static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3220{
3221 SetPageChecked(page);
3222 return __set_page_dirty_nobuffers(page);
3223}
3224
74d553aa 3225static const struct address_space_operations ext4_aops = {
8ab22b9a
HH
3226 .readpage = ext4_readpage,
3227 .readpages = ext4_readpages,
43ce1d23 3228 .writepage = ext4_writepage,
8ab22b9a 3229 .write_begin = ext4_write_begin,
74d553aa 3230 .write_end = ext4_write_end,
8ab22b9a
HH
3231 .bmap = ext4_bmap,
3232 .invalidatepage = ext4_invalidatepage,
3233 .releasepage = ext4_releasepage,
3234 .direct_IO = ext4_direct_IO,
3235 .migratepage = buffer_migrate_page,
3236 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3237 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3238};
3239
617ba13b 3240static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3241 .readpage = ext4_readpage,
3242 .readpages = ext4_readpages,
43ce1d23 3243 .writepage = ext4_writepage,
8ab22b9a
HH
3244 .write_begin = ext4_write_begin,
3245 .write_end = ext4_journalled_write_end,
3246 .set_page_dirty = ext4_journalled_set_page_dirty,
3247 .bmap = ext4_bmap,
4520fb3c 3248 .invalidatepage = ext4_journalled_invalidatepage,
8ab22b9a 3249 .releasepage = ext4_releasepage,
84ebd795 3250 .direct_IO = ext4_direct_IO,
8ab22b9a 3251 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3252 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3253};
3254
64769240 3255static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3256 .readpage = ext4_readpage,
3257 .readpages = ext4_readpages,
43ce1d23 3258 .writepage = ext4_writepage,
8ab22b9a 3259 .writepages = ext4_da_writepages,
8ab22b9a
HH
3260 .write_begin = ext4_da_write_begin,
3261 .write_end = ext4_da_write_end,
3262 .bmap = ext4_bmap,
3263 .invalidatepage = ext4_da_invalidatepage,
3264 .releasepage = ext4_releasepage,
3265 .direct_IO = ext4_direct_IO,
3266 .migratepage = buffer_migrate_page,
3267 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3268 .error_remove_page = generic_error_remove_page,
64769240
AT
3269};
3270
617ba13b 3271void ext4_set_aops(struct inode *inode)
ac27a0ec 3272{
3d2b1582
LC
3273 switch (ext4_inode_journal_mode(inode)) {
3274 case EXT4_INODE_ORDERED_DATA_MODE:
74d553aa 3275 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3276 break;
3277 case EXT4_INODE_WRITEBACK_DATA_MODE:
74d553aa 3278 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3d2b1582
LC
3279 break;
3280 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3281 inode->i_mapping->a_ops = &ext4_journalled_aops;
74d553aa 3282 return;
3d2b1582
LC
3283 default:
3284 BUG();
3285 }
74d553aa
TT
3286 if (test_opt(inode->i_sb, DELALLOC))
3287 inode->i_mapping->a_ops = &ext4_da_aops;
3288 else
3289 inode->i_mapping->a_ops = &ext4_aops;
ac27a0ec
DK
3290}
3291
d863dc36
LC
3292/*
3293 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3294 * up to the end of the block which corresponds to `from'.
3295 * This required during truncate. We need to physically zero the tail end
3296 * of that block so it doesn't yield old data if the file is later grown.
3297 */
3298int ext4_block_truncate_page(handle_t *handle,
3299 struct address_space *mapping, loff_t from)
3300{
3301 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3302 unsigned length;
3303 unsigned blocksize;
3304 struct inode *inode = mapping->host;
3305
3306 blocksize = inode->i_sb->s_blocksize;
3307 length = blocksize - (offset & (blocksize - 1));
3308
3309 return ext4_block_zero_page_range(handle, mapping, from, length);
3310}
3311
3312/*
3313 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3314 * starting from file offset 'from'. The range to be zero'd must
3315 * be contained with in one block. If the specified range exceeds
3316 * the end of the block it will be shortened to end of the block
3317 * that cooresponds to 'from'
3318 */
3319int ext4_block_zero_page_range(handle_t *handle,
3320 struct address_space *mapping, loff_t from, loff_t length)
3321{
3322 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3323 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3324 unsigned blocksize, max, pos;
3325 ext4_lblk_t iblock;
3326 struct inode *inode = mapping->host;
3327 struct buffer_head *bh;
3328 struct page *page;
3329 int err = 0;
3330
3331 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3332 mapping_gfp_mask(mapping) & ~__GFP_FS);
3333 if (!page)
3334 return -ENOMEM;
3335
3336 blocksize = inode->i_sb->s_blocksize;
3337 max = blocksize - (offset & (blocksize - 1));
3338
3339 /*
3340 * correct length if it does not fall between
3341 * 'from' and the end of the block
3342 */
3343 if (length > max || length < 0)
3344 length = max;
3345
3346 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3347
3348 if (!page_has_buffers(page))
3349 create_empty_buffers(page, blocksize, 0);
3350
3351 /* Find the buffer that contains "offset" */
3352 bh = page_buffers(page);
3353 pos = blocksize;
3354 while (offset >= pos) {
3355 bh = bh->b_this_page;
3356 iblock++;
3357 pos += blocksize;
3358 }
3359
3360 err = 0;
3361 if (buffer_freed(bh)) {
3362 BUFFER_TRACE(bh, "freed: skip");
3363 goto unlock;
3364 }
3365
3366 if (!buffer_mapped(bh)) {
3367 BUFFER_TRACE(bh, "unmapped");
3368 ext4_get_block(inode, iblock, bh, 0);
3369 /* unmapped? It's a hole - nothing to do */
3370 if (!buffer_mapped(bh)) {
3371 BUFFER_TRACE(bh, "still unmapped");
3372 goto unlock;
3373 }
3374 }
3375
3376 /* Ok, it's mapped. Make sure it's up-to-date */
3377 if (PageUptodate(page))
3378 set_buffer_uptodate(bh);
3379
3380 if (!buffer_uptodate(bh)) {
3381 err = -EIO;
3382 ll_rw_block(READ, 1, &bh);
3383 wait_on_buffer(bh);
3384 /* Uhhuh. Read error. Complain and punt. */
3385 if (!buffer_uptodate(bh))
3386 goto unlock;
3387 }
3388
3389 if (ext4_should_journal_data(inode)) {
3390 BUFFER_TRACE(bh, "get write access");
3391 err = ext4_journal_get_write_access(handle, bh);
3392 if (err)
3393 goto unlock;
3394 }
3395
3396 zero_user(page, offset, length);
3397
3398 BUFFER_TRACE(bh, "zeroed end of block");
3399
3400 err = 0;
3401 if (ext4_should_journal_data(inode)) {
3402 err = ext4_handle_dirty_metadata(handle, inode, bh);
0713ed0c 3403 } else {
d863dc36 3404 mark_buffer_dirty(bh);
0713ed0c
LC
3405 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3406 err = ext4_jbd2_file_inode(handle, inode);
3407 }
d863dc36
LC
3408
3409unlock:
3410 unlock_page(page);
3411 page_cache_release(page);
3412 return err;
3413}
3414
a87dd18c
LC
3415int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3416 loff_t lstart, loff_t length)
3417{
3418 struct super_block *sb = inode->i_sb;
3419 struct address_space *mapping = inode->i_mapping;
3420 unsigned partial = lstart & (sb->s_blocksize - 1);
3421 ext4_fsblk_t start, end;
3422 loff_t byte_end = (lstart + length - 1);
3423 int err = 0;
3424
3425 start = lstart >> sb->s_blocksize_bits;
3426 end = byte_end >> sb->s_blocksize_bits;
3427
3428 /* Handle partial zero within the single block */
3429 if (start == end) {
3430 err = ext4_block_zero_page_range(handle, mapping,
3431 lstart, length);
3432 return err;
3433 }
3434 /* Handle partial zero out on the start of the range */
3435 if (partial) {
3436 err = ext4_block_zero_page_range(handle, mapping,
3437 lstart, sb->s_blocksize);
3438 if (err)
3439 return err;
3440 }
3441 /* Handle partial zero out on the end of the range */
3442 partial = byte_end & (sb->s_blocksize - 1);
3443 if (partial != sb->s_blocksize - 1)
3444 err = ext4_block_zero_page_range(handle, mapping,
3445 byte_end - partial,
3446 partial + 1);
3447 return err;
3448}
3449
91ef4caf
DG
3450int ext4_can_truncate(struct inode *inode)
3451{
91ef4caf
DG
3452 if (S_ISREG(inode->i_mode))
3453 return 1;
3454 if (S_ISDIR(inode->i_mode))
3455 return 1;
3456 if (S_ISLNK(inode->i_mode))
3457 return !ext4_inode_is_fast_symlink(inode);
3458 return 0;
3459}
3460
a4bb6b64
AH
3461/*
3462 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3463 * associated with the given offset and length
3464 *
3465 * @inode: File inode
3466 * @offset: The offset where the hole will begin
3467 * @len: The length of the hole
3468 *
4907cb7b 3469 * Returns: 0 on success or negative on failure
a4bb6b64
AH
3470 */
3471
3472int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3473{
496ad9aa 3474 struct inode *inode = file_inode(file);
26a4c0c6
TT
3475 struct super_block *sb = inode->i_sb;
3476 ext4_lblk_t first_block, stop_block;
3477 struct address_space *mapping = inode->i_mapping;
a87dd18c 3478 loff_t first_block_offset, last_block_offset;
26a4c0c6
TT
3479 handle_t *handle;
3480 unsigned int credits;
3481 int ret = 0;
3482
a4bb6b64 3483 if (!S_ISREG(inode->i_mode))
73355192 3484 return -EOPNOTSUPP;
a4bb6b64 3485
26a4c0c6 3486 if (EXT4_SB(sb)->s_cluster_ratio > 1) {
bab08ab9 3487 /* TODO: Add support for bigalloc file systems */
73355192 3488 return -EOPNOTSUPP;
bab08ab9
TT
3489 }
3490
aaddea81
ZL
3491 trace_ext4_punch_hole(inode, offset, length);
3492
26a4c0c6
TT
3493 /*
3494 * Write out all dirty pages to avoid race conditions
3495 * Then release them.
3496 */
3497 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3498 ret = filemap_write_and_wait_range(mapping, offset,
3499 offset + length - 1);
3500 if (ret)
3501 return ret;
3502 }
3503
3504 mutex_lock(&inode->i_mutex);
3505 /* It's not possible punch hole on append only file */
3506 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
3507 ret = -EPERM;
3508 goto out_mutex;
3509 }
3510 if (IS_SWAPFILE(inode)) {
3511 ret = -ETXTBSY;
3512 goto out_mutex;
3513 }
3514
3515 /* No need to punch hole beyond i_size */
3516 if (offset >= inode->i_size)
3517 goto out_mutex;
3518
3519 /*
3520 * If the hole extends beyond i_size, set the hole
3521 * to end after the page that contains i_size
3522 */
3523 if (offset + length > inode->i_size) {
3524 length = inode->i_size +
3525 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3526 offset;
3527 }
3528
a87dd18c
LC
3529 first_block_offset = round_up(offset, sb->s_blocksize);
3530 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
26a4c0c6 3531
a87dd18c
LC
3532 /* Now release the pages and zero block aligned part of pages*/
3533 if (last_block_offset > first_block_offset)
3534 truncate_pagecache_range(inode, first_block_offset,
3535 last_block_offset);
26a4c0c6
TT
3536
3537 /* Wait all existing dio workers, newcomers will block on i_mutex */
3538 ext4_inode_block_unlocked_dio(inode);
3539 ret = ext4_flush_unwritten_io(inode);
3540 if (ret)
3541 goto out_dio;
3542 inode_dio_wait(inode);
3543
3544 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3545 credits = ext4_writepage_trans_blocks(inode);
3546 else
3547 credits = ext4_blocks_for_truncate(inode);
3548 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3549 if (IS_ERR(handle)) {
3550 ret = PTR_ERR(handle);
3551 ext4_std_error(sb, ret);
3552 goto out_dio;
3553 }
3554
a87dd18c
LC
3555 ret = ext4_zero_partial_blocks(handle, inode, offset,
3556 length);
3557 if (ret)
3558 goto out_stop;
26a4c0c6
TT
3559
3560 first_block = (offset + sb->s_blocksize - 1) >>
3561 EXT4_BLOCK_SIZE_BITS(sb);
3562 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3563
3564 /* If there are no blocks to remove, return now */
3565 if (first_block >= stop_block)
3566 goto out_stop;
3567
3568 down_write(&EXT4_I(inode)->i_data_sem);
3569 ext4_discard_preallocations(inode);
3570
3571 ret = ext4_es_remove_extent(inode, first_block,
3572 stop_block - first_block);
3573 if (ret) {
3574 up_write(&EXT4_I(inode)->i_data_sem);
3575 goto out_stop;
3576 }
3577
3578 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3579 ret = ext4_ext_remove_space(inode, first_block,
3580 stop_block - 1);
3581 else
3582 ret = ext4_free_hole_blocks(handle, inode, first_block,
3583 stop_block);
3584
3585 ext4_discard_preallocations(inode);
819c4920 3586 up_write(&EXT4_I(inode)->i_data_sem);
26a4c0c6
TT
3587 if (IS_SYNC(inode))
3588 ext4_handle_sync(handle);
26a4c0c6
TT
3589 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3590 ext4_mark_inode_dirty(handle, inode);
3591out_stop:
3592 ext4_journal_stop(handle);
3593out_dio:
3594 ext4_inode_resume_unlocked_dio(inode);
3595out_mutex:
3596 mutex_unlock(&inode->i_mutex);
3597 return ret;
a4bb6b64
AH
3598}
3599
ac27a0ec 3600/*
617ba13b 3601 * ext4_truncate()
ac27a0ec 3602 *
617ba13b
MC
3603 * We block out ext4_get_block() block instantiations across the entire
3604 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3605 * simultaneously on behalf of the same inode.
3606 *
42b2aa86 3607 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3608 * is one core, guiding principle: the file's tree must always be consistent on
3609 * disk. We must be able to restart the truncate after a crash.
3610 *
3611 * The file's tree may be transiently inconsistent in memory (although it
3612 * probably isn't), but whenever we close off and commit a journal transaction,
3613 * the contents of (the filesystem + the journal) must be consistent and
3614 * restartable. It's pretty simple, really: bottom up, right to left (although
3615 * left-to-right works OK too).
3616 *
3617 * Note that at recovery time, journal replay occurs *before* the restart of
3618 * truncate against the orphan inode list.
3619 *
3620 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3621 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3622 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3623 * ext4_truncate() to have another go. So there will be instantiated blocks
3624 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3625 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3626 * ext4_truncate() run will find them and release them.
ac27a0ec 3627 */
617ba13b 3628void ext4_truncate(struct inode *inode)
ac27a0ec 3629{
819c4920
TT
3630 struct ext4_inode_info *ei = EXT4_I(inode);
3631 unsigned int credits;
3632 handle_t *handle;
3633 struct address_space *mapping = inode->i_mapping;
819c4920 3634
19b5ef61
TT
3635 /*
3636 * There is a possibility that we're either freeing the inode
3637 * or it completely new indode. In those cases we might not
3638 * have i_mutex locked because it's not necessary.
3639 */
3640 if (!(inode->i_state & (I_NEW|I_FREEING)))
3641 WARN_ON(!mutex_is_locked(&inode->i_mutex));
0562e0ba
JZ
3642 trace_ext4_truncate_enter(inode);
3643
91ef4caf 3644 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3645 return;
3646
12e9b892 3647 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3648
5534fb5b 3649 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3650 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3651
aef1c851
TM
3652 if (ext4_has_inline_data(inode)) {
3653 int has_inline = 1;
3654
3655 ext4_inline_data_truncate(inode, &has_inline);
3656 if (has_inline)
3657 return;
3658 }
3659
819c4920
TT
3660 /*
3661 * finish any pending end_io work so we won't run the risk of
3662 * converting any truncated blocks to initialized later
3663 */
3664 ext4_flush_unwritten_io(inode);
3665
3666 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3667 credits = ext4_writepage_trans_blocks(inode);
3668 else
3669 credits = ext4_blocks_for_truncate(inode);
3670
3671 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3672 if (IS_ERR(handle)) {
3673 ext4_std_error(inode->i_sb, PTR_ERR(handle));
3674 return;
3675 }
3676
eb3544c6
LC
3677 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3678 ext4_block_truncate_page(handle, mapping, inode->i_size);
819c4920
TT
3679
3680 /*
3681 * We add the inode to the orphan list, so that if this
3682 * truncate spans multiple transactions, and we crash, we will
3683 * resume the truncate when the filesystem recovers. It also
3684 * marks the inode dirty, to catch the new size.
3685 *
3686 * Implication: the file must always be in a sane, consistent
3687 * truncatable state while each transaction commits.
3688 */
3689 if (ext4_orphan_add(handle, inode))
3690 goto out_stop;
3691
3692 down_write(&EXT4_I(inode)->i_data_sem);
3693
3694 ext4_discard_preallocations(inode);
3695
ff9893dc 3696 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
819c4920 3697 ext4_ext_truncate(handle, inode);
ff9893dc 3698 else
819c4920
TT
3699 ext4_ind_truncate(handle, inode);
3700
3701 up_write(&ei->i_data_sem);
3702
3703 if (IS_SYNC(inode))
3704 ext4_handle_sync(handle);
3705
3706out_stop:
3707 /*
3708 * If this was a simple ftruncate() and the file will remain alive,
3709 * then we need to clear up the orphan record which we created above.
3710 * However, if this was a real unlink then we were called by
3711 * ext4_delete_inode(), and we allow that function to clean up the
3712 * orphan info for us.
3713 */
3714 if (inode->i_nlink)
3715 ext4_orphan_del(handle, inode);
3716
3717 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3718 ext4_mark_inode_dirty(handle, inode);
3719 ext4_journal_stop(handle);
ac27a0ec 3720
0562e0ba 3721 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3722}
3723
ac27a0ec 3724/*
617ba13b 3725 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3726 * underlying buffer_head on success. If 'in_mem' is true, we have all
3727 * data in memory that is needed to recreate the on-disk version of this
3728 * inode.
3729 */
617ba13b
MC
3730static int __ext4_get_inode_loc(struct inode *inode,
3731 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3732{
240799cd
TT
3733 struct ext4_group_desc *gdp;
3734 struct buffer_head *bh;
3735 struct super_block *sb = inode->i_sb;
3736 ext4_fsblk_t block;
3737 int inodes_per_block, inode_offset;
3738
3a06d778 3739 iloc->bh = NULL;
240799cd
TT
3740 if (!ext4_valid_inum(sb, inode->i_ino))
3741 return -EIO;
ac27a0ec 3742
240799cd
TT
3743 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3744 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3745 if (!gdp)
ac27a0ec
DK
3746 return -EIO;
3747
240799cd
TT
3748 /*
3749 * Figure out the offset within the block group inode table
3750 */
00d09882 3751 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3752 inode_offset = ((inode->i_ino - 1) %
3753 EXT4_INODES_PER_GROUP(sb));
3754 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3755 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3756
3757 bh = sb_getblk(sb, block);
aebf0243 3758 if (unlikely(!bh))
860d21e2 3759 return -ENOMEM;
ac27a0ec
DK
3760 if (!buffer_uptodate(bh)) {
3761 lock_buffer(bh);
9c83a923
HK
3762
3763 /*
3764 * If the buffer has the write error flag, we have failed
3765 * to write out another inode in the same block. In this
3766 * case, we don't have to read the block because we may
3767 * read the old inode data successfully.
3768 */
3769 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3770 set_buffer_uptodate(bh);
3771
ac27a0ec
DK
3772 if (buffer_uptodate(bh)) {
3773 /* someone brought it uptodate while we waited */
3774 unlock_buffer(bh);
3775 goto has_buffer;
3776 }
3777
3778 /*
3779 * If we have all information of the inode in memory and this
3780 * is the only valid inode in the block, we need not read the
3781 * block.
3782 */
3783 if (in_mem) {
3784 struct buffer_head *bitmap_bh;
240799cd 3785 int i, start;
ac27a0ec 3786
240799cd 3787 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3788
240799cd
TT
3789 /* Is the inode bitmap in cache? */
3790 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
aebf0243 3791 if (unlikely(!bitmap_bh))
ac27a0ec
DK
3792 goto make_io;
3793
3794 /*
3795 * If the inode bitmap isn't in cache then the
3796 * optimisation may end up performing two reads instead
3797 * of one, so skip it.
3798 */
3799 if (!buffer_uptodate(bitmap_bh)) {
3800 brelse(bitmap_bh);
3801 goto make_io;
3802 }
240799cd 3803 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3804 if (i == inode_offset)
3805 continue;
617ba13b 3806 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3807 break;
3808 }
3809 brelse(bitmap_bh);
240799cd 3810 if (i == start + inodes_per_block) {
ac27a0ec
DK
3811 /* all other inodes are free, so skip I/O */
3812 memset(bh->b_data, 0, bh->b_size);
3813 set_buffer_uptodate(bh);
3814 unlock_buffer(bh);
3815 goto has_buffer;
3816 }
3817 }
3818
3819make_io:
240799cd
TT
3820 /*
3821 * If we need to do any I/O, try to pre-readahead extra
3822 * blocks from the inode table.
3823 */
3824 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3825 ext4_fsblk_t b, end, table;
3826 unsigned num;
0d606e2c 3827 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
240799cd
TT
3828
3829 table = ext4_inode_table(sb, gdp);
b713a5ec 3830 /* s_inode_readahead_blks is always a power of 2 */
0d606e2c 3831 b = block & ~((ext4_fsblk_t) ra_blks - 1);
240799cd
TT
3832 if (table > b)
3833 b = table;
0d606e2c 3834 end = b + ra_blks;
240799cd 3835 num = EXT4_INODES_PER_GROUP(sb);
feb0ab32 3836 if (ext4_has_group_desc_csum(sb))
560671a0 3837 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3838 table += num / inodes_per_block;
3839 if (end > table)
3840 end = table;
3841 while (b <= end)
3842 sb_breadahead(sb, b++);
3843 }
3844
ac27a0ec
DK
3845 /*
3846 * There are other valid inodes in the buffer, this inode
3847 * has in-inode xattrs, or we don't have this inode in memory.
3848 * Read the block from disk.
3849 */
0562e0ba 3850 trace_ext4_load_inode(inode);
ac27a0ec
DK
3851 get_bh(bh);
3852 bh->b_end_io = end_buffer_read_sync;
65299a3b 3853 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3854 wait_on_buffer(bh);
3855 if (!buffer_uptodate(bh)) {
c398eda0
TT
3856 EXT4_ERROR_INODE_BLOCK(inode, block,
3857 "unable to read itable block");
ac27a0ec
DK
3858 brelse(bh);
3859 return -EIO;
3860 }
3861 }
3862has_buffer:
3863 iloc->bh = bh;
3864 return 0;
3865}
3866
617ba13b 3867int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3868{
3869 /* We have all inode data except xattrs in memory here. */
617ba13b 3870 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3871 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3872}
3873
617ba13b 3874void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3875{
617ba13b 3876 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3877
3878 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3879 if (flags & EXT4_SYNC_FL)
ac27a0ec 3880 inode->i_flags |= S_SYNC;
617ba13b 3881 if (flags & EXT4_APPEND_FL)
ac27a0ec 3882 inode->i_flags |= S_APPEND;
617ba13b 3883 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3884 inode->i_flags |= S_IMMUTABLE;
617ba13b 3885 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3886 inode->i_flags |= S_NOATIME;
617ba13b 3887 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3888 inode->i_flags |= S_DIRSYNC;
3889}
3890
ff9ddf7e
JK
3891/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3892void ext4_get_inode_flags(struct ext4_inode_info *ei)
3893{
84a8dce2
DM
3894 unsigned int vfs_fl;
3895 unsigned long old_fl, new_fl;
3896
3897 do {
3898 vfs_fl = ei->vfs_inode.i_flags;
3899 old_fl = ei->i_flags;
3900 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3901 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3902 EXT4_DIRSYNC_FL);
3903 if (vfs_fl & S_SYNC)
3904 new_fl |= EXT4_SYNC_FL;
3905 if (vfs_fl & S_APPEND)
3906 new_fl |= EXT4_APPEND_FL;
3907 if (vfs_fl & S_IMMUTABLE)
3908 new_fl |= EXT4_IMMUTABLE_FL;
3909 if (vfs_fl & S_NOATIME)
3910 new_fl |= EXT4_NOATIME_FL;
3911 if (vfs_fl & S_DIRSYNC)
3912 new_fl |= EXT4_DIRSYNC_FL;
3913 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3914}
de9a55b8 3915
0fc1b451 3916static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3917 struct ext4_inode_info *ei)
0fc1b451
AK
3918{
3919 blkcnt_t i_blocks ;
8180a562
AK
3920 struct inode *inode = &(ei->vfs_inode);
3921 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3922
3923 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3924 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3925 /* we are using combined 48 bit field */
3926 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3927 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3928 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3929 /* i_blocks represent file system block size */
3930 return i_blocks << (inode->i_blkbits - 9);
3931 } else {
3932 return i_blocks;
3933 }
0fc1b451
AK
3934 } else {
3935 return le32_to_cpu(raw_inode->i_blocks_lo);
3936 }
3937}
ff9ddf7e 3938
152a7b0a
TM
3939static inline void ext4_iget_extra_inode(struct inode *inode,
3940 struct ext4_inode *raw_inode,
3941 struct ext4_inode_info *ei)
3942{
3943 __le32 *magic = (void *)raw_inode +
3944 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
67cf5b09 3945 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
152a7b0a 3946 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
67cf5b09 3947 ext4_find_inline_data_nolock(inode);
f19d5870
TM
3948 } else
3949 EXT4_I(inode)->i_inline_off = 0;
152a7b0a
TM
3950}
3951
1d1fe1ee 3952struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3953{
617ba13b
MC
3954 struct ext4_iloc iloc;
3955 struct ext4_inode *raw_inode;
1d1fe1ee 3956 struct ext4_inode_info *ei;
1d1fe1ee 3957 struct inode *inode;
b436b9be 3958 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3959 long ret;
ac27a0ec 3960 int block;
08cefc7a
EB
3961 uid_t i_uid;
3962 gid_t i_gid;
ac27a0ec 3963
1d1fe1ee
DH
3964 inode = iget_locked(sb, ino);
3965 if (!inode)
3966 return ERR_PTR(-ENOMEM);
3967 if (!(inode->i_state & I_NEW))
3968 return inode;
3969
3970 ei = EXT4_I(inode);
7dc57615 3971 iloc.bh = NULL;
ac27a0ec 3972
1d1fe1ee
DH
3973 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3974 if (ret < 0)
ac27a0ec 3975 goto bad_inode;
617ba13b 3976 raw_inode = ext4_raw_inode(&iloc);
814525f4
DW
3977
3978 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3979 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3980 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3981 EXT4_INODE_SIZE(inode->i_sb)) {
3982 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3983 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3984 EXT4_INODE_SIZE(inode->i_sb));
3985 ret = -EIO;
3986 goto bad_inode;
3987 }
3988 } else
3989 ei->i_extra_isize = 0;
3990
3991 /* Precompute checksum seed for inode metadata */
3992 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3993 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3994 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3995 __u32 csum;
3996 __le32 inum = cpu_to_le32(inode->i_ino);
3997 __le32 gen = raw_inode->i_generation;
3998 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3999 sizeof(inum));
4000 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4001 sizeof(gen));
4002 }
4003
4004 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4005 EXT4_ERROR_INODE(inode, "checksum invalid");
4006 ret = -EIO;
4007 goto bad_inode;
4008 }
4009
ac27a0ec 4010 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
08cefc7a
EB
4011 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4012 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 4013 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4014 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4015 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
ac27a0ec 4016 }
08cefc7a
EB
4017 i_uid_write(inode, i_uid);
4018 i_gid_write(inode, i_gid);
bfe86848 4019 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 4020
353eb83c 4021 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
67cf5b09 4022 ei->i_inline_off = 0;
ac27a0ec
DK
4023 ei->i_dir_start_lookup = 0;
4024 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4025 /* We now have enough fields to check if the inode was active or not.
4026 * This is needed because nfsd might try to access dead inodes
4027 * the test is that same one that e2fsck uses
4028 * NeilBrown 1999oct15
4029 */
4030 if (inode->i_nlink == 0) {
393d1d1d
DTB
4031 if ((inode->i_mode == 0 ||
4032 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4033 ino != EXT4_BOOT_LOADER_INO) {
ac27a0ec 4034 /* this inode is deleted */
1d1fe1ee 4035 ret = -ESTALE;
ac27a0ec
DK
4036 goto bad_inode;
4037 }
4038 /* The only unlinked inodes we let through here have
4039 * valid i_mode and are being read by the orphan
4040 * recovery code: that's fine, we're about to complete
393d1d1d
DTB
4041 * the process of deleting those.
4042 * OR it is the EXT4_BOOT_LOADER_INO which is
4043 * not initialized on a new filesystem. */
ac27a0ec 4044 }
ac27a0ec 4045 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 4046 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 4047 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 4048 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
4049 ei->i_file_acl |=
4050 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 4051 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 4052 ei->i_disksize = inode->i_size;
a9e7f447
DM
4053#ifdef CONFIG_QUOTA
4054 ei->i_reserved_quota = 0;
4055#endif
ac27a0ec
DK
4056 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4057 ei->i_block_group = iloc.block_group;
a4912123 4058 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
4059 /*
4060 * NOTE! The in-memory inode i_data array is in little-endian order
4061 * even on big-endian machines: we do NOT byteswap the block numbers!
4062 */
617ba13b 4063 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
4064 ei->i_data[block] = raw_inode->i_block[block];
4065 INIT_LIST_HEAD(&ei->i_orphan);
4066
b436b9be
JK
4067 /*
4068 * Set transaction id's of transactions that have to be committed
4069 * to finish f[data]sync. We set them to currently running transaction
4070 * as we cannot be sure that the inode or some of its metadata isn't
4071 * part of the transaction - the inode could have been reclaimed and
4072 * now it is reread from disk.
4073 */
4074 if (journal) {
4075 transaction_t *transaction;
4076 tid_t tid;
4077
a931da6a 4078 read_lock(&journal->j_state_lock);
b436b9be
JK
4079 if (journal->j_running_transaction)
4080 transaction = journal->j_running_transaction;
4081 else
4082 transaction = journal->j_committing_transaction;
4083 if (transaction)
4084 tid = transaction->t_tid;
4085 else
4086 tid = journal->j_commit_sequence;
a931da6a 4087 read_unlock(&journal->j_state_lock);
b436b9be
JK
4088 ei->i_sync_tid = tid;
4089 ei->i_datasync_tid = tid;
4090 }
4091
0040d987 4092 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec
DK
4093 if (ei->i_extra_isize == 0) {
4094 /* The extra space is currently unused. Use it. */
617ba13b
MC
4095 ei->i_extra_isize = sizeof(struct ext4_inode) -
4096 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec 4097 } else {
152a7b0a 4098 ext4_iget_extra_inode(inode, raw_inode, ei);
ac27a0ec 4099 }
814525f4 4100 }
ac27a0ec 4101
ef7f3835
KS
4102 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4103 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4104 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4105 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4106
25ec56b5
JNC
4107 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4108 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4109 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4110 inode->i_version |=
4111 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4112 }
4113
c4b5a614 4114 ret = 0;
485c26ec 4115 if (ei->i_file_acl &&
1032988c 4116 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
4117 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4118 ei->i_file_acl);
485c26ec
TT
4119 ret = -EIO;
4120 goto bad_inode;
f19d5870
TM
4121 } else if (!ext4_has_inline_data(inode)) {
4122 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4123 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4124 (S_ISLNK(inode->i_mode) &&
4125 !ext4_inode_is_fast_symlink(inode))))
4126 /* Validate extent which is part of inode */
4127 ret = ext4_ext_check_inode(inode);
4128 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4129 (S_ISLNK(inode->i_mode) &&
4130 !ext4_inode_is_fast_symlink(inode))) {
4131 /* Validate block references which are part of inode */
4132 ret = ext4_ind_check_inode(inode);
4133 }
fe2c8191 4134 }
567f3e9a 4135 if (ret)
de9a55b8 4136 goto bad_inode;
7a262f7c 4137
ac27a0ec 4138 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
4139 inode->i_op = &ext4_file_inode_operations;
4140 inode->i_fop = &ext4_file_operations;
4141 ext4_set_aops(inode);
ac27a0ec 4142 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
4143 inode->i_op = &ext4_dir_inode_operations;
4144 inode->i_fop = &ext4_dir_operations;
ac27a0ec 4145 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 4146 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 4147 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
4148 nd_terminate_link(ei->i_data, inode->i_size,
4149 sizeof(ei->i_data) - 1);
4150 } else {
617ba13b
MC
4151 inode->i_op = &ext4_symlink_inode_operations;
4152 ext4_set_aops(inode);
ac27a0ec 4153 }
563bdd61
TT
4154 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4155 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 4156 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
4157 if (raw_inode->i_block[0])
4158 init_special_inode(inode, inode->i_mode,
4159 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4160 else
4161 init_special_inode(inode, inode->i_mode,
4162 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
393d1d1d
DTB
4163 } else if (ino == EXT4_BOOT_LOADER_INO) {
4164 make_bad_inode(inode);
563bdd61 4165 } else {
563bdd61 4166 ret = -EIO;
24676da4 4167 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 4168 goto bad_inode;
ac27a0ec 4169 }
af5bc92d 4170 brelse(iloc.bh);
617ba13b 4171 ext4_set_inode_flags(inode);
1d1fe1ee
DH
4172 unlock_new_inode(inode);
4173 return inode;
ac27a0ec
DK
4174
4175bad_inode:
567f3e9a 4176 brelse(iloc.bh);
1d1fe1ee
DH
4177 iget_failed(inode);
4178 return ERR_PTR(ret);
ac27a0ec
DK
4179}
4180
0fc1b451
AK
4181static int ext4_inode_blocks_set(handle_t *handle,
4182 struct ext4_inode *raw_inode,
4183 struct ext4_inode_info *ei)
4184{
4185 struct inode *inode = &(ei->vfs_inode);
4186 u64 i_blocks = inode->i_blocks;
4187 struct super_block *sb = inode->i_sb;
0fc1b451
AK
4188
4189 if (i_blocks <= ~0U) {
4190 /*
4907cb7b 4191 * i_blocks can be represented in a 32 bit variable
0fc1b451
AK
4192 * as multiple of 512 bytes
4193 */
8180a562 4194 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4195 raw_inode->i_blocks_high = 0;
84a8dce2 4196 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
4197 return 0;
4198 }
4199 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4200 return -EFBIG;
4201
4202 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
4203 /*
4204 * i_blocks can be represented in a 48 bit variable
4205 * as multiple of 512 bytes
4206 */
8180a562 4207 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 4208 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 4209 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 4210 } else {
84a8dce2 4211 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
4212 /* i_block is stored in file system block size */
4213 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4214 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4215 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 4216 }
f287a1a5 4217 return 0;
0fc1b451
AK
4218}
4219
ac27a0ec
DK
4220/*
4221 * Post the struct inode info into an on-disk inode location in the
4222 * buffer-cache. This gobbles the caller's reference to the
4223 * buffer_head in the inode location struct.
4224 *
4225 * The caller must have write access to iloc->bh.
4226 */
617ba13b 4227static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 4228 struct inode *inode,
830156c7 4229 struct ext4_iloc *iloc)
ac27a0ec 4230{
617ba13b
MC
4231 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4232 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
4233 struct buffer_head *bh = iloc->bh;
4234 int err = 0, rc, block;
b71fc079 4235 int need_datasync = 0;
08cefc7a
EB
4236 uid_t i_uid;
4237 gid_t i_gid;
ac27a0ec
DK
4238
4239 /* For fields not not tracking in the in-memory inode,
4240 * initialise them to zero for new inodes. */
19f5fb7a 4241 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 4242 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 4243
ff9ddf7e 4244 ext4_get_inode_flags(ei);
ac27a0ec 4245 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
08cefc7a
EB
4246 i_uid = i_uid_read(inode);
4247 i_gid = i_gid_read(inode);
af5bc92d 4248 if (!(test_opt(inode->i_sb, NO_UID32))) {
08cefc7a
EB
4249 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4250 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
ac27a0ec
DK
4251/*
4252 * Fix up interoperability with old kernels. Otherwise, old inodes get
4253 * re-used with the upper 16 bits of the uid/gid intact
4254 */
af5bc92d 4255 if (!ei->i_dtime) {
ac27a0ec 4256 raw_inode->i_uid_high =
08cefc7a 4257 cpu_to_le16(high_16_bits(i_uid));
ac27a0ec 4258 raw_inode->i_gid_high =
08cefc7a 4259 cpu_to_le16(high_16_bits(i_gid));
ac27a0ec
DK
4260 } else {
4261 raw_inode->i_uid_high = 0;
4262 raw_inode->i_gid_high = 0;
4263 }
4264 } else {
08cefc7a
EB
4265 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4266 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
ac27a0ec
DK
4267 raw_inode->i_uid_high = 0;
4268 raw_inode->i_gid_high = 0;
4269 }
4270 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
4271
4272 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4273 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4274 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4275 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4276
0fc1b451
AK
4277 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4278 goto out_brelse;
ac27a0ec 4279 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 4280 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
4281 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4282 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
4283 raw_inode->i_file_acl_high =
4284 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 4285 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
b71fc079
JK
4286 if (ei->i_disksize != ext4_isize(raw_inode)) {
4287 ext4_isize_set(raw_inode, ei->i_disksize);
4288 need_datasync = 1;
4289 }
a48380f7
AK
4290 if (ei->i_disksize > 0x7fffffffULL) {
4291 struct super_block *sb = inode->i_sb;
4292 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4293 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4294 EXT4_SB(sb)->s_es->s_rev_level ==
4295 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4296 /* If this is the first large file
4297 * created, add a flag to the superblock.
4298 */
4299 err = ext4_journal_get_write_access(handle,
4300 EXT4_SB(sb)->s_sbh);
4301 if (err)
4302 goto out_brelse;
4303 ext4_update_dynamic_rev(sb);
4304 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 4305 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
0390131b 4306 ext4_handle_sync(handle);
b50924c2 4307 err = ext4_handle_dirty_super(handle, sb);
ac27a0ec
DK
4308 }
4309 }
4310 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4311 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4312 if (old_valid_dev(inode->i_rdev)) {
4313 raw_inode->i_block[0] =
4314 cpu_to_le32(old_encode_dev(inode->i_rdev));
4315 raw_inode->i_block[1] = 0;
4316 } else {
4317 raw_inode->i_block[0] = 0;
4318 raw_inode->i_block[1] =
4319 cpu_to_le32(new_encode_dev(inode->i_rdev));
4320 raw_inode->i_block[2] = 0;
4321 }
f19d5870 4322 } else if (!ext4_has_inline_data(inode)) {
de9a55b8
TT
4323 for (block = 0; block < EXT4_N_BLOCKS; block++)
4324 raw_inode->i_block[block] = ei->i_data[block];
f19d5870 4325 }
ac27a0ec 4326
25ec56b5
JNC
4327 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4328 if (ei->i_extra_isize) {
4329 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4330 raw_inode->i_version_hi =
4331 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 4332 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
4333 }
4334
814525f4
DW
4335 ext4_inode_csum_set(inode, raw_inode, ei);
4336
830156c7 4337 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 4338 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
4339 if (!err)
4340 err = rc;
19f5fb7a 4341 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 4342
b71fc079 4343 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
ac27a0ec 4344out_brelse:
af5bc92d 4345 brelse(bh);
617ba13b 4346 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4347 return err;
4348}
4349
4350/*
617ba13b 4351 * ext4_write_inode()
ac27a0ec
DK
4352 *
4353 * We are called from a few places:
4354 *
4355 * - Within generic_file_write() for O_SYNC files.
4356 * Here, there will be no transaction running. We wait for any running
4907cb7b 4357 * transaction to commit.
ac27a0ec
DK
4358 *
4359 * - Within sys_sync(), kupdate and such.
4360 * We wait on commit, if tol to.
4361 *
4362 * - Within prune_icache() (PF_MEMALLOC == true)
4363 * Here we simply return. We can't afford to block kswapd on the
4364 * journal commit.
4365 *
4366 * In all cases it is actually safe for us to return without doing anything,
4367 * because the inode has been copied into a raw inode buffer in
617ba13b 4368 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
4369 * knfsd.
4370 *
4371 * Note that we are absolutely dependent upon all inode dirtiers doing the
4372 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4373 * which we are interested.
4374 *
4375 * It would be a bug for them to not do this. The code:
4376 *
4377 * mark_inode_dirty(inode)
4378 * stuff();
4379 * inode->i_size = expr;
4380 *
4381 * is in error because a kswapd-driven write_inode() could occur while
4382 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4383 * will no longer be on the superblock's dirty inode list.
4384 */
a9185b41 4385int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4386{
91ac6f43
FM
4387 int err;
4388
ac27a0ec
DK
4389 if (current->flags & PF_MEMALLOC)
4390 return 0;
4391
91ac6f43
FM
4392 if (EXT4_SB(inode->i_sb)->s_journal) {
4393 if (ext4_journal_current_handle()) {
4394 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4395 dump_stack();
4396 return -EIO;
4397 }
ac27a0ec 4398
a9185b41 4399 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4400 return 0;
4401
4402 err = ext4_force_commit(inode->i_sb);
4403 } else {
4404 struct ext4_iloc iloc;
ac27a0ec 4405
8b472d73 4406 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4407 if (err)
4408 return err;
a9185b41 4409 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4410 sync_dirty_buffer(iloc.bh);
4411 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4412 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4413 "IO error syncing inode");
830156c7
FM
4414 err = -EIO;
4415 }
fd2dd9fb 4416 brelse(iloc.bh);
91ac6f43
FM
4417 }
4418 return err;
ac27a0ec
DK
4419}
4420
53e87268
JK
4421/*
4422 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4423 * buffers that are attached to a page stradding i_size and are undergoing
4424 * commit. In that case we have to wait for commit to finish and try again.
4425 */
4426static void ext4_wait_for_tail_page_commit(struct inode *inode)
4427{
4428 struct page *page;
4429 unsigned offset;
4430 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4431 tid_t commit_tid = 0;
4432 int ret;
4433
4434 offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4435 /*
4436 * All buffers in the last page remain valid? Then there's nothing to
4437 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4438 * blocksize case
4439 */
4440 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4441 return;
4442 while (1) {
4443 page = find_lock_page(inode->i_mapping,
4444 inode->i_size >> PAGE_CACHE_SHIFT);
4445 if (!page)
4446 return;
ca99fdd2
LC
4447 ret = __ext4_journalled_invalidatepage(page, offset,
4448 PAGE_CACHE_SIZE - offset);
53e87268
JK
4449 unlock_page(page);
4450 page_cache_release(page);
4451 if (ret != -EBUSY)
4452 return;
4453 commit_tid = 0;
4454 read_lock(&journal->j_state_lock);
4455 if (journal->j_committing_transaction)
4456 commit_tid = journal->j_committing_transaction->t_tid;
4457 read_unlock(&journal->j_state_lock);
4458 if (commit_tid)
4459 jbd2_log_wait_commit(journal, commit_tid);
4460 }
4461}
4462
ac27a0ec 4463/*
617ba13b 4464 * ext4_setattr()
ac27a0ec
DK
4465 *
4466 * Called from notify_change.
4467 *
4468 * We want to trap VFS attempts to truncate the file as soon as
4469 * possible. In particular, we want to make sure that when the VFS
4470 * shrinks i_size, we put the inode on the orphan list and modify
4471 * i_disksize immediately, so that during the subsequent flushing of
4472 * dirty pages and freeing of disk blocks, we can guarantee that any
4473 * commit will leave the blocks being flushed in an unused state on
4474 * disk. (On recovery, the inode will get truncated and the blocks will
4475 * be freed, so we have a strong guarantee that no future commit will
4476 * leave these blocks visible to the user.)
4477 *
678aaf48
JK
4478 * Another thing we have to assure is that if we are in ordered mode
4479 * and inode is still attached to the committing transaction, we must
4480 * we start writeout of all the dirty pages which are being truncated.
4481 * This way we are sure that all the data written in the previous
4482 * transaction are already on disk (truncate waits for pages under
4483 * writeback).
4484 *
4485 * Called with inode->i_mutex down.
ac27a0ec 4486 */
617ba13b 4487int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4488{
4489 struct inode *inode = dentry->d_inode;
4490 int error, rc = 0;
3d287de3 4491 int orphan = 0;
ac27a0ec
DK
4492 const unsigned int ia_valid = attr->ia_valid;
4493
4494 error = inode_change_ok(inode, attr);
4495 if (error)
4496 return error;
4497
12755627 4498 if (is_quota_modification(inode, attr))
871a2931 4499 dquot_initialize(inode);
08cefc7a
EB
4500 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4501 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
ac27a0ec
DK
4502 handle_t *handle;
4503
4504 /* (user+group)*(old+new) structure, inode write (sb,
4505 * inode block, ? - but truncate inode update has it) */
9924a92a
TT
4506 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4507 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4508 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
ac27a0ec
DK
4509 if (IS_ERR(handle)) {
4510 error = PTR_ERR(handle);
4511 goto err_out;
4512 }
b43fa828 4513 error = dquot_transfer(inode, attr);
ac27a0ec 4514 if (error) {
617ba13b 4515 ext4_journal_stop(handle);
ac27a0ec
DK
4516 return error;
4517 }
4518 /* Update corresponding info in inode so that everything is in
4519 * one transaction */
4520 if (attr->ia_valid & ATTR_UID)
4521 inode->i_uid = attr->ia_uid;
4522 if (attr->ia_valid & ATTR_GID)
4523 inode->i_gid = attr->ia_gid;
617ba13b
MC
4524 error = ext4_mark_inode_dirty(handle, inode);
4525 ext4_journal_stop(handle);
ac27a0ec
DK
4526 }
4527
e2b46574 4528 if (attr->ia_valid & ATTR_SIZE) {
562c72aa 4529
12e9b892 4530 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4531 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4532
0c095c7f
TT
4533 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4534 return -EFBIG;
e2b46574
ES
4535 }
4536 }
4537
ac27a0ec 4538 if (S_ISREG(inode->i_mode) &&
c8d46e41 4539 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4540 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4541 handle_t *handle;
4542
9924a92a 4543 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
ac27a0ec
DK
4544 if (IS_ERR(handle)) {
4545 error = PTR_ERR(handle);
4546 goto err_out;
4547 }
3d287de3
DM
4548 if (ext4_handle_valid(handle)) {
4549 error = ext4_orphan_add(handle, inode);
4550 orphan = 1;
4551 }
617ba13b
MC
4552 EXT4_I(inode)->i_disksize = attr->ia_size;
4553 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4554 if (!error)
4555 error = rc;
617ba13b 4556 ext4_journal_stop(handle);
678aaf48
JK
4557
4558 if (ext4_should_order_data(inode)) {
4559 error = ext4_begin_ordered_truncate(inode,
4560 attr->ia_size);
4561 if (error) {
4562 /* Do as much error cleanup as possible */
9924a92a
TT
4563 handle = ext4_journal_start(inode,
4564 EXT4_HT_INODE, 3);
678aaf48
JK
4565 if (IS_ERR(handle)) {
4566 ext4_orphan_del(NULL, inode);
4567 goto err_out;
4568 }
4569 ext4_orphan_del(handle, inode);
3d287de3 4570 orphan = 0;
678aaf48
JK
4571 ext4_journal_stop(handle);
4572 goto err_out;
4573 }
4574 }
ac27a0ec
DK
4575 }
4576
072bd7ea 4577 if (attr->ia_valid & ATTR_SIZE) {
53e87268
JK
4578 if (attr->ia_size != inode->i_size) {
4579 loff_t oldsize = inode->i_size;
4580
4581 i_size_write(inode, attr->ia_size);
4582 /*
4583 * Blocks are going to be removed from the inode. Wait
4584 * for dio in flight. Temporarily disable
4585 * dioread_nolock to prevent livelock.
4586 */
1b65007e 4587 if (orphan) {
53e87268
JK
4588 if (!ext4_should_journal_data(inode)) {
4589 ext4_inode_block_unlocked_dio(inode);
4590 inode_dio_wait(inode);
4591 ext4_inode_resume_unlocked_dio(inode);
4592 } else
4593 ext4_wait_for_tail_page_commit(inode);
1b65007e 4594 }
53e87268
JK
4595 /*
4596 * Truncate pagecache after we've waited for commit
4597 * in data=journal mode to make pages freeable.
4598 */
4599 truncate_pagecache(inode, oldsize, inode->i_size);
1c9114f9 4600 }
afcff5d8 4601 ext4_truncate(inode);
072bd7ea 4602 }
ac27a0ec 4603
1025774c
CH
4604 if (!rc) {
4605 setattr_copy(inode, attr);
4606 mark_inode_dirty(inode);
4607 }
4608
4609 /*
4610 * If the call to ext4_truncate failed to get a transaction handle at
4611 * all, we need to clean up the in-core orphan list manually.
4612 */
3d287de3 4613 if (orphan && inode->i_nlink)
617ba13b 4614 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4615
4616 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4617 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4618
4619err_out:
617ba13b 4620 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4621 if (!error)
4622 error = rc;
4623 return error;
4624}
4625
3e3398a0
MC
4626int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4627 struct kstat *stat)
4628{
4629 struct inode *inode;
8af8eecc 4630 unsigned long long delalloc_blocks;
3e3398a0
MC
4631
4632 inode = dentry->d_inode;
4633 generic_fillattr(inode, stat);
4634
4635 /*
4636 * We can't update i_blocks if the block allocation is delayed
4637 * otherwise in the case of system crash before the real block
4638 * allocation is done, we will have i_blocks inconsistent with
4639 * on-disk file blocks.
4640 * We always keep i_blocks updated together with real
4641 * allocation. But to not confuse with user, stat
4642 * will return the blocks that include the delayed allocation
4643 * blocks for this file.
4644 */
96607551
TM
4645 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4646 EXT4_I(inode)->i_reserved_data_blocks);
3e3398a0 4647
8af8eecc 4648 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits-9);
3e3398a0
MC
4649 return 0;
4650}
ac27a0ec 4651
fffb2739
JK
4652static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4653 int pextents)
a02908f1 4654{
12e9b892 4655 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
fffb2739
JK
4656 return ext4_ind_trans_blocks(inode, lblocks);
4657 return ext4_ext_index_trans_blocks(inode, pextents);
a02908f1 4658}
ac51d837 4659
ac27a0ec 4660/*
a02908f1
MC
4661 * Account for index blocks, block groups bitmaps and block group
4662 * descriptor blocks if modify datablocks and index blocks
4663 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4664 *
a02908f1 4665 * If datablocks are discontiguous, they are possible to spread over
4907cb7b 4666 * different block groups too. If they are contiguous, with flexbg,
a02908f1 4667 * they could still across block group boundary.
ac27a0ec 4668 *
a02908f1
MC
4669 * Also account for superblock, inode, quota and xattr blocks
4670 */
fffb2739
JK
4671static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4672 int pextents)
a02908f1 4673{
8df9675f
TT
4674 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4675 int gdpblocks;
a02908f1
MC
4676 int idxblocks;
4677 int ret = 0;
4678
4679 /*
fffb2739
JK
4680 * How many index blocks need to touch to map @lblocks logical blocks
4681 * to @pextents physical extents?
a02908f1 4682 */
fffb2739 4683 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
a02908f1
MC
4684
4685 ret = idxblocks;
4686
4687 /*
4688 * Now let's see how many group bitmaps and group descriptors need
4689 * to account
4690 */
fffb2739 4691 groups = idxblocks + pextents;
a02908f1 4692 gdpblocks = groups;
8df9675f
TT
4693 if (groups > ngroups)
4694 groups = ngroups;
a02908f1
MC
4695 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4696 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4697
4698 /* bitmaps and block group descriptor blocks */
4699 ret += groups + gdpblocks;
4700
4701 /* Blocks for super block, inode, quota and xattr blocks */
4702 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4703
4704 return ret;
4705}
4706
4707/*
25985edc 4708 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4709 * the modification of a single pages into a single transaction,
4710 * which may include multiple chunks of block allocations.
ac27a0ec 4711 *
525f4ed8 4712 * This could be called via ext4_write_begin()
ac27a0ec 4713 *
525f4ed8 4714 * We need to consider the worse case, when
a02908f1 4715 * one new block per extent.
ac27a0ec 4716 */
a86c6181 4717int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4718{
617ba13b 4719 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4720 int ret;
4721
fffb2739 4722 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
a86c6181 4723
a02908f1 4724 /* Account for data blocks for journalled mode */
617ba13b 4725 if (ext4_should_journal_data(inode))
a02908f1 4726 ret += bpp;
ac27a0ec
DK
4727 return ret;
4728}
f3bd1f3f
MC
4729
4730/*
4731 * Calculate the journal credits for a chunk of data modification.
4732 *
4733 * This is called from DIO, fallocate or whoever calling
79e83036 4734 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4735 *
4736 * journal buffers for data blocks are not included here, as DIO
4737 * and fallocate do no need to journal data buffers.
4738 */
4739int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4740{
4741 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4742}
4743
ac27a0ec 4744/*
617ba13b 4745 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4746 * Give this, we know that the caller already has write access to iloc->bh.
4747 */
617ba13b 4748int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4749 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4750{
4751 int err = 0;
4752
c64db50e 4753 if (IS_I_VERSION(inode))
25ec56b5
JNC
4754 inode_inc_iversion(inode);
4755
ac27a0ec
DK
4756 /* the do_update_inode consumes one bh->b_count */
4757 get_bh(iloc->bh);
4758
dab291af 4759 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4760 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4761 put_bh(iloc->bh);
4762 return err;
4763}
4764
4765/*
4766 * On success, We end up with an outstanding reference count against
4767 * iloc->bh. This _must_ be cleaned up later.
4768 */
4769
4770int
617ba13b
MC
4771ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4772 struct ext4_iloc *iloc)
ac27a0ec 4773{
0390131b
FM
4774 int err;
4775
4776 err = ext4_get_inode_loc(inode, iloc);
4777 if (!err) {
4778 BUFFER_TRACE(iloc->bh, "get_write_access");
4779 err = ext4_journal_get_write_access(handle, iloc->bh);
4780 if (err) {
4781 brelse(iloc->bh);
4782 iloc->bh = NULL;
ac27a0ec
DK
4783 }
4784 }
617ba13b 4785 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4786 return err;
4787}
4788
6dd4ee7c
KS
4789/*
4790 * Expand an inode by new_extra_isize bytes.
4791 * Returns 0 on success or negative error number on failure.
4792 */
1d03ec98
AK
4793static int ext4_expand_extra_isize(struct inode *inode,
4794 unsigned int new_extra_isize,
4795 struct ext4_iloc iloc,
4796 handle_t *handle)
6dd4ee7c
KS
4797{
4798 struct ext4_inode *raw_inode;
4799 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4800
4801 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4802 return 0;
4803
4804 raw_inode = ext4_raw_inode(&iloc);
4805
4806 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4807
4808 /* No extended attributes present */
19f5fb7a
TT
4809 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4810 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4811 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4812 new_extra_isize);
4813 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4814 return 0;
4815 }
4816
4817 /* try to expand with EAs present */
4818 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4819 raw_inode, handle);
4820}
4821
ac27a0ec
DK
4822/*
4823 * What we do here is to mark the in-core inode as clean with respect to inode
4824 * dirtiness (it may still be data-dirty).
4825 * This means that the in-core inode may be reaped by prune_icache
4826 * without having to perform any I/O. This is a very good thing,
4827 * because *any* task may call prune_icache - even ones which
4828 * have a transaction open against a different journal.
4829 *
4830 * Is this cheating? Not really. Sure, we haven't written the
4831 * inode out, but prune_icache isn't a user-visible syncing function.
4832 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4833 * we start and wait on commits.
ac27a0ec 4834 */
617ba13b 4835int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4836{
617ba13b 4837 struct ext4_iloc iloc;
6dd4ee7c
KS
4838 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4839 static unsigned int mnt_count;
4840 int err, ret;
ac27a0ec
DK
4841
4842 might_sleep();
7ff9c073 4843 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4844 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4845 if (ext4_handle_valid(handle) &&
4846 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4847 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4848 /*
4849 * We need extra buffer credits since we may write into EA block
4850 * with this same handle. If journal_extend fails, then it will
4851 * only result in a minor loss of functionality for that inode.
4852 * If this is felt to be critical, then e2fsck should be run to
4853 * force a large enough s_min_extra_isize.
4854 */
4855 if ((jbd2_journal_extend(handle,
4856 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4857 ret = ext4_expand_extra_isize(inode,
4858 sbi->s_want_extra_isize,
4859 iloc, handle);
4860 if (ret) {
19f5fb7a
TT
4861 ext4_set_inode_state(inode,
4862 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4863 if (mnt_count !=
4864 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4865 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4866 "Unable to expand inode %lu. Delete"
4867 " some EAs or run e2fsck.",
4868 inode->i_ino);
c1bddad9
AK
4869 mnt_count =
4870 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4871 }
4872 }
4873 }
4874 }
ac27a0ec 4875 if (!err)
617ba13b 4876 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4877 return err;
4878}
4879
4880/*
617ba13b 4881 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4882 *
4883 * We're really interested in the case where a file is being extended.
4884 * i_size has been changed by generic_commit_write() and we thus need
4885 * to include the updated inode in the current transaction.
4886 *
5dd4056d 4887 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4888 * are allocated to the file.
4889 *
4890 * If the inode is marked synchronous, we don't honour that here - doing
4891 * so would cause a commit on atime updates, which we don't bother doing.
4892 * We handle synchronous inodes at the highest possible level.
4893 */
aa385729 4894void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4895{
ac27a0ec
DK
4896 handle_t *handle;
4897
9924a92a 4898 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
ac27a0ec
DK
4899 if (IS_ERR(handle))
4900 goto out;
f3dc272f 4901
f3dc272f
CW
4902 ext4_mark_inode_dirty(handle, inode);
4903
617ba13b 4904 ext4_journal_stop(handle);
ac27a0ec
DK
4905out:
4906 return;
4907}
4908
4909#if 0
4910/*
4911 * Bind an inode's backing buffer_head into this transaction, to prevent
4912 * it from being flushed to disk early. Unlike
617ba13b 4913 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4914 * returns no iloc structure, so the caller needs to repeat the iloc
4915 * lookup to mark the inode dirty later.
4916 */
617ba13b 4917static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4918{
617ba13b 4919 struct ext4_iloc iloc;
ac27a0ec
DK
4920
4921 int err = 0;
4922 if (handle) {
617ba13b 4923 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4924 if (!err) {
4925 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4926 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4927 if (!err)
0390131b 4928 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4929 NULL,
0390131b 4930 iloc.bh);
ac27a0ec
DK
4931 brelse(iloc.bh);
4932 }
4933 }
617ba13b 4934 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4935 return err;
4936}
4937#endif
4938
617ba13b 4939int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4940{
4941 journal_t *journal;
4942 handle_t *handle;
4943 int err;
4944
4945 /*
4946 * We have to be very careful here: changing a data block's
4947 * journaling status dynamically is dangerous. If we write a
4948 * data block to the journal, change the status and then delete
4949 * that block, we risk forgetting to revoke the old log record
4950 * from the journal and so a subsequent replay can corrupt data.
4951 * So, first we make sure that the journal is empty and that
4952 * nobody is changing anything.
4953 */
4954
617ba13b 4955 journal = EXT4_JOURNAL(inode);
0390131b
FM
4956 if (!journal)
4957 return 0;
d699594d 4958 if (is_journal_aborted(journal))
ac27a0ec 4959 return -EROFS;
2aff57b0
YY
4960 /* We have to allocate physical blocks for delalloc blocks
4961 * before flushing journal. otherwise delalloc blocks can not
4962 * be allocated any more. even more truncate on delalloc blocks
4963 * could trigger BUG by flushing delalloc blocks in journal.
4964 * There is no delalloc block in non-journal data mode.
4965 */
4966 if (val && test_opt(inode->i_sb, DELALLOC)) {
4967 err = ext4_alloc_da_blocks(inode);
4968 if (err < 0)
4969 return err;
4970 }
ac27a0ec 4971
17335dcc
DM
4972 /* Wait for all existing dio workers */
4973 ext4_inode_block_unlocked_dio(inode);
4974 inode_dio_wait(inode);
4975
dab291af 4976 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4977
4978 /*
4979 * OK, there are no updates running now, and all cached data is
4980 * synced to disk. We are now in a completely consistent state
4981 * which doesn't have anything in the journal, and we know that
4982 * no filesystem updates are running, so it is safe to modify
4983 * the inode's in-core data-journaling state flag now.
4984 */
4985
4986 if (val)
12e9b892 4987 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4988 else {
4989 jbd2_journal_flush(journal);
12e9b892 4990 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4991 }
617ba13b 4992 ext4_set_aops(inode);
ac27a0ec 4993
dab291af 4994 jbd2_journal_unlock_updates(journal);
17335dcc 4995 ext4_inode_resume_unlocked_dio(inode);
ac27a0ec
DK
4996
4997 /* Finally we can mark the inode as dirty. */
4998
9924a92a 4999 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
ac27a0ec
DK
5000 if (IS_ERR(handle))
5001 return PTR_ERR(handle);
5002
617ba13b 5003 err = ext4_mark_inode_dirty(handle, inode);
0390131b 5004 ext4_handle_sync(handle);
617ba13b
MC
5005 ext4_journal_stop(handle);
5006 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
5007
5008 return err;
5009}
2e9ee850
AK
5010
5011static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5012{
5013 return !buffer_mapped(bh);
5014}
5015
c2ec175c 5016int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 5017{
c2ec175c 5018 struct page *page = vmf->page;
2e9ee850
AK
5019 loff_t size;
5020 unsigned long len;
9ea7df53 5021 int ret;
2e9ee850 5022 struct file *file = vma->vm_file;
496ad9aa 5023 struct inode *inode = file_inode(file);
2e9ee850 5024 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
5025 handle_t *handle;
5026 get_block_t *get_block;
5027 int retries = 0;
2e9ee850 5028
8e8ad8a5 5029 sb_start_pagefault(inode->i_sb);
041bbb6d 5030 file_update_time(vma->vm_file);
9ea7df53
JK
5031 /* Delalloc case is easy... */
5032 if (test_opt(inode->i_sb, DELALLOC) &&
5033 !ext4_should_journal_data(inode) &&
5034 !ext4_nonda_switch(inode->i_sb)) {
5035 do {
5036 ret = __block_page_mkwrite(vma, vmf,
5037 ext4_da_get_block_prep);
5038 } while (ret == -ENOSPC &&
5039 ext4_should_retry_alloc(inode->i_sb, &retries));
5040 goto out_ret;
2e9ee850 5041 }
0e499890
DW
5042
5043 lock_page(page);
9ea7df53
JK
5044 size = i_size_read(inode);
5045 /* Page got truncated from under us? */
5046 if (page->mapping != mapping || page_offset(page) > size) {
5047 unlock_page(page);
5048 ret = VM_FAULT_NOPAGE;
5049 goto out;
0e499890 5050 }
2e9ee850
AK
5051
5052 if (page->index == size >> PAGE_CACHE_SHIFT)
5053 len = size & ~PAGE_CACHE_MASK;
5054 else
5055 len = PAGE_CACHE_SIZE;
a827eaff 5056 /*
9ea7df53
JK
5057 * Return if we have all the buffers mapped. This avoids the need to do
5058 * journal_start/journal_stop which can block and take a long time
a827eaff 5059 */
2e9ee850 5060 if (page_has_buffers(page)) {
f19d5870
TM
5061 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5062 0, len, NULL,
5063 ext4_bh_unmapped)) {
9ea7df53 5064 /* Wait so that we don't change page under IO */
1d1d1a76 5065 wait_for_stable_page(page);
9ea7df53
JK
5066 ret = VM_FAULT_LOCKED;
5067 goto out;
a827eaff 5068 }
2e9ee850 5069 }
a827eaff 5070 unlock_page(page);
9ea7df53
JK
5071 /* OK, we need to fill the hole... */
5072 if (ext4_should_dioread_nolock(inode))
5073 get_block = ext4_get_block_write;
5074 else
5075 get_block = ext4_get_block;
5076retry_alloc:
9924a92a
TT
5077 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5078 ext4_writepage_trans_blocks(inode));
9ea7df53 5079 if (IS_ERR(handle)) {
c2ec175c 5080 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
5081 goto out;
5082 }
5083 ret = __block_page_mkwrite(vma, vmf, get_block);
5084 if (!ret && ext4_should_journal_data(inode)) {
f19d5870 5085 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
9ea7df53
JK
5086 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5087 unlock_page(page);
5088 ret = VM_FAULT_SIGBUS;
fcbb5515 5089 ext4_journal_stop(handle);
9ea7df53
JK
5090 goto out;
5091 }
5092 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5093 }
5094 ext4_journal_stop(handle);
5095 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5096 goto retry_alloc;
5097out_ret:
5098 ret = block_page_mkwrite_return(ret);
5099out:
8e8ad8a5 5100 sb_end_pagefault(inode->i_sb);
2e9ee850
AK
5101 return ret;
5102}
This page took 1.284478 seconds and 5 git commands to generate.