Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
9acee9c5
TH
94/**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
100size_t kernfs_path_len(struct kernfs_node *kn)
101{
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115}
116
3eef34ad
TH
117/**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
128char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129{
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137}
e61734c5 138EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
139
140/**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
146void pr_cont_kernfs_name(struct kernfs_node *kn)
147{
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
164void pr_cont_kernfs_path(struct kernfs_node *kn)
165{
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179}
180
181/**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
188struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189{
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199}
200
fd7b9f7b 201/**
c637b8ac 202 * kernfs_name_hash
fd7b9f7b
TH
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
c637b8ac 208static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
209{
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 217 if (hash < 2)
fd7b9f7b
TH
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222}
223
c637b8ac
TH
224static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 226{
72392ed0
RV
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
adc5e8b5 235 return strcmp(name, kn->name);
fd7b9f7b
TH
236}
237
c637b8ac
TH
238static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
fd7b9f7b 240{
c637b8ac 241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
242}
243
244/**
c637b8ac 245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 246 * @kn: kernfs_node of interest
fd7b9f7b 247 *
324a56e1 248 * Link @kn into its sibling rbtree which starts from
adc5e8b5 249 * @kn->parent->dir.children.
fd7b9f7b
TH
250 *
251 * Locking:
a797bfc3 252 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
c637b8ac 257static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 258{
adc5e8b5 259 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
260 struct rb_node *parent = NULL;
261
fd7b9f7b 262 while (*node) {
324a56e1 263 struct kernfs_node *pos;
fd7b9f7b
TH
264 int result;
265
324a56e1 266 pos = rb_to_kn(*node);
fd7b9f7b 267 parent = *node;
c637b8ac 268 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 269 if (result < 0)
adc5e8b5 270 node = &pos->rb.rb_left;
fd7b9f7b 271 else if (result > 0)
adc5e8b5 272 node = &pos->rb.rb_right;
fd7b9f7b
TH
273 else
274 return -EEXIST;
275 }
c1befb88 276
fd7b9f7b 277 /* add new node and rebalance the tree */
adc5e8b5
TH
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
fd7b9f7b
TH
285 return 0;
286}
287
288/**
c637b8ac 289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 290 * @kn: kernfs_node of interest
fd7b9f7b 291 *
35beab06
TH
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
295 *
296 * Locking:
a797bfc3 297 * mutex_lock(kernfs_mutex)
fd7b9f7b 298 */
35beab06 299static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 300{
35beab06
TH
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
df23fc39 304 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 305 kn->parent->dir.subdirs--;
fd7b9f7b 306
adc5e8b5 307 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
fd7b9f7b
TH
310}
311
312/**
c637b8ac 313 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 314 * @kn: kernfs_node to get an active reference to
fd7b9f7b 315 *
324a56e1 316 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
317 * is NULL.
318 *
319 * RETURNS:
324a56e1 320 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 321 */
c637b8ac 322struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 323{
324a56e1 324 if (unlikely(!kn))
fd7b9f7b
TH
325 return NULL;
326
f4b3e631
GKH
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
895a068a 329
182fd64b 330 if (kernfs_lockdep(kn))
f4b3e631
GKH
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
fd7b9f7b
TH
333}
334
335/**
c637b8ac 336 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 337 * @kn: kernfs_node to put an active reference to
fd7b9f7b 338 *
324a56e1 339 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
340 * is NULL.
341 */
c637b8ac 342void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 343{
abd54f02 344 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
345 int v;
346
324a56e1 347 if (unlikely(!kn))
fd7b9f7b
TH
348 return;
349
182fd64b 350 if (kernfs_lockdep(kn))
324a56e1 351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 352 v = atomic_dec_return(&kn->active);
df23fc39 353 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
354 return;
355
abd54f02 356 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
357}
358
359/**
81c173cb
TH
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
fd7b9f7b 362 *
81c173cb
TH
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
fd7b9f7b 366 */
81c173cb 367static void kernfs_drain(struct kernfs_node *kn)
35beab06 368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 369{
abd54f02 370 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 371
35beab06 372 lockdep_assert_held(&kernfs_mutex);
81c173cb 373 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 374
35beab06 375 mutex_unlock(&kernfs_mutex);
abd54f02 376
182fd64b 377 if (kernfs_lockdep(kn)) {
35beab06
TH
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
abd54f02 382
35beab06 383 /* but everyone should wait for draining */
abd54f02
TH
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 386
182fd64b 387 if (kernfs_lockdep(kn)) {
a6607930
TH
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
35beab06 391
ccf02aaf
TH
392 kernfs_unmap_bin_file(kn);
393
35beab06 394 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
395}
396
fd7b9f7b 397/**
324a56e1
TH
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
fd7b9f7b 400 */
324a56e1 401void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 402{
324a56e1 403 if (kn) {
adc5e8b5
TH
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
fd7b9f7b
TH
406 }
407}
408EXPORT_SYMBOL_GPL(kernfs_get);
409
410/**
324a56e1
TH
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
fd7b9f7b 413 *
324a56e1 414 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 415 */
324a56e1 416void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 417{
324a56e1 418 struct kernfs_node *parent;
ba7443bc 419 struct kernfs_root *root;
fd7b9f7b 420
adc5e8b5 421 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 422 return;
324a56e1 423 root = kernfs_root(kn);
fd7b9f7b 424 repeat:
81c173cb
TH
425 /*
426 * Moving/renaming is always done while holding reference.
adc5e8b5 427 * kn->parent won't change beneath us.
fd7b9f7b 428 */
adc5e8b5 429 parent = kn->parent;
fd7b9f7b 430
81c173cb
TH
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 434
df23fc39 435 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 436 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
437
438 kfree_const(kn->name);
439
adc5e8b5
TH
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 445 }
adc5e8b5
TH
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 448 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 449
324a56e1
TH
450 kn = parent;
451 if (kn) {
adc5e8b5 452 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
453 goto repeat;
454 } else {
324a56e1 455 /* just released the root kn, free @root too */
bc755553 456 ida_destroy(&root->ino_ida);
ba7443bc
TH
457 kfree(root);
458 }
fd7b9f7b
TH
459}
460EXPORT_SYMBOL_GPL(kernfs_put);
461
c637b8ac 462static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 463{
324a56e1 464 struct kernfs_node *kn;
fd7b9f7b
TH
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
19bbb926 469 /* Always perform fresh lookup for negatives */
2b0143b5 470 if (d_really_is_negative(dentry))
19bbb926
TH
471 goto out_bad_unlocked;
472
324a56e1 473 kn = dentry->d_fsdata;
a797bfc3 474 mutex_lock(&kernfs_mutex);
fd7b9f7b 475
81c173cb
TH
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
fd7b9f7b
TH
478 goto out_bad;
479
c637b8ac 480 /* The kernfs node has been moved? */
adc5e8b5 481 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
482 goto out_bad;
483
c637b8ac 484 /* The kernfs node has been renamed */
adc5e8b5 485 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
486 goto out_bad;
487
c637b8ac 488 /* The kernfs node has been moved to a different namespace */
adc5e8b5 489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 490 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
491 goto out_bad;
492
a797bfc3 493 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
494 return 1;
495out_bad:
a797bfc3 496 mutex_unlock(&kernfs_mutex);
19bbb926 497out_bad_unlocked:
fd7b9f7b
TH
498 return 0;
499}
500
c637b8ac 501static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
502{
503 kernfs_put(dentry->d_fsdata);
504}
505
a797bfc3 506const struct dentry_operations kernfs_dops = {
c637b8ac 507 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 508 .d_release = kernfs_dop_release,
fd7b9f7b
TH
509};
510
0c23b225
TH
511/**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
522struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523{
f41c5934 524 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
525 return dentry->d_fsdata;
526 return NULL;
527}
528
db4aad20
TH
529static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
fd7b9f7b 532{
324a56e1 533 struct kernfs_node *kn;
bc755553 534 int ret;
fd7b9f7b 535
dfeb0750
TH
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
fd7b9f7b 539
a797bfc3 540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 541 if (!kn)
fd7b9f7b
TH
542 goto err_out1;
543
499611ed
VD
544 /*
545 * If the ino of the sysfs entry created for a kmem cache gets
546 * allocated from an ida layer, which is accounted to the memcg that
547 * owns the cache, the memcg will get pinned forever. So do not account
548 * ino ida allocations.
549 */
550 ret = ida_simple_get(&root->ino_ida, 1, 0,
551 GFP_KERNEL | __GFP_NOACCOUNT);
bc755553 552 if (ret < 0)
fd7b9f7b 553 goto err_out2;
adc5e8b5 554 kn->ino = ret;
fd7b9f7b 555
adc5e8b5 556 atomic_set(&kn->count, 1);
81c173cb 557 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 558 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 559
adc5e8b5
TH
560 kn->name = name;
561 kn->mode = mode;
81c173cb 562 kn->flags = flags;
fd7b9f7b 563
324a56e1 564 return kn;
fd7b9f7b
TH
565
566 err_out2:
a797bfc3 567 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 568 err_out1:
dfeb0750 569 kfree_const(name);
fd7b9f7b
TH
570 return NULL;
571}
572
db4aad20
TH
573struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 const char *name, umode_t mode,
575 unsigned flags)
576{
577 struct kernfs_node *kn;
578
579 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 if (kn) {
581 kernfs_get(parent);
582 kn->parent = parent;
583 }
584 return kn;
585}
586
fd7b9f7b 587/**
c637b8ac 588 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 589 * @kn: kernfs_node to be added
fd7b9f7b 590 *
db4aad20
TH
591 * The caller must already have initialized @kn->parent. This
592 * function increments nlink of the parent's inode if @kn is a
593 * directory and link into the children list of the parent.
fd7b9f7b 594 *
fd7b9f7b
TH
595 * RETURNS:
596 * 0 on success, -EEXIST if entry with the given name already
597 * exists.
598 */
988cd7af 599int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 600{
db4aad20 601 struct kernfs_node *parent = kn->parent;
c525aadd 602 struct kernfs_iattrs *ps_iattr;
988cd7af 603 bool has_ns;
fd7b9f7b
TH
604 int ret;
605
988cd7af
TH
606 mutex_lock(&kernfs_mutex);
607
608 ret = -EINVAL;
609 has_ns = kernfs_ns_enabled(parent);
610 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 has_ns ? "required" : "invalid", parent->name, kn->name))
612 goto out_unlock;
fd7b9f7b 613
df23fc39 614 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 615 goto out_unlock;
fd7b9f7b 616
988cd7af 617 ret = -ENOENT;
ea015218
EB
618 if (parent->flags & KERNFS_EMPTY_DIR)
619 goto out_unlock;
620
d35258ef 621 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 622 goto out_unlock;
798c75a0 623
c637b8ac 624 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 625
c637b8ac 626 ret = kernfs_link_sibling(kn);
fd7b9f7b 627 if (ret)
988cd7af 628 goto out_unlock;
fd7b9f7b
TH
629
630 /* Update timestamps on the parent */
adc5e8b5 631 ps_iattr = parent->iattr;
fd7b9f7b
TH
632 if (ps_iattr) {
633 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
635 }
636
d35258ef
TH
637 mutex_unlock(&kernfs_mutex);
638
639 /*
640 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 * If not activated here, the kernfs user is responsible for
642 * activating the node with kernfs_activate(). A node which hasn't
643 * been activated is not visible to userland and its removal won't
644 * trigger deactivation.
645 */
646 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 kernfs_activate(kn);
648 return 0;
649
988cd7af 650out_unlock:
a797bfc3 651 mutex_unlock(&kernfs_mutex);
988cd7af 652 return ret;
fd7b9f7b
TH
653}
654
655/**
324a56e1
TH
656 * kernfs_find_ns - find kernfs_node with the given name
657 * @parent: kernfs_node to search under
fd7b9f7b
TH
658 * @name: name to look for
659 * @ns: the namespace tag to use
660 *
324a56e1
TH
661 * Look for kernfs_node with name @name under @parent. Returns pointer to
662 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 663 */
324a56e1
TH
664static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 const unsigned char *name,
666 const void *ns)
fd7b9f7b 667{
adc5e8b5 668 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 669 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
670 unsigned int hash;
671
a797bfc3 672 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
673
674 if (has_ns != (bool)ns) {
c637b8ac 675 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 676 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
677 return NULL;
678 }
679
c637b8ac 680 hash = kernfs_name_hash(name, ns);
fd7b9f7b 681 while (node) {
324a56e1 682 struct kernfs_node *kn;
fd7b9f7b
TH
683 int result;
684
324a56e1 685 kn = rb_to_kn(node);
c637b8ac 686 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
687 if (result < 0)
688 node = node->rb_left;
689 else if (result > 0)
690 node = node->rb_right;
691 else
324a56e1 692 return kn;
fd7b9f7b
TH
693 }
694 return NULL;
695}
696
697/**
324a56e1
TH
698 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
699 * @parent: kernfs_node to search under
fd7b9f7b
TH
700 * @name: name to look for
701 * @ns: the namespace tag to use
702 *
324a56e1 703 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 704 * if found. This function may sleep and returns pointer to the found
324a56e1 705 * kernfs_node on success, %NULL on failure.
fd7b9f7b 706 */
324a56e1
TH
707struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
708 const char *name, const void *ns)
fd7b9f7b 709{
324a56e1 710 struct kernfs_node *kn;
fd7b9f7b 711
a797bfc3 712 mutex_lock(&kernfs_mutex);
324a56e1
TH
713 kn = kernfs_find_ns(parent, name, ns);
714 kernfs_get(kn);
a797bfc3 715 mutex_unlock(&kernfs_mutex);
fd7b9f7b 716
324a56e1 717 return kn;
fd7b9f7b
TH
718}
719EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
720
ba7443bc
TH
721/**
722 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 723 * @scops: optional syscall operations for the hierarchy
d35258ef 724 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
725 * @priv: opaque data associated with the new directory
726 *
727 * Returns the root of the new hierarchy on success, ERR_PTR() value on
728 * failure.
729 */
90c07c89 730struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 731 unsigned int flags, void *priv)
ba7443bc
TH
732{
733 struct kernfs_root *root;
324a56e1 734 struct kernfs_node *kn;
ba7443bc
TH
735
736 root = kzalloc(sizeof(*root), GFP_KERNEL);
737 if (!root)
738 return ERR_PTR(-ENOMEM);
739
bc755553 740 ida_init(&root->ino_ida);
7d568a83 741 INIT_LIST_HEAD(&root->supers);
bc755553 742
db4aad20
TH
743 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
744 KERNFS_DIR);
324a56e1 745 if (!kn) {
bc755553 746 ida_destroy(&root->ino_ida);
ba7443bc
TH
747 kfree(root);
748 return ERR_PTR(-ENOMEM);
749 }
750
324a56e1 751 kn->priv = priv;
adc5e8b5 752 kn->dir.root = root;
ba7443bc 753
90c07c89 754 root->syscall_ops = scops;
d35258ef 755 root->flags = flags;
324a56e1 756 root->kn = kn;
abd54f02 757 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 758
d35258ef
TH
759 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
760 kernfs_activate(kn);
761
ba7443bc
TH
762 return root;
763}
764
765/**
766 * kernfs_destroy_root - destroy a kernfs hierarchy
767 * @root: root of the hierarchy to destroy
768 *
769 * Destroy the hierarchy anchored at @root by removing all existing
770 * directories and destroying @root.
771 */
772void kernfs_destroy_root(struct kernfs_root *root)
773{
324a56e1 774 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
775}
776
fd7b9f7b
TH
777/**
778 * kernfs_create_dir_ns - create a directory
779 * @parent: parent in which to create a new directory
780 * @name: name of the new directory
bb8b9d09 781 * @mode: mode of the new directory
fd7b9f7b
TH
782 * @priv: opaque data associated with the new directory
783 * @ns: optional namespace tag of the directory
784 *
785 * Returns the created node on success, ERR_PTR() value on failure.
786 */
324a56e1 787struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
788 const char *name, umode_t mode,
789 void *priv, const void *ns)
fd7b9f7b 790{
324a56e1 791 struct kernfs_node *kn;
fd7b9f7b
TH
792 int rc;
793
794 /* allocate */
db4aad20 795 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 796 if (!kn)
fd7b9f7b
TH
797 return ERR_PTR(-ENOMEM);
798
adc5e8b5
TH
799 kn->dir.root = parent->dir.root;
800 kn->ns = ns;
324a56e1 801 kn->priv = priv;
fd7b9f7b
TH
802
803 /* link in */
988cd7af 804 rc = kernfs_add_one(kn);
fd7b9f7b 805 if (!rc)
324a56e1 806 return kn;
fd7b9f7b 807
324a56e1 808 kernfs_put(kn);
fd7b9f7b
TH
809 return ERR_PTR(rc);
810}
811
ea015218
EB
812/**
813 * kernfs_create_empty_dir - create an always empty directory
814 * @parent: parent in which to create a new directory
815 * @name: name of the new directory
816 *
817 * Returns the created node on success, ERR_PTR() value on failure.
818 */
819struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
820 const char *name)
821{
822 struct kernfs_node *kn;
823 int rc;
824
825 /* allocate */
826 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
827 if (!kn)
828 return ERR_PTR(-ENOMEM);
829
830 kn->flags |= KERNFS_EMPTY_DIR;
831 kn->dir.root = parent->dir.root;
832 kn->ns = NULL;
833 kn->priv = NULL;
834
835 /* link in */
836 rc = kernfs_add_one(kn);
837 if (!rc)
838 return kn;
839
840 kernfs_put(kn);
841 return ERR_PTR(rc);
842}
843
c637b8ac
TH
844static struct dentry *kernfs_iop_lookup(struct inode *dir,
845 struct dentry *dentry,
846 unsigned int flags)
fd7b9f7b 847{
19bbb926 848 struct dentry *ret;
324a56e1
TH
849 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
850 struct kernfs_node *kn;
fd7b9f7b
TH
851 struct inode *inode;
852 const void *ns = NULL;
853
a797bfc3 854 mutex_lock(&kernfs_mutex);
fd7b9f7b 855
324a56e1 856 if (kernfs_ns_enabled(parent))
c525aadd 857 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 858
324a56e1 859 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
860
861 /* no such entry */
b9c9dad0 862 if (!kn || !kernfs_active(kn)) {
19bbb926 863 ret = NULL;
fd7b9f7b
TH
864 goto out_unlock;
865 }
324a56e1
TH
866 kernfs_get(kn);
867 dentry->d_fsdata = kn;
fd7b9f7b
TH
868
869 /* attach dentry and inode */
c637b8ac 870 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
871 if (!inode) {
872 ret = ERR_PTR(-ENOMEM);
873 goto out_unlock;
874 }
875
876 /* instantiate and hash dentry */
41d28bca 877 ret = d_splice_alias(inode, dentry);
fd7b9f7b 878 out_unlock:
a797bfc3 879 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
880 return ret;
881}
882
80b9bbef
TH
883static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
884 umode_t mode)
885{
886 struct kernfs_node *parent = dir->i_private;
90c07c89 887 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 888 int ret;
80b9bbef 889
90c07c89 890 if (!scops || !scops->mkdir)
80b9bbef
TH
891 return -EPERM;
892
07c7530d
TH
893 if (!kernfs_get_active(parent))
894 return -ENODEV;
895
90c07c89 896 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
897
898 kernfs_put_active(parent);
899 return ret;
80b9bbef
TH
900}
901
902static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
903{
904 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 905 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 906 int ret;
80b9bbef 907
90c07c89 908 if (!scops || !scops->rmdir)
80b9bbef
TH
909 return -EPERM;
910
07c7530d
TH
911 if (!kernfs_get_active(kn))
912 return -ENODEV;
913
90c07c89 914 ret = scops->rmdir(kn);
07c7530d
TH
915
916 kernfs_put_active(kn);
917 return ret;
80b9bbef
TH
918}
919
920static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
921 struct inode *new_dir, struct dentry *new_dentry)
922{
923 struct kernfs_node *kn = old_dentry->d_fsdata;
924 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 925 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 926 int ret;
80b9bbef 927
90c07c89 928 if (!scops || !scops->rename)
80b9bbef
TH
929 return -EPERM;
930
07c7530d
TH
931 if (!kernfs_get_active(kn))
932 return -ENODEV;
933
934 if (!kernfs_get_active(new_parent)) {
935 kernfs_put_active(kn);
936 return -ENODEV;
937 }
938
90c07c89 939 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
940
941 kernfs_put_active(new_parent);
942 kernfs_put_active(kn);
943 return ret;
80b9bbef
TH
944}
945
a797bfc3 946const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
947 .lookup = kernfs_iop_lookup,
948 .permission = kernfs_iop_permission,
949 .setattr = kernfs_iop_setattr,
950 .getattr = kernfs_iop_getattr,
951 .setxattr = kernfs_iop_setxattr,
952 .removexattr = kernfs_iop_removexattr,
953 .getxattr = kernfs_iop_getxattr,
954 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
955
956 .mkdir = kernfs_iop_mkdir,
957 .rmdir = kernfs_iop_rmdir,
958 .rename = kernfs_iop_rename,
fd7b9f7b
TH
959};
960
c637b8ac 961static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 962{
324a56e1 963 struct kernfs_node *last;
fd7b9f7b
TH
964
965 while (true) {
966 struct rb_node *rbn;
967
968 last = pos;
969
df23fc39 970 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
971 break;
972
adc5e8b5 973 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
974 if (!rbn)
975 break;
976
324a56e1 977 pos = rb_to_kn(rbn);
fd7b9f7b
TH
978 }
979
980 return last;
981}
982
983/**
c637b8ac 984 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 985 * @pos: the current position (%NULL to initiate traversal)
324a56e1 986 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
987 *
988 * Find the next descendant to visit for post-order traversal of @root's
989 * descendants. @root is included in the iteration and the last node to be
990 * visited.
991 */
c637b8ac
TH
992static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
993 struct kernfs_node *root)
fd7b9f7b
TH
994{
995 struct rb_node *rbn;
996
a797bfc3 997 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
998
999 /* if first iteration, visit leftmost descendant which may be root */
1000 if (!pos)
c637b8ac 1001 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1002
1003 /* if we visited @root, we're done */
1004 if (pos == root)
1005 return NULL;
1006
1007 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1008 rbn = rb_next(&pos->rb);
fd7b9f7b 1009 if (rbn)
c637b8ac 1010 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1011
1012 /* no sibling left, visit parent */
adc5e8b5 1013 return pos->parent;
fd7b9f7b
TH
1014}
1015
d35258ef
TH
1016/**
1017 * kernfs_activate - activate a node which started deactivated
1018 * @kn: kernfs_node whose subtree is to be activated
1019 *
1020 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1021 * needs to be explicitly activated. A node which hasn't been activated
1022 * isn't visible to userland and deactivation is skipped during its
1023 * removal. This is useful to construct atomic init sequences where
1024 * creation of multiple nodes should either succeed or fail atomically.
1025 *
1026 * The caller is responsible for ensuring that this function is not called
1027 * after kernfs_remove*() is invoked on @kn.
1028 */
1029void kernfs_activate(struct kernfs_node *kn)
1030{
1031 struct kernfs_node *pos;
1032
1033 mutex_lock(&kernfs_mutex);
1034
1035 pos = NULL;
1036 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1037 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1038 continue;
1039
1040 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1041 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1042
1043 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1044 pos->flags |= KERNFS_ACTIVATED;
1045 }
1046
1047 mutex_unlock(&kernfs_mutex);
1048}
1049
988cd7af 1050static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1051{
35beab06
TH
1052 struct kernfs_node *pos;
1053
1054 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1055
6b0afc2a
TH
1056 /*
1057 * Short-circuit if non-root @kn has already finished removal.
1058 * This is for kernfs_remove_self() which plays with active ref
1059 * after removal.
1060 */
1061 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1062 return;
1063
c637b8ac 1064 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1065
81c173cb 1066 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1067 pos = NULL;
1068 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1069 if (kernfs_active(pos))
1070 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1071
1072 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1073 do {
35beab06
TH
1074 pos = kernfs_leftmost_descendant(kn);
1075
1076 /*
81c173cb
TH
1077 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1078 * base ref could have been put by someone else by the time
1079 * the function returns. Make sure it doesn't go away
1080 * underneath us.
35beab06
TH
1081 */
1082 kernfs_get(pos);
1083
d35258ef
TH
1084 /*
1085 * Drain iff @kn was activated. This avoids draining and
1086 * its lockdep annotations for nodes which have never been
1087 * activated and allows embedding kernfs_remove() in create
1088 * error paths without worrying about draining.
1089 */
1090 if (kn->flags & KERNFS_ACTIVATED)
1091 kernfs_drain(pos);
1092 else
1093 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1094
1095 /*
1096 * kernfs_unlink_sibling() succeeds once per node. Use it
1097 * to decide who's responsible for cleanups.
1098 */
1099 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1100 struct kernfs_iattrs *ps_iattr =
1101 pos->parent ? pos->parent->iattr : NULL;
1102
1103 /* update timestamps on the parent */
1104 if (ps_iattr) {
1105 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1106 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1107 }
1108
988cd7af 1109 kernfs_put(pos);
35beab06
TH
1110 }
1111
1112 kernfs_put(pos);
1113 } while (pos != kn);
fd7b9f7b
TH
1114}
1115
1116/**
324a56e1
TH
1117 * kernfs_remove - remove a kernfs_node recursively
1118 * @kn: the kernfs_node to remove
fd7b9f7b 1119 *
324a56e1 1120 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1121 */
324a56e1 1122void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1123{
988cd7af
TH
1124 mutex_lock(&kernfs_mutex);
1125 __kernfs_remove(kn);
1126 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1127}
1128
6b0afc2a
TH
1129/**
1130 * kernfs_break_active_protection - break out of active protection
1131 * @kn: the self kernfs_node
1132 *
1133 * The caller must be running off of a kernfs operation which is invoked
1134 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1135 * this function must also be matched with an invocation of
1136 * kernfs_unbreak_active_protection().
1137 *
1138 * This function releases the active reference of @kn the caller is
1139 * holding. Once this function is called, @kn may be removed at any point
1140 * and the caller is solely responsible for ensuring that the objects it
1141 * dereferences are accessible.
1142 */
1143void kernfs_break_active_protection(struct kernfs_node *kn)
1144{
1145 /*
1146 * Take out ourself out of the active ref dependency chain. If
1147 * we're called without an active ref, lockdep will complain.
1148 */
1149 kernfs_put_active(kn);
1150}
1151
1152/**
1153 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1154 * @kn: the self kernfs_node
1155 *
1156 * If kernfs_break_active_protection() was called, this function must be
1157 * invoked before finishing the kernfs operation. Note that while this
1158 * function restores the active reference, it doesn't and can't actually
1159 * restore the active protection - @kn may already or be in the process of
1160 * being removed. Once kernfs_break_active_protection() is invoked, that
1161 * protection is irreversibly gone for the kernfs operation instance.
1162 *
1163 * While this function may be called at any point after
1164 * kernfs_break_active_protection() is invoked, its most useful location
1165 * would be right before the enclosing kernfs operation returns.
1166 */
1167void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1168{
1169 /*
1170 * @kn->active could be in any state; however, the increment we do
1171 * here will be undone as soon as the enclosing kernfs operation
1172 * finishes and this temporary bump can't break anything. If @kn
1173 * is alive, nothing changes. If @kn is being deactivated, the
1174 * soon-to-follow put will either finish deactivation or restore
1175 * deactivated state. If @kn is already removed, the temporary
1176 * bump is guaranteed to be gone before @kn is released.
1177 */
1178 atomic_inc(&kn->active);
1179 if (kernfs_lockdep(kn))
1180 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1181}
1182
1183/**
1184 * kernfs_remove_self - remove a kernfs_node from its own method
1185 * @kn: the self kernfs_node to remove
1186 *
1187 * The caller must be running off of a kernfs operation which is invoked
1188 * with an active reference - e.g. one of kernfs_ops. This can be used to
1189 * implement a file operation which deletes itself.
1190 *
1191 * For example, the "delete" file for a sysfs device directory can be
1192 * implemented by invoking kernfs_remove_self() on the "delete" file
1193 * itself. This function breaks the circular dependency of trying to
1194 * deactivate self while holding an active ref itself. It isn't necessary
1195 * to modify the usual removal path to use kernfs_remove_self(). The
1196 * "delete" implementation can simply invoke kernfs_remove_self() on self
1197 * before proceeding with the usual removal path. kernfs will ignore later
1198 * kernfs_remove() on self.
1199 *
1200 * kernfs_remove_self() can be called multiple times concurrently on the
1201 * same kernfs_node. Only the first one actually performs removal and
1202 * returns %true. All others will wait until the kernfs operation which
1203 * won self-removal finishes and return %false. Note that the losers wait
1204 * for the completion of not only the winning kernfs_remove_self() but also
1205 * the whole kernfs_ops which won the arbitration. This can be used to
1206 * guarantee, for example, all concurrent writes to a "delete" file to
1207 * finish only after the whole operation is complete.
1208 */
1209bool kernfs_remove_self(struct kernfs_node *kn)
1210{
1211 bool ret;
1212
1213 mutex_lock(&kernfs_mutex);
1214 kernfs_break_active_protection(kn);
1215
1216 /*
1217 * SUICIDAL is used to arbitrate among competing invocations. Only
1218 * the first one will actually perform removal. When the removal
1219 * is complete, SUICIDED is set and the active ref is restored
1220 * while holding kernfs_mutex. The ones which lost arbitration
1221 * waits for SUICDED && drained which can happen only after the
1222 * enclosing kernfs operation which executed the winning instance
1223 * of kernfs_remove_self() finished.
1224 */
1225 if (!(kn->flags & KERNFS_SUICIDAL)) {
1226 kn->flags |= KERNFS_SUICIDAL;
1227 __kernfs_remove(kn);
1228 kn->flags |= KERNFS_SUICIDED;
1229 ret = true;
1230 } else {
1231 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1232 DEFINE_WAIT(wait);
1233
1234 while (true) {
1235 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1236
1237 if ((kn->flags & KERNFS_SUICIDED) &&
1238 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1239 break;
1240
1241 mutex_unlock(&kernfs_mutex);
1242 schedule();
1243 mutex_lock(&kernfs_mutex);
1244 }
1245 finish_wait(waitq, &wait);
1246 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1247 ret = false;
1248 }
1249
1250 /*
1251 * This must be done while holding kernfs_mutex; otherwise, waiting
1252 * for SUICIDED && deactivated could finish prematurely.
1253 */
1254 kernfs_unbreak_active_protection(kn);
1255
1256 mutex_unlock(&kernfs_mutex);
1257 return ret;
1258}
1259
fd7b9f7b 1260/**
324a56e1
TH
1261 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1262 * @parent: parent of the target
1263 * @name: name of the kernfs_node to remove
1264 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1265 *
324a56e1
TH
1266 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1267 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1268 */
324a56e1 1269int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1270 const void *ns)
1271{
324a56e1 1272 struct kernfs_node *kn;
fd7b9f7b 1273
324a56e1 1274 if (!parent) {
c637b8ac 1275 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1276 name);
1277 return -ENOENT;
1278 }
1279
988cd7af 1280 mutex_lock(&kernfs_mutex);
fd7b9f7b 1281
324a56e1
TH
1282 kn = kernfs_find_ns(parent, name, ns);
1283 if (kn)
988cd7af 1284 __kernfs_remove(kn);
fd7b9f7b 1285
988cd7af 1286 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1287
324a56e1 1288 if (kn)
fd7b9f7b
TH
1289 return 0;
1290 else
1291 return -ENOENT;
1292}
1293
1294/**
1295 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1296 * @kn: target node
fd7b9f7b
TH
1297 * @new_parent: new parent to put @sd under
1298 * @new_name: new name
1299 * @new_ns: new namespace tag
1300 */
324a56e1 1301int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1302 const char *new_name, const void *new_ns)
1303{
3eef34ad
TH
1304 struct kernfs_node *old_parent;
1305 const char *old_name = NULL;
fd7b9f7b
TH
1306 int error;
1307
3eef34ad
TH
1308 /* can't move or rename root */
1309 if (!kn->parent)
1310 return -EINVAL;
1311
798c75a0
GKH
1312 mutex_lock(&kernfs_mutex);
1313
d0ae3d43 1314 error = -ENOENT;
ea015218
EB
1315 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1316 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1317 goto out;
1318
fd7b9f7b 1319 error = 0;
adc5e8b5
TH
1320 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1321 (strcmp(kn->name, new_name) == 0))
798c75a0 1322 goto out; /* nothing to rename */
fd7b9f7b
TH
1323
1324 error = -EEXIST;
1325 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1326 goto out;
fd7b9f7b 1327
324a56e1 1328 /* rename kernfs_node */
adc5e8b5 1329 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1330 error = -ENOMEM;
75287a67 1331 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1332 if (!new_name)
798c75a0 1333 goto out;
3eef34ad
TH
1334 } else {
1335 new_name = NULL;
fd7b9f7b
TH
1336 }
1337
1338 /*
1339 * Move to the appropriate place in the appropriate directories rbtree.
1340 */
c637b8ac 1341 kernfs_unlink_sibling(kn);
fd7b9f7b 1342 kernfs_get(new_parent);
3eef34ad
TH
1343
1344 /* rename_lock protects ->parent and ->name accessors */
1345 spin_lock_irq(&kernfs_rename_lock);
1346
1347 old_parent = kn->parent;
adc5e8b5 1348 kn->parent = new_parent;
3eef34ad
TH
1349
1350 kn->ns = new_ns;
1351 if (new_name) {
dfeb0750 1352 old_name = kn->name;
3eef34ad
TH
1353 kn->name = new_name;
1354 }
1355
1356 spin_unlock_irq(&kernfs_rename_lock);
1357
9561a896 1358 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1359 kernfs_link_sibling(kn);
fd7b9f7b 1360
3eef34ad 1361 kernfs_put(old_parent);
75287a67 1362 kfree_const(old_name);
3eef34ad 1363
fd7b9f7b 1364 error = 0;
798c75a0 1365 out:
a797bfc3 1366 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1367 return error;
1368}
1369
fd7b9f7b 1370/* Relationship between s_mode and the DT_xxx types */
324a56e1 1371static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1372{
adc5e8b5 1373 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1374}
1375
c637b8ac 1376static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1377{
1378 kernfs_put(filp->private_data);
1379 return 0;
1380}
1381
c637b8ac 1382static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1383 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1384{
1385 if (pos) {
81c173cb 1386 int valid = kernfs_active(pos) &&
798c75a0 1387 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1388 kernfs_put(pos);
1389 if (!valid)
1390 pos = NULL;
1391 }
1392 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1393 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1394 while (node) {
324a56e1 1395 pos = rb_to_kn(node);
fd7b9f7b 1396
adc5e8b5 1397 if (hash < pos->hash)
fd7b9f7b 1398 node = node->rb_left;
adc5e8b5 1399 else if (hash > pos->hash)
fd7b9f7b
TH
1400 node = node->rb_right;
1401 else
1402 break;
1403 }
1404 }
b9c9dad0
TH
1405 /* Skip over entries which are dying/dead or in the wrong namespace */
1406 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1407 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1408 if (!node)
1409 pos = NULL;
1410 else
324a56e1 1411 pos = rb_to_kn(node);
fd7b9f7b
TH
1412 }
1413 return pos;
1414}
1415
c637b8ac 1416static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1417 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1418{
c637b8ac 1419 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1420 if (pos) {
fd7b9f7b 1421 do {
adc5e8b5 1422 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1423 if (!node)
1424 pos = NULL;
1425 else
324a56e1 1426 pos = rb_to_kn(node);
b9c9dad0
TH
1427 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1428 }
fd7b9f7b
TH
1429 return pos;
1430}
1431
c637b8ac 1432static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1433{
1434 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1435 struct kernfs_node *parent = dentry->d_fsdata;
1436 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1437 const void *ns = NULL;
1438
1439 if (!dir_emit_dots(file, ctx))
1440 return 0;
a797bfc3 1441 mutex_lock(&kernfs_mutex);
fd7b9f7b 1442
324a56e1 1443 if (kernfs_ns_enabled(parent))
c525aadd 1444 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1445
c637b8ac 1446 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1447 pos;
c637b8ac 1448 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1449 const char *name = pos->name;
fd7b9f7b
TH
1450 unsigned int type = dt_type(pos);
1451 int len = strlen(name);
adc5e8b5 1452 ino_t ino = pos->ino;
fd7b9f7b 1453
adc5e8b5 1454 ctx->pos = pos->hash;
fd7b9f7b
TH
1455 file->private_data = pos;
1456 kernfs_get(pos);
1457
a797bfc3 1458 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1459 if (!dir_emit(ctx, name, len, ino, type))
1460 return 0;
a797bfc3 1461 mutex_lock(&kernfs_mutex);
fd7b9f7b 1462 }
a797bfc3 1463 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1464 file->private_data = NULL;
1465 ctx->pos = INT_MAX;
1466 return 0;
1467}
1468
c637b8ac
TH
1469static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1470 int whence)
fd7b9f7b
TH
1471{
1472 struct inode *inode = file_inode(file);
1473 loff_t ret;
1474
1475 mutex_lock(&inode->i_mutex);
1476 ret = generic_file_llseek(file, offset, whence);
1477 mutex_unlock(&inode->i_mutex);
1478
1479 return ret;
1480}
1481
a797bfc3 1482const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1483 .read = generic_read_dir,
c637b8ac
TH
1484 .iterate = kernfs_fop_readdir,
1485 .release = kernfs_dir_fop_release,
1486 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1487};
This page took 0.231889 seconds and 5 git commands to generate.