f2fs: remove the own bi_private allocation
[deliverable/linux.git] / fs / f2fs / segment.c
CommitLineData
0a8165d7 1/*
351df4b2
JK
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
690e4a3e 15#include <linux/prefetch.h>
351df4b2 16#include <linux/vmalloc.h>
74de593a 17#include <linux/swap.h>
351df4b2
JK
18
19#include "f2fs.h"
20#include "segment.h"
21#include "node.h"
6ec178da 22#include <trace/events/f2fs.h>
351df4b2 23
9a7f143a
CL
24#define __reverse_ffz(x) __reverse_ffs(~(x))
25
7fd9e544
JK
26static struct kmem_cache *discard_entry_slab;
27
9a7f143a
CL
28/*
29 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30 * MSB and LSB are reversed in a byte by f2fs_set_bit.
31 */
32static inline unsigned long __reverse_ffs(unsigned long word)
33{
34 int num = 0;
35
36#if BITS_PER_LONG == 64
37 if ((word & 0xffffffff) == 0) {
38 num += 32;
39 word >>= 32;
40 }
41#endif
42 if ((word & 0xffff) == 0) {
43 num += 16;
44 word >>= 16;
45 }
46 if ((word & 0xff) == 0) {
47 num += 8;
48 word >>= 8;
49 }
50 if ((word & 0xf0) == 0)
51 num += 4;
52 else
53 word >>= 4;
54 if ((word & 0xc) == 0)
55 num += 2;
56 else
57 word >>= 2;
58 if ((word & 0x2) == 0)
59 num += 1;
60 return num;
61}
62
63/*
64 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65 * f2fs_set_bit makes MSB and LSB reversed in a byte.
66 * Example:
67 * LSB <--> MSB
68 * f2fs_set_bit(0, bitmap) => 0000 0001
69 * f2fs_set_bit(7, bitmap) => 1000 0000
70 */
71static unsigned long __find_rev_next_bit(const unsigned long *addr,
72 unsigned long size, unsigned long offset)
73{
74 const unsigned long *p = addr + BIT_WORD(offset);
75 unsigned long result = offset & ~(BITS_PER_LONG - 1);
76 unsigned long tmp;
77 unsigned long mask, submask;
78 unsigned long quot, rest;
79
80 if (offset >= size)
81 return size;
82
83 size -= result;
84 offset %= BITS_PER_LONG;
85 if (!offset)
86 goto aligned;
87
88 tmp = *(p++);
89 quot = (offset >> 3) << 3;
90 rest = offset & 0x7;
91 mask = ~0UL << quot;
92 submask = (unsigned char)(0xff << rest) >> rest;
93 submask <<= quot;
94 mask &= submask;
95 tmp &= mask;
96 if (size < BITS_PER_LONG)
97 goto found_first;
98 if (tmp)
99 goto found_middle;
100
101 size -= BITS_PER_LONG;
102 result += BITS_PER_LONG;
103aligned:
104 while (size & ~(BITS_PER_LONG-1)) {
105 tmp = *(p++);
106 if (tmp)
107 goto found_middle;
108 result += BITS_PER_LONG;
109 size -= BITS_PER_LONG;
110 }
111 if (!size)
112 return result;
113 tmp = *p;
114found_first:
115 tmp &= (~0UL >> (BITS_PER_LONG - size));
116 if (tmp == 0UL) /* Are any bits set? */
117 return result + size; /* Nope. */
118found_middle:
119 return result + __reverse_ffs(tmp);
120}
121
122static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123 unsigned long size, unsigned long offset)
124{
125 const unsigned long *p = addr + BIT_WORD(offset);
126 unsigned long result = offset & ~(BITS_PER_LONG - 1);
127 unsigned long tmp;
128 unsigned long mask, submask;
129 unsigned long quot, rest;
130
131 if (offset >= size)
132 return size;
133
134 size -= result;
135 offset %= BITS_PER_LONG;
136 if (!offset)
137 goto aligned;
138
139 tmp = *(p++);
140 quot = (offset >> 3) << 3;
141 rest = offset & 0x7;
142 mask = ~(~0UL << quot);
143 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144 submask <<= quot;
145 mask += submask;
146 tmp |= mask;
147 if (size < BITS_PER_LONG)
148 goto found_first;
149 if (~tmp)
150 goto found_middle;
151
152 size -= BITS_PER_LONG;
153 result += BITS_PER_LONG;
154aligned:
155 while (size & ~(BITS_PER_LONG - 1)) {
156 tmp = *(p++);
157 if (~tmp)
158 goto found_middle;
159 result += BITS_PER_LONG;
160 size -= BITS_PER_LONG;
161 }
162 if (!size)
163 return result;
164 tmp = *p;
165
166found_first:
167 tmp |= ~0UL << size;
168 if (tmp == ~0UL) /* Are any bits zero? */
169 return result + size; /* Nope. */
170found_middle:
171 return result + __reverse_ffz(tmp);
172}
173
0a8165d7 174/*
351df4b2
JK
175 * This function balances dirty node and dentry pages.
176 * In addition, it controls garbage collection.
177 */
178void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179{
351df4b2 180 /*
029cd28c
JK
181 * We should do GC or end up with checkpoint, if there are so many dirty
182 * dir/node pages without enough free segments.
351df4b2 183 */
43727527 184 if (has_not_enough_free_secs(sbi, 0)) {
351df4b2 185 mutex_lock(&sbi->gc_mutex);
408e9375 186 f2fs_gc(sbi);
351df4b2
JK
187 }
188}
189
4660f9c0
JK
190void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191{
192 /* check the # of cached NAT entries and prefree segments */
193 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194 excess_prefree_segs(sbi))
195 f2fs_sync_fs(sbi->sb, true);
196}
197
351df4b2
JK
198static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199 enum dirty_type dirty_type)
200{
201 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202
203 /* need not be added */
204 if (IS_CURSEG(sbi, segno))
205 return;
206
207 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208 dirty_i->nr_dirty[dirty_type]++;
209
210 if (dirty_type == DIRTY) {
211 struct seg_entry *sentry = get_seg_entry(sbi, segno);
4625d6aa 212 enum dirty_type t = sentry->type;
b2f2c390 213
4625d6aa
CL
214 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215 dirty_i->nr_dirty[t]++;
351df4b2
JK
216 }
217}
218
219static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220 enum dirty_type dirty_type)
221{
222 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223
224 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225 dirty_i->nr_dirty[dirty_type]--;
226
227 if (dirty_type == DIRTY) {
4625d6aa
CL
228 struct seg_entry *sentry = get_seg_entry(sbi, segno);
229 enum dirty_type t = sentry->type;
230
231 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232 dirty_i->nr_dirty[t]--;
b2f2c390 233
5ec4e49f
JK
234 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235 clear_bit(GET_SECNO(sbi, segno),
236 dirty_i->victim_secmap);
351df4b2
JK
237 }
238}
239
0a8165d7 240/*
351df4b2
JK
241 * Should not occur error such as -ENOMEM.
242 * Adding dirty entry into seglist is not critical operation.
243 * If a given segment is one of current working segments, it won't be added.
244 */
8d8451af 245static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
351df4b2
JK
246{
247 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248 unsigned short valid_blocks;
249
250 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251 return;
252
253 mutex_lock(&dirty_i->seglist_lock);
254
255 valid_blocks = get_valid_blocks(sbi, segno, 0);
256
257 if (valid_blocks == 0) {
258 __locate_dirty_segment(sbi, segno, PRE);
259 __remove_dirty_segment(sbi, segno, DIRTY);
260 } else if (valid_blocks < sbi->blocks_per_seg) {
261 __locate_dirty_segment(sbi, segno, DIRTY);
262 } else {
263 /* Recovery routine with SSR needs this */
264 __remove_dirty_segment(sbi, segno, DIRTY);
265 }
266
267 mutex_unlock(&dirty_i->seglist_lock);
351df4b2
JK
268}
269
37208879
JK
270static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271 block_t blkstart, block_t blklen)
272{
f9a4e6df
JK
273 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
37208879 275 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
1661d07c 276 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
37208879
JK
277}
278
b2955550
JK
279static void add_discard_addrs(struct f2fs_sb_info *sbi,
280 unsigned int segno, struct seg_entry *se)
281{
282 struct list_head *head = &SM_I(sbi)->discard_list;
283 struct discard_entry *new;
284 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285 int max_blocks = sbi->blocks_per_seg;
286 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288 unsigned long dmap[entries];
289 unsigned int start = 0, end = -1;
290 int i;
291
292 if (!test_opt(sbi, DISCARD))
293 return;
294
295 /* zero block will be discarded through the prefree list */
296 if (!se->valid_blocks || se->valid_blocks == max_blocks)
297 return;
298
299 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300 for (i = 0; i < entries; i++)
301 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302
303 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305 if (start >= max_blocks)
306 break;
307
308 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309
310 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311 INIT_LIST_HEAD(&new->list);
312 new->blkaddr = START_BLOCK(sbi, segno) + start;
313 new->len = end - start;
314
315 list_add_tail(&new->list, head);
316 SM_I(sbi)->nr_discards += end - start;
317 }
318}
319
0a8165d7 320/*
351df4b2
JK
321 * Should call clear_prefree_segments after checkpoint is done.
322 */
323static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324{
325 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
81fb5e87 326 unsigned int segno = -1;
351df4b2
JK
327 unsigned int total_segs = TOTAL_SEGS(sbi);
328
329 mutex_lock(&dirty_i->seglist_lock);
330 while (1) {
331 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
81fb5e87 332 segno + 1);
351df4b2
JK
333 if (segno >= total_segs)
334 break;
335 __set_test_and_free(sbi, segno);
351df4b2
JK
336 }
337 mutex_unlock(&dirty_i->seglist_lock);
338}
339
340void clear_prefree_segments(struct f2fs_sb_info *sbi)
341{
b2955550
JK
342 struct list_head *head = &(SM_I(sbi)->discard_list);
343 struct list_head *this, *next;
344 struct discard_entry *entry;
351df4b2 345 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
29e59c14 346 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
351df4b2 347 unsigned int total_segs = TOTAL_SEGS(sbi);
29e59c14 348 unsigned int start = 0, end = -1;
351df4b2
JK
349
350 mutex_lock(&dirty_i->seglist_lock);
29e59c14 351
351df4b2 352 while (1) {
29e59c14
CL
353 int i;
354 start = find_next_bit(prefree_map, total_segs, end + 1);
355 if (start >= total_segs)
351df4b2 356 break;
29e59c14
CL
357 end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358
359 for (i = start; i < end; i++)
360 clear_bit(i, prefree_map);
361
362 dirty_i->nr_dirty[PRE] -= end - start;
363
364 if (!test_opt(sbi, DISCARD))
365 continue;
351df4b2 366
37208879
JK
367 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368 (end - start) << sbi->log_blocks_per_seg);
351df4b2
JK
369 }
370 mutex_unlock(&dirty_i->seglist_lock);
b2955550
JK
371
372 /* send small discards */
373 list_for_each_safe(this, next, head) {
374 entry = list_entry(this, struct discard_entry, list);
37208879 375 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
b2955550
JK
376 list_del(&entry->list);
377 SM_I(sbi)->nr_discards -= entry->len;
378 kmem_cache_free(discard_entry_slab, entry);
379 }
351df4b2
JK
380}
381
382static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383{
384 struct sit_info *sit_i = SIT_I(sbi);
385 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386 sit_i->dirty_sentries++;
387}
388
389static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390 unsigned int segno, int modified)
391{
392 struct seg_entry *se = get_seg_entry(sbi, segno);
393 se->type = type;
394 if (modified)
395 __mark_sit_entry_dirty(sbi, segno);
396}
397
398static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399{
400 struct seg_entry *se;
401 unsigned int segno, offset;
402 long int new_vblocks;
403
404 segno = GET_SEGNO(sbi, blkaddr);
405
406 se = get_seg_entry(sbi, segno);
407 new_vblocks = se->valid_blocks + del;
408 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409
5d56b671 410 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
351df4b2
JK
411 (new_vblocks > sbi->blocks_per_seg)));
412
413 se->valid_blocks = new_vblocks;
414 se->mtime = get_mtime(sbi);
415 SIT_I(sbi)->max_mtime = se->mtime;
416
417 /* Update valid block bitmap */
418 if (del > 0) {
419 if (f2fs_set_bit(offset, se->cur_valid_map))
420 BUG();
421 } else {
422 if (!f2fs_clear_bit(offset, se->cur_valid_map))
423 BUG();
424 }
425 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426 se->ckpt_valid_blocks += del;
427
428 __mark_sit_entry_dirty(sbi, segno);
429
430 /* update total number of valid blocks to be written in ckpt area */
431 SIT_I(sbi)->written_valid_blocks += del;
432
433 if (sbi->segs_per_sec > 1)
434 get_sec_entry(sbi, segno)->valid_blocks += del;
435}
436
437static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438 block_t old_blkaddr, block_t new_blkaddr)
439{
440 update_sit_entry(sbi, new_blkaddr, 1);
441 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442 update_sit_entry(sbi, old_blkaddr, -1);
443}
444
445void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446{
447 unsigned int segno = GET_SEGNO(sbi, addr);
448 struct sit_info *sit_i = SIT_I(sbi);
449
5d56b671 450 f2fs_bug_on(addr == NULL_ADDR);
351df4b2
JK
451 if (addr == NEW_ADDR)
452 return;
453
454 /* add it into sit main buffer */
455 mutex_lock(&sit_i->sentry_lock);
456
457 update_sit_entry(sbi, addr, -1);
458
459 /* add it into dirty seglist */
460 locate_dirty_segment(sbi, segno);
461
462 mutex_unlock(&sit_i->sentry_lock);
463}
464
0a8165d7 465/*
351df4b2
JK
466 * This function should be resided under the curseg_mutex lock
467 */
468static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
e79efe3b 469 struct f2fs_summary *sum)
351df4b2
JK
470{
471 struct curseg_info *curseg = CURSEG_I(sbi, type);
472 void *addr = curseg->sum_blk;
e79efe3b 473 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
351df4b2 474 memcpy(addr, sum, sizeof(struct f2fs_summary));
351df4b2
JK
475}
476
0a8165d7 477/*
351df4b2
JK
478 * Calculate the number of current summary pages for writing
479 */
480int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481{
351df4b2 482 int valid_sum_count = 0;
9a47938b 483 int i, sum_in_page;
351df4b2
JK
484
485 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486 if (sbi->ckpt->alloc_type[i] == SSR)
487 valid_sum_count += sbi->blocks_per_seg;
488 else
489 valid_sum_count += curseg_blkoff(sbi, i);
490 }
491
9a47938b
FL
492 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494 if (valid_sum_count <= sum_in_page)
351df4b2 495 return 1;
9a47938b
FL
496 else if ((valid_sum_count - sum_in_page) <=
497 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
351df4b2
JK
498 return 2;
499 return 3;
500}
501
0a8165d7 502/*
351df4b2
JK
503 * Caller should put this summary page
504 */
505struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506{
507 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508}
509
510static void write_sum_page(struct f2fs_sb_info *sbi,
511 struct f2fs_summary_block *sum_blk, block_t blk_addr)
512{
513 struct page *page = grab_meta_page(sbi, blk_addr);
514 void *kaddr = page_address(page);
515 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516 set_page_dirty(page);
517 f2fs_put_page(page, 1);
518}
519
60374688
JK
520static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521{
522 struct curseg_info *curseg = CURSEG_I(sbi, type);
81fb5e87 523 unsigned int segno = curseg->segno + 1;
60374688
JK
524 struct free_segmap_info *free_i = FREE_I(sbi);
525
81fb5e87
HL
526 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527 return !test_bit(segno, free_i->free_segmap);
60374688
JK
528 return 0;
529}
530
0a8165d7 531/*
351df4b2
JK
532 * Find a new segment from the free segments bitmap to right order
533 * This function should be returned with success, otherwise BUG
534 */
535static void get_new_segment(struct f2fs_sb_info *sbi,
536 unsigned int *newseg, bool new_sec, int dir)
537{
538 struct free_segmap_info *free_i = FREE_I(sbi);
351df4b2 539 unsigned int segno, secno, zoneno;
53cf9522 540 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
351df4b2
JK
541 unsigned int hint = *newseg / sbi->segs_per_sec;
542 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543 unsigned int left_start = hint;
544 bool init = true;
545 int go_left = 0;
546 int i;
547
548 write_lock(&free_i->segmap_lock);
549
550 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551 segno = find_next_zero_bit(free_i->free_segmap,
552 TOTAL_SEGS(sbi), *newseg + 1);
33afa7fd
JK
553 if (segno - *newseg < sbi->segs_per_sec -
554 (*newseg % sbi->segs_per_sec))
351df4b2
JK
555 goto got_it;
556 }
557find_other_zone:
53cf9522
JK
558 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559 if (secno >= TOTAL_SECS(sbi)) {
351df4b2
JK
560 if (dir == ALLOC_RIGHT) {
561 secno = find_next_zero_bit(free_i->free_secmap,
53cf9522 562 TOTAL_SECS(sbi), 0);
5d56b671 563 f2fs_bug_on(secno >= TOTAL_SECS(sbi));
351df4b2
JK
564 } else {
565 go_left = 1;
566 left_start = hint - 1;
567 }
568 }
569 if (go_left == 0)
570 goto skip_left;
571
572 while (test_bit(left_start, free_i->free_secmap)) {
573 if (left_start > 0) {
574 left_start--;
575 continue;
576 }
577 left_start = find_next_zero_bit(free_i->free_secmap,
53cf9522 578 TOTAL_SECS(sbi), 0);
5d56b671 579 f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
351df4b2
JK
580 break;
581 }
582 secno = left_start;
583skip_left:
584 hint = secno;
585 segno = secno * sbi->segs_per_sec;
586 zoneno = secno / sbi->secs_per_zone;
587
588 /* give up on finding another zone */
589 if (!init)
590 goto got_it;
591 if (sbi->secs_per_zone == 1)
592 goto got_it;
593 if (zoneno == old_zoneno)
594 goto got_it;
595 if (dir == ALLOC_LEFT) {
596 if (!go_left && zoneno + 1 >= total_zones)
597 goto got_it;
598 if (go_left && zoneno == 0)
599 goto got_it;
600 }
601 for (i = 0; i < NR_CURSEG_TYPE; i++)
602 if (CURSEG_I(sbi, i)->zone == zoneno)
603 break;
604
605 if (i < NR_CURSEG_TYPE) {
606 /* zone is in user, try another */
607 if (go_left)
608 hint = zoneno * sbi->secs_per_zone - 1;
609 else if (zoneno + 1 >= total_zones)
610 hint = 0;
611 else
612 hint = (zoneno + 1) * sbi->secs_per_zone;
613 init = false;
614 goto find_other_zone;
615 }
616got_it:
617 /* set it as dirty segment in free segmap */
5d56b671 618 f2fs_bug_on(test_bit(segno, free_i->free_segmap));
351df4b2
JK
619 __set_inuse(sbi, segno);
620 *newseg = segno;
621 write_unlock(&free_i->segmap_lock);
622}
623
624static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625{
626 struct curseg_info *curseg = CURSEG_I(sbi, type);
627 struct summary_footer *sum_footer;
628
629 curseg->segno = curseg->next_segno;
630 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631 curseg->next_blkoff = 0;
632 curseg->next_segno = NULL_SEGNO;
633
634 sum_footer = &(curseg->sum_blk->footer);
635 memset(sum_footer, 0, sizeof(struct summary_footer));
636 if (IS_DATASEG(type))
637 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638 if (IS_NODESEG(type))
639 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640 __set_sit_entry_type(sbi, type, curseg->segno, modified);
641}
642
0a8165d7 643/*
351df4b2
JK
644 * Allocate a current working segment.
645 * This function always allocates a free segment in LFS manner.
646 */
647static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648{
649 struct curseg_info *curseg = CURSEG_I(sbi, type);
650 unsigned int segno = curseg->segno;
651 int dir = ALLOC_LEFT;
652
653 write_sum_page(sbi, curseg->sum_blk,
81fb5e87 654 GET_SUM_BLOCK(sbi, segno));
351df4b2
JK
655 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656 dir = ALLOC_RIGHT;
657
658 if (test_opt(sbi, NOHEAP))
659 dir = ALLOC_RIGHT;
660
661 get_new_segment(sbi, &segno, new_sec, dir);
662 curseg->next_segno = segno;
663 reset_curseg(sbi, type, 1);
664 curseg->alloc_type = LFS;
665}
666
667static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668 struct curseg_info *seg, block_t start)
669{
670 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
e81c93cf
CL
671 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672 unsigned long target_map[entries];
673 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675 int i, pos;
676
677 for (i = 0; i < entries; i++)
678 target_map[i] = ckpt_map[i] | cur_map[i];
679
680 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681
682 seg->next_blkoff = pos;
351df4b2
JK
683}
684
0a8165d7 685/*
351df4b2
JK
686 * If a segment is written by LFS manner, next block offset is just obtained
687 * by increasing the current block offset. However, if a segment is written by
688 * SSR manner, next block offset obtained by calling __next_free_blkoff
689 */
690static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691 struct curseg_info *seg)
692{
693 if (seg->alloc_type == SSR)
694 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695 else
696 seg->next_blkoff++;
697}
698
0a8165d7 699/*
351df4b2
JK
700 * This function always allocates a used segment (from dirty seglist) by SSR
701 * manner, so it should recover the existing segment information of valid blocks
702 */
703static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704{
705 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706 struct curseg_info *curseg = CURSEG_I(sbi, type);
707 unsigned int new_segno = curseg->next_segno;
708 struct f2fs_summary_block *sum_node;
709 struct page *sum_page;
710
711 write_sum_page(sbi, curseg->sum_blk,
712 GET_SUM_BLOCK(sbi, curseg->segno));
713 __set_test_and_inuse(sbi, new_segno);
714
715 mutex_lock(&dirty_i->seglist_lock);
716 __remove_dirty_segment(sbi, new_segno, PRE);
717 __remove_dirty_segment(sbi, new_segno, DIRTY);
718 mutex_unlock(&dirty_i->seglist_lock);
719
720 reset_curseg(sbi, type, 1);
721 curseg->alloc_type = SSR;
722 __next_free_blkoff(sbi, curseg, 0);
723
724 if (reuse) {
725 sum_page = get_sum_page(sbi, new_segno);
726 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728 f2fs_put_page(sum_page, 1);
729 }
730}
731
43727527
JK
732static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733{
734 struct curseg_info *curseg = CURSEG_I(sbi, type);
735 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736
737 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738 return v_ops->get_victim(sbi,
739 &(curseg)->next_segno, BG_GC, type, SSR);
740
741 /* For data segments, let's do SSR more intensively */
742 for (; type >= CURSEG_HOT_DATA; type--)
743 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744 BG_GC, type, SSR))
745 return 1;
746 return 0;
747}
748
351df4b2
JK
749/*
750 * flush out current segment and replace it with new segment
751 * This function should be returned with success, otherwise BUG
752 */
753static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754 int type, bool force)
755{
756 struct curseg_info *curseg = CURSEG_I(sbi, type);
351df4b2 757
7b405275 758 if (force)
351df4b2 759 new_curseg(sbi, type, true);
7b405275 760 else if (type == CURSEG_WARM_NODE)
351df4b2 761 new_curseg(sbi, type, false);
60374688
JK
762 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763 new_curseg(sbi, type, false);
351df4b2
JK
764 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765 change_curseg(sbi, type, true);
766 else
767 new_curseg(sbi, type, false);
dcdfff65
JK
768
769 stat_inc_seg_type(sbi, curseg);
351df4b2
JK
770}
771
772void allocate_new_segments(struct f2fs_sb_info *sbi)
773{
774 struct curseg_info *curseg;
775 unsigned int old_curseg;
776 int i;
777
778 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779 curseg = CURSEG_I(sbi, i);
780 old_curseg = curseg->segno;
781 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782 locate_dirty_segment(sbi, old_curseg);
783 }
784}
785
786static const struct segment_allocation default_salloc_ops = {
787 .allocate_segment = allocate_segment_by_default,
788};
789
790static void f2fs_end_io_write(struct bio *bio, int err)
791{
792 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
793 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
187b5b8b 794 struct f2fs_sb_info *sbi = F2FS_SB(bvec->bv_page->mapping->host->i_sb);
351df4b2
JK
795
796 do {
797 struct page *page = bvec->bv_page;
798
799 if (--bvec >= bio->bi_io_vec)
800 prefetchw(&bvec->bv_page->flags);
801 if (!uptodate) {
802 SetPageError(page);
803 if (page->mapping)
804 set_bit(AS_EIO, &page->mapping->flags);
187b5b8b
JK
805
806 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
807 sbi->sb->s_flags |= MS_RDONLY;
351df4b2
JK
808 }
809 end_page_writeback(page);
187b5b8b 810 dec_page_count(sbi, F2FS_WRITEBACK);
351df4b2
JK
811 } while (bvec >= bio->bi_io_vec);
812
187b5b8b
JK
813 if (bio->bi_private)
814 complete(bio->bi_private);
e2340887 815
187b5b8b
JK
816 if (!get_pages(sbi, F2FS_WRITEBACK) &&
817 !list_empty(&sbi->cp_wait.task_list))
818 wake_up(&sbi->cp_wait);
e2340887 819
351df4b2
JK
820 bio_put(bio);
821}
822
3cd8a239 823struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
351df4b2
JK
824{
825 struct bio *bio;
3cd8a239
JK
826
827 /* No failure on bio allocation */
828 bio = bio_alloc(GFP_NOIO, npages);
829 bio->bi_bdev = bdev;
d8207f69
GZ
830 bio->bi_private = NULL;
831
351df4b2
JK
832 return bio;
833}
834
835static void do_submit_bio(struct f2fs_sb_info *sbi,
836 enum page_type type, bool sync)
837{
838 int rw = sync ? WRITE_SYNC : WRITE;
7d5e5109 839 enum page_type btype = PAGE_TYPE_OF_BIO(type);
1ff7bd3b 840 struct f2fs_bio_info *io = &sbi->write_io[btype];
7d5e5109 841
1ff7bd3b 842 if (!io->bio)
7d5e5109
JK
843 return;
844
351df4b2
JK
845 if (type >= META_FLUSH)
846 rw = WRITE_FLUSH_FUA;
d4d288bc 847
8680441c
NJ
848 if (btype == META)
849 rw |= REQ_META;
850
a709f4a2
JK
851 trace_f2fs_submit_write_bio(sbi->sb, rw, btype, io->bio);
852
187b5b8b
JK
853 /*
854 * META_FLUSH is only from the checkpoint procedure, and we should wait
855 * this metadata bio for FS consistency.
856 */
7d5e5109
JK
857 if (type == META_FLUSH) {
858 DECLARE_COMPLETION_ONSTACK(wait);
187b5b8b 859 io->bio->bi_private = &wait;
1ff7bd3b 860 submit_bio(rw, io->bio);
7d5e5109
JK
861 wait_for_completion(&wait);
862 } else {
1ff7bd3b 863 submit_bio(rw, io->bio);
351df4b2 864 }
1ff7bd3b 865 io->bio = NULL;
351df4b2
JK
866}
867
868void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
869{
1ff7bd3b 870 struct f2fs_bio_info *io = &sbi->write_io[PAGE_TYPE_OF_BIO(type)];
971767ca 871
1ff7bd3b 872 if (!io->bio)
971767ca
JK
873 return;
874
1ff7bd3b 875 mutex_lock(&io->io_mutex);
351df4b2 876 do_submit_bio(sbi, type, sync);
1ff7bd3b 877 mutex_unlock(&io->io_mutex);
351df4b2
JK
878}
879
880static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
881 block_t blk_addr, enum page_type type)
882{
883 struct block_device *bdev = sbi->sb->s_bdev;
1ff7bd3b 884 struct f2fs_bio_info *io = &sbi->write_io[type];
cc7b1bb1 885 int bio_blocks;
351df4b2
JK
886
887 verify_block_addr(sbi, blk_addr);
888
1ff7bd3b 889 mutex_lock(&io->io_mutex);
351df4b2
JK
890
891 inc_page_count(sbi, F2FS_WRITEBACK);
892
1ff7bd3b 893 if (io->bio && io->last_block_in_bio != blk_addr - 1)
351df4b2
JK
894 do_submit_bio(sbi, type, false);
895alloc_new:
1ff7bd3b 896 if (io->bio == NULL) {
cc7b1bb1 897 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1ff7bd3b
JK
898 io->bio = f2fs_bio_alloc(bdev, bio_blocks);
899 io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
187b5b8b 900 io->bio->bi_end_io = f2fs_end_io_write;
3cd8a239
JK
901 /*
902 * The end_io will be assigned at the sumbission phase.
903 * Until then, let bio_add_page() merge consecutive IOs as much
904 * as possible.
905 */
906 }
351df4b2 907
1ff7bd3b 908 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
351df4b2
JK
909 PAGE_CACHE_SIZE) {
910 do_submit_bio(sbi, type, false);
911 goto alloc_new;
912 }
913
1ff7bd3b 914 io->last_block_in_bio = blk_addr;
351df4b2 915
1ff7bd3b 916 mutex_unlock(&io->io_mutex);
87b8872d 917 trace_f2fs_submit_write_page(page, WRITE, type, blk_addr);
351df4b2
JK
918}
919
a569469e
JX
920void f2fs_wait_on_page_writeback(struct page *page,
921 enum page_type type, bool sync)
922{
923 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
924 if (PageWriteback(page)) {
925 f2fs_submit_bio(sbi, type, sync);
926 wait_on_page_writeback(page);
927 }
928}
929
351df4b2
JK
930static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
931{
932 struct curseg_info *curseg = CURSEG_I(sbi, type);
933 if (curseg->next_blkoff < sbi->blocks_per_seg)
934 return true;
935 return false;
936}
937
938static int __get_segment_type_2(struct page *page, enum page_type p_type)
939{
940 if (p_type == DATA)
941 return CURSEG_HOT_DATA;
942 else
943 return CURSEG_HOT_NODE;
944}
945
946static int __get_segment_type_4(struct page *page, enum page_type p_type)
947{
948 if (p_type == DATA) {
949 struct inode *inode = page->mapping->host;
950
951 if (S_ISDIR(inode->i_mode))
952 return CURSEG_HOT_DATA;
953 else
954 return CURSEG_COLD_DATA;
955 } else {
956 if (IS_DNODE(page) && !is_cold_node(page))
957 return CURSEG_HOT_NODE;
958 else
959 return CURSEG_COLD_NODE;
960 }
961}
962
963static int __get_segment_type_6(struct page *page, enum page_type p_type)
964{
965 if (p_type == DATA) {
966 struct inode *inode = page->mapping->host;
967
968 if (S_ISDIR(inode->i_mode))
969 return CURSEG_HOT_DATA;
354a3399 970 else if (is_cold_data(page) || file_is_cold(inode))
351df4b2
JK
971 return CURSEG_COLD_DATA;
972 else
973 return CURSEG_WARM_DATA;
974 } else {
975 if (IS_DNODE(page))
976 return is_cold_node(page) ? CURSEG_WARM_NODE :
977 CURSEG_HOT_NODE;
978 else
979 return CURSEG_COLD_NODE;
980 }
981}
982
983static int __get_segment_type(struct page *page, enum page_type p_type)
984{
985 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
986 switch (sbi->active_logs) {
987 case 2:
988 return __get_segment_type_2(page, p_type);
989 case 4:
990 return __get_segment_type_4(page, p_type);
351df4b2 991 }
12a67146 992 /* NR_CURSEG_TYPE(6) logs by default */
5d56b671 993 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
12a67146 994 return __get_segment_type_6(page, p_type);
351df4b2
JK
995}
996
997static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
998 block_t old_blkaddr, block_t *new_blkaddr,
999 struct f2fs_summary *sum, enum page_type p_type)
1000{
1001 struct sit_info *sit_i = SIT_I(sbi);
1002 struct curseg_info *curseg;
1003 unsigned int old_cursegno;
1004 int type;
1005
1006 type = __get_segment_type(page, p_type);
1007 curseg = CURSEG_I(sbi, type);
1008
1009 mutex_lock(&curseg->curseg_mutex);
1010
1011 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1012 old_cursegno = curseg->segno;
1013
1014 /*
1015 * __add_sum_entry should be resided under the curseg_mutex
1016 * because, this function updates a summary entry in the
1017 * current summary block.
1018 */
e79efe3b 1019 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1020
1021 mutex_lock(&sit_i->sentry_lock);
1022 __refresh_next_blkoff(sbi, curseg);
dcdfff65
JK
1023
1024 stat_inc_block_count(sbi, curseg);
351df4b2
JK
1025
1026 /*
1027 * SIT information should be updated before segment allocation,
1028 * since SSR needs latest valid block information.
1029 */
1030 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1031
1032 if (!__has_curseg_space(sbi, type))
1033 sit_i->s_ops->allocate_segment(sbi, type, false);
1034
1035 locate_dirty_segment(sbi, old_cursegno);
1036 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1037 mutex_unlock(&sit_i->sentry_lock);
1038
1039 if (p_type == NODE)
1040 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1041
1042 /* writeout dirty page into bdev */
1043 submit_write_page(sbi, page, *new_blkaddr, p_type);
1044
1045 mutex_unlock(&curseg->curseg_mutex);
1046}
1047
577e3495 1048void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
351df4b2 1049{
351df4b2
JK
1050 set_page_writeback(page);
1051 submit_write_page(sbi, page, page->index, META);
351df4b2
JK
1052}
1053
1054void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1055 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1056{
1057 struct f2fs_summary sum;
1058 set_summary(&sum, nid, 0, 0);
1059 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
1060}
1061
1062void write_data_page(struct inode *inode, struct page *page,
1063 struct dnode_of_data *dn, block_t old_blkaddr,
1064 block_t *new_blkaddr)
1065{
1066 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1067 struct f2fs_summary sum;
1068 struct node_info ni;
1069
5d56b671 1070 f2fs_bug_on(old_blkaddr == NULL_ADDR);
351df4b2
JK
1071 get_node_info(sbi, dn->nid, &ni);
1072 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1073
1074 do_write_page(sbi, page, old_blkaddr,
1075 new_blkaddr, &sum, DATA);
1076}
1077
1078void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
1079 block_t old_blk_addr)
1080{
1081 submit_write_page(sbi, page, old_blk_addr, DATA);
1082}
1083
1084void recover_data_page(struct f2fs_sb_info *sbi,
1085 struct page *page, struct f2fs_summary *sum,
1086 block_t old_blkaddr, block_t new_blkaddr)
1087{
1088 struct sit_info *sit_i = SIT_I(sbi);
1089 struct curseg_info *curseg;
1090 unsigned int segno, old_cursegno;
1091 struct seg_entry *se;
1092 int type;
1093
1094 segno = GET_SEGNO(sbi, new_blkaddr);
1095 se = get_seg_entry(sbi, segno);
1096 type = se->type;
1097
1098 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1099 if (old_blkaddr == NULL_ADDR)
1100 type = CURSEG_COLD_DATA;
1101 else
1102 type = CURSEG_WARM_DATA;
1103 }
1104 curseg = CURSEG_I(sbi, type);
1105
1106 mutex_lock(&curseg->curseg_mutex);
1107 mutex_lock(&sit_i->sentry_lock);
1108
1109 old_cursegno = curseg->segno;
1110
1111 /* change the current segment */
1112 if (segno != curseg->segno) {
1113 curseg->next_segno = segno;
1114 change_curseg(sbi, type, true);
1115 }
1116
1117 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1118 (sbi->blocks_per_seg - 1);
e79efe3b 1119 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1120
1121 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1122
1123 locate_dirty_segment(sbi, old_cursegno);
1124 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1125
1126 mutex_unlock(&sit_i->sentry_lock);
1127 mutex_unlock(&curseg->curseg_mutex);
1128}
1129
1130void rewrite_node_page(struct f2fs_sb_info *sbi,
1131 struct page *page, struct f2fs_summary *sum,
1132 block_t old_blkaddr, block_t new_blkaddr)
1133{
1134 struct sit_info *sit_i = SIT_I(sbi);
1135 int type = CURSEG_WARM_NODE;
1136 struct curseg_info *curseg;
1137 unsigned int segno, old_cursegno;
1138 block_t next_blkaddr = next_blkaddr_of_node(page);
1139 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1140
1141 curseg = CURSEG_I(sbi, type);
1142
1143 mutex_lock(&curseg->curseg_mutex);
1144 mutex_lock(&sit_i->sentry_lock);
1145
1146 segno = GET_SEGNO(sbi, new_blkaddr);
1147 old_cursegno = curseg->segno;
1148
1149 /* change the current segment */
1150 if (segno != curseg->segno) {
1151 curseg->next_segno = segno;
1152 change_curseg(sbi, type, true);
1153 }
1154 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1155 (sbi->blocks_per_seg - 1);
e79efe3b 1156 __add_sum_entry(sbi, type, sum);
351df4b2
JK
1157
1158 /* change the current log to the next block addr in advance */
1159 if (next_segno != segno) {
1160 curseg->next_segno = next_segno;
1161 change_curseg(sbi, type, true);
1162 }
1163 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1164 (sbi->blocks_per_seg - 1);
1165
1166 /* rewrite node page */
1167 set_page_writeback(page);
1168 submit_write_page(sbi, page, new_blkaddr, NODE);
1169 f2fs_submit_bio(sbi, NODE, true);
1170 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1171
1172 locate_dirty_segment(sbi, old_cursegno);
1173 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1174
1175 mutex_unlock(&sit_i->sentry_lock);
1176 mutex_unlock(&curseg->curseg_mutex);
1177}
1178
1179static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1180{
1181 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1182 struct curseg_info *seg_i;
1183 unsigned char *kaddr;
1184 struct page *page;
1185 block_t start;
1186 int i, j, offset;
1187
1188 start = start_sum_block(sbi);
1189
1190 page = get_meta_page(sbi, start++);
1191 kaddr = (unsigned char *)page_address(page);
1192
1193 /* Step 1: restore nat cache */
1194 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1195 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1196
1197 /* Step 2: restore sit cache */
1198 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1199 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1200 SUM_JOURNAL_SIZE);
1201 offset = 2 * SUM_JOURNAL_SIZE;
1202
1203 /* Step 3: restore summary entries */
1204 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1205 unsigned short blk_off;
1206 unsigned int segno;
1207
1208 seg_i = CURSEG_I(sbi, i);
1209 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1210 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1211 seg_i->next_segno = segno;
1212 reset_curseg(sbi, i, 0);
1213 seg_i->alloc_type = ckpt->alloc_type[i];
1214 seg_i->next_blkoff = blk_off;
1215
1216 if (seg_i->alloc_type == SSR)
1217 blk_off = sbi->blocks_per_seg;
1218
1219 for (j = 0; j < blk_off; j++) {
1220 struct f2fs_summary *s;
1221 s = (struct f2fs_summary *)(kaddr + offset);
1222 seg_i->sum_blk->entries[j] = *s;
1223 offset += SUMMARY_SIZE;
1224 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1225 SUM_FOOTER_SIZE)
1226 continue;
1227
1228 f2fs_put_page(page, 1);
1229 page = NULL;
1230
1231 page = get_meta_page(sbi, start++);
1232 kaddr = (unsigned char *)page_address(page);
1233 offset = 0;
1234 }
1235 }
1236 f2fs_put_page(page, 1);
1237 return 0;
1238}
1239
1240static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1241{
1242 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1243 struct f2fs_summary_block *sum;
1244 struct curseg_info *curseg;
1245 struct page *new;
1246 unsigned short blk_off;
1247 unsigned int segno = 0;
1248 block_t blk_addr = 0;
1249
1250 /* get segment number and block addr */
1251 if (IS_DATASEG(type)) {
1252 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1253 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1254 CURSEG_HOT_DATA]);
25ca923b 1255 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1256 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1257 else
1258 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1259 } else {
1260 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1261 CURSEG_HOT_NODE]);
1262 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1263 CURSEG_HOT_NODE]);
25ca923b 1264 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
351df4b2
JK
1265 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1266 type - CURSEG_HOT_NODE);
1267 else
1268 blk_addr = GET_SUM_BLOCK(sbi, segno);
1269 }
1270
1271 new = get_meta_page(sbi, blk_addr);
1272 sum = (struct f2fs_summary_block *)page_address(new);
1273
1274 if (IS_NODESEG(type)) {
25ca923b 1275 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
351df4b2
JK
1276 struct f2fs_summary *ns = &sum->entries[0];
1277 int i;
1278 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1279 ns->version = 0;
1280 ns->ofs_in_node = 0;
1281 }
1282 } else {
1283 if (restore_node_summary(sbi, segno, sum)) {
1284 f2fs_put_page(new, 1);
1285 return -EINVAL;
1286 }
1287 }
1288 }
1289
1290 /* set uncompleted segment to curseg */
1291 curseg = CURSEG_I(sbi, type);
1292 mutex_lock(&curseg->curseg_mutex);
1293 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1294 curseg->next_segno = segno;
1295 reset_curseg(sbi, type, 0);
1296 curseg->alloc_type = ckpt->alloc_type[type];
1297 curseg->next_blkoff = blk_off;
1298 mutex_unlock(&curseg->curseg_mutex);
1299 f2fs_put_page(new, 1);
1300 return 0;
1301}
1302
1303static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1304{
1305 int type = CURSEG_HOT_DATA;
1306
25ca923b 1307 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
351df4b2
JK
1308 /* restore for compacted data summary */
1309 if (read_compacted_summaries(sbi))
1310 return -EINVAL;
1311 type = CURSEG_HOT_NODE;
1312 }
1313
1314 for (; type <= CURSEG_COLD_NODE; type++)
1315 if (read_normal_summaries(sbi, type))
1316 return -EINVAL;
1317 return 0;
1318}
1319
1320static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1321{
1322 struct page *page;
1323 unsigned char *kaddr;
1324 struct f2fs_summary *summary;
1325 struct curseg_info *seg_i;
1326 int written_size = 0;
1327 int i, j;
1328
1329 page = grab_meta_page(sbi, blkaddr++);
1330 kaddr = (unsigned char *)page_address(page);
1331
1332 /* Step 1: write nat cache */
1333 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1334 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1335 written_size += SUM_JOURNAL_SIZE;
1336
1337 /* Step 2: write sit cache */
1338 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1339 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1340 SUM_JOURNAL_SIZE);
1341 written_size += SUM_JOURNAL_SIZE;
1342
351df4b2
JK
1343 /* Step 3: write summary entries */
1344 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1345 unsigned short blkoff;
1346 seg_i = CURSEG_I(sbi, i);
1347 if (sbi->ckpt->alloc_type[i] == SSR)
1348 blkoff = sbi->blocks_per_seg;
1349 else
1350 blkoff = curseg_blkoff(sbi, i);
1351
1352 for (j = 0; j < blkoff; j++) {
1353 if (!page) {
1354 page = grab_meta_page(sbi, blkaddr++);
1355 kaddr = (unsigned char *)page_address(page);
1356 written_size = 0;
1357 }
1358 summary = (struct f2fs_summary *)(kaddr + written_size);
1359 *summary = seg_i->sum_blk->entries[j];
1360 written_size += SUMMARY_SIZE;
351df4b2
JK
1361
1362 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1363 SUM_FOOTER_SIZE)
1364 continue;
1365
e8d61a74 1366 set_page_dirty(page);
351df4b2
JK
1367 f2fs_put_page(page, 1);
1368 page = NULL;
1369 }
1370 }
e8d61a74
CY
1371 if (page) {
1372 set_page_dirty(page);
351df4b2 1373 f2fs_put_page(page, 1);
e8d61a74 1374 }
351df4b2
JK
1375}
1376
1377static void write_normal_summaries(struct f2fs_sb_info *sbi,
1378 block_t blkaddr, int type)
1379{
1380 int i, end;
1381 if (IS_DATASEG(type))
1382 end = type + NR_CURSEG_DATA_TYPE;
1383 else
1384 end = type + NR_CURSEG_NODE_TYPE;
1385
1386 for (i = type; i < end; i++) {
1387 struct curseg_info *sum = CURSEG_I(sbi, i);
1388 mutex_lock(&sum->curseg_mutex);
1389 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1390 mutex_unlock(&sum->curseg_mutex);
1391 }
1392}
1393
1394void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1395{
25ca923b 1396 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
351df4b2
JK
1397 write_compacted_summaries(sbi, start_blk);
1398 else
1399 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1400}
1401
1402void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1403{
25ca923b 1404 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
351df4b2 1405 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
351df4b2
JK
1406}
1407
1408int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1409 unsigned int val, int alloc)
1410{
1411 int i;
1412
1413 if (type == NAT_JOURNAL) {
1414 for (i = 0; i < nats_in_cursum(sum); i++) {
1415 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1416 return i;
1417 }
1418 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1419 return update_nats_in_cursum(sum, 1);
1420 } else if (type == SIT_JOURNAL) {
1421 for (i = 0; i < sits_in_cursum(sum); i++)
1422 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1423 return i;
1424 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1425 return update_sits_in_cursum(sum, 1);
1426 }
1427 return -1;
1428}
1429
1430static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1431 unsigned int segno)
1432{
1433 struct sit_info *sit_i = SIT_I(sbi);
1434 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1435 block_t blk_addr = sit_i->sit_base_addr + offset;
1436
1437 check_seg_range(sbi, segno);
1438
1439 /* calculate sit block address */
1440 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1441 blk_addr += sit_i->sit_blocks;
1442
1443 return get_meta_page(sbi, blk_addr);
1444}
1445
1446static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1447 unsigned int start)
1448{
1449 struct sit_info *sit_i = SIT_I(sbi);
1450 struct page *src_page, *dst_page;
1451 pgoff_t src_off, dst_off;
1452 void *src_addr, *dst_addr;
1453
1454 src_off = current_sit_addr(sbi, start);
1455 dst_off = next_sit_addr(sbi, src_off);
1456
1457 /* get current sit block page without lock */
1458 src_page = get_meta_page(sbi, src_off);
1459 dst_page = grab_meta_page(sbi, dst_off);
5d56b671 1460 f2fs_bug_on(PageDirty(src_page));
351df4b2
JK
1461
1462 src_addr = page_address(src_page);
1463 dst_addr = page_address(dst_page);
1464 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1465
1466 set_page_dirty(dst_page);
1467 f2fs_put_page(src_page, 1);
1468
1469 set_to_next_sit(sit_i, start);
1470
1471 return dst_page;
1472}
1473
1474static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1475{
1476 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1477 struct f2fs_summary_block *sum = curseg->sum_blk;
1478 int i;
1479
1480 /*
1481 * If the journal area in the current summary is full of sit entries,
1482 * all the sit entries will be flushed. Otherwise the sit entries
1483 * are not able to replace with newly hot sit entries.
1484 */
1485 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1486 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1487 unsigned int segno;
1488 segno = le32_to_cpu(segno_in_journal(sum, i));
1489 __mark_sit_entry_dirty(sbi, segno);
1490 }
1491 update_sits_in_cursum(sum, -sits_in_cursum(sum));
cffbfa66 1492 return true;
351df4b2 1493 }
cffbfa66 1494 return false;
351df4b2
JK
1495}
1496
0a8165d7 1497/*
351df4b2
JK
1498 * CP calls this function, which flushes SIT entries including sit_journal,
1499 * and moves prefree segs to free segs.
1500 */
1501void flush_sit_entries(struct f2fs_sb_info *sbi)
1502{
1503 struct sit_info *sit_i = SIT_I(sbi);
1504 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1505 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1506 struct f2fs_summary_block *sum = curseg->sum_blk;
1507 unsigned long nsegs = TOTAL_SEGS(sbi);
1508 struct page *page = NULL;
1509 struct f2fs_sit_block *raw_sit = NULL;
1510 unsigned int start = 0, end = 0;
1511 unsigned int segno = -1;
1512 bool flushed;
1513
1514 mutex_lock(&curseg->curseg_mutex);
1515 mutex_lock(&sit_i->sentry_lock);
1516
1517 /*
1518 * "flushed" indicates whether sit entries in journal are flushed
1519 * to the SIT area or not.
1520 */
1521 flushed = flush_sits_in_journal(sbi);
1522
1523 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1524 struct seg_entry *se = get_seg_entry(sbi, segno);
1525 int sit_offset, offset;
1526
1527 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1528
b2955550
JK
1529 /* add discard candidates */
1530 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1531 add_discard_addrs(sbi, segno, se);
1532
351df4b2
JK
1533 if (flushed)
1534 goto to_sit_page;
1535
1536 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1537 if (offset >= 0) {
1538 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1539 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1540 goto flush_done;
1541 }
1542to_sit_page:
1543 if (!page || (start > segno) || (segno > end)) {
1544 if (page) {
1545 f2fs_put_page(page, 1);
1546 page = NULL;
1547 }
1548
1549 start = START_SEGNO(sit_i, segno);
1550 end = start + SIT_ENTRY_PER_BLOCK - 1;
1551
1552 /* read sit block that will be updated */
1553 page = get_next_sit_page(sbi, start);
1554 raw_sit = page_address(page);
1555 }
1556
1557 /* udpate entry in SIT block */
1558 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1559flush_done:
1560 __clear_bit(segno, bitmap);
1561 sit_i->dirty_sentries--;
1562 }
1563 mutex_unlock(&sit_i->sentry_lock);
1564 mutex_unlock(&curseg->curseg_mutex);
1565
1566 /* writeout last modified SIT block */
1567 f2fs_put_page(page, 1);
1568
1569 set_prefree_as_free_segments(sbi);
1570}
1571
1572static int build_sit_info(struct f2fs_sb_info *sbi)
1573{
1574 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1575 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1576 struct sit_info *sit_i;
1577 unsigned int sit_segs, start;
1578 char *src_bitmap, *dst_bitmap;
1579 unsigned int bitmap_size;
1580
1581 /* allocate memory for SIT information */
1582 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1583 if (!sit_i)
1584 return -ENOMEM;
1585
1586 SM_I(sbi)->sit_info = sit_i;
1587
1588 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1589 if (!sit_i->sentries)
1590 return -ENOMEM;
1591
1592 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1593 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1594 if (!sit_i->dirty_sentries_bitmap)
1595 return -ENOMEM;
1596
1597 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1598 sit_i->sentries[start].cur_valid_map
1599 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1600 sit_i->sentries[start].ckpt_valid_map
1601 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1602 if (!sit_i->sentries[start].cur_valid_map
1603 || !sit_i->sentries[start].ckpt_valid_map)
1604 return -ENOMEM;
1605 }
1606
1607 if (sbi->segs_per_sec > 1) {
53cf9522 1608 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
351df4b2
JK
1609 sizeof(struct sec_entry));
1610 if (!sit_i->sec_entries)
1611 return -ENOMEM;
1612 }
1613
1614 /* get information related with SIT */
1615 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1616
1617 /* setup SIT bitmap from ckeckpoint pack */
1618 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1619 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1620
79b5793b 1621 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
351df4b2
JK
1622 if (!dst_bitmap)
1623 return -ENOMEM;
351df4b2
JK
1624
1625 /* init SIT information */
1626 sit_i->s_ops = &default_salloc_ops;
1627
1628 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1629 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1630 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1631 sit_i->sit_bitmap = dst_bitmap;
1632 sit_i->bitmap_size = bitmap_size;
1633 sit_i->dirty_sentries = 0;
1634 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1635 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1636 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1637 mutex_init(&sit_i->sentry_lock);
1638 return 0;
1639}
1640
1641static int build_free_segmap(struct f2fs_sb_info *sbi)
1642{
1643 struct f2fs_sm_info *sm_info = SM_I(sbi);
1644 struct free_segmap_info *free_i;
1645 unsigned int bitmap_size, sec_bitmap_size;
1646
1647 /* allocate memory for free segmap information */
1648 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1649 if (!free_i)
1650 return -ENOMEM;
1651
1652 SM_I(sbi)->free_info = free_i;
1653
1654 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1655 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1656 if (!free_i->free_segmap)
1657 return -ENOMEM;
1658
53cf9522 1659 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
351df4b2
JK
1660 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1661 if (!free_i->free_secmap)
1662 return -ENOMEM;
1663
1664 /* set all segments as dirty temporarily */
1665 memset(free_i->free_segmap, 0xff, bitmap_size);
1666 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1667
1668 /* init free segmap information */
1669 free_i->start_segno =
1670 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1671 free_i->free_segments = 0;
1672 free_i->free_sections = 0;
1673 rwlock_init(&free_i->segmap_lock);
1674 return 0;
1675}
1676
1677static int build_curseg(struct f2fs_sb_info *sbi)
1678{
1042d60f 1679 struct curseg_info *array;
351df4b2
JK
1680 int i;
1681
1682 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1683 if (!array)
1684 return -ENOMEM;
1685
1686 SM_I(sbi)->curseg_array = array;
1687
1688 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1689 mutex_init(&array[i].curseg_mutex);
1690 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1691 if (!array[i].sum_blk)
1692 return -ENOMEM;
1693 array[i].segno = NULL_SEGNO;
1694 array[i].next_blkoff = 0;
1695 }
1696 return restore_curseg_summaries(sbi);
1697}
1698
74de593a
CY
1699static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1700{
1701 struct address_space *mapping = sbi->meta_inode->i_mapping;
1702 struct page *page;
1703 block_t blk_addr, prev_blk_addr = 0;
1704 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1705 int blkno = start;
1706
1707 for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1708
1709 blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1710
1711 if (blkno != start && prev_blk_addr + 1 != blk_addr)
1712 break;
1713 prev_blk_addr = blk_addr;
1714repeat:
1715 page = grab_cache_page(mapping, blk_addr);
1716 if (!page) {
1717 cond_resched();
1718 goto repeat;
1719 }
1720 if (PageUptodate(page)) {
1721 mark_page_accessed(page);
1722 f2fs_put_page(page, 1);
1723 continue;
1724 }
1725
03232305 1726 submit_read_page(sbi, page, blk_addr, READ_SYNC | REQ_META);
74de593a
CY
1727
1728 mark_page_accessed(page);
1729 f2fs_put_page(page, 0);
1730 }
1731
03232305 1732 f2fs_submit_read_bio(sbi, READ_SYNC | REQ_META);
74de593a
CY
1733 return blkno - start;
1734}
1735
351df4b2
JK
1736static void build_sit_entries(struct f2fs_sb_info *sbi)
1737{
1738 struct sit_info *sit_i = SIT_I(sbi);
1739 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1740 struct f2fs_summary_block *sum = curseg->sum_blk;
74de593a
CY
1741 int sit_blk_cnt = SIT_BLK_CNT(sbi);
1742 unsigned int i, start, end;
1743 unsigned int readed, start_blk = 0;
1744 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
351df4b2 1745
74de593a
CY
1746 do {
1747 readed = ra_sit_pages(sbi, start_blk, nrpages);
1748
1749 start = start_blk * sit_i->sents_per_block;
1750 end = (start_blk + readed) * sit_i->sents_per_block;
1751
1752 for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1753 struct seg_entry *se = &sit_i->sentries[start];
1754 struct f2fs_sit_block *sit_blk;
1755 struct f2fs_sit_entry sit;
1756 struct page *page;
1757
1758 mutex_lock(&curseg->curseg_mutex);
1759 for (i = 0; i < sits_in_cursum(sum); i++) {
1760 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1761 sit = sit_in_journal(sum, i);
1762 mutex_unlock(&curseg->curseg_mutex);
1763 goto got_it;
1764 }
351df4b2 1765 }
74de593a
CY
1766 mutex_unlock(&curseg->curseg_mutex);
1767
1768 page = get_current_sit_page(sbi, start);
1769 sit_blk = (struct f2fs_sit_block *)page_address(page);
1770 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1771 f2fs_put_page(page, 1);
351df4b2 1772got_it:
74de593a
CY
1773 check_block_count(sbi, start, &sit);
1774 seg_info_from_raw_sit(se, &sit);
1775 if (sbi->segs_per_sec > 1) {
1776 struct sec_entry *e = get_sec_entry(sbi, start);
1777 e->valid_blocks += se->valid_blocks;
1778 }
351df4b2 1779 }
74de593a
CY
1780 start_blk += readed;
1781 } while (start_blk < sit_blk_cnt);
351df4b2
JK
1782}
1783
1784static void init_free_segmap(struct f2fs_sb_info *sbi)
1785{
1786 unsigned int start;
1787 int type;
1788
1789 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1790 struct seg_entry *sentry = get_seg_entry(sbi, start);
1791 if (!sentry->valid_blocks)
1792 __set_free(sbi, start);
1793 }
1794
1795 /* set use the current segments */
1796 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1797 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1798 __set_test_and_inuse(sbi, curseg_t->segno);
1799 }
1800}
1801
1802static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1803{
1804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1805 struct free_segmap_info *free_i = FREE_I(sbi);
8736fbf0 1806 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
351df4b2
JK
1807 unsigned short valid_blocks;
1808
8736fbf0 1809 while (1) {
351df4b2 1810 /* find dirty segment based on free segmap */
8736fbf0
NJ
1811 segno = find_next_inuse(free_i, total_segs, offset);
1812 if (segno >= total_segs)
351df4b2
JK
1813 break;
1814 offset = segno + 1;
1815 valid_blocks = get_valid_blocks(sbi, segno, 0);
1816 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1817 continue;
1818 mutex_lock(&dirty_i->seglist_lock);
1819 __locate_dirty_segment(sbi, segno, DIRTY);
1820 mutex_unlock(&dirty_i->seglist_lock);
1821 }
1822}
1823
5ec4e49f 1824static int init_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
1825{
1826 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5ec4e49f 1827 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
351df4b2 1828
5ec4e49f
JK
1829 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1830 if (!dirty_i->victim_secmap)
351df4b2
JK
1831 return -ENOMEM;
1832 return 0;
1833}
1834
1835static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1836{
1837 struct dirty_seglist_info *dirty_i;
1838 unsigned int bitmap_size, i;
1839
1840 /* allocate memory for dirty segments list information */
1841 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1842 if (!dirty_i)
1843 return -ENOMEM;
1844
1845 SM_I(sbi)->dirty_info = dirty_i;
1846 mutex_init(&dirty_i->seglist_lock);
1847
1848 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1849
1850 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1851 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
351df4b2
JK
1852 if (!dirty_i->dirty_segmap[i])
1853 return -ENOMEM;
1854 }
1855
1856 init_dirty_segmap(sbi);
5ec4e49f 1857 return init_victim_secmap(sbi);
351df4b2
JK
1858}
1859
0a8165d7 1860/*
351df4b2
JK
1861 * Update min, max modified time for cost-benefit GC algorithm
1862 */
1863static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1864{
1865 struct sit_info *sit_i = SIT_I(sbi);
1866 unsigned int segno;
1867
1868 mutex_lock(&sit_i->sentry_lock);
1869
1870 sit_i->min_mtime = LLONG_MAX;
1871
1872 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1873 unsigned int i;
1874 unsigned long long mtime = 0;
1875
1876 for (i = 0; i < sbi->segs_per_sec; i++)
1877 mtime += get_seg_entry(sbi, segno + i)->mtime;
1878
1879 mtime = div_u64(mtime, sbi->segs_per_sec);
1880
1881 if (sit_i->min_mtime > mtime)
1882 sit_i->min_mtime = mtime;
1883 }
1884 sit_i->max_mtime = get_mtime(sbi);
1885 mutex_unlock(&sit_i->sentry_lock);
1886}
1887
1888int build_segment_manager(struct f2fs_sb_info *sbi)
1889{
1890 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1891 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1042d60f 1892 struct f2fs_sm_info *sm_info;
351df4b2
JK
1893 int err;
1894
1895 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1896 if (!sm_info)
1897 return -ENOMEM;
1898
1899 /* init sm info */
1900 sbi->sm_info = sm_info;
1901 INIT_LIST_HEAD(&sm_info->wblist_head);
1902 spin_lock_init(&sm_info->wblist_lock);
1903 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1904 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1905 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1906 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1907 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1908 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1909 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
81eb8d6e 1910 sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
351df4b2 1911
7fd9e544
JK
1912 INIT_LIST_HEAD(&sm_info->discard_list);
1913 sm_info->nr_discards = 0;
1914 sm_info->max_discards = 0;
1915
351df4b2
JK
1916 err = build_sit_info(sbi);
1917 if (err)
1918 return err;
1919 err = build_free_segmap(sbi);
1920 if (err)
1921 return err;
1922 err = build_curseg(sbi);
1923 if (err)
1924 return err;
1925
1926 /* reinit free segmap based on SIT */
1927 build_sit_entries(sbi);
1928
1929 init_free_segmap(sbi);
1930 err = build_dirty_segmap(sbi);
1931 if (err)
1932 return err;
1933
1934 init_min_max_mtime(sbi);
1935 return 0;
1936}
1937
1938static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1939 enum dirty_type dirty_type)
1940{
1941 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1942
1943 mutex_lock(&dirty_i->seglist_lock);
1944 kfree(dirty_i->dirty_segmap[dirty_type]);
1945 dirty_i->nr_dirty[dirty_type] = 0;
1946 mutex_unlock(&dirty_i->seglist_lock);
1947}
1948
5ec4e49f 1949static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
351df4b2
JK
1950{
1951 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5ec4e49f 1952 kfree(dirty_i->victim_secmap);
351df4b2
JK
1953}
1954
1955static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1956{
1957 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1958 int i;
1959
1960 if (!dirty_i)
1961 return;
1962
1963 /* discard pre-free/dirty segments list */
1964 for (i = 0; i < NR_DIRTY_TYPE; i++)
1965 discard_dirty_segmap(sbi, i);
1966
5ec4e49f 1967 destroy_victim_secmap(sbi);
351df4b2
JK
1968 SM_I(sbi)->dirty_info = NULL;
1969 kfree(dirty_i);
1970}
1971
1972static void destroy_curseg(struct f2fs_sb_info *sbi)
1973{
1974 struct curseg_info *array = SM_I(sbi)->curseg_array;
1975 int i;
1976
1977 if (!array)
1978 return;
1979 SM_I(sbi)->curseg_array = NULL;
1980 for (i = 0; i < NR_CURSEG_TYPE; i++)
1981 kfree(array[i].sum_blk);
1982 kfree(array);
1983}
1984
1985static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1986{
1987 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1988 if (!free_i)
1989 return;
1990 SM_I(sbi)->free_info = NULL;
1991 kfree(free_i->free_segmap);
1992 kfree(free_i->free_secmap);
1993 kfree(free_i);
1994}
1995
1996static void destroy_sit_info(struct f2fs_sb_info *sbi)
1997{
1998 struct sit_info *sit_i = SIT_I(sbi);
1999 unsigned int start;
2000
2001 if (!sit_i)
2002 return;
2003
2004 if (sit_i->sentries) {
2005 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2006 kfree(sit_i->sentries[start].cur_valid_map);
2007 kfree(sit_i->sentries[start].ckpt_valid_map);
2008 }
2009 }
2010 vfree(sit_i->sentries);
2011 vfree(sit_i->sec_entries);
2012 kfree(sit_i->dirty_sentries_bitmap);
2013
2014 SM_I(sbi)->sit_info = NULL;
2015 kfree(sit_i->sit_bitmap);
2016 kfree(sit_i);
2017}
2018
2019void destroy_segment_manager(struct f2fs_sb_info *sbi)
2020{
2021 struct f2fs_sm_info *sm_info = SM_I(sbi);
3b03f724
CY
2022 if (!sm_info)
2023 return;
351df4b2
JK
2024 destroy_dirty_segmap(sbi);
2025 destroy_curseg(sbi);
2026 destroy_free_segmap(sbi);
2027 destroy_sit_info(sbi);
2028 sbi->sm_info = NULL;
2029 kfree(sm_info);
2030}
7fd9e544
JK
2031
2032int __init create_segment_manager_caches(void)
2033{
2034 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2035 sizeof(struct discard_entry), NULL);
2036 if (!discard_entry_slab)
2037 return -ENOMEM;
2038 return 0;
2039}
2040
2041void destroy_segment_manager_caches(void)
2042{
2043 kmem_cache_destroy(discard_entry_slab);
2044}
This page took 0.163084 seconds and 5 git commands to generate.