igbvf: Use ETH_ALEN
[deliverable/linux.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
c00c310e
DW
4 * Copyright © 2001-2007 Red Hat, Inc.
5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
1da177e4
LT
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
1da177e4
LT
12 */
13
14#include <linux/kernel.h>
15#include <linux/slab.h>
16#include <linux/mtd/mtd.h>
17#include <linux/crc32.h>
18#include <linux/mtd/nand.h>
4e57b681 19#include <linux/jiffies.h>
914e2637 20#include <linux/sched.h>
4e57b681 21
1da177e4
LT
22#include "nodelist.h"
23
24/* For testing write failures */
25#undef BREAKME
26#undef BREAKMEHEADER
27
28#ifdef BREAKME
29static unsigned char *brokenbuf;
30#endif
31
daba5cc4
AB
32#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
34
1da177e4
LT
35/* max. erase failures before we mark a block bad */
36#define MAX_ERASE_FAILURES 2
37
1da177e4
LT
38struct jffs2_inodirty {
39 uint32_t ino;
40 struct jffs2_inodirty *next;
41};
42
43static struct jffs2_inodirty inodirty_nomem;
44
45static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
46{
47 struct jffs2_inodirty *this = c->wbuf_inodes;
48
49 /* If a malloc failed, consider _everything_ dirty */
50 if (this == &inodirty_nomem)
51 return 1;
52
53 /* If ino == 0, _any_ non-GC writes mean 'yes' */
54 if (this && !ino)
55 return 1;
56
57 /* Look to see if the inode in question is pending in the wbuf */
58 while (this) {
59 if (this->ino == ino)
60 return 1;
61 this = this->next;
62 }
63 return 0;
64}
65
66static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
67{
68 struct jffs2_inodirty *this;
69
70 this = c->wbuf_inodes;
71
72 if (this != &inodirty_nomem) {
73 while (this) {
74 struct jffs2_inodirty *next = this->next;
75 kfree(this);
76 this = next;
77 }
78 }
79 c->wbuf_inodes = NULL;
80}
81
82static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
83{
84 struct jffs2_inodirty *new;
85
86 /* Mark the superblock dirty so that kupdated will flush... */
64a5c2eb 87 jffs2_dirty_trigger(c);
1da177e4
LT
88
89 if (jffs2_wbuf_pending_for_ino(c, ino))
90 return;
91
92 new = kmalloc(sizeof(*new), GFP_KERNEL);
93 if (!new) {
94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 jffs2_clear_wbuf_ino_list(c);
96 c->wbuf_inodes = &inodirty_nomem;
97 return;
98 }
99 new->ino = ino;
100 new->next = c->wbuf_inodes;
101 c->wbuf_inodes = new;
102 return;
103}
104
105static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
106{
107 struct list_head *this, *next;
108 static int n;
109
110 if (list_empty(&c->erasable_pending_wbuf_list))
111 return;
112
113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115
116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 list_del(this);
118 if ((jiffies + (n++)) & 127) {
119 /* Most of the time, we just erase it immediately. Otherwise we
120 spend ages scanning it on mount, etc. */
121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 list_add_tail(&jeb->list, &c->erase_pending_list);
123 c->nr_erasing_blocks++;
ae3b6ba0 124 jffs2_garbage_collect_trigger(c);
1da177e4
LT
125 } else {
126 /* Sometimes, however, we leave it elsewhere so it doesn't get
127 immediately reused, and we spread the load a bit. */
128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 list_add_tail(&jeb->list, &c->erasable_list);
130 }
131 }
132}
133
7f716cf3
EH
134#define REFILE_NOTEMPTY 0
135#define REFILE_ANYWAY 1
136
137static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
138{
139 D1(printk("About to refile bad block at %08x\n", jeb->offset));
140
1da177e4
LT
141 /* File the existing block on the bad_used_list.... */
142 if (c->nextblock == jeb)
143 c->nextblock = NULL;
144 else /* Not sure this should ever happen... need more coffee */
145 list_del(&jeb->list);
146 if (jeb->first_node) {
147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 list_add(&jeb->list, &c->bad_used_list);
149 } else {
9b88f473 150 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
151 /* It has to have had some nodes or we couldn't be here */
152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 list_add(&jeb->list, &c->erase_pending_list);
154 c->nr_erasing_blocks++;
ae3b6ba0 155 jffs2_garbage_collect_trigger(c);
1da177e4 156 }
1da177e4 157
9bfeb691
DW
158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 uint32_t oldfree = jeb->free_size;
160
161 jffs2_link_node_ref(c, jeb,
162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 oldfree, NULL);
164 /* convert to wasted */
165 c->wasted_size += oldfree;
166 jeb->wasted_size += oldfree;
167 c->dirty_size -= oldfree;
168 jeb->dirty_size -= oldfree;
169 }
1da177e4 170
e0c8e42f
AB
171 jffs2_dbg_dump_block_lists_nolock(c);
172 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4
LT
174}
175
9bfeb691
DW
176static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 struct jffs2_inode_info *f,
178 struct jffs2_raw_node_ref *raw,
179 union jffs2_node_union *node)
180{
181 struct jffs2_node_frag *frag;
182 struct jffs2_full_dirent *fd;
183
184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
186
187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 je16_to_cpu(node->u.magic) != 0);
189
190 switch (je16_to_cpu(node->u.nodetype)) {
191 case JFFS2_NODETYPE_INODE:
ddc58bd6
DW
192 if (f->metadata && f->metadata->raw == raw) {
193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 return &f->metadata->raw;
195 }
9bfeb691
DW
196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 BUG_ON(!frag);
198 /* Find a frag which refers to the full_dnode we want to modify */
199 while (!frag->node || frag->node->raw != raw) {
200 frag = frag_next(frag);
201 BUG_ON(!frag);
202 }
203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 return &frag->node->raw;
9bfeb691
DW
205
206 case JFFS2_NODETYPE_DIRENT:
207 for (fd = f->dents; fd; fd = fd->next) {
208 if (fd->raw == raw) {
209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 return &fd->raw;
211 }
212 }
213 BUG();
ddc58bd6 214
9bfeb691
DW
215 default:
216 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 je16_to_cpu(node->u.nodetype));
218 break;
219 }
220 return NULL;
221}
222
a6bc432e
DW
223#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
224static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
225 uint32_t ofs)
226{
227 int ret;
228 size_t retlen;
229 char *eccstr;
230
329ad399 231 ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
a6bc432e
DW
232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
234 return ret;
235 } else if (retlen != c->wbuf_pagesize) {
236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
237 return -EIO;
238 }
239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
240 return 0;
241
242 if (ret == -EUCLEAN)
243 eccstr = "corrected";
244 else if (ret == -EBADMSG)
245 eccstr = "correction failed";
246 else
247 eccstr = "OK or unused";
248
249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
250 eccstr, c->wbuf_ofs);
251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
252 c->wbuf, c->wbuf_pagesize, 0);
253
254 printk(KERN_WARNING "Read back:\n");
255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
256 c->wbuf_verify, c->wbuf_pagesize, 0);
257
258 return -EIO;
259}
260#else
261#define jffs2_verify_write(c,b,o) (0)
262#endif
263
1da177e4
LT
264/* Recover from failure to write wbuf. Recover the nodes up to the
265 * wbuf, not the one which we were starting to try to write. */
266
267static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
268{
269 struct jffs2_eraseblock *jeb, *new_jeb;
9bfeb691 270 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
1da177e4
LT
271 size_t retlen;
272 int ret;
9bfeb691 273 int nr_refile = 0;
1da177e4
LT
274 unsigned char *buf;
275 uint32_t start, end, ofs, len;
276
046b8b98
DW
277 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
278
1da177e4 279 spin_lock(&c->erase_completion_lock);
180bfb31
VW
280 if (c->wbuf_ofs % c->mtd->erasesize)
281 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
282 else
283 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
9bfeb691
DW
284 spin_unlock(&c->erase_completion_lock);
285
286 BUG_ON(!ref_obsolete(jeb->last_node));
1da177e4
LT
287
288 /* Find the first node to be recovered, by skipping over every
289 node which ends before the wbuf starts, or which is obsolete. */
9bfeb691
DW
290 for (next = raw = jeb->first_node; next; raw = next) {
291 next = ref_next(raw);
292
293 if (ref_obsolete(raw) ||
294 (next && ref_offset(next) <= c->wbuf_ofs)) {
295 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
296 ref_offset(raw), ref_flags(raw),
297 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
298 c->wbuf_ofs);
299 continue;
300 }
301 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
302 ref_offset(raw), ref_flags(raw),
303 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
304
305 first_raw = raw;
306 break;
307 }
308
309 if (!first_raw) {
1da177e4
LT
310 /* All nodes were obsolete. Nothing to recover. */
311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
9bfeb691 312 c->wbuf_len = 0;
1da177e4
LT
313 return;
314 }
315
9bfeb691
DW
316 start = ref_offset(first_raw);
317 end = ref_offset(jeb->last_node);
318 nr_refile = 1;
1da177e4 319
9bfeb691
DW
320 /* Count the number of refs which need to be copied */
321 while ((raw = ref_next(raw)) != jeb->last_node)
322 nr_refile++;
1da177e4 323
9bfeb691
DW
324 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
1da177e4
LT
326
327 buf = NULL;
328 if (start < c->wbuf_ofs) {
329 /* First affected node was already partially written.
330 * Attempt to reread the old data into our buffer. */
331
332 buf = kmalloc(end - start, GFP_KERNEL);
333 if (!buf) {
334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
335
336 goto read_failed;
337 }
338
339 /* Do the read... */
329ad399
AB
340 ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
341 buf);
182ec4ee 342
9a1fcdfd
TG
343 /* ECC recovered ? */
344 if ((ret == -EUCLEAN || ret == -EBADMSG) &&
345 (retlen == c->wbuf_ofs - start))
1da177e4 346 ret = 0;
9a1fcdfd 347
1da177e4
LT
348 if (ret || retlen != c->wbuf_ofs - start) {
349 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
350
351 kfree(buf);
352 buf = NULL;
353 read_failed:
9bfeb691
DW
354 first_raw = ref_next(first_raw);
355 nr_refile--;
356 while (first_raw && ref_obsolete(first_raw)) {
357 first_raw = ref_next(first_raw);
358 nr_refile--;
359 }
360
1da177e4 361 /* If this was the only node to be recovered, give up */
9bfeb691
DW
362 if (!first_raw) {
363 c->wbuf_len = 0;
1da177e4 364 return;
9bfeb691 365 }
1da177e4
LT
366
367 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
9bfeb691
DW
368 start = ref_offset(first_raw);
369 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
370 start, end, end - start, nr_refile);
371
1da177e4
LT
372 } else {
373 /* Read succeeded. Copy the remaining data from the wbuf */
374 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
375 }
376 }
377 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
378 Either 'buf' contains the data, or we find it in the wbuf */
379
1da177e4 380 /* ... and get an allocation of space from a shiny new block instead */
9fe4854c 381 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
1da177e4
LT
382 if (ret) {
383 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 384 kfree(buf);
1da177e4
LT
385 return;
386 }
9bfeb691 387
7f762ab2
AH
388 /* The summary is not recovered, so it must be disabled for this erase block */
389 jffs2_sum_disable_collecting(c->summary);
390
9bfeb691
DW
391 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
392 if (ret) {
393 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
394 kfree(buf);
395 return;
396 }
397
9fe4854c
DW
398 ofs = write_ofs(c);
399
1da177e4 400 if (end-start >= c->wbuf_pagesize) {
7f716cf3 401 /* Need to do another write immediately, but it's possible
9b88f473 402 that this is just because the wbuf itself is completely
182ec4ee
TG
403 full, and there's nothing earlier read back from the
404 flash. Hence 'buf' isn't necessarily what we're writing
9b88f473 405 from. */
7f716cf3 406 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
407 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
408
409 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
410 towrite, ofs));
182ec4ee 411
1da177e4
LT
412#ifdef BREAKMEHEADER
413 static int breakme;
414 if (breakme++ == 20) {
415 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
416 breakme = 0;
eda95cbf 417 mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
1da177e4
LT
418 ret = -EIO;
419 } else
420#endif
eda95cbf
AB
421 ret = mtd_write(c->mtd, ofs, towrite, &retlen,
422 rewrite_buf);
1da177e4 423
a6bc432e 424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
1da177e4
LT
425 /* Argh. We tried. Really we did. */
426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 427 kfree(buf);
1da177e4 428
2f785402 429 if (retlen)
9bfeb691 430 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
1da177e4 431
1da177e4
LT
432 return;
433 }
434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
435
436 c->wbuf_len = (end - start) - towrite;
437 c->wbuf_ofs = ofs + towrite;
7f716cf3 438 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 439 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
1da177e4
LT
440 } else {
441 /* OK, now we're left with the dregs in whichever buffer we're using */
442 if (buf) {
443 memcpy(c->wbuf, buf, end-start);
1da177e4
LT
444 } else {
445 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
446 }
447 c->wbuf_ofs = ofs;
448 c->wbuf_len = end - start;
449 }
450
451 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
452 new_jeb = &c->blocks[ofs / c->sector_size];
453
454 spin_lock(&c->erase_completion_lock);
9bfeb691
DW
455 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
456 uint32_t rawlen = ref_totlen(c, jeb, raw);
457 struct jffs2_inode_cache *ic;
458 struct jffs2_raw_node_ref *new_ref;
459 struct jffs2_raw_node_ref **adjust_ref = NULL;
460 struct jffs2_inode_info *f = NULL;
1da177e4
LT
461
462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
9bfeb691
DW
463 rawlen, ref_offset(raw), ref_flags(raw), ofs));
464
465 ic = jffs2_raw_ref_to_ic(raw);
466
467 /* Ick. This XATTR mess should be fixed shortly... */
468 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
469 struct jffs2_xattr_datum *xd = (void *)ic;
470 BUG_ON(xd->node != raw);
471 adjust_ref = &xd->node;
472 raw->next_in_ino = NULL;
473 ic = NULL;
474 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
475 struct jffs2_xattr_datum *xr = (void *)ic;
476 BUG_ON(xr->node != raw);
477 adjust_ref = &xr->node;
478 raw->next_in_ino = NULL;
479 ic = NULL;
480 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
481 struct jffs2_raw_node_ref **p = &ic->nodes;
482
483 /* Remove the old node from the per-inode list */
484 while (*p && *p != (void *)ic) {
485 if (*p == raw) {
486 (*p) = (raw->next_in_ino);
487 raw->next_in_ino = NULL;
488 break;
489 }
490 p = &((*p)->next_in_ino);
491 }
1da177e4 492
9bfeb691
DW
493 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
494 /* If it's an in-core inode, then we have to adjust any
495 full_dirent or full_dnode structure to point to the
496 new version instead of the old */
27c72b04 497 f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
9bfeb691
DW
498 if (IS_ERR(f)) {
499 /* Should never happen; it _must_ be present */
500 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
501 ic->ino, PTR_ERR(f));
502 BUG();
503 }
504 /* We don't lock f->sem. There's a number of ways we could
505 end up in here with it already being locked, and nobody's
506 going to modify it on us anyway because we hold the
507 alloc_sem. We're only changing one ->raw pointer too,
508 which we can get away with without upsetting readers. */
509 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
510 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
511 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
512 ic->state != INO_STATE_CHECKEDABSENT &&
513 ic->state != INO_STATE_GC)) {
514 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
515 BUG();
516 }
517 }
518
519 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
520
521 if (adjust_ref) {
522 BUG_ON(*adjust_ref != raw);
523 *adjust_ref = new_ref;
524 }
525 if (f)
526 jffs2_gc_release_inode(c, f);
527
528 if (!ref_obsolete(raw)) {
1da177e4
LT
529 jeb->dirty_size += rawlen;
530 jeb->used_size -= rawlen;
531 c->dirty_size += rawlen;
9bfeb691
DW
532 c->used_size -= rawlen;
533 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
534 BUG_ON(raw->next_in_ino);
1da177e4 535 }
1da177e4 536 ofs += rawlen;
1da177e4
LT
537 }
538
9bfeb691
DW
539 kfree(buf);
540
1da177e4 541 /* Fix up the original jeb now it's on the bad_list */
9bfeb691 542 if (first_raw == jeb->first_node) {
1da177e4 543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
f116629d 544 list_move(&jeb->list, &c->erase_pending_list);
1da177e4 545 c->nr_erasing_blocks++;
ae3b6ba0 546 jffs2_garbage_collect_trigger(c);
1da177e4 547 }
1da177e4 548
e0c8e42f 549 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
9bfeb691 550 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4 551
e0c8e42f 552 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
9bfeb691 553 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
1da177e4
LT
554
555 spin_unlock(&c->erase_completion_lock);
556
9bfeb691
DW
557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
558
1da177e4
LT
559}
560
561/* Meaning of pad argument:
562 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
563 1: Pad, do not adjust nextblock free_size
564 2: Pad, adjust nextblock free_size
565*/
566#define NOPAD 0
567#define PAD_NOACCOUNT 1
568#define PAD_ACCOUNTING 2
569
570static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
571{
9bfeb691 572 struct jffs2_eraseblock *wbuf_jeb;
1da177e4
LT
573 int ret;
574 size_t retlen;
575
3be36675 576 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
1da177e4 577 del_timer() the timer we never initialised. */
3be36675 578 if (!jffs2_is_writebuffered(c))
1da177e4
LT
579 return 0;
580
51b11e36 581 if (!mutex_is_locked(&c->alloc_sem)) {
1da177e4
LT
582 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
583 BUG();
584 }
585
3be36675 586 if (!c->wbuf_len) /* already checked c->wbuf above */
1da177e4
LT
587 return 0;
588
9bfeb691
DW
589 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
590 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
2f785402
DW
591 return -ENOMEM;
592
1da177e4
LT
593 /* claim remaining space on the page
594 this happens, if we have a change to a new block,
595 or if fsync forces us to flush the writebuffer.
596 if we have a switch to next page, we will not have
182ec4ee 597 enough remaining space for this.
1da177e4 598 */
daba5cc4 599 if (pad ) {
1da177e4
LT
600 c->wbuf_len = PAD(c->wbuf_len);
601
602 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
603 with 8 byte page size */
604 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
182ec4ee 605
1da177e4
LT
606 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
607 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
608 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
609 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
610 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
611 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
612 }
613 }
614 /* else jffs2_flash_writev has actually filled in the rest of the
615 buffer for us, and will deal with the node refs etc. later. */
182ec4ee 616
1da177e4
LT
617#ifdef BREAKME
618 static int breakme;
619 if (breakme++ == 20) {
620 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
621 breakme = 0;
eda95cbf
AB
622 mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
623 brokenbuf);
1da177e4 624 ret = -EIO;
182ec4ee 625 } else
1da177e4 626#endif
182ec4ee 627
eda95cbf
AB
628 ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
629 &retlen, c->wbuf);
1da177e4 630
a6bc432e
DW
631 if (ret) {
632 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
633 goto wfail;
634 } else if (retlen != c->wbuf_pagesize) {
635 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
636 retlen, c->wbuf_pagesize);
637 ret = -EIO;
638 goto wfail;
639 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
640 wfail:
1da177e4
LT
641 jffs2_wbuf_recover(c);
642
643 return ret;
644 }
645
1da177e4 646 /* Adjust free size of the block if we padded. */
daba5cc4 647 if (pad) {
0bcc099d 648 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
1da177e4 649
1da177e4 650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
9bfeb691 651 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
1da177e4 652
182ec4ee 653 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
1da177e4
LT
654 padded. If there is less free space in the block than that,
655 something screwed up */
9bfeb691 656 if (wbuf_jeb->free_size < waste) {
1da177e4 657 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
0bcc099d 658 c->wbuf_ofs, c->wbuf_len, waste);
1da177e4 659 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
9bfeb691 660 wbuf_jeb->offset, wbuf_jeb->free_size);
1da177e4
LT
661 BUG();
662 }
0bcc099d
DW
663
664 spin_lock(&c->erase_completion_lock);
665
9bfeb691 666 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
0bcc099d 667 /* FIXME: that made it count as dirty. Convert to wasted */
9bfeb691 668 wbuf_jeb->dirty_size -= waste;
0bcc099d 669 c->dirty_size -= waste;
9bfeb691 670 wbuf_jeb->wasted_size += waste;
0bcc099d
DW
671 c->wasted_size += waste;
672 } else
673 spin_lock(&c->erase_completion_lock);
1da177e4
LT
674
675 /* Stick any now-obsoleted blocks on the erase_pending_list */
676 jffs2_refile_wbuf_blocks(c);
677 jffs2_clear_wbuf_ino_list(c);
678 spin_unlock(&c->erase_completion_lock);
679
680 memset(c->wbuf,0xff,c->wbuf_pagesize);
681 /* adjust write buffer offset, else we get a non contiguous write bug */
5bf17237 682 c->wbuf_ofs += c->wbuf_pagesize;
1da177e4
LT
683 c->wbuf_len = 0;
684 return 0;
685}
686
182ec4ee 687/* Trigger garbage collection to flush the write-buffer.
1da177e4 688 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
182ec4ee 689 outstanding. If ino arg non-zero, do it only if a write for the
1da177e4
LT
690 given inode is outstanding. */
691int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
692{
693 uint32_t old_wbuf_ofs;
694 uint32_t old_wbuf_len;
695 int ret = 0;
696
697 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
698
8aee6ac1
DW
699 if (!c->wbuf)
700 return 0;
701
ced22070 702 mutex_lock(&c->alloc_sem);
1da177e4
LT
703 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
704 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
ced22070 705 mutex_unlock(&c->alloc_sem);
1da177e4
LT
706 return 0;
707 }
708
709 old_wbuf_ofs = c->wbuf_ofs;
710 old_wbuf_len = c->wbuf_len;
711
712 if (c->unchecked_size) {
713 /* GC won't make any progress for a while */
714 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
715 down_write(&c->wbuf_sem);
716 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
717 /* retry flushing wbuf in case jffs2_wbuf_recover
718 left some data in the wbuf */
719 if (ret)
7f716cf3 720 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
721 up_write(&c->wbuf_sem);
722 } else while (old_wbuf_len &&
723 old_wbuf_ofs == c->wbuf_ofs) {
724
ced22070 725 mutex_unlock(&c->alloc_sem);
1da177e4
LT
726
727 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
728
729 ret = jffs2_garbage_collect_pass(c);
730 if (ret) {
731 /* GC failed. Flush it with padding instead */
ced22070 732 mutex_lock(&c->alloc_sem);
1da177e4
LT
733 down_write(&c->wbuf_sem);
734 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
735 /* retry flushing wbuf in case jffs2_wbuf_recover
736 left some data in the wbuf */
737 if (ret)
7f716cf3 738 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
739 up_write(&c->wbuf_sem);
740 break;
741 }
ced22070 742 mutex_lock(&c->alloc_sem);
1da177e4
LT
743 }
744
745 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
746
ced22070 747 mutex_unlock(&c->alloc_sem);
1da177e4
LT
748 return ret;
749}
750
751/* Pad write-buffer to end and write it, wasting space. */
752int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
753{
754 int ret;
755
8aee6ac1
DW
756 if (!c->wbuf)
757 return 0;
758
1da177e4
LT
759 down_write(&c->wbuf_sem);
760 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
761 /* retry - maybe wbuf recover left some data in wbuf. */
762 if (ret)
763 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
764 up_write(&c->wbuf_sem);
765
766 return ret;
767}
dcb09328
TG
768
769static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
770 size_t len)
1da177e4 771{
dcb09328
TG
772 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
773 return 0;
774
775 if (len > (c->wbuf_pagesize - c->wbuf_len))
776 len = c->wbuf_pagesize - c->wbuf_len;
777 memcpy(c->wbuf + c->wbuf_len, buf, len);
778 c->wbuf_len += (uint32_t) len;
779 return len;
780}
781
782int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
783 unsigned long count, loff_t to, size_t *retlen,
784 uint32_t ino)
785{
786 struct jffs2_eraseblock *jeb;
787 size_t wbuf_retlen, donelen = 0;
1da177e4 788 uint32_t outvec_to = to;
dcb09328 789 int ret, invec;
1da177e4 790
dcb09328 791 /* If not writebuffered flash, don't bother */
3be36675 792 if (!jffs2_is_writebuffered(c))
1da177e4 793 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
182ec4ee 794
1da177e4
LT
795 down_write(&c->wbuf_sem);
796
797 /* If wbuf_ofs is not initialized, set it to target address */
798 if (c->wbuf_ofs == 0xFFFFFFFF) {
799 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee 800 c->wbuf_len = PAGE_MOD(to);
1da177e4
LT
801 memset(c->wbuf,0xff,c->wbuf_pagesize);
802 }
803
dcb09328
TG
804 /*
805 * Sanity checks on target address. It's permitted to write
806 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
807 * write at the beginning of a new erase block. Anything else,
808 * and you die. New block starts at xxx000c (0-b = block
809 * header)
810 */
3be36675 811 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
1da177e4
LT
812 /* It's a write to a new block */
813 if (c->wbuf_len) {
dcb09328
TG
814 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
815 "causes flush of wbuf at 0x%08x\n",
816 (unsigned long)to, c->wbuf_ofs));
1da177e4 817 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
dcb09328
TG
818 if (ret)
819 goto outerr;
1da177e4
LT
820 }
821 /* set pointer to new block */
822 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee
TG
823 c->wbuf_len = PAGE_MOD(to);
824 }
1da177e4
LT
825
826 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
827 /* We're not writing immediately after the writebuffer. Bad. */
dcb09328
TG
828 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
829 "to %08lx\n", (unsigned long)to);
1da177e4
LT
830 if (c->wbuf_len)
831 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
dcb09328 832 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
1da177e4
LT
833 BUG();
834 }
835
dcb09328
TG
836 /* adjust alignment offset */
837 if (c->wbuf_len != PAGE_MOD(to)) {
838 c->wbuf_len = PAGE_MOD(to);
839 /* take care of alignment to next page */
840 if (!c->wbuf_len) {
841 c->wbuf_len = c->wbuf_pagesize;
842 ret = __jffs2_flush_wbuf(c, NOPAD);
843 if (ret)
844 goto outerr;
1da177e4
LT
845 }
846 }
847
dcb09328
TG
848 for (invec = 0; invec < count; invec++) {
849 int vlen = invecs[invec].iov_len;
850 uint8_t *v = invecs[invec].iov_base;
7f716cf3 851
dcb09328 852 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
7f716cf3 853
dcb09328
TG
854 if (c->wbuf_len == c->wbuf_pagesize) {
855 ret = __jffs2_flush_wbuf(c, NOPAD);
856 if (ret)
857 goto outerr;
1da177e4 858 }
dcb09328
TG
859 vlen -= wbuf_retlen;
860 outvec_to += wbuf_retlen;
1da177e4 861 donelen += wbuf_retlen;
dcb09328
TG
862 v += wbuf_retlen;
863
864 if (vlen >= c->wbuf_pagesize) {
eda95cbf
AB
865 ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
866 &wbuf_retlen, v);
dcb09328
TG
867 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
868 goto outfile;
869
870 vlen -= wbuf_retlen;
871 outvec_to += wbuf_retlen;
872 c->wbuf_ofs = outvec_to;
873 donelen += wbuf_retlen;
874 v += wbuf_retlen;
1da177e4
LT
875 }
876
dcb09328
TG
877 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
878 if (c->wbuf_len == c->wbuf_pagesize) {
879 ret = __jffs2_flush_wbuf(c, NOPAD);
880 if (ret)
881 goto outerr;
882 }
1da177e4 883
dcb09328
TG
884 outvec_to += wbuf_retlen;
885 donelen += wbuf_retlen;
1da177e4 886 }
1da177e4 887
dcb09328
TG
888 /*
889 * If there's a remainder in the wbuf and it's a non-GC write,
890 * remember that the wbuf affects this ino
891 */
1da177e4
LT
892 *retlen = donelen;
893
e631ddba
FH
894 if (jffs2_sum_active()) {
895 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
896 if (res)
897 return res;
898 }
899
1da177e4
LT
900 if (c->wbuf_len && ino)
901 jffs2_wbuf_dirties_inode(c, ino);
902
903 ret = 0;
dcb09328
TG
904 up_write(&c->wbuf_sem);
905 return ret;
906
907outfile:
908 /*
909 * At this point we have no problem, c->wbuf is empty. However
910 * refile nextblock to avoid writing again to same address.
911 */
912
913 spin_lock(&c->erase_completion_lock);
914
915 jeb = &c->blocks[outvec_to / c->sector_size];
916 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
917
918 spin_unlock(&c->erase_completion_lock);
182ec4ee 919
dcb09328
TG
920outerr:
921 *retlen = 0;
1da177e4
LT
922 up_write(&c->wbuf_sem);
923 return ret;
924}
925
926/*
927 * This is the entry for flash write.
928 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
929*/
9bfeb691
DW
930int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
931 size_t *retlen, const u_char *buf)
1da177e4
LT
932{
933 struct kvec vecs[1];
934
3be36675 935 if (!jffs2_is_writebuffered(c))
e631ddba 936 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
1da177e4
LT
937
938 vecs[0].iov_base = (unsigned char *) buf;
939 vecs[0].iov_len = len;
940 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
941}
942
943/*
944 Handle readback from writebuffer and ECC failure return
945*/
946int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
947{
948 loff_t orbf = 0, owbf = 0, lwbf = 0;
949 int ret;
950
3be36675 951 if (!jffs2_is_writebuffered(c))
329ad399 952 return mtd_read(c->mtd, ofs, len, retlen, buf);
1da177e4 953
3be36675 954 /* Read flash */
894214d1 955 down_read(&c->wbuf_sem);
329ad399 956 ret = mtd_read(c->mtd, ofs, len, retlen, buf);
3be36675 957
9a1fcdfd
TG
958 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
959 if (ret == -EBADMSG)
960 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
961 " returned ECC error\n", len, ofs);
182ec4ee 962 /*
9a1fcdfd
TG
963 * We have the raw data without ECC correction in the buffer,
964 * maybe we are lucky and all data or parts are correct. We
965 * check the node. If data are corrupted node check will sort
966 * it out. We keep this block, it will fail on write or erase
967 * and the we mark it bad. Or should we do that now? But we
968 * should give him a chance. Maybe we had a system crash or
969 * power loss before the ecc write or a erase was completed.
3be36675
AV
970 * So we return success. :)
971 */
9a1fcdfd 972 ret = 0;
182ec4ee 973 }
3be36675 974
1da177e4
LT
975 /* if no writebuffer available or write buffer empty, return */
976 if (!c->wbuf_pagesize || !c->wbuf_len)
894214d1 977 goto exit;
1da177e4
LT
978
979 /* if we read in a different block, return */
3be36675 980 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
894214d1 981 goto exit;
1da177e4
LT
982
983 if (ofs >= c->wbuf_ofs) {
984 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
985 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
986 goto exit;
987 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
182ec4ee 988 if (lwbf > len)
1da177e4 989 lwbf = len;
182ec4ee 990 } else {
1da177e4
LT
991 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
992 if (orbf > len) /* is write beyond write buffer ? */
993 goto exit;
9a1fcdfd 994 lwbf = len - orbf; /* number of bytes to copy */
182ec4ee 995 if (lwbf > c->wbuf_len)
1da177e4 996 lwbf = c->wbuf_len;
182ec4ee 997 }
1da177e4
LT
998 if (lwbf > 0)
999 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1000
1001exit:
1002 up_read(&c->wbuf_sem);
1003 return ret;
1004}
1005
a7a6ace1
AB
1006#define NR_OOB_SCAN_PAGES 4
1007
09b3fba5
DW
1008/* For historical reasons we use only 8 bytes for OOB clean marker */
1009#define OOB_CM_SIZE 8
a7a6ace1
AB
1010
1011static const struct jffs2_unknown_node oob_cleanmarker =
1012{
566865a2
DW
1013 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1014 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1015 .totlen = constant_cpu_to_je32(8)
a7a6ace1 1016};
8593fbc6 1017
1da177e4 1018/*
a7a6ace1
AB
1019 * Check, if the out of band area is empty. This function knows about the clean
1020 * marker and if it is present in OOB, treats the OOB as empty anyway.
1da177e4 1021 */
8593fbc6
TG
1022int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1023 struct jffs2_eraseblock *jeb, int mode)
1da177e4 1024{
a7a6ace1
AB
1025 int i, ret;
1026 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
8593fbc6
TG
1027 struct mtd_oob_ops ops;
1028
0612b9dd 1029 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1 1030 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
8593fbc6 1031 ops.oobbuf = c->oobbuf;
a7a6ace1 1032 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1033 ops.datbuf = NULL;
8593fbc6 1034
fd2819bb 1035 ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1036 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1037 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1038 " bytes, read %zd bytes, error %d\n",
1039 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1040 if (!ret)
1041 ret = -EIO;
8593fbc6 1042 return ret;
1da177e4 1043 }
182ec4ee 1044
a7a6ace1
AB
1045 for(i = 0; i < ops.ooblen; i++) {
1046 if (mode && i < cmlen)
1047 /* Yeah, we know about the cleanmarker */
1da177e4
LT
1048 continue;
1049
8593fbc6
TG
1050 if (ops.oobbuf[i] != 0xFF) {
1051 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1052 "%08x\n", ops.oobbuf[i], i, jeb->offset));
1053 return 1;
1da177e4
LT
1054 }
1055 }
1056
8593fbc6 1057 return 0;
1da177e4
LT
1058}
1059
1060/*
a7a6ace1
AB
1061 * Check for a valid cleanmarker.
1062 * Returns: 0 if a valid cleanmarker was found
ef53cb02
DW
1063 * 1 if no cleanmarker was found
1064 * negative error code if an error occurred
8593fbc6 1065 */
a7a6ace1
AB
1066int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1067 struct jffs2_eraseblock *jeb)
1da177e4 1068{
8593fbc6 1069 struct mtd_oob_ops ops;
a7a6ace1 1070 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1071
0612b9dd 1072 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1 1073 ops.ooblen = cmlen;
8593fbc6 1074 ops.oobbuf = c->oobbuf;
a7a6ace1 1075 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1076 ops.datbuf = NULL;
1da177e4 1077
fd2819bb 1078 ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1079 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1080 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1081 " bytes, read %zd bytes, error %d\n",
1082 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1083 if (!ret)
1084 ret = -EIO;
8593fbc6
TG
1085 return ret;
1086 }
1da177e4 1087
a7a6ace1 1088 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1da177e4
LT
1089}
1090
8593fbc6
TG
1091int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1092 struct jffs2_eraseblock *jeb)
1da177e4 1093{
a7a6ace1 1094 int ret;
8593fbc6 1095 struct mtd_oob_ops ops;
a7a6ace1 1096 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1da177e4 1097
0612b9dd 1098 ops.mode = MTD_OPS_AUTO_OOB;
a7a6ace1
AB
1099 ops.ooblen = cmlen;
1100 ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1101 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
8593fbc6 1102 ops.datbuf = NULL;
8593fbc6 1103
a2cc5ba0 1104 ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
a7a6ace1 1105 if (ret || ops.oobretlen != ops.ooblen) {
7be26bfb
AM
1106 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1107 " bytes, read %zd bytes, error %d\n",
1108 jeb->offset, ops.ooblen, ops.oobretlen, ret);
a7a6ace1
AB
1109 if (!ret)
1110 ret = -EIO;
1da177e4
LT
1111 return ret;
1112 }
a7a6ace1 1113
1da177e4
LT
1114 return 0;
1115}
1116
182ec4ee 1117/*
1da177e4 1118 * On NAND we try to mark this block bad. If the block was erased more
25985edc 1119 * than MAX_ERASE_FAILURES we mark it finally bad.
1da177e4
LT
1120 * Don't care about failures. This block remains on the erase-pending
1121 * or badblock list as long as nobody manipulates the flash with
1122 * a bootloader or something like that.
1123 */
1124
1125int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1126{
1127 int ret;
1128
1129 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1130 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1131 return 0;
1132
0feba829 1133 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
5942ddbc 1134 ret = mtd_block_markbad(c->mtd, bad_offset);
182ec4ee 1135
1da177e4
LT
1136 if (ret) {
1137 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1138 return ret;
1139 }
1140 return 1;
1141}
1142
a7a6ace1 1143int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1da177e4 1144{
5bd34c09 1145 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1da177e4 1146
1da177e4
LT
1147 if (!c->mtd->oobsize)
1148 return 0;
182ec4ee 1149
1da177e4
LT
1150 /* Cleanmarker is out-of-band, so inline size zero */
1151 c->cleanmarker_size = 0;
1152
a7a6ace1
AB
1153 if (!oinfo || oinfo->oobavail == 0) {
1154 printk(KERN_ERR "inconsistent device description\n");
5bd34c09
TG
1155 return -EINVAL;
1156 }
182ec4ee 1157
a7a6ace1 1158 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
5bd34c09 1159
a7a6ace1 1160 c->oobavail = oinfo->oobavail;
1da177e4
LT
1161
1162 /* Initialise write buffer */
1163 init_rwsem(&c->wbuf_sem);
28318776 1164 c->wbuf_pagesize = c->mtd->writesize;
1da177e4 1165 c->wbuf_ofs = 0xFFFFFFFF;
182ec4ee 1166
1da177e4
LT
1167 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1168 if (!c->wbuf)
1169 return -ENOMEM;
1170
a7a6ace1
AB
1171 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1172 if (!c->oobbuf) {
1da177e4
LT
1173 kfree(c->wbuf);
1174 return -ENOMEM;
1175 }
a7a6ace1 1176
a6bc432e
DW
1177#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1178 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1179 if (!c->wbuf_verify) {
1180 kfree(c->oobbuf);
1181 kfree(c->wbuf);
1182 return -ENOMEM;
1183 }
1184#endif
a7a6ace1 1185 return 0;
1da177e4
LT
1186}
1187
1188void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1189{
a6bc432e
DW
1190#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1191 kfree(c->wbuf_verify);
1192#endif
1da177e4 1193 kfree(c->wbuf);
8593fbc6 1194 kfree(c->oobbuf);
1da177e4
LT
1195}
1196
8f15fd55
AV
1197int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1198 c->cleanmarker_size = 0; /* No cleanmarkers needed */
182ec4ee 1199
8f15fd55
AV
1200 /* Initialize write buffer */
1201 init_rwsem(&c->wbuf_sem);
8f15fd55 1202
182ec4ee 1203
daba5cc4 1204 c->wbuf_pagesize = c->mtd->erasesize;
182ec4ee 1205
daba5cc4
AB
1206 /* Find a suitable c->sector_size
1207 * - Not too much sectors
1208 * - Sectors have to be at least 4 K + some bytes
1209 * - All known dataflashes have erase sizes of 528 or 1056
1210 * - we take at least 8 eraseblocks and want to have at least 8K size
1211 * - The concatenation should be a power of 2
1212 */
1213
1214 c->sector_size = 8 * c->mtd->erasesize;
182ec4ee 1215
daba5cc4
AB
1216 while (c->sector_size < 8192) {
1217 c->sector_size *= 2;
1218 }
182ec4ee 1219
daba5cc4
AB
1220 /* It may be necessary to adjust the flash size */
1221 c->flash_size = c->mtd->size;
8f15fd55 1222
daba5cc4
AB
1223 if ((c->flash_size % c->sector_size) != 0) {
1224 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1225 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1226 };
182ec4ee 1227
daba5cc4 1228 c->wbuf_ofs = 0xFFFFFFFF;
8f15fd55
AV
1229 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1230 if (!c->wbuf)
1231 return -ENOMEM;
1232
cca15841 1233#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1234 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1235 if (!c->wbuf_verify) {
1236 kfree(c->oobbuf);
1237 kfree(c->wbuf);
1238 return -ENOMEM;
1239 }
1240#endif
1241
daba5cc4 1242 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
8f15fd55
AV
1243
1244 return 0;
1245}
1246
1247void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
cca15841 1248#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1249 kfree(c->wbuf_verify);
1250#endif
8f15fd55
AV
1251 kfree(c->wbuf);
1252}
8f15fd55 1253
59da721a 1254int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
c8b229de
JE
1255 /* Cleanmarker currently occupies whole programming regions,
1256 * either one or 2 for 8Byte STMicro flashes. */
1257 c->cleanmarker_size = max(16u, c->mtd->writesize);
59da721a
NP
1258
1259 /* Initialize write buffer */
1260 init_rwsem(&c->wbuf_sem);
28318776 1261 c->wbuf_pagesize = c->mtd->writesize;
59da721a
NP
1262 c->wbuf_ofs = 0xFFFFFFFF;
1263
1264 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1265 if (!c->wbuf)
1266 return -ENOMEM;
1267
bc8cec0d
MC
1268#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1269 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1270 if (!c->wbuf_verify) {
1271 kfree(c->wbuf);
1272 return -ENOMEM;
1273 }
1274#endif
59da721a
NP
1275 return 0;
1276}
1277
1278void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
bc8cec0d
MC
1279#ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1280 kfree(c->wbuf_verify);
1281#endif
59da721a
NP
1282 kfree(c->wbuf);
1283}
0029da3b
AB
1284
1285int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1286 c->cleanmarker_size = 0;
1287
1288 if (c->mtd->writesize == 1)
1289 /* We do not need write-buffer */
1290 return 0;
1291
1292 init_rwsem(&c->wbuf_sem);
1293
1294 c->wbuf_pagesize = c->mtd->writesize;
1295 c->wbuf_ofs = 0xFFFFFFFF;
1296 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1297 if (!c->wbuf)
1298 return -ENOMEM;
1299
1300 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1301
1302 return 0;
1303}
1304
1305void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1306 kfree(c->wbuf);
1307}
This page took 0.556696 seconds and 5 git commands to generate.