f2fs: introduce f2fs_commit_super
[deliverable/linux.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
216a620a 203void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
216a620a 232 set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
7e4dde79
CY
254static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
255 struct extent_info *ei)
eb47b800
JK
256{
257 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
258 pgoff_t start_fofs, end_fofs;
259 block_t start_blkaddr;
260
0c872e2d 261 read_lock(&fi->ext_lock);
eb47b800 262 if (fi->ext.len == 0) {
0c872e2d 263 read_unlock(&fi->ext_lock);
7e4dde79 264 return false;
eb47b800
JK
265 }
266
dcdfff65
JK
267 stat_inc_total_hit(inode->i_sb);
268
eb47b800
JK
269 start_fofs = fi->ext.fofs;
270 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 271 start_blkaddr = fi->ext.blk;
eb47b800
JK
272
273 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 274 *ei = fi->ext;
dcdfff65 275 stat_inc_read_hit(inode->i_sb);
0c872e2d 276 read_unlock(&fi->ext_lock);
7e4dde79 277 return true;
eb47b800 278 }
0c872e2d 279 read_unlock(&fi->ext_lock);
7e4dde79 280 return false;
eb47b800
JK
281}
282
7e4dde79
CY
283static bool update_extent_info(struct inode *inode, pgoff_t fofs,
284 block_t blkaddr)
eb47b800 285{
7e4dde79
CY
286 struct f2fs_inode_info *fi = F2FS_I(inode);
287 pgoff_t start_fofs, end_fofs;
eb47b800 288 block_t start_blkaddr, end_blkaddr;
c11abd1a 289 int need_update = true;
eb47b800 290
0c872e2d 291 write_lock(&fi->ext_lock);
eb47b800
JK
292
293 start_fofs = fi->ext.fofs;
294 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
295 start_blkaddr = fi->ext.blk;
296 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
297
298 /* Drop and initialize the matched extent */
299 if (fi->ext.len == 1 && fofs == start_fofs)
300 fi->ext.len = 0;
301
302 /* Initial extent */
303 if (fi->ext.len == 0) {
7e4dde79 304 if (blkaddr != NULL_ADDR) {
eb47b800 305 fi->ext.fofs = fofs;
7e4dde79 306 fi->ext.blk = blkaddr;
eb47b800
JK
307 fi->ext.len = 1;
308 }
309 goto end_update;
310 }
311
6224da87 312 /* Front merge */
7e4dde79 313 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 314 fi->ext.fofs--;
4d0b0bd4 315 fi->ext.blk--;
eb47b800
JK
316 fi->ext.len++;
317 goto end_update;
318 }
319
320 /* Back merge */
7e4dde79 321 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
322 fi->ext.len++;
323 goto end_update;
324 }
325
326 /* Split the existing extent */
327 if (fi->ext.len > 1 &&
328 fofs >= start_fofs && fofs <= end_fofs) {
329 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
330 fi->ext.len = fofs - start_fofs;
331 } else {
332 fi->ext.fofs = fofs + 1;
4d0b0bd4 333 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
334 fi->ext.len -= fofs - start_fofs + 1;
335 }
c11abd1a
JK
336 } else {
337 need_update = false;
eb47b800 338 }
eb47b800 339
c11abd1a
JK
340 /* Finally, if the extent is very fragmented, let's drop the cache. */
341 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
342 fi->ext.len = 0;
343 set_inode_flag(fi, FI_NO_EXTENT);
344 need_update = true;
345 }
eb47b800 346end_update:
0c872e2d 347 write_unlock(&fi->ext_lock);
7e4dde79
CY
348 return need_update;
349}
350
429511cd
CY
351static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
352 struct extent_tree *et, struct extent_info *ei,
353 struct rb_node *parent, struct rb_node **p)
354{
355 struct extent_node *en;
356
357 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
358 if (!en)
359 return NULL;
360
361 en->ei = *ei;
362 INIT_LIST_HEAD(&en->list);
363
364 rb_link_node(&en->rb_node, parent, p);
365 rb_insert_color(&en->rb_node, &et->root);
366 et->count++;
367 atomic_inc(&sbi->total_ext_node);
368 return en;
369}
370
371static void __detach_extent_node(struct f2fs_sb_info *sbi,
372 struct extent_tree *et, struct extent_node *en)
373{
374 rb_erase(&en->rb_node, &et->root);
375 et->count--;
376 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
377
378 if (et->cached_en == en)
379 et->cached_en = NULL;
429511cd
CY
380}
381
93dfc526
CY
382static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
383 nid_t ino)
384{
385 struct extent_tree *et;
386
387 down_read(&sbi->extent_tree_lock);
388 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
389 if (!et) {
390 up_read(&sbi->extent_tree_lock);
391 return NULL;
392 }
393 atomic_inc(&et->refcount);
394 up_read(&sbi->extent_tree_lock);
395
396 return et;
397}
398
399static struct extent_tree *__grab_extent_tree(struct inode *inode)
400{
401 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
402 struct extent_tree *et;
403 nid_t ino = inode->i_ino;
404
405 down_write(&sbi->extent_tree_lock);
406 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
407 if (!et) {
408 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
409 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
410 memset(et, 0, sizeof(struct extent_tree));
411 et->ino = ino;
412 et->root = RB_ROOT;
413 et->cached_en = NULL;
414 rwlock_init(&et->lock);
415 atomic_set(&et->refcount, 0);
416 et->count = 0;
417 sbi->total_ext_tree++;
418 }
419 atomic_inc(&et->refcount);
420 up_write(&sbi->extent_tree_lock);
421
422 return et;
423}
424
429511cd
CY
425static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
426 unsigned int fofs)
427{
428 struct rb_node *node = et->root.rb_node;
429 struct extent_node *en;
430
62c8af65
CY
431 if (et->cached_en) {
432 struct extent_info *cei = &et->cached_en->ei;
433
434 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
435 return et->cached_en;
436 }
437
429511cd
CY
438 while (node) {
439 en = rb_entry(node, struct extent_node, rb_node);
440
62c8af65 441 if (fofs < en->ei.fofs) {
429511cd 442 node = node->rb_left;
62c8af65 443 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 444 node = node->rb_right;
62c8af65
CY
445 } else {
446 et->cached_en = en;
429511cd 447 return en;
62c8af65 448 }
429511cd
CY
449 }
450 return NULL;
451}
452
453static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
454 struct extent_tree *et, struct extent_node *en)
455{
456 struct extent_node *prev;
457 struct rb_node *node;
458
459 node = rb_prev(&en->rb_node);
460 if (!node)
461 return NULL;
462
463 prev = rb_entry(node, struct extent_node, rb_node);
464 if (__is_back_mergeable(&en->ei, &prev->ei)) {
465 en->ei.fofs = prev->ei.fofs;
466 en->ei.blk = prev->ei.blk;
467 en->ei.len += prev->ei.len;
468 __detach_extent_node(sbi, et, prev);
469 return prev;
470 }
471 return NULL;
472}
473
474static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
475 struct extent_tree *et, struct extent_node *en)
476{
477 struct extent_node *next;
478 struct rb_node *node;
479
480 node = rb_next(&en->rb_node);
481 if (!node)
482 return NULL;
483
484 next = rb_entry(node, struct extent_node, rb_node);
485 if (__is_front_mergeable(&en->ei, &next->ei)) {
486 en->ei.len += next->ei.len;
487 __detach_extent_node(sbi, et, next);
488 return next;
489 }
490 return NULL;
491}
492
493static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
494 struct extent_tree *et, struct extent_info *ei,
495 struct extent_node **den)
496{
497 struct rb_node **p = &et->root.rb_node;
498 struct rb_node *parent = NULL;
499 struct extent_node *en;
500
501 while (*p) {
502 parent = *p;
503 en = rb_entry(parent, struct extent_node, rb_node);
504
505 if (ei->fofs < en->ei.fofs) {
506 if (__is_front_mergeable(ei, &en->ei)) {
507 f2fs_bug_on(sbi, !den);
508 en->ei.fofs = ei->fofs;
509 en->ei.blk = ei->blk;
510 en->ei.len += ei->len;
511 *den = __try_back_merge(sbi, et, en);
512 return en;
513 }
514 p = &(*p)->rb_left;
515 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
516 if (__is_back_mergeable(ei, &en->ei)) {
517 f2fs_bug_on(sbi, !den);
518 en->ei.len += ei->len;
519 *den = __try_front_merge(sbi, et, en);
520 return en;
521 }
522 p = &(*p)->rb_right;
523 } else {
524 f2fs_bug_on(sbi, 1);
525 }
526 }
527
528 return __attach_extent_node(sbi, et, ei, parent, p);
529}
530
531static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
532 struct extent_tree *et, bool free_all)
533{
534 struct rb_node *node, *next;
535 struct extent_node *en;
536 unsigned int count = et->count;
537
538 node = rb_first(&et->root);
539 while (node) {
540 next = rb_next(node);
541 en = rb_entry(node, struct extent_node, rb_node);
542
543 if (free_all) {
544 spin_lock(&sbi->extent_lock);
545 if (!list_empty(&en->list))
546 list_del_init(&en->list);
547 spin_unlock(&sbi->extent_lock);
548 }
549
550 if (free_all || list_empty(&en->list)) {
551 __detach_extent_node(sbi, et, en);
552 kmem_cache_free(extent_node_slab, en);
553 }
554 node = next;
555 }
556
557 return count - et->count;
558}
559
028a41e8
CY
560static void f2fs_init_extent_tree(struct inode *inode,
561 struct f2fs_extent *i_ext)
562{
563 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
564 struct extent_tree *et;
565 struct extent_node *en;
566 struct extent_info ei;
567
568 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
569 return;
570
571 et = __grab_extent_tree(inode);
572
573 write_lock(&et->lock);
574 if (et->count)
575 goto out;
576
577 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
578 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
579
580 en = __insert_extent_tree(sbi, et, &ei, NULL);
581 if (en) {
582 et->cached_en = en;
583
584 spin_lock(&sbi->extent_lock);
585 list_add_tail(&en->list, &sbi->extent_list);
586 spin_unlock(&sbi->extent_lock);
587 }
588out:
589 write_unlock(&et->lock);
590 atomic_dec(&et->refcount);
591}
592
429511cd
CY
593static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
594 struct extent_info *ei)
595{
596 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
597 struct extent_tree *et;
598 struct extent_node *en;
599
1ec4610c
CY
600 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
601
93dfc526
CY
602 et = __find_extent_tree(sbi, inode->i_ino);
603 if (!et)
429511cd 604 return false;
429511cd
CY
605
606 read_lock(&et->lock);
607 en = __lookup_extent_tree(et, pgofs);
608 if (en) {
609 *ei = en->ei;
610 spin_lock(&sbi->extent_lock);
611 if (!list_empty(&en->list))
612 list_move_tail(&en->list, &sbi->extent_list);
613 spin_unlock(&sbi->extent_lock);
614 stat_inc_read_hit(sbi->sb);
615 }
616 stat_inc_total_hit(sbi->sb);
617 read_unlock(&et->lock);
618
1ec4610c
CY
619 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
620
429511cd
CY
621 atomic_dec(&et->refcount);
622 return en ? true : false;
623}
624
625static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
626 block_t blkaddr)
627{
628 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
629 struct extent_tree *et;
630 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
631 struct extent_node *den = NULL;
632 struct extent_info ei, dei;
633 unsigned int endofs;
634
1ec4610c
CY
635 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
636
93dfc526 637 et = __grab_extent_tree(inode);
429511cd
CY
638
639 write_lock(&et->lock);
640
641 /* 1. lookup and remove existing extent info in cache */
642 en = __lookup_extent_tree(et, fofs);
643 if (!en)
644 goto update_extent;
645
646 dei = en->ei;
647 __detach_extent_node(sbi, et, en);
648
649 /* 2. if extent can be split more, split and insert the left part */
650 if (dei.len > 1) {
651 /* insert left part of split extent into cache */
652 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
653 set_extent_info(&ei, dei.fofs, dei.blk,
654 fofs - dei.fofs);
655 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
656 }
657
658 /* insert right part of split extent into cache */
659 endofs = dei.fofs + dei.len - 1;
660 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
661 set_extent_info(&ei, fofs + 1,
662 fofs - dei.fofs + dei.blk, endofs - fofs);
663 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
664 }
665 }
666
667update_extent:
668 /* 3. update extent in extent cache */
669 if (blkaddr) {
670 set_extent_info(&ei, fofs, blkaddr, 1);
671 en3 = __insert_extent_tree(sbi, et, &ei, &den);
672 }
673
674 /* 4. update in global extent list */
675 spin_lock(&sbi->extent_lock);
676 if (en && !list_empty(&en->list))
677 list_del(&en->list);
678 /*
679 * en1 and en2 split from en, they will become more and more smaller
680 * fragments after splitting several times. So if the length is smaller
681 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
682 */
683 if (en1)
684 list_add_tail(&en1->list, &sbi->extent_list);
685 if (en2)
686 list_add_tail(&en2->list, &sbi->extent_list);
687 if (en3) {
688 if (list_empty(&en3->list))
689 list_add_tail(&en3->list, &sbi->extent_list);
690 else
691 list_move_tail(&en3->list, &sbi->extent_list);
692 }
693 if (den && !list_empty(&den->list))
694 list_del(&den->list);
695 spin_unlock(&sbi->extent_lock);
696
697 /* 5. release extent node */
698 if (en)
699 kmem_cache_free(extent_node_slab, en);
700 if (den)
701 kmem_cache_free(extent_node_slab, den);
702
703 write_unlock(&et->lock);
704 atomic_dec(&et->refcount);
705}
706
0bdee482
CY
707void f2fs_preserve_extent_tree(struct inode *inode)
708{
709 struct extent_tree *et;
710 struct extent_info *ext = &F2FS_I(inode)->ext;
711 bool sync = false;
712
713 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
714 return;
715
716 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
717 if (!et) {
718 if (ext->len) {
719 ext->len = 0;
720 update_inode_page(inode);
721 }
722 return;
723 }
724
725 read_lock(&et->lock);
726 if (et->count) {
727 struct extent_node *en;
728
729 if (et->cached_en) {
730 en = et->cached_en;
731 } else {
732 struct rb_node *node = rb_first(&et->root);
733
734 if (!node)
735 node = rb_last(&et->root);
736 en = rb_entry(node, struct extent_node, rb_node);
737 }
738
739 if (__is_extent_same(ext, &en->ei))
740 goto out;
741
742 *ext = en->ei;
743 sync = true;
744 } else if (ext->len) {
745 ext->len = 0;
746 sync = true;
747 }
748out:
749 read_unlock(&et->lock);
750 atomic_dec(&et->refcount);
751
752 if (sync)
753 update_inode_page(inode);
754}
755
429511cd
CY
756void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
757{
758 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
759 struct extent_node *en, *tmp;
760 unsigned long ino = F2FS_ROOT_INO(sbi);
761 struct radix_tree_iter iter;
762 void **slot;
763 unsigned int found;
1ec4610c 764 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 765
1dcc336b
CY
766 if (!test_opt(sbi, EXTENT_CACHE))
767 return;
768
429511cd
CY
769 if (available_free_memory(sbi, EXTENT_CACHE))
770 return;
771
772 spin_lock(&sbi->extent_lock);
773 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
774 if (!nr_shrink--)
775 break;
776 list_del_init(&en->list);
777 }
778 spin_unlock(&sbi->extent_lock);
779
780 down_read(&sbi->extent_tree_lock);
781 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
782 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
783 unsigned i;
784
785 ino = treevec[found - 1]->ino + 1;
786 for (i = 0; i < found; i++) {
787 struct extent_tree *et = treevec[i];
788
789 atomic_inc(&et->refcount);
790 write_lock(&et->lock);
1ec4610c 791 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
792 write_unlock(&et->lock);
793 atomic_dec(&et->refcount);
794 }
795 }
796 up_read(&sbi->extent_tree_lock);
797
798 down_write(&sbi->extent_tree_lock);
799 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
800 F2FS_ROOT_INO(sbi)) {
801 struct extent_tree *et = (struct extent_tree *)*slot;
802
803 if (!atomic_read(&et->refcount) && !et->count) {
804 radix_tree_delete(&sbi->extent_tree_root, et->ino);
805 kmem_cache_free(extent_tree_slab, et);
806 sbi->total_ext_tree--;
1ec4610c 807 tree_cnt++;
429511cd
CY
808 }
809 }
810 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
811
812 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
813}
814
815void f2fs_destroy_extent_tree(struct inode *inode)
816{
817 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
818 struct extent_tree *et;
1ec4610c 819 unsigned int node_cnt = 0;
429511cd 820
1dcc336b
CY
821 if (!test_opt(sbi, EXTENT_CACHE))
822 return;
823
93dfc526
CY
824 et = __find_extent_tree(sbi, inode->i_ino);
825 if (!et)
429511cd 826 goto out;
429511cd
CY
827
828 /* free all extent info belong to this extent tree */
829 write_lock(&et->lock);
1ec4610c 830 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
831 write_unlock(&et->lock);
832
833 atomic_dec(&et->refcount);
834
835 /* try to find and delete extent tree entry in radix tree */
836 down_write(&sbi->extent_tree_lock);
837 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
838 if (!et) {
839 up_write(&sbi->extent_tree_lock);
840 goto out;
841 }
842 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
843 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
844 kmem_cache_free(extent_tree_slab, et);
845 sbi->total_ext_tree--;
846 up_write(&sbi->extent_tree_lock);
847out:
1ec4610c 848 trace_f2fs_destroy_extent_tree(inode, node_cnt);
c11abd1a 849 return;
eb47b800
JK
850}
851
028a41e8
CY
852void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
853{
854 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
855 f2fs_init_extent_tree(inode, i_ext);
856
857 write_lock(&F2FS_I(inode)->ext_lock);
858 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
859 write_unlock(&F2FS_I(inode)->ext_lock);
860}
861
7e4dde79
CY
862static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
863 struct extent_info *ei)
864{
91c5d9bc
CY
865 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
866 return false;
867
1dcc336b
CY
868 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
869 return f2fs_lookup_extent_tree(inode, pgofs, ei);
870
7e4dde79
CY
871 return lookup_extent_info(inode, pgofs, ei);
872}
873
874void f2fs_update_extent_cache(struct dnode_of_data *dn)
875{
876 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
877 pgoff_t fofs;
878
879 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
880
91c5d9bc
CY
881 if (is_inode_flag_set(fi, FI_NO_EXTENT))
882 return;
883
7e4dde79
CY
884 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
885 dn->ofs_in_node;
886
1dcc336b
CY
887 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
888 return f2fs_update_extent_tree(dn->inode, fofs,
889 dn->data_blkaddr);
890
7e4dde79 891 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 892 sync_inode_page(dn);
eb47b800
JK
893}
894
c718379b 895struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 896{
eb47b800
JK
897 struct address_space *mapping = inode->i_mapping;
898 struct dnode_of_data dn;
899 struct page *page;
cb3bc9ee 900 struct extent_info ei;
eb47b800 901 int err;
cf04e8eb
JK
902 struct f2fs_io_info fio = {
903 .type = DATA,
904 .rw = sync ? READ_SYNC : READA,
905 };
eb47b800 906
b7f204cc
JK
907 /*
908 * If sync is false, it needs to check its block allocation.
909 * This is need and triggered by two flows:
910 * gc and truncate_partial_data_page.
911 */
912 if (!sync)
913 goto search;
914
eb47b800
JK
915 page = find_get_page(mapping, index);
916 if (page && PageUptodate(page))
917 return page;
918 f2fs_put_page(page, 0);
b7f204cc 919search:
cb3bc9ee
CY
920 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
921 dn.data_blkaddr = ei.blk + index - ei.fofs;
922 goto got_it;
923 }
eb47b800
JK
924
925 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 926 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
927 if (err)
928 return ERR_PTR(err);
929 f2fs_put_dnode(&dn);
930
931 if (dn.data_blkaddr == NULL_ADDR)
932 return ERR_PTR(-ENOENT);
933
934 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 935 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
936 return ERR_PTR(-EINVAL);
937
cb3bc9ee 938got_it:
9ac1349a 939 page = grab_cache_page(mapping, index);
eb47b800
JK
940 if (!page)
941 return ERR_PTR(-ENOMEM);
942
393ff91f
JK
943 if (PageUptodate(page)) {
944 unlock_page(page);
945 return page;
946 }
947
cf04e8eb
JK
948 fio.blk_addr = dn.data_blkaddr;
949 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
950 if (err)
951 return ERR_PTR(err);
952
c718379b
JK
953 if (sync) {
954 wait_on_page_locked(page);
6bacf52f 955 if (unlikely(!PageUptodate(page))) {
c718379b
JK
956 f2fs_put_page(page, 0);
957 return ERR_PTR(-EIO);
958 }
eb47b800 959 }
eb47b800
JK
960 return page;
961}
962
0a8165d7 963/*
eb47b800
JK
964 * If it tries to access a hole, return an error.
965 * Because, the callers, functions in dir.c and GC, should be able to know
966 * whether this page exists or not.
967 */
968struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
969{
eb47b800
JK
970 struct address_space *mapping = inode->i_mapping;
971 struct dnode_of_data dn;
972 struct page *page;
cb3bc9ee 973 struct extent_info ei;
eb47b800 974 int err;
cf04e8eb
JK
975 struct f2fs_io_info fio = {
976 .type = DATA,
977 .rw = READ_SYNC,
978 };
650495de 979repeat:
9ac1349a 980 page = grab_cache_page(mapping, index);
650495de
JK
981 if (!page)
982 return ERR_PTR(-ENOMEM);
983
cb3bc9ee
CY
984 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
985 dn.data_blkaddr = ei.blk + index - ei.fofs;
986 goto got_it;
987 }
988
eb47b800 989 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 990 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
991 if (err) {
992 f2fs_put_page(page, 1);
eb47b800 993 return ERR_PTR(err);
650495de 994 }
eb47b800
JK
995 f2fs_put_dnode(&dn);
996
6bacf52f 997 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 998 f2fs_put_page(page, 1);
eb47b800 999 return ERR_PTR(-ENOENT);
650495de 1000 }
eb47b800 1001
cb3bc9ee 1002got_it:
eb47b800
JK
1003 if (PageUptodate(page))
1004 return page;
1005
d59ff4df
JK
1006 /*
1007 * A new dentry page is allocated but not able to be written, since its
1008 * new inode page couldn't be allocated due to -ENOSPC.
1009 * In such the case, its blkaddr can be remained as NEW_ADDR.
1010 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
1011 */
1012 if (dn.data_blkaddr == NEW_ADDR) {
1013 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1014 SetPageUptodate(page);
1015 return page;
1016 }
eb47b800 1017
cf04e8eb
JK
1018 fio.blk_addr = dn.data_blkaddr;
1019 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1020 if (err)
eb47b800 1021 return ERR_PTR(err);
393ff91f
JK
1022
1023 lock_page(page);
6bacf52f 1024 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1025 f2fs_put_page(page, 1);
1026 return ERR_PTR(-EIO);
eb47b800 1027 }
6bacf52f 1028 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1029 f2fs_put_page(page, 1);
1030 goto repeat;
eb47b800
JK
1031 }
1032 return page;
1033}
1034
0a8165d7 1035/*
eb47b800
JK
1036 * Caller ensures that this data page is never allocated.
1037 * A new zero-filled data page is allocated in the page cache.
39936837 1038 *
4f4124d0
CY
1039 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1040 * f2fs_unlock_op().
a8865372 1041 * Note that, ipage is set only by make_empty_dir.
eb47b800 1042 */
64aa7ed9 1043struct page *get_new_data_page(struct inode *inode,
a8865372 1044 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1045{
eb47b800
JK
1046 struct address_space *mapping = inode->i_mapping;
1047 struct page *page;
1048 struct dnode_of_data dn;
1049 int err;
1050
a8865372 1051 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1052 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
1053 if (err)
1054 return ERR_PTR(err);
afcb7ca0 1055repeat:
eb47b800 1056 page = grab_cache_page(mapping, index);
a8865372
JK
1057 if (!page) {
1058 err = -ENOMEM;
1059 goto put_err;
1060 }
eb47b800
JK
1061
1062 if (PageUptodate(page))
1063 return page;
1064
1065 if (dn.data_blkaddr == NEW_ADDR) {
1066 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1067 SetPageUptodate(page);
eb47b800 1068 } else {
cf04e8eb
JK
1069 struct f2fs_io_info fio = {
1070 .type = DATA,
1071 .rw = READ_SYNC,
1072 .blk_addr = dn.data_blkaddr,
1073 };
1074 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1075 if (err)
a8865372
JK
1076 goto put_err;
1077
393ff91f 1078 lock_page(page);
6bacf52f 1079 if (unlikely(!PageUptodate(page))) {
393ff91f 1080 f2fs_put_page(page, 1);
a8865372
JK
1081 err = -EIO;
1082 goto put_err;
eb47b800 1083 }
6bacf52f 1084 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1085 f2fs_put_page(page, 1);
1086 goto repeat;
eb47b800
JK
1087 }
1088 }
eb47b800
JK
1089
1090 if (new_i_size &&
1091 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1092 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1093 /* Only the directory inode sets new_i_size */
1094 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1095 }
1096 return page;
a8865372
JK
1097
1098put_err:
1099 f2fs_put_dnode(&dn);
1100 return ERR_PTR(err);
eb47b800
JK
1101}
1102
bfad7c2d
JK
1103static int __allocate_data_block(struct dnode_of_data *dn)
1104{
4081363f 1105 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1106 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1107 struct f2fs_summary sum;
bfad7c2d 1108 struct node_info ni;
38aa0889 1109 int seg = CURSEG_WARM_DATA;
976e4c50 1110 pgoff_t fofs;
bfad7c2d
JK
1111
1112 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1113 return -EPERM;
df6136ef
CY
1114
1115 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1116 if (dn->data_blkaddr == NEW_ADDR)
1117 goto alloc;
1118
bfad7c2d
JK
1119 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1120 return -ENOSPC;
1121
df6136ef 1122alloc:
bfad7c2d
JK
1123 get_node_info(sbi, dn->nid, &ni);
1124 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1125
38aa0889
JK
1126 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1127 seg = CURSEG_DIRECT_IO;
1128
df6136ef
CY
1129 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1130 &sum, seg);
bfad7c2d
JK
1131
1132 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1133 set_data_blkaddr(dn);
bfad7c2d 1134
976e4c50
JK
1135 /* update i_size */
1136 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1137 dn->ofs_in_node;
1138 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1139 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1140
bfad7c2d
JK
1141 return 0;
1142}
1143
59b802e5
JK
1144static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1145 size_t count)
1146{
1147 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1148 struct dnode_of_data dn;
1149 u64 start = F2FS_BYTES_TO_BLK(offset);
1150 u64 len = F2FS_BYTES_TO_BLK(count);
1151 bool allocated;
1152 u64 end_offset;
1153
1154 while (len) {
1155 f2fs_balance_fs(sbi);
1156 f2fs_lock_op(sbi);
1157
1158 /* When reading holes, we need its node page */
1159 set_new_dnode(&dn, inode, NULL, NULL, 0);
1160 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1161 goto out;
1162
1163 allocated = false;
1164 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1165
1166 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1167 block_t blkaddr;
1168
1169 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1170 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1171 if (__allocate_data_block(&dn))
1172 goto sync_out;
1173 allocated = true;
1174 }
1175 len--;
1176 start++;
1177 dn.ofs_in_node++;
1178 }
1179
1180 if (allocated)
1181 sync_inode_page(&dn);
1182
1183 f2fs_put_dnode(&dn);
1184 f2fs_unlock_op(sbi);
1185 }
1186 return;
1187
1188sync_out:
1189 if (allocated)
1190 sync_inode_page(&dn);
1191 f2fs_put_dnode(&dn);
1192out:
1193 f2fs_unlock_op(sbi);
1194 return;
1195}
1196
0a8165d7 1197/*
003a3e1d
JK
1198 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1199 * f2fs_map_blocks structure.
4f4124d0
CY
1200 * If original data blocks are allocated, then give them to blockdev.
1201 * Otherwise,
1202 * a. preallocate requested block addresses
1203 * b. do not use extent cache for better performance
1204 * c. give the block addresses to blockdev
eb47b800 1205 */
003a3e1d
JK
1206static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1207 int create, bool fiemap)
eb47b800 1208{
003a3e1d 1209 unsigned int maxblocks = map->m_len;
eb47b800 1210 struct dnode_of_data dn;
bfad7c2d
JK
1211 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1212 pgoff_t pgofs, end_offset;
1213 int err = 0, ofs = 1;
a2e7d1bf 1214 struct extent_info ei;
bfad7c2d 1215 bool allocated = false;
eb47b800 1216
003a3e1d
JK
1217 map->m_len = 0;
1218 map->m_flags = 0;
1219
1220 /* it only supports block size == page size */
1221 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1222
7e4dde79 1223 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1224 map->m_pblk = ei.blk + pgofs - ei.fofs;
1225 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1226 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1227 goto out;
a2e7d1bf 1228 }
bfad7c2d 1229
59b802e5 1230 if (create)
4081363f 1231 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1232
1233 /* When reading holes, we need its node page */
1234 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1235 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1236 if (err) {
bfad7c2d
JK
1237 if (err == -ENOENT)
1238 err = 0;
1239 goto unlock_out;
848753aa 1240 }
ccfb3000 1241 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1242 goto put_out;
eb47b800 1243
bfad7c2d 1244 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1245 map->m_flags = F2FS_MAP_MAPPED;
1246 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1247 } else if (create) {
1248 err = __allocate_data_block(&dn);
1249 if (err)
1250 goto put_out;
1251 allocated = true;
003a3e1d
JK
1252 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1253 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1254 } else {
1255 goto put_out;
1256 }
1257
6403eb1f 1258 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1259 map->m_len = 1;
bfad7c2d
JK
1260 dn.ofs_in_node++;
1261 pgofs++;
1262
1263get_next:
1264 if (dn.ofs_in_node >= end_offset) {
1265 if (allocated)
1266 sync_inode_page(&dn);
1267 allocated = false;
1268 f2fs_put_dnode(&dn);
1269
1270 set_new_dnode(&dn, inode, NULL, NULL, 0);
1271 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1272 if (err) {
bfad7c2d
JK
1273 if (err == -ENOENT)
1274 err = 0;
1275 goto unlock_out;
1276 }
ccfb3000 1277 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1278 goto put_out;
1279
6403eb1f 1280 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1281 }
eb47b800 1282
003a3e1d 1283 if (maxblocks > map->m_len) {
bfad7c2d
JK
1284 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1285 if (blkaddr == NULL_ADDR && create) {
1286 err = __allocate_data_block(&dn);
1287 if (err)
1288 goto sync_out;
1289 allocated = true;
003a3e1d 1290 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1291 blkaddr = dn.data_blkaddr;
1292 }
e1c42045 1293 /* Give more consecutive addresses for the readahead */
003a3e1d 1294 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) {
bfad7c2d
JK
1295 ofs++;
1296 dn.ofs_in_node++;
1297 pgofs++;
003a3e1d 1298 map->m_len++;
bfad7c2d
JK
1299 goto get_next;
1300 }
eb47b800 1301 }
bfad7c2d
JK
1302sync_out:
1303 if (allocated)
1304 sync_inode_page(&dn);
1305put_out:
eb47b800 1306 f2fs_put_dnode(&dn);
bfad7c2d
JK
1307unlock_out:
1308 if (create)
4081363f 1309 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1310out:
003a3e1d 1311 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1312 return err;
eb47b800
JK
1313}
1314
003a3e1d
JK
1315static int __get_data_block(struct inode *inode, sector_t iblock,
1316 struct buffer_head *bh, int create, bool fiemap)
1317{
1318 struct f2fs_map_blocks map;
1319 int ret;
1320
1321 map.m_lblk = iblock;
1322 map.m_len = bh->b_size >> inode->i_blkbits;
1323
1324 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1325 if (!ret) {
1326 map_bh(bh, inode->i_sb, map.m_pblk);
1327 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1328 bh->b_size = map.m_len << inode->i_blkbits;
1329 }
1330 return ret;
1331}
1332
ccfb3000
JK
1333static int get_data_block(struct inode *inode, sector_t iblock,
1334 struct buffer_head *bh_result, int create)
1335{
1336 return __get_data_block(inode, iblock, bh_result, create, false);
1337}
1338
1339static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh_result, int create)
1341{
1342 return __get_data_block(inode, iblock, bh_result, create, true);
1343}
1344
9ab70134
JK
1345int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1346 u64 start, u64 len)
1347{
ccfb3000
JK
1348 return generic_block_fiemap(inode, fieinfo,
1349 start, len, get_data_block_fiemap);
9ab70134
JK
1350}
1351
eb47b800
JK
1352static int f2fs_read_data_page(struct file *file, struct page *page)
1353{
9ffe0fb5 1354 struct inode *inode = page->mapping->host;
b3d208f9 1355 int ret = -EAGAIN;
9ffe0fb5 1356
c20e89cd
CY
1357 trace_f2fs_readpage(page, DATA);
1358
e1c42045 1359 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1360 if (f2fs_has_inline_data(inode))
1361 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1362 if (ret == -EAGAIN)
9ffe0fb5
HL
1363 ret = mpage_readpage(page, get_data_block);
1364
1365 return ret;
eb47b800
JK
1366}
1367
1368static int f2fs_read_data_pages(struct file *file,
1369 struct address_space *mapping,
1370 struct list_head *pages, unsigned nr_pages)
1371{
9ffe0fb5
HL
1372 struct inode *inode = file->f_mapping->host;
1373
1374 /* If the file has inline data, skip readpages */
1375 if (f2fs_has_inline_data(inode))
1376 return 0;
1377
bfad7c2d 1378 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1379}
1380
458e6197 1381int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1382{
1383 struct inode *inode = page->mapping->host;
eb47b800
JK
1384 struct dnode_of_data dn;
1385 int err = 0;
1386
1387 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1388 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1389 if (err)
1390 return err;
1391
cf04e8eb 1392 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1393
1394 /* This page is already truncated */
2bca1e23
JK
1395 if (fio->blk_addr == NULL_ADDR) {
1396 ClearPageUptodate(page);
eb47b800 1397 goto out_writepage;
2bca1e23 1398 }
eb47b800
JK
1399
1400 set_page_writeback(page);
1401
1402 /*
1403 * If current allocation needs SSR,
1404 * it had better in-place writes for updated data.
1405 */
cf04e8eb 1406 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1407 !is_cold_data(page) &&
1408 need_inplace_update(inode))) {
cf04e8eb 1409 rewrite_data_page(page, fio);
fff04f90 1410 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1411 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1412 } else {
cf04e8eb 1413 write_data_page(page, &dn, fio);
216a620a 1414 set_data_blkaddr(&dn);
7e4dde79 1415 f2fs_update_extent_cache(&dn);
8ce67cb0 1416 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1417 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1418 if (page->index == 0)
1419 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1420 }
1421out_writepage:
1422 f2fs_put_dnode(&dn);
1423 return err;
1424}
1425
1426static int f2fs_write_data_page(struct page *page,
1427 struct writeback_control *wbc)
1428{
1429 struct inode *inode = page->mapping->host;
4081363f 1430 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1431 loff_t i_size = i_size_read(inode);
1432 const pgoff_t end_index = ((unsigned long long) i_size)
1433 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1434 unsigned offset = 0;
39936837 1435 bool need_balance_fs = false;
eb47b800 1436 int err = 0;
458e6197
JK
1437 struct f2fs_io_info fio = {
1438 .type = DATA,
6c311ec6 1439 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1440 };
eb47b800 1441
ecda0de3
CY
1442 trace_f2fs_writepage(page, DATA);
1443
eb47b800 1444 if (page->index < end_index)
39936837 1445 goto write;
eb47b800
JK
1446
1447 /*
1448 * If the offset is out-of-range of file size,
1449 * this page does not have to be written to disk.
1450 */
1451 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1452 if ((page->index >= end_index + 1) || !offset)
39936837 1453 goto out;
eb47b800
JK
1454
1455 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1456write:
caf0047e 1457 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1458 goto redirty_out;
1e84371f
JK
1459 if (f2fs_is_drop_cache(inode))
1460 goto out;
1461 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1462 available_free_memory(sbi, BASE_CHECK))
1463 goto redirty_out;
eb47b800 1464
39936837 1465 /* Dentry blocks are controlled by checkpoint */
eb47b800 1466 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1467 if (unlikely(f2fs_cp_error(sbi)))
1468 goto redirty_out;
458e6197 1469 err = do_write_data_page(page, &fio);
8618b881
JK
1470 goto done;
1471 }
9ffe0fb5 1472
cf779cab
JK
1473 /* we should bypass data pages to proceed the kworkder jobs */
1474 if (unlikely(f2fs_cp_error(sbi))) {
1475 SetPageError(page);
a7ffdbe2 1476 goto out;
cf779cab
JK
1477 }
1478
8618b881 1479 if (!wbc->for_reclaim)
39936837 1480 need_balance_fs = true;
8618b881 1481 else if (has_not_enough_free_secs(sbi, 0))
39936837 1482 goto redirty_out;
eb47b800 1483
b3d208f9 1484 err = -EAGAIN;
8618b881 1485 f2fs_lock_op(sbi);
b3d208f9
JK
1486 if (f2fs_has_inline_data(inode))
1487 err = f2fs_write_inline_data(inode, page);
1488 if (err == -EAGAIN)
8618b881
JK
1489 err = do_write_data_page(page, &fio);
1490 f2fs_unlock_op(sbi);
1491done:
1492 if (err && err != -ENOENT)
1493 goto redirty_out;
eb47b800 1494
eb47b800 1495 clear_cold_data(page);
39936837 1496out:
a7ffdbe2 1497 inode_dec_dirty_pages(inode);
2bca1e23
JK
1498 if (err)
1499 ClearPageUptodate(page);
eb47b800 1500 unlock_page(page);
39936837 1501 if (need_balance_fs)
eb47b800 1502 f2fs_balance_fs(sbi);
2aea39ec
JK
1503 if (wbc->for_reclaim)
1504 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1505 return 0;
1506
eb47b800 1507redirty_out:
76f60268 1508 redirty_page_for_writepage(wbc, page);
8618b881 1509 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1510}
1511
fa9150a8
NJ
1512static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1513 void *data)
1514{
1515 struct address_space *mapping = data;
1516 int ret = mapping->a_ops->writepage(page, wbc);
1517 mapping_set_error(mapping, ret);
1518 return ret;
1519}
1520
25ca923b 1521static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1522 struct writeback_control *wbc)
1523{
1524 struct inode *inode = mapping->host;
4081363f 1525 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1526 bool locked = false;
eb47b800 1527 int ret;
50c8cdb3 1528 long diff;
eb47b800 1529
e5748434
CY
1530 trace_f2fs_writepages(mapping->host, wbc, DATA);
1531
cfb185a1 1532 /* deal with chardevs and other special file */
1533 if (!mapping->a_ops->writepage)
1534 return 0;
1535
87d6f890 1536 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1537 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1538 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1539 goto skip_write;
87d6f890 1540
d5669f7b
JK
1541 /* during POR, we don't need to trigger writepage at all. */
1542 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1543 goto skip_write;
1544
50c8cdb3 1545 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1546
5463e7c1
JK
1547 if (!S_ISDIR(inode->i_mode)) {
1548 mutex_lock(&sbi->writepages);
1549 locked = true;
1550 }
fa9150a8 1551 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1552 if (locked)
1553 mutex_unlock(&sbi->writepages);
458e6197
JK
1554
1555 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1556
1557 remove_dirty_dir_inode(inode);
1558
50c8cdb3 1559 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1560 return ret;
d3baf95d
JK
1561
1562skip_write:
a7ffdbe2 1563 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1564 return 0;
eb47b800
JK
1565}
1566
3aab8f82
CY
1567static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1568{
1569 struct inode *inode = mapping->host;
1570
1571 if (to > inode->i_size) {
1572 truncate_pagecache(inode, inode->i_size);
764aa3e9 1573 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1574 }
1575}
1576
eb47b800
JK
1577static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1578 loff_t pos, unsigned len, unsigned flags,
1579 struct page **pagep, void **fsdata)
1580{
1581 struct inode *inode = mapping->host;
4081363f 1582 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1583 struct page *page, *ipage;
eb47b800
JK
1584 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1585 struct dnode_of_data dn;
1586 int err = 0;
1587
62aed044
CY
1588 trace_f2fs_write_begin(inode, pos, len, flags);
1589
eb47b800 1590 f2fs_balance_fs(sbi);
5f727395
JK
1591
1592 /*
1593 * We should check this at this moment to avoid deadlock on inode page
1594 * and #0 page. The locking rule for inline_data conversion should be:
1595 * lock_page(page #0) -> lock_page(inode_page)
1596 */
1597 if (index != 0) {
1598 err = f2fs_convert_inline_inode(inode);
1599 if (err)
1600 goto fail;
1601 }
afcb7ca0 1602repeat:
eb47b800 1603 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1604 if (!page) {
1605 err = -ENOMEM;
1606 goto fail;
1607 }
d5f66990 1608
eb47b800
JK
1609 *pagep = page;
1610
e479556b 1611 f2fs_lock_op(sbi);
9ba69cf9
JK
1612
1613 /* check inline_data */
1614 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1615 if (IS_ERR(ipage)) {
1616 err = PTR_ERR(ipage);
9ba69cf9 1617 goto unlock_fail;
cd34e296 1618 }
9ba69cf9 1619
b3d208f9
JK
1620 set_new_dnode(&dn, inode, ipage, ipage, 0);
1621
9ba69cf9 1622 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1623 if (pos + len <= MAX_INLINE_DATA) {
1624 read_inline_data(page, ipage);
1625 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1626 sync_inode_page(&dn);
1627 goto put_next;
b3d208f9 1628 }
5f727395
JK
1629 err = f2fs_convert_inline_page(&dn, page);
1630 if (err)
1631 goto put_fail;
b600965c 1632 }
9ba69cf9
JK
1633 err = f2fs_reserve_block(&dn, index);
1634 if (err)
8cdcb713 1635 goto put_fail;
b3d208f9 1636put_next:
9ba69cf9
JK
1637 f2fs_put_dnode(&dn);
1638 f2fs_unlock_op(sbi);
1639
eb47b800
JK
1640 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1641 return 0;
1642
b3d208f9
JK
1643 f2fs_wait_on_page_writeback(page, DATA);
1644
eb47b800
JK
1645 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1646 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1647 unsigned end = start + len;
1648
1649 /* Reading beyond i_size is simple: memset to zero */
1650 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1651 goto out;
eb47b800
JK
1652 }
1653
b3d208f9 1654 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1655 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1656 } else {
cf04e8eb
JK
1657 struct f2fs_io_info fio = {
1658 .type = DATA,
1659 .rw = READ_SYNC,
1660 .blk_addr = dn.data_blkaddr,
1661 };
1662 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1663 if (err)
1664 goto fail;
d54c795b 1665
393ff91f 1666 lock_page(page);
6bacf52f 1667 if (unlikely(!PageUptodate(page))) {
393ff91f 1668 f2fs_put_page(page, 1);
3aab8f82
CY
1669 err = -EIO;
1670 goto fail;
eb47b800 1671 }
6bacf52f 1672 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1673 f2fs_put_page(page, 1);
1674 goto repeat;
eb47b800
JK
1675 }
1676 }
393ff91f 1677out:
eb47b800
JK
1678 SetPageUptodate(page);
1679 clear_cold_data(page);
1680 return 0;
9ba69cf9 1681
8cdcb713
JK
1682put_fail:
1683 f2fs_put_dnode(&dn);
9ba69cf9
JK
1684unlock_fail:
1685 f2fs_unlock_op(sbi);
b3d208f9 1686 f2fs_put_page(page, 1);
3aab8f82
CY
1687fail:
1688 f2fs_write_failed(mapping, pos + len);
1689 return err;
eb47b800
JK
1690}
1691
a1dd3c13
JK
1692static int f2fs_write_end(struct file *file,
1693 struct address_space *mapping,
1694 loff_t pos, unsigned len, unsigned copied,
1695 struct page *page, void *fsdata)
1696{
1697 struct inode *inode = page->mapping->host;
1698
dfb2bf38
CY
1699 trace_f2fs_write_end(inode, pos, len, copied);
1700
34ba94ba 1701 set_page_dirty(page);
a1dd3c13
JK
1702
1703 if (pos + copied > i_size_read(inode)) {
1704 i_size_write(inode, pos + copied);
1705 mark_inode_dirty(inode);
1706 update_inode_page(inode);
1707 }
1708
75c3c8bc 1709 f2fs_put_page(page, 1);
a1dd3c13
JK
1710 return copied;
1711}
1712
6f673763
OS
1713static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1714 loff_t offset)
944fcfc1
JK
1715{
1716 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1717
6f673763 1718 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1719 return 0;
1720
1721 if (offset & blocksize_mask)
1722 return -EINVAL;
1723
5b46f25d
AV
1724 if (iov_iter_alignment(iter) & blocksize_mask)
1725 return -EINVAL;
1726
944fcfc1
JK
1727 return 0;
1728}
1729
22c6186e
OS
1730static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1731 loff_t offset)
eb47b800
JK
1732{
1733 struct file *file = iocb->ki_filp;
3aab8f82
CY
1734 struct address_space *mapping = file->f_mapping;
1735 struct inode *inode = mapping->host;
1736 size_t count = iov_iter_count(iter);
1737 int err;
944fcfc1 1738
b3d208f9
JK
1739 /* we don't need to use inline_data strictly */
1740 if (f2fs_has_inline_data(inode)) {
1741 err = f2fs_convert_inline_inode(inode);
1742 if (err)
1743 return err;
1744 }
9ffe0fb5 1745
6f673763 1746 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
1747 return 0;
1748
6f673763 1749 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 1750
6f673763 1751 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
1752 __allocate_data_blocks(inode, offset, count);
1753
17f8c842 1754 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 1755 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 1756 f2fs_write_failed(mapping, offset + count);
70407fad 1757
6f673763 1758 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 1759
3aab8f82 1760 return err;
eb47b800
JK
1761}
1762
487261f3
CY
1763void f2fs_invalidate_page(struct page *page, unsigned int offset,
1764 unsigned int length)
eb47b800
JK
1765{
1766 struct inode *inode = page->mapping->host;
487261f3 1767 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1768
487261f3
CY
1769 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1770 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1771 return;
1772
487261f3
CY
1773 if (PageDirty(page)) {
1774 if (inode->i_ino == F2FS_META_INO(sbi))
1775 dec_page_count(sbi, F2FS_DIRTY_META);
1776 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1777 dec_page_count(sbi, F2FS_DIRTY_NODES);
1778 else
1779 inode_dec_dirty_pages(inode);
1780 }
eb47b800
JK
1781 ClearPagePrivate(page);
1782}
1783
487261f3 1784int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1785{
f68daeeb
JK
1786 /* If this is dirty page, keep PagePrivate */
1787 if (PageDirty(page))
1788 return 0;
1789
eb47b800 1790 ClearPagePrivate(page);
c3850aa1 1791 return 1;
eb47b800
JK
1792}
1793
1794static int f2fs_set_data_page_dirty(struct page *page)
1795{
1796 struct address_space *mapping = page->mapping;
1797 struct inode *inode = mapping->host;
1798
26c6b887
JK
1799 trace_f2fs_set_page_dirty(page, DATA);
1800
eb47b800 1801 SetPageUptodate(page);
34ba94ba 1802
1e84371f 1803 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1804 register_inmem_page(inode, page);
1805 return 1;
1806 }
1807
a18ff063
JK
1808 mark_inode_dirty(inode);
1809
eb47b800
JK
1810 if (!PageDirty(page)) {
1811 __set_page_dirty_nobuffers(page);
a7ffdbe2 1812 update_dirty_page(inode, page);
eb47b800
JK
1813 return 1;
1814 }
1815 return 0;
1816}
1817
c01e54b7
JK
1818static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1819{
454ae7e5
CY
1820 struct inode *inode = mapping->host;
1821
b3d208f9
JK
1822 /* we don't need to use inline_data strictly */
1823 if (f2fs_has_inline_data(inode)) {
1824 int err = f2fs_convert_inline_inode(inode);
1825 if (err)
1826 return err;
1827 }
bfad7c2d 1828 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1829}
1830
429511cd
CY
1831void init_extent_cache_info(struct f2fs_sb_info *sbi)
1832{
1833 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1834 init_rwsem(&sbi->extent_tree_lock);
1835 INIT_LIST_HEAD(&sbi->extent_list);
1836 spin_lock_init(&sbi->extent_lock);
1837 sbi->total_ext_tree = 0;
1838 atomic_set(&sbi->total_ext_node, 0);
1839}
1840
1841int __init create_extent_cache(void)
1842{
1843 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1844 sizeof(struct extent_tree));
1845 if (!extent_tree_slab)
1846 return -ENOMEM;
1847 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1848 sizeof(struct extent_node));
1849 if (!extent_node_slab) {
1850 kmem_cache_destroy(extent_tree_slab);
1851 return -ENOMEM;
1852 }
1853 return 0;
1854}
1855
1856void destroy_extent_cache(void)
1857{
1858 kmem_cache_destroy(extent_node_slab);
1859 kmem_cache_destroy(extent_tree_slab);
1860}
1861
eb47b800
JK
1862const struct address_space_operations f2fs_dblock_aops = {
1863 .readpage = f2fs_read_data_page,
1864 .readpages = f2fs_read_data_pages,
1865 .writepage = f2fs_write_data_page,
1866 .writepages = f2fs_write_data_pages,
1867 .write_begin = f2fs_write_begin,
a1dd3c13 1868 .write_end = f2fs_write_end,
eb47b800 1869 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1870 .invalidatepage = f2fs_invalidate_page,
1871 .releasepage = f2fs_release_page,
eb47b800 1872 .direct_IO = f2fs_direct_IO,
c01e54b7 1873 .bmap = f2fs_bmap,
eb47b800 1874};
This page took 0.230338 seconds and 5 git commands to generate.