f2fs crypto: add encryption support in read/write paths
[deliverable/linux.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
f568849e 37 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
38 struct page *page = bvec->bv_page;
39
f568849e
LT
40 if (!err) {
41 SetPageUptodate(page);
42 } else {
93dfe2ac
JK
43 ClearPageUptodate(page);
44 SetPageError(page);
45 }
46 unlock_page(page);
f568849e 47 }
93dfe2ac
JK
48 bio_put(bio);
49}
50
f1e88660
JK
51/*
52 * I/O completion handler for multipage BIOs.
53 * copied from fs/mpage.c
54 */
55static void mpage_end_io(struct bio *bio, int err)
56{
57 struct bio_vec *bv;
58 int i;
59
4375a336
JK
60 if (f2fs_bio_encrypted(bio)) {
61 if (err) {
62 f2fs_release_crypto_ctx(bio->bi_private);
63 } else {
64 f2fs_end_io_crypto_work(bio->bi_private, bio);
65 return;
66 }
67 }
68
f1e88660
JK
69 bio_for_each_segment_all(bv, bio, i) {
70 struct page *page = bv->bv_page;
71
72 if (!err) {
73 SetPageUptodate(page);
74 } else {
75 ClearPageUptodate(page);
76 SetPageError(page);
77 }
78 unlock_page(page);
79 }
80
81 bio_put(bio);
82}
83
93dfe2ac
JK
84static void f2fs_write_end_io(struct bio *bio, int err)
85{
1b1f559f 86 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
87 struct bio_vec *bvec;
88 int i;
93dfe2ac 89
f568849e 90 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
91 struct page *page = bvec->bv_page;
92
4375a336
JK
93 f2fs_restore_and_release_control_page(&page);
94
f568849e 95 if (unlikely(err)) {
cf779cab 96 set_page_dirty(page);
93dfe2ac 97 set_bit(AS_EIO, &page->mapping->flags);
744602cf 98 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
99 }
100 end_page_writeback(page);
101 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 102 }
93dfe2ac 103
93dfe2ac
JK
104 if (!get_pages(sbi, F2FS_WRITEBACK) &&
105 !list_empty(&sbi->cp_wait.task_list))
106 wake_up(&sbi->cp_wait);
107
108 bio_put(bio);
109}
110
940a6d34
GZ
111/*
112 * Low-level block read/write IO operations.
113 */
114static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
115 int npages, bool is_read)
116{
117 struct bio *bio;
118
119 /* No failure on bio allocation */
120 bio = bio_alloc(GFP_NOIO, npages);
121
122 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 123 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 124 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 125 bio->bi_private = sbi;
940a6d34
GZ
126
127 return bio;
128}
129
458e6197 130static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 131{
458e6197 132 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
133
134 if (!io->bio)
135 return;
136
6a8f8ca5 137 if (is_read_io(fio->rw))
2ace38e0 138 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 139 else
2ace38e0 140 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 141
6a8f8ca5 142 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
143 io->bio = NULL;
144}
145
146void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 147 enum page_type type, int rw)
93dfe2ac
JK
148{
149 enum page_type btype = PAGE_TYPE_OF_BIO(type);
150 struct f2fs_bio_info *io;
151
152 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
153
df0f8dc0 154 down_write(&io->io_rwsem);
458e6197
JK
155
156 /* change META to META_FLUSH in the checkpoint procedure */
157 if (type >= META_FLUSH) {
158 io->fio.type = META_FLUSH;
0f7b2abd
JK
159 if (test_opt(sbi, NOBARRIER))
160 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
161 else
162 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
163 }
164 __submit_merged_bio(io);
df0f8dc0 165 up_write(&io->io_rwsem);
93dfe2ac
JK
166}
167
168/*
169 * Fill the locked page with data located in the block address.
170 * Return unlocked page.
171 */
05ca3632 172int f2fs_submit_page_bio(struct f2fs_io_info *fio)
93dfe2ac 173{
93dfe2ac 174 struct bio *bio;
4375a336 175 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
93dfe2ac 176
2ace38e0 177 trace_f2fs_submit_page_bio(page, fio);
05ca3632 178 f2fs_trace_ios(fio, 0);
93dfe2ac
JK
179
180 /* Allocate a new bio */
05ca3632 181 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
182
183 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
184 bio_put(bio);
185 f2fs_put_page(page, 1);
186 return -EFAULT;
187 }
188
cf04e8eb 189 submit_bio(fio->rw, bio);
93dfe2ac
JK
190 return 0;
191}
192
05ca3632 193void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
93dfe2ac 194{
05ca3632 195 struct f2fs_sb_info *sbi = fio->sbi;
458e6197 196 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 197 struct f2fs_bio_info *io;
940a6d34 198 bool is_read = is_read_io(fio->rw);
4375a336 199 struct page *bio_page;
93dfe2ac 200
940a6d34 201 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 202
cf04e8eb 203 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 204
df0f8dc0 205 down_write(&io->io_rwsem);
93dfe2ac 206
940a6d34 207 if (!is_read)
93dfe2ac
JK
208 inc_page_count(sbi, F2FS_WRITEBACK);
209
cf04e8eb 210 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
211 io->fio.rw != fio->rw))
212 __submit_merged_bio(io);
93dfe2ac
JK
213alloc_new:
214 if (io->bio == NULL) {
90a893c7 215 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 216
cf04e8eb 217 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 218 io->fio = *fio;
93dfe2ac
JK
219 }
220
4375a336
JK
221 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
222
223 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
93dfe2ac 224 PAGE_CACHE_SIZE) {
458e6197 225 __submit_merged_bio(io);
93dfe2ac
JK
226 goto alloc_new;
227 }
228
cf04e8eb 229 io->last_block_in_bio = fio->blk_addr;
05ca3632 230 f2fs_trace_ios(fio, 0);
93dfe2ac 231
df0f8dc0 232 up_write(&io->io_rwsem);
05ca3632 233 trace_f2fs_submit_page_mbio(fio->page, fio);
93dfe2ac
JK
234}
235
0a8165d7 236/*
eb47b800
JK
237 * Lock ordering for the change of data block address:
238 * ->data_page
239 * ->node_page
240 * update block addresses in the node page
241 */
216a620a 242void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
243{
244 struct f2fs_node *rn;
245 __le32 *addr_array;
246 struct page *node_page = dn->node_page;
247 unsigned int ofs_in_node = dn->ofs_in_node;
248
5514f0aa 249 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 250
45590710 251 rn = F2FS_NODE(node_page);
eb47b800
JK
252
253 /* Get physical address of data block */
254 addr_array = blkaddr_in_node(rn);
e1509cf2 255 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
256 set_page_dirty(node_page);
257}
258
259int reserve_new_block(struct dnode_of_data *dn)
260{
4081363f 261 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 262
6bacf52f 263 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 264 return -EPERM;
cfb271d4 265 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
266 return -ENOSPC;
267
c01e2853
NJ
268 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
269
eb47b800 270 dn->data_blkaddr = NEW_ADDR;
216a620a 271 set_data_blkaddr(dn);
a18ff063 272 mark_inode_dirty(dn->inode);
eb47b800
JK
273 sync_inode_page(dn);
274 return 0;
275}
276
b600965c
HL
277int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
278{
279 bool need_put = dn->inode_page ? false : true;
280 int err;
281
282 err = get_dnode_of_data(dn, index, ALLOC_NODE);
283 if (err)
284 return err;
a8865372 285
b600965c
HL
286 if (dn->data_blkaddr == NULL_ADDR)
287 err = reserve_new_block(dn);
a8865372 288 if (err || need_put)
b600965c
HL
289 f2fs_put_dnode(dn);
290 return err;
291}
292
7e4dde79
CY
293static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
294 struct extent_info *ei)
eb47b800
JK
295{
296 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
297 pgoff_t start_fofs, end_fofs;
298 block_t start_blkaddr;
299
0c872e2d 300 read_lock(&fi->ext_lock);
eb47b800 301 if (fi->ext.len == 0) {
0c872e2d 302 read_unlock(&fi->ext_lock);
7e4dde79 303 return false;
eb47b800
JK
304 }
305
dcdfff65
JK
306 stat_inc_total_hit(inode->i_sb);
307
eb47b800
JK
308 start_fofs = fi->ext.fofs;
309 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 310 start_blkaddr = fi->ext.blk;
eb47b800
JK
311
312 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 313 *ei = fi->ext;
dcdfff65 314 stat_inc_read_hit(inode->i_sb);
0c872e2d 315 read_unlock(&fi->ext_lock);
7e4dde79 316 return true;
eb47b800 317 }
0c872e2d 318 read_unlock(&fi->ext_lock);
7e4dde79 319 return false;
eb47b800
JK
320}
321
7e4dde79
CY
322static bool update_extent_info(struct inode *inode, pgoff_t fofs,
323 block_t blkaddr)
eb47b800 324{
7e4dde79
CY
325 struct f2fs_inode_info *fi = F2FS_I(inode);
326 pgoff_t start_fofs, end_fofs;
eb47b800 327 block_t start_blkaddr, end_blkaddr;
c11abd1a 328 int need_update = true;
eb47b800 329
0c872e2d 330 write_lock(&fi->ext_lock);
eb47b800
JK
331
332 start_fofs = fi->ext.fofs;
333 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
334 start_blkaddr = fi->ext.blk;
335 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
336
337 /* Drop and initialize the matched extent */
338 if (fi->ext.len == 1 && fofs == start_fofs)
339 fi->ext.len = 0;
340
341 /* Initial extent */
342 if (fi->ext.len == 0) {
7e4dde79 343 if (blkaddr != NULL_ADDR) {
eb47b800 344 fi->ext.fofs = fofs;
7e4dde79 345 fi->ext.blk = blkaddr;
eb47b800
JK
346 fi->ext.len = 1;
347 }
348 goto end_update;
349 }
350
6224da87 351 /* Front merge */
7e4dde79 352 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 353 fi->ext.fofs--;
4d0b0bd4 354 fi->ext.blk--;
eb47b800
JK
355 fi->ext.len++;
356 goto end_update;
357 }
358
359 /* Back merge */
7e4dde79 360 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
361 fi->ext.len++;
362 goto end_update;
363 }
364
365 /* Split the existing extent */
366 if (fi->ext.len > 1 &&
367 fofs >= start_fofs && fofs <= end_fofs) {
368 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
369 fi->ext.len = fofs - start_fofs;
370 } else {
371 fi->ext.fofs = fofs + 1;
4d0b0bd4 372 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
373 fi->ext.len -= fofs - start_fofs + 1;
374 }
c11abd1a
JK
375 } else {
376 need_update = false;
eb47b800 377 }
eb47b800 378
c11abd1a
JK
379 /* Finally, if the extent is very fragmented, let's drop the cache. */
380 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
381 fi->ext.len = 0;
382 set_inode_flag(fi, FI_NO_EXTENT);
383 need_update = true;
384 }
eb47b800 385end_update:
0c872e2d 386 write_unlock(&fi->ext_lock);
7e4dde79
CY
387 return need_update;
388}
389
429511cd
CY
390static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
391 struct extent_tree *et, struct extent_info *ei,
392 struct rb_node *parent, struct rb_node **p)
393{
394 struct extent_node *en;
395
396 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
397 if (!en)
398 return NULL;
399
400 en->ei = *ei;
401 INIT_LIST_HEAD(&en->list);
402
403 rb_link_node(&en->rb_node, parent, p);
404 rb_insert_color(&en->rb_node, &et->root);
405 et->count++;
406 atomic_inc(&sbi->total_ext_node);
407 return en;
408}
409
410static void __detach_extent_node(struct f2fs_sb_info *sbi,
411 struct extent_tree *et, struct extent_node *en)
412{
413 rb_erase(&en->rb_node, &et->root);
414 et->count--;
415 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
416
417 if (et->cached_en == en)
418 et->cached_en = NULL;
429511cd
CY
419}
420
93dfc526
CY
421static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
422 nid_t ino)
423{
424 struct extent_tree *et;
425
426 down_read(&sbi->extent_tree_lock);
427 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
428 if (!et) {
429 up_read(&sbi->extent_tree_lock);
430 return NULL;
431 }
432 atomic_inc(&et->refcount);
433 up_read(&sbi->extent_tree_lock);
434
435 return et;
436}
437
438static struct extent_tree *__grab_extent_tree(struct inode *inode)
439{
440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
441 struct extent_tree *et;
442 nid_t ino = inode->i_ino;
443
444 down_write(&sbi->extent_tree_lock);
445 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
446 if (!et) {
447 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
448 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
449 memset(et, 0, sizeof(struct extent_tree));
450 et->ino = ino;
451 et->root = RB_ROOT;
452 et->cached_en = NULL;
453 rwlock_init(&et->lock);
454 atomic_set(&et->refcount, 0);
455 et->count = 0;
456 sbi->total_ext_tree++;
457 }
458 atomic_inc(&et->refcount);
459 up_write(&sbi->extent_tree_lock);
460
461 return et;
462}
463
429511cd
CY
464static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
465 unsigned int fofs)
466{
467 struct rb_node *node = et->root.rb_node;
468 struct extent_node *en;
469
62c8af65
CY
470 if (et->cached_en) {
471 struct extent_info *cei = &et->cached_en->ei;
472
473 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
474 return et->cached_en;
475 }
476
429511cd
CY
477 while (node) {
478 en = rb_entry(node, struct extent_node, rb_node);
479
62c8af65 480 if (fofs < en->ei.fofs) {
429511cd 481 node = node->rb_left;
62c8af65 482 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 483 node = node->rb_right;
62c8af65
CY
484 } else {
485 et->cached_en = en;
429511cd 486 return en;
62c8af65 487 }
429511cd
CY
488 }
489 return NULL;
490}
491
492static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
493 struct extent_tree *et, struct extent_node *en)
494{
495 struct extent_node *prev;
496 struct rb_node *node;
497
498 node = rb_prev(&en->rb_node);
499 if (!node)
500 return NULL;
501
502 prev = rb_entry(node, struct extent_node, rb_node);
503 if (__is_back_mergeable(&en->ei, &prev->ei)) {
504 en->ei.fofs = prev->ei.fofs;
505 en->ei.blk = prev->ei.blk;
506 en->ei.len += prev->ei.len;
507 __detach_extent_node(sbi, et, prev);
508 return prev;
509 }
510 return NULL;
511}
512
513static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
514 struct extent_tree *et, struct extent_node *en)
515{
516 struct extent_node *next;
517 struct rb_node *node;
518
519 node = rb_next(&en->rb_node);
520 if (!node)
521 return NULL;
522
523 next = rb_entry(node, struct extent_node, rb_node);
524 if (__is_front_mergeable(&en->ei, &next->ei)) {
525 en->ei.len += next->ei.len;
526 __detach_extent_node(sbi, et, next);
527 return next;
528 }
529 return NULL;
530}
531
532static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
533 struct extent_tree *et, struct extent_info *ei,
534 struct extent_node **den)
535{
536 struct rb_node **p = &et->root.rb_node;
537 struct rb_node *parent = NULL;
538 struct extent_node *en;
539
540 while (*p) {
541 parent = *p;
542 en = rb_entry(parent, struct extent_node, rb_node);
543
544 if (ei->fofs < en->ei.fofs) {
545 if (__is_front_mergeable(ei, &en->ei)) {
546 f2fs_bug_on(sbi, !den);
547 en->ei.fofs = ei->fofs;
548 en->ei.blk = ei->blk;
549 en->ei.len += ei->len;
550 *den = __try_back_merge(sbi, et, en);
551 return en;
552 }
553 p = &(*p)->rb_left;
554 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
555 if (__is_back_mergeable(ei, &en->ei)) {
556 f2fs_bug_on(sbi, !den);
557 en->ei.len += ei->len;
558 *den = __try_front_merge(sbi, et, en);
559 return en;
560 }
561 p = &(*p)->rb_right;
562 } else {
563 f2fs_bug_on(sbi, 1);
564 }
565 }
566
567 return __attach_extent_node(sbi, et, ei, parent, p);
568}
569
570static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
571 struct extent_tree *et, bool free_all)
572{
573 struct rb_node *node, *next;
574 struct extent_node *en;
575 unsigned int count = et->count;
576
577 node = rb_first(&et->root);
578 while (node) {
579 next = rb_next(node);
580 en = rb_entry(node, struct extent_node, rb_node);
581
582 if (free_all) {
583 spin_lock(&sbi->extent_lock);
584 if (!list_empty(&en->list))
585 list_del_init(&en->list);
586 spin_unlock(&sbi->extent_lock);
587 }
588
589 if (free_all || list_empty(&en->list)) {
590 __detach_extent_node(sbi, et, en);
591 kmem_cache_free(extent_node_slab, en);
592 }
593 node = next;
594 }
595
596 return count - et->count;
597}
598
028a41e8
CY
599static void f2fs_init_extent_tree(struct inode *inode,
600 struct f2fs_extent *i_ext)
601{
602 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
603 struct extent_tree *et;
604 struct extent_node *en;
605 struct extent_info ei;
606
607 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
608 return;
609
610 et = __grab_extent_tree(inode);
611
612 write_lock(&et->lock);
613 if (et->count)
614 goto out;
615
616 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
617 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
618
619 en = __insert_extent_tree(sbi, et, &ei, NULL);
620 if (en) {
621 et->cached_en = en;
622
623 spin_lock(&sbi->extent_lock);
624 list_add_tail(&en->list, &sbi->extent_list);
625 spin_unlock(&sbi->extent_lock);
626 }
627out:
628 write_unlock(&et->lock);
629 atomic_dec(&et->refcount);
630}
631
429511cd
CY
632static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
633 struct extent_info *ei)
634{
635 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
636 struct extent_tree *et;
637 struct extent_node *en;
638
1ec4610c
CY
639 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
640
93dfc526
CY
641 et = __find_extent_tree(sbi, inode->i_ino);
642 if (!et)
429511cd 643 return false;
429511cd
CY
644
645 read_lock(&et->lock);
646 en = __lookup_extent_tree(et, pgofs);
647 if (en) {
648 *ei = en->ei;
649 spin_lock(&sbi->extent_lock);
650 if (!list_empty(&en->list))
651 list_move_tail(&en->list, &sbi->extent_list);
652 spin_unlock(&sbi->extent_lock);
653 stat_inc_read_hit(sbi->sb);
654 }
655 stat_inc_total_hit(sbi->sb);
656 read_unlock(&et->lock);
657
1ec4610c
CY
658 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
659
429511cd
CY
660 atomic_dec(&et->refcount);
661 return en ? true : false;
662}
663
664static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
665 block_t blkaddr)
666{
667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
668 struct extent_tree *et;
669 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
670 struct extent_node *den = NULL;
671 struct extent_info ei, dei;
672 unsigned int endofs;
673
1ec4610c
CY
674 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
675
93dfc526 676 et = __grab_extent_tree(inode);
429511cd
CY
677
678 write_lock(&et->lock);
679
680 /* 1. lookup and remove existing extent info in cache */
681 en = __lookup_extent_tree(et, fofs);
682 if (!en)
683 goto update_extent;
684
685 dei = en->ei;
686 __detach_extent_node(sbi, et, en);
687
688 /* 2. if extent can be split more, split and insert the left part */
689 if (dei.len > 1) {
690 /* insert left part of split extent into cache */
691 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
692 set_extent_info(&ei, dei.fofs, dei.blk,
693 fofs - dei.fofs);
694 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
695 }
696
697 /* insert right part of split extent into cache */
698 endofs = dei.fofs + dei.len - 1;
699 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
700 set_extent_info(&ei, fofs + 1,
701 fofs - dei.fofs + dei.blk, endofs - fofs);
702 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
703 }
704 }
705
706update_extent:
707 /* 3. update extent in extent cache */
708 if (blkaddr) {
709 set_extent_info(&ei, fofs, blkaddr, 1);
710 en3 = __insert_extent_tree(sbi, et, &ei, &den);
711 }
712
713 /* 4. update in global extent list */
714 spin_lock(&sbi->extent_lock);
715 if (en && !list_empty(&en->list))
716 list_del(&en->list);
717 /*
718 * en1 and en2 split from en, they will become more and more smaller
719 * fragments after splitting several times. So if the length is smaller
720 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
721 */
722 if (en1)
723 list_add_tail(&en1->list, &sbi->extent_list);
724 if (en2)
725 list_add_tail(&en2->list, &sbi->extent_list);
726 if (en3) {
727 if (list_empty(&en3->list))
728 list_add_tail(&en3->list, &sbi->extent_list);
729 else
730 list_move_tail(&en3->list, &sbi->extent_list);
731 }
732 if (den && !list_empty(&den->list))
733 list_del(&den->list);
734 spin_unlock(&sbi->extent_lock);
735
736 /* 5. release extent node */
737 if (en)
738 kmem_cache_free(extent_node_slab, en);
739 if (den)
740 kmem_cache_free(extent_node_slab, den);
741
742 write_unlock(&et->lock);
743 atomic_dec(&et->refcount);
744}
745
0bdee482
CY
746void f2fs_preserve_extent_tree(struct inode *inode)
747{
748 struct extent_tree *et;
749 struct extent_info *ext = &F2FS_I(inode)->ext;
750 bool sync = false;
751
752 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
753 return;
754
755 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
756 if (!et) {
757 if (ext->len) {
758 ext->len = 0;
759 update_inode_page(inode);
760 }
761 return;
762 }
763
764 read_lock(&et->lock);
765 if (et->count) {
766 struct extent_node *en;
767
768 if (et->cached_en) {
769 en = et->cached_en;
770 } else {
771 struct rb_node *node = rb_first(&et->root);
772
773 if (!node)
774 node = rb_last(&et->root);
775 en = rb_entry(node, struct extent_node, rb_node);
776 }
777
778 if (__is_extent_same(ext, &en->ei))
779 goto out;
780
781 *ext = en->ei;
782 sync = true;
783 } else if (ext->len) {
784 ext->len = 0;
785 sync = true;
786 }
787out:
788 read_unlock(&et->lock);
789 atomic_dec(&et->refcount);
790
791 if (sync)
792 update_inode_page(inode);
793}
794
429511cd
CY
795void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
796{
797 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
798 struct extent_node *en, *tmp;
799 unsigned long ino = F2FS_ROOT_INO(sbi);
800 struct radix_tree_iter iter;
801 void **slot;
802 unsigned int found;
1ec4610c 803 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 804
1dcc336b
CY
805 if (!test_opt(sbi, EXTENT_CACHE))
806 return;
807
429511cd
CY
808 if (available_free_memory(sbi, EXTENT_CACHE))
809 return;
810
811 spin_lock(&sbi->extent_lock);
812 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
813 if (!nr_shrink--)
814 break;
815 list_del_init(&en->list);
816 }
817 spin_unlock(&sbi->extent_lock);
818
819 down_read(&sbi->extent_tree_lock);
820 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
821 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
822 unsigned i;
823
824 ino = treevec[found - 1]->ino + 1;
825 for (i = 0; i < found; i++) {
826 struct extent_tree *et = treevec[i];
827
828 atomic_inc(&et->refcount);
829 write_lock(&et->lock);
1ec4610c 830 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
831 write_unlock(&et->lock);
832 atomic_dec(&et->refcount);
833 }
834 }
835 up_read(&sbi->extent_tree_lock);
836
837 down_write(&sbi->extent_tree_lock);
838 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
839 F2FS_ROOT_INO(sbi)) {
840 struct extent_tree *et = (struct extent_tree *)*slot;
841
842 if (!atomic_read(&et->refcount) && !et->count) {
843 radix_tree_delete(&sbi->extent_tree_root, et->ino);
844 kmem_cache_free(extent_tree_slab, et);
845 sbi->total_ext_tree--;
1ec4610c 846 tree_cnt++;
429511cd
CY
847 }
848 }
849 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
850
851 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
852}
853
854void f2fs_destroy_extent_tree(struct inode *inode)
855{
856 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
857 struct extent_tree *et;
1ec4610c 858 unsigned int node_cnt = 0;
429511cd 859
1dcc336b
CY
860 if (!test_opt(sbi, EXTENT_CACHE))
861 return;
862
93dfc526
CY
863 et = __find_extent_tree(sbi, inode->i_ino);
864 if (!et)
429511cd 865 goto out;
429511cd
CY
866
867 /* free all extent info belong to this extent tree */
868 write_lock(&et->lock);
1ec4610c 869 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
870 write_unlock(&et->lock);
871
872 atomic_dec(&et->refcount);
873
874 /* try to find and delete extent tree entry in radix tree */
875 down_write(&sbi->extent_tree_lock);
876 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
877 if (!et) {
878 up_write(&sbi->extent_tree_lock);
879 goto out;
880 }
881 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
882 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
883 kmem_cache_free(extent_tree_slab, et);
884 sbi->total_ext_tree--;
885 up_write(&sbi->extent_tree_lock);
886out:
1ec4610c 887 trace_f2fs_destroy_extent_tree(inode, node_cnt);
c11abd1a 888 return;
eb47b800
JK
889}
890
028a41e8
CY
891void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
892{
893 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
894 f2fs_init_extent_tree(inode, i_ext);
895
896 write_lock(&F2FS_I(inode)->ext_lock);
897 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
898 write_unlock(&F2FS_I(inode)->ext_lock);
899}
900
7e4dde79
CY
901static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
902 struct extent_info *ei)
903{
91c5d9bc
CY
904 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
905 return false;
906
1dcc336b
CY
907 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
908 return f2fs_lookup_extent_tree(inode, pgofs, ei);
909
7e4dde79
CY
910 return lookup_extent_info(inode, pgofs, ei);
911}
912
913void f2fs_update_extent_cache(struct dnode_of_data *dn)
914{
915 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
916 pgoff_t fofs;
917
918 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
919
91c5d9bc
CY
920 if (is_inode_flag_set(fi, FI_NO_EXTENT))
921 return;
922
7e4dde79
CY
923 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
924 dn->ofs_in_node;
925
1dcc336b
CY
926 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
927 return f2fs_update_extent_tree(dn->inode, fofs,
928 dn->data_blkaddr);
929
7e4dde79 930 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 931 sync_inode_page(dn);
eb47b800
JK
932}
933
43f3eae1 934struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
eb47b800 935{
eb47b800
JK
936 struct address_space *mapping = inode->i_mapping;
937 struct dnode_of_data dn;
938 struct page *page;
cb3bc9ee 939 struct extent_info ei;
eb47b800 940 int err;
cf04e8eb 941 struct f2fs_io_info fio = {
05ca3632 942 .sbi = F2FS_I_SB(inode),
cf04e8eb 943 .type = DATA,
43f3eae1 944 .rw = rw,
4375a336 945 .encrypted_page = NULL,
cf04e8eb 946 };
eb47b800 947
4375a336
JK
948 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
949 return read_mapping_page(mapping, index, NULL);
950
9ac1349a 951 page = grab_cache_page(mapping, index);
650495de
JK
952 if (!page)
953 return ERR_PTR(-ENOMEM);
954
cb3bc9ee
CY
955 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
956 dn.data_blkaddr = ei.blk + index - ei.fofs;
957 goto got_it;
958 }
959
eb47b800 960 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 961 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
962 if (err) {
963 f2fs_put_page(page, 1);
eb47b800 964 return ERR_PTR(err);
650495de 965 }
eb47b800
JK
966 f2fs_put_dnode(&dn);
967
6bacf52f 968 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 969 f2fs_put_page(page, 1);
eb47b800 970 return ERR_PTR(-ENOENT);
650495de 971 }
cb3bc9ee 972got_it:
43f3eae1
JK
973 if (PageUptodate(page)) {
974 unlock_page(page);
eb47b800 975 return page;
43f3eae1 976 }
eb47b800 977
d59ff4df
JK
978 /*
979 * A new dentry page is allocated but not able to be written, since its
980 * new inode page couldn't be allocated due to -ENOSPC.
981 * In such the case, its blkaddr can be remained as NEW_ADDR.
982 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
983 */
984 if (dn.data_blkaddr == NEW_ADDR) {
985 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
986 SetPageUptodate(page);
43f3eae1 987 unlock_page(page);
d59ff4df
JK
988 return page;
989 }
eb47b800 990
cf04e8eb 991 fio.blk_addr = dn.data_blkaddr;
05ca3632
JK
992 fio.page = page;
993 err = f2fs_submit_page_bio(&fio);
393ff91f 994 if (err)
eb47b800 995 return ERR_PTR(err);
43f3eae1
JK
996 return page;
997}
998
999struct page *find_data_page(struct inode *inode, pgoff_t index)
1000{
1001 struct address_space *mapping = inode->i_mapping;
1002 struct page *page;
1003
1004 page = find_get_page(mapping, index);
1005 if (page && PageUptodate(page))
1006 return page;
1007 f2fs_put_page(page, 0);
1008
1009 page = get_read_data_page(inode, index, READ_SYNC);
1010 if (IS_ERR(page))
1011 return page;
1012
1013 if (PageUptodate(page))
1014 return page;
1015
1016 wait_on_page_locked(page);
1017 if (unlikely(!PageUptodate(page))) {
1018 f2fs_put_page(page, 0);
1019 return ERR_PTR(-EIO);
1020 }
1021 return page;
1022}
1023
1024/*
1025 * If it tries to access a hole, return an error.
1026 * Because, the callers, functions in dir.c and GC, should be able to know
1027 * whether this page exists or not.
1028 */
1029struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
1030{
1031 struct address_space *mapping = inode->i_mapping;
1032 struct page *page;
1033repeat:
1034 page = get_read_data_page(inode, index, READ_SYNC);
1035 if (IS_ERR(page))
1036 return page;
393ff91f 1037
43f3eae1 1038 /* wait for read completion */
393ff91f 1039 lock_page(page);
6bacf52f 1040 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1041 f2fs_put_page(page, 1);
1042 return ERR_PTR(-EIO);
eb47b800 1043 }
6bacf52f 1044 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1045 f2fs_put_page(page, 1);
1046 goto repeat;
eb47b800
JK
1047 }
1048 return page;
1049}
1050
0a8165d7 1051/*
eb47b800
JK
1052 * Caller ensures that this data page is never allocated.
1053 * A new zero-filled data page is allocated in the page cache.
39936837 1054 *
4f4124d0
CY
1055 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1056 * f2fs_unlock_op().
a8865372 1057 * Note that, ipage is set only by make_empty_dir.
eb47b800 1058 */
64aa7ed9 1059struct page *get_new_data_page(struct inode *inode,
a8865372 1060 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1061{
eb47b800
JK
1062 struct address_space *mapping = inode->i_mapping;
1063 struct page *page;
1064 struct dnode_of_data dn;
1065 int err;
01f28610
JK
1066repeat:
1067 page = grab_cache_page(mapping, index);
1068 if (!page)
1069 return ERR_PTR(-ENOMEM);
eb47b800 1070
a8865372 1071 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1072 err = f2fs_reserve_block(&dn, index);
01f28610
JK
1073 if (err) {
1074 f2fs_put_page(page, 1);
eb47b800 1075 return ERR_PTR(err);
a8865372 1076 }
01f28610
JK
1077 if (!ipage)
1078 f2fs_put_dnode(&dn);
eb47b800
JK
1079
1080 if (PageUptodate(page))
01f28610 1081 goto got_it;
eb47b800
JK
1082
1083 if (dn.data_blkaddr == NEW_ADDR) {
1084 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1085 SetPageUptodate(page);
eb47b800 1086 } else {
4375a336 1087 f2fs_put_page(page, 1);
a8865372 1088
4375a336
JK
1089 page = get_read_data_page(inode, index, READ_SYNC);
1090 if (IS_ERR(page))
afcb7ca0 1091 goto repeat;
4375a336
JK
1092
1093 /* wait for read completion */
1094 lock_page(page);
eb47b800 1095 }
01f28610 1096got_it:
eb47b800
JK
1097 if (new_i_size &&
1098 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1099 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1100 /* Only the directory inode sets new_i_size */
1101 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1102 }
1103 return page;
1104}
1105
bfad7c2d
JK
1106static int __allocate_data_block(struct dnode_of_data *dn)
1107{
4081363f 1108 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1109 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1110 struct f2fs_summary sum;
bfad7c2d 1111 struct node_info ni;
38aa0889 1112 int seg = CURSEG_WARM_DATA;
976e4c50 1113 pgoff_t fofs;
bfad7c2d
JK
1114
1115 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1116 return -EPERM;
df6136ef
CY
1117
1118 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1119 if (dn->data_blkaddr == NEW_ADDR)
1120 goto alloc;
1121
bfad7c2d
JK
1122 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1123 return -ENOSPC;
1124
df6136ef 1125alloc:
bfad7c2d
JK
1126 get_node_info(sbi, dn->nid, &ni);
1127 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1128
38aa0889
JK
1129 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1130 seg = CURSEG_DIRECT_IO;
1131
df6136ef
CY
1132 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1133 &sum, seg);
bfad7c2d
JK
1134
1135 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1136 set_data_blkaddr(dn);
bfad7c2d 1137
976e4c50
JK
1138 /* update i_size */
1139 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1140 dn->ofs_in_node;
1141 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1142 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1143
bfad7c2d
JK
1144 return 0;
1145}
1146
59b802e5
JK
1147static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1148 size_t count)
1149{
1150 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1151 struct dnode_of_data dn;
1152 u64 start = F2FS_BYTES_TO_BLK(offset);
1153 u64 len = F2FS_BYTES_TO_BLK(count);
1154 bool allocated;
1155 u64 end_offset;
1156
1157 while (len) {
1158 f2fs_balance_fs(sbi);
1159 f2fs_lock_op(sbi);
1160
1161 /* When reading holes, we need its node page */
1162 set_new_dnode(&dn, inode, NULL, NULL, 0);
1163 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1164 goto out;
1165
1166 allocated = false;
1167 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1168
1169 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1170 block_t blkaddr;
1171
1172 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1173 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1174 if (__allocate_data_block(&dn))
1175 goto sync_out;
1176 allocated = true;
1177 }
1178 len--;
1179 start++;
1180 dn.ofs_in_node++;
1181 }
1182
1183 if (allocated)
1184 sync_inode_page(&dn);
1185
1186 f2fs_put_dnode(&dn);
1187 f2fs_unlock_op(sbi);
1188 }
1189 return;
1190
1191sync_out:
1192 if (allocated)
1193 sync_inode_page(&dn);
1194 f2fs_put_dnode(&dn);
1195out:
1196 f2fs_unlock_op(sbi);
1197 return;
1198}
1199
0a8165d7 1200/*
003a3e1d
JK
1201 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1202 * f2fs_map_blocks structure.
4f4124d0
CY
1203 * If original data blocks are allocated, then give them to blockdev.
1204 * Otherwise,
1205 * a. preallocate requested block addresses
1206 * b. do not use extent cache for better performance
1207 * c. give the block addresses to blockdev
eb47b800 1208 */
003a3e1d
JK
1209static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1210 int create, bool fiemap)
eb47b800 1211{
003a3e1d 1212 unsigned int maxblocks = map->m_len;
eb47b800 1213 struct dnode_of_data dn;
bfad7c2d
JK
1214 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1215 pgoff_t pgofs, end_offset;
1216 int err = 0, ofs = 1;
a2e7d1bf 1217 struct extent_info ei;
bfad7c2d 1218 bool allocated = false;
eb47b800 1219
003a3e1d
JK
1220 map->m_len = 0;
1221 map->m_flags = 0;
1222
1223 /* it only supports block size == page size */
1224 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1225
7e4dde79 1226 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1227 map->m_pblk = ei.blk + pgofs - ei.fofs;
1228 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1229 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1230 goto out;
a2e7d1bf 1231 }
bfad7c2d 1232
59b802e5 1233 if (create)
4081363f 1234 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1235
1236 /* When reading holes, we need its node page */
1237 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1238 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1239 if (err) {
bfad7c2d
JK
1240 if (err == -ENOENT)
1241 err = 0;
1242 goto unlock_out;
848753aa 1243 }
ccfb3000 1244 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1245 goto put_out;
eb47b800 1246
bfad7c2d 1247 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1248 map->m_flags = F2FS_MAP_MAPPED;
1249 map->m_pblk = dn.data_blkaddr;
7f63eb77
JK
1250 if (dn.data_blkaddr == NEW_ADDR)
1251 map->m_flags |= F2FS_MAP_UNWRITTEN;
bfad7c2d
JK
1252 } else if (create) {
1253 err = __allocate_data_block(&dn);
1254 if (err)
1255 goto put_out;
1256 allocated = true;
003a3e1d
JK
1257 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1258 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1259 } else {
1260 goto put_out;
1261 }
1262
6403eb1f 1263 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1264 map->m_len = 1;
bfad7c2d
JK
1265 dn.ofs_in_node++;
1266 pgofs++;
1267
1268get_next:
1269 if (dn.ofs_in_node >= end_offset) {
1270 if (allocated)
1271 sync_inode_page(&dn);
1272 allocated = false;
1273 f2fs_put_dnode(&dn);
1274
1275 set_new_dnode(&dn, inode, NULL, NULL, 0);
1276 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1277 if (err) {
bfad7c2d
JK
1278 if (err == -ENOENT)
1279 err = 0;
1280 goto unlock_out;
1281 }
ccfb3000 1282 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1283 goto put_out;
1284
6403eb1f 1285 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1286 }
eb47b800 1287
003a3e1d 1288 if (maxblocks > map->m_len) {
bfad7c2d
JK
1289 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1290 if (blkaddr == NULL_ADDR && create) {
1291 err = __allocate_data_block(&dn);
1292 if (err)
1293 goto sync_out;
1294 allocated = true;
003a3e1d 1295 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1296 blkaddr = dn.data_blkaddr;
1297 }
e1c42045 1298 /* Give more consecutive addresses for the readahead */
7f63eb77
JK
1299 if ((map->m_pblk != NEW_ADDR &&
1300 blkaddr == (map->m_pblk + ofs)) ||
1301 (map->m_pblk == NEW_ADDR &&
1302 blkaddr == NEW_ADDR)) {
bfad7c2d
JK
1303 ofs++;
1304 dn.ofs_in_node++;
1305 pgofs++;
003a3e1d 1306 map->m_len++;
bfad7c2d
JK
1307 goto get_next;
1308 }
eb47b800 1309 }
bfad7c2d
JK
1310sync_out:
1311 if (allocated)
1312 sync_inode_page(&dn);
1313put_out:
eb47b800 1314 f2fs_put_dnode(&dn);
bfad7c2d
JK
1315unlock_out:
1316 if (create)
4081363f 1317 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1318out:
003a3e1d 1319 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1320 return err;
eb47b800
JK
1321}
1322
003a3e1d
JK
1323static int __get_data_block(struct inode *inode, sector_t iblock,
1324 struct buffer_head *bh, int create, bool fiemap)
1325{
1326 struct f2fs_map_blocks map;
1327 int ret;
1328
1329 map.m_lblk = iblock;
1330 map.m_len = bh->b_size >> inode->i_blkbits;
1331
1332 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1333 if (!ret) {
1334 map_bh(bh, inode->i_sb, map.m_pblk);
1335 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1336 bh->b_size = map.m_len << inode->i_blkbits;
1337 }
1338 return ret;
1339}
1340
ccfb3000
JK
1341static int get_data_block(struct inode *inode, sector_t iblock,
1342 struct buffer_head *bh_result, int create)
1343{
1344 return __get_data_block(inode, iblock, bh_result, create, false);
1345}
1346
1347static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1348 struct buffer_head *bh_result, int create)
1349{
1350 return __get_data_block(inode, iblock, bh_result, create, true);
1351}
1352
7f63eb77
JK
1353static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1354{
1355 return (offset >> inode->i_blkbits);
1356}
1357
1358static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1359{
1360 return (blk << inode->i_blkbits);
1361}
1362
9ab70134
JK
1363int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1364 u64 start, u64 len)
1365{
7f63eb77
JK
1366 struct buffer_head map_bh;
1367 sector_t start_blk, last_blk;
1368 loff_t isize = i_size_read(inode);
1369 u64 logical = 0, phys = 0, size = 0;
1370 u32 flags = 0;
1371 bool past_eof = false, whole_file = false;
1372 int ret = 0;
1373
1374 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1375 if (ret)
1376 return ret;
1377
1378 mutex_lock(&inode->i_mutex);
1379
1380 if (len >= isize) {
1381 whole_file = true;
1382 len = isize;
1383 }
1384
1385 if (logical_to_blk(inode, len) == 0)
1386 len = blk_to_logical(inode, 1);
1387
1388 start_blk = logical_to_blk(inode, start);
1389 last_blk = logical_to_blk(inode, start + len - 1);
1390next:
1391 memset(&map_bh, 0, sizeof(struct buffer_head));
1392 map_bh.b_size = len;
1393
1394 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1395 if (ret)
1396 goto out;
1397
1398 /* HOLE */
1399 if (!buffer_mapped(&map_bh)) {
1400 start_blk++;
1401
1402 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1403 past_eof = 1;
1404
1405 if (past_eof && size) {
1406 flags |= FIEMAP_EXTENT_LAST;
1407 ret = fiemap_fill_next_extent(fieinfo, logical,
1408 phys, size, flags);
1409 } else if (size) {
1410 ret = fiemap_fill_next_extent(fieinfo, logical,
1411 phys, size, flags);
1412 size = 0;
1413 }
1414
1415 /* if we have holes up to/past EOF then we're done */
1416 if (start_blk > last_blk || past_eof || ret)
1417 goto out;
1418 } else {
1419 if (start_blk > last_blk && !whole_file) {
1420 ret = fiemap_fill_next_extent(fieinfo, logical,
1421 phys, size, flags);
1422 goto out;
1423 }
1424
1425 /*
1426 * if size != 0 then we know we already have an extent
1427 * to add, so add it.
1428 */
1429 if (size) {
1430 ret = fiemap_fill_next_extent(fieinfo, logical,
1431 phys, size, flags);
1432 if (ret)
1433 goto out;
1434 }
1435
1436 logical = blk_to_logical(inode, start_blk);
1437 phys = blk_to_logical(inode, map_bh.b_blocknr);
1438 size = map_bh.b_size;
1439 flags = 0;
1440 if (buffer_unwritten(&map_bh))
1441 flags = FIEMAP_EXTENT_UNWRITTEN;
1442
1443 start_blk += logical_to_blk(inode, size);
1444
1445 /*
1446 * If we are past the EOF, then we need to make sure as
1447 * soon as we find a hole that the last extent we found
1448 * is marked with FIEMAP_EXTENT_LAST
1449 */
1450 if (!past_eof && logical + size >= isize)
1451 past_eof = true;
1452 }
1453 cond_resched();
1454 if (fatal_signal_pending(current))
1455 ret = -EINTR;
1456 else
1457 goto next;
1458out:
1459 if (ret == 1)
1460 ret = 0;
1461
1462 mutex_unlock(&inode->i_mutex);
1463 return ret;
9ab70134
JK
1464}
1465
f1e88660
JK
1466/*
1467 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1468 * Major change was from block_size == page_size in f2fs by default.
1469 */
1470static int f2fs_mpage_readpages(struct address_space *mapping,
1471 struct list_head *pages, struct page *page,
1472 unsigned nr_pages)
1473{
1474 struct bio *bio = NULL;
1475 unsigned page_idx;
1476 sector_t last_block_in_bio = 0;
1477 struct inode *inode = mapping->host;
1478 const unsigned blkbits = inode->i_blkbits;
1479 const unsigned blocksize = 1 << blkbits;
1480 sector_t block_in_file;
1481 sector_t last_block;
1482 sector_t last_block_in_file;
1483 sector_t block_nr;
1484 struct block_device *bdev = inode->i_sb->s_bdev;
1485 struct f2fs_map_blocks map;
1486
1487 map.m_pblk = 0;
1488 map.m_lblk = 0;
1489 map.m_len = 0;
1490 map.m_flags = 0;
1491
1492 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1493
1494 prefetchw(&page->flags);
1495 if (pages) {
1496 page = list_entry(pages->prev, struct page, lru);
1497 list_del(&page->lru);
1498 if (add_to_page_cache_lru(page, mapping,
1499 page->index, GFP_KERNEL))
1500 goto next_page;
1501 }
1502
1503 block_in_file = (sector_t)page->index;
1504 last_block = block_in_file + nr_pages;
1505 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1506 blkbits;
1507 if (last_block > last_block_in_file)
1508 last_block = last_block_in_file;
1509
1510 /*
1511 * Map blocks using the previous result first.
1512 */
1513 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1514 block_in_file > map.m_lblk &&
1515 block_in_file < (map.m_lblk + map.m_len))
1516 goto got_it;
1517
1518 /*
1519 * Then do more f2fs_map_blocks() calls until we are
1520 * done with this page.
1521 */
1522 map.m_flags = 0;
1523
1524 if (block_in_file < last_block) {
1525 map.m_lblk = block_in_file;
1526 map.m_len = last_block - block_in_file;
1527
1528 if (f2fs_map_blocks(inode, &map, 0, false))
1529 goto set_error_page;
1530 }
1531got_it:
1532 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1533 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1534 SetPageMappedToDisk(page);
1535
1536 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1537 SetPageUptodate(page);
1538 goto confused;
1539 }
1540 } else {
1541 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1542 SetPageUptodate(page);
1543 unlock_page(page);
1544 goto next_page;
1545 }
1546
1547 /*
1548 * This page will go to BIO. Do we need to send this
1549 * BIO off first?
1550 */
1551 if (bio && (last_block_in_bio != block_nr - 1)) {
1552submit_and_realloc:
1553 submit_bio(READ, bio);
1554 bio = NULL;
1555 }
1556 if (bio == NULL) {
4375a336
JK
1557 struct f2fs_crypto_ctx *ctx = NULL;
1558
1559 if (f2fs_encrypted_inode(inode) &&
1560 S_ISREG(inode->i_mode)) {
1561 struct page *cpage;
1562
1563 ctx = f2fs_get_crypto_ctx(inode);
1564 if (IS_ERR(ctx))
1565 goto set_error_page;
1566
1567 /* wait the page to be moved by cleaning */
1568 cpage = find_lock_page(
1569 META_MAPPING(F2FS_I_SB(inode)),
1570 block_nr);
1571 if (cpage) {
1572 f2fs_wait_on_page_writeback(cpage,
1573 DATA);
1574 f2fs_put_page(cpage, 1);
1575 }
1576 }
1577
f1e88660
JK
1578 bio = bio_alloc(GFP_KERNEL,
1579 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
4375a336
JK
1580 if (!bio) {
1581 if (ctx)
1582 f2fs_release_crypto_ctx(ctx);
f1e88660 1583 goto set_error_page;
4375a336 1584 }
f1e88660
JK
1585 bio->bi_bdev = bdev;
1586 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1587 bio->bi_end_io = mpage_end_io;
4375a336 1588 bio->bi_private = ctx;
f1e88660
JK
1589 }
1590
1591 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1592 goto submit_and_realloc;
1593
1594 last_block_in_bio = block_nr;
1595 goto next_page;
1596set_error_page:
1597 SetPageError(page);
1598 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1599 unlock_page(page);
1600 goto next_page;
1601confused:
1602 if (bio) {
1603 submit_bio(READ, bio);
1604 bio = NULL;
1605 }
1606 unlock_page(page);
1607next_page:
1608 if (pages)
1609 page_cache_release(page);
1610 }
1611 BUG_ON(pages && !list_empty(pages));
1612 if (bio)
1613 submit_bio(READ, bio);
1614 return 0;
1615}
1616
eb47b800
JK
1617static int f2fs_read_data_page(struct file *file, struct page *page)
1618{
9ffe0fb5 1619 struct inode *inode = page->mapping->host;
b3d208f9 1620 int ret = -EAGAIN;
9ffe0fb5 1621
c20e89cd
CY
1622 trace_f2fs_readpage(page, DATA);
1623
e1c42045 1624 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1625 if (f2fs_has_inline_data(inode))
1626 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1627 if (ret == -EAGAIN)
f1e88660 1628 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1629 return ret;
eb47b800
JK
1630}
1631
1632static int f2fs_read_data_pages(struct file *file,
1633 struct address_space *mapping,
1634 struct list_head *pages, unsigned nr_pages)
1635{
9ffe0fb5
HL
1636 struct inode *inode = file->f_mapping->host;
1637
1638 /* If the file has inline data, skip readpages */
1639 if (f2fs_has_inline_data(inode))
1640 return 0;
1641
f1e88660 1642 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1643}
1644
05ca3632 1645int do_write_data_page(struct f2fs_io_info *fio)
eb47b800 1646{
05ca3632 1647 struct page *page = fio->page;
eb47b800 1648 struct inode *inode = page->mapping->host;
eb47b800
JK
1649 struct dnode_of_data dn;
1650 int err = 0;
1651
1652 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1653 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1654 if (err)
1655 return err;
1656
cf04e8eb 1657 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1658
1659 /* This page is already truncated */
2bca1e23
JK
1660 if (fio->blk_addr == NULL_ADDR) {
1661 ClearPageUptodate(page);
eb47b800 1662 goto out_writepage;
2bca1e23 1663 }
eb47b800 1664
4375a336
JK
1665 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1666 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1667 if (IS_ERR(fio->encrypted_page)) {
1668 err = PTR_ERR(fio->encrypted_page);
1669 goto out_writepage;
1670 }
1671 }
1672
eb47b800
JK
1673 set_page_writeback(page);
1674
1675 /*
1676 * If current allocation needs SSR,
1677 * it had better in-place writes for updated data.
1678 */
cf04e8eb 1679 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1680 !is_cold_data(page) &&
1681 need_inplace_update(inode))) {
05ca3632 1682 rewrite_data_page(fio);
fff04f90 1683 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1684 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1685 } else {
05ca3632 1686 write_data_page(&dn, fio);
216a620a 1687 set_data_blkaddr(&dn);
7e4dde79 1688 f2fs_update_extent_cache(&dn);
8ce67cb0 1689 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1690 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1691 if (page->index == 0)
1692 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1693 }
1694out_writepage:
1695 f2fs_put_dnode(&dn);
1696 return err;
1697}
1698
1699static int f2fs_write_data_page(struct page *page,
1700 struct writeback_control *wbc)
1701{
1702 struct inode *inode = page->mapping->host;
4081363f 1703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1704 loff_t i_size = i_size_read(inode);
1705 const pgoff_t end_index = ((unsigned long long) i_size)
1706 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1707 unsigned offset = 0;
39936837 1708 bool need_balance_fs = false;
eb47b800 1709 int err = 0;
458e6197 1710 struct f2fs_io_info fio = {
05ca3632 1711 .sbi = sbi,
458e6197 1712 .type = DATA,
6c311ec6 1713 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
05ca3632 1714 .page = page,
4375a336 1715 .encrypted_page = NULL,
458e6197 1716 };
eb47b800 1717
ecda0de3
CY
1718 trace_f2fs_writepage(page, DATA);
1719
eb47b800 1720 if (page->index < end_index)
39936837 1721 goto write;
eb47b800
JK
1722
1723 /*
1724 * If the offset is out-of-range of file size,
1725 * this page does not have to be written to disk.
1726 */
1727 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1728 if ((page->index >= end_index + 1) || !offset)
39936837 1729 goto out;
eb47b800
JK
1730
1731 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1732write:
caf0047e 1733 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1734 goto redirty_out;
1e84371f
JK
1735 if (f2fs_is_drop_cache(inode))
1736 goto out;
1737 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1738 available_free_memory(sbi, BASE_CHECK))
1739 goto redirty_out;
eb47b800 1740
39936837 1741 /* Dentry blocks are controlled by checkpoint */
eb47b800 1742 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1743 if (unlikely(f2fs_cp_error(sbi)))
1744 goto redirty_out;
05ca3632 1745 err = do_write_data_page(&fio);
8618b881
JK
1746 goto done;
1747 }
9ffe0fb5 1748
cf779cab
JK
1749 /* we should bypass data pages to proceed the kworkder jobs */
1750 if (unlikely(f2fs_cp_error(sbi))) {
1751 SetPageError(page);
a7ffdbe2 1752 goto out;
cf779cab
JK
1753 }
1754
8618b881 1755 if (!wbc->for_reclaim)
39936837 1756 need_balance_fs = true;
8618b881 1757 else if (has_not_enough_free_secs(sbi, 0))
39936837 1758 goto redirty_out;
eb47b800 1759
b3d208f9 1760 err = -EAGAIN;
8618b881 1761 f2fs_lock_op(sbi);
b3d208f9
JK
1762 if (f2fs_has_inline_data(inode))
1763 err = f2fs_write_inline_data(inode, page);
1764 if (err == -EAGAIN)
05ca3632 1765 err = do_write_data_page(&fio);
8618b881
JK
1766 f2fs_unlock_op(sbi);
1767done:
1768 if (err && err != -ENOENT)
1769 goto redirty_out;
eb47b800 1770
eb47b800 1771 clear_cold_data(page);
39936837 1772out:
a7ffdbe2 1773 inode_dec_dirty_pages(inode);
2bca1e23
JK
1774 if (err)
1775 ClearPageUptodate(page);
eb47b800 1776 unlock_page(page);
39936837 1777 if (need_balance_fs)
eb47b800 1778 f2fs_balance_fs(sbi);
2aea39ec
JK
1779 if (wbc->for_reclaim)
1780 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1781 return 0;
1782
eb47b800 1783redirty_out:
76f60268 1784 redirty_page_for_writepage(wbc, page);
8618b881 1785 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1786}
1787
fa9150a8
NJ
1788static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1789 void *data)
1790{
1791 struct address_space *mapping = data;
1792 int ret = mapping->a_ops->writepage(page, wbc);
1793 mapping_set_error(mapping, ret);
1794 return ret;
1795}
1796
25ca923b 1797static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1798 struct writeback_control *wbc)
1799{
1800 struct inode *inode = mapping->host;
4081363f 1801 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1802 bool locked = false;
eb47b800 1803 int ret;
50c8cdb3 1804 long diff;
eb47b800 1805
e5748434
CY
1806 trace_f2fs_writepages(mapping->host, wbc, DATA);
1807
cfb185a1 1808 /* deal with chardevs and other special file */
1809 if (!mapping->a_ops->writepage)
1810 return 0;
1811
87d6f890 1812 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1813 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1814 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1815 goto skip_write;
87d6f890 1816
d5669f7b
JK
1817 /* during POR, we don't need to trigger writepage at all. */
1818 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1819 goto skip_write;
1820
50c8cdb3 1821 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1822
5463e7c1
JK
1823 if (!S_ISDIR(inode->i_mode)) {
1824 mutex_lock(&sbi->writepages);
1825 locked = true;
1826 }
fa9150a8 1827 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1828 if (locked)
1829 mutex_unlock(&sbi->writepages);
458e6197
JK
1830
1831 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1832
1833 remove_dirty_dir_inode(inode);
1834
50c8cdb3 1835 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1836 return ret;
d3baf95d
JK
1837
1838skip_write:
a7ffdbe2 1839 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1840 return 0;
eb47b800
JK
1841}
1842
3aab8f82
CY
1843static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1844{
1845 struct inode *inode = mapping->host;
1846
1847 if (to > inode->i_size) {
1848 truncate_pagecache(inode, inode->i_size);
764aa3e9 1849 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1850 }
1851}
1852
eb47b800
JK
1853static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1854 loff_t pos, unsigned len, unsigned flags,
1855 struct page **pagep, void **fsdata)
1856{
1857 struct inode *inode = mapping->host;
4081363f 1858 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1859 struct page *page, *ipage;
eb47b800
JK
1860 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1861 struct dnode_of_data dn;
1862 int err = 0;
1863
62aed044
CY
1864 trace_f2fs_write_begin(inode, pos, len, flags);
1865
eb47b800 1866 f2fs_balance_fs(sbi);
5f727395
JK
1867
1868 /*
1869 * We should check this at this moment to avoid deadlock on inode page
1870 * and #0 page. The locking rule for inline_data conversion should be:
1871 * lock_page(page #0) -> lock_page(inode_page)
1872 */
1873 if (index != 0) {
1874 err = f2fs_convert_inline_inode(inode);
1875 if (err)
1876 goto fail;
1877 }
afcb7ca0 1878repeat:
eb47b800 1879 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1880 if (!page) {
1881 err = -ENOMEM;
1882 goto fail;
1883 }
d5f66990 1884
eb47b800
JK
1885 *pagep = page;
1886
e479556b 1887 f2fs_lock_op(sbi);
9ba69cf9
JK
1888
1889 /* check inline_data */
1890 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1891 if (IS_ERR(ipage)) {
1892 err = PTR_ERR(ipage);
9ba69cf9 1893 goto unlock_fail;
cd34e296 1894 }
9ba69cf9 1895
b3d208f9
JK
1896 set_new_dnode(&dn, inode, ipage, ipage, 0);
1897
9ba69cf9 1898 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1899 if (pos + len <= MAX_INLINE_DATA) {
1900 read_inline_data(page, ipage);
1901 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1902 sync_inode_page(&dn);
1903 goto put_next;
b3d208f9 1904 }
5f727395
JK
1905 err = f2fs_convert_inline_page(&dn, page);
1906 if (err)
1907 goto put_fail;
b600965c 1908 }
9ba69cf9
JK
1909 err = f2fs_reserve_block(&dn, index);
1910 if (err)
8cdcb713 1911 goto put_fail;
b3d208f9 1912put_next:
9ba69cf9
JK
1913 f2fs_put_dnode(&dn);
1914 f2fs_unlock_op(sbi);
1915
eb47b800
JK
1916 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1917 return 0;
1918
b3d208f9
JK
1919 f2fs_wait_on_page_writeback(page, DATA);
1920
eb47b800
JK
1921 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1922 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1923 unsigned end = start + len;
1924
1925 /* Reading beyond i_size is simple: memset to zero */
1926 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1927 goto out;
eb47b800
JK
1928 }
1929
b3d208f9 1930 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1931 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1932 } else {
cf04e8eb 1933 struct f2fs_io_info fio = {
05ca3632 1934 .sbi = sbi,
cf04e8eb
JK
1935 .type = DATA,
1936 .rw = READ_SYNC,
1937 .blk_addr = dn.data_blkaddr,
05ca3632 1938 .page = page,
4375a336 1939 .encrypted_page = NULL,
cf04e8eb 1940 };
05ca3632 1941 err = f2fs_submit_page_bio(&fio);
9234f319
JK
1942 if (err)
1943 goto fail;
d54c795b 1944
393ff91f 1945 lock_page(page);
6bacf52f 1946 if (unlikely(!PageUptodate(page))) {
393ff91f 1947 f2fs_put_page(page, 1);
3aab8f82
CY
1948 err = -EIO;
1949 goto fail;
eb47b800 1950 }
6bacf52f 1951 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1952 f2fs_put_page(page, 1);
1953 goto repeat;
eb47b800 1954 }
4375a336
JK
1955
1956 /* avoid symlink page */
1957 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1958 err = f2fs_decrypt_one(inode, page);
1959 if (err) {
1960 f2fs_put_page(page, 1);
1961 goto fail;
1962 }
1963 }
eb47b800 1964 }
393ff91f 1965out:
eb47b800
JK
1966 SetPageUptodate(page);
1967 clear_cold_data(page);
1968 return 0;
9ba69cf9 1969
8cdcb713
JK
1970put_fail:
1971 f2fs_put_dnode(&dn);
9ba69cf9
JK
1972unlock_fail:
1973 f2fs_unlock_op(sbi);
b3d208f9 1974 f2fs_put_page(page, 1);
3aab8f82
CY
1975fail:
1976 f2fs_write_failed(mapping, pos + len);
1977 return err;
eb47b800
JK
1978}
1979
a1dd3c13
JK
1980static int f2fs_write_end(struct file *file,
1981 struct address_space *mapping,
1982 loff_t pos, unsigned len, unsigned copied,
1983 struct page *page, void *fsdata)
1984{
1985 struct inode *inode = page->mapping->host;
1986
dfb2bf38
CY
1987 trace_f2fs_write_end(inode, pos, len, copied);
1988
34ba94ba 1989 set_page_dirty(page);
a1dd3c13
JK
1990
1991 if (pos + copied > i_size_read(inode)) {
1992 i_size_write(inode, pos + copied);
1993 mark_inode_dirty(inode);
1994 update_inode_page(inode);
1995 }
1996
75c3c8bc 1997 f2fs_put_page(page, 1);
a1dd3c13
JK
1998 return copied;
1999}
2000
6f673763
OS
2001static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2002 loff_t offset)
944fcfc1
JK
2003{
2004 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 2005
6f673763 2006 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
2007 return 0;
2008
2009 if (offset & blocksize_mask)
2010 return -EINVAL;
2011
5b46f25d
AV
2012 if (iov_iter_alignment(iter) & blocksize_mask)
2013 return -EINVAL;
2014
944fcfc1
JK
2015 return 0;
2016}
2017
22c6186e
OS
2018static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2019 loff_t offset)
eb47b800
JK
2020{
2021 struct file *file = iocb->ki_filp;
3aab8f82
CY
2022 struct address_space *mapping = file->f_mapping;
2023 struct inode *inode = mapping->host;
2024 size_t count = iov_iter_count(iter);
2025 int err;
944fcfc1 2026
b3d208f9
JK
2027 /* we don't need to use inline_data strictly */
2028 if (f2fs_has_inline_data(inode)) {
2029 err = f2fs_convert_inline_inode(inode);
2030 if (err)
2031 return err;
2032 }
9ffe0fb5 2033
fcc85a4d
JK
2034 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
2035 return 0;
2036
6f673763 2037 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
2038 return 0;
2039
6f673763 2040 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 2041
6f673763 2042 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
2043 __allocate_data_blocks(inode, offset, count);
2044
17f8c842 2045 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 2046 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 2047 f2fs_write_failed(mapping, offset + count);
70407fad 2048
6f673763 2049 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 2050
3aab8f82 2051 return err;
eb47b800
JK
2052}
2053
487261f3
CY
2054void f2fs_invalidate_page(struct page *page, unsigned int offset,
2055 unsigned int length)
eb47b800
JK
2056{
2057 struct inode *inode = page->mapping->host;
487261f3 2058 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 2059
487261f3
CY
2060 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2061 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
2062 return;
2063
487261f3
CY
2064 if (PageDirty(page)) {
2065 if (inode->i_ino == F2FS_META_INO(sbi))
2066 dec_page_count(sbi, F2FS_DIRTY_META);
2067 else if (inode->i_ino == F2FS_NODE_INO(sbi))
2068 dec_page_count(sbi, F2FS_DIRTY_NODES);
2069 else
2070 inode_dec_dirty_pages(inode);
2071 }
eb47b800
JK
2072 ClearPagePrivate(page);
2073}
2074
487261f3 2075int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 2076{
f68daeeb
JK
2077 /* If this is dirty page, keep PagePrivate */
2078 if (PageDirty(page))
2079 return 0;
2080
eb47b800 2081 ClearPagePrivate(page);
c3850aa1 2082 return 1;
eb47b800
JK
2083}
2084
2085static int f2fs_set_data_page_dirty(struct page *page)
2086{
2087 struct address_space *mapping = page->mapping;
2088 struct inode *inode = mapping->host;
2089
26c6b887
JK
2090 trace_f2fs_set_page_dirty(page, DATA);
2091
eb47b800 2092 SetPageUptodate(page);
34ba94ba 2093
1e84371f 2094 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
2095 register_inmem_page(inode, page);
2096 return 1;
2097 }
2098
a18ff063
JK
2099 mark_inode_dirty(inode);
2100
eb47b800
JK
2101 if (!PageDirty(page)) {
2102 __set_page_dirty_nobuffers(page);
a7ffdbe2 2103 update_dirty_page(inode, page);
eb47b800
JK
2104 return 1;
2105 }
2106 return 0;
2107}
2108
c01e54b7
JK
2109static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2110{
454ae7e5
CY
2111 struct inode *inode = mapping->host;
2112
b3d208f9
JK
2113 /* we don't need to use inline_data strictly */
2114 if (f2fs_has_inline_data(inode)) {
2115 int err = f2fs_convert_inline_inode(inode);
2116 if (err)
2117 return err;
2118 }
bfad7c2d 2119 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
2120}
2121
429511cd
CY
2122void init_extent_cache_info(struct f2fs_sb_info *sbi)
2123{
2124 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2125 init_rwsem(&sbi->extent_tree_lock);
2126 INIT_LIST_HEAD(&sbi->extent_list);
2127 spin_lock_init(&sbi->extent_lock);
2128 sbi->total_ext_tree = 0;
2129 atomic_set(&sbi->total_ext_node, 0);
2130}
2131
2132int __init create_extent_cache(void)
2133{
2134 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2135 sizeof(struct extent_tree));
2136 if (!extent_tree_slab)
2137 return -ENOMEM;
2138 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2139 sizeof(struct extent_node));
2140 if (!extent_node_slab) {
2141 kmem_cache_destroy(extent_tree_slab);
2142 return -ENOMEM;
2143 }
2144 return 0;
2145}
2146
2147void destroy_extent_cache(void)
2148{
2149 kmem_cache_destroy(extent_node_slab);
2150 kmem_cache_destroy(extent_tree_slab);
2151}
2152
eb47b800
JK
2153const struct address_space_operations f2fs_dblock_aops = {
2154 .readpage = f2fs_read_data_page,
2155 .readpages = f2fs_read_data_pages,
2156 .writepage = f2fs_write_data_page,
2157 .writepages = f2fs_write_data_pages,
2158 .write_begin = f2fs_write_begin,
a1dd3c13 2159 .write_end = f2fs_write_end,
eb47b800 2160 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
2161 .invalidatepage = f2fs_invalidate_page,
2162 .releasepage = f2fs_release_page,
eb47b800 2163 .direct_IO = f2fs_direct_IO,
c01e54b7 2164 .bmap = f2fs_bmap,
eb47b800 2165};
This page took 0.222824 seconds and 5 git commands to generate.