mm/slab.c: add a helper function get_first_slab
[deliverable/linux.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
9acee9c5
TH
94/**
95 * kernfs_path_len - determine the length of the full path of a given node
96 * @kn: kernfs_node of interest
97 *
98 * The returned length doesn't include the space for the terminating '\0'.
99 */
100size_t kernfs_path_len(struct kernfs_node *kn)
101{
102 size_t len = 0;
103 unsigned long flags;
104
105 spin_lock_irqsave(&kernfs_rename_lock, flags);
106
107 do {
108 len += strlen(kn->name) + 1;
109 kn = kn->parent;
110 } while (kn && kn->parent);
111
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113
114 return len;
115}
116
3eef34ad
TH
117/**
118 * kernfs_path - build full path of a given node
119 * @kn: kernfs_node of interest
120 * @buf: buffer to copy @kn's name into
121 * @buflen: size of @buf
122 *
123 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
124 * path is built from the end of @buf so the returned pointer usually
125 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
126 * and %NULL is returned.
127 */
128char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
129{
130 unsigned long flags;
131 char *p;
132
133 spin_lock_irqsave(&kernfs_rename_lock, flags);
134 p = kernfs_path_locked(kn, buf, buflen);
135 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
136 return p;
137}
e61734c5 138EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
139
140/**
141 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
142 * @kn: kernfs_node of interest
143 *
144 * This function can be called from any context.
145 */
146void pr_cont_kernfs_name(struct kernfs_node *kn)
147{
148 unsigned long flags;
149
150 spin_lock_irqsave(&kernfs_rename_lock, flags);
151
152 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
153 pr_cont("%s", kernfs_pr_cont_buf);
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
160 * @kn: kernfs_node of interest
161 *
162 * This function can be called from any context.
163 */
164void pr_cont_kernfs_path(struct kernfs_node *kn)
165{
166 unsigned long flags;
167 char *p;
168
169 spin_lock_irqsave(&kernfs_rename_lock, flags);
170
171 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
172 sizeof(kernfs_pr_cont_buf));
173 if (p)
174 pr_cont("%s", p);
175 else
176 pr_cont("<name too long>");
177
178 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179}
180
181/**
182 * kernfs_get_parent - determine the parent node and pin it
183 * @kn: kernfs_node of interest
184 *
185 * Determines @kn's parent, pins and returns it. This function can be
186 * called from any context.
187 */
188struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
189{
190 struct kernfs_node *parent;
191 unsigned long flags;
192
193 spin_lock_irqsave(&kernfs_rename_lock, flags);
194 parent = kn->parent;
195 kernfs_get(parent);
196 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
197
198 return parent;
199}
200
fd7b9f7b 201/**
c637b8ac 202 * kernfs_name_hash
fd7b9f7b
TH
203 * @name: Null terminated string to hash
204 * @ns: Namespace tag to hash
205 *
206 * Returns 31 bit hash of ns + name (so it fits in an off_t )
207 */
c637b8ac 208static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
209{
210 unsigned long hash = init_name_hash();
211 unsigned int len = strlen(name);
212 while (len--)
213 hash = partial_name_hash(*name++, hash);
214 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
215 hash &= 0x7fffffffU;
216 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 217 if (hash < 2)
fd7b9f7b
TH
218 hash += 2;
219 if (hash >= INT_MAX)
220 hash = INT_MAX - 1;
221 return hash;
222}
223
c637b8ac
TH
224static int kernfs_name_compare(unsigned int hash, const char *name,
225 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 226{
72392ed0
RV
227 if (hash < kn->hash)
228 return -1;
229 if (hash > kn->hash)
230 return 1;
231 if (ns < kn->ns)
232 return -1;
233 if (ns > kn->ns)
234 return 1;
adc5e8b5 235 return strcmp(name, kn->name);
fd7b9f7b
TH
236}
237
c637b8ac
TH
238static int kernfs_sd_compare(const struct kernfs_node *left,
239 const struct kernfs_node *right)
fd7b9f7b 240{
c637b8ac 241 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
242}
243
244/**
c637b8ac 245 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 246 * @kn: kernfs_node of interest
fd7b9f7b 247 *
324a56e1 248 * Link @kn into its sibling rbtree which starts from
adc5e8b5 249 * @kn->parent->dir.children.
fd7b9f7b
TH
250 *
251 * Locking:
a797bfc3 252 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
253 *
254 * RETURNS:
255 * 0 on susccess -EEXIST on failure.
256 */
c637b8ac 257static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 258{
adc5e8b5 259 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
260 struct rb_node *parent = NULL;
261
fd7b9f7b 262 while (*node) {
324a56e1 263 struct kernfs_node *pos;
fd7b9f7b
TH
264 int result;
265
324a56e1 266 pos = rb_to_kn(*node);
fd7b9f7b 267 parent = *node;
c637b8ac 268 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 269 if (result < 0)
adc5e8b5 270 node = &pos->rb.rb_left;
fd7b9f7b 271 else if (result > 0)
adc5e8b5 272 node = &pos->rb.rb_right;
fd7b9f7b
TH
273 else
274 return -EEXIST;
275 }
c1befb88 276
fd7b9f7b 277 /* add new node and rebalance the tree */
adc5e8b5
TH
278 rb_link_node(&kn->rb, parent, node);
279 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
280
281 /* successfully added, account subdir number */
282 if (kernfs_type(kn) == KERNFS_DIR)
283 kn->parent->dir.subdirs++;
284
fd7b9f7b
TH
285 return 0;
286}
287
288/**
c637b8ac 289 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 290 * @kn: kernfs_node of interest
fd7b9f7b 291 *
35beab06
TH
292 * Try to unlink @kn from its sibling rbtree which starts from
293 * kn->parent->dir.children. Returns %true if @kn was actually
294 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
295 *
296 * Locking:
a797bfc3 297 * mutex_lock(kernfs_mutex)
fd7b9f7b 298 */
35beab06 299static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 300{
35beab06
TH
301 if (RB_EMPTY_NODE(&kn->rb))
302 return false;
303
df23fc39 304 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 305 kn->parent->dir.subdirs--;
fd7b9f7b 306
adc5e8b5 307 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
308 RB_CLEAR_NODE(&kn->rb);
309 return true;
fd7b9f7b
TH
310}
311
312/**
c637b8ac 313 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 314 * @kn: kernfs_node to get an active reference to
fd7b9f7b 315 *
324a56e1 316 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
317 * is NULL.
318 *
319 * RETURNS:
324a56e1 320 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 321 */
c637b8ac 322struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 323{
324a56e1 324 if (unlikely(!kn))
fd7b9f7b
TH
325 return NULL;
326
f4b3e631
GKH
327 if (!atomic_inc_unless_negative(&kn->active))
328 return NULL;
895a068a 329
182fd64b 330 if (kernfs_lockdep(kn))
f4b3e631
GKH
331 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
332 return kn;
fd7b9f7b
TH
333}
334
335/**
c637b8ac 336 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 337 * @kn: kernfs_node to put an active reference to
fd7b9f7b 338 *
324a56e1 339 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
340 * is NULL.
341 */
c637b8ac 342void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 343{
abd54f02 344 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
345 int v;
346
324a56e1 347 if (unlikely(!kn))
fd7b9f7b
TH
348 return;
349
182fd64b 350 if (kernfs_lockdep(kn))
324a56e1 351 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 352 v = atomic_dec_return(&kn->active);
df23fc39 353 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
354 return;
355
abd54f02 356 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
357}
358
359/**
81c173cb
TH
360 * kernfs_drain - drain kernfs_node
361 * @kn: kernfs_node to drain
fd7b9f7b 362 *
81c173cb
TH
363 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
364 * removers may invoke this function concurrently on @kn and all will
365 * return after draining is complete.
fd7b9f7b 366 */
81c173cb 367static void kernfs_drain(struct kernfs_node *kn)
35beab06 368 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 369{
abd54f02 370 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 371
35beab06 372 lockdep_assert_held(&kernfs_mutex);
81c173cb 373 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 374
35beab06 375 mutex_unlock(&kernfs_mutex);
abd54f02 376
182fd64b 377 if (kernfs_lockdep(kn)) {
35beab06
TH
378 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
379 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
380 lock_contended(&kn->dep_map, _RET_IP_);
381 }
abd54f02 382
35beab06 383 /* but everyone should wait for draining */
abd54f02
TH
384 wait_event(root->deactivate_waitq,
385 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 386
182fd64b 387 if (kernfs_lockdep(kn)) {
a6607930
TH
388 lock_acquired(&kn->dep_map, _RET_IP_);
389 rwsem_release(&kn->dep_map, 1, _RET_IP_);
390 }
35beab06 391
ccf02aaf
TH
392 kernfs_unmap_bin_file(kn);
393
35beab06 394 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
395}
396
fd7b9f7b 397/**
324a56e1
TH
398 * kernfs_get - get a reference count on a kernfs_node
399 * @kn: the target kernfs_node
fd7b9f7b 400 */
324a56e1 401void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 402{
324a56e1 403 if (kn) {
adc5e8b5
TH
404 WARN_ON(!atomic_read(&kn->count));
405 atomic_inc(&kn->count);
fd7b9f7b
TH
406 }
407}
408EXPORT_SYMBOL_GPL(kernfs_get);
409
410/**
324a56e1
TH
411 * kernfs_put - put a reference count on a kernfs_node
412 * @kn: the target kernfs_node
fd7b9f7b 413 *
324a56e1 414 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 415 */
324a56e1 416void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 417{
324a56e1 418 struct kernfs_node *parent;
ba7443bc 419 struct kernfs_root *root;
fd7b9f7b 420
adc5e8b5 421 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 422 return;
324a56e1 423 root = kernfs_root(kn);
fd7b9f7b 424 repeat:
81c173cb
TH
425 /*
426 * Moving/renaming is always done while holding reference.
adc5e8b5 427 * kn->parent won't change beneath us.
fd7b9f7b 428 */
adc5e8b5 429 parent = kn->parent;
fd7b9f7b 430
81c173cb
TH
431 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
432 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
433 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 434
df23fc39 435 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 436 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
437
438 kfree_const(kn->name);
439
adc5e8b5
TH
440 if (kn->iattr) {
441 if (kn->iattr->ia_secdata)
442 security_release_secctx(kn->iattr->ia_secdata,
443 kn->iattr->ia_secdata_len);
444 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 445 }
adc5e8b5
TH
446 kfree(kn->iattr);
447 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 448 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 449
324a56e1
TH
450 kn = parent;
451 if (kn) {
adc5e8b5 452 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
453 goto repeat;
454 } else {
324a56e1 455 /* just released the root kn, free @root too */
bc755553 456 ida_destroy(&root->ino_ida);
ba7443bc
TH
457 kfree(root);
458 }
fd7b9f7b
TH
459}
460EXPORT_SYMBOL_GPL(kernfs_put);
461
c637b8ac 462static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 463{
324a56e1 464 struct kernfs_node *kn;
fd7b9f7b
TH
465
466 if (flags & LOOKUP_RCU)
467 return -ECHILD;
468
19bbb926 469 /* Always perform fresh lookup for negatives */
2b0143b5 470 if (d_really_is_negative(dentry))
19bbb926
TH
471 goto out_bad_unlocked;
472
324a56e1 473 kn = dentry->d_fsdata;
a797bfc3 474 mutex_lock(&kernfs_mutex);
fd7b9f7b 475
81c173cb
TH
476 /* The kernfs node has been deactivated */
477 if (!kernfs_active(kn))
fd7b9f7b
TH
478 goto out_bad;
479
c637b8ac 480 /* The kernfs node has been moved? */
adc5e8b5 481 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
482 goto out_bad;
483
c637b8ac 484 /* The kernfs node has been renamed */
adc5e8b5 485 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
486 goto out_bad;
487
c637b8ac 488 /* The kernfs node has been moved to a different namespace */
adc5e8b5 489 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 490 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
491 goto out_bad;
492
a797bfc3 493 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
494 return 1;
495out_bad:
a797bfc3 496 mutex_unlock(&kernfs_mutex);
19bbb926 497out_bad_unlocked:
fd7b9f7b
TH
498 return 0;
499}
500
c637b8ac 501static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
502{
503 kernfs_put(dentry->d_fsdata);
504}
505
a797bfc3 506const struct dentry_operations kernfs_dops = {
c637b8ac 507 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 508 .d_release = kernfs_dop_release,
fd7b9f7b
TH
509};
510
0c23b225
TH
511/**
512 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
513 * @dentry: the dentry in question
514 *
515 * Return the kernfs_node associated with @dentry. If @dentry is not a
516 * kernfs one, %NULL is returned.
517 *
518 * While the returned kernfs_node will stay accessible as long as @dentry
519 * is accessible, the returned node can be in any state and the caller is
520 * fully responsible for determining what's accessible.
521 */
522struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
523{
f41c5934 524 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
525 return dentry->d_fsdata;
526 return NULL;
527}
528
db4aad20
TH
529static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
530 const char *name, umode_t mode,
531 unsigned flags)
fd7b9f7b 532{
324a56e1 533 struct kernfs_node *kn;
bc755553 534 int ret;
fd7b9f7b 535
dfeb0750
TH
536 name = kstrdup_const(name, GFP_KERNEL);
537 if (!name)
538 return NULL;
fd7b9f7b 539
a797bfc3 540 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 541 if (!kn)
fd7b9f7b
TH
542 goto err_out1;
543
499611ed
VD
544 /*
545 * If the ino of the sysfs entry created for a kmem cache gets
546 * allocated from an ida layer, which is accounted to the memcg that
547 * owns the cache, the memcg will get pinned forever. So do not account
548 * ino ida allocations.
549 */
550 ret = ida_simple_get(&root->ino_ida, 1, 0,
551 GFP_KERNEL | __GFP_NOACCOUNT);
bc755553 552 if (ret < 0)
fd7b9f7b 553 goto err_out2;
adc5e8b5 554 kn->ino = ret;
fd7b9f7b 555
adc5e8b5 556 atomic_set(&kn->count, 1);
81c173cb 557 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 558 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 559
adc5e8b5
TH
560 kn->name = name;
561 kn->mode = mode;
81c173cb 562 kn->flags = flags;
fd7b9f7b 563
324a56e1 564 return kn;
fd7b9f7b
TH
565
566 err_out2:
a797bfc3 567 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 568 err_out1:
dfeb0750 569 kfree_const(name);
fd7b9f7b
TH
570 return NULL;
571}
572
db4aad20
TH
573struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
574 const char *name, umode_t mode,
575 unsigned flags)
576{
577 struct kernfs_node *kn;
578
579 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
580 if (kn) {
581 kernfs_get(parent);
582 kn->parent = parent;
583 }
584 return kn;
585}
586
fd7b9f7b 587/**
c637b8ac 588 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 589 * @kn: kernfs_node to be added
fd7b9f7b 590 *
db4aad20
TH
591 * The caller must already have initialized @kn->parent. This
592 * function increments nlink of the parent's inode if @kn is a
593 * directory and link into the children list of the parent.
fd7b9f7b 594 *
fd7b9f7b
TH
595 * RETURNS:
596 * 0 on success, -EEXIST if entry with the given name already
597 * exists.
598 */
988cd7af 599int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 600{
db4aad20 601 struct kernfs_node *parent = kn->parent;
c525aadd 602 struct kernfs_iattrs *ps_iattr;
988cd7af 603 bool has_ns;
fd7b9f7b
TH
604 int ret;
605
988cd7af
TH
606 mutex_lock(&kernfs_mutex);
607
608 ret = -EINVAL;
609 has_ns = kernfs_ns_enabled(parent);
610 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
611 has_ns ? "required" : "invalid", parent->name, kn->name))
612 goto out_unlock;
fd7b9f7b 613
df23fc39 614 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 615 goto out_unlock;
fd7b9f7b 616
988cd7af 617 ret = -ENOENT;
ea015218
EB
618 if (parent->flags & KERNFS_EMPTY_DIR)
619 goto out_unlock;
620
d35258ef 621 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 622 goto out_unlock;
798c75a0 623
c637b8ac 624 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 625
c637b8ac 626 ret = kernfs_link_sibling(kn);
fd7b9f7b 627 if (ret)
988cd7af 628 goto out_unlock;
fd7b9f7b
TH
629
630 /* Update timestamps on the parent */
adc5e8b5 631 ps_iattr = parent->iattr;
fd7b9f7b
TH
632 if (ps_iattr) {
633 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
634 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
635 }
636
d35258ef
TH
637 mutex_unlock(&kernfs_mutex);
638
639 /*
640 * Activate the new node unless CREATE_DEACTIVATED is requested.
641 * If not activated here, the kernfs user is responsible for
642 * activating the node with kernfs_activate(). A node which hasn't
643 * been activated is not visible to userland and its removal won't
644 * trigger deactivation.
645 */
646 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
647 kernfs_activate(kn);
648 return 0;
649
988cd7af 650out_unlock:
a797bfc3 651 mutex_unlock(&kernfs_mutex);
988cd7af 652 return ret;
fd7b9f7b
TH
653}
654
655/**
324a56e1
TH
656 * kernfs_find_ns - find kernfs_node with the given name
657 * @parent: kernfs_node to search under
fd7b9f7b
TH
658 * @name: name to look for
659 * @ns: the namespace tag to use
660 *
324a56e1
TH
661 * Look for kernfs_node with name @name under @parent. Returns pointer to
662 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 663 */
324a56e1
TH
664static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
665 const unsigned char *name,
666 const void *ns)
fd7b9f7b 667{
adc5e8b5 668 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 669 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
670 unsigned int hash;
671
a797bfc3 672 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
673
674 if (has_ns != (bool)ns) {
c637b8ac 675 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 676 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
677 return NULL;
678 }
679
c637b8ac 680 hash = kernfs_name_hash(name, ns);
fd7b9f7b 681 while (node) {
324a56e1 682 struct kernfs_node *kn;
fd7b9f7b
TH
683 int result;
684
324a56e1 685 kn = rb_to_kn(node);
c637b8ac 686 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
687 if (result < 0)
688 node = node->rb_left;
689 else if (result > 0)
690 node = node->rb_right;
691 else
324a56e1 692 return kn;
fd7b9f7b
TH
693 }
694 return NULL;
695}
696
bd96f76a
TH
697static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
698 const unsigned char *path,
699 const void *ns)
700{
701 static char path_buf[PATH_MAX]; /* protected by kernfs_mutex */
702 size_t len = strlcpy(path_buf, path, PATH_MAX);
703 char *p = path_buf;
704 char *name;
705
706 lockdep_assert_held(&kernfs_mutex);
707
708 if (len >= PATH_MAX)
709 return NULL;
710
711 while ((name = strsep(&p, "/")) && parent) {
712 if (*name == '\0')
713 continue;
714 parent = kernfs_find_ns(parent, name, ns);
715 }
716
717 return parent;
718}
719
fd7b9f7b 720/**
324a56e1
TH
721 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
722 * @parent: kernfs_node to search under
fd7b9f7b
TH
723 * @name: name to look for
724 * @ns: the namespace tag to use
725 *
324a56e1 726 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 727 * if found. This function may sleep and returns pointer to the found
324a56e1 728 * kernfs_node on success, %NULL on failure.
fd7b9f7b 729 */
324a56e1
TH
730struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
731 const char *name, const void *ns)
fd7b9f7b 732{
324a56e1 733 struct kernfs_node *kn;
fd7b9f7b 734
a797bfc3 735 mutex_lock(&kernfs_mutex);
324a56e1
TH
736 kn = kernfs_find_ns(parent, name, ns);
737 kernfs_get(kn);
a797bfc3 738 mutex_unlock(&kernfs_mutex);
fd7b9f7b 739
324a56e1 740 return kn;
fd7b9f7b
TH
741}
742EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
743
bd96f76a
TH
744/**
745 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
746 * @parent: kernfs_node to search under
747 * @path: path to look for
748 * @ns: the namespace tag to use
749 *
750 * Look for kernfs_node with path @path under @parent and get a reference
751 * if found. This function may sleep and returns pointer to the found
752 * kernfs_node on success, %NULL on failure.
753 */
754struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
755 const char *path, const void *ns)
756{
757 struct kernfs_node *kn;
758
759 mutex_lock(&kernfs_mutex);
760 kn = kernfs_walk_ns(parent, path, ns);
761 kernfs_get(kn);
762 mutex_unlock(&kernfs_mutex);
763
764 return kn;
765}
766
ba7443bc
TH
767/**
768 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 769 * @scops: optional syscall operations for the hierarchy
d35258ef 770 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
771 * @priv: opaque data associated with the new directory
772 *
773 * Returns the root of the new hierarchy on success, ERR_PTR() value on
774 * failure.
775 */
90c07c89 776struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 777 unsigned int flags, void *priv)
ba7443bc
TH
778{
779 struct kernfs_root *root;
324a56e1 780 struct kernfs_node *kn;
ba7443bc
TH
781
782 root = kzalloc(sizeof(*root), GFP_KERNEL);
783 if (!root)
784 return ERR_PTR(-ENOMEM);
785
bc755553 786 ida_init(&root->ino_ida);
7d568a83 787 INIT_LIST_HEAD(&root->supers);
bc755553 788
db4aad20
TH
789 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
790 KERNFS_DIR);
324a56e1 791 if (!kn) {
bc755553 792 ida_destroy(&root->ino_ida);
ba7443bc
TH
793 kfree(root);
794 return ERR_PTR(-ENOMEM);
795 }
796
324a56e1 797 kn->priv = priv;
adc5e8b5 798 kn->dir.root = root;
ba7443bc 799
90c07c89 800 root->syscall_ops = scops;
d35258ef 801 root->flags = flags;
324a56e1 802 root->kn = kn;
abd54f02 803 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 804
d35258ef
TH
805 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
806 kernfs_activate(kn);
807
ba7443bc
TH
808 return root;
809}
810
811/**
812 * kernfs_destroy_root - destroy a kernfs hierarchy
813 * @root: root of the hierarchy to destroy
814 *
815 * Destroy the hierarchy anchored at @root by removing all existing
816 * directories and destroying @root.
817 */
818void kernfs_destroy_root(struct kernfs_root *root)
819{
324a56e1 820 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
821}
822
fd7b9f7b
TH
823/**
824 * kernfs_create_dir_ns - create a directory
825 * @parent: parent in which to create a new directory
826 * @name: name of the new directory
bb8b9d09 827 * @mode: mode of the new directory
fd7b9f7b
TH
828 * @priv: opaque data associated with the new directory
829 * @ns: optional namespace tag of the directory
830 *
831 * Returns the created node on success, ERR_PTR() value on failure.
832 */
324a56e1 833struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
834 const char *name, umode_t mode,
835 void *priv, const void *ns)
fd7b9f7b 836{
324a56e1 837 struct kernfs_node *kn;
fd7b9f7b
TH
838 int rc;
839
840 /* allocate */
db4aad20 841 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 842 if (!kn)
fd7b9f7b
TH
843 return ERR_PTR(-ENOMEM);
844
adc5e8b5
TH
845 kn->dir.root = parent->dir.root;
846 kn->ns = ns;
324a56e1 847 kn->priv = priv;
fd7b9f7b
TH
848
849 /* link in */
988cd7af 850 rc = kernfs_add_one(kn);
fd7b9f7b 851 if (!rc)
324a56e1 852 return kn;
fd7b9f7b 853
324a56e1 854 kernfs_put(kn);
fd7b9f7b
TH
855 return ERR_PTR(rc);
856}
857
ea015218
EB
858/**
859 * kernfs_create_empty_dir - create an always empty directory
860 * @parent: parent in which to create a new directory
861 * @name: name of the new directory
862 *
863 * Returns the created node on success, ERR_PTR() value on failure.
864 */
865struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
866 const char *name)
867{
868 struct kernfs_node *kn;
869 int rc;
870
871 /* allocate */
872 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
873 if (!kn)
874 return ERR_PTR(-ENOMEM);
875
876 kn->flags |= KERNFS_EMPTY_DIR;
877 kn->dir.root = parent->dir.root;
878 kn->ns = NULL;
879 kn->priv = NULL;
880
881 /* link in */
882 rc = kernfs_add_one(kn);
883 if (!rc)
884 return kn;
885
886 kernfs_put(kn);
887 return ERR_PTR(rc);
888}
889
c637b8ac
TH
890static struct dentry *kernfs_iop_lookup(struct inode *dir,
891 struct dentry *dentry,
892 unsigned int flags)
fd7b9f7b 893{
19bbb926 894 struct dentry *ret;
324a56e1
TH
895 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
896 struct kernfs_node *kn;
fd7b9f7b
TH
897 struct inode *inode;
898 const void *ns = NULL;
899
a797bfc3 900 mutex_lock(&kernfs_mutex);
fd7b9f7b 901
324a56e1 902 if (kernfs_ns_enabled(parent))
c525aadd 903 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 904
324a56e1 905 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
906
907 /* no such entry */
b9c9dad0 908 if (!kn || !kernfs_active(kn)) {
19bbb926 909 ret = NULL;
fd7b9f7b
TH
910 goto out_unlock;
911 }
324a56e1
TH
912 kernfs_get(kn);
913 dentry->d_fsdata = kn;
fd7b9f7b
TH
914
915 /* attach dentry and inode */
c637b8ac 916 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
917 if (!inode) {
918 ret = ERR_PTR(-ENOMEM);
919 goto out_unlock;
920 }
921
922 /* instantiate and hash dentry */
41d28bca 923 ret = d_splice_alias(inode, dentry);
fd7b9f7b 924 out_unlock:
a797bfc3 925 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
926 return ret;
927}
928
80b9bbef
TH
929static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
930 umode_t mode)
931{
932 struct kernfs_node *parent = dir->i_private;
90c07c89 933 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 934 int ret;
80b9bbef 935
90c07c89 936 if (!scops || !scops->mkdir)
80b9bbef
TH
937 return -EPERM;
938
07c7530d
TH
939 if (!kernfs_get_active(parent))
940 return -ENODEV;
941
90c07c89 942 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
943
944 kernfs_put_active(parent);
945 return ret;
80b9bbef
TH
946}
947
948static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
949{
950 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 951 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 952 int ret;
80b9bbef 953
90c07c89 954 if (!scops || !scops->rmdir)
80b9bbef
TH
955 return -EPERM;
956
07c7530d
TH
957 if (!kernfs_get_active(kn))
958 return -ENODEV;
959
90c07c89 960 ret = scops->rmdir(kn);
07c7530d
TH
961
962 kernfs_put_active(kn);
963 return ret;
80b9bbef
TH
964}
965
966static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
967 struct inode *new_dir, struct dentry *new_dentry)
968{
969 struct kernfs_node *kn = old_dentry->d_fsdata;
970 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 971 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 972 int ret;
80b9bbef 973
90c07c89 974 if (!scops || !scops->rename)
80b9bbef
TH
975 return -EPERM;
976
07c7530d
TH
977 if (!kernfs_get_active(kn))
978 return -ENODEV;
979
980 if (!kernfs_get_active(new_parent)) {
981 kernfs_put_active(kn);
982 return -ENODEV;
983 }
984
90c07c89 985 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
986
987 kernfs_put_active(new_parent);
988 kernfs_put_active(kn);
989 return ret;
80b9bbef
TH
990}
991
a797bfc3 992const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
993 .lookup = kernfs_iop_lookup,
994 .permission = kernfs_iop_permission,
995 .setattr = kernfs_iop_setattr,
996 .getattr = kernfs_iop_getattr,
997 .setxattr = kernfs_iop_setxattr,
998 .removexattr = kernfs_iop_removexattr,
999 .getxattr = kernfs_iop_getxattr,
1000 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1001
1002 .mkdir = kernfs_iop_mkdir,
1003 .rmdir = kernfs_iop_rmdir,
1004 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1005};
1006
c637b8ac 1007static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1008{
324a56e1 1009 struct kernfs_node *last;
fd7b9f7b
TH
1010
1011 while (true) {
1012 struct rb_node *rbn;
1013
1014 last = pos;
1015
df23fc39 1016 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1017 break;
1018
adc5e8b5 1019 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1020 if (!rbn)
1021 break;
1022
324a56e1 1023 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1024 }
1025
1026 return last;
1027}
1028
1029/**
c637b8ac 1030 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1031 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1032 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1033 *
1034 * Find the next descendant to visit for post-order traversal of @root's
1035 * descendants. @root is included in the iteration and the last node to be
1036 * visited.
1037 */
c637b8ac
TH
1038static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1039 struct kernfs_node *root)
fd7b9f7b
TH
1040{
1041 struct rb_node *rbn;
1042
a797bfc3 1043 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1044
1045 /* if first iteration, visit leftmost descendant which may be root */
1046 if (!pos)
c637b8ac 1047 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1048
1049 /* if we visited @root, we're done */
1050 if (pos == root)
1051 return NULL;
1052
1053 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1054 rbn = rb_next(&pos->rb);
fd7b9f7b 1055 if (rbn)
c637b8ac 1056 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1057
1058 /* no sibling left, visit parent */
adc5e8b5 1059 return pos->parent;
fd7b9f7b
TH
1060}
1061
d35258ef
TH
1062/**
1063 * kernfs_activate - activate a node which started deactivated
1064 * @kn: kernfs_node whose subtree is to be activated
1065 *
1066 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1067 * needs to be explicitly activated. A node which hasn't been activated
1068 * isn't visible to userland and deactivation is skipped during its
1069 * removal. This is useful to construct atomic init sequences where
1070 * creation of multiple nodes should either succeed or fail atomically.
1071 *
1072 * The caller is responsible for ensuring that this function is not called
1073 * after kernfs_remove*() is invoked on @kn.
1074 */
1075void kernfs_activate(struct kernfs_node *kn)
1076{
1077 struct kernfs_node *pos;
1078
1079 mutex_lock(&kernfs_mutex);
1080
1081 pos = NULL;
1082 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1083 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1084 continue;
1085
1086 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1087 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1088
1089 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1090 pos->flags |= KERNFS_ACTIVATED;
1091 }
1092
1093 mutex_unlock(&kernfs_mutex);
1094}
1095
988cd7af 1096static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1097{
35beab06
TH
1098 struct kernfs_node *pos;
1099
1100 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1101
6b0afc2a
TH
1102 /*
1103 * Short-circuit if non-root @kn has already finished removal.
1104 * This is for kernfs_remove_self() which plays with active ref
1105 * after removal.
1106 */
1107 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1108 return;
1109
c637b8ac 1110 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1111
81c173cb 1112 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1113 pos = NULL;
1114 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1115 if (kernfs_active(pos))
1116 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1117
1118 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1119 do {
35beab06
TH
1120 pos = kernfs_leftmost_descendant(kn);
1121
1122 /*
81c173cb
TH
1123 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1124 * base ref could have been put by someone else by the time
1125 * the function returns. Make sure it doesn't go away
1126 * underneath us.
35beab06
TH
1127 */
1128 kernfs_get(pos);
1129
d35258ef
TH
1130 /*
1131 * Drain iff @kn was activated. This avoids draining and
1132 * its lockdep annotations for nodes which have never been
1133 * activated and allows embedding kernfs_remove() in create
1134 * error paths without worrying about draining.
1135 */
1136 if (kn->flags & KERNFS_ACTIVATED)
1137 kernfs_drain(pos);
1138 else
1139 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1140
1141 /*
1142 * kernfs_unlink_sibling() succeeds once per node. Use it
1143 * to decide who's responsible for cleanups.
1144 */
1145 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1146 struct kernfs_iattrs *ps_iattr =
1147 pos->parent ? pos->parent->iattr : NULL;
1148
1149 /* update timestamps on the parent */
1150 if (ps_iattr) {
1151 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1152 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1153 }
1154
988cd7af 1155 kernfs_put(pos);
35beab06
TH
1156 }
1157
1158 kernfs_put(pos);
1159 } while (pos != kn);
fd7b9f7b
TH
1160}
1161
1162/**
324a56e1
TH
1163 * kernfs_remove - remove a kernfs_node recursively
1164 * @kn: the kernfs_node to remove
fd7b9f7b 1165 *
324a56e1 1166 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1167 */
324a56e1 1168void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1169{
988cd7af
TH
1170 mutex_lock(&kernfs_mutex);
1171 __kernfs_remove(kn);
1172 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1173}
1174
6b0afc2a
TH
1175/**
1176 * kernfs_break_active_protection - break out of active protection
1177 * @kn: the self kernfs_node
1178 *
1179 * The caller must be running off of a kernfs operation which is invoked
1180 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1181 * this function must also be matched with an invocation of
1182 * kernfs_unbreak_active_protection().
1183 *
1184 * This function releases the active reference of @kn the caller is
1185 * holding. Once this function is called, @kn may be removed at any point
1186 * and the caller is solely responsible for ensuring that the objects it
1187 * dereferences are accessible.
1188 */
1189void kernfs_break_active_protection(struct kernfs_node *kn)
1190{
1191 /*
1192 * Take out ourself out of the active ref dependency chain. If
1193 * we're called without an active ref, lockdep will complain.
1194 */
1195 kernfs_put_active(kn);
1196}
1197
1198/**
1199 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1200 * @kn: the self kernfs_node
1201 *
1202 * If kernfs_break_active_protection() was called, this function must be
1203 * invoked before finishing the kernfs operation. Note that while this
1204 * function restores the active reference, it doesn't and can't actually
1205 * restore the active protection - @kn may already or be in the process of
1206 * being removed. Once kernfs_break_active_protection() is invoked, that
1207 * protection is irreversibly gone for the kernfs operation instance.
1208 *
1209 * While this function may be called at any point after
1210 * kernfs_break_active_protection() is invoked, its most useful location
1211 * would be right before the enclosing kernfs operation returns.
1212 */
1213void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1214{
1215 /*
1216 * @kn->active could be in any state; however, the increment we do
1217 * here will be undone as soon as the enclosing kernfs operation
1218 * finishes and this temporary bump can't break anything. If @kn
1219 * is alive, nothing changes. If @kn is being deactivated, the
1220 * soon-to-follow put will either finish deactivation or restore
1221 * deactivated state. If @kn is already removed, the temporary
1222 * bump is guaranteed to be gone before @kn is released.
1223 */
1224 atomic_inc(&kn->active);
1225 if (kernfs_lockdep(kn))
1226 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1227}
1228
1229/**
1230 * kernfs_remove_self - remove a kernfs_node from its own method
1231 * @kn: the self kernfs_node to remove
1232 *
1233 * The caller must be running off of a kernfs operation which is invoked
1234 * with an active reference - e.g. one of kernfs_ops. This can be used to
1235 * implement a file operation which deletes itself.
1236 *
1237 * For example, the "delete" file for a sysfs device directory can be
1238 * implemented by invoking kernfs_remove_self() on the "delete" file
1239 * itself. This function breaks the circular dependency of trying to
1240 * deactivate self while holding an active ref itself. It isn't necessary
1241 * to modify the usual removal path to use kernfs_remove_self(). The
1242 * "delete" implementation can simply invoke kernfs_remove_self() on self
1243 * before proceeding with the usual removal path. kernfs will ignore later
1244 * kernfs_remove() on self.
1245 *
1246 * kernfs_remove_self() can be called multiple times concurrently on the
1247 * same kernfs_node. Only the first one actually performs removal and
1248 * returns %true. All others will wait until the kernfs operation which
1249 * won self-removal finishes and return %false. Note that the losers wait
1250 * for the completion of not only the winning kernfs_remove_self() but also
1251 * the whole kernfs_ops which won the arbitration. This can be used to
1252 * guarantee, for example, all concurrent writes to a "delete" file to
1253 * finish only after the whole operation is complete.
1254 */
1255bool kernfs_remove_self(struct kernfs_node *kn)
1256{
1257 bool ret;
1258
1259 mutex_lock(&kernfs_mutex);
1260 kernfs_break_active_protection(kn);
1261
1262 /*
1263 * SUICIDAL is used to arbitrate among competing invocations. Only
1264 * the first one will actually perform removal. When the removal
1265 * is complete, SUICIDED is set and the active ref is restored
1266 * while holding kernfs_mutex. The ones which lost arbitration
1267 * waits for SUICDED && drained which can happen only after the
1268 * enclosing kernfs operation which executed the winning instance
1269 * of kernfs_remove_self() finished.
1270 */
1271 if (!(kn->flags & KERNFS_SUICIDAL)) {
1272 kn->flags |= KERNFS_SUICIDAL;
1273 __kernfs_remove(kn);
1274 kn->flags |= KERNFS_SUICIDED;
1275 ret = true;
1276 } else {
1277 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1278 DEFINE_WAIT(wait);
1279
1280 while (true) {
1281 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1282
1283 if ((kn->flags & KERNFS_SUICIDED) &&
1284 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1285 break;
1286
1287 mutex_unlock(&kernfs_mutex);
1288 schedule();
1289 mutex_lock(&kernfs_mutex);
1290 }
1291 finish_wait(waitq, &wait);
1292 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1293 ret = false;
1294 }
1295
1296 /*
1297 * This must be done while holding kernfs_mutex; otherwise, waiting
1298 * for SUICIDED && deactivated could finish prematurely.
1299 */
1300 kernfs_unbreak_active_protection(kn);
1301
1302 mutex_unlock(&kernfs_mutex);
1303 return ret;
1304}
1305
fd7b9f7b 1306/**
324a56e1
TH
1307 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1308 * @parent: parent of the target
1309 * @name: name of the kernfs_node to remove
1310 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1311 *
324a56e1
TH
1312 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1313 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1314 */
324a56e1 1315int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1316 const void *ns)
1317{
324a56e1 1318 struct kernfs_node *kn;
fd7b9f7b 1319
324a56e1 1320 if (!parent) {
c637b8ac 1321 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1322 name);
1323 return -ENOENT;
1324 }
1325
988cd7af 1326 mutex_lock(&kernfs_mutex);
fd7b9f7b 1327
324a56e1
TH
1328 kn = kernfs_find_ns(parent, name, ns);
1329 if (kn)
988cd7af 1330 __kernfs_remove(kn);
fd7b9f7b 1331
988cd7af 1332 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1333
324a56e1 1334 if (kn)
fd7b9f7b
TH
1335 return 0;
1336 else
1337 return -ENOENT;
1338}
1339
1340/**
1341 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1342 * @kn: target node
fd7b9f7b
TH
1343 * @new_parent: new parent to put @sd under
1344 * @new_name: new name
1345 * @new_ns: new namespace tag
1346 */
324a56e1 1347int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1348 const char *new_name, const void *new_ns)
1349{
3eef34ad
TH
1350 struct kernfs_node *old_parent;
1351 const char *old_name = NULL;
fd7b9f7b
TH
1352 int error;
1353
3eef34ad
TH
1354 /* can't move or rename root */
1355 if (!kn->parent)
1356 return -EINVAL;
1357
798c75a0
GKH
1358 mutex_lock(&kernfs_mutex);
1359
d0ae3d43 1360 error = -ENOENT;
ea015218
EB
1361 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1362 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1363 goto out;
1364
fd7b9f7b 1365 error = 0;
adc5e8b5
TH
1366 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1367 (strcmp(kn->name, new_name) == 0))
798c75a0 1368 goto out; /* nothing to rename */
fd7b9f7b
TH
1369
1370 error = -EEXIST;
1371 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1372 goto out;
fd7b9f7b 1373
324a56e1 1374 /* rename kernfs_node */
adc5e8b5 1375 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1376 error = -ENOMEM;
75287a67 1377 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1378 if (!new_name)
798c75a0 1379 goto out;
3eef34ad
TH
1380 } else {
1381 new_name = NULL;
fd7b9f7b
TH
1382 }
1383
1384 /*
1385 * Move to the appropriate place in the appropriate directories rbtree.
1386 */
c637b8ac 1387 kernfs_unlink_sibling(kn);
fd7b9f7b 1388 kernfs_get(new_parent);
3eef34ad
TH
1389
1390 /* rename_lock protects ->parent and ->name accessors */
1391 spin_lock_irq(&kernfs_rename_lock);
1392
1393 old_parent = kn->parent;
adc5e8b5 1394 kn->parent = new_parent;
3eef34ad
TH
1395
1396 kn->ns = new_ns;
1397 if (new_name) {
dfeb0750 1398 old_name = kn->name;
3eef34ad
TH
1399 kn->name = new_name;
1400 }
1401
1402 spin_unlock_irq(&kernfs_rename_lock);
1403
9561a896 1404 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1405 kernfs_link_sibling(kn);
fd7b9f7b 1406
3eef34ad 1407 kernfs_put(old_parent);
75287a67 1408 kfree_const(old_name);
3eef34ad 1409
fd7b9f7b 1410 error = 0;
798c75a0 1411 out:
a797bfc3 1412 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1413 return error;
1414}
1415
fd7b9f7b 1416/* Relationship between s_mode and the DT_xxx types */
324a56e1 1417static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1418{
adc5e8b5 1419 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1420}
1421
c637b8ac 1422static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1423{
1424 kernfs_put(filp->private_data);
1425 return 0;
1426}
1427
c637b8ac 1428static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1429 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1430{
1431 if (pos) {
81c173cb 1432 int valid = kernfs_active(pos) &&
798c75a0 1433 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1434 kernfs_put(pos);
1435 if (!valid)
1436 pos = NULL;
1437 }
1438 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1439 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1440 while (node) {
324a56e1 1441 pos = rb_to_kn(node);
fd7b9f7b 1442
adc5e8b5 1443 if (hash < pos->hash)
fd7b9f7b 1444 node = node->rb_left;
adc5e8b5 1445 else if (hash > pos->hash)
fd7b9f7b
TH
1446 node = node->rb_right;
1447 else
1448 break;
1449 }
1450 }
b9c9dad0
TH
1451 /* Skip over entries which are dying/dead or in the wrong namespace */
1452 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1453 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1454 if (!node)
1455 pos = NULL;
1456 else
324a56e1 1457 pos = rb_to_kn(node);
fd7b9f7b
TH
1458 }
1459 return pos;
1460}
1461
c637b8ac 1462static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1463 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1464{
c637b8ac 1465 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1466 if (pos) {
fd7b9f7b 1467 do {
adc5e8b5 1468 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1469 if (!node)
1470 pos = NULL;
1471 else
324a56e1 1472 pos = rb_to_kn(node);
b9c9dad0
TH
1473 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1474 }
fd7b9f7b
TH
1475 return pos;
1476}
1477
c637b8ac 1478static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1479{
1480 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1481 struct kernfs_node *parent = dentry->d_fsdata;
1482 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1483 const void *ns = NULL;
1484
1485 if (!dir_emit_dots(file, ctx))
1486 return 0;
a797bfc3 1487 mutex_lock(&kernfs_mutex);
fd7b9f7b 1488
324a56e1 1489 if (kernfs_ns_enabled(parent))
c525aadd 1490 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1491
c637b8ac 1492 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1493 pos;
c637b8ac 1494 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1495 const char *name = pos->name;
fd7b9f7b
TH
1496 unsigned int type = dt_type(pos);
1497 int len = strlen(name);
adc5e8b5 1498 ino_t ino = pos->ino;
fd7b9f7b 1499
adc5e8b5 1500 ctx->pos = pos->hash;
fd7b9f7b
TH
1501 file->private_data = pos;
1502 kernfs_get(pos);
1503
a797bfc3 1504 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1505 if (!dir_emit(ctx, name, len, ino, type))
1506 return 0;
a797bfc3 1507 mutex_lock(&kernfs_mutex);
fd7b9f7b 1508 }
a797bfc3 1509 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1510 file->private_data = NULL;
1511 ctx->pos = INT_MAX;
1512 return 0;
1513}
1514
c637b8ac
TH
1515static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1516 int whence)
fd7b9f7b
TH
1517{
1518 struct inode *inode = file_inode(file);
1519 loff_t ret;
1520
1521 mutex_lock(&inode->i_mutex);
1522 ret = generic_file_llseek(file, offset, whence);
1523 mutex_unlock(&inode->i_mutex);
1524
1525 return ret;
1526}
1527
a797bfc3 1528const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1529 .read = generic_read_dir,
c637b8ac
TH
1530 .iterate = kernfs_fop_readdir,
1531 .release = kernfs_dir_fop_release,
1532 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1533};
This page took 0.19808 seconds and 5 git commands to generate.