Btrfs: do not BUG_ON on aborted situation
[deliverable/linux.git] / fs / f2fs / node.c
CommitLineData
0a8165d7 1/*
e05df3b1
JK
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22
23static struct kmem_cache *nat_entry_slab;
24static struct kmem_cache *free_nid_slab;
25
26static void clear_node_page_dirty(struct page *page)
27{
28 struct address_space *mapping = page->mapping;
29 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
30 unsigned int long flags;
31
32 if (PageDirty(page)) {
33 spin_lock_irqsave(&mapping->tree_lock, flags);
34 radix_tree_tag_clear(&mapping->page_tree,
35 page_index(page),
36 PAGECACHE_TAG_DIRTY);
37 spin_unlock_irqrestore(&mapping->tree_lock, flags);
38
39 clear_page_dirty_for_io(page);
40 dec_page_count(sbi, F2FS_DIRTY_NODES);
41 }
42 ClearPageUptodate(page);
43}
44
45static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
46{
47 pgoff_t index = current_nat_addr(sbi, nid);
48 return get_meta_page(sbi, index);
49}
50
51static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
52{
53 struct page *src_page;
54 struct page *dst_page;
55 pgoff_t src_off;
56 pgoff_t dst_off;
57 void *src_addr;
58 void *dst_addr;
59 struct f2fs_nm_info *nm_i = NM_I(sbi);
60
61 src_off = current_nat_addr(sbi, nid);
62 dst_off = next_nat_addr(sbi, src_off);
63
64 /* get current nat block page with lock */
65 src_page = get_meta_page(sbi, src_off);
66
67 /* Dirty src_page means that it is already the new target NAT page. */
68 if (PageDirty(src_page))
69 return src_page;
70
71 dst_page = grab_meta_page(sbi, dst_off);
72
73 src_addr = page_address(src_page);
74 dst_addr = page_address(dst_page);
75 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
76 set_page_dirty(dst_page);
77 f2fs_put_page(src_page, 1);
78
79 set_to_next_nat(nm_i, nid);
80
81 return dst_page;
82}
83
0a8165d7 84/*
e05df3b1
JK
85 * Readahead NAT pages
86 */
87static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
88{
89 struct address_space *mapping = sbi->meta_inode->i_mapping;
90 struct f2fs_nm_info *nm_i = NM_I(sbi);
91 struct page *page;
92 pgoff_t index;
93 int i;
94
95 for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
96 if (nid >= nm_i->max_nid)
97 nid = 0;
98 index = current_nat_addr(sbi, nid);
99
100 page = grab_cache_page(mapping, index);
101 if (!page)
102 continue;
103 if (f2fs_readpage(sbi, page, index, READ)) {
104 f2fs_put_page(page, 1);
105 continue;
106 }
107 page_cache_release(page);
108 }
109}
110
111static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
112{
113 return radix_tree_lookup(&nm_i->nat_root, n);
114}
115
116static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
117 nid_t start, unsigned int nr, struct nat_entry **ep)
118{
119 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
120}
121
122static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
123{
124 list_del(&e->list);
125 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
126 nm_i->nat_cnt--;
127 kmem_cache_free(nat_entry_slab, e);
128}
129
130int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
131{
132 struct f2fs_nm_info *nm_i = NM_I(sbi);
133 struct nat_entry *e;
134 int is_cp = 1;
135
136 read_lock(&nm_i->nat_tree_lock);
137 e = __lookup_nat_cache(nm_i, nid);
138 if (e && !e->checkpointed)
139 is_cp = 0;
140 read_unlock(&nm_i->nat_tree_lock);
141 return is_cp;
142}
143
144static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
145{
146 struct nat_entry *new;
147
148 new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
149 if (!new)
150 return NULL;
151 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
152 kmem_cache_free(nat_entry_slab, new);
153 return NULL;
154 }
155 memset(new, 0, sizeof(struct nat_entry));
156 nat_set_nid(new, nid);
157 list_add_tail(&new->list, &nm_i->nat_entries);
158 nm_i->nat_cnt++;
159 return new;
160}
161
162static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
163 struct f2fs_nat_entry *ne)
164{
165 struct nat_entry *e;
166retry:
167 write_lock(&nm_i->nat_tree_lock);
168 e = __lookup_nat_cache(nm_i, nid);
169 if (!e) {
170 e = grab_nat_entry(nm_i, nid);
171 if (!e) {
172 write_unlock(&nm_i->nat_tree_lock);
173 goto retry;
174 }
175 nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
176 nat_set_ino(e, le32_to_cpu(ne->ino));
177 nat_set_version(e, ne->version);
178 e->checkpointed = true;
179 }
180 write_unlock(&nm_i->nat_tree_lock);
181}
182
183static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
184 block_t new_blkaddr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187 struct nat_entry *e;
188retry:
189 write_lock(&nm_i->nat_tree_lock);
190 e = __lookup_nat_cache(nm_i, ni->nid);
191 if (!e) {
192 e = grab_nat_entry(nm_i, ni->nid);
193 if (!e) {
194 write_unlock(&nm_i->nat_tree_lock);
195 goto retry;
196 }
197 e->ni = *ni;
198 e->checkpointed = true;
199 BUG_ON(ni->blk_addr == NEW_ADDR);
200 } else if (new_blkaddr == NEW_ADDR) {
201 /*
202 * when nid is reallocated,
203 * previous nat entry can be remained in nat cache.
204 * So, reinitialize it with new information.
205 */
206 e->ni = *ni;
207 BUG_ON(ni->blk_addr != NULL_ADDR);
208 }
209
210 if (new_blkaddr == NEW_ADDR)
211 e->checkpointed = false;
212
213 /* sanity check */
214 BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
215 BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
216 new_blkaddr == NULL_ADDR);
217 BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
218 new_blkaddr == NEW_ADDR);
219 BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
220 nat_get_blkaddr(e) != NULL_ADDR &&
221 new_blkaddr == NEW_ADDR);
222
223 /* increament version no as node is removed */
224 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
225 unsigned char version = nat_get_version(e);
226 nat_set_version(e, inc_node_version(version));
227 }
228
229 /* change address */
230 nat_set_blkaddr(e, new_blkaddr);
231 __set_nat_cache_dirty(nm_i, e);
232 write_unlock(&nm_i->nat_tree_lock);
233}
234
235static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
236{
237 struct f2fs_nm_info *nm_i = NM_I(sbi);
238
239 if (nm_i->nat_cnt < 2 * NM_WOUT_THRESHOLD)
240 return 0;
241
242 write_lock(&nm_i->nat_tree_lock);
243 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
244 struct nat_entry *ne;
245 ne = list_first_entry(&nm_i->nat_entries,
246 struct nat_entry, list);
247 __del_from_nat_cache(nm_i, ne);
248 nr_shrink--;
249 }
250 write_unlock(&nm_i->nat_tree_lock);
251 return nr_shrink;
252}
253
0a8165d7 254/*
e05df3b1
JK
255 * This function returns always success
256 */
257void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
258{
259 struct f2fs_nm_info *nm_i = NM_I(sbi);
260 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
261 struct f2fs_summary_block *sum = curseg->sum_blk;
262 nid_t start_nid = START_NID(nid);
263 struct f2fs_nat_block *nat_blk;
264 struct page *page = NULL;
265 struct f2fs_nat_entry ne;
266 struct nat_entry *e;
267 int i;
268
be4124f8 269 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
e05df3b1
JK
270 ni->nid = nid;
271
272 /* Check nat cache */
273 read_lock(&nm_i->nat_tree_lock);
274 e = __lookup_nat_cache(nm_i, nid);
275 if (e) {
276 ni->ino = nat_get_ino(e);
277 ni->blk_addr = nat_get_blkaddr(e);
278 ni->version = nat_get_version(e);
279 }
280 read_unlock(&nm_i->nat_tree_lock);
281 if (e)
282 return;
283
284 /* Check current segment summary */
285 mutex_lock(&curseg->curseg_mutex);
286 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
287 if (i >= 0) {
288 ne = nat_in_journal(sum, i);
289 node_info_from_raw_nat(ni, &ne);
290 }
291 mutex_unlock(&curseg->curseg_mutex);
292 if (i >= 0)
293 goto cache;
294
295 /* Fill node_info from nat page */
296 page = get_current_nat_page(sbi, start_nid);
297 nat_blk = (struct f2fs_nat_block *)page_address(page);
298 ne = nat_blk->entries[nid - start_nid];
299 node_info_from_raw_nat(ni, &ne);
300 f2fs_put_page(page, 1);
301cache:
302 /* cache nat entry */
303 cache_nat_entry(NM_I(sbi), nid, &ne);
304}
305
0a8165d7 306/*
e05df3b1
JK
307 * The maximum depth is four.
308 * Offset[0] will have raw inode offset.
309 */
310static int get_node_path(long block, int offset[4], unsigned int noffset[4])
311{
312 const long direct_index = ADDRS_PER_INODE;
313 const long direct_blks = ADDRS_PER_BLOCK;
314 const long dptrs_per_blk = NIDS_PER_BLOCK;
315 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
316 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
317 int n = 0;
318 int level = 0;
319
320 noffset[0] = 0;
321
322 if (block < direct_index) {
323 offset[n++] = block;
324 level = 0;
325 goto got;
326 }
327 block -= direct_index;
328 if (block < direct_blks) {
329 offset[n++] = NODE_DIR1_BLOCK;
330 noffset[n] = 1;
331 offset[n++] = block;
332 level = 1;
333 goto got;
334 }
335 block -= direct_blks;
336 if (block < direct_blks) {
337 offset[n++] = NODE_DIR2_BLOCK;
338 noffset[n] = 2;
339 offset[n++] = block;
340 level = 1;
341 goto got;
342 }
343 block -= direct_blks;
344 if (block < indirect_blks) {
345 offset[n++] = NODE_IND1_BLOCK;
346 noffset[n] = 3;
347 offset[n++] = block / direct_blks;
348 noffset[n] = 4 + offset[n - 1];
349 offset[n++] = block % direct_blks;
350 level = 2;
351 goto got;
352 }
353 block -= indirect_blks;
354 if (block < indirect_blks) {
355 offset[n++] = NODE_IND2_BLOCK;
356 noffset[n] = 4 + dptrs_per_blk;
357 offset[n++] = block / direct_blks;
358 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
359 offset[n++] = block % direct_blks;
360 level = 2;
361 goto got;
362 }
363 block -= indirect_blks;
364 if (block < dindirect_blks) {
365 offset[n++] = NODE_DIND_BLOCK;
366 noffset[n] = 5 + (dptrs_per_blk * 2);
367 offset[n++] = block / indirect_blks;
368 noffset[n] = 6 + (dptrs_per_blk * 2) +
369 offset[n - 1] * (dptrs_per_blk + 1);
370 offset[n++] = (block / direct_blks) % dptrs_per_blk;
371 noffset[n] = 7 + (dptrs_per_blk * 2) +
372 offset[n - 2] * (dptrs_per_blk + 1) +
373 offset[n - 1];
374 offset[n++] = block % direct_blks;
375 level = 3;
376 goto got;
377 } else {
378 BUG();
379 }
380got:
381 return level;
382}
383
384/*
385 * Caller should call f2fs_put_dnode(dn).
386 */
387int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int ro)
388{
389 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
390 struct page *npage[4];
391 struct page *parent;
392 int offset[4];
393 unsigned int noffset[4];
394 nid_t nids[4];
395 int level, i;
396 int err = 0;
397
398 level = get_node_path(index, offset, noffset);
399
400 nids[0] = dn->inode->i_ino;
401 npage[0] = get_node_page(sbi, nids[0]);
402 if (IS_ERR(npage[0]))
403 return PTR_ERR(npage[0]);
404
405 parent = npage[0];
406 nids[1] = get_nid(parent, offset[0], true);
407 dn->inode_page = npage[0];
408 dn->inode_page_locked = true;
409
410 /* get indirect or direct nodes */
411 for (i = 1; i <= level; i++) {
412 bool done = false;
413
414 if (!nids[i] && !ro) {
415 mutex_lock_op(sbi, NODE_NEW);
416
417 /* alloc new node */
418 if (!alloc_nid(sbi, &(nids[i]))) {
419 mutex_unlock_op(sbi, NODE_NEW);
420 err = -ENOSPC;
421 goto release_pages;
422 }
423
424 dn->nid = nids[i];
425 npage[i] = new_node_page(dn, noffset[i]);
426 if (IS_ERR(npage[i])) {
427 alloc_nid_failed(sbi, nids[i]);
428 mutex_unlock_op(sbi, NODE_NEW);
429 err = PTR_ERR(npage[i]);
430 goto release_pages;
431 }
432
433 set_nid(parent, offset[i - 1], nids[i], i == 1);
434 alloc_nid_done(sbi, nids[i]);
435 mutex_unlock_op(sbi, NODE_NEW);
436 done = true;
437 } else if (ro && i == level && level > 1) {
438 npage[i] = get_node_page_ra(parent, offset[i - 1]);
439 if (IS_ERR(npage[i])) {
440 err = PTR_ERR(npage[i]);
441 goto release_pages;
442 }
443 done = true;
444 }
445 if (i == 1) {
446 dn->inode_page_locked = false;
447 unlock_page(parent);
448 } else {
449 f2fs_put_page(parent, 1);
450 }
451
452 if (!done) {
453 npage[i] = get_node_page(sbi, nids[i]);
454 if (IS_ERR(npage[i])) {
455 err = PTR_ERR(npage[i]);
456 f2fs_put_page(npage[0], 0);
457 goto release_out;
458 }
459 }
460 if (i < level) {
461 parent = npage[i];
462 nids[i + 1] = get_nid(parent, offset[i], false);
463 }
464 }
465 dn->nid = nids[level];
466 dn->ofs_in_node = offset[level];
467 dn->node_page = npage[level];
468 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
469 return 0;
470
471release_pages:
472 f2fs_put_page(parent, 1);
473 if (i > 1)
474 f2fs_put_page(npage[0], 0);
475release_out:
476 dn->inode_page = NULL;
477 dn->node_page = NULL;
478 return err;
479}
480
481static void truncate_node(struct dnode_of_data *dn)
482{
483 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
484 struct node_info ni;
485
486 get_node_info(sbi, dn->nid, &ni);
71e9fec5
JK
487 if (dn->inode->i_blocks == 0) {
488 BUG_ON(ni.blk_addr != NULL_ADDR);
489 goto invalidate;
490 }
e05df3b1
JK
491 BUG_ON(ni.blk_addr == NULL_ADDR);
492
e05df3b1 493 /* Deallocate node address */
71e9fec5 494 invalidate_blocks(sbi, ni.blk_addr);
e05df3b1
JK
495 dec_valid_node_count(sbi, dn->inode, 1);
496 set_node_addr(sbi, &ni, NULL_ADDR);
497
498 if (dn->nid == dn->inode->i_ino) {
499 remove_orphan_inode(sbi, dn->nid);
500 dec_valid_inode_count(sbi);
501 } else {
502 sync_inode_page(dn);
503 }
71e9fec5 504invalidate:
e05df3b1
JK
505 clear_node_page_dirty(dn->node_page);
506 F2FS_SET_SB_DIRT(sbi);
507
508 f2fs_put_page(dn->node_page, 1);
509 dn->node_page = NULL;
510}
511
512static int truncate_dnode(struct dnode_of_data *dn)
513{
514 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
515 struct page *page;
516
517 if (dn->nid == 0)
518 return 1;
519
520 /* get direct node */
521 page = get_node_page(sbi, dn->nid);
522 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
523 return 1;
524 else if (IS_ERR(page))
525 return PTR_ERR(page);
526
527 /* Make dnode_of_data for parameter */
528 dn->node_page = page;
529 dn->ofs_in_node = 0;
530 truncate_data_blocks(dn);
531 truncate_node(dn);
532 return 1;
533}
534
535static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
536 int ofs, int depth)
537{
538 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
539 struct dnode_of_data rdn = *dn;
540 struct page *page;
541 struct f2fs_node *rn;
542 nid_t child_nid;
543 unsigned int child_nofs;
544 int freed = 0;
545 int i, ret;
546
547 if (dn->nid == 0)
548 return NIDS_PER_BLOCK + 1;
549
550 page = get_node_page(sbi, dn->nid);
551 if (IS_ERR(page))
552 return PTR_ERR(page);
553
554 rn = (struct f2fs_node *)page_address(page);
555 if (depth < 3) {
556 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
557 child_nid = le32_to_cpu(rn->in.nid[i]);
558 if (child_nid == 0)
559 continue;
560 rdn.nid = child_nid;
561 ret = truncate_dnode(&rdn);
562 if (ret < 0)
563 goto out_err;
564 set_nid(page, i, 0, false);
565 }
566 } else {
567 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
568 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
569 child_nid = le32_to_cpu(rn->in.nid[i]);
570 if (child_nid == 0) {
571 child_nofs += NIDS_PER_BLOCK + 1;
572 continue;
573 }
574 rdn.nid = child_nid;
575 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
576 if (ret == (NIDS_PER_BLOCK + 1)) {
577 set_nid(page, i, 0, false);
578 child_nofs += ret;
579 } else if (ret < 0 && ret != -ENOENT) {
580 goto out_err;
581 }
582 }
583 freed = child_nofs;
584 }
585
586 if (!ofs) {
587 /* remove current indirect node */
588 dn->node_page = page;
589 truncate_node(dn);
590 freed++;
591 } else {
592 f2fs_put_page(page, 1);
593 }
594 return freed;
595
596out_err:
597 f2fs_put_page(page, 1);
598 return ret;
599}
600
601static int truncate_partial_nodes(struct dnode_of_data *dn,
602 struct f2fs_inode *ri, int *offset, int depth)
603{
604 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
605 struct page *pages[2];
606 nid_t nid[3];
607 nid_t child_nid;
608 int err = 0;
609 int i;
610 int idx = depth - 2;
611
612 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
613 if (!nid[0])
614 return 0;
615
616 /* get indirect nodes in the path */
617 for (i = 0; i < depth - 1; i++) {
618 /* refernece count'll be increased */
619 pages[i] = get_node_page(sbi, nid[i]);
620 if (IS_ERR(pages[i])) {
621 depth = i + 1;
622 err = PTR_ERR(pages[i]);
623 goto fail;
624 }
625 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
626 }
627
628 /* free direct nodes linked to a partial indirect node */
629 for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
630 child_nid = get_nid(pages[idx], i, false);
631 if (!child_nid)
632 continue;
633 dn->nid = child_nid;
634 err = truncate_dnode(dn);
635 if (err < 0)
636 goto fail;
637 set_nid(pages[idx], i, 0, false);
638 }
639
640 if (offset[depth - 1] == 0) {
641 dn->node_page = pages[idx];
642 dn->nid = nid[idx];
643 truncate_node(dn);
644 } else {
645 f2fs_put_page(pages[idx], 1);
646 }
647 offset[idx]++;
648 offset[depth - 1] = 0;
649fail:
650 for (i = depth - 3; i >= 0; i--)
651 f2fs_put_page(pages[i], 1);
652 return err;
653}
654
0a8165d7 655/*
e05df3b1
JK
656 * All the block addresses of data and nodes should be nullified.
657 */
658int truncate_inode_blocks(struct inode *inode, pgoff_t from)
659{
660 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
661 int err = 0, cont = 1;
662 int level, offset[4], noffset[4];
663 unsigned int nofs;
664 struct f2fs_node *rn;
665 struct dnode_of_data dn;
666 struct page *page;
667
668 level = get_node_path(from, offset, noffset);
669
670 page = get_node_page(sbi, inode->i_ino);
671 if (IS_ERR(page))
672 return PTR_ERR(page);
673
674 set_new_dnode(&dn, inode, page, NULL, 0);
675 unlock_page(page);
676
677 rn = page_address(page);
678 switch (level) {
679 case 0:
680 case 1:
681 nofs = noffset[1];
682 break;
683 case 2:
684 nofs = noffset[1];
685 if (!offset[level - 1])
686 goto skip_partial;
687 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
688 if (err < 0 && err != -ENOENT)
689 goto fail;
690 nofs += 1 + NIDS_PER_BLOCK;
691 break;
692 case 3:
693 nofs = 5 + 2 * NIDS_PER_BLOCK;
694 if (!offset[level - 1])
695 goto skip_partial;
696 err = truncate_partial_nodes(&dn, &rn->i, offset, level);
697 if (err < 0 && err != -ENOENT)
698 goto fail;
699 break;
700 default:
701 BUG();
702 }
703
704skip_partial:
705 while (cont) {
706 dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
707 switch (offset[0]) {
708 case NODE_DIR1_BLOCK:
709 case NODE_DIR2_BLOCK:
710 err = truncate_dnode(&dn);
711 break;
712
713 case NODE_IND1_BLOCK:
714 case NODE_IND2_BLOCK:
715 err = truncate_nodes(&dn, nofs, offset[1], 2);
716 break;
717
718 case NODE_DIND_BLOCK:
719 err = truncate_nodes(&dn, nofs, offset[1], 3);
720 cont = 0;
721 break;
722
723 default:
724 BUG();
725 }
726 if (err < 0 && err != -ENOENT)
727 goto fail;
728 if (offset[1] == 0 &&
729 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
730 lock_page(page);
731 wait_on_page_writeback(page);
732 rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
733 set_page_dirty(page);
734 unlock_page(page);
735 }
736 offset[1] = 0;
737 offset[0]++;
738 nofs += err;
739 }
740fail:
741 f2fs_put_page(page, 0);
742 return err > 0 ? 0 : err;
743}
744
745int remove_inode_page(struct inode *inode)
746{
747 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
748 struct page *page;
749 nid_t ino = inode->i_ino;
750 struct dnode_of_data dn;
751
752 mutex_lock_op(sbi, NODE_TRUNC);
753 page = get_node_page(sbi, ino);
754 if (IS_ERR(page)) {
755 mutex_unlock_op(sbi, NODE_TRUNC);
756 return PTR_ERR(page);
757 }
758
759 if (F2FS_I(inode)->i_xattr_nid) {
760 nid_t nid = F2FS_I(inode)->i_xattr_nid;
761 struct page *npage = get_node_page(sbi, nid);
762
763 if (IS_ERR(npage)) {
764 mutex_unlock_op(sbi, NODE_TRUNC);
765 return PTR_ERR(npage);
766 }
767
768 F2FS_I(inode)->i_xattr_nid = 0;
769 set_new_dnode(&dn, inode, page, npage, nid);
770 dn.inode_page_locked = 1;
771 truncate_node(&dn);
772 }
e05df3b1 773
71e9fec5
JK
774 /* 0 is possible, after f2fs_new_inode() is failed */
775 BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
776 set_new_dnode(&dn, inode, page, page, ino);
777 truncate_node(&dn);
778
e05df3b1
JK
779 mutex_unlock_op(sbi, NODE_TRUNC);
780 return 0;
781}
782
783int new_inode_page(struct inode *inode, struct dentry *dentry)
784{
785 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
786 struct page *page;
787 struct dnode_of_data dn;
788
789 /* allocate inode page for new inode */
790 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
791 mutex_lock_op(sbi, NODE_NEW);
792 page = new_node_page(&dn, 0);
793 init_dent_inode(dentry, page);
794 mutex_unlock_op(sbi, NODE_NEW);
795 if (IS_ERR(page))
796 return PTR_ERR(page);
797 f2fs_put_page(page, 1);
798 return 0;
799}
800
801struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
802{
803 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
804 struct address_space *mapping = sbi->node_inode->i_mapping;
805 struct node_info old_ni, new_ni;
806 struct page *page;
807 int err;
808
809 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
810 return ERR_PTR(-EPERM);
811
812 page = grab_cache_page(mapping, dn->nid);
813 if (!page)
814 return ERR_PTR(-ENOMEM);
815
816 get_node_info(sbi, dn->nid, &old_ni);
817
818 SetPageUptodate(page);
819 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
820
821 /* Reinitialize old_ni with new node page */
822 BUG_ON(old_ni.blk_addr != NULL_ADDR);
823 new_ni = old_ni;
824 new_ni.ino = dn->inode->i_ino;
825
826 if (!inc_valid_node_count(sbi, dn->inode, 1)) {
827 err = -ENOSPC;
828 goto fail;
829 }
830 set_node_addr(sbi, &new_ni, NEW_ADDR);
398b1ac5 831 set_cold_node(dn->inode, page);
e05df3b1
JK
832
833 dn->node_page = page;
834 sync_inode_page(dn);
835 set_page_dirty(page);
e05df3b1
JK
836 if (ofs == 0)
837 inc_valid_inode_count(sbi);
838
839 return page;
840
841fail:
71e9fec5 842 clear_node_page_dirty(page);
e05df3b1
JK
843 f2fs_put_page(page, 1);
844 return ERR_PTR(err);
845}
846
847static int read_node_page(struct page *page, int type)
848{
849 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
850 struct node_info ni;
851
852 get_node_info(sbi, page->index, &ni);
853
854 if (ni.blk_addr == NULL_ADDR)
855 return -ENOENT;
856 return f2fs_readpage(sbi, page, ni.blk_addr, type);
857}
858
0a8165d7 859/*
e05df3b1
JK
860 * Readahead a node page
861 */
862void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
863{
864 struct address_space *mapping = sbi->node_inode->i_mapping;
865 struct page *apage;
866
867 apage = find_get_page(mapping, nid);
868 if (apage && PageUptodate(apage))
869 goto release_out;
870 f2fs_put_page(apage, 0);
871
872 apage = grab_cache_page(mapping, nid);
873 if (!apage)
874 return;
875
876 if (read_node_page(apage, READA))
877 goto unlock_out;
878
879 page_cache_release(apage);
880 return;
881
882unlock_out:
883 unlock_page(apage);
884release_out:
885 page_cache_release(apage);
886}
887
888struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
889{
890 int err;
891 struct page *page;
892 struct address_space *mapping = sbi->node_inode->i_mapping;
893
894 page = grab_cache_page(mapping, nid);
895 if (!page)
896 return ERR_PTR(-ENOMEM);
897
898 err = read_node_page(page, READ_SYNC);
899 if (err) {
900 f2fs_put_page(page, 1);
901 return ERR_PTR(err);
902 }
903
904 BUG_ON(nid != nid_of_node(page));
905 mark_page_accessed(page);
906 return page;
907}
908
0a8165d7 909/*
e05df3b1
JK
910 * Return a locked page for the desired node page.
911 * And, readahead MAX_RA_NODE number of node pages.
912 */
913struct page *get_node_page_ra(struct page *parent, int start)
914{
915 struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
916 struct address_space *mapping = sbi->node_inode->i_mapping;
917 int i, end;
918 int err = 0;
919 nid_t nid;
920 struct page *page;
921
922 /* First, try getting the desired direct node. */
923 nid = get_nid(parent, start, false);
924 if (!nid)
925 return ERR_PTR(-ENOENT);
926
927 page = find_get_page(mapping, nid);
928 if (page && PageUptodate(page))
929 goto page_hit;
930 f2fs_put_page(page, 0);
931
932repeat:
933 page = grab_cache_page(mapping, nid);
934 if (!page)
935 return ERR_PTR(-ENOMEM);
936
937 err = read_node_page(page, READA);
938 if (err) {
939 f2fs_put_page(page, 1);
940 return ERR_PTR(err);
941 }
942
943 /* Then, try readahead for siblings of the desired node */
944 end = start + MAX_RA_NODE;
945 end = min(end, NIDS_PER_BLOCK);
946 for (i = start + 1; i < end; i++) {
947 nid = get_nid(parent, i, false);
948 if (!nid)
949 continue;
950 ra_node_page(sbi, nid);
951 }
952
953page_hit:
954 lock_page(page);
955 if (PageError(page)) {
956 f2fs_put_page(page, 1);
957 return ERR_PTR(-EIO);
958 }
959
960 /* Has the page been truncated? */
961 if (page->mapping != mapping) {
962 f2fs_put_page(page, 1);
963 goto repeat;
964 }
965 return page;
966}
967
968void sync_inode_page(struct dnode_of_data *dn)
969{
970 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
971 update_inode(dn->inode, dn->node_page);
972 } else if (dn->inode_page) {
973 if (!dn->inode_page_locked)
974 lock_page(dn->inode_page);
975 update_inode(dn->inode, dn->inode_page);
976 if (!dn->inode_page_locked)
977 unlock_page(dn->inode_page);
978 } else {
979 f2fs_write_inode(dn->inode, NULL);
980 }
981}
982
983int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
984 struct writeback_control *wbc)
985{
986 struct address_space *mapping = sbi->node_inode->i_mapping;
987 pgoff_t index, end;
988 struct pagevec pvec;
989 int step = ino ? 2 : 0;
990 int nwritten = 0, wrote = 0;
991
992 pagevec_init(&pvec, 0);
993
994next_step:
995 index = 0;
996 end = LONG_MAX;
997
998 while (index <= end) {
999 int i, nr_pages;
1000 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1001 PAGECACHE_TAG_DIRTY,
1002 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1003 if (nr_pages == 0)
1004 break;
1005
1006 for (i = 0; i < nr_pages; i++) {
1007 struct page *page = pvec.pages[i];
1008
1009 /*
1010 * flushing sequence with step:
1011 * 0. indirect nodes
1012 * 1. dentry dnodes
1013 * 2. file dnodes
1014 */
1015 if (step == 0 && IS_DNODE(page))
1016 continue;
1017 if (step == 1 && (!IS_DNODE(page) ||
1018 is_cold_node(page)))
1019 continue;
1020 if (step == 2 && (!IS_DNODE(page) ||
1021 !is_cold_node(page)))
1022 continue;
1023
1024 /*
1025 * If an fsync mode,
1026 * we should not skip writing node pages.
1027 */
1028 if (ino && ino_of_node(page) == ino)
1029 lock_page(page);
1030 else if (!trylock_page(page))
1031 continue;
1032
1033 if (unlikely(page->mapping != mapping)) {
1034continue_unlock:
1035 unlock_page(page);
1036 continue;
1037 }
1038 if (ino && ino_of_node(page) != ino)
1039 goto continue_unlock;
1040
1041 if (!PageDirty(page)) {
1042 /* someone wrote it for us */
1043 goto continue_unlock;
1044 }
1045
1046 if (!clear_page_dirty_for_io(page))
1047 goto continue_unlock;
1048
1049 /* called by fsync() */
1050 if (ino && IS_DNODE(page)) {
1051 int mark = !is_checkpointed_node(sbi, ino);
1052 set_fsync_mark(page, 1);
1053 if (IS_INODE(page))
1054 set_dentry_mark(page, mark);
1055 nwritten++;
1056 } else {
1057 set_fsync_mark(page, 0);
1058 set_dentry_mark(page, 0);
1059 }
1060 mapping->a_ops->writepage(page, wbc);
1061 wrote++;
1062
1063 if (--wbc->nr_to_write == 0)
1064 break;
1065 }
1066 pagevec_release(&pvec);
1067 cond_resched();
1068
1069 if (wbc->nr_to_write == 0) {
1070 step = 2;
1071 break;
1072 }
1073 }
1074
1075 if (step < 2) {
1076 step++;
1077 goto next_step;
1078 }
1079
1080 if (wrote)
1081 f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
1082
1083 return nwritten;
1084}
1085
1086static int f2fs_write_node_page(struct page *page,
1087 struct writeback_control *wbc)
1088{
1089 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1090 nid_t nid;
e05df3b1
JK
1091 block_t new_addr;
1092 struct node_info ni;
1093
1094 if (wbc->for_reclaim) {
1095 dec_page_count(sbi, F2FS_DIRTY_NODES);
1096 wbc->pages_skipped++;
1097 set_page_dirty(page);
1098 return AOP_WRITEPAGE_ACTIVATE;
1099 }
1100
1101 wait_on_page_writeback(page);
1102
1103 mutex_lock_op(sbi, NODE_WRITE);
1104
1105 /* get old block addr of this node page */
1106 nid = nid_of_node(page);
e05df3b1
JK
1107 BUG_ON(page->index != nid);
1108
1109 get_node_info(sbi, nid, &ni);
1110
1111 /* This page is already truncated */
1112 if (ni.blk_addr == NULL_ADDR)
1113 return 0;
1114
1115 set_page_writeback(page);
1116
1117 /* insert node offset */
1118 write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
1119 set_node_addr(sbi, &ni, new_addr);
1120 dec_page_count(sbi, F2FS_DIRTY_NODES);
1121
1122 mutex_unlock_op(sbi, NODE_WRITE);
1123 unlock_page(page);
1124 return 0;
1125}
1126
a7fdffbd
JK
1127/*
1128 * It is very important to gather dirty pages and write at once, so that we can
1129 * submit a big bio without interfering other data writes.
1130 * Be default, 512 pages (2MB), a segment size, is quite reasonable.
1131 */
1132#define COLLECT_DIRTY_NODES 512
e05df3b1
JK
1133static int f2fs_write_node_pages(struct address_space *mapping,
1134 struct writeback_control *wbc)
1135{
1136 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1137 struct block_device *bdev = sbi->sb->s_bdev;
1138 long nr_to_write = wbc->nr_to_write;
1139
a7fdffbd 1140 /* First check balancing cached NAT entries */
e05df3b1
JK
1141 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
1142 write_checkpoint(sbi, false, false);
1143 return 0;
1144 }
1145
a7fdffbd
JK
1146 /* collect a number of dirty node pages and write together */
1147 if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
1148 return 0;
1149
e05df3b1
JK
1150 /* if mounting is failed, skip writing node pages */
1151 wbc->nr_to_write = bio_get_nr_vecs(bdev);
1152 sync_node_pages(sbi, 0, wbc);
1153 wbc->nr_to_write = nr_to_write -
1154 (bio_get_nr_vecs(bdev) - wbc->nr_to_write);
1155 return 0;
1156}
1157
1158static int f2fs_set_node_page_dirty(struct page *page)
1159{
1160 struct address_space *mapping = page->mapping;
1161 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1162
1163 SetPageUptodate(page);
1164 if (!PageDirty(page)) {
1165 __set_page_dirty_nobuffers(page);
1166 inc_page_count(sbi, F2FS_DIRTY_NODES);
1167 SetPagePrivate(page);
1168 return 1;
1169 }
1170 return 0;
1171}
1172
1173static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
1174{
1175 struct inode *inode = page->mapping->host;
1176 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1177 if (PageDirty(page))
1178 dec_page_count(sbi, F2FS_DIRTY_NODES);
1179 ClearPagePrivate(page);
1180}
1181
1182static int f2fs_release_node_page(struct page *page, gfp_t wait)
1183{
1184 ClearPagePrivate(page);
1185 return 0;
1186}
1187
0a8165d7 1188/*
e05df3b1
JK
1189 * Structure of the f2fs node operations
1190 */
1191const struct address_space_operations f2fs_node_aops = {
1192 .writepage = f2fs_write_node_page,
1193 .writepages = f2fs_write_node_pages,
1194 .set_page_dirty = f2fs_set_node_page_dirty,
1195 .invalidatepage = f2fs_invalidate_node_page,
1196 .releasepage = f2fs_release_node_page,
1197};
1198
1199static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
1200{
1201 struct list_head *this;
1202 struct free_nid *i = NULL;
1203 list_for_each(this, head) {
1204 i = list_entry(this, struct free_nid, list);
1205 if (i->nid == n)
1206 break;
1207 i = NULL;
1208 }
1209 return i;
1210}
1211
1212static void __del_from_free_nid_list(struct free_nid *i)
1213{
1214 list_del(&i->list);
1215 kmem_cache_free(free_nid_slab, i);
1216}
1217
1218static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1219{
1220 struct free_nid *i;
1221
1222 if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
1223 return 0;
1224retry:
1225 i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1226 if (!i) {
1227 cond_resched();
1228 goto retry;
1229 }
1230 i->nid = nid;
1231 i->state = NID_NEW;
1232
1233 spin_lock(&nm_i->free_nid_list_lock);
1234 if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
1235 spin_unlock(&nm_i->free_nid_list_lock);
1236 kmem_cache_free(free_nid_slab, i);
1237 return 0;
1238 }
1239 list_add_tail(&i->list, &nm_i->free_nid_list);
1240 nm_i->fcnt++;
1241 spin_unlock(&nm_i->free_nid_list_lock);
1242 return 1;
1243}
1244
1245static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1246{
1247 struct free_nid *i;
1248 spin_lock(&nm_i->free_nid_list_lock);
1249 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1250 if (i && i->state == NID_NEW) {
1251 __del_from_free_nid_list(i);
1252 nm_i->fcnt--;
1253 }
1254 spin_unlock(&nm_i->free_nid_list_lock);
1255}
1256
1257static int scan_nat_page(struct f2fs_nm_info *nm_i,
1258 struct page *nat_page, nid_t start_nid)
1259{
1260 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1261 block_t blk_addr;
1262 int fcnt = 0;
1263 int i;
1264
1265 /* 0 nid should not be used */
1266 if (start_nid == 0)
1267 ++start_nid;
1268
1269 i = start_nid % NAT_ENTRY_PER_BLOCK;
1270
1271 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1272 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1273 BUG_ON(blk_addr == NEW_ADDR);
1274 if (blk_addr == NULL_ADDR)
1275 fcnt += add_free_nid(nm_i, start_nid);
1276 }
1277 return fcnt;
1278}
1279
1280static void build_free_nids(struct f2fs_sb_info *sbi)
1281{
1282 struct free_nid *fnid, *next_fnid;
1283 struct f2fs_nm_info *nm_i = NM_I(sbi);
1284 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1285 struct f2fs_summary_block *sum = curseg->sum_blk;
1286 nid_t nid = 0;
1287 bool is_cycled = false;
1288 int fcnt = 0;
1289 int i;
1290
1291 nid = nm_i->next_scan_nid;
1292 nm_i->init_scan_nid = nid;
1293
1294 ra_nat_pages(sbi, nid);
1295
1296 while (1) {
1297 struct page *page = get_current_nat_page(sbi, nid);
1298
1299 fcnt += scan_nat_page(nm_i, page, nid);
1300 f2fs_put_page(page, 1);
1301
1302 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1303
1304 if (nid >= nm_i->max_nid) {
1305 nid = 0;
1306 is_cycled = true;
1307 }
1308 if (fcnt > MAX_FREE_NIDS)
1309 break;
1310 if (is_cycled && nm_i->init_scan_nid <= nid)
1311 break;
1312 }
1313
1314 nm_i->next_scan_nid = nid;
1315
1316 /* find free nids from current sum_pages */
1317 mutex_lock(&curseg->curseg_mutex);
1318 for (i = 0; i < nats_in_cursum(sum); i++) {
1319 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1320 nid = le32_to_cpu(nid_in_journal(sum, i));
1321 if (addr == NULL_ADDR)
1322 add_free_nid(nm_i, nid);
1323 else
1324 remove_free_nid(nm_i, nid);
1325 }
1326 mutex_unlock(&curseg->curseg_mutex);
1327
1328 /* remove the free nids from current allocated nids */
1329 list_for_each_entry_safe(fnid, next_fnid, &nm_i->free_nid_list, list) {
1330 struct nat_entry *ne;
1331
1332 read_lock(&nm_i->nat_tree_lock);
1333 ne = __lookup_nat_cache(nm_i, fnid->nid);
1334 if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
1335 remove_free_nid(nm_i, fnid->nid);
1336 read_unlock(&nm_i->nat_tree_lock);
1337 }
1338}
1339
1340/*
1341 * If this function returns success, caller can obtain a new nid
1342 * from second parameter of this function.
1343 * The returned nid could be used ino as well as nid when inode is created.
1344 */
1345bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1346{
1347 struct f2fs_nm_info *nm_i = NM_I(sbi);
1348 struct free_nid *i = NULL;
1349 struct list_head *this;
1350retry:
1351 mutex_lock(&nm_i->build_lock);
1352 if (!nm_i->fcnt) {
1353 /* scan NAT in order to build free nid list */
1354 build_free_nids(sbi);
1355 if (!nm_i->fcnt) {
1356 mutex_unlock(&nm_i->build_lock);
1357 return false;
1358 }
1359 }
1360 mutex_unlock(&nm_i->build_lock);
1361
1362 /*
1363 * We check fcnt again since previous check is racy as
1364 * we didn't hold free_nid_list_lock. So other thread
1365 * could consume all of free nids.
1366 */
1367 spin_lock(&nm_i->free_nid_list_lock);
1368 if (!nm_i->fcnt) {
1369 spin_unlock(&nm_i->free_nid_list_lock);
1370 goto retry;
1371 }
1372
1373 BUG_ON(list_empty(&nm_i->free_nid_list));
1374 list_for_each(this, &nm_i->free_nid_list) {
1375 i = list_entry(this, struct free_nid, list);
1376 if (i->state == NID_NEW)
1377 break;
1378 }
1379
1380 BUG_ON(i->state != NID_NEW);
1381 *nid = i->nid;
1382 i->state = NID_ALLOC;
1383 nm_i->fcnt--;
1384 spin_unlock(&nm_i->free_nid_list_lock);
1385 return true;
1386}
1387
0a8165d7 1388/*
e05df3b1
JK
1389 * alloc_nid() should be called prior to this function.
1390 */
1391void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1392{
1393 struct f2fs_nm_info *nm_i = NM_I(sbi);
1394 struct free_nid *i;
1395
1396 spin_lock(&nm_i->free_nid_list_lock);
1397 i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
1398 if (i) {
1399 BUG_ON(i->state != NID_ALLOC);
1400 __del_from_free_nid_list(i);
1401 }
1402 spin_unlock(&nm_i->free_nid_list_lock);
1403}
1404
0a8165d7 1405/*
e05df3b1
JK
1406 * alloc_nid() should be called prior to this function.
1407 */
1408void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1409{
1410 alloc_nid_done(sbi, nid);
1411 add_free_nid(NM_I(sbi), nid);
1412}
1413
1414void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1415 struct f2fs_summary *sum, struct node_info *ni,
1416 block_t new_blkaddr)
1417{
1418 rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1419 set_node_addr(sbi, ni, new_blkaddr);
1420 clear_node_page_dirty(page);
1421}
1422
1423int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1424{
1425 struct address_space *mapping = sbi->node_inode->i_mapping;
1426 struct f2fs_node *src, *dst;
1427 nid_t ino = ino_of_node(page);
1428 struct node_info old_ni, new_ni;
1429 struct page *ipage;
1430
1431 ipage = grab_cache_page(mapping, ino);
1432 if (!ipage)
1433 return -ENOMEM;
1434
1435 /* Should not use this inode from free nid list */
1436 remove_free_nid(NM_I(sbi), ino);
1437
1438 get_node_info(sbi, ino, &old_ni);
1439 SetPageUptodate(ipage);
1440 fill_node_footer(ipage, ino, ino, 0, true);
1441
1442 src = (struct f2fs_node *)page_address(page);
1443 dst = (struct f2fs_node *)page_address(ipage);
1444
1445 memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
1446 dst->i.i_size = 0;
25ca923b
JK
1447 dst->i.i_blocks = cpu_to_le64(1);
1448 dst->i.i_links = cpu_to_le32(1);
e05df3b1
JK
1449 dst->i.i_xattr_nid = 0;
1450
1451 new_ni = old_ni;
1452 new_ni.ino = ino;
1453
1454 set_node_addr(sbi, &new_ni, NEW_ADDR);
1455 inc_valid_inode_count(sbi);
1456
1457 f2fs_put_page(ipage, 1);
1458 return 0;
1459}
1460
1461int restore_node_summary(struct f2fs_sb_info *sbi,
1462 unsigned int segno, struct f2fs_summary_block *sum)
1463{
1464 struct f2fs_node *rn;
1465 struct f2fs_summary *sum_entry;
1466 struct page *page;
1467 block_t addr;
1468 int i, last_offset;
1469
1470 /* alloc temporal page for read node */
1471 page = alloc_page(GFP_NOFS | __GFP_ZERO);
1472 if (IS_ERR(page))
1473 return PTR_ERR(page);
1474 lock_page(page);
1475
1476 /* scan the node segment */
1477 last_offset = sbi->blocks_per_seg;
1478 addr = START_BLOCK(sbi, segno);
1479 sum_entry = &sum->entries[0];
1480
1481 for (i = 0; i < last_offset; i++, sum_entry++) {
1482 if (f2fs_readpage(sbi, page, addr, READ_SYNC))
1483 goto out;
1484
1485 rn = (struct f2fs_node *)page_address(page);
1486 sum_entry->nid = rn->footer.nid;
1487 sum_entry->version = 0;
1488 sum_entry->ofs_in_node = 0;
1489 addr++;
1490
1491 /*
1492 * In order to read next node page,
1493 * we must clear PageUptodate flag.
1494 */
1495 ClearPageUptodate(page);
1496 }
1497out:
1498 unlock_page(page);
1499 __free_pages(page, 0);
1500 return 0;
1501}
1502
1503static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1504{
1505 struct f2fs_nm_info *nm_i = NM_I(sbi);
1506 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1507 struct f2fs_summary_block *sum = curseg->sum_blk;
1508 int i;
1509
1510 mutex_lock(&curseg->curseg_mutex);
1511
1512 if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1513 mutex_unlock(&curseg->curseg_mutex);
1514 return false;
1515 }
1516
1517 for (i = 0; i < nats_in_cursum(sum); i++) {
1518 struct nat_entry *ne;
1519 struct f2fs_nat_entry raw_ne;
1520 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1521
1522 raw_ne = nat_in_journal(sum, i);
1523retry:
1524 write_lock(&nm_i->nat_tree_lock);
1525 ne = __lookup_nat_cache(nm_i, nid);
1526 if (ne) {
1527 __set_nat_cache_dirty(nm_i, ne);
1528 write_unlock(&nm_i->nat_tree_lock);
1529 continue;
1530 }
1531 ne = grab_nat_entry(nm_i, nid);
1532 if (!ne) {
1533 write_unlock(&nm_i->nat_tree_lock);
1534 goto retry;
1535 }
1536 nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1537 nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1538 nat_set_version(ne, raw_ne.version);
1539 __set_nat_cache_dirty(nm_i, ne);
1540 write_unlock(&nm_i->nat_tree_lock);
1541 }
1542 update_nats_in_cursum(sum, -i);
1543 mutex_unlock(&curseg->curseg_mutex);
1544 return true;
1545}
1546
0a8165d7 1547/*
e05df3b1
JK
1548 * This function is called during the checkpointing process.
1549 */
1550void flush_nat_entries(struct f2fs_sb_info *sbi)
1551{
1552 struct f2fs_nm_info *nm_i = NM_I(sbi);
1553 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1554 struct f2fs_summary_block *sum = curseg->sum_blk;
1555 struct list_head *cur, *n;
1556 struct page *page = NULL;
1557 struct f2fs_nat_block *nat_blk = NULL;
1558 nid_t start_nid = 0, end_nid = 0;
1559 bool flushed;
1560
1561 flushed = flush_nats_in_journal(sbi);
1562
1563 if (!flushed)
1564 mutex_lock(&curseg->curseg_mutex);
1565
1566 /* 1) flush dirty nat caches */
1567 list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
1568 struct nat_entry *ne;
1569 nid_t nid;
1570 struct f2fs_nat_entry raw_ne;
1571 int offset = -1;
2b50638d 1572 block_t new_blkaddr;
e05df3b1
JK
1573
1574 ne = list_entry(cur, struct nat_entry, list);
1575 nid = nat_get_nid(ne);
1576
1577 if (nat_get_blkaddr(ne) == NEW_ADDR)
1578 continue;
1579 if (flushed)
1580 goto to_nat_page;
1581
1582 /* if there is room for nat enries in curseg->sumpage */
1583 offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1584 if (offset >= 0) {
1585 raw_ne = nat_in_journal(sum, offset);
e05df3b1
JK
1586 goto flush_now;
1587 }
1588to_nat_page:
1589 if (!page || (start_nid > nid || nid > end_nid)) {
1590 if (page) {
1591 f2fs_put_page(page, 1);
1592 page = NULL;
1593 }
1594 start_nid = START_NID(nid);
1595 end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1596
1597 /*
1598 * get nat block with dirty flag, increased reference
1599 * count, mapped and lock
1600 */
1601 page = get_next_nat_page(sbi, start_nid);
1602 nat_blk = page_address(page);
1603 }
1604
1605 BUG_ON(!nat_blk);
1606 raw_ne = nat_blk->entries[nid - start_nid];
e05df3b1
JK
1607flush_now:
1608 new_blkaddr = nat_get_blkaddr(ne);
1609
1610 raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1611 raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1612 raw_ne.version = nat_get_version(ne);
1613
1614 if (offset < 0) {
1615 nat_blk->entries[nid - start_nid] = raw_ne;
1616 } else {
1617 nat_in_journal(sum, offset) = raw_ne;
1618 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1619 }
1620
1621 if (nat_get_blkaddr(ne) == NULL_ADDR) {
1622 write_lock(&nm_i->nat_tree_lock);
1623 __del_from_nat_cache(nm_i, ne);
1624 write_unlock(&nm_i->nat_tree_lock);
1625
1626 /* We can reuse this freed nid at this point */
1627 add_free_nid(NM_I(sbi), nid);
1628 } else {
1629 write_lock(&nm_i->nat_tree_lock);
1630 __clear_nat_cache_dirty(nm_i, ne);
1631 ne->checkpointed = true;
1632 write_unlock(&nm_i->nat_tree_lock);
1633 }
1634 }
1635 if (!flushed)
1636 mutex_unlock(&curseg->curseg_mutex);
1637 f2fs_put_page(page, 1);
1638
1639 /* 2) shrink nat caches if necessary */
1640 try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
1641}
1642
1643static int init_node_manager(struct f2fs_sb_info *sbi)
1644{
1645 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1646 struct f2fs_nm_info *nm_i = NM_I(sbi);
1647 unsigned char *version_bitmap;
1648 unsigned int nat_segs, nat_blocks;
1649
1650 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1651
1652 /* segment_count_nat includes pair segment so divide to 2. */
1653 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1654 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1655 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1656 nm_i->fcnt = 0;
1657 nm_i->nat_cnt = 0;
1658
1659 INIT_LIST_HEAD(&nm_i->free_nid_list);
1660 INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
1661 INIT_LIST_HEAD(&nm_i->nat_entries);
1662 INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1663
1664 mutex_init(&nm_i->build_lock);
1665 spin_lock_init(&nm_i->free_nid_list_lock);
1666 rwlock_init(&nm_i->nat_tree_lock);
1667
1668 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1669 nm_i->init_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1670 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1671
1672 nm_i->nat_bitmap = kzalloc(nm_i->bitmap_size, GFP_KERNEL);
1673 if (!nm_i->nat_bitmap)
1674 return -ENOMEM;
1675 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1676 if (!version_bitmap)
1677 return -EFAULT;
1678
1679 /* copy version bitmap */
1680 memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
1681 return 0;
1682}
1683
1684int build_node_manager(struct f2fs_sb_info *sbi)
1685{
1686 int err;
1687
1688 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
1689 if (!sbi->nm_info)
1690 return -ENOMEM;
1691
1692 err = init_node_manager(sbi);
1693 if (err)
1694 return err;
1695
1696 build_free_nids(sbi);
1697 return 0;
1698}
1699
1700void destroy_node_manager(struct f2fs_sb_info *sbi)
1701{
1702 struct f2fs_nm_info *nm_i = NM_I(sbi);
1703 struct free_nid *i, *next_i;
1704 struct nat_entry *natvec[NATVEC_SIZE];
1705 nid_t nid = 0;
1706 unsigned int found;
1707
1708 if (!nm_i)
1709 return;
1710
1711 /* destroy free nid list */
1712 spin_lock(&nm_i->free_nid_list_lock);
1713 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1714 BUG_ON(i->state == NID_ALLOC);
1715 __del_from_free_nid_list(i);
1716 nm_i->fcnt--;
1717 }
1718 BUG_ON(nm_i->fcnt);
1719 spin_unlock(&nm_i->free_nid_list_lock);
1720
1721 /* destroy nat cache */
1722 write_lock(&nm_i->nat_tree_lock);
1723 while ((found = __gang_lookup_nat_cache(nm_i,
1724 nid, NATVEC_SIZE, natvec))) {
1725 unsigned idx;
1726 for (idx = 0; idx < found; idx++) {
1727 struct nat_entry *e = natvec[idx];
1728 nid = nat_get_nid(e) + 1;
1729 __del_from_nat_cache(nm_i, e);
1730 }
1731 }
1732 BUG_ON(nm_i->nat_cnt);
1733 write_unlock(&nm_i->nat_tree_lock);
1734
1735 kfree(nm_i->nat_bitmap);
1736 sbi->nm_info = NULL;
1737 kfree(nm_i);
1738}
1739
6e6093a8 1740int __init create_node_manager_caches(void)
e05df3b1
JK
1741{
1742 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1743 sizeof(struct nat_entry), NULL);
1744 if (!nat_entry_slab)
1745 return -ENOMEM;
1746
1747 free_nid_slab = f2fs_kmem_cache_create("free_nid",
1748 sizeof(struct free_nid), NULL);
1749 if (!free_nid_slab) {
1750 kmem_cache_destroy(nat_entry_slab);
1751 return -ENOMEM;
1752 }
1753 return 0;
1754}
1755
1756void destroy_node_manager_caches(void)
1757{
1758 kmem_cache_destroy(free_nid_slab);
1759 kmem_cache_destroy(nat_entry_slab);
1760}
This page took 0.101366 seconds and 5 git commands to generate.