f2fs: expose f2fs_mpage_readpages
[deliverable/linux.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
f568849e 37 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
38 struct page *page = bvec->bv_page;
39
f568849e
LT
40 if (!err) {
41 SetPageUptodate(page);
42 } else {
93dfe2ac
JK
43 ClearPageUptodate(page);
44 SetPageError(page);
45 }
46 unlock_page(page);
f568849e 47 }
93dfe2ac
JK
48 bio_put(bio);
49}
50
f1e88660
JK
51/*
52 * I/O completion handler for multipage BIOs.
53 * copied from fs/mpage.c
54 */
55static void mpage_end_io(struct bio *bio, int err)
56{
57 struct bio_vec *bv;
58 int i;
59
60 bio_for_each_segment_all(bv, bio, i) {
61 struct page *page = bv->bv_page;
62
63 if (!err) {
64 SetPageUptodate(page);
65 } else {
66 ClearPageUptodate(page);
67 SetPageError(page);
68 }
69 unlock_page(page);
70 }
71
72 bio_put(bio);
73}
74
93dfe2ac
JK
75static void f2fs_write_end_io(struct bio *bio, int err)
76{
1b1f559f 77 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
78 struct bio_vec *bvec;
79 int i;
93dfe2ac 80
f568849e 81 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
82 struct page *page = bvec->bv_page;
83
f568849e 84 if (unlikely(err)) {
cf779cab 85 set_page_dirty(page);
93dfe2ac 86 set_bit(AS_EIO, &page->mapping->flags);
744602cf 87 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
88 }
89 end_page_writeback(page);
90 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 91 }
93dfe2ac 92
93dfe2ac
JK
93 if (!get_pages(sbi, F2FS_WRITEBACK) &&
94 !list_empty(&sbi->cp_wait.task_list))
95 wake_up(&sbi->cp_wait);
96
97 bio_put(bio);
98}
99
940a6d34
GZ
100/*
101 * Low-level block read/write IO operations.
102 */
103static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
104 int npages, bool is_read)
105{
106 struct bio *bio;
107
108 /* No failure on bio allocation */
109 bio = bio_alloc(GFP_NOIO, npages);
110
111 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 112 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 113 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 114 bio->bi_private = sbi;
940a6d34
GZ
115
116 return bio;
117}
118
458e6197 119static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 120{
458e6197 121 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
122
123 if (!io->bio)
124 return;
125
6a8f8ca5 126 if (is_read_io(fio->rw))
2ace38e0 127 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 128 else
2ace38e0 129 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 130
6a8f8ca5 131 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
132 io->bio = NULL;
133}
134
135void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 136 enum page_type type, int rw)
93dfe2ac
JK
137{
138 enum page_type btype = PAGE_TYPE_OF_BIO(type);
139 struct f2fs_bio_info *io;
140
141 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
142
df0f8dc0 143 down_write(&io->io_rwsem);
458e6197
JK
144
145 /* change META to META_FLUSH in the checkpoint procedure */
146 if (type >= META_FLUSH) {
147 io->fio.type = META_FLUSH;
0f7b2abd
JK
148 if (test_opt(sbi, NOBARRIER))
149 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
150 else
151 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
152 }
153 __submit_merged_bio(io);
df0f8dc0 154 up_write(&io->io_rwsem);
93dfe2ac
JK
155}
156
157/*
158 * Fill the locked page with data located in the block address.
159 * Return unlocked page.
160 */
161int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 162 struct f2fs_io_info *fio)
93dfe2ac 163{
93dfe2ac
JK
164 struct bio *bio;
165
2ace38e0 166 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 167 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
168
169 /* Allocate a new bio */
cf04e8eb 170 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
171
172 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
173 bio_put(bio);
174 f2fs_put_page(page, 1);
175 return -EFAULT;
176 }
177
cf04e8eb 178 submit_bio(fio->rw, bio);
93dfe2ac
JK
179 return 0;
180}
181
182void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 183 struct f2fs_io_info *fio)
93dfe2ac 184{
458e6197 185 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 186 struct f2fs_bio_info *io;
940a6d34 187 bool is_read = is_read_io(fio->rw);
93dfe2ac 188
940a6d34 189 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 190
cf04e8eb 191 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 192
df0f8dc0 193 down_write(&io->io_rwsem);
93dfe2ac 194
940a6d34 195 if (!is_read)
93dfe2ac
JK
196 inc_page_count(sbi, F2FS_WRITEBACK);
197
cf04e8eb 198 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
199 io->fio.rw != fio->rw))
200 __submit_merged_bio(io);
93dfe2ac
JK
201alloc_new:
202 if (io->bio == NULL) {
90a893c7 203 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 204
cf04e8eb 205 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 206 io->fio = *fio;
93dfe2ac
JK
207 }
208
209 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
210 PAGE_CACHE_SIZE) {
458e6197 211 __submit_merged_bio(io);
93dfe2ac
JK
212 goto alloc_new;
213 }
214
cf04e8eb 215 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 216 f2fs_trace_ios(page, fio, 0);
93dfe2ac 217
df0f8dc0 218 up_write(&io->io_rwsem);
2ace38e0 219 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
220}
221
0a8165d7 222/*
eb47b800
JK
223 * Lock ordering for the change of data block address:
224 * ->data_page
225 * ->node_page
226 * update block addresses in the node page
227 */
216a620a 228void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
229{
230 struct f2fs_node *rn;
231 __le32 *addr_array;
232 struct page *node_page = dn->node_page;
233 unsigned int ofs_in_node = dn->ofs_in_node;
234
5514f0aa 235 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 236
45590710 237 rn = F2FS_NODE(node_page);
eb47b800
JK
238
239 /* Get physical address of data block */
240 addr_array = blkaddr_in_node(rn);
e1509cf2 241 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
242 set_page_dirty(node_page);
243}
244
245int reserve_new_block(struct dnode_of_data *dn)
246{
4081363f 247 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 248
6bacf52f 249 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 250 return -EPERM;
cfb271d4 251 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
252 return -ENOSPC;
253
c01e2853
NJ
254 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
255
eb47b800 256 dn->data_blkaddr = NEW_ADDR;
216a620a 257 set_data_blkaddr(dn);
a18ff063 258 mark_inode_dirty(dn->inode);
eb47b800
JK
259 sync_inode_page(dn);
260 return 0;
261}
262
b600965c
HL
263int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
264{
265 bool need_put = dn->inode_page ? false : true;
266 int err;
267
268 err = get_dnode_of_data(dn, index, ALLOC_NODE);
269 if (err)
270 return err;
a8865372 271
b600965c
HL
272 if (dn->data_blkaddr == NULL_ADDR)
273 err = reserve_new_block(dn);
a8865372 274 if (err || need_put)
b600965c
HL
275 f2fs_put_dnode(dn);
276 return err;
277}
278
7e4dde79
CY
279static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
280 struct extent_info *ei)
eb47b800
JK
281{
282 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
283 pgoff_t start_fofs, end_fofs;
284 block_t start_blkaddr;
285
0c872e2d 286 read_lock(&fi->ext_lock);
eb47b800 287 if (fi->ext.len == 0) {
0c872e2d 288 read_unlock(&fi->ext_lock);
7e4dde79 289 return false;
eb47b800
JK
290 }
291
dcdfff65
JK
292 stat_inc_total_hit(inode->i_sb);
293
eb47b800
JK
294 start_fofs = fi->ext.fofs;
295 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 296 start_blkaddr = fi->ext.blk;
eb47b800
JK
297
298 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 299 *ei = fi->ext;
dcdfff65 300 stat_inc_read_hit(inode->i_sb);
0c872e2d 301 read_unlock(&fi->ext_lock);
7e4dde79 302 return true;
eb47b800 303 }
0c872e2d 304 read_unlock(&fi->ext_lock);
7e4dde79 305 return false;
eb47b800
JK
306}
307
7e4dde79
CY
308static bool update_extent_info(struct inode *inode, pgoff_t fofs,
309 block_t blkaddr)
eb47b800 310{
7e4dde79
CY
311 struct f2fs_inode_info *fi = F2FS_I(inode);
312 pgoff_t start_fofs, end_fofs;
eb47b800 313 block_t start_blkaddr, end_blkaddr;
c11abd1a 314 int need_update = true;
eb47b800 315
0c872e2d 316 write_lock(&fi->ext_lock);
eb47b800
JK
317
318 start_fofs = fi->ext.fofs;
319 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
320 start_blkaddr = fi->ext.blk;
321 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
322
323 /* Drop and initialize the matched extent */
324 if (fi->ext.len == 1 && fofs == start_fofs)
325 fi->ext.len = 0;
326
327 /* Initial extent */
328 if (fi->ext.len == 0) {
7e4dde79 329 if (blkaddr != NULL_ADDR) {
eb47b800 330 fi->ext.fofs = fofs;
7e4dde79 331 fi->ext.blk = blkaddr;
eb47b800
JK
332 fi->ext.len = 1;
333 }
334 goto end_update;
335 }
336
6224da87 337 /* Front merge */
7e4dde79 338 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 339 fi->ext.fofs--;
4d0b0bd4 340 fi->ext.blk--;
eb47b800
JK
341 fi->ext.len++;
342 goto end_update;
343 }
344
345 /* Back merge */
7e4dde79 346 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
347 fi->ext.len++;
348 goto end_update;
349 }
350
351 /* Split the existing extent */
352 if (fi->ext.len > 1 &&
353 fofs >= start_fofs && fofs <= end_fofs) {
354 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
355 fi->ext.len = fofs - start_fofs;
356 } else {
357 fi->ext.fofs = fofs + 1;
4d0b0bd4 358 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
359 fi->ext.len -= fofs - start_fofs + 1;
360 }
c11abd1a
JK
361 } else {
362 need_update = false;
eb47b800 363 }
eb47b800 364
c11abd1a
JK
365 /* Finally, if the extent is very fragmented, let's drop the cache. */
366 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
367 fi->ext.len = 0;
368 set_inode_flag(fi, FI_NO_EXTENT);
369 need_update = true;
370 }
eb47b800 371end_update:
0c872e2d 372 write_unlock(&fi->ext_lock);
7e4dde79
CY
373 return need_update;
374}
375
429511cd
CY
376static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
377 struct extent_tree *et, struct extent_info *ei,
378 struct rb_node *parent, struct rb_node **p)
379{
380 struct extent_node *en;
381
382 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
383 if (!en)
384 return NULL;
385
386 en->ei = *ei;
387 INIT_LIST_HEAD(&en->list);
388
389 rb_link_node(&en->rb_node, parent, p);
390 rb_insert_color(&en->rb_node, &et->root);
391 et->count++;
392 atomic_inc(&sbi->total_ext_node);
393 return en;
394}
395
396static void __detach_extent_node(struct f2fs_sb_info *sbi,
397 struct extent_tree *et, struct extent_node *en)
398{
399 rb_erase(&en->rb_node, &et->root);
400 et->count--;
401 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
402
403 if (et->cached_en == en)
404 et->cached_en = NULL;
429511cd
CY
405}
406
93dfc526
CY
407static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
408 nid_t ino)
409{
410 struct extent_tree *et;
411
412 down_read(&sbi->extent_tree_lock);
413 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
414 if (!et) {
415 up_read(&sbi->extent_tree_lock);
416 return NULL;
417 }
418 atomic_inc(&et->refcount);
419 up_read(&sbi->extent_tree_lock);
420
421 return et;
422}
423
424static struct extent_tree *__grab_extent_tree(struct inode *inode)
425{
426 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
427 struct extent_tree *et;
428 nid_t ino = inode->i_ino;
429
430 down_write(&sbi->extent_tree_lock);
431 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
432 if (!et) {
433 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
434 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
435 memset(et, 0, sizeof(struct extent_tree));
436 et->ino = ino;
437 et->root = RB_ROOT;
438 et->cached_en = NULL;
439 rwlock_init(&et->lock);
440 atomic_set(&et->refcount, 0);
441 et->count = 0;
442 sbi->total_ext_tree++;
443 }
444 atomic_inc(&et->refcount);
445 up_write(&sbi->extent_tree_lock);
446
447 return et;
448}
449
429511cd
CY
450static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
451 unsigned int fofs)
452{
453 struct rb_node *node = et->root.rb_node;
454 struct extent_node *en;
455
62c8af65
CY
456 if (et->cached_en) {
457 struct extent_info *cei = &et->cached_en->ei;
458
459 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
460 return et->cached_en;
461 }
462
429511cd
CY
463 while (node) {
464 en = rb_entry(node, struct extent_node, rb_node);
465
62c8af65 466 if (fofs < en->ei.fofs) {
429511cd 467 node = node->rb_left;
62c8af65 468 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 469 node = node->rb_right;
62c8af65
CY
470 } else {
471 et->cached_en = en;
429511cd 472 return en;
62c8af65 473 }
429511cd
CY
474 }
475 return NULL;
476}
477
478static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
479 struct extent_tree *et, struct extent_node *en)
480{
481 struct extent_node *prev;
482 struct rb_node *node;
483
484 node = rb_prev(&en->rb_node);
485 if (!node)
486 return NULL;
487
488 prev = rb_entry(node, struct extent_node, rb_node);
489 if (__is_back_mergeable(&en->ei, &prev->ei)) {
490 en->ei.fofs = prev->ei.fofs;
491 en->ei.blk = prev->ei.blk;
492 en->ei.len += prev->ei.len;
493 __detach_extent_node(sbi, et, prev);
494 return prev;
495 }
496 return NULL;
497}
498
499static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
500 struct extent_tree *et, struct extent_node *en)
501{
502 struct extent_node *next;
503 struct rb_node *node;
504
505 node = rb_next(&en->rb_node);
506 if (!node)
507 return NULL;
508
509 next = rb_entry(node, struct extent_node, rb_node);
510 if (__is_front_mergeable(&en->ei, &next->ei)) {
511 en->ei.len += next->ei.len;
512 __detach_extent_node(sbi, et, next);
513 return next;
514 }
515 return NULL;
516}
517
518static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
519 struct extent_tree *et, struct extent_info *ei,
520 struct extent_node **den)
521{
522 struct rb_node **p = &et->root.rb_node;
523 struct rb_node *parent = NULL;
524 struct extent_node *en;
525
526 while (*p) {
527 parent = *p;
528 en = rb_entry(parent, struct extent_node, rb_node);
529
530 if (ei->fofs < en->ei.fofs) {
531 if (__is_front_mergeable(ei, &en->ei)) {
532 f2fs_bug_on(sbi, !den);
533 en->ei.fofs = ei->fofs;
534 en->ei.blk = ei->blk;
535 en->ei.len += ei->len;
536 *den = __try_back_merge(sbi, et, en);
537 return en;
538 }
539 p = &(*p)->rb_left;
540 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
541 if (__is_back_mergeable(ei, &en->ei)) {
542 f2fs_bug_on(sbi, !den);
543 en->ei.len += ei->len;
544 *den = __try_front_merge(sbi, et, en);
545 return en;
546 }
547 p = &(*p)->rb_right;
548 } else {
549 f2fs_bug_on(sbi, 1);
550 }
551 }
552
553 return __attach_extent_node(sbi, et, ei, parent, p);
554}
555
556static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
557 struct extent_tree *et, bool free_all)
558{
559 struct rb_node *node, *next;
560 struct extent_node *en;
561 unsigned int count = et->count;
562
563 node = rb_first(&et->root);
564 while (node) {
565 next = rb_next(node);
566 en = rb_entry(node, struct extent_node, rb_node);
567
568 if (free_all) {
569 spin_lock(&sbi->extent_lock);
570 if (!list_empty(&en->list))
571 list_del_init(&en->list);
572 spin_unlock(&sbi->extent_lock);
573 }
574
575 if (free_all || list_empty(&en->list)) {
576 __detach_extent_node(sbi, et, en);
577 kmem_cache_free(extent_node_slab, en);
578 }
579 node = next;
580 }
581
582 return count - et->count;
583}
584
028a41e8
CY
585static void f2fs_init_extent_tree(struct inode *inode,
586 struct f2fs_extent *i_ext)
587{
588 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
589 struct extent_tree *et;
590 struct extent_node *en;
591 struct extent_info ei;
592
593 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
594 return;
595
596 et = __grab_extent_tree(inode);
597
598 write_lock(&et->lock);
599 if (et->count)
600 goto out;
601
602 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
603 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
604
605 en = __insert_extent_tree(sbi, et, &ei, NULL);
606 if (en) {
607 et->cached_en = en;
608
609 spin_lock(&sbi->extent_lock);
610 list_add_tail(&en->list, &sbi->extent_list);
611 spin_unlock(&sbi->extent_lock);
612 }
613out:
614 write_unlock(&et->lock);
615 atomic_dec(&et->refcount);
616}
617
429511cd
CY
618static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
619 struct extent_info *ei)
620{
621 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
622 struct extent_tree *et;
623 struct extent_node *en;
624
1ec4610c
CY
625 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
626
93dfc526
CY
627 et = __find_extent_tree(sbi, inode->i_ino);
628 if (!et)
429511cd 629 return false;
429511cd
CY
630
631 read_lock(&et->lock);
632 en = __lookup_extent_tree(et, pgofs);
633 if (en) {
634 *ei = en->ei;
635 spin_lock(&sbi->extent_lock);
636 if (!list_empty(&en->list))
637 list_move_tail(&en->list, &sbi->extent_list);
638 spin_unlock(&sbi->extent_lock);
639 stat_inc_read_hit(sbi->sb);
640 }
641 stat_inc_total_hit(sbi->sb);
642 read_unlock(&et->lock);
643
1ec4610c
CY
644 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
645
429511cd
CY
646 atomic_dec(&et->refcount);
647 return en ? true : false;
648}
649
650static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
651 block_t blkaddr)
652{
653 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
654 struct extent_tree *et;
655 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
656 struct extent_node *den = NULL;
657 struct extent_info ei, dei;
658 unsigned int endofs;
659
1ec4610c
CY
660 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
661
93dfc526 662 et = __grab_extent_tree(inode);
429511cd
CY
663
664 write_lock(&et->lock);
665
666 /* 1. lookup and remove existing extent info in cache */
667 en = __lookup_extent_tree(et, fofs);
668 if (!en)
669 goto update_extent;
670
671 dei = en->ei;
672 __detach_extent_node(sbi, et, en);
673
674 /* 2. if extent can be split more, split and insert the left part */
675 if (dei.len > 1) {
676 /* insert left part of split extent into cache */
677 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
678 set_extent_info(&ei, dei.fofs, dei.blk,
679 fofs - dei.fofs);
680 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
681 }
682
683 /* insert right part of split extent into cache */
684 endofs = dei.fofs + dei.len - 1;
685 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
686 set_extent_info(&ei, fofs + 1,
687 fofs - dei.fofs + dei.blk, endofs - fofs);
688 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
689 }
690 }
691
692update_extent:
693 /* 3. update extent in extent cache */
694 if (blkaddr) {
695 set_extent_info(&ei, fofs, blkaddr, 1);
696 en3 = __insert_extent_tree(sbi, et, &ei, &den);
697 }
698
699 /* 4. update in global extent list */
700 spin_lock(&sbi->extent_lock);
701 if (en && !list_empty(&en->list))
702 list_del(&en->list);
703 /*
704 * en1 and en2 split from en, they will become more and more smaller
705 * fragments after splitting several times. So if the length is smaller
706 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
707 */
708 if (en1)
709 list_add_tail(&en1->list, &sbi->extent_list);
710 if (en2)
711 list_add_tail(&en2->list, &sbi->extent_list);
712 if (en3) {
713 if (list_empty(&en3->list))
714 list_add_tail(&en3->list, &sbi->extent_list);
715 else
716 list_move_tail(&en3->list, &sbi->extent_list);
717 }
718 if (den && !list_empty(&den->list))
719 list_del(&den->list);
720 spin_unlock(&sbi->extent_lock);
721
722 /* 5. release extent node */
723 if (en)
724 kmem_cache_free(extent_node_slab, en);
725 if (den)
726 kmem_cache_free(extent_node_slab, den);
727
728 write_unlock(&et->lock);
729 atomic_dec(&et->refcount);
730}
731
0bdee482
CY
732void f2fs_preserve_extent_tree(struct inode *inode)
733{
734 struct extent_tree *et;
735 struct extent_info *ext = &F2FS_I(inode)->ext;
736 bool sync = false;
737
738 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
739 return;
740
741 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
742 if (!et) {
743 if (ext->len) {
744 ext->len = 0;
745 update_inode_page(inode);
746 }
747 return;
748 }
749
750 read_lock(&et->lock);
751 if (et->count) {
752 struct extent_node *en;
753
754 if (et->cached_en) {
755 en = et->cached_en;
756 } else {
757 struct rb_node *node = rb_first(&et->root);
758
759 if (!node)
760 node = rb_last(&et->root);
761 en = rb_entry(node, struct extent_node, rb_node);
762 }
763
764 if (__is_extent_same(ext, &en->ei))
765 goto out;
766
767 *ext = en->ei;
768 sync = true;
769 } else if (ext->len) {
770 ext->len = 0;
771 sync = true;
772 }
773out:
774 read_unlock(&et->lock);
775 atomic_dec(&et->refcount);
776
777 if (sync)
778 update_inode_page(inode);
779}
780
429511cd
CY
781void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
782{
783 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
784 struct extent_node *en, *tmp;
785 unsigned long ino = F2FS_ROOT_INO(sbi);
786 struct radix_tree_iter iter;
787 void **slot;
788 unsigned int found;
1ec4610c 789 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 790
1dcc336b
CY
791 if (!test_opt(sbi, EXTENT_CACHE))
792 return;
793
429511cd
CY
794 if (available_free_memory(sbi, EXTENT_CACHE))
795 return;
796
797 spin_lock(&sbi->extent_lock);
798 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
799 if (!nr_shrink--)
800 break;
801 list_del_init(&en->list);
802 }
803 spin_unlock(&sbi->extent_lock);
804
805 down_read(&sbi->extent_tree_lock);
806 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
807 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
808 unsigned i;
809
810 ino = treevec[found - 1]->ino + 1;
811 for (i = 0; i < found; i++) {
812 struct extent_tree *et = treevec[i];
813
814 atomic_inc(&et->refcount);
815 write_lock(&et->lock);
1ec4610c 816 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
817 write_unlock(&et->lock);
818 atomic_dec(&et->refcount);
819 }
820 }
821 up_read(&sbi->extent_tree_lock);
822
823 down_write(&sbi->extent_tree_lock);
824 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
825 F2FS_ROOT_INO(sbi)) {
826 struct extent_tree *et = (struct extent_tree *)*slot;
827
828 if (!atomic_read(&et->refcount) && !et->count) {
829 radix_tree_delete(&sbi->extent_tree_root, et->ino);
830 kmem_cache_free(extent_tree_slab, et);
831 sbi->total_ext_tree--;
1ec4610c 832 tree_cnt++;
429511cd
CY
833 }
834 }
835 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
836
837 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
838}
839
840void f2fs_destroy_extent_tree(struct inode *inode)
841{
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 struct extent_tree *et;
1ec4610c 844 unsigned int node_cnt = 0;
429511cd 845
1dcc336b
CY
846 if (!test_opt(sbi, EXTENT_CACHE))
847 return;
848
93dfc526
CY
849 et = __find_extent_tree(sbi, inode->i_ino);
850 if (!et)
429511cd 851 goto out;
429511cd
CY
852
853 /* free all extent info belong to this extent tree */
854 write_lock(&et->lock);
1ec4610c 855 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
856 write_unlock(&et->lock);
857
858 atomic_dec(&et->refcount);
859
860 /* try to find and delete extent tree entry in radix tree */
861 down_write(&sbi->extent_tree_lock);
862 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
863 if (!et) {
864 up_write(&sbi->extent_tree_lock);
865 goto out;
866 }
867 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
868 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
869 kmem_cache_free(extent_tree_slab, et);
870 sbi->total_ext_tree--;
871 up_write(&sbi->extent_tree_lock);
872out:
1ec4610c 873 trace_f2fs_destroy_extent_tree(inode, node_cnt);
c11abd1a 874 return;
eb47b800
JK
875}
876
028a41e8
CY
877void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
878{
879 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
880 f2fs_init_extent_tree(inode, i_ext);
881
882 write_lock(&F2FS_I(inode)->ext_lock);
883 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
884 write_unlock(&F2FS_I(inode)->ext_lock);
885}
886
7e4dde79
CY
887static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
888 struct extent_info *ei)
889{
91c5d9bc
CY
890 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
891 return false;
892
1dcc336b
CY
893 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
894 return f2fs_lookup_extent_tree(inode, pgofs, ei);
895
7e4dde79
CY
896 return lookup_extent_info(inode, pgofs, ei);
897}
898
899void f2fs_update_extent_cache(struct dnode_of_data *dn)
900{
901 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
902 pgoff_t fofs;
903
904 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
905
91c5d9bc
CY
906 if (is_inode_flag_set(fi, FI_NO_EXTENT))
907 return;
908
7e4dde79
CY
909 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
910 dn->ofs_in_node;
911
1dcc336b
CY
912 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
913 return f2fs_update_extent_tree(dn->inode, fofs,
914 dn->data_blkaddr);
915
7e4dde79 916 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 917 sync_inode_page(dn);
eb47b800
JK
918}
919
c718379b 920struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 921{
eb47b800
JK
922 struct address_space *mapping = inode->i_mapping;
923 struct dnode_of_data dn;
924 struct page *page;
cb3bc9ee 925 struct extent_info ei;
eb47b800 926 int err;
cf04e8eb
JK
927 struct f2fs_io_info fio = {
928 .type = DATA,
929 .rw = sync ? READ_SYNC : READA,
930 };
eb47b800 931
b7f204cc
JK
932 /*
933 * If sync is false, it needs to check its block allocation.
934 * This is need and triggered by two flows:
935 * gc and truncate_partial_data_page.
936 */
937 if (!sync)
938 goto search;
939
eb47b800
JK
940 page = find_get_page(mapping, index);
941 if (page && PageUptodate(page))
942 return page;
943 f2fs_put_page(page, 0);
b7f204cc 944search:
cb3bc9ee
CY
945 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
946 dn.data_blkaddr = ei.blk + index - ei.fofs;
947 goto got_it;
948 }
eb47b800
JK
949
950 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 951 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
952 if (err)
953 return ERR_PTR(err);
954 f2fs_put_dnode(&dn);
955
956 if (dn.data_blkaddr == NULL_ADDR)
957 return ERR_PTR(-ENOENT);
958
959 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 960 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
961 return ERR_PTR(-EINVAL);
962
cb3bc9ee 963got_it:
9ac1349a 964 page = grab_cache_page(mapping, index);
eb47b800
JK
965 if (!page)
966 return ERR_PTR(-ENOMEM);
967
393ff91f
JK
968 if (PageUptodate(page)) {
969 unlock_page(page);
970 return page;
971 }
972
cf04e8eb
JK
973 fio.blk_addr = dn.data_blkaddr;
974 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
975 if (err)
976 return ERR_PTR(err);
977
c718379b
JK
978 if (sync) {
979 wait_on_page_locked(page);
6bacf52f 980 if (unlikely(!PageUptodate(page))) {
c718379b
JK
981 f2fs_put_page(page, 0);
982 return ERR_PTR(-EIO);
983 }
eb47b800 984 }
eb47b800
JK
985 return page;
986}
987
0a8165d7 988/*
eb47b800
JK
989 * If it tries to access a hole, return an error.
990 * Because, the callers, functions in dir.c and GC, should be able to know
991 * whether this page exists or not.
992 */
993struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
994{
eb47b800
JK
995 struct address_space *mapping = inode->i_mapping;
996 struct dnode_of_data dn;
997 struct page *page;
cb3bc9ee 998 struct extent_info ei;
eb47b800 999 int err;
cf04e8eb
JK
1000 struct f2fs_io_info fio = {
1001 .type = DATA,
1002 .rw = READ_SYNC,
1003 };
650495de 1004repeat:
9ac1349a 1005 page = grab_cache_page(mapping, index);
650495de
JK
1006 if (!page)
1007 return ERR_PTR(-ENOMEM);
1008
cb3bc9ee
CY
1009 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1010 dn.data_blkaddr = ei.blk + index - ei.fofs;
1011 goto got_it;
1012 }
1013
eb47b800 1014 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1015 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
1016 if (err) {
1017 f2fs_put_page(page, 1);
eb47b800 1018 return ERR_PTR(err);
650495de 1019 }
eb47b800
JK
1020 f2fs_put_dnode(&dn);
1021
6bacf52f 1022 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 1023 f2fs_put_page(page, 1);
eb47b800 1024 return ERR_PTR(-ENOENT);
650495de 1025 }
eb47b800 1026
cb3bc9ee 1027got_it:
eb47b800
JK
1028 if (PageUptodate(page))
1029 return page;
1030
d59ff4df
JK
1031 /*
1032 * A new dentry page is allocated but not able to be written, since its
1033 * new inode page couldn't be allocated due to -ENOSPC.
1034 * In such the case, its blkaddr can be remained as NEW_ADDR.
1035 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
1036 */
1037 if (dn.data_blkaddr == NEW_ADDR) {
1038 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1039 SetPageUptodate(page);
1040 return page;
1041 }
eb47b800 1042
cf04e8eb
JK
1043 fio.blk_addr = dn.data_blkaddr;
1044 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1045 if (err)
eb47b800 1046 return ERR_PTR(err);
393ff91f
JK
1047
1048 lock_page(page);
6bacf52f 1049 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1050 f2fs_put_page(page, 1);
1051 return ERR_PTR(-EIO);
eb47b800 1052 }
6bacf52f 1053 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1054 f2fs_put_page(page, 1);
1055 goto repeat;
eb47b800
JK
1056 }
1057 return page;
1058}
1059
0a8165d7 1060/*
eb47b800
JK
1061 * Caller ensures that this data page is never allocated.
1062 * A new zero-filled data page is allocated in the page cache.
39936837 1063 *
4f4124d0
CY
1064 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1065 * f2fs_unlock_op().
a8865372 1066 * Note that, ipage is set only by make_empty_dir.
eb47b800 1067 */
64aa7ed9 1068struct page *get_new_data_page(struct inode *inode,
a8865372 1069 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1070{
eb47b800
JK
1071 struct address_space *mapping = inode->i_mapping;
1072 struct page *page;
1073 struct dnode_of_data dn;
1074 int err;
1075
a8865372 1076 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1077 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
1078 if (err)
1079 return ERR_PTR(err);
afcb7ca0 1080repeat:
eb47b800 1081 page = grab_cache_page(mapping, index);
a8865372
JK
1082 if (!page) {
1083 err = -ENOMEM;
1084 goto put_err;
1085 }
eb47b800
JK
1086
1087 if (PageUptodate(page))
1088 return page;
1089
1090 if (dn.data_blkaddr == NEW_ADDR) {
1091 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1092 SetPageUptodate(page);
eb47b800 1093 } else {
cf04e8eb
JK
1094 struct f2fs_io_info fio = {
1095 .type = DATA,
1096 .rw = READ_SYNC,
1097 .blk_addr = dn.data_blkaddr,
1098 };
1099 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1100 if (err)
a8865372
JK
1101 goto put_err;
1102
393ff91f 1103 lock_page(page);
6bacf52f 1104 if (unlikely(!PageUptodate(page))) {
393ff91f 1105 f2fs_put_page(page, 1);
a8865372
JK
1106 err = -EIO;
1107 goto put_err;
eb47b800 1108 }
6bacf52f 1109 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1110 f2fs_put_page(page, 1);
1111 goto repeat;
eb47b800
JK
1112 }
1113 }
eb47b800
JK
1114
1115 if (new_i_size &&
1116 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1117 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1118 /* Only the directory inode sets new_i_size */
1119 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1120 }
1121 return page;
a8865372
JK
1122
1123put_err:
1124 f2fs_put_dnode(&dn);
1125 return ERR_PTR(err);
eb47b800
JK
1126}
1127
bfad7c2d
JK
1128static int __allocate_data_block(struct dnode_of_data *dn)
1129{
4081363f 1130 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1131 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1132 struct f2fs_summary sum;
bfad7c2d 1133 struct node_info ni;
38aa0889 1134 int seg = CURSEG_WARM_DATA;
976e4c50 1135 pgoff_t fofs;
bfad7c2d
JK
1136
1137 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1138 return -EPERM;
df6136ef
CY
1139
1140 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1141 if (dn->data_blkaddr == NEW_ADDR)
1142 goto alloc;
1143
bfad7c2d
JK
1144 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1145 return -ENOSPC;
1146
df6136ef 1147alloc:
bfad7c2d
JK
1148 get_node_info(sbi, dn->nid, &ni);
1149 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1150
38aa0889
JK
1151 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1152 seg = CURSEG_DIRECT_IO;
1153
df6136ef
CY
1154 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1155 &sum, seg);
bfad7c2d
JK
1156
1157 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1158 set_data_blkaddr(dn);
bfad7c2d 1159
976e4c50
JK
1160 /* update i_size */
1161 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1162 dn->ofs_in_node;
1163 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1164 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1165
bfad7c2d
JK
1166 return 0;
1167}
1168
59b802e5
JK
1169static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1170 size_t count)
1171{
1172 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1173 struct dnode_of_data dn;
1174 u64 start = F2FS_BYTES_TO_BLK(offset);
1175 u64 len = F2FS_BYTES_TO_BLK(count);
1176 bool allocated;
1177 u64 end_offset;
1178
1179 while (len) {
1180 f2fs_balance_fs(sbi);
1181 f2fs_lock_op(sbi);
1182
1183 /* When reading holes, we need its node page */
1184 set_new_dnode(&dn, inode, NULL, NULL, 0);
1185 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1186 goto out;
1187
1188 allocated = false;
1189 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1190
1191 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1192 block_t blkaddr;
1193
1194 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1195 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1196 if (__allocate_data_block(&dn))
1197 goto sync_out;
1198 allocated = true;
1199 }
1200 len--;
1201 start++;
1202 dn.ofs_in_node++;
1203 }
1204
1205 if (allocated)
1206 sync_inode_page(&dn);
1207
1208 f2fs_put_dnode(&dn);
1209 f2fs_unlock_op(sbi);
1210 }
1211 return;
1212
1213sync_out:
1214 if (allocated)
1215 sync_inode_page(&dn);
1216 f2fs_put_dnode(&dn);
1217out:
1218 f2fs_unlock_op(sbi);
1219 return;
1220}
1221
0a8165d7 1222/*
003a3e1d
JK
1223 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1224 * f2fs_map_blocks structure.
4f4124d0
CY
1225 * If original data blocks are allocated, then give them to blockdev.
1226 * Otherwise,
1227 * a. preallocate requested block addresses
1228 * b. do not use extent cache for better performance
1229 * c. give the block addresses to blockdev
eb47b800 1230 */
003a3e1d
JK
1231static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1232 int create, bool fiemap)
eb47b800 1233{
003a3e1d 1234 unsigned int maxblocks = map->m_len;
eb47b800 1235 struct dnode_of_data dn;
bfad7c2d
JK
1236 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1237 pgoff_t pgofs, end_offset;
1238 int err = 0, ofs = 1;
a2e7d1bf 1239 struct extent_info ei;
bfad7c2d 1240 bool allocated = false;
eb47b800 1241
003a3e1d
JK
1242 map->m_len = 0;
1243 map->m_flags = 0;
1244
1245 /* it only supports block size == page size */
1246 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1247
7e4dde79 1248 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1249 map->m_pblk = ei.blk + pgofs - ei.fofs;
1250 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1251 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1252 goto out;
a2e7d1bf 1253 }
bfad7c2d 1254
59b802e5 1255 if (create)
4081363f 1256 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1257
1258 /* When reading holes, we need its node page */
1259 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1260 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1261 if (err) {
bfad7c2d
JK
1262 if (err == -ENOENT)
1263 err = 0;
1264 goto unlock_out;
848753aa 1265 }
ccfb3000 1266 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1267 goto put_out;
eb47b800 1268
bfad7c2d 1269 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1270 map->m_flags = F2FS_MAP_MAPPED;
1271 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1272 } else if (create) {
1273 err = __allocate_data_block(&dn);
1274 if (err)
1275 goto put_out;
1276 allocated = true;
003a3e1d
JK
1277 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1278 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1279 } else {
1280 goto put_out;
1281 }
1282
6403eb1f 1283 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1284 map->m_len = 1;
bfad7c2d
JK
1285 dn.ofs_in_node++;
1286 pgofs++;
1287
1288get_next:
1289 if (dn.ofs_in_node >= end_offset) {
1290 if (allocated)
1291 sync_inode_page(&dn);
1292 allocated = false;
1293 f2fs_put_dnode(&dn);
1294
1295 set_new_dnode(&dn, inode, NULL, NULL, 0);
1296 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1297 if (err) {
bfad7c2d
JK
1298 if (err == -ENOENT)
1299 err = 0;
1300 goto unlock_out;
1301 }
ccfb3000 1302 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1303 goto put_out;
1304
6403eb1f 1305 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1306 }
eb47b800 1307
003a3e1d 1308 if (maxblocks > map->m_len) {
bfad7c2d
JK
1309 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1310 if (blkaddr == NULL_ADDR && create) {
1311 err = __allocate_data_block(&dn);
1312 if (err)
1313 goto sync_out;
1314 allocated = true;
003a3e1d 1315 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1316 blkaddr = dn.data_blkaddr;
1317 }
e1c42045 1318 /* Give more consecutive addresses for the readahead */
003a3e1d 1319 if (map->m_pblk != NEW_ADDR && blkaddr == (map->m_pblk + ofs)) {
bfad7c2d
JK
1320 ofs++;
1321 dn.ofs_in_node++;
1322 pgofs++;
003a3e1d 1323 map->m_len++;
bfad7c2d
JK
1324 goto get_next;
1325 }
eb47b800 1326 }
bfad7c2d
JK
1327sync_out:
1328 if (allocated)
1329 sync_inode_page(&dn);
1330put_out:
eb47b800 1331 f2fs_put_dnode(&dn);
bfad7c2d
JK
1332unlock_out:
1333 if (create)
4081363f 1334 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1335out:
003a3e1d 1336 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1337 return err;
eb47b800
JK
1338}
1339
003a3e1d
JK
1340static int __get_data_block(struct inode *inode, sector_t iblock,
1341 struct buffer_head *bh, int create, bool fiemap)
1342{
1343 struct f2fs_map_blocks map;
1344 int ret;
1345
1346 map.m_lblk = iblock;
1347 map.m_len = bh->b_size >> inode->i_blkbits;
1348
1349 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1350 if (!ret) {
1351 map_bh(bh, inode->i_sb, map.m_pblk);
1352 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1353 bh->b_size = map.m_len << inode->i_blkbits;
1354 }
1355 return ret;
1356}
1357
ccfb3000
JK
1358static int get_data_block(struct inode *inode, sector_t iblock,
1359 struct buffer_head *bh_result, int create)
1360{
1361 return __get_data_block(inode, iblock, bh_result, create, false);
1362}
1363
1364static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1365 struct buffer_head *bh_result, int create)
1366{
1367 return __get_data_block(inode, iblock, bh_result, create, true);
1368}
1369
9ab70134
JK
1370int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1371 u64 start, u64 len)
1372{
ccfb3000
JK
1373 return generic_block_fiemap(inode, fieinfo,
1374 start, len, get_data_block_fiemap);
9ab70134
JK
1375}
1376
f1e88660
JK
1377/*
1378 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1379 * Major change was from block_size == page_size in f2fs by default.
1380 */
1381static int f2fs_mpage_readpages(struct address_space *mapping,
1382 struct list_head *pages, struct page *page,
1383 unsigned nr_pages)
1384{
1385 struct bio *bio = NULL;
1386 unsigned page_idx;
1387 sector_t last_block_in_bio = 0;
1388 struct inode *inode = mapping->host;
1389 const unsigned blkbits = inode->i_blkbits;
1390 const unsigned blocksize = 1 << blkbits;
1391 sector_t block_in_file;
1392 sector_t last_block;
1393 sector_t last_block_in_file;
1394 sector_t block_nr;
1395 struct block_device *bdev = inode->i_sb->s_bdev;
1396 struct f2fs_map_blocks map;
1397
1398 map.m_pblk = 0;
1399 map.m_lblk = 0;
1400 map.m_len = 0;
1401 map.m_flags = 0;
1402
1403 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1404
1405 prefetchw(&page->flags);
1406 if (pages) {
1407 page = list_entry(pages->prev, struct page, lru);
1408 list_del(&page->lru);
1409 if (add_to_page_cache_lru(page, mapping,
1410 page->index, GFP_KERNEL))
1411 goto next_page;
1412 }
1413
1414 block_in_file = (sector_t)page->index;
1415 last_block = block_in_file + nr_pages;
1416 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1417 blkbits;
1418 if (last_block > last_block_in_file)
1419 last_block = last_block_in_file;
1420
1421 /*
1422 * Map blocks using the previous result first.
1423 */
1424 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1425 block_in_file > map.m_lblk &&
1426 block_in_file < (map.m_lblk + map.m_len))
1427 goto got_it;
1428
1429 /*
1430 * Then do more f2fs_map_blocks() calls until we are
1431 * done with this page.
1432 */
1433 map.m_flags = 0;
1434
1435 if (block_in_file < last_block) {
1436 map.m_lblk = block_in_file;
1437 map.m_len = last_block - block_in_file;
1438
1439 if (f2fs_map_blocks(inode, &map, 0, false))
1440 goto set_error_page;
1441 }
1442got_it:
1443 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1444 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1445 SetPageMappedToDisk(page);
1446
1447 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1448 SetPageUptodate(page);
1449 goto confused;
1450 }
1451 } else {
1452 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1453 SetPageUptodate(page);
1454 unlock_page(page);
1455 goto next_page;
1456 }
1457
1458 /*
1459 * This page will go to BIO. Do we need to send this
1460 * BIO off first?
1461 */
1462 if (bio && (last_block_in_bio != block_nr - 1)) {
1463submit_and_realloc:
1464 submit_bio(READ, bio);
1465 bio = NULL;
1466 }
1467 if (bio == NULL) {
1468 bio = bio_alloc(GFP_KERNEL,
1469 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
1470 if (!bio)
1471 goto set_error_page;
1472 bio->bi_bdev = bdev;
1473 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
1474 bio->bi_end_io = mpage_end_io;
1475 bio->bi_private = NULL;
1476 }
1477
1478 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1479 goto submit_and_realloc;
1480
1481 last_block_in_bio = block_nr;
1482 goto next_page;
1483set_error_page:
1484 SetPageError(page);
1485 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1486 unlock_page(page);
1487 goto next_page;
1488confused:
1489 if (bio) {
1490 submit_bio(READ, bio);
1491 bio = NULL;
1492 }
1493 unlock_page(page);
1494next_page:
1495 if (pages)
1496 page_cache_release(page);
1497 }
1498 BUG_ON(pages && !list_empty(pages));
1499 if (bio)
1500 submit_bio(READ, bio);
1501 return 0;
1502}
1503
eb47b800
JK
1504static int f2fs_read_data_page(struct file *file, struct page *page)
1505{
9ffe0fb5 1506 struct inode *inode = page->mapping->host;
b3d208f9 1507 int ret = -EAGAIN;
9ffe0fb5 1508
c20e89cd
CY
1509 trace_f2fs_readpage(page, DATA);
1510
e1c42045 1511 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1512 if (f2fs_has_inline_data(inode))
1513 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1514 if (ret == -EAGAIN)
f1e88660 1515 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1516 return ret;
eb47b800
JK
1517}
1518
1519static int f2fs_read_data_pages(struct file *file,
1520 struct address_space *mapping,
1521 struct list_head *pages, unsigned nr_pages)
1522{
9ffe0fb5
HL
1523 struct inode *inode = file->f_mapping->host;
1524
1525 /* If the file has inline data, skip readpages */
1526 if (f2fs_has_inline_data(inode))
1527 return 0;
1528
f1e88660 1529 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1530}
1531
458e6197 1532int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1533{
1534 struct inode *inode = page->mapping->host;
eb47b800
JK
1535 struct dnode_of_data dn;
1536 int err = 0;
1537
1538 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1539 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1540 if (err)
1541 return err;
1542
cf04e8eb 1543 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1544
1545 /* This page is already truncated */
2bca1e23
JK
1546 if (fio->blk_addr == NULL_ADDR) {
1547 ClearPageUptodate(page);
eb47b800 1548 goto out_writepage;
2bca1e23 1549 }
eb47b800
JK
1550
1551 set_page_writeback(page);
1552
1553 /*
1554 * If current allocation needs SSR,
1555 * it had better in-place writes for updated data.
1556 */
cf04e8eb 1557 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1558 !is_cold_data(page) &&
1559 need_inplace_update(inode))) {
cf04e8eb 1560 rewrite_data_page(page, fio);
fff04f90 1561 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1562 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1563 } else {
cf04e8eb 1564 write_data_page(page, &dn, fio);
216a620a 1565 set_data_blkaddr(&dn);
7e4dde79 1566 f2fs_update_extent_cache(&dn);
8ce67cb0 1567 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1568 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1569 if (page->index == 0)
1570 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1571 }
1572out_writepage:
1573 f2fs_put_dnode(&dn);
1574 return err;
1575}
1576
1577static int f2fs_write_data_page(struct page *page,
1578 struct writeback_control *wbc)
1579{
1580 struct inode *inode = page->mapping->host;
4081363f 1581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1582 loff_t i_size = i_size_read(inode);
1583 const pgoff_t end_index = ((unsigned long long) i_size)
1584 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1585 unsigned offset = 0;
39936837 1586 bool need_balance_fs = false;
eb47b800 1587 int err = 0;
458e6197
JK
1588 struct f2fs_io_info fio = {
1589 .type = DATA,
6c311ec6 1590 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1591 };
eb47b800 1592
ecda0de3
CY
1593 trace_f2fs_writepage(page, DATA);
1594
eb47b800 1595 if (page->index < end_index)
39936837 1596 goto write;
eb47b800
JK
1597
1598 /*
1599 * If the offset is out-of-range of file size,
1600 * this page does not have to be written to disk.
1601 */
1602 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1603 if ((page->index >= end_index + 1) || !offset)
39936837 1604 goto out;
eb47b800
JK
1605
1606 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1607write:
caf0047e 1608 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1609 goto redirty_out;
1e84371f
JK
1610 if (f2fs_is_drop_cache(inode))
1611 goto out;
1612 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1613 available_free_memory(sbi, BASE_CHECK))
1614 goto redirty_out;
eb47b800 1615
39936837 1616 /* Dentry blocks are controlled by checkpoint */
eb47b800 1617 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1618 if (unlikely(f2fs_cp_error(sbi)))
1619 goto redirty_out;
458e6197 1620 err = do_write_data_page(page, &fio);
8618b881
JK
1621 goto done;
1622 }
9ffe0fb5 1623
cf779cab
JK
1624 /* we should bypass data pages to proceed the kworkder jobs */
1625 if (unlikely(f2fs_cp_error(sbi))) {
1626 SetPageError(page);
a7ffdbe2 1627 goto out;
cf779cab
JK
1628 }
1629
8618b881 1630 if (!wbc->for_reclaim)
39936837 1631 need_balance_fs = true;
8618b881 1632 else if (has_not_enough_free_secs(sbi, 0))
39936837 1633 goto redirty_out;
eb47b800 1634
b3d208f9 1635 err = -EAGAIN;
8618b881 1636 f2fs_lock_op(sbi);
b3d208f9
JK
1637 if (f2fs_has_inline_data(inode))
1638 err = f2fs_write_inline_data(inode, page);
1639 if (err == -EAGAIN)
8618b881
JK
1640 err = do_write_data_page(page, &fio);
1641 f2fs_unlock_op(sbi);
1642done:
1643 if (err && err != -ENOENT)
1644 goto redirty_out;
eb47b800 1645
eb47b800 1646 clear_cold_data(page);
39936837 1647out:
a7ffdbe2 1648 inode_dec_dirty_pages(inode);
2bca1e23
JK
1649 if (err)
1650 ClearPageUptodate(page);
eb47b800 1651 unlock_page(page);
39936837 1652 if (need_balance_fs)
eb47b800 1653 f2fs_balance_fs(sbi);
2aea39ec
JK
1654 if (wbc->for_reclaim)
1655 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1656 return 0;
1657
eb47b800 1658redirty_out:
76f60268 1659 redirty_page_for_writepage(wbc, page);
8618b881 1660 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1661}
1662
fa9150a8
NJ
1663static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1664 void *data)
1665{
1666 struct address_space *mapping = data;
1667 int ret = mapping->a_ops->writepage(page, wbc);
1668 mapping_set_error(mapping, ret);
1669 return ret;
1670}
1671
25ca923b 1672static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1673 struct writeback_control *wbc)
1674{
1675 struct inode *inode = mapping->host;
4081363f 1676 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1677 bool locked = false;
eb47b800 1678 int ret;
50c8cdb3 1679 long diff;
eb47b800 1680
e5748434
CY
1681 trace_f2fs_writepages(mapping->host, wbc, DATA);
1682
cfb185a1 1683 /* deal with chardevs and other special file */
1684 if (!mapping->a_ops->writepage)
1685 return 0;
1686
87d6f890 1687 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1688 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1689 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1690 goto skip_write;
87d6f890 1691
d5669f7b
JK
1692 /* during POR, we don't need to trigger writepage at all. */
1693 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1694 goto skip_write;
1695
50c8cdb3 1696 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1697
5463e7c1
JK
1698 if (!S_ISDIR(inode->i_mode)) {
1699 mutex_lock(&sbi->writepages);
1700 locked = true;
1701 }
fa9150a8 1702 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1703 if (locked)
1704 mutex_unlock(&sbi->writepages);
458e6197
JK
1705
1706 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1707
1708 remove_dirty_dir_inode(inode);
1709
50c8cdb3 1710 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1711 return ret;
d3baf95d
JK
1712
1713skip_write:
a7ffdbe2 1714 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1715 return 0;
eb47b800
JK
1716}
1717
3aab8f82
CY
1718static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1719{
1720 struct inode *inode = mapping->host;
1721
1722 if (to > inode->i_size) {
1723 truncate_pagecache(inode, inode->i_size);
764aa3e9 1724 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1725 }
1726}
1727
eb47b800
JK
1728static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1729 loff_t pos, unsigned len, unsigned flags,
1730 struct page **pagep, void **fsdata)
1731{
1732 struct inode *inode = mapping->host;
4081363f 1733 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1734 struct page *page, *ipage;
eb47b800
JK
1735 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1736 struct dnode_of_data dn;
1737 int err = 0;
1738
62aed044
CY
1739 trace_f2fs_write_begin(inode, pos, len, flags);
1740
eb47b800 1741 f2fs_balance_fs(sbi);
5f727395
JK
1742
1743 /*
1744 * We should check this at this moment to avoid deadlock on inode page
1745 * and #0 page. The locking rule for inline_data conversion should be:
1746 * lock_page(page #0) -> lock_page(inode_page)
1747 */
1748 if (index != 0) {
1749 err = f2fs_convert_inline_inode(inode);
1750 if (err)
1751 goto fail;
1752 }
afcb7ca0 1753repeat:
eb47b800 1754 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1755 if (!page) {
1756 err = -ENOMEM;
1757 goto fail;
1758 }
d5f66990 1759
eb47b800
JK
1760 *pagep = page;
1761
e479556b 1762 f2fs_lock_op(sbi);
9ba69cf9
JK
1763
1764 /* check inline_data */
1765 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1766 if (IS_ERR(ipage)) {
1767 err = PTR_ERR(ipage);
9ba69cf9 1768 goto unlock_fail;
cd34e296 1769 }
9ba69cf9 1770
b3d208f9
JK
1771 set_new_dnode(&dn, inode, ipage, ipage, 0);
1772
9ba69cf9 1773 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1774 if (pos + len <= MAX_INLINE_DATA) {
1775 read_inline_data(page, ipage);
1776 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1777 sync_inode_page(&dn);
1778 goto put_next;
b3d208f9 1779 }
5f727395
JK
1780 err = f2fs_convert_inline_page(&dn, page);
1781 if (err)
1782 goto put_fail;
b600965c 1783 }
9ba69cf9
JK
1784 err = f2fs_reserve_block(&dn, index);
1785 if (err)
8cdcb713 1786 goto put_fail;
b3d208f9 1787put_next:
9ba69cf9
JK
1788 f2fs_put_dnode(&dn);
1789 f2fs_unlock_op(sbi);
1790
eb47b800
JK
1791 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1792 return 0;
1793
b3d208f9
JK
1794 f2fs_wait_on_page_writeback(page, DATA);
1795
eb47b800
JK
1796 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1797 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1798 unsigned end = start + len;
1799
1800 /* Reading beyond i_size is simple: memset to zero */
1801 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1802 goto out;
eb47b800
JK
1803 }
1804
b3d208f9 1805 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1806 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1807 } else {
cf04e8eb
JK
1808 struct f2fs_io_info fio = {
1809 .type = DATA,
1810 .rw = READ_SYNC,
1811 .blk_addr = dn.data_blkaddr,
1812 };
1813 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1814 if (err)
1815 goto fail;
d54c795b 1816
393ff91f 1817 lock_page(page);
6bacf52f 1818 if (unlikely(!PageUptodate(page))) {
393ff91f 1819 f2fs_put_page(page, 1);
3aab8f82
CY
1820 err = -EIO;
1821 goto fail;
eb47b800 1822 }
6bacf52f 1823 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1824 f2fs_put_page(page, 1);
1825 goto repeat;
eb47b800
JK
1826 }
1827 }
393ff91f 1828out:
eb47b800
JK
1829 SetPageUptodate(page);
1830 clear_cold_data(page);
1831 return 0;
9ba69cf9 1832
8cdcb713
JK
1833put_fail:
1834 f2fs_put_dnode(&dn);
9ba69cf9
JK
1835unlock_fail:
1836 f2fs_unlock_op(sbi);
b3d208f9 1837 f2fs_put_page(page, 1);
3aab8f82
CY
1838fail:
1839 f2fs_write_failed(mapping, pos + len);
1840 return err;
eb47b800
JK
1841}
1842
a1dd3c13
JK
1843static int f2fs_write_end(struct file *file,
1844 struct address_space *mapping,
1845 loff_t pos, unsigned len, unsigned copied,
1846 struct page *page, void *fsdata)
1847{
1848 struct inode *inode = page->mapping->host;
1849
dfb2bf38
CY
1850 trace_f2fs_write_end(inode, pos, len, copied);
1851
34ba94ba 1852 set_page_dirty(page);
a1dd3c13
JK
1853
1854 if (pos + copied > i_size_read(inode)) {
1855 i_size_write(inode, pos + copied);
1856 mark_inode_dirty(inode);
1857 update_inode_page(inode);
1858 }
1859
75c3c8bc 1860 f2fs_put_page(page, 1);
a1dd3c13
JK
1861 return copied;
1862}
1863
6f673763
OS
1864static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1865 loff_t offset)
944fcfc1
JK
1866{
1867 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1868
6f673763 1869 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1870 return 0;
1871
1872 if (offset & blocksize_mask)
1873 return -EINVAL;
1874
5b46f25d
AV
1875 if (iov_iter_alignment(iter) & blocksize_mask)
1876 return -EINVAL;
1877
944fcfc1
JK
1878 return 0;
1879}
1880
22c6186e
OS
1881static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1882 loff_t offset)
eb47b800
JK
1883{
1884 struct file *file = iocb->ki_filp;
3aab8f82
CY
1885 struct address_space *mapping = file->f_mapping;
1886 struct inode *inode = mapping->host;
1887 size_t count = iov_iter_count(iter);
1888 int err;
944fcfc1 1889
b3d208f9
JK
1890 /* we don't need to use inline_data strictly */
1891 if (f2fs_has_inline_data(inode)) {
1892 err = f2fs_convert_inline_inode(inode);
1893 if (err)
1894 return err;
1895 }
9ffe0fb5 1896
6f673763 1897 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
1898 return 0;
1899
6f673763 1900 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 1901
6f673763 1902 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
1903 __allocate_data_blocks(inode, offset, count);
1904
17f8c842 1905 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 1906 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 1907 f2fs_write_failed(mapping, offset + count);
70407fad 1908
6f673763 1909 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 1910
3aab8f82 1911 return err;
eb47b800
JK
1912}
1913
487261f3
CY
1914void f2fs_invalidate_page(struct page *page, unsigned int offset,
1915 unsigned int length)
eb47b800
JK
1916{
1917 struct inode *inode = page->mapping->host;
487261f3 1918 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1919
487261f3
CY
1920 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1921 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1922 return;
1923
487261f3
CY
1924 if (PageDirty(page)) {
1925 if (inode->i_ino == F2FS_META_INO(sbi))
1926 dec_page_count(sbi, F2FS_DIRTY_META);
1927 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1928 dec_page_count(sbi, F2FS_DIRTY_NODES);
1929 else
1930 inode_dec_dirty_pages(inode);
1931 }
eb47b800
JK
1932 ClearPagePrivate(page);
1933}
1934
487261f3 1935int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1936{
f68daeeb
JK
1937 /* If this is dirty page, keep PagePrivate */
1938 if (PageDirty(page))
1939 return 0;
1940
eb47b800 1941 ClearPagePrivate(page);
c3850aa1 1942 return 1;
eb47b800
JK
1943}
1944
1945static int f2fs_set_data_page_dirty(struct page *page)
1946{
1947 struct address_space *mapping = page->mapping;
1948 struct inode *inode = mapping->host;
1949
26c6b887
JK
1950 trace_f2fs_set_page_dirty(page, DATA);
1951
eb47b800 1952 SetPageUptodate(page);
34ba94ba 1953
1e84371f 1954 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1955 register_inmem_page(inode, page);
1956 return 1;
1957 }
1958
a18ff063
JK
1959 mark_inode_dirty(inode);
1960
eb47b800
JK
1961 if (!PageDirty(page)) {
1962 __set_page_dirty_nobuffers(page);
a7ffdbe2 1963 update_dirty_page(inode, page);
eb47b800
JK
1964 return 1;
1965 }
1966 return 0;
1967}
1968
c01e54b7
JK
1969static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1970{
454ae7e5
CY
1971 struct inode *inode = mapping->host;
1972
b3d208f9
JK
1973 /* we don't need to use inline_data strictly */
1974 if (f2fs_has_inline_data(inode)) {
1975 int err = f2fs_convert_inline_inode(inode);
1976 if (err)
1977 return err;
1978 }
bfad7c2d 1979 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1980}
1981
429511cd
CY
1982void init_extent_cache_info(struct f2fs_sb_info *sbi)
1983{
1984 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1985 init_rwsem(&sbi->extent_tree_lock);
1986 INIT_LIST_HEAD(&sbi->extent_list);
1987 spin_lock_init(&sbi->extent_lock);
1988 sbi->total_ext_tree = 0;
1989 atomic_set(&sbi->total_ext_node, 0);
1990}
1991
1992int __init create_extent_cache(void)
1993{
1994 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1995 sizeof(struct extent_tree));
1996 if (!extent_tree_slab)
1997 return -ENOMEM;
1998 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1999 sizeof(struct extent_node));
2000 if (!extent_node_slab) {
2001 kmem_cache_destroy(extent_tree_slab);
2002 return -ENOMEM;
2003 }
2004 return 0;
2005}
2006
2007void destroy_extent_cache(void)
2008{
2009 kmem_cache_destroy(extent_node_slab);
2010 kmem_cache_destroy(extent_tree_slab);
2011}
2012
eb47b800
JK
2013const struct address_space_operations f2fs_dblock_aops = {
2014 .readpage = f2fs_read_data_page,
2015 .readpages = f2fs_read_data_pages,
2016 .writepage = f2fs_write_data_page,
2017 .writepages = f2fs_write_data_pages,
2018 .write_begin = f2fs_write_begin,
a1dd3c13 2019 .write_end = f2fs_write_end,
eb47b800 2020 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
2021 .invalidatepage = f2fs_invalidate_page,
2022 .releasepage = f2fs_release_page,
eb47b800 2023 .direct_IO = f2fs_direct_IO,
c01e54b7 2024 .bmap = f2fs_bmap,
eb47b800 2025};
This page took 0.214028 seconds and 5 git commands to generate.