f2fs: use extent_cache by default
[deliverable/linux.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
4375a336
JK
37 if (f2fs_bio_encrypted(bio)) {
38 if (err) {
39 f2fs_release_crypto_ctx(bio->bi_private);
40 } else {
41 f2fs_end_io_crypto_work(bio->bi_private, bio);
42 return;
43 }
44 }
45
12377024
CY
46 bio_for_each_segment_all(bvec, bio, i) {
47 struct page *page = bvec->bv_page;
f1e88660
JK
48
49 if (!err) {
50 SetPageUptodate(page);
51 } else {
52 ClearPageUptodate(page);
53 SetPageError(page);
54 }
55 unlock_page(page);
56 }
f1e88660
JK
57 bio_put(bio);
58}
59
93dfe2ac
JK
60static void f2fs_write_end_io(struct bio *bio, int err)
61{
1b1f559f 62 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
63 struct bio_vec *bvec;
64 int i;
93dfe2ac 65
f568849e 66 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
67 struct page *page = bvec->bv_page;
68
4375a336
JK
69 f2fs_restore_and_release_control_page(&page);
70
f568849e 71 if (unlikely(err)) {
cf779cab 72 set_page_dirty(page);
93dfe2ac 73 set_bit(AS_EIO, &page->mapping->flags);
744602cf 74 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
75 }
76 end_page_writeback(page);
77 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 78 }
93dfe2ac 79
93dfe2ac
JK
80 if (!get_pages(sbi, F2FS_WRITEBACK) &&
81 !list_empty(&sbi->cp_wait.task_list))
82 wake_up(&sbi->cp_wait);
83
84 bio_put(bio);
85}
86
940a6d34
GZ
87/*
88 * Low-level block read/write IO operations.
89 */
90static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
91 int npages, bool is_read)
92{
93 struct bio *bio;
94
95 /* No failure on bio allocation */
96 bio = bio_alloc(GFP_NOIO, npages);
97
98 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 99 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 100 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
12377024 101 bio->bi_private = is_read ? NULL : sbi;
940a6d34
GZ
102
103 return bio;
104}
105
458e6197 106static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 107{
458e6197 108 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
109
110 if (!io->bio)
111 return;
112
6a8f8ca5 113 if (is_read_io(fio->rw))
2ace38e0 114 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 115 else
2ace38e0 116 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 117
6a8f8ca5 118 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
119 io->bio = NULL;
120}
121
122void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 123 enum page_type type, int rw)
93dfe2ac
JK
124{
125 enum page_type btype = PAGE_TYPE_OF_BIO(type);
126 struct f2fs_bio_info *io;
127
128 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
129
df0f8dc0 130 down_write(&io->io_rwsem);
458e6197
JK
131
132 /* change META to META_FLUSH in the checkpoint procedure */
133 if (type >= META_FLUSH) {
134 io->fio.type = META_FLUSH;
0f7b2abd
JK
135 if (test_opt(sbi, NOBARRIER))
136 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
137 else
138 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
139 }
140 __submit_merged_bio(io);
df0f8dc0 141 up_write(&io->io_rwsem);
93dfe2ac
JK
142}
143
144/*
145 * Fill the locked page with data located in the block address.
146 * Return unlocked page.
147 */
05ca3632 148int f2fs_submit_page_bio(struct f2fs_io_info *fio)
93dfe2ac 149{
93dfe2ac 150 struct bio *bio;
4375a336 151 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
93dfe2ac 152
2ace38e0 153 trace_f2fs_submit_page_bio(page, fio);
05ca3632 154 f2fs_trace_ios(fio, 0);
93dfe2ac
JK
155
156 /* Allocate a new bio */
05ca3632 157 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
158
159 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
160 bio_put(bio);
161 f2fs_put_page(page, 1);
162 return -EFAULT;
163 }
164
cf04e8eb 165 submit_bio(fio->rw, bio);
93dfe2ac
JK
166 return 0;
167}
168
05ca3632 169void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
93dfe2ac 170{
05ca3632 171 struct f2fs_sb_info *sbi = fio->sbi;
458e6197 172 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 173 struct f2fs_bio_info *io;
940a6d34 174 bool is_read = is_read_io(fio->rw);
4375a336 175 struct page *bio_page;
93dfe2ac 176
940a6d34 177 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 178
cf04e8eb 179 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 180
df0f8dc0 181 down_write(&io->io_rwsem);
93dfe2ac 182
940a6d34 183 if (!is_read)
93dfe2ac
JK
184 inc_page_count(sbi, F2FS_WRITEBACK);
185
cf04e8eb 186 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
187 io->fio.rw != fio->rw))
188 __submit_merged_bio(io);
93dfe2ac
JK
189alloc_new:
190 if (io->bio == NULL) {
90a893c7 191 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 192
cf04e8eb 193 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 194 io->fio = *fio;
93dfe2ac
JK
195 }
196
4375a336
JK
197 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
198
199 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
93dfe2ac 200 PAGE_CACHE_SIZE) {
458e6197 201 __submit_merged_bio(io);
93dfe2ac
JK
202 goto alloc_new;
203 }
204
cf04e8eb 205 io->last_block_in_bio = fio->blk_addr;
05ca3632 206 f2fs_trace_ios(fio, 0);
93dfe2ac 207
df0f8dc0 208 up_write(&io->io_rwsem);
05ca3632 209 trace_f2fs_submit_page_mbio(fio->page, fio);
93dfe2ac
JK
210}
211
0a8165d7 212/*
eb47b800
JK
213 * Lock ordering for the change of data block address:
214 * ->data_page
215 * ->node_page
216 * update block addresses in the node page
217 */
216a620a 218void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
219{
220 struct f2fs_node *rn;
221 __le32 *addr_array;
222 struct page *node_page = dn->node_page;
223 unsigned int ofs_in_node = dn->ofs_in_node;
224
5514f0aa 225 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 226
45590710 227 rn = F2FS_NODE(node_page);
eb47b800
JK
228
229 /* Get physical address of data block */
230 addr_array = blkaddr_in_node(rn);
e1509cf2 231 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
232 set_page_dirty(node_page);
233}
234
235int reserve_new_block(struct dnode_of_data *dn)
236{
4081363f 237 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 238
6bacf52f 239 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 240 return -EPERM;
cfb271d4 241 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
242 return -ENOSPC;
243
c01e2853
NJ
244 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
245
eb47b800 246 dn->data_blkaddr = NEW_ADDR;
216a620a 247 set_data_blkaddr(dn);
a18ff063 248 mark_inode_dirty(dn->inode);
eb47b800
JK
249 sync_inode_page(dn);
250 return 0;
251}
252
b600965c
HL
253int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
254{
255 bool need_put = dn->inode_page ? false : true;
256 int err;
257
258 err = get_dnode_of_data(dn, index, ALLOC_NODE);
259 if (err)
260 return err;
a8865372 261
b600965c
HL
262 if (dn->data_blkaddr == NULL_ADDR)
263 err = reserve_new_block(dn);
a8865372 264 if (err || need_put)
b600965c
HL
265 f2fs_put_dnode(dn);
266 return err;
267}
268
429511cd
CY
269static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
270 struct extent_tree *et, struct extent_info *ei,
271 struct rb_node *parent, struct rb_node **p)
272{
273 struct extent_node *en;
274
275 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
276 if (!en)
277 return NULL;
278
279 en->ei = *ei;
280 INIT_LIST_HEAD(&en->list);
281
282 rb_link_node(&en->rb_node, parent, p);
283 rb_insert_color(&en->rb_node, &et->root);
284 et->count++;
285 atomic_inc(&sbi->total_ext_node);
286 return en;
287}
288
289static void __detach_extent_node(struct f2fs_sb_info *sbi,
290 struct extent_tree *et, struct extent_node *en)
291{
292 rb_erase(&en->rb_node, &et->root);
293 et->count--;
294 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
295
296 if (et->cached_en == en)
297 et->cached_en = NULL;
429511cd
CY
298}
299
93dfc526
CY
300static struct extent_tree *__grab_extent_tree(struct inode *inode)
301{
302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
303 struct extent_tree *et;
304 nid_t ino = inode->i_ino;
305
306 down_write(&sbi->extent_tree_lock);
307 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
308 if (!et) {
309 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
310 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
311 memset(et, 0, sizeof(struct extent_tree));
312 et->ino = ino;
313 et->root = RB_ROOT;
314 et->cached_en = NULL;
315 rwlock_init(&et->lock);
316 atomic_set(&et->refcount, 0);
317 et->count = 0;
318 sbi->total_ext_tree++;
319 }
320 atomic_inc(&et->refcount);
321 up_write(&sbi->extent_tree_lock);
322
3e72f721
JK
323 /* never died untill evict_inode */
324 F2FS_I(inode)->extent_tree = et;
325
93dfc526
CY
326 return et;
327}
328
429511cd
CY
329static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
330 unsigned int fofs)
331{
332 struct rb_node *node = et->root.rb_node;
333 struct extent_node *en;
334
62c8af65
CY
335 if (et->cached_en) {
336 struct extent_info *cei = &et->cached_en->ei;
337
338 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
339 return et->cached_en;
340 }
341
429511cd
CY
342 while (node) {
343 en = rb_entry(node, struct extent_node, rb_node);
344
244f4fc1 345 if (fofs < en->ei.fofs)
429511cd 346 node = node->rb_left;
244f4fc1 347 else if (fofs >= en->ei.fofs + en->ei.len)
429511cd 348 node = node->rb_right;
244f4fc1 349 else
429511cd
CY
350 return en;
351 }
352 return NULL;
353}
354
355static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
356 struct extent_tree *et, struct extent_node *en)
357{
358 struct extent_node *prev;
359 struct rb_node *node;
360
361 node = rb_prev(&en->rb_node);
362 if (!node)
363 return NULL;
364
365 prev = rb_entry(node, struct extent_node, rb_node);
366 if (__is_back_mergeable(&en->ei, &prev->ei)) {
367 en->ei.fofs = prev->ei.fofs;
368 en->ei.blk = prev->ei.blk;
369 en->ei.len += prev->ei.len;
370 __detach_extent_node(sbi, et, prev);
371 return prev;
372 }
373 return NULL;
374}
375
376static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
377 struct extent_tree *et, struct extent_node *en)
378{
379 struct extent_node *next;
380 struct rb_node *node;
381
382 node = rb_next(&en->rb_node);
383 if (!node)
384 return NULL;
385
386 next = rb_entry(node, struct extent_node, rb_node);
387 if (__is_front_mergeable(&en->ei, &next->ei)) {
388 en->ei.len += next->ei.len;
389 __detach_extent_node(sbi, et, next);
390 return next;
391 }
392 return NULL;
393}
394
395static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
396 struct extent_tree *et, struct extent_info *ei,
397 struct extent_node **den)
398{
399 struct rb_node **p = &et->root.rb_node;
400 struct rb_node *parent = NULL;
401 struct extent_node *en;
402
403 while (*p) {
404 parent = *p;
405 en = rb_entry(parent, struct extent_node, rb_node);
406
407 if (ei->fofs < en->ei.fofs) {
408 if (__is_front_mergeable(ei, &en->ei)) {
409 f2fs_bug_on(sbi, !den);
410 en->ei.fofs = ei->fofs;
411 en->ei.blk = ei->blk;
412 en->ei.len += ei->len;
413 *den = __try_back_merge(sbi, et, en);
3e72f721 414 goto update_out;
429511cd
CY
415 }
416 p = &(*p)->rb_left;
417 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
418 if (__is_back_mergeable(ei, &en->ei)) {
419 f2fs_bug_on(sbi, !den);
420 en->ei.len += ei->len;
421 *den = __try_front_merge(sbi, et, en);
3e72f721 422 goto update_out;
429511cd
CY
423 }
424 p = &(*p)->rb_right;
425 } else {
426 f2fs_bug_on(sbi, 1);
427 }
428 }
429
3e72f721
JK
430 en = __attach_extent_node(sbi, et, ei, parent, p);
431 if (!en)
432 return NULL;
433update_out:
434 if (en->ei.len > et->largest.len)
435 et->largest = en->ei;
436 et->cached_en = en;
437 return en;
429511cd
CY
438}
439
440static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
441 struct extent_tree *et, bool free_all)
442{
443 struct rb_node *node, *next;
444 struct extent_node *en;
445 unsigned int count = et->count;
446
447 node = rb_first(&et->root);
448 while (node) {
449 next = rb_next(node);
450 en = rb_entry(node, struct extent_node, rb_node);
451
452 if (free_all) {
453 spin_lock(&sbi->extent_lock);
454 if (!list_empty(&en->list))
455 list_del_init(&en->list);
456 spin_unlock(&sbi->extent_lock);
457 }
458
459 if (free_all || list_empty(&en->list)) {
460 __detach_extent_node(sbi, et, en);
461 kmem_cache_free(extent_node_slab, en);
462 }
463 node = next;
464 }
465
466 return count - et->count;
467}
468
3e72f721
JK
469static void __drop_largest_extent(struct inode *inode, pgoff_t fofs)
470{
471 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
472
473 if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
474 largest->len = 0;
475}
476
477void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
028a41e8
CY
478{
479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
480 struct extent_tree *et;
481 struct extent_node *en;
482 struct extent_info ei;
483
3e72f721 484 if (!f2fs_may_extent_tree(inode))
028a41e8
CY
485 return;
486
487 et = __grab_extent_tree(inode);
488
3e72f721
JK
489 if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
490 return;
028a41e8
CY
491
492 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
493 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
494
3e72f721
JK
495 write_lock(&et->lock);
496 if (et->count)
497 goto out;
498
028a41e8
CY
499 en = __insert_extent_tree(sbi, et, &ei, NULL);
500 if (en) {
028a41e8
CY
501 spin_lock(&sbi->extent_lock);
502 list_add_tail(&en->list, &sbi->extent_list);
503 spin_unlock(&sbi->extent_lock);
504 }
505out:
506 write_unlock(&et->lock);
028a41e8
CY
507}
508
429511cd
CY
509static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
510 struct extent_info *ei)
511{
512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 513 struct extent_tree *et = F2FS_I(inode)->extent_tree;
429511cd
CY
514 struct extent_node *en;
515
3e72f721 516 f2fs_bug_on(sbi, !et);
1ec4610c 517
3e72f721 518 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
429511cd
CY
519
520 read_lock(&et->lock);
521 en = __lookup_extent_tree(et, pgofs);
522 if (en) {
523 *ei = en->ei;
524 spin_lock(&sbi->extent_lock);
525 if (!list_empty(&en->list))
526 list_move_tail(&en->list, &sbi->extent_list);
244f4fc1 527 et->cached_en = en;
429511cd
CY
528 spin_unlock(&sbi->extent_lock);
529 stat_inc_read_hit(sbi->sb);
530 }
531 stat_inc_total_hit(sbi->sb);
532 read_unlock(&et->lock);
533
1ec4610c 534 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
429511cd
CY
535 return en ? true : false;
536}
537
3e72f721
JK
538/* return true, if on-disk extent should be updated */
539static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
429511cd
CY
540 block_t blkaddr)
541{
542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 543 struct extent_tree *et = F2FS_I(inode)->extent_tree;
429511cd
CY
544 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
545 struct extent_node *den = NULL;
3e72f721 546 struct extent_info ei, dei, prev;
429511cd
CY
547 unsigned int endofs;
548
3e72f721
JK
549 if (!et)
550 return false;
1ec4610c 551
3e72f721 552 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
429511cd
CY
553
554 write_lock(&et->lock);
555
3e72f721
JK
556 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
557 write_unlock(&et->lock);
558 return false;
559 }
560
561 prev = et->largest;
562 dei.len = 0;
563
564 /* we do not guarantee that the largest extent is cached all the time */
565 __drop_largest_extent(inode, fofs);
566
429511cd
CY
567 /* 1. lookup and remove existing extent info in cache */
568 en = __lookup_extent_tree(et, fofs);
569 if (!en)
570 goto update_extent;
571
572 dei = en->ei;
573 __detach_extent_node(sbi, et, en);
574
575 /* 2. if extent can be split more, split and insert the left part */
576 if (dei.len > 1) {
577 /* insert left part of split extent into cache */
578 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
579 set_extent_info(&ei, dei.fofs, dei.blk,
580 fofs - dei.fofs);
581 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
582 }
583
584 /* insert right part of split extent into cache */
585 endofs = dei.fofs + dei.len - 1;
586 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
587 set_extent_info(&ei, fofs + 1,
7a2cb678 588 fofs - dei.fofs + dei.blk + 1, endofs - fofs);
429511cd
CY
589 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
590 }
591 }
592
593update_extent:
594 /* 3. update extent in extent cache */
595 if (blkaddr) {
596 set_extent_info(&ei, fofs, blkaddr, 1);
597 en3 = __insert_extent_tree(sbi, et, &ei, &den);
3e72f721
JK
598
599 /* give up extent_cache, if split and small updates happen */
600 if (dei.len >= 1 &&
601 prev.len < F2FS_MIN_EXTENT_LEN &&
602 et->largest.len < F2FS_MIN_EXTENT_LEN) {
603 et->largest.len = 0;
604 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
605 }
429511cd
CY
606 }
607
608 /* 4. update in global extent list */
609 spin_lock(&sbi->extent_lock);
610 if (en && !list_empty(&en->list))
611 list_del(&en->list);
612 /*
613 * en1 and en2 split from en, they will become more and more smaller
614 * fragments after splitting several times. So if the length is smaller
615 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
616 */
617 if (en1)
618 list_add_tail(&en1->list, &sbi->extent_list);
619 if (en2)
620 list_add_tail(&en2->list, &sbi->extent_list);
621 if (en3) {
622 if (list_empty(&en3->list))
623 list_add_tail(&en3->list, &sbi->extent_list);
624 else
625 list_move_tail(&en3->list, &sbi->extent_list);
626 }
627 if (den && !list_empty(&den->list))
628 list_del(&den->list);
629 spin_unlock(&sbi->extent_lock);
630
631 /* 5. release extent node */
632 if (en)
633 kmem_cache_free(extent_node_slab, en);
634 if (den)
635 kmem_cache_free(extent_node_slab, den);
636
3e72f721
JK
637 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
638 __free_extent_tree(sbi, et, true);
0bdee482 639
3e72f721 640 write_unlock(&et->lock);
0bdee482 641
3e72f721 642 return !__is_extent_same(&prev, &et->largest);
0bdee482
CY
643}
644
554df79e 645unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
429511cd
CY
646{
647 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
648 struct extent_node *en, *tmp;
649 unsigned long ino = F2FS_ROOT_INO(sbi);
3e72f721 650 struct radix_tree_root *root = &sbi->extent_tree_root;
429511cd 651 unsigned int found;
1ec4610c 652 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 653
1dcc336b 654 if (!test_opt(sbi, EXTENT_CACHE))
554df79e 655 return 0;
429511cd
CY
656
657 spin_lock(&sbi->extent_lock);
658 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
659 if (!nr_shrink--)
660 break;
661 list_del_init(&en->list);
662 }
663 spin_unlock(&sbi->extent_lock);
664
3e72f721 665 if (!down_write_trylock(&sbi->extent_tree_lock))
554df79e
JK
666 goto out;
667
3e72f721 668 while ((found = radix_tree_gang_lookup(root,
429511cd
CY
669 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
670 unsigned i;
671
672 ino = treevec[found - 1]->ino + 1;
673 for (i = 0; i < found; i++) {
674 struct extent_tree *et = treevec[i];
675
429511cd 676 write_lock(&et->lock);
1ec4610c 677 node_cnt += __free_extent_tree(sbi, et, false);
429511cd 678 write_unlock(&et->lock);
3e72f721
JK
679 if (!atomic_read(&et->refcount) && !et->count) {
680 radix_tree_delete(root, et->ino);
681 kmem_cache_free(extent_tree_slab, et);
682 sbi->total_ext_tree--;
683 tree_cnt++;
684 }
429511cd
CY
685 }
686 }
687 up_write(&sbi->extent_tree_lock);
554df79e 688out:
1ec4610c 689 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
554df79e
JK
690
691 return node_cnt + tree_cnt;
429511cd
CY
692}
693
3e72f721 694unsigned int f2fs_destroy_extent_node(struct inode *inode)
429511cd
CY
695{
696 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 697 struct extent_tree *et = F2FS_I(inode)->extent_tree;
1ec4610c 698 unsigned int node_cnt = 0;
429511cd 699
93dfc526 700 if (!et)
3e72f721 701 return 0;
429511cd 702
429511cd 703 write_lock(&et->lock);
1ec4610c 704 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
705 write_unlock(&et->lock);
706
3e72f721
JK
707 return node_cnt;
708}
429511cd 709
3e72f721
JK
710void f2fs_destroy_extent_tree(struct inode *inode)
711{
712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
713 struct extent_tree *et = F2FS_I(inode)->extent_tree;
714 unsigned int node_cnt = 0;
715
716 if (!et)
717 return;
718
719 if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
720 atomic_dec(&et->refcount);
721 return;
429511cd 722 }
3e72f721
JK
723
724 /* free all extent info belong to this extent tree */
725 node_cnt = f2fs_destroy_extent_node(inode);
726
727 /* delete extent tree entry in radix tree */
728 down_write(&sbi->extent_tree_lock);
729 atomic_dec(&et->refcount);
429511cd
CY
730 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
731 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
732 kmem_cache_free(extent_tree_slab, et);
733 sbi->total_ext_tree--;
734 up_write(&sbi->extent_tree_lock);
eb47b800 735
3e72f721 736 F2FS_I(inode)->extent_tree = NULL;
028a41e8 737
3e72f721
JK
738 trace_f2fs_destroy_extent_tree(inode, node_cnt);
739 return;
028a41e8
CY
740}
741
7e4dde79
CY
742static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
743 struct extent_info *ei)
744{
3e72f721 745 if (!f2fs_may_extent_tree(inode))
91c5d9bc
CY
746 return false;
747
3e72f721 748 return f2fs_lookup_extent_tree(inode, pgofs, ei);
7e4dde79
CY
749}
750
751void f2fs_update_extent_cache(struct dnode_of_data *dn)
752{
753 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
754 pgoff_t fofs;
755
3e72f721 756 if (!f2fs_may_extent_tree(dn->inode))
91c5d9bc
CY
757 return;
758
3e72f721
JK
759 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
760
7e4dde79
CY
761 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
762 dn->ofs_in_node;
763
3e72f721 764 if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 765 sync_inode_page(dn);
eb47b800
JK
766}
767
43f3eae1 768struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
eb47b800 769{
eb47b800
JK
770 struct address_space *mapping = inode->i_mapping;
771 struct dnode_of_data dn;
772 struct page *page;
cb3bc9ee 773 struct extent_info ei;
eb47b800 774 int err;
cf04e8eb 775 struct f2fs_io_info fio = {
05ca3632 776 .sbi = F2FS_I_SB(inode),
cf04e8eb 777 .type = DATA,
43f3eae1 778 .rw = rw,
4375a336 779 .encrypted_page = NULL,
cf04e8eb 780 };
eb47b800 781
4375a336
JK
782 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
783 return read_mapping_page(mapping, index, NULL);
784
9ac1349a 785 page = grab_cache_page(mapping, index);
650495de
JK
786 if (!page)
787 return ERR_PTR(-ENOMEM);
788
cb3bc9ee
CY
789 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
790 dn.data_blkaddr = ei.blk + index - ei.fofs;
791 goto got_it;
792 }
793
eb47b800 794 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 795 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
796 if (err) {
797 f2fs_put_page(page, 1);
eb47b800 798 return ERR_PTR(err);
650495de 799 }
eb47b800
JK
800 f2fs_put_dnode(&dn);
801
6bacf52f 802 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 803 f2fs_put_page(page, 1);
eb47b800 804 return ERR_PTR(-ENOENT);
650495de 805 }
cb3bc9ee 806got_it:
43f3eae1
JK
807 if (PageUptodate(page)) {
808 unlock_page(page);
eb47b800 809 return page;
43f3eae1 810 }
eb47b800 811
d59ff4df
JK
812 /*
813 * A new dentry page is allocated but not able to be written, since its
814 * new inode page couldn't be allocated due to -ENOSPC.
815 * In such the case, its blkaddr can be remained as NEW_ADDR.
816 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
817 */
818 if (dn.data_blkaddr == NEW_ADDR) {
819 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
820 SetPageUptodate(page);
43f3eae1 821 unlock_page(page);
d59ff4df
JK
822 return page;
823 }
eb47b800 824
cf04e8eb 825 fio.blk_addr = dn.data_blkaddr;
05ca3632
JK
826 fio.page = page;
827 err = f2fs_submit_page_bio(&fio);
393ff91f 828 if (err)
eb47b800 829 return ERR_PTR(err);
43f3eae1
JK
830 return page;
831}
832
833struct page *find_data_page(struct inode *inode, pgoff_t index)
834{
835 struct address_space *mapping = inode->i_mapping;
836 struct page *page;
837
838 page = find_get_page(mapping, index);
839 if (page && PageUptodate(page))
840 return page;
841 f2fs_put_page(page, 0);
842
843 page = get_read_data_page(inode, index, READ_SYNC);
844 if (IS_ERR(page))
845 return page;
846
847 if (PageUptodate(page))
848 return page;
849
850 wait_on_page_locked(page);
851 if (unlikely(!PageUptodate(page))) {
852 f2fs_put_page(page, 0);
853 return ERR_PTR(-EIO);
854 }
855 return page;
856}
857
858/*
859 * If it tries to access a hole, return an error.
860 * Because, the callers, functions in dir.c and GC, should be able to know
861 * whether this page exists or not.
862 */
863struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
864{
865 struct address_space *mapping = inode->i_mapping;
866 struct page *page;
867repeat:
868 page = get_read_data_page(inode, index, READ_SYNC);
869 if (IS_ERR(page))
870 return page;
393ff91f 871
43f3eae1 872 /* wait for read completion */
393ff91f 873 lock_page(page);
6bacf52f 874 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
875 f2fs_put_page(page, 1);
876 return ERR_PTR(-EIO);
eb47b800 877 }
6bacf52f 878 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
879 f2fs_put_page(page, 1);
880 goto repeat;
eb47b800
JK
881 }
882 return page;
883}
884
0a8165d7 885/*
eb47b800
JK
886 * Caller ensures that this data page is never allocated.
887 * A new zero-filled data page is allocated in the page cache.
39936837 888 *
4f4124d0
CY
889 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
890 * f2fs_unlock_op().
a8865372 891 * Note that, ipage is set only by make_empty_dir.
eb47b800 892 */
64aa7ed9 893struct page *get_new_data_page(struct inode *inode,
a8865372 894 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 895{
eb47b800
JK
896 struct address_space *mapping = inode->i_mapping;
897 struct page *page;
898 struct dnode_of_data dn;
899 int err;
01f28610
JK
900repeat:
901 page = grab_cache_page(mapping, index);
902 if (!page)
903 return ERR_PTR(-ENOMEM);
eb47b800 904
a8865372 905 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 906 err = f2fs_reserve_block(&dn, index);
01f28610
JK
907 if (err) {
908 f2fs_put_page(page, 1);
eb47b800 909 return ERR_PTR(err);
a8865372 910 }
01f28610
JK
911 if (!ipage)
912 f2fs_put_dnode(&dn);
eb47b800
JK
913
914 if (PageUptodate(page))
01f28610 915 goto got_it;
eb47b800
JK
916
917 if (dn.data_blkaddr == NEW_ADDR) {
918 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 919 SetPageUptodate(page);
eb47b800 920 } else {
4375a336 921 f2fs_put_page(page, 1);
a8865372 922
4375a336
JK
923 page = get_read_data_page(inode, index, READ_SYNC);
924 if (IS_ERR(page))
afcb7ca0 925 goto repeat;
4375a336
JK
926
927 /* wait for read completion */
928 lock_page(page);
eb47b800 929 }
01f28610 930got_it:
eb47b800
JK
931 if (new_i_size &&
932 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
933 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
934 /* Only the directory inode sets new_i_size */
935 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
936 }
937 return page;
938}
939
bfad7c2d
JK
940static int __allocate_data_block(struct dnode_of_data *dn)
941{
4081363f 942 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 943 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 944 struct f2fs_summary sum;
bfad7c2d 945 struct node_info ni;
38aa0889 946 int seg = CURSEG_WARM_DATA;
976e4c50 947 pgoff_t fofs;
bfad7c2d
JK
948
949 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
950 return -EPERM;
df6136ef
CY
951
952 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
953 if (dn->data_blkaddr == NEW_ADDR)
954 goto alloc;
955
bfad7c2d
JK
956 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
957 return -ENOSPC;
958
df6136ef 959alloc:
bfad7c2d
JK
960 get_node_info(sbi, dn->nid, &ni);
961 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
962
38aa0889
JK
963 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
964 seg = CURSEG_DIRECT_IO;
965
df6136ef
CY
966 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
967 &sum, seg);
216a620a 968 set_data_blkaddr(dn);
bfad7c2d 969
976e4c50
JK
970 /* update i_size */
971 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
972 dn->ofs_in_node;
973 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
974 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
975
3e72f721
JK
976 /* direct IO doesn't use extent cache to maximize the performance */
977 __drop_largest_extent(dn->inode, fofs);
978
bfad7c2d
JK
979 return 0;
980}
981
59b802e5
JK
982static void __allocate_data_blocks(struct inode *inode, loff_t offset,
983 size_t count)
984{
985 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
986 struct dnode_of_data dn;
987 u64 start = F2FS_BYTES_TO_BLK(offset);
988 u64 len = F2FS_BYTES_TO_BLK(count);
989 bool allocated;
990 u64 end_offset;
991
992 while (len) {
993 f2fs_balance_fs(sbi);
994 f2fs_lock_op(sbi);
995
996 /* When reading holes, we need its node page */
997 set_new_dnode(&dn, inode, NULL, NULL, 0);
998 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
999 goto out;
1000
1001 allocated = false;
1002 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1003
1004 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1005 block_t blkaddr;
1006
1007 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1008 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1009 if (__allocate_data_block(&dn))
1010 goto sync_out;
1011 allocated = true;
1012 }
1013 len--;
1014 start++;
1015 dn.ofs_in_node++;
1016 }
1017
1018 if (allocated)
1019 sync_inode_page(&dn);
1020
1021 f2fs_put_dnode(&dn);
1022 f2fs_unlock_op(sbi);
1023 }
1024 return;
1025
1026sync_out:
1027 if (allocated)
1028 sync_inode_page(&dn);
1029 f2fs_put_dnode(&dn);
1030out:
1031 f2fs_unlock_op(sbi);
1032 return;
1033}
1034
0a8165d7 1035/*
003a3e1d
JK
1036 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1037 * f2fs_map_blocks structure.
4f4124d0
CY
1038 * If original data blocks are allocated, then give them to blockdev.
1039 * Otherwise,
1040 * a. preallocate requested block addresses
1041 * b. do not use extent cache for better performance
1042 * c. give the block addresses to blockdev
eb47b800 1043 */
003a3e1d
JK
1044static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1045 int create, bool fiemap)
eb47b800 1046{
003a3e1d 1047 unsigned int maxblocks = map->m_len;
eb47b800 1048 struct dnode_of_data dn;
bfad7c2d
JK
1049 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1050 pgoff_t pgofs, end_offset;
1051 int err = 0, ofs = 1;
a2e7d1bf 1052 struct extent_info ei;
bfad7c2d 1053 bool allocated = false;
eb47b800 1054
003a3e1d
JK
1055 map->m_len = 0;
1056 map->m_flags = 0;
1057
1058 /* it only supports block size == page size */
1059 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1060
7e4dde79 1061 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1062 map->m_pblk = ei.blk + pgofs - ei.fofs;
1063 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1064 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1065 goto out;
a2e7d1bf 1066 }
bfad7c2d 1067
59b802e5 1068 if (create)
4081363f 1069 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1070
1071 /* When reading holes, we need its node page */
1072 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1073 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1074 if (err) {
bfad7c2d
JK
1075 if (err == -ENOENT)
1076 err = 0;
1077 goto unlock_out;
848753aa 1078 }
ccfb3000 1079 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1080 goto put_out;
eb47b800 1081
bfad7c2d 1082 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1083 map->m_flags = F2FS_MAP_MAPPED;
1084 map->m_pblk = dn.data_blkaddr;
7f63eb77
JK
1085 if (dn.data_blkaddr == NEW_ADDR)
1086 map->m_flags |= F2FS_MAP_UNWRITTEN;
bfad7c2d
JK
1087 } else if (create) {
1088 err = __allocate_data_block(&dn);
1089 if (err)
1090 goto put_out;
1091 allocated = true;
003a3e1d
JK
1092 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1093 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1094 } else {
1095 goto put_out;
1096 }
1097
6403eb1f 1098 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1099 map->m_len = 1;
bfad7c2d
JK
1100 dn.ofs_in_node++;
1101 pgofs++;
1102
1103get_next:
1104 if (dn.ofs_in_node >= end_offset) {
1105 if (allocated)
1106 sync_inode_page(&dn);
1107 allocated = false;
1108 f2fs_put_dnode(&dn);
1109
1110 set_new_dnode(&dn, inode, NULL, NULL, 0);
1111 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1112 if (err) {
bfad7c2d
JK
1113 if (err == -ENOENT)
1114 err = 0;
1115 goto unlock_out;
1116 }
ccfb3000 1117 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1118 goto put_out;
1119
6403eb1f 1120 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1121 }
eb47b800 1122
003a3e1d 1123 if (maxblocks > map->m_len) {
bfad7c2d
JK
1124 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1125 if (blkaddr == NULL_ADDR && create) {
1126 err = __allocate_data_block(&dn);
1127 if (err)
1128 goto sync_out;
1129 allocated = true;
003a3e1d 1130 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1131 blkaddr = dn.data_blkaddr;
1132 }
e1c42045 1133 /* Give more consecutive addresses for the readahead */
7f63eb77
JK
1134 if ((map->m_pblk != NEW_ADDR &&
1135 blkaddr == (map->m_pblk + ofs)) ||
1136 (map->m_pblk == NEW_ADDR &&
1137 blkaddr == NEW_ADDR)) {
bfad7c2d
JK
1138 ofs++;
1139 dn.ofs_in_node++;
1140 pgofs++;
003a3e1d 1141 map->m_len++;
bfad7c2d
JK
1142 goto get_next;
1143 }
eb47b800 1144 }
bfad7c2d
JK
1145sync_out:
1146 if (allocated)
1147 sync_inode_page(&dn);
1148put_out:
eb47b800 1149 f2fs_put_dnode(&dn);
bfad7c2d
JK
1150unlock_out:
1151 if (create)
4081363f 1152 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1153out:
003a3e1d 1154 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1155 return err;
eb47b800
JK
1156}
1157
003a3e1d
JK
1158static int __get_data_block(struct inode *inode, sector_t iblock,
1159 struct buffer_head *bh, int create, bool fiemap)
1160{
1161 struct f2fs_map_blocks map;
1162 int ret;
1163
1164 map.m_lblk = iblock;
1165 map.m_len = bh->b_size >> inode->i_blkbits;
1166
1167 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1168 if (!ret) {
1169 map_bh(bh, inode->i_sb, map.m_pblk);
1170 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1171 bh->b_size = map.m_len << inode->i_blkbits;
1172 }
1173 return ret;
1174}
1175
ccfb3000
JK
1176static int get_data_block(struct inode *inode, sector_t iblock,
1177 struct buffer_head *bh_result, int create)
1178{
1179 return __get_data_block(inode, iblock, bh_result, create, false);
1180}
1181
1182static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1183 struct buffer_head *bh_result, int create)
1184{
1185 return __get_data_block(inode, iblock, bh_result, create, true);
1186}
1187
7f63eb77
JK
1188static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1189{
1190 return (offset >> inode->i_blkbits);
1191}
1192
1193static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1194{
1195 return (blk << inode->i_blkbits);
1196}
1197
9ab70134
JK
1198int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1199 u64 start, u64 len)
1200{
7f63eb77
JK
1201 struct buffer_head map_bh;
1202 sector_t start_blk, last_blk;
1203 loff_t isize = i_size_read(inode);
1204 u64 logical = 0, phys = 0, size = 0;
1205 u32 flags = 0;
1206 bool past_eof = false, whole_file = false;
1207 int ret = 0;
1208
1209 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1210 if (ret)
1211 return ret;
1212
1213 mutex_lock(&inode->i_mutex);
1214
1215 if (len >= isize) {
1216 whole_file = true;
1217 len = isize;
1218 }
1219
1220 if (logical_to_blk(inode, len) == 0)
1221 len = blk_to_logical(inode, 1);
1222
1223 start_blk = logical_to_blk(inode, start);
1224 last_blk = logical_to_blk(inode, start + len - 1);
1225next:
1226 memset(&map_bh, 0, sizeof(struct buffer_head));
1227 map_bh.b_size = len;
1228
1229 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1230 if (ret)
1231 goto out;
1232
1233 /* HOLE */
1234 if (!buffer_mapped(&map_bh)) {
1235 start_blk++;
1236
1237 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1238 past_eof = 1;
1239
1240 if (past_eof && size) {
1241 flags |= FIEMAP_EXTENT_LAST;
1242 ret = fiemap_fill_next_extent(fieinfo, logical,
1243 phys, size, flags);
1244 } else if (size) {
1245 ret = fiemap_fill_next_extent(fieinfo, logical,
1246 phys, size, flags);
1247 size = 0;
1248 }
1249
1250 /* if we have holes up to/past EOF then we're done */
1251 if (start_blk > last_blk || past_eof || ret)
1252 goto out;
1253 } else {
1254 if (start_blk > last_blk && !whole_file) {
1255 ret = fiemap_fill_next_extent(fieinfo, logical,
1256 phys, size, flags);
1257 goto out;
1258 }
1259
1260 /*
1261 * if size != 0 then we know we already have an extent
1262 * to add, so add it.
1263 */
1264 if (size) {
1265 ret = fiemap_fill_next_extent(fieinfo, logical,
1266 phys, size, flags);
1267 if (ret)
1268 goto out;
1269 }
1270
1271 logical = blk_to_logical(inode, start_blk);
1272 phys = blk_to_logical(inode, map_bh.b_blocknr);
1273 size = map_bh.b_size;
1274 flags = 0;
1275 if (buffer_unwritten(&map_bh))
1276 flags = FIEMAP_EXTENT_UNWRITTEN;
1277
1278 start_blk += logical_to_blk(inode, size);
1279
1280 /*
1281 * If we are past the EOF, then we need to make sure as
1282 * soon as we find a hole that the last extent we found
1283 * is marked with FIEMAP_EXTENT_LAST
1284 */
1285 if (!past_eof && logical + size >= isize)
1286 past_eof = true;
1287 }
1288 cond_resched();
1289 if (fatal_signal_pending(current))
1290 ret = -EINTR;
1291 else
1292 goto next;
1293out:
1294 if (ret == 1)
1295 ret = 0;
1296
1297 mutex_unlock(&inode->i_mutex);
1298 return ret;
9ab70134
JK
1299}
1300
f1e88660
JK
1301/*
1302 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1303 * Major change was from block_size == page_size in f2fs by default.
1304 */
1305static int f2fs_mpage_readpages(struct address_space *mapping,
1306 struct list_head *pages, struct page *page,
1307 unsigned nr_pages)
1308{
1309 struct bio *bio = NULL;
1310 unsigned page_idx;
1311 sector_t last_block_in_bio = 0;
1312 struct inode *inode = mapping->host;
1313 const unsigned blkbits = inode->i_blkbits;
1314 const unsigned blocksize = 1 << blkbits;
1315 sector_t block_in_file;
1316 sector_t last_block;
1317 sector_t last_block_in_file;
1318 sector_t block_nr;
1319 struct block_device *bdev = inode->i_sb->s_bdev;
1320 struct f2fs_map_blocks map;
1321
1322 map.m_pblk = 0;
1323 map.m_lblk = 0;
1324 map.m_len = 0;
1325 map.m_flags = 0;
1326
1327 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1328
1329 prefetchw(&page->flags);
1330 if (pages) {
1331 page = list_entry(pages->prev, struct page, lru);
1332 list_del(&page->lru);
1333 if (add_to_page_cache_lru(page, mapping,
1334 page->index, GFP_KERNEL))
1335 goto next_page;
1336 }
1337
1338 block_in_file = (sector_t)page->index;
1339 last_block = block_in_file + nr_pages;
1340 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1341 blkbits;
1342 if (last_block > last_block_in_file)
1343 last_block = last_block_in_file;
1344
1345 /*
1346 * Map blocks using the previous result first.
1347 */
1348 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1349 block_in_file > map.m_lblk &&
1350 block_in_file < (map.m_lblk + map.m_len))
1351 goto got_it;
1352
1353 /*
1354 * Then do more f2fs_map_blocks() calls until we are
1355 * done with this page.
1356 */
1357 map.m_flags = 0;
1358
1359 if (block_in_file < last_block) {
1360 map.m_lblk = block_in_file;
1361 map.m_len = last_block - block_in_file;
1362
1363 if (f2fs_map_blocks(inode, &map, 0, false))
1364 goto set_error_page;
1365 }
1366got_it:
1367 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1368 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1369 SetPageMappedToDisk(page);
1370
1371 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1372 SetPageUptodate(page);
1373 goto confused;
1374 }
1375 } else {
1376 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1377 SetPageUptodate(page);
1378 unlock_page(page);
1379 goto next_page;
1380 }
1381
1382 /*
1383 * This page will go to BIO. Do we need to send this
1384 * BIO off first?
1385 */
1386 if (bio && (last_block_in_bio != block_nr - 1)) {
1387submit_and_realloc:
1388 submit_bio(READ, bio);
1389 bio = NULL;
1390 }
1391 if (bio == NULL) {
4375a336
JK
1392 struct f2fs_crypto_ctx *ctx = NULL;
1393
1394 if (f2fs_encrypted_inode(inode) &&
1395 S_ISREG(inode->i_mode)) {
1396 struct page *cpage;
1397
1398 ctx = f2fs_get_crypto_ctx(inode);
1399 if (IS_ERR(ctx))
1400 goto set_error_page;
1401
1402 /* wait the page to be moved by cleaning */
1403 cpage = find_lock_page(
1404 META_MAPPING(F2FS_I_SB(inode)),
1405 block_nr);
1406 if (cpage) {
1407 f2fs_wait_on_page_writeback(cpage,
1408 DATA);
1409 f2fs_put_page(cpage, 1);
1410 }
1411 }
1412
f1e88660
JK
1413 bio = bio_alloc(GFP_KERNEL,
1414 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
4375a336
JK
1415 if (!bio) {
1416 if (ctx)
1417 f2fs_release_crypto_ctx(ctx);
f1e88660 1418 goto set_error_page;
4375a336 1419 }
f1e88660
JK
1420 bio->bi_bdev = bdev;
1421 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
12377024 1422 bio->bi_end_io = f2fs_read_end_io;
4375a336 1423 bio->bi_private = ctx;
f1e88660
JK
1424 }
1425
1426 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1427 goto submit_and_realloc;
1428
1429 last_block_in_bio = block_nr;
1430 goto next_page;
1431set_error_page:
1432 SetPageError(page);
1433 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1434 unlock_page(page);
1435 goto next_page;
1436confused:
1437 if (bio) {
1438 submit_bio(READ, bio);
1439 bio = NULL;
1440 }
1441 unlock_page(page);
1442next_page:
1443 if (pages)
1444 page_cache_release(page);
1445 }
1446 BUG_ON(pages && !list_empty(pages));
1447 if (bio)
1448 submit_bio(READ, bio);
1449 return 0;
1450}
1451
eb47b800
JK
1452static int f2fs_read_data_page(struct file *file, struct page *page)
1453{
9ffe0fb5 1454 struct inode *inode = page->mapping->host;
b3d208f9 1455 int ret = -EAGAIN;
9ffe0fb5 1456
c20e89cd
CY
1457 trace_f2fs_readpage(page, DATA);
1458
e1c42045 1459 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1460 if (f2fs_has_inline_data(inode))
1461 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1462 if (ret == -EAGAIN)
f1e88660 1463 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1464 return ret;
eb47b800
JK
1465}
1466
1467static int f2fs_read_data_pages(struct file *file,
1468 struct address_space *mapping,
1469 struct list_head *pages, unsigned nr_pages)
1470{
9ffe0fb5
HL
1471 struct inode *inode = file->f_mapping->host;
1472
1473 /* If the file has inline data, skip readpages */
1474 if (f2fs_has_inline_data(inode))
1475 return 0;
1476
f1e88660 1477 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1478}
1479
05ca3632 1480int do_write_data_page(struct f2fs_io_info *fio)
eb47b800 1481{
05ca3632 1482 struct page *page = fio->page;
eb47b800 1483 struct inode *inode = page->mapping->host;
eb47b800
JK
1484 struct dnode_of_data dn;
1485 int err = 0;
1486
1487 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1488 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1489 if (err)
1490 return err;
1491
cf04e8eb 1492 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1493
1494 /* This page is already truncated */
2bca1e23
JK
1495 if (fio->blk_addr == NULL_ADDR) {
1496 ClearPageUptodate(page);
eb47b800 1497 goto out_writepage;
2bca1e23 1498 }
eb47b800 1499
4375a336
JK
1500 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1501 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1502 if (IS_ERR(fio->encrypted_page)) {
1503 err = PTR_ERR(fio->encrypted_page);
1504 goto out_writepage;
1505 }
1506 }
1507
eb47b800
JK
1508 set_page_writeback(page);
1509
1510 /*
1511 * If current allocation needs SSR,
1512 * it had better in-place writes for updated data.
1513 */
cf04e8eb 1514 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1515 !is_cold_data(page) &&
1516 need_inplace_update(inode))) {
05ca3632 1517 rewrite_data_page(fio);
fff04f90 1518 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1519 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1520 } else {
05ca3632 1521 write_data_page(&dn, fio);
216a620a 1522 set_data_blkaddr(&dn);
7e4dde79 1523 f2fs_update_extent_cache(&dn);
8ce67cb0 1524 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1525 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1526 if (page->index == 0)
1527 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1528 }
1529out_writepage:
1530 f2fs_put_dnode(&dn);
1531 return err;
1532}
1533
1534static int f2fs_write_data_page(struct page *page,
1535 struct writeback_control *wbc)
1536{
1537 struct inode *inode = page->mapping->host;
4081363f 1538 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1539 loff_t i_size = i_size_read(inode);
1540 const pgoff_t end_index = ((unsigned long long) i_size)
1541 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1542 unsigned offset = 0;
39936837 1543 bool need_balance_fs = false;
eb47b800 1544 int err = 0;
458e6197 1545 struct f2fs_io_info fio = {
05ca3632 1546 .sbi = sbi,
458e6197 1547 .type = DATA,
6c311ec6 1548 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
05ca3632 1549 .page = page,
4375a336 1550 .encrypted_page = NULL,
458e6197 1551 };
eb47b800 1552
ecda0de3
CY
1553 trace_f2fs_writepage(page, DATA);
1554
eb47b800 1555 if (page->index < end_index)
39936837 1556 goto write;
eb47b800
JK
1557
1558 /*
1559 * If the offset is out-of-range of file size,
1560 * this page does not have to be written to disk.
1561 */
1562 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1563 if ((page->index >= end_index + 1) || !offset)
39936837 1564 goto out;
eb47b800
JK
1565
1566 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1567write:
caf0047e 1568 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1569 goto redirty_out;
1e84371f
JK
1570 if (f2fs_is_drop_cache(inode))
1571 goto out;
1572 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1573 available_free_memory(sbi, BASE_CHECK))
1574 goto redirty_out;
eb47b800 1575
39936837 1576 /* Dentry blocks are controlled by checkpoint */
eb47b800 1577 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1578 if (unlikely(f2fs_cp_error(sbi)))
1579 goto redirty_out;
05ca3632 1580 err = do_write_data_page(&fio);
8618b881
JK
1581 goto done;
1582 }
9ffe0fb5 1583
cf779cab
JK
1584 /* we should bypass data pages to proceed the kworkder jobs */
1585 if (unlikely(f2fs_cp_error(sbi))) {
1586 SetPageError(page);
a7ffdbe2 1587 goto out;
cf779cab
JK
1588 }
1589
8618b881 1590 if (!wbc->for_reclaim)
39936837 1591 need_balance_fs = true;
8618b881 1592 else if (has_not_enough_free_secs(sbi, 0))
39936837 1593 goto redirty_out;
eb47b800 1594
b3d208f9 1595 err = -EAGAIN;
8618b881 1596 f2fs_lock_op(sbi);
b3d208f9
JK
1597 if (f2fs_has_inline_data(inode))
1598 err = f2fs_write_inline_data(inode, page);
1599 if (err == -EAGAIN)
05ca3632 1600 err = do_write_data_page(&fio);
8618b881
JK
1601 f2fs_unlock_op(sbi);
1602done:
1603 if (err && err != -ENOENT)
1604 goto redirty_out;
eb47b800 1605
eb47b800 1606 clear_cold_data(page);
39936837 1607out:
a7ffdbe2 1608 inode_dec_dirty_pages(inode);
2bca1e23
JK
1609 if (err)
1610 ClearPageUptodate(page);
eb47b800 1611 unlock_page(page);
39936837 1612 if (need_balance_fs)
eb47b800 1613 f2fs_balance_fs(sbi);
2aea39ec
JK
1614 if (wbc->for_reclaim)
1615 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1616 return 0;
1617
eb47b800 1618redirty_out:
76f60268 1619 redirty_page_for_writepage(wbc, page);
8618b881 1620 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1621}
1622
fa9150a8
NJ
1623static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1624 void *data)
1625{
1626 struct address_space *mapping = data;
1627 int ret = mapping->a_ops->writepage(page, wbc);
1628 mapping_set_error(mapping, ret);
1629 return ret;
1630}
1631
25ca923b 1632static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1633 struct writeback_control *wbc)
1634{
1635 struct inode *inode = mapping->host;
4081363f 1636 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1637 bool locked = false;
eb47b800 1638 int ret;
50c8cdb3 1639 long diff;
eb47b800 1640
e5748434
CY
1641 trace_f2fs_writepages(mapping->host, wbc, DATA);
1642
cfb185a1 1643 /* deal with chardevs and other special file */
1644 if (!mapping->a_ops->writepage)
1645 return 0;
1646
87d6f890 1647 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1648 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1649 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1650 goto skip_write;
87d6f890 1651
d5669f7b
JK
1652 /* during POR, we don't need to trigger writepage at all. */
1653 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1654 goto skip_write;
1655
50c8cdb3 1656 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1657
5463e7c1
JK
1658 if (!S_ISDIR(inode->i_mode)) {
1659 mutex_lock(&sbi->writepages);
1660 locked = true;
1661 }
fa9150a8 1662 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1663 if (locked)
1664 mutex_unlock(&sbi->writepages);
458e6197
JK
1665
1666 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1667
1668 remove_dirty_dir_inode(inode);
1669
50c8cdb3 1670 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1671 return ret;
d3baf95d
JK
1672
1673skip_write:
a7ffdbe2 1674 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1675 return 0;
eb47b800
JK
1676}
1677
3aab8f82
CY
1678static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1679{
1680 struct inode *inode = mapping->host;
1681
1682 if (to > inode->i_size) {
1683 truncate_pagecache(inode, inode->i_size);
764aa3e9 1684 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1685 }
1686}
1687
eb47b800
JK
1688static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1689 loff_t pos, unsigned len, unsigned flags,
1690 struct page **pagep, void **fsdata)
1691{
1692 struct inode *inode = mapping->host;
4081363f 1693 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1694 struct page *page, *ipage;
eb47b800
JK
1695 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1696 struct dnode_of_data dn;
1697 int err = 0;
1698
62aed044
CY
1699 trace_f2fs_write_begin(inode, pos, len, flags);
1700
eb47b800 1701 f2fs_balance_fs(sbi);
5f727395
JK
1702
1703 /*
1704 * We should check this at this moment to avoid deadlock on inode page
1705 * and #0 page. The locking rule for inline_data conversion should be:
1706 * lock_page(page #0) -> lock_page(inode_page)
1707 */
1708 if (index != 0) {
1709 err = f2fs_convert_inline_inode(inode);
1710 if (err)
1711 goto fail;
1712 }
afcb7ca0 1713repeat:
eb47b800 1714 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1715 if (!page) {
1716 err = -ENOMEM;
1717 goto fail;
1718 }
d5f66990 1719
eb47b800
JK
1720 *pagep = page;
1721
e479556b 1722 f2fs_lock_op(sbi);
9ba69cf9
JK
1723
1724 /* check inline_data */
1725 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1726 if (IS_ERR(ipage)) {
1727 err = PTR_ERR(ipage);
9ba69cf9 1728 goto unlock_fail;
cd34e296 1729 }
9ba69cf9 1730
b3d208f9
JK
1731 set_new_dnode(&dn, inode, ipage, ipage, 0);
1732
9ba69cf9 1733 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1734 if (pos + len <= MAX_INLINE_DATA) {
1735 read_inline_data(page, ipage);
1736 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1737 sync_inode_page(&dn);
1738 goto put_next;
b3d208f9 1739 }
5f727395
JK
1740 err = f2fs_convert_inline_page(&dn, page);
1741 if (err)
1742 goto put_fail;
b600965c 1743 }
9ba69cf9
JK
1744 err = f2fs_reserve_block(&dn, index);
1745 if (err)
8cdcb713 1746 goto put_fail;
b3d208f9 1747put_next:
9ba69cf9
JK
1748 f2fs_put_dnode(&dn);
1749 f2fs_unlock_op(sbi);
1750
eb47b800
JK
1751 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1752 return 0;
1753
b3d208f9
JK
1754 f2fs_wait_on_page_writeback(page, DATA);
1755
eb47b800
JK
1756 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1757 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1758 unsigned end = start + len;
1759
1760 /* Reading beyond i_size is simple: memset to zero */
1761 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1762 goto out;
eb47b800
JK
1763 }
1764
b3d208f9 1765 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1766 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1767 } else {
cf04e8eb 1768 struct f2fs_io_info fio = {
05ca3632 1769 .sbi = sbi,
cf04e8eb
JK
1770 .type = DATA,
1771 .rw = READ_SYNC,
1772 .blk_addr = dn.data_blkaddr,
05ca3632 1773 .page = page,
4375a336 1774 .encrypted_page = NULL,
cf04e8eb 1775 };
05ca3632 1776 err = f2fs_submit_page_bio(&fio);
9234f319
JK
1777 if (err)
1778 goto fail;
d54c795b 1779
393ff91f 1780 lock_page(page);
6bacf52f 1781 if (unlikely(!PageUptodate(page))) {
393ff91f 1782 f2fs_put_page(page, 1);
3aab8f82
CY
1783 err = -EIO;
1784 goto fail;
eb47b800 1785 }
6bacf52f 1786 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1787 f2fs_put_page(page, 1);
1788 goto repeat;
eb47b800 1789 }
4375a336
JK
1790
1791 /* avoid symlink page */
1792 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1793 err = f2fs_decrypt_one(inode, page);
1794 if (err) {
1795 f2fs_put_page(page, 1);
1796 goto fail;
1797 }
1798 }
eb47b800 1799 }
393ff91f 1800out:
eb47b800
JK
1801 SetPageUptodate(page);
1802 clear_cold_data(page);
1803 return 0;
9ba69cf9 1804
8cdcb713
JK
1805put_fail:
1806 f2fs_put_dnode(&dn);
9ba69cf9
JK
1807unlock_fail:
1808 f2fs_unlock_op(sbi);
b3d208f9 1809 f2fs_put_page(page, 1);
3aab8f82
CY
1810fail:
1811 f2fs_write_failed(mapping, pos + len);
1812 return err;
eb47b800
JK
1813}
1814
a1dd3c13
JK
1815static int f2fs_write_end(struct file *file,
1816 struct address_space *mapping,
1817 loff_t pos, unsigned len, unsigned copied,
1818 struct page *page, void *fsdata)
1819{
1820 struct inode *inode = page->mapping->host;
1821
dfb2bf38
CY
1822 trace_f2fs_write_end(inode, pos, len, copied);
1823
34ba94ba 1824 set_page_dirty(page);
a1dd3c13
JK
1825
1826 if (pos + copied > i_size_read(inode)) {
1827 i_size_write(inode, pos + copied);
1828 mark_inode_dirty(inode);
1829 update_inode_page(inode);
1830 }
1831
75c3c8bc 1832 f2fs_put_page(page, 1);
a1dd3c13
JK
1833 return copied;
1834}
1835
6f673763
OS
1836static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1837 loff_t offset)
944fcfc1
JK
1838{
1839 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1840
6f673763 1841 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1842 return 0;
1843
1844 if (offset & blocksize_mask)
1845 return -EINVAL;
1846
5b46f25d
AV
1847 if (iov_iter_alignment(iter) & blocksize_mask)
1848 return -EINVAL;
1849
944fcfc1
JK
1850 return 0;
1851}
1852
22c6186e
OS
1853static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1854 loff_t offset)
eb47b800
JK
1855{
1856 struct file *file = iocb->ki_filp;
3aab8f82
CY
1857 struct address_space *mapping = file->f_mapping;
1858 struct inode *inode = mapping->host;
1859 size_t count = iov_iter_count(iter);
1860 int err;
944fcfc1 1861
b3d208f9
JK
1862 /* we don't need to use inline_data strictly */
1863 if (f2fs_has_inline_data(inode)) {
1864 err = f2fs_convert_inline_inode(inode);
1865 if (err)
1866 return err;
1867 }
9ffe0fb5 1868
fcc85a4d
JK
1869 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1870 return 0;
1871
6f673763 1872 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
1873 return 0;
1874
6f673763 1875 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 1876
6f673763 1877 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
1878 __allocate_data_blocks(inode, offset, count);
1879
17f8c842 1880 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 1881 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 1882 f2fs_write_failed(mapping, offset + count);
70407fad 1883
6f673763 1884 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 1885
3aab8f82 1886 return err;
eb47b800
JK
1887}
1888
487261f3
CY
1889void f2fs_invalidate_page(struct page *page, unsigned int offset,
1890 unsigned int length)
eb47b800
JK
1891{
1892 struct inode *inode = page->mapping->host;
487261f3 1893 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1894
487261f3
CY
1895 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1896 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1897 return;
1898
487261f3
CY
1899 if (PageDirty(page)) {
1900 if (inode->i_ino == F2FS_META_INO(sbi))
1901 dec_page_count(sbi, F2FS_DIRTY_META);
1902 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1903 dec_page_count(sbi, F2FS_DIRTY_NODES);
1904 else
1905 inode_dec_dirty_pages(inode);
1906 }
eb47b800
JK
1907 ClearPagePrivate(page);
1908}
1909
487261f3 1910int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1911{
f68daeeb
JK
1912 /* If this is dirty page, keep PagePrivate */
1913 if (PageDirty(page))
1914 return 0;
1915
eb47b800 1916 ClearPagePrivate(page);
c3850aa1 1917 return 1;
eb47b800
JK
1918}
1919
1920static int f2fs_set_data_page_dirty(struct page *page)
1921{
1922 struct address_space *mapping = page->mapping;
1923 struct inode *inode = mapping->host;
1924
26c6b887
JK
1925 trace_f2fs_set_page_dirty(page, DATA);
1926
eb47b800 1927 SetPageUptodate(page);
34ba94ba 1928
1e84371f 1929 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1930 register_inmem_page(inode, page);
1931 return 1;
1932 }
1933
eb47b800
JK
1934 if (!PageDirty(page)) {
1935 __set_page_dirty_nobuffers(page);
a7ffdbe2 1936 update_dirty_page(inode, page);
eb47b800
JK
1937 return 1;
1938 }
1939 return 0;
1940}
1941
c01e54b7
JK
1942static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1943{
454ae7e5
CY
1944 struct inode *inode = mapping->host;
1945
b3d208f9
JK
1946 /* we don't need to use inline_data strictly */
1947 if (f2fs_has_inline_data(inode)) {
1948 int err = f2fs_convert_inline_inode(inode);
1949 if (err)
1950 return err;
1951 }
bfad7c2d 1952 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1953}
1954
429511cd
CY
1955void init_extent_cache_info(struct f2fs_sb_info *sbi)
1956{
1957 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1958 init_rwsem(&sbi->extent_tree_lock);
1959 INIT_LIST_HEAD(&sbi->extent_list);
1960 spin_lock_init(&sbi->extent_lock);
1961 sbi->total_ext_tree = 0;
1962 atomic_set(&sbi->total_ext_node, 0);
1963}
1964
1965int __init create_extent_cache(void)
1966{
1967 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1968 sizeof(struct extent_tree));
1969 if (!extent_tree_slab)
1970 return -ENOMEM;
1971 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1972 sizeof(struct extent_node));
1973 if (!extent_node_slab) {
1974 kmem_cache_destroy(extent_tree_slab);
1975 return -ENOMEM;
1976 }
1977 return 0;
1978}
1979
1980void destroy_extent_cache(void)
1981{
1982 kmem_cache_destroy(extent_node_slab);
1983 kmem_cache_destroy(extent_tree_slab);
1984}
1985
eb47b800
JK
1986const struct address_space_operations f2fs_dblock_aops = {
1987 .readpage = f2fs_read_data_page,
1988 .readpages = f2fs_read_data_pages,
1989 .writepage = f2fs_write_data_page,
1990 .writepages = f2fs_write_data_pages,
1991 .write_begin = f2fs_write_begin,
a1dd3c13 1992 .write_end = f2fs_write_end,
eb47b800 1993 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1994 .invalidatepage = f2fs_invalidate_page,
1995 .releasepage = f2fs_release_page,
eb47b800 1996 .direct_IO = f2fs_direct_IO,
c01e54b7 1997 .bmap = f2fs_bmap,
eb47b800 1998};
This page took 0.36642 seconds and 5 git commands to generate.