do_mpage_readpage(): don't submit lots of small bios on boundary
[deliverable/linux.git] / fs / mpage.c
CommitLineData
1da177e4
LT
1/*
2 * fs/mpage.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to preparing and submitting BIOs which contain
7 * multiple pagecache pages.
8 *
e1f8e874 9 * 15May2002 Andrew Morton
1da177e4
LT
10 * Initial version
11 * 27Jun2002 axboe@suse.de
12 * use bio_add_page() to build bio's just the right size
13 */
14
15#include <linux/kernel.h>
16#include <linux/module.h>
17#include <linux/mm.h>
18#include <linux/kdev_t.h>
19#include <linux/bio.h>
20#include <linux/fs.h>
21#include <linux/buffer_head.h>
22#include <linux/blkdev.h>
23#include <linux/highmem.h>
24#include <linux/prefetch.h>
25#include <linux/mpage.h>
26#include <linux/writeback.h>
27#include <linux/backing-dev.h>
28#include <linux/pagevec.h>
29
30/*
31 * I/O completion handler for multipage BIOs.
32 *
33 * The mpage code never puts partial pages into a BIO (except for end-of-file).
34 * If a page does not map to a contiguous run of blocks then it simply falls
35 * back to block_read_full_page().
36 *
37 * Why is this? If a page's completion depends on a number of different BIOs
38 * which can complete in any order (or at the same time) then determining the
39 * status of that page is hard. See end_buffer_async_read() for the details.
40 * There is no point in duplicating all that complexity.
41 */
6712ecf8 42static void mpage_end_io_read(struct bio *bio, int err)
1da177e4
LT
43{
44 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
45 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
46
1da177e4
LT
47 do {
48 struct page *page = bvec->bv_page;
49
50 if (--bvec >= bio->bi_io_vec)
51 prefetchw(&bvec->bv_page->flags);
52
53 if (uptodate) {
54 SetPageUptodate(page);
55 } else {
56 ClearPageUptodate(page);
57 SetPageError(page);
58 }
59 unlock_page(page);
60 } while (bvec >= bio->bi_io_vec);
61 bio_put(bio);
1da177e4
LT
62}
63
6712ecf8 64static void mpage_end_io_write(struct bio *bio, int err)
1da177e4
LT
65{
66 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
67 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
68
1da177e4
LT
69 do {
70 struct page *page = bvec->bv_page;
71
72 if (--bvec >= bio->bi_io_vec)
73 prefetchw(&bvec->bv_page->flags);
74
854715be 75 if (!uptodate){
1da177e4 76 SetPageError(page);
854715be
QF
77 if (page->mapping)
78 set_bit(AS_EIO, &page->mapping->flags);
79 }
1da177e4
LT
80 end_page_writeback(page);
81 } while (bvec >= bio->bi_io_vec);
82 bio_put(bio);
1da177e4
LT
83}
84
29a814d2 85struct bio *mpage_bio_submit(int rw, struct bio *bio)
1da177e4
LT
86{
87 bio->bi_end_io = mpage_end_io_read;
88 if (rw == WRITE)
89 bio->bi_end_io = mpage_end_io_write;
90 submit_bio(rw, bio);
91 return NULL;
92}
29a814d2 93EXPORT_SYMBOL(mpage_bio_submit);
1da177e4
LT
94
95static struct bio *
96mpage_alloc(struct block_device *bdev,
97 sector_t first_sector, int nr_vecs,
dd0fc66f 98 gfp_t gfp_flags)
1da177e4
LT
99{
100 struct bio *bio;
101
102 bio = bio_alloc(gfp_flags, nr_vecs);
103
104 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
105 while (!bio && (nr_vecs /= 2))
106 bio = bio_alloc(gfp_flags, nr_vecs);
107 }
108
109 if (bio) {
110 bio->bi_bdev = bdev;
111 bio->bi_sector = first_sector;
112 }
113 return bio;
114}
115
116/*
117 * support function for mpage_readpages. The fs supplied get_block might
118 * return an up to date buffer. This is used to map that buffer into
119 * the page, which allows readpage to avoid triggering a duplicate call
120 * to get_block.
121 *
122 * The idea is to avoid adding buffers to pages that don't already have
123 * them. So when the buffer is up to date and the page size == block size,
124 * this marks the page up to date instead of adding new buffers.
125 */
126static void
127map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
128{
129 struct inode *inode = page->mapping->host;
130 struct buffer_head *page_bh, *head;
131 int block = 0;
132
133 if (!page_has_buffers(page)) {
134 /*
135 * don't make any buffers if there is only one buffer on
136 * the page and the page just needs to be set up to date
137 */
138 if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
139 buffer_uptodate(bh)) {
140 SetPageUptodate(page);
141 return;
142 }
143 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
144 }
145 head = page_buffers(page);
146 page_bh = head;
147 do {
148 if (block == page_block) {
149 page_bh->b_state = bh->b_state;
150 page_bh->b_bdev = bh->b_bdev;
151 page_bh->b_blocknr = bh->b_blocknr;
152 break;
153 }
154 page_bh = page_bh->b_this_page;
155 block++;
156 } while (page_bh != head);
157}
158
fa30bd05
BP
159/*
160 * This is the worker routine which does all the work of mapping the disk
161 * blocks and constructs largest possible bios, submits them for IO if the
162 * blocks are not contiguous on the disk.
163 *
164 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
165 * represent the validity of its disk mapping and to decide when to do the next
166 * get_block() call.
167 */
1da177e4
LT
168static struct bio *
169do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
fa30bd05
BP
170 sector_t *last_block_in_bio, struct buffer_head *map_bh,
171 unsigned long *first_logical_block, get_block_t get_block)
1da177e4
LT
172{
173 struct inode *inode = page->mapping->host;
174 const unsigned blkbits = inode->i_blkbits;
175 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
176 const unsigned blocksize = 1 << blkbits;
177 sector_t block_in_file;
178 sector_t last_block;
fa30bd05 179 sector_t last_block_in_file;
1da177e4
LT
180 sector_t blocks[MAX_BUF_PER_PAGE];
181 unsigned page_block;
182 unsigned first_hole = blocks_per_page;
183 struct block_device *bdev = NULL;
1da177e4
LT
184 int length;
185 int fully_mapped = 1;
fa30bd05
BP
186 unsigned nblocks;
187 unsigned relative_block;
1da177e4
LT
188
189 if (page_has_buffers(page))
190 goto confused;
191
54b21a79 192 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
fa30bd05
BP
193 last_block = block_in_file + nr_pages * blocks_per_page;
194 last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
195 if (last_block > last_block_in_file)
196 last_block = last_block_in_file;
197 page_block = 0;
198
199 /*
200 * Map blocks using the result from the previous get_blocks call first.
201 */
202 nblocks = map_bh->b_size >> blkbits;
203 if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
204 block_in_file < (*first_logical_block + nblocks)) {
205 unsigned map_offset = block_in_file - *first_logical_block;
206 unsigned last = nblocks - map_offset;
207
208 for (relative_block = 0; ; relative_block++) {
209 if (relative_block == last) {
210 clear_buffer_mapped(map_bh);
211 break;
212 }
213 if (page_block == blocks_per_page)
214 break;
215 blocks[page_block] = map_bh->b_blocknr + map_offset +
216 relative_block;
217 page_block++;
218 block_in_file++;
219 }
220 bdev = map_bh->b_bdev;
221 }
222
223 /*
224 * Then do more get_blocks calls until we are done with this page.
225 */
226 map_bh->b_page = page;
227 while (page_block < blocks_per_page) {
228 map_bh->b_state = 0;
229 map_bh->b_size = 0;
1da177e4 230
1da177e4 231 if (block_in_file < last_block) {
fa30bd05
BP
232 map_bh->b_size = (last_block-block_in_file) << blkbits;
233 if (get_block(inode, block_in_file, map_bh, 0))
1da177e4 234 goto confused;
fa30bd05 235 *first_logical_block = block_in_file;
1da177e4
LT
236 }
237
fa30bd05 238 if (!buffer_mapped(map_bh)) {
1da177e4
LT
239 fully_mapped = 0;
240 if (first_hole == blocks_per_page)
241 first_hole = page_block;
fa30bd05
BP
242 page_block++;
243 block_in_file++;
244 clear_buffer_mapped(map_bh);
1da177e4
LT
245 continue;
246 }
247
248 /* some filesystems will copy data into the page during
249 * the get_block call, in which case we don't want to
250 * read it again. map_buffer_to_page copies the data
251 * we just collected from get_block into the page's buffers
252 * so readpage doesn't have to repeat the get_block call
253 */
fa30bd05
BP
254 if (buffer_uptodate(map_bh)) {
255 map_buffer_to_page(page, map_bh, page_block);
1da177e4
LT
256 goto confused;
257 }
258
259 if (first_hole != blocks_per_page)
260 goto confused; /* hole -> non-hole */
261
262 /* Contiguous blocks? */
fa30bd05 263 if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
1da177e4 264 goto confused;
fa30bd05
BP
265 nblocks = map_bh->b_size >> blkbits;
266 for (relative_block = 0; ; relative_block++) {
267 if (relative_block == nblocks) {
268 clear_buffer_mapped(map_bh);
269 break;
270 } else if (page_block == blocks_per_page)
271 break;
272 blocks[page_block] = map_bh->b_blocknr+relative_block;
273 page_block++;
274 block_in_file++;
275 }
276 bdev = map_bh->b_bdev;
1da177e4
LT
277 }
278
279 if (first_hole != blocks_per_page) {
eebd2aa3 280 zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
1da177e4
LT
281 if (first_hole == 0) {
282 SetPageUptodate(page);
283 unlock_page(page);
284 goto out;
285 }
286 } else if (fully_mapped) {
287 SetPageMappedToDisk(page);
288 }
289
290 /*
291 * This page will go to BIO. Do we need to send this BIO off first?
292 */
293 if (bio && (*last_block_in_bio != blocks[0] - 1))
294 bio = mpage_bio_submit(READ, bio);
295
296alloc_new:
297 if (bio == NULL) {
298 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
299 min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
300 GFP_KERNEL);
301 if (bio == NULL)
302 goto confused;
303 }
304
305 length = first_hole << blkbits;
306 if (bio_add_page(bio, page, length, 0) < length) {
307 bio = mpage_bio_submit(READ, bio);
308 goto alloc_new;
309 }
310
38c8e618
MS
311 relative_block = block_in_file - *first_logical_block;
312 nblocks = map_bh->b_size >> blkbits;
313 if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
314 (first_hole != blocks_per_page))
1da177e4
LT
315 bio = mpage_bio_submit(READ, bio);
316 else
317 *last_block_in_bio = blocks[blocks_per_page - 1];
318out:
319 return bio;
320
321confused:
322 if (bio)
323 bio = mpage_bio_submit(READ, bio);
324 if (!PageUptodate(page))
325 block_read_full_page(page, get_block);
326 else
327 unlock_page(page);
328 goto out;
329}
330
67be2dd1 331/**
78a4a50a 332 * mpage_readpages - populate an address space with some pages & start reads against them
67be2dd1
MW
333 * @mapping: the address_space
334 * @pages: The address of a list_head which contains the target pages. These
335 * pages have their ->index populated and are otherwise uninitialised.
67be2dd1
MW
336 * The page at @pages->prev has the lowest file offset, and reads should be
337 * issued in @pages->prev to @pages->next order.
67be2dd1
MW
338 * @nr_pages: The number of pages at *@pages
339 * @get_block: The filesystem's block mapper function.
340 *
341 * This function walks the pages and the blocks within each page, building and
342 * emitting large BIOs.
343 *
344 * If anything unusual happens, such as:
345 *
346 * - encountering a page which has buffers
347 * - encountering a page which has a non-hole after a hole
348 * - encountering a page with non-contiguous blocks
349 *
350 * then this code just gives up and calls the buffer_head-based read function.
351 * It does handle a page which has holes at the end - that is a common case:
352 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
353 *
354 * BH_Boundary explanation:
355 *
356 * There is a problem. The mpage read code assembles several pages, gets all
357 * their disk mappings, and then submits them all. That's fine, but obtaining
358 * the disk mappings may require I/O. Reads of indirect blocks, for example.
359 *
360 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
361 * submitted in the following order:
362 * 12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
78a4a50a 363 *
67be2dd1
MW
364 * because the indirect block has to be read to get the mappings of blocks
365 * 13,14,15,16. Obviously, this impacts performance.
366 *
367 * So what we do it to allow the filesystem's get_block() function to set
368 * BH_Boundary when it maps block 11. BH_Boundary says: mapping of the block
369 * after this one will require I/O against a block which is probably close to
370 * this one. So you should push what I/O you have currently accumulated.
371 *
372 * This all causes the disk requests to be issued in the correct order.
373 */
1da177e4
LT
374int
375mpage_readpages(struct address_space *mapping, struct list_head *pages,
376 unsigned nr_pages, get_block_t get_block)
377{
378 struct bio *bio = NULL;
379 unsigned page_idx;
380 sector_t last_block_in_bio = 0;
fa30bd05
BP
381 struct buffer_head map_bh;
382 unsigned long first_logical_block = 0;
1da177e4 383
fa30bd05 384 clear_buffer_mapped(&map_bh);
1da177e4
LT
385 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
386 struct page *page = list_entry(pages->prev, struct page, lru);
387
388 prefetchw(&page->flags);
389 list_del(&page->lru);
eb2be189 390 if (!add_to_page_cache_lru(page, mapping,
1da177e4
LT
391 page->index, GFP_KERNEL)) {
392 bio = do_mpage_readpage(bio, page,
393 nr_pages - page_idx,
fa30bd05
BP
394 &last_block_in_bio, &map_bh,
395 &first_logical_block,
396 get_block);
1da177e4 397 }
eb2be189 398 page_cache_release(page);
1da177e4 399 }
1da177e4
LT
400 BUG_ON(!list_empty(pages));
401 if (bio)
402 mpage_bio_submit(READ, bio);
403 return 0;
404}
405EXPORT_SYMBOL(mpage_readpages);
406
407/*
408 * This isn't called much at all
409 */
410int mpage_readpage(struct page *page, get_block_t get_block)
411{
412 struct bio *bio = NULL;
413 sector_t last_block_in_bio = 0;
fa30bd05
BP
414 struct buffer_head map_bh;
415 unsigned long first_logical_block = 0;
1da177e4 416
fa30bd05
BP
417 clear_buffer_mapped(&map_bh);
418 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
419 &map_bh, &first_logical_block, get_block);
1da177e4
LT
420 if (bio)
421 mpage_bio_submit(READ, bio);
422 return 0;
423}
424EXPORT_SYMBOL(mpage_readpage);
425
426/*
427 * Writing is not so simple.
428 *
429 * If the page has buffers then they will be used for obtaining the disk
430 * mapping. We only support pages which are fully mapped-and-dirty, with a
431 * special case for pages which are unmapped at the end: end-of-file.
432 *
433 * If the page has no buffers (preferred) then the page is mapped here.
434 *
435 * If all blocks are found to be contiguous then the page can go into the
436 * BIO. Otherwise fall back to the mapping's writepage().
437 *
438 * FIXME: This code wants an estimate of how many pages are still to be
439 * written, so it can intelligently allocate a suitably-sized BIO. For now,
440 * just allocate full-size (16-page) BIOs.
441 */
0ea97180 442
29a814d2
AT
443int __mpage_writepage(struct page *page, struct writeback_control *wbc,
444 void *data)
1da177e4 445{
0ea97180
MS
446 struct mpage_data *mpd = data;
447 struct bio *bio = mpd->bio;
1da177e4
LT
448 struct address_space *mapping = page->mapping;
449 struct inode *inode = page->mapping->host;
450 const unsigned blkbits = inode->i_blkbits;
451 unsigned long end_index;
452 const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
453 sector_t last_block;
454 sector_t block_in_file;
455 sector_t blocks[MAX_BUF_PER_PAGE];
456 unsigned page_block;
457 unsigned first_unmapped = blocks_per_page;
458 struct block_device *bdev = NULL;
459 int boundary = 0;
460 sector_t boundary_block = 0;
461 struct block_device *boundary_bdev = NULL;
462 int length;
463 struct buffer_head map_bh;
464 loff_t i_size = i_size_read(inode);
0ea97180 465 int ret = 0;
1da177e4
LT
466
467 if (page_has_buffers(page)) {
468 struct buffer_head *head = page_buffers(page);
469 struct buffer_head *bh = head;
470
471 /* If they're all mapped and dirty, do it */
472 page_block = 0;
473 do {
474 BUG_ON(buffer_locked(bh));
475 if (!buffer_mapped(bh)) {
476 /*
477 * unmapped dirty buffers are created by
478 * __set_page_dirty_buffers -> mmapped data
479 */
480 if (buffer_dirty(bh))
481 goto confused;
482 if (first_unmapped == blocks_per_page)
483 first_unmapped = page_block;
484 continue;
485 }
486
487 if (first_unmapped != blocks_per_page)
488 goto confused; /* hole -> non-hole */
489
490 if (!buffer_dirty(bh) || !buffer_uptodate(bh))
491 goto confused;
492 if (page_block) {
493 if (bh->b_blocknr != blocks[page_block-1] + 1)
494 goto confused;
495 }
496 blocks[page_block++] = bh->b_blocknr;
497 boundary = buffer_boundary(bh);
498 if (boundary) {
499 boundary_block = bh->b_blocknr;
500 boundary_bdev = bh->b_bdev;
501 }
502 bdev = bh->b_bdev;
503 } while ((bh = bh->b_this_page) != head);
504
505 if (first_unmapped)
506 goto page_is_mapped;
507
508 /*
509 * Page has buffers, but they are all unmapped. The page was
510 * created by pagein or read over a hole which was handled by
511 * block_read_full_page(). If this address_space is also
512 * using mpage_readpages then this can rarely happen.
513 */
514 goto confused;
515 }
516
517 /*
518 * The page has no buffers: map it to disk
519 */
520 BUG_ON(!PageUptodate(page));
54b21a79 521 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
522 last_block = (i_size - 1) >> blkbits;
523 map_bh.b_page = page;
524 for (page_block = 0; page_block < blocks_per_page; ) {
525
526 map_bh.b_state = 0;
b0cf2321 527 map_bh.b_size = 1 << blkbits;
0ea97180 528 if (mpd->get_block(inode, block_in_file, &map_bh, 1))
1da177e4
LT
529 goto confused;
530 if (buffer_new(&map_bh))
531 unmap_underlying_metadata(map_bh.b_bdev,
532 map_bh.b_blocknr);
533 if (buffer_boundary(&map_bh)) {
534 boundary_block = map_bh.b_blocknr;
535 boundary_bdev = map_bh.b_bdev;
536 }
537 if (page_block) {
538 if (map_bh.b_blocknr != blocks[page_block-1] + 1)
539 goto confused;
540 }
541 blocks[page_block++] = map_bh.b_blocknr;
542 boundary = buffer_boundary(&map_bh);
543 bdev = map_bh.b_bdev;
544 if (block_in_file == last_block)
545 break;
546 block_in_file++;
547 }
548 BUG_ON(page_block == 0);
549
550 first_unmapped = page_block;
551
552page_is_mapped:
553 end_index = i_size >> PAGE_CACHE_SHIFT;
554 if (page->index >= end_index) {
555 /*
556 * The page straddles i_size. It must be zeroed out on each
557 * and every writepage invokation because it may be mmapped.
558 * "A file is mapped in multiples of the page size. For a file
559 * that is not a multiple of the page size, the remaining memory
560 * is zeroed when mapped, and writes to that region are not
561 * written out to the file."
562 */
563 unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
1da177e4
LT
564
565 if (page->index > end_index || !offset)
566 goto confused;
eebd2aa3 567 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
568 }
569
570 /*
571 * This page will go to BIO. Do we need to send this BIO off first?
572 */
0ea97180 573 if (bio && mpd->last_block_in_bio != blocks[0] - 1)
1da177e4
LT
574 bio = mpage_bio_submit(WRITE, bio);
575
576alloc_new:
577 if (bio == NULL) {
578 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
579 bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
580 if (bio == NULL)
581 goto confused;
582 }
583
584 /*
585 * Must try to add the page before marking the buffer clean or
586 * the confused fail path above (OOM) will be very confused when
587 * it finds all bh marked clean (i.e. it will not write anything)
588 */
589 length = first_unmapped << blkbits;
590 if (bio_add_page(bio, page, length, 0) < length) {
591 bio = mpage_bio_submit(WRITE, bio);
592 goto alloc_new;
593 }
594
595 /*
596 * OK, we have our BIO, so we can now mark the buffers clean. Make
597 * sure to only clean buffers which we know we'll be writing.
598 */
599 if (page_has_buffers(page)) {
600 struct buffer_head *head = page_buffers(page);
601 struct buffer_head *bh = head;
602 unsigned buffer_counter = 0;
603
604 do {
605 if (buffer_counter++ == first_unmapped)
606 break;
607 clear_buffer_dirty(bh);
608 bh = bh->b_this_page;
609 } while (bh != head);
610
611 /*
612 * we cannot drop the bh if the page is not uptodate
613 * or a concurrent readpage would fail to serialize with the bh
614 * and it would read from disk before we reach the platter.
615 */
616 if (buffer_heads_over_limit && PageUptodate(page))
617 try_to_free_buffers(page);
618 }
619
620 BUG_ON(PageWriteback(page));
621 set_page_writeback(page);
622 unlock_page(page);
623 if (boundary || (first_unmapped != blocks_per_page)) {
624 bio = mpage_bio_submit(WRITE, bio);
625 if (boundary_block) {
626 write_boundary_block(boundary_bdev,
627 boundary_block, 1 << blkbits);
628 }
629 } else {
0ea97180 630 mpd->last_block_in_bio = blocks[blocks_per_page - 1];
1da177e4
LT
631 }
632 goto out;
633
634confused:
635 if (bio)
636 bio = mpage_bio_submit(WRITE, bio);
637
0ea97180
MS
638 if (mpd->use_writepage) {
639 ret = mapping->a_ops->writepage(page, wbc);
1da177e4 640 } else {
0ea97180 641 ret = -EAGAIN;
1da177e4
LT
642 goto out;
643 }
644 /*
645 * The caller has a ref on the inode, so *mapping is stable
646 */
0ea97180 647 mapping_set_error(mapping, ret);
1da177e4 648out:
0ea97180
MS
649 mpd->bio = bio;
650 return ret;
1da177e4 651}
29a814d2 652EXPORT_SYMBOL(__mpage_writepage);
1da177e4
LT
653
654/**
78a4a50a 655 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
1da177e4
LT
656 * @mapping: address space structure to write
657 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
658 * @get_block: the filesystem's block mapper function.
659 * If this is NULL then use a_ops->writepage. Otherwise, go
660 * direct-to-BIO.
661 *
662 * This is a library function, which implements the writepages()
663 * address_space_operation.
664 *
665 * If a page is already under I/O, generic_writepages() skips it, even
666 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
667 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
668 * and msync() need to guarantee that all the data which was dirty at the time
669 * the call was made get new I/O started against them. If wbc->sync_mode is
670 * WB_SYNC_ALL then we were called for data integrity and we must wait for
671 * existing IO to complete.
672 */
673int
674mpage_writepages(struct address_space *mapping,
675 struct writeback_control *wbc, get_block_t get_block)
1da177e4 676{
0ea97180
MS
677 int ret;
678
679 if (!get_block)
680 ret = generic_writepages(mapping, wbc);
681 else {
682 struct mpage_data mpd = {
683 .bio = NULL,
684 .last_block_in_bio = 0,
685 .get_block = get_block,
686 .use_writepage = 1,
687 };
688
689 ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
690 if (mpd.bio)
691 mpage_bio_submit(WRITE, mpd.bio);
1da177e4 692 }
1da177e4
LT
693 return ret;
694}
695EXPORT_SYMBOL(mpage_writepages);
1da177e4
LT
696
697int mpage_writepage(struct page *page, get_block_t get_block,
698 struct writeback_control *wbc)
699{
0ea97180
MS
700 struct mpage_data mpd = {
701 .bio = NULL,
702 .last_block_in_bio = 0,
703 .get_block = get_block,
704 .use_writepage = 0,
705 };
706 int ret = __mpage_writepage(page, wbc, &mpd);
707 if (mpd.bio)
708 mpage_bio_submit(WRITE, mpd.bio);
1da177e4
LT
709 return ret;
710}
711EXPORT_SYMBOL(mpage_writepage);
This page took 0.784235 seconds and 5 git commands to generate.