Linux 3.15-rc2
[deliverable/linux.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 size_t buflen)
49{
50 char *p = buf + buflen;
51 int len;
52
53 *--p = '\0';
54
55 do {
56 len = strlen(kn->name);
57 if (p - buf < len + 1) {
58 buf[0] = '\0';
59 p = NULL;
60 break;
61 }
62 p -= len;
63 memcpy(p, kn->name, len);
64 *--p = '/';
65 kn = kn->parent;
66 } while (kn && kn->parent);
67
68 return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
78 * similar to strlcpy(). It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85 unsigned long flags;
86 int ret;
87
88 spin_lock_irqsave(&kernfs_rename_lock, flags);
89 ret = kernfs_name_locked(kn, buf, buflen);
90 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 return ret;
92}
93
94/**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106{
107 unsigned long flags;
108 char *p;
109
110 spin_lock_irqsave(&kernfs_rename_lock, flags);
111 p = kernfs_path_locked(kn, buf, buflen);
112 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 return p;
114}
e61734c5 115EXPORT_SYMBOL_GPL(kernfs_path);
3eef34ad
TH
116
117/**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123void pr_cont_kernfs_name(struct kernfs_node *kn)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 pr_cont("%s", kernfs_pr_cont_buf);
131
132 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133}
134
135/**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141void pr_cont_kernfs_path(struct kernfs_node *kn)
142{
143 unsigned long flags;
144 char *p;
145
146 spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 sizeof(kernfs_pr_cont_buf));
150 if (p)
151 pr_cont("%s", p);
152 else
153 pr_cont("<name too long>");
154
155 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it. This function can be
163 * called from any context.
164 */
165struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166{
167 struct kernfs_node *parent;
168 unsigned long flags;
169
170 spin_lock_irqsave(&kernfs_rename_lock, flags);
171 parent = kn->parent;
172 kernfs_get(parent);
173 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175 return parent;
176}
177
fd7b9f7b 178/**
c637b8ac 179 * kernfs_name_hash
fd7b9f7b
TH
180 * @name: Null terminated string to hash
181 * @ns: Namespace tag to hash
182 *
183 * Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
c637b8ac 185static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b
TH
186{
187 unsigned long hash = init_name_hash();
188 unsigned int len = strlen(name);
189 while (len--)
190 hash = partial_name_hash(*name++, hash);
191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 hash &= 0x7fffffffU;
193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 194 if (hash < 2)
fd7b9f7b
TH
195 hash += 2;
196 if (hash >= INT_MAX)
197 hash = INT_MAX - 1;
198 return hash;
199}
200
c637b8ac
TH
201static int kernfs_name_compare(unsigned int hash, const char *name,
202 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 203{
adc5e8b5
TH
204 if (hash != kn->hash)
205 return hash - kn->hash;
206 if (ns != kn->ns)
207 return ns - kn->ns;
208 return strcmp(name, kn->name);
fd7b9f7b
TH
209}
210
c637b8ac
TH
211static int kernfs_sd_compare(const struct kernfs_node *left,
212 const struct kernfs_node *right)
fd7b9f7b 213{
c637b8ac 214 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
215}
216
217/**
c637b8ac 218 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 219 * @kn: kernfs_node of interest
fd7b9f7b 220 *
324a56e1 221 * Link @kn into its sibling rbtree which starts from
adc5e8b5 222 * @kn->parent->dir.children.
fd7b9f7b
TH
223 *
224 * Locking:
a797bfc3 225 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
226 *
227 * RETURNS:
228 * 0 on susccess -EEXIST on failure.
229 */
c637b8ac 230static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 231{
adc5e8b5 232 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
233 struct rb_node *parent = NULL;
234
df23fc39 235 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 236 kn->parent->dir.subdirs++;
fd7b9f7b
TH
237
238 while (*node) {
324a56e1 239 struct kernfs_node *pos;
fd7b9f7b
TH
240 int result;
241
324a56e1 242 pos = rb_to_kn(*node);
fd7b9f7b 243 parent = *node;
c637b8ac 244 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 245 if (result < 0)
adc5e8b5 246 node = &pos->rb.rb_left;
fd7b9f7b 247 else if (result > 0)
adc5e8b5 248 node = &pos->rb.rb_right;
fd7b9f7b
TH
249 else
250 return -EEXIST;
251 }
252 /* add new node and rebalance the tree */
adc5e8b5
TH
253 rb_link_node(&kn->rb, parent, node);
254 rb_insert_color(&kn->rb, &kn->parent->dir.children);
fd7b9f7b
TH
255 return 0;
256}
257
258/**
c637b8ac 259 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 260 * @kn: kernfs_node of interest
fd7b9f7b 261 *
35beab06
TH
262 * Try to unlink @kn from its sibling rbtree which starts from
263 * kn->parent->dir.children. Returns %true if @kn was actually
264 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
265 *
266 * Locking:
a797bfc3 267 * mutex_lock(kernfs_mutex)
fd7b9f7b 268 */
35beab06 269static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 270{
35beab06
TH
271 if (RB_EMPTY_NODE(&kn->rb))
272 return false;
273
df23fc39 274 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 275 kn->parent->dir.subdirs--;
fd7b9f7b 276
adc5e8b5 277 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
278 RB_CLEAR_NODE(&kn->rb);
279 return true;
fd7b9f7b
TH
280}
281
282/**
c637b8ac 283 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 284 * @kn: kernfs_node to get an active reference to
fd7b9f7b 285 *
324a56e1 286 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
287 * is NULL.
288 *
289 * RETURNS:
324a56e1 290 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 291 */
c637b8ac 292struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 293{
324a56e1 294 if (unlikely(!kn))
fd7b9f7b
TH
295 return NULL;
296
f4b3e631
GKH
297 if (!atomic_inc_unless_negative(&kn->active))
298 return NULL;
895a068a 299
182fd64b 300 if (kernfs_lockdep(kn))
f4b3e631
GKH
301 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
302 return kn;
fd7b9f7b
TH
303}
304
305/**
c637b8ac 306 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 307 * @kn: kernfs_node to put an active reference to
fd7b9f7b 308 *
324a56e1 309 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
310 * is NULL.
311 */
c637b8ac 312void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 313{
abd54f02 314 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
315 int v;
316
324a56e1 317 if (unlikely(!kn))
fd7b9f7b
TH
318 return;
319
182fd64b 320 if (kernfs_lockdep(kn))
324a56e1 321 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 322 v = atomic_dec_return(&kn->active);
df23fc39 323 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
324 return;
325
abd54f02 326 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
327}
328
329/**
81c173cb
TH
330 * kernfs_drain - drain kernfs_node
331 * @kn: kernfs_node to drain
fd7b9f7b 332 *
81c173cb
TH
333 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
334 * removers may invoke this function concurrently on @kn and all will
335 * return after draining is complete.
fd7b9f7b 336 */
81c173cb 337static void kernfs_drain(struct kernfs_node *kn)
35beab06 338 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 339{
abd54f02 340 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 341
35beab06 342 lockdep_assert_held(&kernfs_mutex);
81c173cb 343 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 344
35beab06 345 mutex_unlock(&kernfs_mutex);
abd54f02 346
182fd64b 347 if (kernfs_lockdep(kn)) {
35beab06
TH
348 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
349 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
350 lock_contended(&kn->dep_map, _RET_IP_);
351 }
abd54f02 352
35beab06 353 /* but everyone should wait for draining */
abd54f02
TH
354 wait_event(root->deactivate_waitq,
355 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 356
182fd64b 357 if (kernfs_lockdep(kn)) {
a6607930
TH
358 lock_acquired(&kn->dep_map, _RET_IP_);
359 rwsem_release(&kn->dep_map, 1, _RET_IP_);
360 }
35beab06 361
ccf02aaf
TH
362 kernfs_unmap_bin_file(kn);
363
35beab06 364 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
365}
366
fd7b9f7b 367/**
324a56e1
TH
368 * kernfs_get - get a reference count on a kernfs_node
369 * @kn: the target kernfs_node
fd7b9f7b 370 */
324a56e1 371void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 372{
324a56e1 373 if (kn) {
adc5e8b5
TH
374 WARN_ON(!atomic_read(&kn->count));
375 atomic_inc(&kn->count);
fd7b9f7b
TH
376 }
377}
378EXPORT_SYMBOL_GPL(kernfs_get);
379
380/**
324a56e1
TH
381 * kernfs_put - put a reference count on a kernfs_node
382 * @kn: the target kernfs_node
fd7b9f7b 383 *
324a56e1 384 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 385 */
324a56e1 386void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 387{
324a56e1 388 struct kernfs_node *parent;
ba7443bc 389 struct kernfs_root *root;
fd7b9f7b 390
adc5e8b5 391 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 392 return;
324a56e1 393 root = kernfs_root(kn);
fd7b9f7b 394 repeat:
81c173cb
TH
395 /*
396 * Moving/renaming is always done while holding reference.
adc5e8b5 397 * kn->parent won't change beneath us.
fd7b9f7b 398 */
adc5e8b5 399 parent = kn->parent;
fd7b9f7b 400
81c173cb
TH
401 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
402 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
403 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 404
df23fc39 405 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 406 kernfs_put(kn->symlink.target_kn);
2063d608 407 if (!(kn->flags & KERNFS_STATIC_NAME))
adc5e8b5
TH
408 kfree(kn->name);
409 if (kn->iattr) {
410 if (kn->iattr->ia_secdata)
411 security_release_secctx(kn->iattr->ia_secdata,
412 kn->iattr->ia_secdata_len);
413 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 414 }
adc5e8b5
TH
415 kfree(kn->iattr);
416 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 417 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 418
324a56e1
TH
419 kn = parent;
420 if (kn) {
adc5e8b5 421 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
422 goto repeat;
423 } else {
324a56e1 424 /* just released the root kn, free @root too */
bc755553 425 ida_destroy(&root->ino_ida);
ba7443bc
TH
426 kfree(root);
427 }
fd7b9f7b
TH
428}
429EXPORT_SYMBOL_GPL(kernfs_put);
430
c637b8ac 431static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 432{
324a56e1 433 struct kernfs_node *kn;
fd7b9f7b
TH
434
435 if (flags & LOOKUP_RCU)
436 return -ECHILD;
437
19bbb926
TH
438 /* Always perform fresh lookup for negatives */
439 if (!dentry->d_inode)
440 goto out_bad_unlocked;
441
324a56e1 442 kn = dentry->d_fsdata;
a797bfc3 443 mutex_lock(&kernfs_mutex);
fd7b9f7b 444
81c173cb
TH
445 /* The kernfs node has been deactivated */
446 if (!kernfs_active(kn))
fd7b9f7b
TH
447 goto out_bad;
448
c637b8ac 449 /* The kernfs node has been moved? */
adc5e8b5 450 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
451 goto out_bad;
452
c637b8ac 453 /* The kernfs node has been renamed */
adc5e8b5 454 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
455 goto out_bad;
456
c637b8ac 457 /* The kernfs node has been moved to a different namespace */
adc5e8b5 458 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 459 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
460 goto out_bad;
461
a797bfc3 462 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
463out_valid:
464 return 1;
465out_bad:
a797bfc3 466 mutex_unlock(&kernfs_mutex);
19bbb926
TH
467out_bad_unlocked:
468 /*
469 * @dentry doesn't match the underlying kernfs node, drop the
470 * dentry and force lookup. If we have submounts we must allow the
471 * vfs caches to lie about the state of the filesystem to prevent
472 * leaks and other nasty things, so use check_submounts_and_drop()
473 * instead of d_drop().
fd7b9f7b
TH
474 */
475 if (check_submounts_and_drop(dentry) != 0)
476 goto out_valid;
477
478 return 0;
479}
480
c637b8ac 481static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
482{
483 kernfs_put(dentry->d_fsdata);
484}
485
a797bfc3 486const struct dentry_operations kernfs_dops = {
c637b8ac 487 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 488 .d_release = kernfs_dop_release,
fd7b9f7b
TH
489};
490
0c23b225
TH
491/**
492 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
493 * @dentry: the dentry in question
494 *
495 * Return the kernfs_node associated with @dentry. If @dentry is not a
496 * kernfs one, %NULL is returned.
497 *
498 * While the returned kernfs_node will stay accessible as long as @dentry
499 * is accessible, the returned node can be in any state and the caller is
500 * fully responsible for determining what's accessible.
501 */
502struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
503{
f41c5934 504 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
505 return dentry->d_fsdata;
506 return NULL;
507}
508
db4aad20
TH
509static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
510 const char *name, umode_t mode,
511 unsigned flags)
fd7b9f7b
TH
512{
513 char *dup_name = NULL;
324a56e1 514 struct kernfs_node *kn;
bc755553 515 int ret;
fd7b9f7b 516
2063d608 517 if (!(flags & KERNFS_STATIC_NAME)) {
fd7b9f7b
TH
518 name = dup_name = kstrdup(name, GFP_KERNEL);
519 if (!name)
520 return NULL;
521 }
522
a797bfc3 523 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 524 if (!kn)
fd7b9f7b
TH
525 goto err_out1;
526
bc755553
TH
527 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
528 if (ret < 0)
fd7b9f7b 529 goto err_out2;
adc5e8b5 530 kn->ino = ret;
fd7b9f7b 531
adc5e8b5 532 atomic_set(&kn->count, 1);
81c173cb 533 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 534 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 535
adc5e8b5
TH
536 kn->name = name;
537 kn->mode = mode;
81c173cb 538 kn->flags = flags;
fd7b9f7b 539
324a56e1 540 return kn;
fd7b9f7b
TH
541
542 err_out2:
a797bfc3 543 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b
TH
544 err_out1:
545 kfree(dup_name);
546 return NULL;
547}
548
db4aad20
TH
549struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
550 const char *name, umode_t mode,
551 unsigned flags)
552{
553 struct kernfs_node *kn;
554
555 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
556 if (kn) {
557 kernfs_get(parent);
558 kn->parent = parent;
559 }
560 return kn;
561}
562
fd7b9f7b 563/**
c637b8ac 564 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 565 * @kn: kernfs_node to be added
fd7b9f7b 566 *
db4aad20
TH
567 * The caller must already have initialized @kn->parent. This
568 * function increments nlink of the parent's inode if @kn is a
569 * directory and link into the children list of the parent.
fd7b9f7b 570 *
fd7b9f7b
TH
571 * RETURNS:
572 * 0 on success, -EEXIST if entry with the given name already
573 * exists.
574 */
988cd7af 575int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 576{
db4aad20 577 struct kernfs_node *parent = kn->parent;
c525aadd 578 struct kernfs_iattrs *ps_iattr;
988cd7af 579 bool has_ns;
fd7b9f7b
TH
580 int ret;
581
988cd7af
TH
582 mutex_lock(&kernfs_mutex);
583
584 ret = -EINVAL;
585 has_ns = kernfs_ns_enabled(parent);
586 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
587 has_ns ? "required" : "invalid", parent->name, kn->name))
588 goto out_unlock;
fd7b9f7b 589
df23fc39 590 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 591 goto out_unlock;
fd7b9f7b 592
988cd7af 593 ret = -ENOENT;
d35258ef 594 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 595 goto out_unlock;
798c75a0 596
c637b8ac 597 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 598
c637b8ac 599 ret = kernfs_link_sibling(kn);
fd7b9f7b 600 if (ret)
988cd7af 601 goto out_unlock;
fd7b9f7b
TH
602
603 /* Update timestamps on the parent */
adc5e8b5 604 ps_iattr = parent->iattr;
fd7b9f7b
TH
605 if (ps_iattr) {
606 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
607 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
608 }
609
d35258ef
TH
610 mutex_unlock(&kernfs_mutex);
611
612 /*
613 * Activate the new node unless CREATE_DEACTIVATED is requested.
614 * If not activated here, the kernfs user is responsible for
615 * activating the node with kernfs_activate(). A node which hasn't
616 * been activated is not visible to userland and its removal won't
617 * trigger deactivation.
618 */
619 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
620 kernfs_activate(kn);
621 return 0;
622
988cd7af 623out_unlock:
a797bfc3 624 mutex_unlock(&kernfs_mutex);
988cd7af 625 return ret;
fd7b9f7b
TH
626}
627
628/**
324a56e1
TH
629 * kernfs_find_ns - find kernfs_node with the given name
630 * @parent: kernfs_node to search under
fd7b9f7b
TH
631 * @name: name to look for
632 * @ns: the namespace tag to use
633 *
324a56e1
TH
634 * Look for kernfs_node with name @name under @parent. Returns pointer to
635 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 636 */
324a56e1
TH
637static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
638 const unsigned char *name,
639 const void *ns)
fd7b9f7b 640{
adc5e8b5 641 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 642 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
643 unsigned int hash;
644
a797bfc3 645 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
646
647 if (has_ns != (bool)ns) {
c637b8ac 648 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 649 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
650 return NULL;
651 }
652
c637b8ac 653 hash = kernfs_name_hash(name, ns);
fd7b9f7b 654 while (node) {
324a56e1 655 struct kernfs_node *kn;
fd7b9f7b
TH
656 int result;
657
324a56e1 658 kn = rb_to_kn(node);
c637b8ac 659 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
660 if (result < 0)
661 node = node->rb_left;
662 else if (result > 0)
663 node = node->rb_right;
664 else
324a56e1 665 return kn;
fd7b9f7b
TH
666 }
667 return NULL;
668}
669
670/**
324a56e1
TH
671 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
672 * @parent: kernfs_node to search under
fd7b9f7b
TH
673 * @name: name to look for
674 * @ns: the namespace tag to use
675 *
324a56e1 676 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 677 * if found. This function may sleep and returns pointer to the found
324a56e1 678 * kernfs_node on success, %NULL on failure.
fd7b9f7b 679 */
324a56e1
TH
680struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
681 const char *name, const void *ns)
fd7b9f7b 682{
324a56e1 683 struct kernfs_node *kn;
fd7b9f7b 684
a797bfc3 685 mutex_lock(&kernfs_mutex);
324a56e1
TH
686 kn = kernfs_find_ns(parent, name, ns);
687 kernfs_get(kn);
a797bfc3 688 mutex_unlock(&kernfs_mutex);
fd7b9f7b 689
324a56e1 690 return kn;
fd7b9f7b
TH
691}
692EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
693
ba7443bc
TH
694/**
695 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 696 * @scops: optional syscall operations for the hierarchy
d35258ef 697 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
698 * @priv: opaque data associated with the new directory
699 *
700 * Returns the root of the new hierarchy on success, ERR_PTR() value on
701 * failure.
702 */
90c07c89 703struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 704 unsigned int flags, void *priv)
ba7443bc
TH
705{
706 struct kernfs_root *root;
324a56e1 707 struct kernfs_node *kn;
ba7443bc
TH
708
709 root = kzalloc(sizeof(*root), GFP_KERNEL);
710 if (!root)
711 return ERR_PTR(-ENOMEM);
712
bc755553
TH
713 ida_init(&root->ino_ida);
714
db4aad20
TH
715 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
716 KERNFS_DIR);
324a56e1 717 if (!kn) {
bc755553 718 ida_destroy(&root->ino_ida);
ba7443bc
TH
719 kfree(root);
720 return ERR_PTR(-ENOMEM);
721 }
722
324a56e1 723 kn->priv = priv;
adc5e8b5 724 kn->dir.root = root;
ba7443bc 725
90c07c89 726 root->syscall_ops = scops;
d35258ef 727 root->flags = flags;
324a56e1 728 root->kn = kn;
abd54f02 729 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 730
d35258ef
TH
731 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
732 kernfs_activate(kn);
733
ba7443bc
TH
734 return root;
735}
736
737/**
738 * kernfs_destroy_root - destroy a kernfs hierarchy
739 * @root: root of the hierarchy to destroy
740 *
741 * Destroy the hierarchy anchored at @root by removing all existing
742 * directories and destroying @root.
743 */
744void kernfs_destroy_root(struct kernfs_root *root)
745{
324a56e1 746 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
747}
748
fd7b9f7b
TH
749/**
750 * kernfs_create_dir_ns - create a directory
751 * @parent: parent in which to create a new directory
752 * @name: name of the new directory
bb8b9d09 753 * @mode: mode of the new directory
fd7b9f7b
TH
754 * @priv: opaque data associated with the new directory
755 * @ns: optional namespace tag of the directory
756 *
757 * Returns the created node on success, ERR_PTR() value on failure.
758 */
324a56e1 759struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
760 const char *name, umode_t mode,
761 void *priv, const void *ns)
fd7b9f7b 762{
324a56e1 763 struct kernfs_node *kn;
fd7b9f7b
TH
764 int rc;
765
766 /* allocate */
db4aad20 767 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 768 if (!kn)
fd7b9f7b
TH
769 return ERR_PTR(-ENOMEM);
770
adc5e8b5
TH
771 kn->dir.root = parent->dir.root;
772 kn->ns = ns;
324a56e1 773 kn->priv = priv;
fd7b9f7b
TH
774
775 /* link in */
988cd7af 776 rc = kernfs_add_one(kn);
fd7b9f7b 777 if (!rc)
324a56e1 778 return kn;
fd7b9f7b 779
324a56e1 780 kernfs_put(kn);
fd7b9f7b
TH
781 return ERR_PTR(rc);
782}
783
c637b8ac
TH
784static struct dentry *kernfs_iop_lookup(struct inode *dir,
785 struct dentry *dentry,
786 unsigned int flags)
fd7b9f7b 787{
19bbb926 788 struct dentry *ret;
324a56e1
TH
789 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
790 struct kernfs_node *kn;
fd7b9f7b
TH
791 struct inode *inode;
792 const void *ns = NULL;
793
a797bfc3 794 mutex_lock(&kernfs_mutex);
fd7b9f7b 795
324a56e1 796 if (kernfs_ns_enabled(parent))
c525aadd 797 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 798
324a56e1 799 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
800
801 /* no such entry */
b9c9dad0 802 if (!kn || !kernfs_active(kn)) {
19bbb926 803 ret = NULL;
fd7b9f7b
TH
804 goto out_unlock;
805 }
324a56e1
TH
806 kernfs_get(kn);
807 dentry->d_fsdata = kn;
fd7b9f7b
TH
808
809 /* attach dentry and inode */
c637b8ac 810 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
811 if (!inode) {
812 ret = ERR_PTR(-ENOMEM);
813 goto out_unlock;
814 }
815
816 /* instantiate and hash dentry */
817 ret = d_materialise_unique(dentry, inode);
818 out_unlock:
a797bfc3 819 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
820 return ret;
821}
822
80b9bbef
TH
823static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
824 umode_t mode)
825{
826 struct kernfs_node *parent = dir->i_private;
90c07c89 827 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 828 int ret;
80b9bbef 829
90c07c89 830 if (!scops || !scops->mkdir)
80b9bbef
TH
831 return -EPERM;
832
07c7530d
TH
833 if (!kernfs_get_active(parent))
834 return -ENODEV;
835
90c07c89 836 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
837
838 kernfs_put_active(parent);
839 return ret;
80b9bbef
TH
840}
841
842static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
843{
844 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 845 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 846 int ret;
80b9bbef 847
90c07c89 848 if (!scops || !scops->rmdir)
80b9bbef
TH
849 return -EPERM;
850
07c7530d
TH
851 if (!kernfs_get_active(kn))
852 return -ENODEV;
853
90c07c89 854 ret = scops->rmdir(kn);
07c7530d
TH
855
856 kernfs_put_active(kn);
857 return ret;
80b9bbef
TH
858}
859
860static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
861 struct inode *new_dir, struct dentry *new_dentry)
862{
863 struct kernfs_node *kn = old_dentry->d_fsdata;
864 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 865 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 866 int ret;
80b9bbef 867
90c07c89 868 if (!scops || !scops->rename)
80b9bbef
TH
869 return -EPERM;
870
07c7530d
TH
871 if (!kernfs_get_active(kn))
872 return -ENODEV;
873
874 if (!kernfs_get_active(new_parent)) {
875 kernfs_put_active(kn);
876 return -ENODEV;
877 }
878
90c07c89 879 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
880
881 kernfs_put_active(new_parent);
882 kernfs_put_active(kn);
883 return ret;
80b9bbef
TH
884}
885
a797bfc3 886const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
887 .lookup = kernfs_iop_lookup,
888 .permission = kernfs_iop_permission,
889 .setattr = kernfs_iop_setattr,
890 .getattr = kernfs_iop_getattr,
891 .setxattr = kernfs_iop_setxattr,
892 .removexattr = kernfs_iop_removexattr,
893 .getxattr = kernfs_iop_getxattr,
894 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
895
896 .mkdir = kernfs_iop_mkdir,
897 .rmdir = kernfs_iop_rmdir,
898 .rename = kernfs_iop_rename,
fd7b9f7b
TH
899};
900
c637b8ac 901static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 902{
324a56e1 903 struct kernfs_node *last;
fd7b9f7b
TH
904
905 while (true) {
906 struct rb_node *rbn;
907
908 last = pos;
909
df23fc39 910 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
911 break;
912
adc5e8b5 913 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
914 if (!rbn)
915 break;
916
324a56e1 917 pos = rb_to_kn(rbn);
fd7b9f7b
TH
918 }
919
920 return last;
921}
922
923/**
c637b8ac 924 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 925 * @pos: the current position (%NULL to initiate traversal)
324a56e1 926 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
927 *
928 * Find the next descendant to visit for post-order traversal of @root's
929 * descendants. @root is included in the iteration and the last node to be
930 * visited.
931 */
c637b8ac
TH
932static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
933 struct kernfs_node *root)
fd7b9f7b
TH
934{
935 struct rb_node *rbn;
936
a797bfc3 937 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
938
939 /* if first iteration, visit leftmost descendant which may be root */
940 if (!pos)
c637b8ac 941 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
942
943 /* if we visited @root, we're done */
944 if (pos == root)
945 return NULL;
946
947 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 948 rbn = rb_next(&pos->rb);
fd7b9f7b 949 if (rbn)
c637b8ac 950 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
951
952 /* no sibling left, visit parent */
adc5e8b5 953 return pos->parent;
fd7b9f7b
TH
954}
955
d35258ef
TH
956/**
957 * kernfs_activate - activate a node which started deactivated
958 * @kn: kernfs_node whose subtree is to be activated
959 *
960 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
961 * needs to be explicitly activated. A node which hasn't been activated
962 * isn't visible to userland and deactivation is skipped during its
963 * removal. This is useful to construct atomic init sequences where
964 * creation of multiple nodes should either succeed or fail atomically.
965 *
966 * The caller is responsible for ensuring that this function is not called
967 * after kernfs_remove*() is invoked on @kn.
968 */
969void kernfs_activate(struct kernfs_node *kn)
970{
971 struct kernfs_node *pos;
972
973 mutex_lock(&kernfs_mutex);
974
975 pos = NULL;
976 while ((pos = kernfs_next_descendant_post(pos, kn))) {
977 if (!pos || (pos->flags & KERNFS_ACTIVATED))
978 continue;
979
980 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
981 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
982
983 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
984 pos->flags |= KERNFS_ACTIVATED;
985 }
986
987 mutex_unlock(&kernfs_mutex);
988}
989
988cd7af 990static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 991{
35beab06
TH
992 struct kernfs_node *pos;
993
994 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 995
6b0afc2a
TH
996 /*
997 * Short-circuit if non-root @kn has already finished removal.
998 * This is for kernfs_remove_self() which plays with active ref
999 * after removal.
1000 */
1001 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1002 return;
1003
c637b8ac 1004 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1005
81c173cb 1006 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1007 pos = NULL;
1008 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1009 if (kernfs_active(pos))
1010 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1011
1012 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1013 do {
35beab06
TH
1014 pos = kernfs_leftmost_descendant(kn);
1015
1016 /*
81c173cb
TH
1017 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1018 * base ref could have been put by someone else by the time
1019 * the function returns. Make sure it doesn't go away
1020 * underneath us.
35beab06
TH
1021 */
1022 kernfs_get(pos);
1023
d35258ef
TH
1024 /*
1025 * Drain iff @kn was activated. This avoids draining and
1026 * its lockdep annotations for nodes which have never been
1027 * activated and allows embedding kernfs_remove() in create
1028 * error paths without worrying about draining.
1029 */
1030 if (kn->flags & KERNFS_ACTIVATED)
1031 kernfs_drain(pos);
1032 else
1033 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1034
1035 /*
1036 * kernfs_unlink_sibling() succeeds once per node. Use it
1037 * to decide who's responsible for cleanups.
1038 */
1039 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1040 struct kernfs_iattrs *ps_iattr =
1041 pos->parent ? pos->parent->iattr : NULL;
1042
1043 /* update timestamps on the parent */
1044 if (ps_iattr) {
1045 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1046 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1047 }
1048
988cd7af 1049 kernfs_put(pos);
35beab06
TH
1050 }
1051
1052 kernfs_put(pos);
1053 } while (pos != kn);
fd7b9f7b
TH
1054}
1055
1056/**
324a56e1
TH
1057 * kernfs_remove - remove a kernfs_node recursively
1058 * @kn: the kernfs_node to remove
fd7b9f7b 1059 *
324a56e1 1060 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1061 */
324a56e1 1062void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1063{
988cd7af
TH
1064 mutex_lock(&kernfs_mutex);
1065 __kernfs_remove(kn);
1066 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1067}
1068
6b0afc2a
TH
1069/**
1070 * kernfs_break_active_protection - break out of active protection
1071 * @kn: the self kernfs_node
1072 *
1073 * The caller must be running off of a kernfs operation which is invoked
1074 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1075 * this function must also be matched with an invocation of
1076 * kernfs_unbreak_active_protection().
1077 *
1078 * This function releases the active reference of @kn the caller is
1079 * holding. Once this function is called, @kn may be removed at any point
1080 * and the caller is solely responsible for ensuring that the objects it
1081 * dereferences are accessible.
1082 */
1083void kernfs_break_active_protection(struct kernfs_node *kn)
1084{
1085 /*
1086 * Take out ourself out of the active ref dependency chain. If
1087 * we're called without an active ref, lockdep will complain.
1088 */
1089 kernfs_put_active(kn);
1090}
1091
1092/**
1093 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1094 * @kn: the self kernfs_node
1095 *
1096 * If kernfs_break_active_protection() was called, this function must be
1097 * invoked before finishing the kernfs operation. Note that while this
1098 * function restores the active reference, it doesn't and can't actually
1099 * restore the active protection - @kn may already or be in the process of
1100 * being removed. Once kernfs_break_active_protection() is invoked, that
1101 * protection is irreversibly gone for the kernfs operation instance.
1102 *
1103 * While this function may be called at any point after
1104 * kernfs_break_active_protection() is invoked, its most useful location
1105 * would be right before the enclosing kernfs operation returns.
1106 */
1107void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1108{
1109 /*
1110 * @kn->active could be in any state; however, the increment we do
1111 * here will be undone as soon as the enclosing kernfs operation
1112 * finishes and this temporary bump can't break anything. If @kn
1113 * is alive, nothing changes. If @kn is being deactivated, the
1114 * soon-to-follow put will either finish deactivation or restore
1115 * deactivated state. If @kn is already removed, the temporary
1116 * bump is guaranteed to be gone before @kn is released.
1117 */
1118 atomic_inc(&kn->active);
1119 if (kernfs_lockdep(kn))
1120 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1121}
1122
1123/**
1124 * kernfs_remove_self - remove a kernfs_node from its own method
1125 * @kn: the self kernfs_node to remove
1126 *
1127 * The caller must be running off of a kernfs operation which is invoked
1128 * with an active reference - e.g. one of kernfs_ops. This can be used to
1129 * implement a file operation which deletes itself.
1130 *
1131 * For example, the "delete" file for a sysfs device directory can be
1132 * implemented by invoking kernfs_remove_self() on the "delete" file
1133 * itself. This function breaks the circular dependency of trying to
1134 * deactivate self while holding an active ref itself. It isn't necessary
1135 * to modify the usual removal path to use kernfs_remove_self(). The
1136 * "delete" implementation can simply invoke kernfs_remove_self() on self
1137 * before proceeding with the usual removal path. kernfs will ignore later
1138 * kernfs_remove() on self.
1139 *
1140 * kernfs_remove_self() can be called multiple times concurrently on the
1141 * same kernfs_node. Only the first one actually performs removal and
1142 * returns %true. All others will wait until the kernfs operation which
1143 * won self-removal finishes and return %false. Note that the losers wait
1144 * for the completion of not only the winning kernfs_remove_self() but also
1145 * the whole kernfs_ops which won the arbitration. This can be used to
1146 * guarantee, for example, all concurrent writes to a "delete" file to
1147 * finish only after the whole operation is complete.
1148 */
1149bool kernfs_remove_self(struct kernfs_node *kn)
1150{
1151 bool ret;
1152
1153 mutex_lock(&kernfs_mutex);
1154 kernfs_break_active_protection(kn);
1155
1156 /*
1157 * SUICIDAL is used to arbitrate among competing invocations. Only
1158 * the first one will actually perform removal. When the removal
1159 * is complete, SUICIDED is set and the active ref is restored
1160 * while holding kernfs_mutex. The ones which lost arbitration
1161 * waits for SUICDED && drained which can happen only after the
1162 * enclosing kernfs operation which executed the winning instance
1163 * of kernfs_remove_self() finished.
1164 */
1165 if (!(kn->flags & KERNFS_SUICIDAL)) {
1166 kn->flags |= KERNFS_SUICIDAL;
1167 __kernfs_remove(kn);
1168 kn->flags |= KERNFS_SUICIDED;
1169 ret = true;
1170 } else {
1171 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1172 DEFINE_WAIT(wait);
1173
1174 while (true) {
1175 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1176
1177 if ((kn->flags & KERNFS_SUICIDED) &&
1178 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1179 break;
1180
1181 mutex_unlock(&kernfs_mutex);
1182 schedule();
1183 mutex_lock(&kernfs_mutex);
1184 }
1185 finish_wait(waitq, &wait);
1186 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1187 ret = false;
1188 }
1189
1190 /*
1191 * This must be done while holding kernfs_mutex; otherwise, waiting
1192 * for SUICIDED && deactivated could finish prematurely.
1193 */
1194 kernfs_unbreak_active_protection(kn);
1195
1196 mutex_unlock(&kernfs_mutex);
1197 return ret;
1198}
1199
fd7b9f7b 1200/**
324a56e1
TH
1201 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1202 * @parent: parent of the target
1203 * @name: name of the kernfs_node to remove
1204 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1205 *
324a56e1
TH
1206 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1207 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1208 */
324a56e1 1209int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1210 const void *ns)
1211{
324a56e1 1212 struct kernfs_node *kn;
fd7b9f7b 1213
324a56e1 1214 if (!parent) {
c637b8ac 1215 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1216 name);
1217 return -ENOENT;
1218 }
1219
988cd7af 1220 mutex_lock(&kernfs_mutex);
fd7b9f7b 1221
324a56e1
TH
1222 kn = kernfs_find_ns(parent, name, ns);
1223 if (kn)
988cd7af 1224 __kernfs_remove(kn);
fd7b9f7b 1225
988cd7af 1226 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1227
324a56e1 1228 if (kn)
fd7b9f7b
TH
1229 return 0;
1230 else
1231 return -ENOENT;
1232}
1233
1234/**
1235 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1236 * @kn: target node
fd7b9f7b
TH
1237 * @new_parent: new parent to put @sd under
1238 * @new_name: new name
1239 * @new_ns: new namespace tag
1240 */
324a56e1 1241int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1242 const char *new_name, const void *new_ns)
1243{
3eef34ad
TH
1244 struct kernfs_node *old_parent;
1245 const char *old_name = NULL;
fd7b9f7b
TH
1246 int error;
1247
3eef34ad
TH
1248 /* can't move or rename root */
1249 if (!kn->parent)
1250 return -EINVAL;
1251
798c75a0
GKH
1252 mutex_lock(&kernfs_mutex);
1253
d0ae3d43 1254 error = -ENOENT;
81c173cb 1255 if (!kernfs_active(kn) || !kernfs_active(new_parent))
d0ae3d43
TH
1256 goto out;
1257
fd7b9f7b 1258 error = 0;
adc5e8b5
TH
1259 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1260 (strcmp(kn->name, new_name) == 0))
798c75a0 1261 goto out; /* nothing to rename */
fd7b9f7b
TH
1262
1263 error = -EEXIST;
1264 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1265 goto out;
fd7b9f7b 1266
324a56e1 1267 /* rename kernfs_node */
adc5e8b5 1268 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b
TH
1269 error = -ENOMEM;
1270 new_name = kstrdup(new_name, GFP_KERNEL);
1271 if (!new_name)
798c75a0 1272 goto out;
3eef34ad
TH
1273 } else {
1274 new_name = NULL;
fd7b9f7b
TH
1275 }
1276
1277 /*
1278 * Move to the appropriate place in the appropriate directories rbtree.
1279 */
c637b8ac 1280 kernfs_unlink_sibling(kn);
fd7b9f7b 1281 kernfs_get(new_parent);
3eef34ad
TH
1282
1283 /* rename_lock protects ->parent and ->name accessors */
1284 spin_lock_irq(&kernfs_rename_lock);
1285
1286 old_parent = kn->parent;
adc5e8b5 1287 kn->parent = new_parent;
3eef34ad
TH
1288
1289 kn->ns = new_ns;
1290 if (new_name) {
1291 if (!(kn->flags & KERNFS_STATIC_NAME))
1292 old_name = kn->name;
1293 kn->flags &= ~KERNFS_STATIC_NAME;
1294 kn->name = new_name;
1295 }
1296
1297 spin_unlock_irq(&kernfs_rename_lock);
1298
9561a896 1299 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1300 kernfs_link_sibling(kn);
fd7b9f7b 1301
3eef34ad
TH
1302 kernfs_put(old_parent);
1303 kfree(old_name);
1304
fd7b9f7b 1305 error = 0;
798c75a0 1306 out:
a797bfc3 1307 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1308 return error;
1309}
1310
fd7b9f7b 1311/* Relationship between s_mode and the DT_xxx types */
324a56e1 1312static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1313{
adc5e8b5 1314 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1315}
1316
c637b8ac 1317static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1318{
1319 kernfs_put(filp->private_data);
1320 return 0;
1321}
1322
c637b8ac 1323static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1324 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1325{
1326 if (pos) {
81c173cb 1327 int valid = kernfs_active(pos) &&
798c75a0 1328 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1329 kernfs_put(pos);
1330 if (!valid)
1331 pos = NULL;
1332 }
1333 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1334 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1335 while (node) {
324a56e1 1336 pos = rb_to_kn(node);
fd7b9f7b 1337
adc5e8b5 1338 if (hash < pos->hash)
fd7b9f7b 1339 node = node->rb_left;
adc5e8b5 1340 else if (hash > pos->hash)
fd7b9f7b
TH
1341 node = node->rb_right;
1342 else
1343 break;
1344 }
1345 }
b9c9dad0
TH
1346 /* Skip over entries which are dying/dead or in the wrong namespace */
1347 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1348 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1349 if (!node)
1350 pos = NULL;
1351 else
324a56e1 1352 pos = rb_to_kn(node);
fd7b9f7b
TH
1353 }
1354 return pos;
1355}
1356
c637b8ac 1357static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1358 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1359{
c637b8ac 1360 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1361 if (pos) {
fd7b9f7b 1362 do {
adc5e8b5 1363 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1364 if (!node)
1365 pos = NULL;
1366 else
324a56e1 1367 pos = rb_to_kn(node);
b9c9dad0
TH
1368 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1369 }
fd7b9f7b
TH
1370 return pos;
1371}
1372
c637b8ac 1373static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1374{
1375 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1376 struct kernfs_node *parent = dentry->d_fsdata;
1377 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1378 const void *ns = NULL;
1379
1380 if (!dir_emit_dots(file, ctx))
1381 return 0;
a797bfc3 1382 mutex_lock(&kernfs_mutex);
fd7b9f7b 1383
324a56e1 1384 if (kernfs_ns_enabled(parent))
c525aadd 1385 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1386
c637b8ac 1387 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1388 pos;
c637b8ac 1389 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1390 const char *name = pos->name;
fd7b9f7b
TH
1391 unsigned int type = dt_type(pos);
1392 int len = strlen(name);
adc5e8b5 1393 ino_t ino = pos->ino;
fd7b9f7b 1394
adc5e8b5 1395 ctx->pos = pos->hash;
fd7b9f7b
TH
1396 file->private_data = pos;
1397 kernfs_get(pos);
1398
a797bfc3 1399 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1400 if (!dir_emit(ctx, name, len, ino, type))
1401 return 0;
a797bfc3 1402 mutex_lock(&kernfs_mutex);
fd7b9f7b 1403 }
a797bfc3 1404 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1405 file->private_data = NULL;
1406 ctx->pos = INT_MAX;
1407 return 0;
1408}
1409
c637b8ac
TH
1410static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1411 int whence)
fd7b9f7b
TH
1412{
1413 struct inode *inode = file_inode(file);
1414 loff_t ret;
1415
1416 mutex_lock(&inode->i_mutex);
1417 ret = generic_file_llseek(file, offset, whence);
1418 mutex_unlock(&inode->i_mutex);
1419
1420 return ret;
1421}
1422
a797bfc3 1423const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1424 .read = generic_read_dir,
c637b8ac
TH
1425 .iterate = kernfs_fop_readdir,
1426 .release = kernfs_dir_fop_release,
1427 .llseek = kernfs_dir_fop_llseek,
fd7b9f7b 1428};
This page took 0.14923 seconds and 5 git commands to generate.