Merge remote-tracking branch 'crypto-current/master'
[deliverable/linux.git] / fs / f2fs / node.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
ea1a29a0 17/* # of pages to perform synchronous readahead before building free nids */
ad4edb83
JK
18#define FREE_NID_PAGES 8
19#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
39a53e0c 20
ad4edb83 21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
ea1a29a0 22
39a53e0c
JK
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
cdfc41c1 26/* control the memory footprint threshold (10MB per 1GB ram) */
29710bcf 27#define DEF_RAM_THRESHOLD 1
cdfc41c1 28
7d768d2c
CY
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
e589c2c4
JK
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
7d768d2c 33
39a53e0c
JK
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
7aed0d45 36#define SETVEC_SIZE 32
39a53e0c 37
56ae674c
JK
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
5c27f4ee
CY
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47};
48
39a53e0c
JK
49/*
50 * For node information
51 */
52struct node_info {
53 nid_t nid; /* node id */
54 nid_t ino; /* inode number of the node's owner */
55 block_t blk_addr; /* block address of the node */
56 unsigned char version; /* version of the node */
5c27f4ee 57 unsigned char flag; /* for node information bits */
7ef35e3b
JK
58};
59
39a53e0c
JK
60struct nat_entry {
61 struct list_head list; /* for clean or dirty nat list */
39a53e0c
JK
62 struct node_info ni; /* in-memory node information */
63};
64
65#define nat_get_nid(nat) (nat->ni.nid)
66#define nat_set_nid(nat, n) (nat->ni.nid = n)
67#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
68#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
69#define nat_get_ino(nat) (nat->ni.ino)
70#define nat_set_ino(nat, i) (nat->ni.ino = i)
71#define nat_get_version(nat) (nat->ni.version)
72#define nat_set_version(nat, v) (nat->ni.version = v)
73
39a53e0c
JK
74#define inc_node_version(version) (++version)
75
5c27f4ee
CY
76static inline void copy_node_info(struct node_info *dst,
77 struct node_info *src)
78{
79 dst->nid = src->nid;
80 dst->ino = src->ino;
81 dst->blk_addr = src->blk_addr;
82 dst->version = src->version;
83 /* should not copy flag here */
84}
85
7ef35e3b
JK
86static inline void set_nat_flag(struct nat_entry *ne,
87 unsigned int type, bool set)
88{
89 unsigned char mask = 0x01 << type;
90 if (set)
5c27f4ee 91 ne->ni.flag |= mask;
7ef35e3b 92 else
5c27f4ee 93 ne->ni.flag &= ~mask;
7ef35e3b
JK
94}
95
96static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
97{
98 unsigned char mask = 0x01 << type;
5c27f4ee 99 return ne->ni.flag & mask;
7ef35e3b
JK
100}
101
88bd02c9
JK
102static inline void nat_reset_flag(struct nat_entry *ne)
103{
104 /* these states can be set only after checkpoint was done */
105 set_nat_flag(ne, IS_CHECKPOINTED, true);
106 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
107 set_nat_flag(ne, HAS_LAST_FSYNC, true);
108}
109
39a53e0c
JK
110static inline void node_info_from_raw_nat(struct node_info *ni,
111 struct f2fs_nat_entry *raw_ne)
112{
113 ni->ino = le32_to_cpu(raw_ne->ino);
114 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
115 ni->version = raw_ne->version;
116}
117
94dac22e
CY
118static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
119 struct node_info *ni)
120{
121 raw_ne->ino = cpu_to_le32(ni->ino);
122 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
123 raw_ne->version = ni->version;
124}
125
7d768d2c
CY
126static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
127{
128 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
2304cb0c 129 NM_I(sbi)->dirty_nats_ratio / 100;
7d768d2c
CY
130}
131
e589c2c4
JK
132static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
133{
134 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
135}
136
6fb03f3a 137enum mem_type {
cdfc41c1 138 FREE_NIDS, /* indicates the free nid list */
6fb03f3a 139 NAT_ENTRIES, /* indicates the cached nat entry */
a1257023 140 DIRTY_DENTS, /* indicates dirty dentry pages */
e5e7ea3c 141 INO_ENTRIES, /* indicates inode entries */
13054c54 142 EXTENT_CACHE, /* indicates extent cache */
1e84371f 143 BASE_CHECK, /* check kernel status */
cdfc41c1
JK
144};
145
aec71382 146struct nat_entry_set {
309cc2b6 147 struct list_head set_list; /* link with other nat sets */
aec71382 148 struct list_head entry_list; /* link with dirty nat entries */
309cc2b6 149 nid_t set; /* set number*/
aec71382
CY
150 unsigned int entry_cnt; /* the # of nat entries in set */
151};
152
39a53e0c
JK
153/*
154 * For free nid mangement
155 */
156enum nid_state {
157 NID_NEW, /* newly added to free nid list */
158 NID_ALLOC /* it is allocated */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: NID_NEW or NID_ALLOC */
165};
166
120c2cba 167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
39a53e0c
JK
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
39a53e0c 172 spin_lock(&nm_i->free_nid_list_lock);
c6e48930
HY
173 if (nm_i->fcnt <= 0) {
174 spin_unlock(&nm_i->free_nid_list_lock);
120c2cba 175 return;
c6e48930 176 }
39a53e0c
JK
177 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
178 *nid = fnid->nid;
179 spin_unlock(&nm_i->free_nid_list_lock);
39a53e0c
JK
180}
181
182/*
183 * inline functions
184 */
185static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
186{
187 struct f2fs_nm_info *nm_i = NM_I(sbi);
188 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
189}
190
191static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
192{
193 struct f2fs_nm_info *nm_i = NM_I(sbi);
194 pgoff_t block_off;
195 pgoff_t block_addr;
196 int seg_off;
197
198 block_off = NAT_BLOCK_OFFSET(start);
199 seg_off = block_off >> sbi->log_blocks_per_seg;
200
201 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
202 (seg_off << sbi->log_blocks_per_seg << 1) +
3519e3f9 203 (block_off & (sbi->blocks_per_seg - 1)));
39a53e0c
JK
204
205 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
206 block_addr += sbi->blocks_per_seg;
207
208 return block_addr;
209}
210
211static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
212 pgoff_t block_addr)
213{
214 struct f2fs_nm_info *nm_i = NM_I(sbi);
215
216 block_addr -= nm_i->nat_blkaddr;
217 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
218 block_addr -= sbi->blocks_per_seg;
219 else
220 block_addr += sbi->blocks_per_seg;
221
222 return block_addr + nm_i->nat_blkaddr;
223}
224
225static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
226{
227 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
228
c6ac4c0e 229 f2fs_change_bit(block_off, nm_i->nat_bitmap);
39a53e0c
JK
230}
231
232static inline void fill_node_footer(struct page *page, nid_t nid,
233 nid_t ino, unsigned int ofs, bool reset)
234{
45590710 235 struct f2fs_node *rn = F2FS_NODE(page);
09eb483e
JK
236 unsigned int old_flag = 0;
237
39a53e0c
JK
238 if (reset)
239 memset(rn, 0, sizeof(*rn));
09eb483e
JK
240 else
241 old_flag = le32_to_cpu(rn->footer.flag);
242
39a53e0c
JK
243 rn->footer.nid = cpu_to_le32(nid);
244 rn->footer.ino = cpu_to_le32(ino);
09eb483e
JK
245
246 /* should remain old flag bits such as COLD_BIT_SHIFT */
247 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
248 (old_flag & OFFSET_BIT_MASK));
39a53e0c
JK
249}
250
251static inline void copy_node_footer(struct page *dst, struct page *src)
252{
45590710
GZ
253 struct f2fs_node *src_rn = F2FS_NODE(src);
254 struct f2fs_node *dst_rn = F2FS_NODE(dst);
39a53e0c
JK
255 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
256}
257
258static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
259{
4081363f 260 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
45590710
GZ
261 struct f2fs_node *rn = F2FS_NODE(page);
262
39a53e0c 263 rn->footer.cp_ver = ckpt->checkpoint_ver;
25ca923b 264 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
39a53e0c
JK
265}
266
267static inline nid_t ino_of_node(struct page *node_page)
268{
45590710 269 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
270 return le32_to_cpu(rn->footer.ino);
271}
272
273static inline nid_t nid_of_node(struct page *node_page)
274{
45590710 275 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
276 return le32_to_cpu(rn->footer.nid);
277}
278
279static inline unsigned int ofs_of_node(struct page *node_page)
280{
45590710 281 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
282 unsigned flag = le32_to_cpu(rn->footer.flag);
283 return flag >> OFFSET_BIT_SHIFT;
284}
285
286static inline unsigned long long cpver_of_node(struct page *node_page)
287{
45590710 288 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
289 return le64_to_cpu(rn->footer.cp_ver);
290}
291
292static inline block_t next_blkaddr_of_node(struct page *node_page)
293{
45590710 294 struct f2fs_node *rn = F2FS_NODE(node_page);
39a53e0c
JK
295 return le32_to_cpu(rn->footer.next_blkaddr);
296}
297
298/*
299 * f2fs assigns the following node offsets described as (num).
300 * N = NIDS_PER_BLOCK
301 *
302 * Inode block (0)
303 * |- direct node (1)
304 * |- direct node (2)
305 * |- indirect node (3)
306 * | `- direct node (4 => 4 + N - 1)
307 * |- indirect node (4 + N)
308 * | `- direct node (5 + N => 5 + 2N - 1)
309 * `- double indirect node (5 + 2N)
310 * `- indirect node (6 + 2N)
4f4124d0
CY
311 * `- direct node
312 * ......
313 * `- indirect node ((6 + 2N) + x(N + 1))
314 * `- direct node
315 * ......
316 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
317 * `- direct node
39a53e0c
JK
318 */
319static inline bool IS_DNODE(struct page *node_page)
320{
321 unsigned int ofs = ofs_of_node(node_page);
dbe6a5ff 322
4bc8e9bc 323 if (f2fs_has_xattr_block(ofs))
dbe6a5ff
JK
324 return false;
325
39a53e0c
JK
326 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
327 ofs == 5 + 2 * NIDS_PER_BLOCK)
328 return false;
329 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
330 ofs -= 6 + 2 * NIDS_PER_BLOCK;
3315101f 331 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
39a53e0c
JK
332 return false;
333 }
334 return true;
335}
336
12719ae1 337static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
39a53e0c 338{
45590710 339 struct f2fs_node *rn = F2FS_NODE(p);
39a53e0c 340
fec1d657 341 f2fs_wait_on_page_writeback(p, NODE, true);
39a53e0c
JK
342
343 if (i)
344 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
345 else
346 rn->in.nid[off] = cpu_to_le32(nid);
12719ae1 347 return set_page_dirty(p);
39a53e0c
JK
348}
349
350static inline nid_t get_nid(struct page *p, int off, bool i)
351{
45590710
GZ
352 struct f2fs_node *rn = F2FS_NODE(p);
353
39a53e0c
JK
354 if (i)
355 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
356 return le32_to_cpu(rn->in.nid[off]);
357}
358
359/*
360 * Coldness identification:
361 * - Mark cold files in f2fs_inode_info
362 * - Mark cold node blocks in their node footer
363 * - Mark cold data pages in page cache
364 */
39a53e0c
JK
365static inline int is_cold_data(struct page *page)
366{
367 return PageChecked(page);
368}
369
370static inline void set_cold_data(struct page *page)
371{
372 SetPageChecked(page);
373}
374
375static inline void clear_cold_data(struct page *page)
376{
377 ClearPageChecked(page);
378}
379
a06a2416 380static inline int is_node(struct page *page, int type)
39a53e0c 381{
45590710 382 struct f2fs_node *rn = F2FS_NODE(page);
a06a2416 383 return le32_to_cpu(rn->footer.flag) & (1 << type);
39a53e0c
JK
384}
385
a06a2416
NJ
386#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
387#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
388#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
39a53e0c 389
2049d4fc
JK
390static inline int is_inline_node(struct page *page)
391{
392 return PageChecked(page);
393}
394
395static inline void set_inline_node(struct page *page)
396{
397 SetPageChecked(page);
398}
399
400static inline void clear_inline_node(struct page *page)
401{
402 ClearPageChecked(page);
403}
404
39a53e0c
JK
405static inline void set_cold_node(struct inode *inode, struct page *page)
406{
45590710 407 struct f2fs_node *rn = F2FS_NODE(page);
39a53e0c
JK
408 unsigned int flag = le32_to_cpu(rn->footer.flag);
409
410 if (S_ISDIR(inode->i_mode))
411 flag &= ~(0x1 << COLD_BIT_SHIFT);
412 else
413 flag |= (0x1 << COLD_BIT_SHIFT);
414 rn->footer.flag = cpu_to_le32(flag);
415}
416
a06a2416 417static inline void set_mark(struct page *page, int mark, int type)
39a53e0c 418{
45590710 419 struct f2fs_node *rn = F2FS_NODE(page);
39a53e0c
JK
420 unsigned int flag = le32_to_cpu(rn->footer.flag);
421 if (mark)
a06a2416 422 flag |= (0x1 << type);
39a53e0c 423 else
a06a2416 424 flag &= ~(0x1 << type);
39a53e0c
JK
425 rn->footer.flag = cpu_to_le32(flag);
426}
a06a2416
NJ
427#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
428#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
This page took 0.187539 seconds and 5 git commands to generate.