GFS2: Allow flocks to use normal glock dq rather than dq_wait
[deliverable/linux.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
94/**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106{
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114}
e61734c5 115EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
116
117/**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123void pr_cont_kernfs_name(struct kernfs_node *kn)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133}
134
135/**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141void pr_cont_kernfs_path(struct kernfs_node *kn)
142{
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166{
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176}
177
fd7b9f7b 178/**
c637b8ac 179 * kernfs_name_hash
fd7b9f7b
TH
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
c637b8ac 185static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
186{
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 194 if (hash < 2)
fd7b9f7b
TH
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199}
200
c637b8ac
TH
201static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 203{
adc5e8b5
TH
204 if (hash != kn->hash)
205 return hash - kn->hash;
206 if (ns != kn->ns)
207 return ns - kn->ns;
208 return strcmp(name, kn->name);
fd7b9f7b
TH
209}
210
c637b8ac
TH
211static int kernfs_sd_compare(const struct kernfs_node *left,
212 const struct kernfs_node *right)
fd7b9f7b 213{
c637b8ac 214 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
215}
216
217/**
c637b8ac 218 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 219 * @kn: kernfs_node of interest
fd7b9f7b 220 *
324a56e1 221 * Link @kn into its sibling rbtree which starts from
adc5e8b5 222 * @kn->parent->dir.children.
fd7b9f7b
TH
223 *
224 * Locking:
a797bfc3 225 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
226 *
227 * RETURNS:
228 * 0 on susccess -EEXIST on failure.
229 */
c637b8ac 230static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 231{
adc5e8b5 232 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
233 struct rb_node *parent = NULL;
234
fd7b9f7b 235 while (*node) {
324a56e1 236 struct kernfs_node *pos;
fd7b9f7b
TH
237 int result;
238
324a56e1 239 pos = rb_to_kn(*node);
fd7b9f7b 240 parent = *node;
c637b8ac 241 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 242 if (result < 0)
adc5e8b5 243 node = &pos->rb.rb_left;
fd7b9f7b 244 else if (result > 0)
adc5e8b5 245 node = &pos->rb.rb_right;
fd7b9f7b
TH
246 else
247 return -EEXIST;
248 }
c1befb88 249
fd7b9f7b 250 /* add new node and rebalance the tree */
adc5e8b5
TH
251 rb_link_node(&kn->rb, parent, node);
252 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
253
254 /* successfully added, account subdir number */
255 if (kernfs_type(kn) == KERNFS_DIR)
256 kn->parent->dir.subdirs++;
257
fd7b9f7b
TH
258 return 0;
259}
260
261/**
c637b8ac 262 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 263 * @kn: kernfs_node of interest
fd7b9f7b 264 *
35beab06
TH
265 * Try to unlink @kn from its sibling rbtree which starts from
266 * kn->parent->dir.children. Returns %true if @kn was actually
267 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
268 *
269 * Locking:
a797bfc3 270 * mutex_lock(kernfs_mutex)
fd7b9f7b 271 */
35beab06 272static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 273{
35beab06
TH
274 if (RB_EMPTY_NODE(&kn->rb))
275 return false;
276
df23fc39 277 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 278 kn->parent->dir.subdirs--;
fd7b9f7b 279
adc5e8b5 280 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
281 RB_CLEAR_NODE(&kn->rb);
282 return true;
fd7b9f7b
TH
283}
284
285/**
c637b8ac 286 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 287 * @kn: kernfs_node to get an active reference to
fd7b9f7b 288 *
324a56e1 289 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
290 * is NULL.
291 *
292 * RETURNS:
324a56e1 293 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 294 */
c637b8ac 295struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 296{
324a56e1 297 if (unlikely(!kn))
fd7b9f7b
TH
298 return NULL;
299
f4b3e631
GKH
300 if (!atomic_inc_unless_negative(&kn->active))
301 return NULL;
895a068a 302
182fd64b 303 if (kernfs_lockdep(kn))
f4b3e631
GKH
304 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
305 return kn;
fd7b9f7b
TH
306}
307
308/**
c637b8ac 309 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 310 * @kn: kernfs_node to put an active reference to
fd7b9f7b 311 *
324a56e1 312 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
313 * is NULL.
314 */
c637b8ac 315void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 316{
abd54f02 317 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
318 int v;
319
324a56e1 320 if (unlikely(!kn))
fd7b9f7b
TH
321 return;
322
182fd64b 323 if (kernfs_lockdep(kn))
324a56e1 324 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 325 v = atomic_dec_return(&kn->active);
df23fc39 326 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
327 return;
328
abd54f02 329 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
330}
331
332/**
81c173cb
TH
333 * kernfs_drain - drain kernfs_node
334 * @kn: kernfs_node to drain
fd7b9f7b 335 *
81c173cb
TH
336 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
337 * removers may invoke this function concurrently on @kn and all will
338 * return after draining is complete.
fd7b9f7b 339 */
81c173cb 340static void kernfs_drain(struct kernfs_node *kn)
35beab06 341 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 342{
abd54f02 343 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 344
35beab06 345 lockdep_assert_held(&kernfs_mutex);
81c173cb 346 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 347
35beab06 348 mutex_unlock(&kernfs_mutex);
abd54f02 349
182fd64b 350 if (kernfs_lockdep(kn)) {
35beab06
TH
351 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
352 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
353 lock_contended(&kn->dep_map, _RET_IP_);
354 }
abd54f02 355
35beab06 356 /* but everyone should wait for draining */
abd54f02
TH
357 wait_event(root->deactivate_waitq,
358 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 359
182fd64b 360 if (kernfs_lockdep(kn)) {
a6607930
TH
361 lock_acquired(&kn->dep_map, _RET_IP_);
362 rwsem_release(&kn->dep_map, 1, _RET_IP_);
363 }
35beab06 364
ccf02aaf
TH
365 kernfs_unmap_bin_file(kn);
366
35beab06 367 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
368}
369
fd7b9f7b 370/**
324a56e1
TH
371 * kernfs_get - get a reference count on a kernfs_node
372 * @kn: the target kernfs_node
fd7b9f7b 373 */
324a56e1 374void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 375{
324a56e1 376 if (kn) {
adc5e8b5
TH
377 WARN_ON(!atomic_read(&kn->count));
378 atomic_inc(&kn->count);
fd7b9f7b
TH
379 }
380}
381EXPORT_SYMBOL_GPL(kernfs_get);
382
383/**
324a56e1
TH
384 * kernfs_put - put a reference count on a kernfs_node
385 * @kn: the target kernfs_node
fd7b9f7b 386 *
324a56e1 387 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 388 */
324a56e1 389void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 390{
324a56e1 391 struct kernfs_node *parent;
ba7443bc 392 struct kernfs_root *root;
fd7b9f7b 393
adc5e8b5 394 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 395 return;
324a56e1 396 root = kernfs_root(kn);
fd7b9f7b 397 repeat:
81c173cb
TH
398 /*
399 * Moving/renaming is always done while holding reference.
adc5e8b5 400 * kn->parent won't change beneath us.
fd7b9f7b 401 */
adc5e8b5 402 parent = kn->parent;
fd7b9f7b 403
81c173cb
TH
404 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
405 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
406 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 407
df23fc39 408 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 409 kernfs_put(kn->symlink.target_kn);
2063d608 410 if (!(kn->flags & KERNFS_STATIC_NAME))
adc5e8b5
TH
411 kfree(kn->name);
412 if (kn->iattr) {
413 if (kn->iattr->ia_secdata)
414 security_release_secctx(kn->iattr->ia_secdata,
415 kn->iattr->ia_secdata_len);
416 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 417 }
adc5e8b5
TH
418 kfree(kn->iattr);
419 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 420 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 421
324a56e1
TH
422 kn = parent;
423 if (kn) {
adc5e8b5 424 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
425 goto repeat;
426 } else {
324a56e1 427 /* just released the root kn, free @root too */
bc755553 428 ida_destroy(&root->ino_ida);
ba7443bc
TH
429 kfree(root);
430 }
fd7b9f7b
TH
431}
432EXPORT_SYMBOL_GPL(kernfs_put);
433
c637b8ac 434static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 435{
324a56e1 436 struct kernfs_node *kn;
fd7b9f7b
TH
437
438 if (flags & LOOKUP_RCU)
439 return -ECHILD;
440
19bbb926
TH
441 /* Always perform fresh lookup for negatives */
442 if (!dentry->d_inode)
443 goto out_bad_unlocked;
444
324a56e1 445 kn = dentry->d_fsdata;
a797bfc3 446 mutex_lock(&kernfs_mutex);
fd7b9f7b 447
81c173cb
TH
448 /* The kernfs node has been deactivated */
449 if (!kernfs_active(kn))
fd7b9f7b
TH
450 goto out_bad;
451
c637b8ac 452 /* The kernfs node has been moved? */
adc5e8b5 453 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
454 goto out_bad;
455
c637b8ac 456 /* The kernfs node has been renamed */
adc5e8b5 457 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
458 goto out_bad;
459
c637b8ac 460 /* The kernfs node has been moved to a different namespace */
adc5e8b5 461 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 462 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
463 goto out_bad;
464
a797bfc3 465 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
466out_valid:
467 return 1;
468out_bad:
a797bfc3 469 mutex_unlock(&kernfs_mutex);
19bbb926
TH
470out_bad_unlocked:
471 /*
472 * @dentry doesn't match the underlying kernfs node, drop the
473 * dentry and force lookup. If we have submounts we must allow the
474 * vfs caches to lie about the state of the filesystem to prevent
475 * leaks and other nasty things, so use check_submounts_and_drop()
476 * instead of d_drop().
fd7b9f7b
TH
477 */
478 if (check_submounts_and_drop(dentry) != 0)
479 goto out_valid;
480
481 return 0;
482}
483
c637b8ac 484static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
485{
486 kernfs_put(dentry->d_fsdata);
487}
488
a797bfc3 489const struct dentry_operations kernfs_dops = {
c637b8ac 490 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 491 .d_release = kernfs_dop_release,
fd7b9f7b
TH
492};
493
0c23b225
TH
494/**
495 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
496 * @dentry: the dentry in question
497 *
498 * Return the kernfs_node associated with @dentry. If @dentry is not a
499 * kernfs one, %NULL is returned.
500 *
501 * While the returned kernfs_node will stay accessible as long as @dentry
502 * is accessible, the returned node can be in any state and the caller is
503 * fully responsible for determining what's accessible.
504 */
505struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
506{
f41c5934 507 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
508 return dentry->d_fsdata;
509 return NULL;
510}
511
db4aad20
TH
512static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
513 const char *name, umode_t mode,
514 unsigned flags)
fd7b9f7b
TH
515{
516 char *dup_name = NULL;
324a56e1 517 struct kernfs_node *kn;
bc755553 518 int ret;
fd7b9f7b 519
2063d608 520 if (!(flags & KERNFS_STATIC_NAME)) {
fd7b9f7b
TH
521 name = dup_name = kstrdup(name, GFP_KERNEL);
522 if (!name)
523 return NULL;
524 }
525
a797bfc3 526 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 527 if (!kn)
fd7b9f7b
TH
528 goto err_out1;
529
bc755553
TH
530 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
531 if (ret < 0)
fd7b9f7b 532 goto err_out2;
adc5e8b5 533 kn->ino = ret;
fd7b9f7b 534
adc5e8b5 535 atomic_set(&kn->count, 1);
81c173cb 536 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 537 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 538
adc5e8b5
TH
539 kn->name = name;
540 kn->mode = mode;
81c173cb 541 kn->flags = flags;
fd7b9f7b 542
324a56e1 543 return kn;
fd7b9f7b
TH
544
545 err_out2:
a797bfc3 546 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b
TH
547 err_out1:
548 kfree(dup_name);
549 return NULL;
550}
551
db4aad20
TH
552struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
553 const char *name, umode_t mode,
554 unsigned flags)
555{
556 struct kernfs_node *kn;
557
558 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
559 if (kn) {
560 kernfs_get(parent);
561 kn->parent = parent;
562 }
563 return kn;
564}
565
fd7b9f7b 566/**
c637b8ac 567 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 568 * @kn: kernfs_node to be added
fd7b9f7b 569 *
db4aad20
TH
570 * The caller must already have initialized @kn->parent. This
571 * function increments nlink of the parent's inode if @kn is a
572 * directory and link into the children list of the parent.
fd7b9f7b 573 *
fd7b9f7b
TH
574 * RETURNS:
575 * 0 on success, -EEXIST if entry with the given name already
576 * exists.
577 */
988cd7af 578int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 579{
db4aad20 580 struct kernfs_node *parent = kn->parent;
c525aadd 581 struct kernfs_iattrs *ps_iattr;
988cd7af 582 bool has_ns;
fd7b9f7b
TH
583 int ret;
584
988cd7af
TH
585 mutex_lock(&kernfs_mutex);
586
587 ret = -EINVAL;
588 has_ns = kernfs_ns_enabled(parent);
589 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
590 has_ns ? "required" : "invalid", parent->name, kn->name))
591 goto out_unlock;
fd7b9f7b 592
df23fc39 593 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 594 goto out_unlock;
fd7b9f7b 595
988cd7af 596 ret = -ENOENT;
d35258ef 597 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 598 goto out_unlock;
798c75a0 599
c637b8ac 600 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 601
c637b8ac 602 ret = kernfs_link_sibling(kn);
fd7b9f7b 603 if (ret)
988cd7af 604 goto out_unlock;
fd7b9f7b
TH
605
606 /* Update timestamps on the parent */
adc5e8b5 607 ps_iattr = parent->iattr;
fd7b9f7b
TH
608 if (ps_iattr) {
609 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
610 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
611 }
612
d35258ef
TH
613 mutex_unlock(&kernfs_mutex);
614
615 /*
616 * Activate the new node unless CREATE_DEACTIVATED is requested.
617 * If not activated here, the kernfs user is responsible for
618 * activating the node with kernfs_activate(). A node which hasn't
619 * been activated is not visible to userland and its removal won't
620 * trigger deactivation.
621 */
622 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
623 kernfs_activate(kn);
624 return 0;
625
988cd7af 626out_unlock:
a797bfc3 627 mutex_unlock(&kernfs_mutex);
988cd7af 628 return ret;
fd7b9f7b
TH
629}
630
631/**
324a56e1
TH
632 * kernfs_find_ns - find kernfs_node with the given name
633 * @parent: kernfs_node to search under
fd7b9f7b
TH
634 * @name: name to look for
635 * @ns: the namespace tag to use
636 *
324a56e1
TH
637 * Look for kernfs_node with name @name under @parent. Returns pointer to
638 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 639 */
324a56e1
TH
640static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
641 const unsigned char *name,
642 const void *ns)
fd7b9f7b 643{
adc5e8b5 644 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 645 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
646 unsigned int hash;
647
a797bfc3 648 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
649
650 if (has_ns != (bool)ns) {
c637b8ac 651 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 652 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
653 return NULL;
654 }
655
c637b8ac 656 hash = kernfs_name_hash(name, ns);
fd7b9f7b 657 while (node) {
324a56e1 658 struct kernfs_node *kn;
fd7b9f7b
TH
659 int result;
660
324a56e1 661 kn = rb_to_kn(node);
c637b8ac 662 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
663 if (result < 0)
664 node = node->rb_left;
665 else if (result > 0)
666 node = node->rb_right;
667 else
324a56e1 668 return kn;
fd7b9f7b
TH
669 }
670 return NULL;
671}
672
673/**
324a56e1
TH
674 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
675 * @parent: kernfs_node to search under
fd7b9f7b
TH
676 * @name: name to look for
677 * @ns: the namespace tag to use
678 *
324a56e1 679 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 680 * if found. This function may sleep and returns pointer to the found
324a56e1 681 * kernfs_node on success, %NULL on failure.
fd7b9f7b 682 */
324a56e1
TH
683struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
684 const char *name, const void *ns)
fd7b9f7b 685{
324a56e1 686 struct kernfs_node *kn;
fd7b9f7b 687
a797bfc3 688 mutex_lock(&kernfs_mutex);
324a56e1
TH
689 kn = kernfs_find_ns(parent, name, ns);
690 kernfs_get(kn);
a797bfc3 691 mutex_unlock(&kernfs_mutex);
fd7b9f7b 692
324a56e1 693 return kn;
fd7b9f7b
TH
694}
695EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
696
ba7443bc
TH
697/**
698 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 699 * @scops: optional syscall operations for the hierarchy
d35258ef 700 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
701 * @priv: opaque data associated with the new directory
702 *
703 * Returns the root of the new hierarchy on success, ERR_PTR() value on
704 * failure.
705 */
90c07c89 706struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 707 unsigned int flags, void *priv)
ba7443bc
TH
708{
709 struct kernfs_root *root;
324a56e1 710 struct kernfs_node *kn;
ba7443bc
TH
711
712 root = kzalloc(sizeof(*root), GFP_KERNEL);
713 if (!root)
714 return ERR_PTR(-ENOMEM);
715
bc755553 716 ida_init(&root->ino_ida);
7d568a83 717 INIT_LIST_HEAD(&root->supers);
bc755553 718
db4aad20
TH
719 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
720 KERNFS_DIR);
324a56e1 721 if (!kn) {
bc755553 722 ida_destroy(&root->ino_ida);
ba7443bc
TH
723 kfree(root);
724 return ERR_PTR(-ENOMEM);
725 }
726
324a56e1 727 kn->priv = priv;
adc5e8b5 728 kn->dir.root = root;
ba7443bc 729
90c07c89 730 root->syscall_ops = scops;
d35258ef 731 root->flags = flags;
324a56e1 732 root->kn = kn;
abd54f02 733 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 734
d35258ef
TH
735 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
736 kernfs_activate(kn);
737
ba7443bc
TH
738 return root;
739}
740
741/**
742 * kernfs_destroy_root - destroy a kernfs hierarchy
743 * @root: root of the hierarchy to destroy
744 *
745 * Destroy the hierarchy anchored at @root by removing all existing
746 * directories and destroying @root.
747 */
748void kernfs_destroy_root(struct kernfs_root *root)
749{
324a56e1 750 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
751}
752
fd7b9f7b
TH
753/**
754 * kernfs_create_dir_ns - create a directory
755 * @parent: parent in which to create a new directory
756 * @name: name of the new directory
bb8b9d09 757 * @mode: mode of the new directory
fd7b9f7b
TH
758 * @priv: opaque data associated with the new directory
759 * @ns: optional namespace tag of the directory
760 *
761 * Returns the created node on success, ERR_PTR() value on failure.
762 */
324a56e1 763struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
764 const char *name, umode_t mode,
765 void *priv, const void *ns)
fd7b9f7b 766{
324a56e1 767 struct kernfs_node *kn;
fd7b9f7b
TH
768 int rc;
769
770 /* allocate */
db4aad20 771 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 772 if (!kn)
fd7b9f7b
TH
773 return ERR_PTR(-ENOMEM);
774
adc5e8b5
TH
775 kn->dir.root = parent->dir.root;
776 kn->ns = ns;
324a56e1 777 kn->priv = priv;
fd7b9f7b
TH
778
779 /* link in */
988cd7af 780 rc = kernfs_add_one(kn);
fd7b9f7b 781 if (!rc)
324a56e1 782 return kn;
fd7b9f7b 783
324a56e1 784 kernfs_put(kn);
fd7b9f7b
TH
785 return ERR_PTR(rc);
786}
787
c637b8ac
TH
788static struct dentry *kernfs_iop_lookup(struct inode *dir,
789 struct dentry *dentry,
790 unsigned int flags)
fd7b9f7b 791{
19bbb926 792 struct dentry *ret;
324a56e1
TH
793 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
794 struct kernfs_node *kn;
fd7b9f7b
TH
795 struct inode *inode;
796 const void *ns = NULL;
797
a797bfc3 798 mutex_lock(&kernfs_mutex);
fd7b9f7b 799
324a56e1 800 if (kernfs_ns_enabled(parent))
c525aadd 801 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 802
324a56e1 803 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
804
805 /* no such entry */
b9c9dad0 806 if (!kn || !kernfs_active(kn)) {
19bbb926 807 ret = NULL;
fd7b9f7b
TH
808 goto out_unlock;
809 }
324a56e1
TH
810 kernfs_get(kn);
811 dentry->d_fsdata = kn;
fd7b9f7b
TH
812
813 /* attach dentry and inode */
c637b8ac 814 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
815 if (!inode) {
816 ret = ERR_PTR(-ENOMEM);
817 goto out_unlock;
818 }
819
820 /* instantiate and hash dentry */
821 ret = d_materialise_unique(dentry, inode);
822 out_unlock:
a797bfc3 823 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
824 return ret;
825}
826
80b9bbef
TH
827static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
828 umode_t mode)
829{
830 struct kernfs_node *parent = dir->i_private;
90c07c89 831 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 832 int ret;
80b9bbef 833
90c07c89 834 if (!scops || !scops->mkdir)
80b9bbef
TH
835 return -EPERM;
836
07c7530d
TH
837 if (!kernfs_get_active(parent))
838 return -ENODEV;
839
90c07c89 840 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
841
842 kernfs_put_active(parent);
843 return ret;
80b9bbef
TH
844}
845
846static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
847{
848 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 849 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 850 int ret;
80b9bbef 851
90c07c89 852 if (!scops || !scops->rmdir)
80b9bbef
TH
853 return -EPERM;
854
07c7530d
TH
855 if (!kernfs_get_active(kn))
856 return -ENODEV;
857
90c07c89 858 ret = scops->rmdir(kn);
07c7530d
TH
859
860 kernfs_put_active(kn);
861 return ret;
80b9bbef
TH
862}
863
864static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
865 struct inode *new_dir, struct dentry *new_dentry)
866{
867 struct kernfs_node *kn = old_dentry->d_fsdata;
868 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 869 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 870 int ret;
80b9bbef 871
90c07c89 872 if (!scops || !scops->rename)
80b9bbef
TH
873 return -EPERM;
874
07c7530d
TH
875 if (!kernfs_get_active(kn))
876 return -ENODEV;
877
878 if (!kernfs_get_active(new_parent)) {
879 kernfs_put_active(kn);
880 return -ENODEV;
881 }
882
90c07c89 883 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
884
885 kernfs_put_active(new_parent);
886 kernfs_put_active(kn);
887 return ret;
80b9bbef
TH
888}
889
a797bfc3 890const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
891 .lookup = kernfs_iop_lookup,
892 .permission = kernfs_iop_permission,
893 .setattr = kernfs_iop_setattr,
894 .getattr = kernfs_iop_getattr,
895 .setxattr = kernfs_iop_setxattr,
896 .removexattr = kernfs_iop_removexattr,
897 .getxattr = kernfs_iop_getxattr,
898 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
899
900 .mkdir = kernfs_iop_mkdir,
901 .rmdir = kernfs_iop_rmdir,
902 .rename = kernfs_iop_rename,
fd7b9f7b
TH
903};
904
c637b8ac 905static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 906{
324a56e1 907 struct kernfs_node *last;
fd7b9f7b
TH
908
909 while (true) {
910 struct rb_node *rbn;
911
912 last = pos;
913
df23fc39 914 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
915 break;
916
adc5e8b5 917 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
918 if (!rbn)
919 break;
920
324a56e1 921 pos = rb_to_kn(rbn);
fd7b9f7b
TH
922 }
923
924 return last;
925}
926
927/**
c637b8ac 928 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 929 * @pos: the current position (%NULL to initiate traversal)
324a56e1 930 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
931 *
932 * Find the next descendant to visit for post-order traversal of @root's
933 * descendants. @root is included in the iteration and the last node to be
934 * visited.
935 */
c637b8ac
TH
936static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
937 struct kernfs_node *root)
fd7b9f7b
TH
938{
939 struct rb_node *rbn;
940
a797bfc3 941 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
942
943 /* if first iteration, visit leftmost descendant which may be root */
944 if (!pos)
c637b8ac 945 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
946
947 /* if we visited @root, we're done */
948 if (pos == root)
949 return NULL;
950
951 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 952 rbn = rb_next(&pos->rb);
fd7b9f7b 953 if (rbn)
c637b8ac 954 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
955
956 /* no sibling left, visit parent */
adc5e8b5 957 return pos->parent;
fd7b9f7b
TH
958}
959
d35258ef
TH
960/**
961 * kernfs_activate - activate a node which started deactivated
962 * @kn: kernfs_node whose subtree is to be activated
963 *
964 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
965 * needs to be explicitly activated. A node which hasn't been activated
966 * isn't visible to userland and deactivation is skipped during its
967 * removal. This is useful to construct atomic init sequences where
968 * creation of multiple nodes should either succeed or fail atomically.
969 *
970 * The caller is responsible for ensuring that this function is not called
971 * after kernfs_remove*() is invoked on @kn.
972 */
973void kernfs_activate(struct kernfs_node *kn)
974{
975 struct kernfs_node *pos;
976
977 mutex_lock(&kernfs_mutex);
978
979 pos = NULL;
980 while ((pos = kernfs_next_descendant_post(pos, kn))) {
981 if (!pos || (pos->flags & KERNFS_ACTIVATED))
982 continue;
983
984 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
985 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
986
987 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
988 pos->flags |= KERNFS_ACTIVATED;
989 }
990
991 mutex_unlock(&kernfs_mutex);
992}
993
988cd7af 994static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 995{
35beab06
TH
996 struct kernfs_node *pos;
997
998 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 999
6b0afc2a
TH
1000 /*
1001 * Short-circuit if non-root @kn has already finished removal.
1002 * This is for kernfs_remove_self() which plays with active ref
1003 * after removal.
1004 */
1005 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1006 return;
1007
c637b8ac 1008 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1009
81c173cb 1010 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1011 pos = NULL;
1012 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1013 if (kernfs_active(pos))
1014 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1015
1016 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1017 do {
35beab06
TH
1018 pos = kernfs_leftmost_descendant(kn);
1019
1020 /*
81c173cb
TH
1021 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1022 * base ref could have been put by someone else by the time
1023 * the function returns. Make sure it doesn't go away
1024 * underneath us.
35beab06
TH
1025 */
1026 kernfs_get(pos);
1027
d35258ef
TH
1028 /*
1029 * Drain iff @kn was activated. This avoids draining and
1030 * its lockdep annotations for nodes which have never been
1031 * activated and allows embedding kernfs_remove() in create
1032 * error paths without worrying about draining.
1033 */
1034 if (kn->flags & KERNFS_ACTIVATED)
1035 kernfs_drain(pos);
1036 else
1037 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1038
1039 /*
1040 * kernfs_unlink_sibling() succeeds once per node. Use it
1041 * to decide who's responsible for cleanups.
1042 */
1043 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1044 struct kernfs_iattrs *ps_iattr =
1045 pos->parent ? pos->parent->iattr : NULL;
1046
1047 /* update timestamps on the parent */
1048 if (ps_iattr) {
1049 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1050 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1051 }
1052
988cd7af 1053 kernfs_put(pos);
35beab06
TH
1054 }
1055
1056 kernfs_put(pos);
1057 } while (pos != kn);
fd7b9f7b
TH
1058}
1059
1060/**
324a56e1
TH
1061 * kernfs_remove - remove a kernfs_node recursively
1062 * @kn: the kernfs_node to remove
fd7b9f7b 1063 *
324a56e1 1064 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1065 */
324a56e1 1066void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1067{
988cd7af
TH
1068 mutex_lock(&kernfs_mutex);
1069 __kernfs_remove(kn);
1070 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1071}
1072
6b0afc2a
TH
1073/**
1074 * kernfs_break_active_protection - break out of active protection
1075 * @kn: the self kernfs_node
1076 *
1077 * The caller must be running off of a kernfs operation which is invoked
1078 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1079 * this function must also be matched with an invocation of
1080 * kernfs_unbreak_active_protection().
1081 *
1082 * This function releases the active reference of @kn the caller is
1083 * holding. Once this function is called, @kn may be removed at any point
1084 * and the caller is solely responsible for ensuring that the objects it
1085 * dereferences are accessible.
1086 */
1087void kernfs_break_active_protection(struct kernfs_node *kn)
1088{
1089 /*
1090 * Take out ourself out of the active ref dependency chain. If
1091 * we're called without an active ref, lockdep will complain.
1092 */
1093 kernfs_put_active(kn);
1094}
1095
1096/**
1097 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1098 * @kn: the self kernfs_node
1099 *
1100 * If kernfs_break_active_protection() was called, this function must be
1101 * invoked before finishing the kernfs operation. Note that while this
1102 * function restores the active reference, it doesn't and can't actually
1103 * restore the active protection - @kn may already or be in the process of
1104 * being removed. Once kernfs_break_active_protection() is invoked, that
1105 * protection is irreversibly gone for the kernfs operation instance.
1106 *
1107 * While this function may be called at any point after
1108 * kernfs_break_active_protection() is invoked, its most useful location
1109 * would be right before the enclosing kernfs operation returns.
1110 */
1111void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1112{
1113 /*
1114 * @kn->active could be in any state; however, the increment we do
1115 * here will be undone as soon as the enclosing kernfs operation
1116 * finishes and this temporary bump can't break anything. If @kn
1117 * is alive, nothing changes. If @kn is being deactivated, the
1118 * soon-to-follow put will either finish deactivation or restore
1119 * deactivated state. If @kn is already removed, the temporary
1120 * bump is guaranteed to be gone before @kn is released.
1121 */
1122 atomic_inc(&kn->active);
1123 if (kernfs_lockdep(kn))
1124 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1125}
1126
1127/**
1128 * kernfs_remove_self - remove a kernfs_node from its own method
1129 * @kn: the self kernfs_node to remove
1130 *
1131 * The caller must be running off of a kernfs operation which is invoked
1132 * with an active reference - e.g. one of kernfs_ops. This can be used to
1133 * implement a file operation which deletes itself.
1134 *
1135 * For example, the "delete" file for a sysfs device directory can be
1136 * implemented by invoking kernfs_remove_self() on the "delete" file
1137 * itself. This function breaks the circular dependency of trying to
1138 * deactivate self while holding an active ref itself. It isn't necessary
1139 * to modify the usual removal path to use kernfs_remove_self(). The
1140 * "delete" implementation can simply invoke kernfs_remove_self() on self
1141 * before proceeding with the usual removal path. kernfs will ignore later
1142 * kernfs_remove() on self.
1143 *
1144 * kernfs_remove_self() can be called multiple times concurrently on the
1145 * same kernfs_node. Only the first one actually performs removal and
1146 * returns %true. All others will wait until the kernfs operation which
1147 * won self-removal finishes and return %false. Note that the losers wait
1148 * for the completion of not only the winning kernfs_remove_self() but also
1149 * the whole kernfs_ops which won the arbitration. This can be used to
1150 * guarantee, for example, all concurrent writes to a "delete" file to
1151 * finish only after the whole operation is complete.
1152 */
1153bool kernfs_remove_self(struct kernfs_node *kn)
1154{
1155 bool ret;
1156
1157 mutex_lock(&kernfs_mutex);
1158 kernfs_break_active_protection(kn);
1159
1160 /*
1161 * SUICIDAL is used to arbitrate among competing invocations. Only
1162 * the first one will actually perform removal. When the removal
1163 * is complete, SUICIDED is set and the active ref is restored
1164 * while holding kernfs_mutex. The ones which lost arbitration
1165 * waits for SUICDED && drained which can happen only after the
1166 * enclosing kernfs operation which executed the winning instance
1167 * of kernfs_remove_self() finished.
1168 */
1169 if (!(kn->flags & KERNFS_SUICIDAL)) {
1170 kn->flags |= KERNFS_SUICIDAL;
1171 __kernfs_remove(kn);
1172 kn->flags |= KERNFS_SUICIDED;
1173 ret = true;
1174 } else {
1175 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1176 DEFINE_WAIT(wait);
1177
1178 while (true) {
1179 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1180
1181 if ((kn->flags & KERNFS_SUICIDED) &&
1182 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1183 break;
1184
1185 mutex_unlock(&kernfs_mutex);
1186 schedule();
1187 mutex_lock(&kernfs_mutex);
1188 }
1189 finish_wait(waitq, &wait);
1190 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1191 ret = false;
1192 }
1193
1194 /*
1195 * This must be done while holding kernfs_mutex; otherwise, waiting
1196 * for SUICIDED && deactivated could finish prematurely.
1197 */
1198 kernfs_unbreak_active_protection(kn);
1199
1200 mutex_unlock(&kernfs_mutex);
1201 return ret;
1202}
1203
fd7b9f7b 1204/**
324a56e1
TH
1205 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1206 * @parent: parent of the target
1207 * @name: name of the kernfs_node to remove
1208 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1209 *
324a56e1
TH
1210 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1211 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1212 */
324a56e1 1213int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1214 const void *ns)
1215{
324a56e1 1216 struct kernfs_node *kn;
fd7b9f7b 1217
324a56e1 1218 if (!parent) {
c637b8ac 1219 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1220 name);
1221 return -ENOENT;
1222 }
1223
988cd7af 1224 mutex_lock(&kernfs_mutex);
fd7b9f7b 1225
324a56e1
TH
1226 kn = kernfs_find_ns(parent, name, ns);
1227 if (kn)
988cd7af 1228 __kernfs_remove(kn);
fd7b9f7b 1229
988cd7af 1230 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1231
324a56e1 1232 if (kn)
fd7b9f7b
TH
1233 return 0;
1234 else
1235 return -ENOENT;
1236}
1237
1238/**
1239 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1240 * @kn: target node
fd7b9f7b
TH
1241 * @new_parent: new parent to put @sd under
1242 * @new_name: new name
1243 * @new_ns: new namespace tag
1244 */
324a56e1 1245int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1246 const char *new_name, const void *new_ns)
1247{
3eef34ad
TH
1248 struct kernfs_node *old_parent;
1249 const char *old_name = NULL;
fd7b9f7b
TH
1250 int error;
1251
3eef34ad
TH
1252 /* can't move or rename root */
1253 if (!kn->parent)
1254 return -EINVAL;
1255
798c75a0
GKH
1256 mutex_lock(&kernfs_mutex);
1257
d0ae3d43 1258 error = -ENOENT;
81c173cb 1259 if (!kernfs_active(kn) || !kernfs_active(new_parent))
d0ae3d43
TH
1260 goto out;
1261
fd7b9f7b 1262 error = 0;
adc5e8b5
TH
1263 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1264 (strcmp(kn->name, new_name) == 0))
798c75a0 1265 goto out; /* nothing to rename */
fd7b9f7b
TH
1266
1267 error = -EEXIST;
1268 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1269 goto out;
fd7b9f7b 1270
324a56e1 1271 /* rename kernfs_node */
adc5e8b5 1272 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b
TH
1273 error = -ENOMEM;
1274 new_name = kstrdup(new_name, GFP_KERNEL);
1275 if (!new_name)
798c75a0 1276 goto out;
3eef34ad
TH
1277 } else {
1278 new_name = NULL;
fd7b9f7b
TH
1279 }
1280
1281 /*
1282 * Move to the appropriate place in the appropriate directories rbtree.
1283 */
c637b8ac 1284 kernfs_unlink_sibling(kn);
fd7b9f7b 1285 kernfs_get(new_parent);
3eef34ad
TH
1286
1287 /* rename_lock protects ->parent and ->name accessors */
1288 spin_lock_irq(&kernfs_rename_lock);
1289
1290 old_parent = kn->parent;
adc5e8b5 1291 kn->parent = new_parent;
3eef34ad
TH
1292
1293 kn->ns = new_ns;
1294 if (new_name) {
1295 if (!(kn->flags & KERNFS_STATIC_NAME))
1296 old_name = kn->name;
1297 kn->flags &= ~KERNFS_STATIC_NAME;
1298 kn->name = new_name;
1299 }
1300
1301 spin_unlock_irq(&kernfs_rename_lock);
1302
9561a896 1303 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1304 kernfs_link_sibling(kn);
fd7b9f7b 1305
3eef34ad
TH
1306 kernfs_put(old_parent);
1307 kfree(old_name);
1308
fd7b9f7b 1309 error = 0;
798c75a0 1310 out:
a797bfc3 1311 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1312 return error;
1313}
1314
fd7b9f7b 1315/* Relationship between s_mode and the DT_xxx types */
324a56e1 1316static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1317{
adc5e8b5 1318 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1319}
1320
c637b8ac 1321static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1322{
1323 kernfs_put(filp->private_data);
1324 return 0;
1325}
1326
c637b8ac 1327static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1328 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1329{
1330 if (pos) {
81c173cb 1331 int valid = kernfs_active(pos) &&
798c75a0 1332 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1333 kernfs_put(pos);
1334 if (!valid)
1335 pos = NULL;
1336 }
1337 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1338 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1339 while (node) {
324a56e1 1340 pos = rb_to_kn(node);
fd7b9f7b 1341
adc5e8b5 1342 if (hash < pos->hash)
fd7b9f7b 1343 node = node->rb_left;
adc5e8b5 1344 else if (hash > pos->hash)
fd7b9f7b
TH
1345 node = node->rb_right;
1346 else
1347 break;
1348 }
1349 }
b9c9dad0
TH
1350 /* Skip over entries which are dying/dead or in the wrong namespace */
1351 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1352 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1353 if (!node)
1354 pos = NULL;
1355 else
324a56e1 1356 pos = rb_to_kn(node);
fd7b9f7b
TH
1357 }
1358 return pos;
1359}
1360
c637b8ac 1361static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1362 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1363{
c637b8ac 1364 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1365 if (pos) {
fd7b9f7b 1366 do {
adc5e8b5 1367 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1368 if (!node)
1369 pos = NULL;
1370 else
324a56e1 1371 pos = rb_to_kn(node);
b9c9dad0
TH
1372 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1373 }
fd7b9f7b
TH
1374 return pos;
1375}
1376
c637b8ac 1377static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1378{
1379 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1380 struct kernfs_node *parent = dentry->d_fsdata;
1381 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1382 const void *ns = NULL;
1383
1384 if (!dir_emit_dots(file, ctx))
1385 return 0;
a797bfc3 1386 mutex_lock(&kernfs_mutex);
fd7b9f7b 1387
324a56e1 1388 if (kernfs_ns_enabled(parent))
c525aadd 1389 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1390
c637b8ac 1391 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1392 pos;
c637b8ac 1393 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1394 const char *name = pos->name;
fd7b9f7b
TH
1395 unsigned int type = dt_type(pos);
1396 int len = strlen(name);
adc5e8b5 1397 ino_t ino = pos->ino;
fd7b9f7b 1398
adc5e8b5 1399 ctx->pos = pos->hash;
fd7b9f7b
TH
1400 file->private_data = pos;
1401 kernfs_get(pos);
1402
a797bfc3 1403 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1404 if (!dir_emit(ctx, name, len, ino, type))
1405 return 0;
a797bfc3 1406 mutex_lock(&kernfs_mutex);
fd7b9f7b 1407 }
a797bfc3 1408 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1409 file->private_data = NULL;
1410 ctx->pos = INT_MAX;
1411 return 0;
1412}
1413
c637b8ac
TH
1414static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1415 int whence)
fd7b9f7b
TH
1416{
1417 struct inode *inode = file_inode(file);
1418 loff_t ret;
1419
1420 mutex_lock(&inode->i_mutex);
1421 ret = generic_file_llseek(file, offset, whence);
1422 mutex_unlock(&inode->i_mutex);
1423
1424 return ret;
1425}
1426
a797bfc3 1427const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1428 .read = generic_read_dir,
c637b8ac
TH
1429 .iterate = kernfs_fop_readdir,
1430 .release = kernfs_dir_fop_release,
1431 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1432};
This page took 0.151806 seconds and 5 git commands to generate.