Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[deliverable/linux.git] / fs / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
1da177e4
LT
7#include <linux/fs.h>
8#include <linux/mm.h>
9#include <linux/dcache.h>
10#include <linux/init.h>
11#include <linux/quotaops.h>
12#include <linux/slab.h>
13#include <linux/writeback.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/wait.h>
17#include <linux/hash.h>
18#include <linux/swap.h>
19#include <linux/security.h>
6146f0d5 20#include <linux/ima.h>
1da177e4
LT
21#include <linux/pagemap.h>
22#include <linux/cdev.h>
23#include <linux/bootmem.h>
0eeca283 24#include <linux/inotify.h>
fc33a7bb 25#include <linux/mount.h>
efaee192 26#include <linux/async.h>
1da177e4
LT
27
28/*
29 * This is needed for the following functions:
30 * - inode_has_buffers
31 * - invalidate_inode_buffers
1da177e4
LT
32 * - invalidate_bdev
33 *
34 * FIXME: remove all knowledge of the buffer layer from this file
35 */
36#include <linux/buffer_head.h>
37
38/*
39 * New inode.c implementation.
40 *
41 * This implementation has the basic premise of trying
42 * to be extremely low-overhead and SMP-safe, yet be
43 * simple enough to be "obviously correct".
44 *
45 * Famous last words.
46 */
47
48/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49
50/* #define INODE_PARANOIA 1 */
51/* #define INODE_DEBUG 1 */
52
53/*
54 * Inode lookup is no longer as critical as it used to be:
55 * most of the lookups are going to be through the dcache.
56 */
57#define I_HASHBITS i_hash_shift
58#define I_HASHMASK i_hash_mask
59
fa3536cc
ED
60static unsigned int i_hash_mask __read_mostly;
61static unsigned int i_hash_shift __read_mostly;
1da177e4
LT
62
63/*
64 * Each inode can be on two separate lists. One is
65 * the hash list of the inode, used for lookups. The
66 * other linked list is the "type" list:
67 * "in_use" - valid inode, i_count > 0, i_nlink > 0
68 * "dirty" - as "in_use" but also dirty
69 * "unused" - valid inode, i_count = 0
70 *
71 * A "dirty" list is maintained for each super block,
72 * allowing for low-overhead inode sync() operations.
73 */
74
75LIST_HEAD(inode_in_use);
76LIST_HEAD(inode_unused);
fa3536cc 77static struct hlist_head *inode_hashtable __read_mostly;
1da177e4
LT
78
79/*
80 * A simple spinlock to protect the list manipulations.
81 *
82 * NOTE! You also have to own the lock if you change
83 * the i_state of an inode while it is in use..
84 */
85DEFINE_SPINLOCK(inode_lock);
86
87/*
f24075bd 88 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
1da177e4
LT
89 * icache shrinking path, and the umount path. Without this exclusion,
90 * by the time prune_icache calls iput for the inode whose pages it has
91 * been invalidating, or by the time it calls clear_inode & destroy_inode
92 * from its final dispose_list, the struct super_block they refer to
93 * (for inode->i_sb->s_op) may already have been freed and reused.
94 */
bdfc3266 95static DEFINE_MUTEX(iprune_mutex);
1da177e4
LT
96
97/*
98 * Statistics gathering..
99 */
100struct inodes_stat_t inodes_stat;
101
e18b890b 102static struct kmem_cache * inode_cachep __read_mostly;
1da177e4 103
1c0eeaf5
JE
104static void wake_up_inode(struct inode *inode)
105{
106 /*
107 * Prevent speculative execution through spin_unlock(&inode_lock);
108 */
109 smp_mb();
110 wake_up_bit(&inode->i_state, __I_LOCK);
111}
112
2cb1599f
DC
113/**
114 * inode_init_always - perform inode structure intialisation
0bc02f3f
RD
115 * @sb: superblock inode belongs to
116 * @inode: inode to initialise
2cb1599f
DC
117 *
118 * These are initializations that need to be done on every inode
119 * allocation as the fields are not initialised by slab allocation.
120 */
121struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
1da177e4 122{
f5e54d6e 123 static const struct address_space_operations empty_aops;
1da177e4 124 static struct inode_operations empty_iops;
99ac48f5 125 static const struct file_operations empty_fops;
1da177e4 126
2cb1599f
DC
127 struct address_space * const mapping = &inode->i_data;
128
129 inode->i_sb = sb;
130 inode->i_blkbits = sb->s_blocksize_bits;
131 inode->i_flags = 0;
132 atomic_set(&inode->i_count, 1);
133 inode->i_op = &empty_iops;
134 inode->i_fop = &empty_fops;
135 inode->i_nlink = 1;
56ff5efa
AV
136 inode->i_uid = 0;
137 inode->i_gid = 0;
2cb1599f
DC
138 atomic_set(&inode->i_writecount, 0);
139 inode->i_size = 0;
140 inode->i_blocks = 0;
141 inode->i_bytes = 0;
142 inode->i_generation = 0;
1da177e4 143#ifdef CONFIG_QUOTA
2cb1599f 144 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
1da177e4 145#endif
2cb1599f
DC
146 inode->i_pipe = NULL;
147 inode->i_bdev = NULL;
148 inode->i_cdev = NULL;
149 inode->i_rdev = 0;
150 inode->dirtied_when = 0;
6146f0d5
MZ
151
152 if (security_inode_alloc(inode))
153 goto out_free_inode;
154
155 /* allocate and initialize an i_integrity */
156 if (ima_inode_alloc(inode))
157 goto out_free_security;
2cb1599f
DC
158
159 spin_lock_init(&inode->i_lock);
160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161
162 mutex_init(&inode->i_mutex);
163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164
165 init_rwsem(&inode->i_alloc_sem);
166 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167
168 mapping->a_ops = &empty_aops;
169 mapping->host = inode;
170 mapping->flags = 0;
3c1d4378 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
2cb1599f
DC
172 mapping->assoc_mapping = NULL;
173 mapping->backing_dev_info = &default_backing_dev_info;
174 mapping->writeback_index = 0;
175
176 /*
177 * If the block_device provides a backing_dev_info for client
178 * inodes then use that. Otherwise the inode share the bdev's
179 * backing_dev_info.
180 */
181 if (sb->s_bdev) {
182 struct backing_dev_info *bdi;
183
184 bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 if (!bdi)
186 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 mapping->backing_dev_info = bdi;
188 }
189 inode->i_private = NULL;
190 inode->i_mapping = mapping;
191
1da177e4 192 return inode;
6146f0d5
MZ
193
194out_free_security:
195 security_inode_free(inode);
196out_free_inode:
197 if (inode->i_sb->s_op->destroy_inode)
198 inode->i_sb->s_op->destroy_inode(inode);
199 else
200 kmem_cache_free(inode_cachep, (inode));
201 return NULL;
1da177e4 202}
2cb1599f
DC
203EXPORT_SYMBOL(inode_init_always);
204
205static struct inode *alloc_inode(struct super_block *sb)
206{
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (inode)
215 return inode_init_always(sb, inode);
216 return NULL;
217}
1da177e4
LT
218
219void destroy_inode(struct inode *inode)
220{
b7542f8c 221 BUG_ON(inode_has_buffers(inode));
1da177e4
LT
222 security_inode_free(inode);
223 if (inode->i_sb->s_op->destroy_inode)
224 inode->i_sb->s_op->destroy_inode(inode);
225 else
226 kmem_cache_free(inode_cachep, (inode));
227}
087e3b04 228EXPORT_SYMBOL(destroy_inode);
1da177e4
LT
229
230
231/*
232 * These are initializations that only need to be done
233 * once, because the fields are idempotent across use
234 * of the inode, so let the slab aware of that.
235 */
236void inode_init_once(struct inode *inode)
237{
238 memset(inode, 0, sizeof(*inode));
239 INIT_HLIST_NODE(&inode->i_hash);
240 INIT_LIST_HEAD(&inode->i_dentry);
241 INIT_LIST_HEAD(&inode->i_devices);
1da177e4 242 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
19fd6231 243 spin_lock_init(&inode->i_data.tree_lock);
1da177e4
LT
244 spin_lock_init(&inode->i_data.i_mmap_lock);
245 INIT_LIST_HEAD(&inode->i_data.private_list);
246 spin_lock_init(&inode->i_data.private_lock);
247 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
248 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
1da177e4 249 i_size_ordered_init(inode);
0eeca283
RL
250#ifdef CONFIG_INOTIFY
251 INIT_LIST_HEAD(&inode->inotify_watches);
d4f9af9d 252 mutex_init(&inode->inotify_mutex);
0eeca283 253#endif
1da177e4
LT
254}
255
256EXPORT_SYMBOL(inode_init_once);
257
51cc5068 258static void init_once(void *foo)
1da177e4
LT
259{
260 struct inode * inode = (struct inode *) foo;
261
a35afb83 262 inode_init_once(inode);
1da177e4
LT
263}
264
265/*
266 * inode_lock must be held
267 */
268void __iget(struct inode * inode)
269{
270 if (atomic_read(&inode->i_count)) {
271 atomic_inc(&inode->i_count);
272 return;
273 }
274 atomic_inc(&inode->i_count);
1c0eeaf5 275 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1da177e4
LT
276 list_move(&inode->i_list, &inode_in_use);
277 inodes_stat.nr_unused--;
278}
279
280/**
281 * clear_inode - clear an inode
282 * @inode: inode to clear
283 *
284 * This is called by the filesystem to tell us
285 * that the inode is no longer useful. We just
286 * terminate it with extreme prejudice.
287 */
288void clear_inode(struct inode *inode)
289{
290 might_sleep();
291 invalidate_inode_buffers(inode);
292
b7542f8c
ES
293 BUG_ON(inode->i_data.nrpages);
294 BUG_ON(!(inode->i_state & I_FREEING));
295 BUG_ON(inode->i_state & I_CLEAR);
1c0eeaf5 296 inode_sync_wait(inode);
1da177e4 297 DQUOT_DROP(inode);
acb0c854 298 if (inode->i_sb->s_op->clear_inode)
1da177e4 299 inode->i_sb->s_op->clear_inode(inode);
eaf796e7 300 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
1da177e4 301 bd_forget(inode);
577c4eb0 302 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
1da177e4
LT
303 cd_forget(inode);
304 inode->i_state = I_CLEAR;
305}
306
307EXPORT_SYMBOL(clear_inode);
308
309/*
310 * dispose_list - dispose of the contents of a local list
311 * @head: the head of the list to free
312 *
313 * Dispose-list gets a local list with local inodes in it, so it doesn't
314 * need to worry about list corruption and SMP locks.
315 */
316static void dispose_list(struct list_head *head)
317{
318 int nr_disposed = 0;
319
320 while (!list_empty(head)) {
321 struct inode *inode;
322
b5e61818 323 inode = list_first_entry(head, struct inode, i_list);
1da177e4
LT
324 list_del(&inode->i_list);
325
326 if (inode->i_data.nrpages)
327 truncate_inode_pages(&inode->i_data, 0);
328 clear_inode(inode);
4120db47
AB
329
330 spin_lock(&inode_lock);
331 hlist_del_init(&inode->i_hash);
332 list_del_init(&inode->i_sb_list);
333 spin_unlock(&inode_lock);
334
335 wake_up_inode(inode);
1da177e4
LT
336 destroy_inode(inode);
337 nr_disposed++;
338 }
339 spin_lock(&inode_lock);
340 inodes_stat.nr_inodes -= nr_disposed;
341 spin_unlock(&inode_lock);
342}
343
344/*
345 * Invalidate all inodes for a device.
346 */
347static int invalidate_list(struct list_head *head, struct list_head *dispose)
348{
349 struct list_head *next;
350 int busy = 0, count = 0;
351
352 next = head->next;
353 for (;;) {
354 struct list_head * tmp = next;
355 struct inode * inode;
356
357 /*
358 * We can reschedule here without worrying about the list's
359 * consistency because the per-sb list of inodes must not
f24075bd 360 * change during umount anymore, and because iprune_mutex keeps
1da177e4
LT
361 * shrink_icache_memory() away.
362 */
363 cond_resched_lock(&inode_lock);
364
365 next = next->next;
366 if (tmp == head)
367 break;
368 inode = list_entry(tmp, struct inode, i_sb_list);
369 invalidate_inode_buffers(inode);
370 if (!atomic_read(&inode->i_count)) {
1da177e4 371 list_move(&inode->i_list, dispose);
7ef0d737 372 WARN_ON(inode->i_state & I_NEW);
1da177e4
LT
373 inode->i_state |= I_FREEING;
374 count++;
375 continue;
376 }
377 busy = 1;
378 }
379 /* only unused inodes may be cached with i_count zero */
380 inodes_stat.nr_unused -= count;
381 return busy;
382}
383
1da177e4
LT
384/**
385 * invalidate_inodes - discard the inodes on a device
386 * @sb: superblock
387 *
388 * Discard all of the inodes for a given superblock. If the discard
389 * fails because there are busy inodes then a non zero value is returned.
390 * If the discard is successful all the inodes have been discarded.
391 */
392int invalidate_inodes(struct super_block * sb)
393{
394 int busy;
395 LIST_HEAD(throw_away);
396
f24075bd 397 mutex_lock(&iprune_mutex);
1da177e4 398 spin_lock(&inode_lock);
0eeca283 399 inotify_unmount_inodes(&sb->s_inodes);
1da177e4
LT
400 busy = invalidate_list(&sb->s_inodes, &throw_away);
401 spin_unlock(&inode_lock);
402
403 dispose_list(&throw_away);
f24075bd 404 mutex_unlock(&iprune_mutex);
1da177e4
LT
405
406 return busy;
407}
408
409EXPORT_SYMBOL(invalidate_inodes);
1da177e4
LT
410
411static int can_unuse(struct inode *inode)
412{
413 if (inode->i_state)
414 return 0;
415 if (inode_has_buffers(inode))
416 return 0;
417 if (atomic_read(&inode->i_count))
418 return 0;
419 if (inode->i_data.nrpages)
420 return 0;
421 return 1;
422}
423
424/*
425 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
426 * a temporary list and then are freed outside inode_lock by dispose_list().
427 *
428 * Any inodes which are pinned purely because of attached pagecache have their
429 * pagecache removed. We expect the final iput() on that inode to add it to
430 * the front of the inode_unused list. So look for it there and if the
431 * inode is still freeable, proceed. The right inode is found 99.9% of the
432 * time in testing on a 4-way.
433 *
434 * If the inode has metadata buffers attached to mapping->private_list then
435 * try to remove them.
436 */
437static void prune_icache(int nr_to_scan)
438{
439 LIST_HEAD(freeable);
440 int nr_pruned = 0;
441 int nr_scanned;
442 unsigned long reap = 0;
443
f24075bd 444 mutex_lock(&iprune_mutex);
1da177e4
LT
445 spin_lock(&inode_lock);
446 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
447 struct inode *inode;
448
449 if (list_empty(&inode_unused))
450 break;
451
452 inode = list_entry(inode_unused.prev, struct inode, i_list);
453
454 if (inode->i_state || atomic_read(&inode->i_count)) {
455 list_move(&inode->i_list, &inode_unused);
456 continue;
457 }
458 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
459 __iget(inode);
460 spin_unlock(&inode_lock);
461 if (remove_inode_buffers(inode))
fc0ecff6
AM
462 reap += invalidate_mapping_pages(&inode->i_data,
463 0, -1);
1da177e4
LT
464 iput(inode);
465 spin_lock(&inode_lock);
466
467 if (inode != list_entry(inode_unused.next,
468 struct inode, i_list))
469 continue; /* wrong inode or list_empty */
470 if (!can_unuse(inode))
471 continue;
472 }
1da177e4 473 list_move(&inode->i_list, &freeable);
7ef0d737 474 WARN_ON(inode->i_state & I_NEW);
1da177e4
LT
475 inode->i_state |= I_FREEING;
476 nr_pruned++;
477 }
478 inodes_stat.nr_unused -= nr_pruned;
f8891e5e
CL
479 if (current_is_kswapd())
480 __count_vm_events(KSWAPD_INODESTEAL, reap);
481 else
482 __count_vm_events(PGINODESTEAL, reap);
1da177e4
LT
483 spin_unlock(&inode_lock);
484
485 dispose_list(&freeable);
f24075bd 486 mutex_unlock(&iprune_mutex);
1da177e4
LT
487}
488
489/*
490 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
491 * "unused" means that no dentries are referring to the inodes: the files are
492 * not open and the dcache references to those inodes have already been
493 * reclaimed.
494 *
495 * This function is passed the number of inodes to scan, and it returns the
496 * total number of remaining possibly-reclaimable inodes.
497 */
27496a8c 498static int shrink_icache_memory(int nr, gfp_t gfp_mask)
1da177e4
LT
499{
500 if (nr) {
501 /*
502 * Nasty deadlock avoidance. We may hold various FS locks,
503 * and we don't want to recurse into the FS that called us
504 * in clear_inode() and friends..
505 */
506 if (!(gfp_mask & __GFP_FS))
507 return -1;
508 prune_icache(nr);
509 }
510 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
511}
512
8e1f936b
RR
513static struct shrinker icache_shrinker = {
514 .shrink = shrink_icache_memory,
515 .seeks = DEFAULT_SEEKS,
516};
517
1da177e4
LT
518static void __wait_on_freeing_inode(struct inode *inode);
519/*
520 * Called with the inode lock held.
521 * NOTE: we are not increasing the inode-refcount, you must call __iget()
522 * by hand after calling find_inode now! This simplifies iunique and won't
523 * add any additional branch in the common code.
524 */
525static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
526{
527 struct hlist_node *node;
528 struct inode * inode = NULL;
529
530repeat:
c5c8be3c 531 hlist_for_each_entry(inode, node, head, i_hash) {
1da177e4
LT
532 if (inode->i_sb != sb)
533 continue;
534 if (!test(inode, data))
535 continue;
991114c6 536 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
1da177e4
LT
537 __wait_on_freeing_inode(inode);
538 goto repeat;
539 }
540 break;
541 }
542 return node ? inode : NULL;
543}
544
545/*
546 * find_inode_fast is the fast path version of find_inode, see the comment at
547 * iget_locked for details.
548 */
549static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
550{
551 struct hlist_node *node;
552 struct inode * inode = NULL;
553
554repeat:
c5c8be3c 555 hlist_for_each_entry(inode, node, head, i_hash) {
1da177e4
LT
556 if (inode->i_ino != ino)
557 continue;
558 if (inode->i_sb != sb)
559 continue;
991114c6 560 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
1da177e4
LT
561 __wait_on_freeing_inode(inode);
562 goto repeat;
563 }
564 break;
565 }
566 return node ? inode : NULL;
567}
568
8290c35f
DC
569static unsigned long hash(struct super_block *sb, unsigned long hashval)
570{
571 unsigned long tmp;
572
573 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
574 L1_CACHE_BYTES;
575 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
576 return tmp & I_HASHMASK;
577}
578
579static inline void
580__inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
581 struct inode *inode)
582{
583 inodes_stat.nr_inodes++;
584 list_add(&inode->i_list, &inode_in_use);
585 list_add(&inode->i_sb_list, &sb->s_inodes);
586 if (head)
587 hlist_add_head(&inode->i_hash, head);
588}
589
590/**
591 * inode_add_to_lists - add a new inode to relevant lists
0bc02f3f
RD
592 * @sb: superblock inode belongs to
593 * @inode: inode to mark in use
8290c35f
DC
594 *
595 * When an inode is allocated it needs to be accounted for, added to the in use
596 * list, the owning superblock and the inode hash. This needs to be done under
597 * the inode_lock, so export a function to do this rather than the inode lock
598 * itself. We calculate the hash list to add to here so it is all internal
599 * which requires the caller to have already set up the inode number in the
600 * inode to add.
601 */
602void inode_add_to_lists(struct super_block *sb, struct inode *inode)
603{
604 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
605
606 spin_lock(&inode_lock);
607 __inode_add_to_lists(sb, head, inode);
608 spin_unlock(&inode_lock);
609}
610EXPORT_SYMBOL_GPL(inode_add_to_lists);
611
1da177e4
LT
612/**
613 * new_inode - obtain an inode
614 * @sb: superblock
615 *
769848c0 616 * Allocates a new inode for given superblock. The default gfp_mask
3c1d4378 617 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
769848c0
MG
618 * If HIGHMEM pages are unsuitable or it is known that pages allocated
619 * for the page cache are not reclaimable or migratable,
620 * mapping_set_gfp_mask() must be called with suitable flags on the
621 * newly created inode's mapping
622 *
1da177e4
LT
623 */
624struct inode *new_inode(struct super_block *sb)
625{
866b04fc
JL
626 /*
627 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
628 * error if st_ino won't fit in target struct field. Use 32bit counter
629 * here to attempt to avoid that.
630 */
631 static unsigned int last_ino;
1da177e4
LT
632 struct inode * inode;
633
634 spin_lock_prefetch(&inode_lock);
635
636 inode = alloc_inode(sb);
637 if (inode) {
638 spin_lock(&inode_lock);
8290c35f 639 __inode_add_to_lists(sb, NULL, inode);
1da177e4
LT
640 inode->i_ino = ++last_ino;
641 inode->i_state = 0;
642 spin_unlock(&inode_lock);
643 }
644 return inode;
645}
646
647EXPORT_SYMBOL(new_inode);
648
649void unlock_new_inode(struct inode *inode)
650{
14358e6d 651#ifdef CONFIG_DEBUG_LOCK_ALLOC
1e89a5e1
PZ
652 if (inode->i_mode & S_IFDIR) {
653 struct file_system_type *type = inode->i_sb->s_type;
654
655 /*
656 * ensure nobody is actually holding i_mutex
657 */
658 mutex_destroy(&inode->i_mutex);
659 mutex_init(&inode->i_mutex);
14358e6d 660 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
1e89a5e1 661 }
14358e6d 662#endif
1da177e4
LT
663 /*
664 * This is special! We do not need the spinlock
665 * when clearing I_LOCK, because we're guaranteed
666 * that nobody else tries to do anything about the
667 * state of the inode when it is locked, as we
668 * just created it (so there can be no old holders
669 * that haven't tested I_LOCK).
670 */
7ef0d737 671 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
1da177e4
LT
672 inode->i_state &= ~(I_LOCK|I_NEW);
673 wake_up_inode(inode);
674}
675
676EXPORT_SYMBOL(unlock_new_inode);
677
678/*
679 * This is called without the inode lock held.. Be careful.
680 *
681 * We no longer cache the sb_flags in i_flags - see fs.h
682 * -- rmk@arm.uk.linux.org
683 */
684static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
685{
686 struct inode * inode;
687
688 inode = alloc_inode(sb);
689 if (inode) {
690 struct inode * old;
691
692 spin_lock(&inode_lock);
693 /* We released the lock, so.. */
694 old = find_inode(sb, head, test, data);
695 if (!old) {
696 if (set(inode, data))
697 goto set_failed;
698
8290c35f 699 __inode_add_to_lists(sb, head, inode);
1da177e4
LT
700 inode->i_state = I_LOCK|I_NEW;
701 spin_unlock(&inode_lock);
702
703 /* Return the locked inode with I_NEW set, the
704 * caller is responsible for filling in the contents
705 */
706 return inode;
707 }
708
709 /*
710 * Uhhuh, somebody else created the same inode under
711 * us. Use the old inode instead of the one we just
712 * allocated.
713 */
714 __iget(old);
715 spin_unlock(&inode_lock);
716 destroy_inode(inode);
717 inode = old;
718 wait_on_inode(inode);
719 }
720 return inode;
721
722set_failed:
723 spin_unlock(&inode_lock);
724 destroy_inode(inode);
725 return NULL;
726}
727
728/*
729 * get_new_inode_fast is the fast path version of get_new_inode, see the
730 * comment at iget_locked for details.
731 */
732static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
733{
734 struct inode * inode;
735
736 inode = alloc_inode(sb);
737 if (inode) {
738 struct inode * old;
739
740 spin_lock(&inode_lock);
741 /* We released the lock, so.. */
742 old = find_inode_fast(sb, head, ino);
743 if (!old) {
744 inode->i_ino = ino;
8290c35f 745 __inode_add_to_lists(sb, head, inode);
1da177e4
LT
746 inode->i_state = I_LOCK|I_NEW;
747 spin_unlock(&inode_lock);
748
749 /* Return the locked inode with I_NEW set, the
750 * caller is responsible for filling in the contents
751 */
752 return inode;
753 }
754
755 /*
756 * Uhhuh, somebody else created the same inode under
757 * us. Use the old inode instead of the one we just
758 * allocated.
759 */
760 __iget(old);
761 spin_unlock(&inode_lock);
762 destroy_inode(inode);
763 inode = old;
764 wait_on_inode(inode);
765 }
766 return inode;
767}
768
1da177e4
LT
769/**
770 * iunique - get a unique inode number
771 * @sb: superblock
772 * @max_reserved: highest reserved inode number
773 *
774 * Obtain an inode number that is unique on the system for a given
775 * superblock. This is used by file systems that have no natural
776 * permanent inode numbering system. An inode number is returned that
777 * is higher than the reserved limit but unique.
778 *
779 * BUGS:
780 * With a large number of inodes live on the file system this function
781 * currently becomes quite slow.
782 */
783ino_t iunique(struct super_block *sb, ino_t max_reserved)
784{
866b04fc
JL
785 /*
786 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
787 * error if st_ino won't fit in target struct field. Use 32bit counter
788 * here to attempt to avoid that.
789 */
790 static unsigned int counter;
1da177e4 791 struct inode *inode;
3361c7be 792 struct hlist_head *head;
1da177e4 793 ino_t res;
3361c7be 794
1da177e4 795 spin_lock(&inode_lock);
3361c7be
JL
796 do {
797 if (counter <= max_reserved)
798 counter = max_reserved + 1;
1da177e4 799 res = counter++;
3361c7be 800 head = inode_hashtable + hash(sb, res);
1da177e4 801 inode = find_inode_fast(sb, head, res);
3361c7be
JL
802 } while (inode != NULL);
803 spin_unlock(&inode_lock);
1da177e4 804
3361c7be
JL
805 return res;
806}
1da177e4
LT
807EXPORT_SYMBOL(iunique);
808
809struct inode *igrab(struct inode *inode)
810{
811 spin_lock(&inode_lock);
4a3b0a49 812 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
1da177e4
LT
813 __iget(inode);
814 else
815 /*
816 * Handle the case where s_op->clear_inode is not been
817 * called yet, and somebody is calling igrab
818 * while the inode is getting freed.
819 */
820 inode = NULL;
821 spin_unlock(&inode_lock);
822 return inode;
823}
824
825EXPORT_SYMBOL(igrab);
826
827/**
828 * ifind - internal function, you want ilookup5() or iget5().
829 * @sb: super block of file system to search
830 * @head: the head of the list to search
831 * @test: callback used for comparisons between inodes
832 * @data: opaque data pointer to pass to @test
88bd5121 833 * @wait: if true wait for the inode to be unlocked, if false do not
1da177e4
LT
834 *
835 * ifind() searches for the inode specified by @data in the inode
836 * cache. This is a generalized version of ifind_fast() for file systems where
837 * the inode number is not sufficient for unique identification of an inode.
838 *
839 * If the inode is in the cache, the inode is returned with an incremented
840 * reference count.
841 *
842 * Otherwise NULL is returned.
843 *
844 * Note, @test is called with the inode_lock held, so can't sleep.
845 */
5d2bea45 846static struct inode *ifind(struct super_block *sb,
1da177e4 847 struct hlist_head *head, int (*test)(struct inode *, void *),
88bd5121 848 void *data, const int wait)
1da177e4
LT
849{
850 struct inode *inode;
851
852 spin_lock(&inode_lock);
853 inode = find_inode(sb, head, test, data);
854 if (inode) {
855 __iget(inode);
856 spin_unlock(&inode_lock);
88bd5121
AA
857 if (likely(wait))
858 wait_on_inode(inode);
1da177e4
LT
859 return inode;
860 }
861 spin_unlock(&inode_lock);
862 return NULL;
863}
864
865/**
866 * ifind_fast - internal function, you want ilookup() or iget().
867 * @sb: super block of file system to search
868 * @head: head of the list to search
869 * @ino: inode number to search for
870 *
871 * ifind_fast() searches for the inode @ino in the inode cache. This is for
872 * file systems where the inode number is sufficient for unique identification
873 * of an inode.
874 *
875 * If the inode is in the cache, the inode is returned with an incremented
876 * reference count.
877 *
878 * Otherwise NULL is returned.
879 */
5d2bea45 880static struct inode *ifind_fast(struct super_block *sb,
1da177e4
LT
881 struct hlist_head *head, unsigned long ino)
882{
883 struct inode *inode;
884
885 spin_lock(&inode_lock);
886 inode = find_inode_fast(sb, head, ino);
887 if (inode) {
888 __iget(inode);
889 spin_unlock(&inode_lock);
890 wait_on_inode(inode);
891 return inode;
892 }
893 spin_unlock(&inode_lock);
894 return NULL;
895}
896
897/**
88bd5121 898 * ilookup5_nowait - search for an inode in the inode cache
1da177e4
LT
899 * @sb: super block of file system to search
900 * @hashval: hash value (usually inode number) to search for
901 * @test: callback used for comparisons between inodes
902 * @data: opaque data pointer to pass to @test
903 *
904 * ilookup5() uses ifind() to search for the inode specified by @hashval and
905 * @data in the inode cache. This is a generalized version of ilookup() for
906 * file systems where the inode number is not sufficient for unique
907 * identification of an inode.
908 *
909 * If the inode is in the cache, the inode is returned with an incremented
88bd5121
AA
910 * reference count. Note, the inode lock is not waited upon so you have to be
911 * very careful what you do with the returned inode. You probably should be
912 * using ilookup5() instead.
913 *
914 * Otherwise NULL is returned.
915 *
916 * Note, @test is called with the inode_lock held, so can't sleep.
917 */
918struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
919 int (*test)(struct inode *, void *), void *data)
920{
921 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
922
923 return ifind(sb, head, test, data, 0);
924}
925
926EXPORT_SYMBOL(ilookup5_nowait);
927
928/**
929 * ilookup5 - search for an inode in the inode cache
930 * @sb: super block of file system to search
931 * @hashval: hash value (usually inode number) to search for
932 * @test: callback used for comparisons between inodes
933 * @data: opaque data pointer to pass to @test
934 *
935 * ilookup5() uses ifind() to search for the inode specified by @hashval and
936 * @data in the inode cache. This is a generalized version of ilookup() for
937 * file systems where the inode number is not sufficient for unique
938 * identification of an inode.
939 *
940 * If the inode is in the cache, the inode lock is waited upon and the inode is
941 * returned with an incremented reference count.
1da177e4
LT
942 *
943 * Otherwise NULL is returned.
944 *
945 * Note, @test is called with the inode_lock held, so can't sleep.
946 */
947struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
948 int (*test)(struct inode *, void *), void *data)
949{
950 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
951
88bd5121 952 return ifind(sb, head, test, data, 1);
1da177e4
LT
953}
954
955EXPORT_SYMBOL(ilookup5);
956
957/**
958 * ilookup - search for an inode in the inode cache
959 * @sb: super block of file system to search
960 * @ino: inode number to search for
961 *
962 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
963 * This is for file systems where the inode number is sufficient for unique
964 * identification of an inode.
965 *
966 * If the inode is in the cache, the inode is returned with an incremented
967 * reference count.
968 *
969 * Otherwise NULL is returned.
970 */
971struct inode *ilookup(struct super_block *sb, unsigned long ino)
972{
973 struct hlist_head *head = inode_hashtable + hash(sb, ino);
974
975 return ifind_fast(sb, head, ino);
976}
977
978EXPORT_SYMBOL(ilookup);
979
980/**
981 * iget5_locked - obtain an inode from a mounted file system
982 * @sb: super block of file system
983 * @hashval: hash value (usually inode number) to get
984 * @test: callback used for comparisons between inodes
985 * @set: callback used to initialize a new struct inode
986 * @data: opaque data pointer to pass to @test and @set
987 *
1da177e4
LT
988 * iget5_locked() uses ifind() to search for the inode specified by @hashval
989 * and @data in the inode cache and if present it is returned with an increased
990 * reference count. This is a generalized version of iget_locked() for file
991 * systems where the inode number is not sufficient for unique identification
992 * of an inode.
993 *
994 * If the inode is not in cache, get_new_inode() is called to allocate a new
995 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
996 * file system gets to fill it in before unlocking it via unlock_new_inode().
997 *
998 * Note both @test and @set are called with the inode_lock held, so can't sleep.
999 */
1000struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1001 int (*test)(struct inode *, void *),
1002 int (*set)(struct inode *, void *), void *data)
1003{
1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005 struct inode *inode;
1006
88bd5121 1007 inode = ifind(sb, head, test, data, 1);
1da177e4
LT
1008 if (inode)
1009 return inode;
1010 /*
1011 * get_new_inode() will do the right thing, re-trying the search
1012 * in case it had to block at any point.
1013 */
1014 return get_new_inode(sb, head, test, set, data);
1015}
1016
1017EXPORT_SYMBOL(iget5_locked);
1018
1019/**
1020 * iget_locked - obtain an inode from a mounted file system
1021 * @sb: super block of file system
1022 * @ino: inode number to get
1023 *
1da177e4
LT
1024 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1025 * the inode cache and if present it is returned with an increased reference
1026 * count. This is for file systems where the inode number is sufficient for
1027 * unique identification of an inode.
1028 *
1029 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1030 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1031 * The file system gets to fill it in before unlocking it via
1032 * unlock_new_inode().
1033 */
1034struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1035{
1036 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1037 struct inode *inode;
1038
1039 inode = ifind_fast(sb, head, ino);
1040 if (inode)
1041 return inode;
1042 /*
1043 * get_new_inode_fast() will do the right thing, re-trying the search
1044 * in case it had to block at any point.
1045 */
1046 return get_new_inode_fast(sb, head, ino);
1047}
1048
1049EXPORT_SYMBOL(iget_locked);
1050
261bca86
AV
1051int insert_inode_locked(struct inode *inode)
1052{
1053 struct super_block *sb = inode->i_sb;
1054 ino_t ino = inode->i_ino;
1055 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1056 struct inode *old;
1057
1058 inode->i_state |= I_LOCK|I_NEW;
1059 while (1) {
1060 spin_lock(&inode_lock);
1061 old = find_inode_fast(sb, head, ino);
1062 if (likely(!old)) {
1063 hlist_add_head(&inode->i_hash, head);
1064 spin_unlock(&inode_lock);
1065 return 0;
1066 }
1067 __iget(old);
1068 spin_unlock(&inode_lock);
1069 wait_on_inode(old);
1070 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1071 iput(old);
1072 return -EBUSY;
1073 }
1074 iput(old);
1075 }
1076}
1077
1078EXPORT_SYMBOL(insert_inode_locked);
1079
1080int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1081 int (*test)(struct inode *, void *), void *data)
1082{
1083 struct super_block *sb = inode->i_sb;
1084 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1085 struct inode *old;
1086
1087 inode->i_state |= I_LOCK|I_NEW;
1088
1089 while (1) {
1090 spin_lock(&inode_lock);
1091 old = find_inode(sb, head, test, data);
1092 if (likely(!old)) {
1093 hlist_add_head(&inode->i_hash, head);
1094 spin_unlock(&inode_lock);
1095 return 0;
1096 }
1097 __iget(old);
1098 spin_unlock(&inode_lock);
1099 wait_on_inode(old);
1100 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1101 iput(old);
1102 return -EBUSY;
1103 }
1104 iput(old);
1105 }
1106}
1107
1108EXPORT_SYMBOL(insert_inode_locked4);
1109
1da177e4
LT
1110/**
1111 * __insert_inode_hash - hash an inode
1112 * @inode: unhashed inode
1113 * @hashval: unsigned long value used to locate this object in the
1114 * inode_hashtable.
1115 *
1116 * Add an inode to the inode hash for this superblock.
1117 */
1118void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1119{
1120 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1121 spin_lock(&inode_lock);
1122 hlist_add_head(&inode->i_hash, head);
1123 spin_unlock(&inode_lock);
1124}
1125
1126EXPORT_SYMBOL(__insert_inode_hash);
1127
1128/**
1129 * remove_inode_hash - remove an inode from the hash
1130 * @inode: inode to unhash
1131 *
1132 * Remove an inode from the superblock.
1133 */
1134void remove_inode_hash(struct inode *inode)
1135{
1136 spin_lock(&inode_lock);
1137 hlist_del_init(&inode->i_hash);
1138 spin_unlock(&inode_lock);
1139}
1140
1141EXPORT_SYMBOL(remove_inode_hash);
1142
1143/*
1144 * Tell the filesystem that this inode is no longer of any interest and should
1145 * be completely destroyed.
1146 *
1147 * We leave the inode in the inode hash table until *after* the filesystem's
1148 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1149 * instigate) will always find up-to-date information either in the hash or on
1150 * disk.
1151 *
1152 * I_FREEING is set so that no-one will take a new reference to the inode while
1153 * it is being deleted.
1154 */
b32714ba 1155void generic_delete_inode(struct inode *inode)
1da177e4 1156{
ee9b6d61 1157 const struct super_operations *op = inode->i_sb->s_op;
1da177e4 1158
b32714ba
AV
1159 list_del_init(&inode->i_list);
1160 list_del_init(&inode->i_sb_list);
7ef0d737 1161 WARN_ON(inode->i_state & I_NEW);
b32714ba
AV
1162 inode->i_state |= I_FREEING;
1163 inodes_stat.nr_inodes--;
1164 spin_unlock(&inode_lock);
1165
1da177e4
LT
1166 security_inode_delete(inode);
1167
1168 if (op->delete_inode) {
1169 void (*delete)(struct inode *) = op->delete_inode;
1170 if (!is_bad_inode(inode))
1171 DQUOT_INIT(inode);
e85b5652
MF
1172 /* Filesystems implementing their own
1173 * s_op->delete_inode are required to call
1174 * truncate_inode_pages and clear_inode()
1175 * internally */
1da177e4 1176 delete(inode);
e85b5652
MF
1177 } else {
1178 truncate_inode_pages(&inode->i_data, 0);
1da177e4 1179 clear_inode(inode);
e85b5652 1180 }
1da177e4
LT
1181 spin_lock(&inode_lock);
1182 hlist_del_init(&inode->i_hash);
1183 spin_unlock(&inode_lock);
1184 wake_up_inode(inode);
b7542f8c 1185 BUG_ON(inode->i_state != I_CLEAR);
1da177e4
LT
1186 destroy_inode(inode);
1187}
1188
1189EXPORT_SYMBOL(generic_delete_inode);
1190
1191static void generic_forget_inode(struct inode *inode)
1192{
1193 struct super_block *sb = inode->i_sb;
1194
1195 if (!hlist_unhashed(&inode->i_hash)) {
1c0eeaf5 1196 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1da177e4
LT
1197 list_move(&inode->i_list, &inode_unused);
1198 inodes_stat.nr_unused++;
acb0c854 1199 if (sb->s_flags & MS_ACTIVE) {
991114c6 1200 spin_unlock(&inode_lock);
1da177e4 1201 return;
991114c6 1202 }
7ef0d737 1203 WARN_ON(inode->i_state & I_NEW);
991114c6
AV
1204 inode->i_state |= I_WILL_FREE;
1205 spin_unlock(&inode_lock);
1da177e4
LT
1206 write_inode_now(inode, 1);
1207 spin_lock(&inode_lock);
7ef0d737 1208 WARN_ON(inode->i_state & I_NEW);
991114c6 1209 inode->i_state &= ~I_WILL_FREE;
1da177e4
LT
1210 inodes_stat.nr_unused--;
1211 hlist_del_init(&inode->i_hash);
1212 }
1213 list_del_init(&inode->i_list);
1214 list_del_init(&inode->i_sb_list);
7ef0d737 1215 WARN_ON(inode->i_state & I_NEW);
991114c6 1216 inode->i_state |= I_FREEING;
1da177e4
LT
1217 inodes_stat.nr_inodes--;
1218 spin_unlock(&inode_lock);
1219 if (inode->i_data.nrpages)
1220 truncate_inode_pages(&inode->i_data, 0);
1221 clear_inode(inode);
7f04c26d 1222 wake_up_inode(inode);
1da177e4
LT
1223 destroy_inode(inode);
1224}
1225
1226/*
1227 * Normal UNIX filesystem behaviour: delete the
1228 * inode when the usage count drops to zero, and
1229 * i_nlink is zero.
1230 */
cb2c0233 1231void generic_drop_inode(struct inode *inode)
1da177e4
LT
1232{
1233 if (!inode->i_nlink)
1234 generic_delete_inode(inode);
1235 else
1236 generic_forget_inode(inode);
1237}
1238
cb2c0233
MF
1239EXPORT_SYMBOL_GPL(generic_drop_inode);
1240
1da177e4
LT
1241/*
1242 * Called when we're dropping the last reference
1243 * to an inode.
1244 *
1245 * Call the FS "drop()" function, defaulting to
1246 * the legacy UNIX filesystem behaviour..
1247 *
1248 * NOTE! NOTE! NOTE! We're called with the inode lock
1249 * held, and the drop function is supposed to release
1250 * the lock!
1251 */
1252static inline void iput_final(struct inode *inode)
1253{
ee9b6d61 1254 const struct super_operations *op = inode->i_sb->s_op;
1da177e4
LT
1255 void (*drop)(struct inode *) = generic_drop_inode;
1256
1257 if (op && op->drop_inode)
1258 drop = op->drop_inode;
1259 drop(inode);
1260}
1261
1262/**
1263 * iput - put an inode
1264 * @inode: inode to put
1265 *
1266 * Puts an inode, dropping its usage count. If the inode use count hits
1267 * zero, the inode is then freed and may also be destroyed.
1268 *
1269 * Consequently, iput() can sleep.
1270 */
1271void iput(struct inode *inode)
1272{
1273 if (inode) {
1da177e4
LT
1274 BUG_ON(inode->i_state == I_CLEAR);
1275
1da177e4
LT
1276 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1277 iput_final(inode);
1278 }
1279}
1280
1281EXPORT_SYMBOL(iput);
1282
1283/**
1284 * bmap - find a block number in a file
1285 * @inode: inode of file
1286 * @block: block to find
1287 *
1288 * Returns the block number on the device holding the inode that
1289 * is the disk block number for the block of the file requested.
1290 * That is, asked for block 4 of inode 1 the function will return the
1291 * disk block relative to the disk start that holds that block of the
1292 * file.
1293 */
1294sector_t bmap(struct inode * inode, sector_t block)
1295{
1296 sector_t res = 0;
1297 if (inode->i_mapping->a_ops->bmap)
1298 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1299 return res;
1300}
1da177e4
LT
1301EXPORT_SYMBOL(bmap);
1302
11ff6f05
MG
1303/*
1304 * With relative atime, only update atime if the previous atime is
1305 * earlier than either the ctime or mtime or if at least a day has
1306 * passed since the last atime update.
1307 */
1308static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1309 struct timespec now)
1310{
1311
1312 if (!(mnt->mnt_flags & MNT_RELATIME))
1313 return 1;
1314 /*
1315 * Is mtime younger than atime? If yes, update atime:
1316 */
1317 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1318 return 1;
1319 /*
1320 * Is ctime younger than atime? If yes, update atime:
1321 */
1322 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1323 return 1;
1324
1325 /*
1326 * Is the previous atime value older than a day? If yes,
1327 * update atime:
1328 */
1329 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1330 return 1;
1331 /*
1332 * Good, we can skip the atime update:
1333 */
1334 return 0;
1335}
1336
1da177e4 1337/**
869243a0
CH
1338 * touch_atime - update the access time
1339 * @mnt: mount the inode is accessed on
7045f37b 1340 * @dentry: dentry accessed
1da177e4
LT
1341 *
1342 * Update the accessed time on an inode and mark it for writeback.
1343 * This function automatically handles read only file systems and media,
1344 * as well as the "noatime" flag and inode specific "noatime" markers.
1345 */
869243a0 1346void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1da177e4 1347{
869243a0 1348 struct inode *inode = dentry->d_inode;
1da177e4
LT
1349 struct timespec now;
1350
cdb70f3f 1351 if (mnt_want_write(mnt))
b2276138 1352 return;
cdb70f3f
DH
1353 if (inode->i_flags & S_NOATIME)
1354 goto out;
37756ced 1355 if (IS_NOATIME(inode))
cdb70f3f 1356 goto out;
b2276138 1357 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
cdb70f3f 1358 goto out;
47ae32d6 1359
cdb70f3f
DH
1360 if (mnt->mnt_flags & MNT_NOATIME)
1361 goto out;
1362 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1363 goto out;
1da177e4
LT
1364
1365 now = current_fs_time(inode->i_sb);
11ff6f05
MG
1366
1367 if (!relatime_need_update(mnt, inode, now))
1368 goto out;
1369
47ae32d6 1370 if (timespec_equal(&inode->i_atime, &now))
cdb70f3f 1371 goto out;
47ae32d6
VH
1372
1373 inode->i_atime = now;
1374 mark_inode_dirty_sync(inode);
cdb70f3f
DH
1375out:
1376 mnt_drop_write(mnt);
1da177e4 1377}
869243a0 1378EXPORT_SYMBOL(touch_atime);
1da177e4
LT
1379
1380/**
870f4817
CH
1381 * file_update_time - update mtime and ctime time
1382 * @file: file accessed
1da177e4 1383 *
870f4817
CH
1384 * Update the mtime and ctime members of an inode and mark the inode
1385 * for writeback. Note that this function is meant exclusively for
1386 * usage in the file write path of filesystems, and filesystems may
1387 * choose to explicitly ignore update via this function with the
1388 * S_NOCTIME inode flag, e.g. for network filesystem where these
1389 * timestamps are handled by the server.
1da177e4
LT
1390 */
1391
870f4817 1392void file_update_time(struct file *file)
1da177e4 1393{
0f7fc9e4 1394 struct inode *inode = file->f_path.dentry->d_inode;
1da177e4
LT
1395 struct timespec now;
1396 int sync_it = 0;
20ddee2c 1397 int err;
1da177e4
LT
1398
1399 if (IS_NOCMTIME(inode))
1400 return;
20ddee2c
DH
1401
1402 err = mnt_want_write(file->f_path.mnt);
1403 if (err)
1da177e4
LT
1404 return;
1405
1406 now = current_fs_time(inode->i_sb);
ed97bd37
AM
1407 if (!timespec_equal(&inode->i_mtime, &now)) {
1408 inode->i_mtime = now;
1da177e4 1409 sync_it = 1;
ed97bd37 1410 }
1da177e4 1411
ed97bd37
AM
1412 if (!timespec_equal(&inode->i_ctime, &now)) {
1413 inode->i_ctime = now;
870f4817 1414 sync_it = 1;
ed97bd37 1415 }
870f4817 1416
7a224228
JNC
1417 if (IS_I_VERSION(inode)) {
1418 inode_inc_iversion(inode);
1419 sync_it = 1;
1420 }
1421
1da177e4
LT
1422 if (sync_it)
1423 mark_inode_dirty_sync(inode);
20ddee2c 1424 mnt_drop_write(file->f_path.mnt);
1da177e4
LT
1425}
1426
870f4817 1427EXPORT_SYMBOL(file_update_time);
1da177e4
LT
1428
1429int inode_needs_sync(struct inode *inode)
1430{
1431 if (IS_SYNC(inode))
1432 return 1;
1433 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1434 return 1;
1435 return 0;
1436}
1437
1438EXPORT_SYMBOL(inode_needs_sync);
1439
1da177e4
LT
1440int inode_wait(void *word)
1441{
1442 schedule();
1443 return 0;
1444}
d44dab8d 1445EXPORT_SYMBOL(inode_wait);
1da177e4
LT
1446
1447/*
168a9fd6
MS
1448 * If we try to find an inode in the inode hash while it is being
1449 * deleted, we have to wait until the filesystem completes its
1450 * deletion before reporting that it isn't found. This function waits
1451 * until the deletion _might_ have completed. Callers are responsible
1452 * to recheck inode state.
1453 *
1454 * It doesn't matter if I_LOCK is not set initially, a call to
1455 * wake_up_inode() after removing from the hash list will DTRT.
1456 *
1da177e4
LT
1457 * This is called with inode_lock held.
1458 */
1459static void __wait_on_freeing_inode(struct inode *inode)
1460{
1461 wait_queue_head_t *wq;
1462 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1da177e4
LT
1463 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1464 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1465 spin_unlock(&inode_lock);
1466 schedule();
1467 finish_wait(wq, &wait.wait);
1468 spin_lock(&inode_lock);
1469}
1470
62752ee1
MF
1471/*
1472 * We rarely want to lock two inodes that do not have a parent/child
1473 * relationship (such as directory, child inode) simultaneously. The
1474 * vast majority of file systems should be able to get along fine
1475 * without this. Do not use these functions except as a last resort.
1476 */
1477void inode_double_lock(struct inode *inode1, struct inode *inode2)
1478{
1479 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1480 if (inode1)
1481 mutex_lock(&inode1->i_mutex);
1482 else if (inode2)
1483 mutex_lock(&inode2->i_mutex);
1484 return;
1485 }
1486
1487 if (inode1 < inode2) {
1488 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1489 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1490 } else {
1491 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1492 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1493 }
1494}
1495EXPORT_SYMBOL(inode_double_lock);
1496
1497void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1498{
1499 if (inode1)
1500 mutex_unlock(&inode1->i_mutex);
1501
1502 if (inode2 && inode2 != inode1)
1503 mutex_unlock(&inode2->i_mutex);
1504}
1505EXPORT_SYMBOL(inode_double_unlock);
1506
1da177e4
LT
1507static __initdata unsigned long ihash_entries;
1508static int __init set_ihash_entries(char *str)
1509{
1510 if (!str)
1511 return 0;
1512 ihash_entries = simple_strtoul(str, &str, 0);
1513 return 1;
1514}
1515__setup("ihash_entries=", set_ihash_entries);
1516
1517/*
1518 * Initialize the waitqueues and inode hash table.
1519 */
1520void __init inode_init_early(void)
1521{
1522 int loop;
1523
1524 /* If hashes are distributed across NUMA nodes, defer
1525 * hash allocation until vmalloc space is available.
1526 */
1527 if (hashdist)
1528 return;
1529
1530 inode_hashtable =
1531 alloc_large_system_hash("Inode-cache",
1532 sizeof(struct hlist_head),
1533 ihash_entries,
1534 14,
1535 HASH_EARLY,
1536 &i_hash_shift,
1537 &i_hash_mask,
1538 0);
1539
1540 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1541 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1542}
1543
74bf17cf 1544void __init inode_init(void)
1da177e4
LT
1545{
1546 int loop;
1547
1548 /* inode slab cache */
b0196009
PJ
1549 inode_cachep = kmem_cache_create("inode_cache",
1550 sizeof(struct inode),
1551 0,
1552 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1553 SLAB_MEM_SPREAD),
20c2df83 1554 init_once);
8e1f936b 1555 register_shrinker(&icache_shrinker);
1da177e4
LT
1556
1557 /* Hash may have been set up in inode_init_early */
1558 if (!hashdist)
1559 return;
1560
1561 inode_hashtable =
1562 alloc_large_system_hash("Inode-cache",
1563 sizeof(struct hlist_head),
1564 ihash_entries,
1565 14,
1566 0,
1567 &i_hash_shift,
1568 &i_hash_mask,
1569 0);
1570
1571 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1572 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1573}
1574
1575void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1576{
1577 inode->i_mode = mode;
1578 if (S_ISCHR(mode)) {
1579 inode->i_fop = &def_chr_fops;
1580 inode->i_rdev = rdev;
1581 } else if (S_ISBLK(mode)) {
1582 inode->i_fop = &def_blk_fops;
1583 inode->i_rdev = rdev;
1584 } else if (S_ISFIFO(mode))
1585 inode->i_fop = &def_fifo_fops;
1586 else if (S_ISSOCK(mode))
1587 inode->i_fop = &bad_sock_fops;
1588 else
1589 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1590 mode);
1591}
1592EXPORT_SYMBOL(init_special_inode);
This page took 0.531591 seconds and 5 git commands to generate.