[MTD] [NAND] Avoid deadlock in erase callback; release chip lock first.
[deliverable/linux.git] / fs / jffs2 / nodemgmt.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e 4 * Copyright © 2001-2007 Red Hat, Inc.
1da177e4
LT
5 *
6 * Created by David Woodhouse <dwmw2@infradead.org>
7 *
8 * For licensing information, see the file 'LICENCE' in this directory.
9 *
1da177e4
LT
10 */
11
12#include <linux/kernel.h>
13#include <linux/slab.h>
14#include <linux/mtd/mtd.h>
15#include <linux/compiler.h>
16#include <linux/sched.h> /* For cond_resched() */
17#include "nodelist.h"
e631ddba 18#include "debug.h"
1da177e4
LT
19
20/**
21 * jffs2_reserve_space - request physical space to write nodes to flash
22 * @c: superblock info
23 * @minsize: Minimum acceptable size of allocation
1da177e4
LT
24 * @len: Returned value of allocation length
25 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
26 *
27 * Requests a block of physical space on the flash. Returns zero for success
9fe4854c
DW
28 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
29 * error if appropriate. Doesn't return len since that's
1da177e4
LT
30 *
31 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
32 * allocation semaphore, to prevent more than one allocation from being
33 * active at any time. The semaphore is later released by jffs2_commit_allocation()
34 *
35 * jffs2_reserve_space() may trigger garbage collection in order to make room
36 * for the requested allocation.
37 */
38
e631ddba 39static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
9fe4854c 40 uint32_t *len, uint32_t sumsize);
1da177e4 41
9fe4854c 42int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
e631ddba 43 uint32_t *len, int prio, uint32_t sumsize)
1da177e4
LT
44{
45 int ret = -EAGAIN;
46 int blocksneeded = c->resv_blocks_write;
47 /* align it */
48 minsize = PAD(minsize);
49
50 D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize));
51 down(&c->alloc_sem);
52
53 D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n"));
54
55 spin_lock(&c->erase_completion_lock);
56
57 /* this needs a little more thought (true <tglx> :)) */
58 while(ret == -EAGAIN) {
59 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
60 int ret;
61 uint32_t dirty, avail;
62
63 /* calculate real dirty size
64 * dirty_size contains blocks on erase_pending_list
65 * those blocks are counted in c->nr_erasing_blocks.
66 * If one block is actually erased, it is not longer counted as dirty_space
67 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
68 * with c->nr_erasing_blocks * c->sector_size again.
69 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
70 * This helps us to force gc and pick eventually a clean block to spread the load.
71 * We add unchecked_size here, as we hopefully will find some space to use.
72 * This will affect the sum only once, as gc first finishes checking
73 * of nodes.
74 */
75 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
76 if (dirty < c->nospc_dirty_size) {
77 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
4132ace8 78 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"));
1da177e4
LT
79 break;
80 }
81 D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
82 dirty, c->unchecked_size, c->sector_size));
83
84 spin_unlock(&c->erase_completion_lock);
85 up(&c->alloc_sem);
86 return -ENOSPC;
87 }
182ec4ee 88
1da177e4
LT
89 /* Calc possibly available space. Possibly available means that we
90 * don't know, if unchecked size contains obsoleted nodes, which could give us some
91 * more usable space. This will affect the sum only once, as gc first finishes checking
92 * of nodes.
182ec4ee 93 + Return -ENOSPC, if the maximum possibly available space is less or equal than
1da177e4
LT
94 * blocksneeded * sector_size.
95 * This blocks endless gc looping on a filesystem, which is nearly full, even if
96 * the check above passes.
97 */
98 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
99 if ( (avail / c->sector_size) <= blocksneeded) {
100 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
4132ace8 101 D1(printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"));
1da177e4
LT
102 break;
103 }
104
105 D1(printk(KERN_DEBUG "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
106 avail, blocksneeded * c->sector_size));
107 spin_unlock(&c->erase_completion_lock);
108 up(&c->alloc_sem);
109 return -ENOSPC;
110 }
111
112 up(&c->alloc_sem);
113
114 D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
115 c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size,
116 c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size));
117 spin_unlock(&c->erase_completion_lock);
182ec4ee 118
1da177e4
LT
119 ret = jffs2_garbage_collect_pass(c);
120 if (ret)
121 return ret;
122
123 cond_resched();
124
125 if (signal_pending(current))
126 return -EINTR;
127
128 down(&c->alloc_sem);
129 spin_lock(&c->erase_completion_lock);
130 }
131
9fe4854c 132 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
1da177e4
LT
133 if (ret) {
134 D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret));
135 }
136 }
137 spin_unlock(&c->erase_completion_lock);
2f785402 138 if (!ret)
046b8b98 139 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
1da177e4
LT
140 if (ret)
141 up(&c->alloc_sem);
142 return ret;
143}
144
9fe4854c
DW
145int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
146 uint32_t *len, uint32_t sumsize)
1da177e4
LT
147{
148 int ret = -EAGAIN;
149 minsize = PAD(minsize);
150
151 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize));
152
153 spin_lock(&c->erase_completion_lock);
154 while(ret == -EAGAIN) {
9fe4854c 155 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
1da177e4 156 if (ret) {
ef53cb02 157 D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret));
1da177e4
LT
158 }
159 }
160 spin_unlock(&c->erase_completion_lock);
2f785402 161 if (!ret)
046b8b98 162 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
2f785402 163
1da177e4
LT
164 return ret;
165}
166
e631ddba
FH
167
168/* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
169
170static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1da177e4 171{
e631ddba 172
99c2594f
AH
173 if (c->nextblock == NULL) {
174 D1(printk(KERN_DEBUG "jffs2_close_nextblock: Erase block at 0x%08x has already been placed in a list\n",
175 jeb->offset));
176 return;
177 }
e631ddba
FH
178 /* Check, if we have a dirty block now, or if it was dirty already */
179 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
180 c->dirty_size += jeb->wasted_size;
181 c->wasted_size -= jeb->wasted_size;
182 jeb->dirty_size += jeb->wasted_size;
183 jeb->wasted_size = 0;
184 if (VERYDIRTY(c, jeb->dirty_size)) {
185 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
186 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
187 list_add_tail(&jeb->list, &c->very_dirty_list);
188 } else {
189 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
190 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
191 list_add_tail(&jeb->list, &c->dirty_list);
192 }
182ec4ee 193 } else {
e631ddba
FH
194 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
195 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
196 list_add_tail(&jeb->list, &c->clean_list);
197 }
198 c->nextblock = NULL;
199
200}
201
202/* Select a new jeb for nextblock */
203
204static int jffs2_find_nextblock(struct jffs2_sb_info *c)
205{
206 struct list_head *next;
182ec4ee 207
e631ddba
FH
208 /* Take the next block off the 'free' list */
209
210 if (list_empty(&c->free_list)) {
211
212 if (!c->nr_erasing_blocks &&
213 !list_empty(&c->erasable_list)) {
214 struct jffs2_eraseblock *ejeb;
215
216 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
f116629d 217 list_move_tail(&ejeb->list, &c->erase_pending_list);
e631ddba
FH
218 c->nr_erasing_blocks++;
219 jffs2_erase_pending_trigger(c);
220 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Triggering erase of erasable block at 0x%08x\n",
221 ejeb->offset));
222 }
223
224 if (!c->nr_erasing_blocks &&
225 !list_empty(&c->erasable_pending_wbuf_list)) {
226 D1(printk(KERN_DEBUG "jffs2_find_nextblock: Flushing write buffer\n"));
227 /* c->nextblock is NULL, no update to c->nextblock allowed */
1da177e4 228 spin_unlock(&c->erase_completion_lock);
1da177e4
LT
229 jffs2_flush_wbuf_pad(c);
230 spin_lock(&c->erase_completion_lock);
e631ddba
FH
231 /* Have another go. It'll be on the erasable_list now */
232 return -EAGAIN;
1da177e4 233 }
e631ddba
FH
234
235 if (!c->nr_erasing_blocks) {
236 /* Ouch. We're in GC, or we wouldn't have got here.
237 And there's no space left. At all. */
182ec4ee
TG
238 printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
239 c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no",
e631ddba
FH
240 list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no");
241 return -ENOSPC;
1da177e4 242 }
e631ddba
FH
243
244 spin_unlock(&c->erase_completion_lock);
245 /* Don't wait for it; just erase one right now */
246 jffs2_erase_pending_blocks(c, 1);
247 spin_lock(&c->erase_completion_lock);
248
249 /* An erase may have failed, decreasing the
250 amount of free space available. So we must
251 restart from the beginning */
252 return -EAGAIN;
1da177e4 253 }
e631ddba
FH
254
255 next = c->free_list.next;
256 list_del(next);
257 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
258 c->nr_free_blocks--;
182ec4ee 259
e631ddba
FH
260 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
261
262 D1(printk(KERN_DEBUG "jffs2_find_nextblock(): new nextblock = 0x%08x\n", c->nextblock->offset));
263
264 return 0;
265}
266
267/* Called with alloc sem _and_ erase_completion_lock */
9fe4854c
DW
268static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
269 uint32_t *len, uint32_t sumsize)
e631ddba
FH
270{
271 struct jffs2_eraseblock *jeb = c->nextblock;
9fe4854c 272 uint32_t reserved_size; /* for summary information at the end of the jeb */
e631ddba
FH
273 int ret;
274
275 restart:
276 reserved_size = 0;
277
278 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
279 /* NOSUM_SIZE means not to generate summary */
280
281 if (jeb) {
282 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
733802d9 283 dbg_summary("minsize=%d , jeb->free=%d ,"
e631ddba
FH
284 "summary->size=%d , sumsize=%d\n",
285 minsize, jeb->free_size,
286 c->summary->sum_size, sumsize);
287 }
288
289 /* Is there enough space for writing out the current node, or we have to
290 write out summary information now, close this jeb and select new nextblock? */
291 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
292 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
293
294 /* Has summary been disabled for this jeb? */
295 if (jffs2_sum_is_disabled(c->summary)) {
296 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
297 goto restart;
1da177e4
LT
298 }
299
e631ddba 300 /* Writing out the collected summary information */
733802d9 301 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
e631ddba
FH
302 ret = jffs2_sum_write_sumnode(c);
303
304 if (ret)
305 return ret;
306
307 if (jffs2_sum_is_disabled(c->summary)) {
308 /* jffs2_write_sumnode() couldn't write out the summary information
309 diabling summary for this jeb and free the collected information
310 */
311 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
312 goto restart;
313 }
314
315 jffs2_close_nextblock(c, jeb);
316 jeb = NULL;
34c0e906
FH
317 /* keep always valid value in reserved_size */
318 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
e631ddba
FH
319 }
320 } else {
321 if (jeb && minsize > jeb->free_size) {
fc6612f6
DW
322 uint32_t waste;
323
e631ddba
FH
324 /* Skip the end of this block and file it as having some dirty space */
325 /* If there's a pending write to it, flush now */
326
327 if (jffs2_wbuf_dirty(c)) {
1da177e4 328 spin_unlock(&c->erase_completion_lock);
e631ddba 329 D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n"));
1da177e4
LT
330 jffs2_flush_wbuf_pad(c);
331 spin_lock(&c->erase_completion_lock);
e631ddba
FH
332 jeb = c->nextblock;
333 goto restart;
1da177e4
LT
334 }
335
fc6612f6
DW
336 spin_unlock(&c->erase_completion_lock);
337
338 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
339 if (ret)
340 return ret;
341 /* Just lock it again and continue. Nothing much can change because
342 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
343 we hold c->erase_completion_lock in the majority of this function...
344 but that's a question for another (more caffeine-rich) day. */
345 spin_lock(&c->erase_completion_lock);
346
347 waste = jeb->free_size;
348 jffs2_link_node_ref(c, jeb,
349 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
350 waste, NULL);
351 /* FIXME: that made it count as dirty. Convert to wasted */
352 jeb->dirty_size -= waste;
353 c->dirty_size -= waste;
354 jeb->wasted_size += waste;
355 c->wasted_size += waste;
1da177e4 356
e631ddba
FH
357 jffs2_close_nextblock(c, jeb);
358 jeb = NULL;
1da177e4 359 }
e631ddba
FH
360 }
361
362 if (!jeb) {
363
364 ret = jffs2_find_nextblock(c);
365 if (ret)
366 return ret;
1da177e4 367
e631ddba 368 jeb = c->nextblock;
1da177e4
LT
369
370 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
371 printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size);
372 goto restart;
373 }
374 }
375 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
376 enough space */
e631ddba 377 *len = jeb->free_size - reserved_size;
1da177e4
LT
378
379 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
380 !jeb->first_node->next_in_ino) {
182ec4ee 381 /* Only node in it beforehand was a CLEANMARKER node (we think).
1da177e4 382 So mark it obsolete now that there's going to be another node
182ec4ee 383 in the block. This will reduce used_size to zero but We've
1da177e4
LT
384 already set c->nextblock so that jffs2_mark_node_obsolete()
385 won't try to refile it to the dirty_list.
386 */
387 spin_unlock(&c->erase_completion_lock);
388 jffs2_mark_node_obsolete(c, jeb->first_node);
389 spin_lock(&c->erase_completion_lock);
390 }
391
9fe4854c
DW
392 D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n",
393 *len, jeb->offset + (c->sector_size - jeb->free_size)));
1da177e4
LT
394 return 0;
395}
396
397/**
398 * jffs2_add_physical_node_ref - add a physical node reference to the list
399 * @c: superblock info
400 * @new: new node reference to add
401 * @len: length of this physical node
1da177e4 402 *
182ec4ee 403 * Should only be used to report nodes for which space has been allocated
1da177e4
LT
404 * by jffs2_reserve_space.
405 *
406 * Must be called with the alloc_sem held.
407 */
182ec4ee 408
2f785402
DW
409struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
410 uint32_t ofs, uint32_t len,
411 struct jffs2_inode_cache *ic)
1da177e4
LT
412{
413 struct jffs2_eraseblock *jeb;
2f785402 414 struct jffs2_raw_node_ref *new;
1da177e4 415
2f785402 416 jeb = &c->blocks[ofs / c->sector_size];
1da177e4 417
2f785402
DW
418 D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n",
419 ofs & ~3, ofs & 3, len));
1da177e4 420#if 1
2f785402
DW
421 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
422 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
423 even after refiling c->nextblock */
424 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
425 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
66bfaeaa
DW
426 printk(KERN_WARNING "argh. node added in wrong place at 0x%08x(%d)\n", ofs & ~3, ofs & 3);
427 if (c->nextblock)
428 printk(KERN_WARNING "nextblock 0x%08x", c->nextblock->offset);
429 else
430 printk(KERN_WARNING "No nextblock");
431 printk(", expected at %08x\n", jeb->offset + (c->sector_size - jeb->free_size));
2f785402 432 return ERR_PTR(-EINVAL);
1da177e4
LT
433 }
434#endif
435 spin_lock(&c->erase_completion_lock);
436
2f785402 437 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
1da177e4 438
9b88f473 439 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
1da177e4
LT
440 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
441 D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
442 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
443 if (jffs2_wbuf_dirty(c)) {
444 /* Flush the last write in the block if it's outstanding */
445 spin_unlock(&c->erase_completion_lock);
446 jffs2_flush_wbuf_pad(c);
447 spin_lock(&c->erase_completion_lock);
448 }
449
450 list_add_tail(&jeb->list, &c->clean_list);
451 c->nextblock = NULL;
452 }
e0c8e42f
AB
453 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
454 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4
LT
455
456 spin_unlock(&c->erase_completion_lock);
457
2f785402 458 return new;
1da177e4
LT
459}
460
461
462void jffs2_complete_reservation(struct jffs2_sb_info *c)
463{
464 D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n"));
465 jffs2_garbage_collect_trigger(c);
466 up(&c->alloc_sem);
467}
468
469static inline int on_list(struct list_head *obj, struct list_head *head)
470{
471 struct list_head *this;
472
473 list_for_each(this, head) {
474 if (this == obj) {
475 D1(printk("%p is on list at %p\n", obj, head));
476 return 1;
477
478 }
479 }
480 return 0;
481}
482
483void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
484{
485 struct jffs2_eraseblock *jeb;
486 int blocknr;
487 struct jffs2_unknown_node n;
488 int ret, addedsize;
489 size_t retlen;
1417fc44 490 uint32_t freed_len;
1da177e4 491
9bfeb691 492 if(unlikely(!ref)) {
1da177e4
LT
493 printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
494 return;
495 }
496 if (ref_obsolete(ref)) {
497 D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref)));
498 return;
499 }
500 blocknr = ref->flash_offset / c->sector_size;
501 if (blocknr >= c->nr_blocks) {
502 printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset);
503 BUG();
504 }
505 jeb = &c->blocks[blocknr];
506
507 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
31fbdf7a 508 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
182ec4ee
TG
509 /* Hm. This may confuse static lock analysis. If any of the above
510 three conditions is false, we're going to return from this
1da177e4
LT
511 function without actually obliterating any nodes or freeing
512 any jffs2_raw_node_refs. So we don't need to stop erases from
513 happening, or protect against people holding an obsolete
514 jffs2_raw_node_ref without the erase_completion_lock. */
515 down(&c->erase_free_sem);
516 }
517
518 spin_lock(&c->erase_completion_lock);
519
1417fc44
DW
520 freed_len = ref_totlen(c, jeb, ref);
521
1da177e4 522 if (ref_flags(ref) == REF_UNCHECKED) {
1417fc44 523 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
1da177e4 524 printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
1417fc44 525 freed_len, blocknr, ref->flash_offset, jeb->used_size);
1da177e4
LT
526 BUG();
527 })
1417fc44
DW
528 D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), freed_len));
529 jeb->unchecked_size -= freed_len;
530 c->unchecked_size -= freed_len;
1da177e4 531 } else {
1417fc44 532 D1(if (unlikely(jeb->used_size < freed_len)) {
1da177e4 533 printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
1417fc44 534 freed_len, blocknr, ref->flash_offset, jeb->used_size);
1da177e4
LT
535 BUG();
536 })
1417fc44
DW
537 D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %#x: ", ref_offset(ref), freed_len));
538 jeb->used_size -= freed_len;
539 c->used_size -= freed_len;
1da177e4
LT
540 }
541
542 // Take care, that wasted size is taken into concern
1417fc44 543 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
c7c16c8e 544 D1(printk("Dirtying\n"));
1417fc44
DW
545 addedsize = freed_len;
546 jeb->dirty_size += freed_len;
547 c->dirty_size += freed_len;
1da177e4
LT
548
549 /* Convert wasted space to dirty, if not a bad block */
550 if (jeb->wasted_size) {
551 if (on_list(&jeb->list, &c->bad_used_list)) {
552 D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n",
553 jeb->offset));
554 addedsize = 0; /* To fool the refiling code later */
555 } else {
556 D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n",
557 jeb->wasted_size, jeb->offset));
558 addedsize += jeb->wasted_size;
559 jeb->dirty_size += jeb->wasted_size;
560 c->dirty_size += jeb->wasted_size;
561 c->wasted_size -= jeb->wasted_size;
562 jeb->wasted_size = 0;
563 }
564 }
565 } else {
c7c16c8e 566 D1(printk("Wasting\n"));
1da177e4 567 addedsize = 0;
1417fc44
DW
568 jeb->wasted_size += freed_len;
569 c->wasted_size += freed_len;
1da177e4
LT
570 }
571 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
182ec4ee 572
e0c8e42f
AB
573 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
574 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4 575
31fbdf7a
AB
576 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
577 /* Flash scanning is in progress. Don't muck about with the block
1da177e4 578 lists because they're not ready yet, and don't actually
182ec4ee 579 obliterate nodes that look obsolete. If they weren't
1da177e4
LT
580 marked obsolete on the flash at the time they _became_
581 obsolete, there was probably a reason for that. */
582 spin_unlock(&c->erase_completion_lock);
583 /* We didn't lock the erase_free_sem */
584 return;
585 }
586
587 if (jeb == c->nextblock) {
588 D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset));
589 } else if (!jeb->used_size && !jeb->unchecked_size) {
590 if (jeb == c->gcblock) {
591 D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset));
592 c->gcblock = NULL;
593 } else {
594 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset));
595 list_del(&jeb->list);
596 }
597 if (jffs2_wbuf_dirty(c)) {
598 D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n"));
599 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
600 } else {
601 if (jiffies & 127) {
602 /* Most of the time, we just erase it immediately. Otherwise we
603 spend ages scanning it on mount, etc. */
604 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
605 list_add_tail(&jeb->list, &c->erase_pending_list);
606 c->nr_erasing_blocks++;
607 jffs2_erase_pending_trigger(c);
608 } else {
609 /* Sometimes, however, we leave it elsewhere so it doesn't get
610 immediately reused, and we spread the load a bit. */
611 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
612 list_add_tail(&jeb->list, &c->erasable_list);
182ec4ee 613 }
1da177e4
LT
614 }
615 D1(printk(KERN_DEBUG "Done OK\n"));
616 } else if (jeb == c->gcblock) {
617 D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset));
618 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
619 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset));
620 list_del(&jeb->list);
621 D1(printk(KERN_DEBUG "...and adding to dirty_list\n"));
622 list_add_tail(&jeb->list, &c->dirty_list);
623 } else if (VERYDIRTY(c, jeb->dirty_size) &&
624 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
625 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset));
626 list_del(&jeb->list);
627 D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n"));
628 list_add_tail(&jeb->list, &c->very_dirty_list);
629 } else {
630 D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
182ec4ee
TG
631 jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size));
632 }
1da177e4
LT
633
634 spin_unlock(&c->erase_completion_lock);
635
31fbdf7a
AB
636 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
637 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
1da177e4
LT
638 /* We didn't lock the erase_free_sem */
639 return;
640 }
641
642 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
643 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
644 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
c38c1b61 645 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
1da177e4
LT
646
647 D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref)));
648 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
649 if (ret) {
650 printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
651 goto out_erase_sem;
652 }
653 if (retlen != sizeof(n)) {
654 printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
655 goto out_erase_sem;
656 }
1417fc44
DW
657 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
658 printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), freed_len);
1da177e4
LT
659 goto out_erase_sem;
660 }
661 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
662 D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype)));
663 goto out_erase_sem;
664 }
665 /* XXX FIXME: This is ugly now */
666 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
667 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
668 if (ret) {
669 printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret);
670 goto out_erase_sem;
671 }
672 if (retlen != sizeof(n)) {
673 printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen);
674 goto out_erase_sem;
675 }
676
677 /* Nodes which have been marked obsolete no longer need to be
678 associated with any inode. Remove them from the per-inode list.
182ec4ee
TG
679
680 Note we can't do this for NAND at the moment because we need
1da177e4
LT
681 obsolete dirent nodes to stay on the lists, because of the
682 horridness in jffs2_garbage_collect_deletion_dirent(). Also
182ec4ee 683 because we delete the inocache, and on NAND we need that to
1da177e4
LT
684 stay around until all the nodes are actually erased, in order
685 to stop us from giving the same inode number to another newly
686 created inode. */
687 if (ref->next_in_ino) {
688 struct jffs2_inode_cache *ic;
689 struct jffs2_raw_node_ref **p;
690
691 spin_lock(&c->erase_completion_lock);
692
693 ic = jffs2_raw_ref_to_ic(ref);
694 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
695 ;
696
697 *p = ref->next_in_ino;
698 ref->next_in_ino = NULL;
699
c9f700f8
KK
700 switch (ic->class) {
701#ifdef CONFIG_JFFS2_FS_XATTR
702 case RAWNODE_CLASS_XATTR_DATUM:
703 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
704 break;
705 case RAWNODE_CLASS_XATTR_REF:
706 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
707 break;
708#endif
709 default:
710 if (ic->nodes == (void *)ic && ic->nlink == 0)
711 jffs2_del_ino_cache(c, ic);
712 break;
713 }
1da177e4
LT
714 spin_unlock(&c->erase_completion_lock);
715 }
716
1da177e4
LT
717 out_erase_sem:
718 up(&c->erase_free_sem);
719}
720
1da177e4
LT
721int jffs2_thread_should_wake(struct jffs2_sb_info *c)
722{
723 int ret = 0;
724 uint32_t dirty;
725
726 if (c->unchecked_size) {
727 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n",
728 c->unchecked_size, c->checked_ino));
729 return 1;
730 }
731
732 /* dirty_size contains blocks on erase_pending_list
733 * those blocks are counted in c->nr_erasing_blocks.
734 * If one block is actually erased, it is not longer counted as dirty_space
735 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
736 * with c->nr_erasing_blocks * c->sector_size again.
737 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
738 * This helps us to force gc and pick eventually a clean block to spread the load.
739 */
740 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
741
182ec4ee
TG
742 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
743 (dirty > c->nospc_dirty_size))
1da177e4
LT
744 ret = 1;
745
182ec4ee 746 D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n",
1da177e4
LT
747 c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no"));
748
749 return ret;
750}
This page took 0.284174 seconds and 5 git commands to generate.