ext3: correct mount option parsing to detect when quota options can be changed
[deliverable/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/smp_lock.h>
15#include <linux/init.h>
15a67dd8 16#include <linux/kernel.h>
1da177e4 17#include <linux/acct.h>
16f7e0fe 18#include <linux/capability.h>
3d733633 19#include <linux/cpumask.h>
1da177e4 20#include <linux/module.h>
f20a9ead 21#include <linux/sysfs.h>
1da177e4 22#include <linux/seq_file.h>
6b3286ed 23#include <linux/mnt_namespace.h>
1da177e4
LT
24#include <linux/namei.h>
25#include <linux/security.h>
26#include <linux/mount.h>
07f3f05c 27#include <linux/ramfs.h>
13f14b4d 28#include <linux/log2.h>
73cd49ec 29#include <linux/idr.h>
1da177e4
LT
30#include <asm/uaccess.h>
31#include <asm/unistd.h>
07b20889 32#include "pnode.h"
948730b0 33#include "internal.h"
1da177e4 34
13f14b4d
ED
35#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
36#define HASH_SIZE (1UL << HASH_SHIFT)
37
1da177e4 38/* spinlock for vfsmount related operations, inplace of dcache_lock */
5addc5dd
AV
39__cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
40
41static int event;
73cd49ec 42static DEFINE_IDA(mnt_id_ida);
719f5d7f 43static DEFINE_IDA(mnt_group_ida);
1da177e4 44
fa3536cc 45static struct list_head *mount_hashtable __read_mostly;
e18b890b 46static struct kmem_cache *mnt_cache __read_mostly;
390c6843 47static struct rw_semaphore namespace_sem;
1da177e4 48
f87fd4c2 49/* /sys/fs */
00d26666
GKH
50struct kobject *fs_kobj;
51EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 52
1da177e4
LT
53static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
54{
b58fed8b
RP
55 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
56 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
57 tmp = tmp + (tmp >> HASH_SHIFT);
58 return tmp & (HASH_SIZE - 1);
1da177e4
LT
59}
60
3d733633
DH
61#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
62
73cd49ec
MS
63/* allocation is serialized by namespace_sem */
64static int mnt_alloc_id(struct vfsmount *mnt)
65{
66 int res;
67
68retry:
69 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
70 spin_lock(&vfsmount_lock);
71 res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
72 spin_unlock(&vfsmount_lock);
73 if (res == -EAGAIN)
74 goto retry;
75
76 return res;
77}
78
79static void mnt_free_id(struct vfsmount *mnt)
80{
81 spin_lock(&vfsmount_lock);
82 ida_remove(&mnt_id_ida, mnt->mnt_id);
83 spin_unlock(&vfsmount_lock);
84}
85
719f5d7f
MS
86/*
87 * Allocate a new peer group ID
88 *
89 * mnt_group_ida is protected by namespace_sem
90 */
91static int mnt_alloc_group_id(struct vfsmount *mnt)
92{
93 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
94 return -ENOMEM;
95
96 return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
97}
98
99/*
100 * Release a peer group ID
101 */
102void mnt_release_group_id(struct vfsmount *mnt)
103{
104 ida_remove(&mnt_group_ida, mnt->mnt_group_id);
105 mnt->mnt_group_id = 0;
106}
107
1da177e4
LT
108struct vfsmount *alloc_vfsmnt(const char *name)
109{
c3762229 110 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 111 if (mnt) {
73cd49ec
MS
112 int err;
113
114 err = mnt_alloc_id(mnt);
115 if (err) {
116 kmem_cache_free(mnt_cache, mnt);
117 return NULL;
118 }
119
b58fed8b 120 atomic_set(&mnt->mnt_count, 1);
1da177e4
LT
121 INIT_LIST_HEAD(&mnt->mnt_hash);
122 INIT_LIST_HEAD(&mnt->mnt_child);
123 INIT_LIST_HEAD(&mnt->mnt_mounts);
124 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 125 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 126 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
127 INIT_LIST_HEAD(&mnt->mnt_slave_list);
128 INIT_LIST_HEAD(&mnt->mnt_slave);
3d733633 129 atomic_set(&mnt->__mnt_writers, 0);
1da177e4 130 if (name) {
b58fed8b 131 int size = strlen(name) + 1;
1da177e4
LT
132 char *newname = kmalloc(size, GFP_KERNEL);
133 if (newname) {
134 memcpy(newname, name, size);
135 mnt->mnt_devname = newname;
136 }
137 }
138 }
139 return mnt;
140}
141
3d733633
DH
142/*
143 * Most r/o checks on a fs are for operations that take
144 * discrete amounts of time, like a write() or unlink().
145 * We must keep track of when those operations start
146 * (for permission checks) and when they end, so that
147 * we can determine when writes are able to occur to
148 * a filesystem.
149 */
150/*
151 * __mnt_is_readonly: check whether a mount is read-only
152 * @mnt: the mount to check for its write status
153 *
154 * This shouldn't be used directly ouside of the VFS.
155 * It does not guarantee that the filesystem will stay
156 * r/w, just that it is right *now*. This can not and
157 * should not be used in place of IS_RDONLY(inode).
158 * mnt_want/drop_write() will _keep_ the filesystem
159 * r/w.
160 */
161int __mnt_is_readonly(struct vfsmount *mnt)
162{
2e4b7fcd
DH
163 if (mnt->mnt_flags & MNT_READONLY)
164 return 1;
165 if (mnt->mnt_sb->s_flags & MS_RDONLY)
166 return 1;
167 return 0;
3d733633
DH
168}
169EXPORT_SYMBOL_GPL(__mnt_is_readonly);
170
171struct mnt_writer {
172 /*
173 * If holding multiple instances of this lock, they
174 * must be ordered by cpu number.
175 */
176 spinlock_t lock;
177 struct lock_class_key lock_class; /* compiles out with !lockdep */
178 unsigned long count;
179 struct vfsmount *mnt;
180} ____cacheline_aligned_in_smp;
181static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
182
183static int __init init_mnt_writers(void)
184{
185 int cpu;
186 for_each_possible_cpu(cpu) {
187 struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
188 spin_lock_init(&writer->lock);
189 lockdep_set_class(&writer->lock, &writer->lock_class);
190 writer->count = 0;
191 }
192 return 0;
193}
194fs_initcall(init_mnt_writers);
195
196static void unlock_mnt_writers(void)
197{
198 int cpu;
199 struct mnt_writer *cpu_writer;
200
201 for_each_possible_cpu(cpu) {
202 cpu_writer = &per_cpu(mnt_writers, cpu);
203 spin_unlock(&cpu_writer->lock);
204 }
205}
206
207static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
208{
209 if (!cpu_writer->mnt)
210 return;
211 /*
212 * This is in case anyone ever leaves an invalid,
213 * old ->mnt and a count of 0.
214 */
215 if (!cpu_writer->count)
216 return;
217 atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
218 cpu_writer->count = 0;
219}
220 /*
221 * must hold cpu_writer->lock
222 */
223static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
224 struct vfsmount *mnt)
225{
226 if (cpu_writer->mnt == mnt)
227 return;
228 __clear_mnt_count(cpu_writer);
229 cpu_writer->mnt = mnt;
230}
231
8366025e
DH
232/*
233 * Most r/o checks on a fs are for operations that take
234 * discrete amounts of time, like a write() or unlink().
235 * We must keep track of when those operations start
236 * (for permission checks) and when they end, so that
237 * we can determine when writes are able to occur to
238 * a filesystem.
239 */
240/**
241 * mnt_want_write - get write access to a mount
242 * @mnt: the mount on which to take a write
243 *
244 * This tells the low-level filesystem that a write is
245 * about to be performed to it, and makes sure that
246 * writes are allowed before returning success. When
247 * the write operation is finished, mnt_drop_write()
248 * must be called. This is effectively a refcount.
249 */
250int mnt_want_write(struct vfsmount *mnt)
251{
3d733633
DH
252 int ret = 0;
253 struct mnt_writer *cpu_writer;
254
255 cpu_writer = &get_cpu_var(mnt_writers);
256 spin_lock(&cpu_writer->lock);
257 if (__mnt_is_readonly(mnt)) {
258 ret = -EROFS;
259 goto out;
260 }
261 use_cpu_writer_for_mount(cpu_writer, mnt);
262 cpu_writer->count++;
263out:
264 spin_unlock(&cpu_writer->lock);
265 put_cpu_var(mnt_writers);
266 return ret;
8366025e
DH
267}
268EXPORT_SYMBOL_GPL(mnt_want_write);
269
3d733633
DH
270static void lock_mnt_writers(void)
271{
272 int cpu;
273 struct mnt_writer *cpu_writer;
274
275 for_each_possible_cpu(cpu) {
276 cpu_writer = &per_cpu(mnt_writers, cpu);
277 spin_lock(&cpu_writer->lock);
278 __clear_mnt_count(cpu_writer);
279 cpu_writer->mnt = NULL;
280 }
281}
282
283/*
284 * These per-cpu write counts are not guaranteed to have
285 * matched increments and decrements on any given cpu.
286 * A file open()ed for write on one cpu and close()d on
287 * another cpu will imbalance this count. Make sure it
288 * does not get too far out of whack.
289 */
290static void handle_write_count_underflow(struct vfsmount *mnt)
291{
292 if (atomic_read(&mnt->__mnt_writers) >=
293 MNT_WRITER_UNDERFLOW_LIMIT)
294 return;
295 /*
296 * It isn't necessary to hold all of the locks
297 * at the same time, but doing it this way makes
298 * us share a lot more code.
299 */
300 lock_mnt_writers();
301 /*
302 * vfsmount_lock is for mnt_flags.
303 */
304 spin_lock(&vfsmount_lock);
305 /*
306 * If coalescing the per-cpu writer counts did not
307 * get us back to a positive writer count, we have
308 * a bug.
309 */
310 if ((atomic_read(&mnt->__mnt_writers) < 0) &&
311 !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
312 printk(KERN_DEBUG "leak detected on mount(%p) writers "
313 "count: %d\n",
314 mnt, atomic_read(&mnt->__mnt_writers));
315 WARN_ON(1);
316 /* use the flag to keep the dmesg spam down */
317 mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
318 }
319 spin_unlock(&vfsmount_lock);
320 unlock_mnt_writers();
321}
322
8366025e
DH
323/**
324 * mnt_drop_write - give up write access to a mount
325 * @mnt: the mount on which to give up write access
326 *
327 * Tells the low-level filesystem that we are done
328 * performing writes to it. Must be matched with
329 * mnt_want_write() call above.
330 */
331void mnt_drop_write(struct vfsmount *mnt)
332{
3d733633
DH
333 int must_check_underflow = 0;
334 struct mnt_writer *cpu_writer;
335
336 cpu_writer = &get_cpu_var(mnt_writers);
337 spin_lock(&cpu_writer->lock);
338
339 use_cpu_writer_for_mount(cpu_writer, mnt);
340 if (cpu_writer->count > 0) {
341 cpu_writer->count--;
342 } else {
343 must_check_underflow = 1;
344 atomic_dec(&mnt->__mnt_writers);
345 }
346
347 spin_unlock(&cpu_writer->lock);
348 /*
349 * Logically, we could call this each time,
350 * but the __mnt_writers cacheline tends to
351 * be cold, and makes this expensive.
352 */
353 if (must_check_underflow)
354 handle_write_count_underflow(mnt);
355 /*
356 * This could be done right after the spinlock
357 * is taken because the spinlock keeps us on
358 * the cpu, and disables preemption. However,
359 * putting it here bounds the amount that
360 * __mnt_writers can underflow. Without it,
361 * we could theoretically wrap __mnt_writers.
362 */
363 put_cpu_var(mnt_writers);
8366025e
DH
364}
365EXPORT_SYMBOL_GPL(mnt_drop_write);
366
2e4b7fcd 367static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 368{
3d733633
DH
369 int ret = 0;
370
371 lock_mnt_writers();
372 /*
373 * With all the locks held, this value is stable
374 */
375 if (atomic_read(&mnt->__mnt_writers) > 0) {
376 ret = -EBUSY;
377 goto out;
378 }
379 /*
2e4b7fcd
DH
380 * nobody can do a successful mnt_want_write() with all
381 * of the counts in MNT_DENIED_WRITE and the locks held.
3d733633 382 */
2e4b7fcd
DH
383 spin_lock(&vfsmount_lock);
384 if (!ret)
385 mnt->mnt_flags |= MNT_READONLY;
386 spin_unlock(&vfsmount_lock);
3d733633
DH
387out:
388 unlock_mnt_writers();
389 return ret;
8366025e 390}
8366025e 391
2e4b7fcd
DH
392static void __mnt_unmake_readonly(struct vfsmount *mnt)
393{
394 spin_lock(&vfsmount_lock);
395 mnt->mnt_flags &= ~MNT_READONLY;
396 spin_unlock(&vfsmount_lock);
397}
398
454e2398
DH
399int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
400{
401 mnt->mnt_sb = sb;
402 mnt->mnt_root = dget(sb->s_root);
403 return 0;
404}
405
406EXPORT_SYMBOL(simple_set_mnt);
407
1da177e4
LT
408void free_vfsmnt(struct vfsmount *mnt)
409{
410 kfree(mnt->mnt_devname);
73cd49ec 411 mnt_free_id(mnt);
1da177e4
LT
412 kmem_cache_free(mnt_cache, mnt);
413}
414
415/*
a05964f3
RP
416 * find the first or last mount at @dentry on vfsmount @mnt depending on
417 * @dir. If @dir is set return the first mount else return the last mount.
1da177e4 418 */
a05964f3
RP
419struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
420 int dir)
1da177e4 421{
b58fed8b
RP
422 struct list_head *head = mount_hashtable + hash(mnt, dentry);
423 struct list_head *tmp = head;
1da177e4
LT
424 struct vfsmount *p, *found = NULL;
425
1da177e4 426 for (;;) {
a05964f3 427 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
428 p = NULL;
429 if (tmp == head)
430 break;
431 p = list_entry(tmp, struct vfsmount, mnt_hash);
432 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 433 found = p;
1da177e4
LT
434 break;
435 }
436 }
1da177e4
LT
437 return found;
438}
439
a05964f3
RP
440/*
441 * lookup_mnt increments the ref count before returning
442 * the vfsmount struct.
443 */
444struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
445{
446 struct vfsmount *child_mnt;
447 spin_lock(&vfsmount_lock);
448 if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
449 mntget(child_mnt);
450 spin_unlock(&vfsmount_lock);
451 return child_mnt;
452}
453
1da177e4
LT
454static inline int check_mnt(struct vfsmount *mnt)
455{
6b3286ed 456 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
457}
458
6b3286ed 459static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
460{
461 if (ns) {
462 ns->event = ++event;
463 wake_up_interruptible(&ns->poll);
464 }
465}
466
6b3286ed 467static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
468{
469 if (ns && ns->event != event) {
470 ns->event = event;
471 wake_up_interruptible(&ns->poll);
472 }
473}
474
1a390689 475static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 476{
1a390689
AV
477 old_path->dentry = mnt->mnt_mountpoint;
478 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
479 mnt->mnt_parent = mnt;
480 mnt->mnt_mountpoint = mnt->mnt_root;
481 list_del_init(&mnt->mnt_child);
482 list_del_init(&mnt->mnt_hash);
1a390689 483 old_path->dentry->d_mounted--;
1da177e4
LT
484}
485
b90fa9ae
RP
486void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
487 struct vfsmount *child_mnt)
488{
489 child_mnt->mnt_parent = mntget(mnt);
490 child_mnt->mnt_mountpoint = dget(dentry);
491 dentry->d_mounted++;
492}
493
1a390689 494static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 495{
1a390689 496 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 497 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
498 hash(path->mnt, path->dentry));
499 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
500}
501
502/*
503 * the caller must hold vfsmount_lock
504 */
505static void commit_tree(struct vfsmount *mnt)
506{
507 struct vfsmount *parent = mnt->mnt_parent;
508 struct vfsmount *m;
509 LIST_HEAD(head);
6b3286ed 510 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
511
512 BUG_ON(parent == mnt);
513
514 list_add_tail(&head, &mnt->mnt_list);
515 list_for_each_entry(m, &head, mnt_list)
6b3286ed 516 m->mnt_ns = n;
b90fa9ae
RP
517 list_splice(&head, n->list.prev);
518
519 list_add_tail(&mnt->mnt_hash, mount_hashtable +
520 hash(parent, mnt->mnt_mountpoint));
521 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 522 touch_mnt_namespace(n);
1da177e4
LT
523}
524
525static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
526{
527 struct list_head *next = p->mnt_mounts.next;
528 if (next == &p->mnt_mounts) {
529 while (1) {
530 if (p == root)
531 return NULL;
532 next = p->mnt_child.next;
533 if (next != &p->mnt_parent->mnt_mounts)
534 break;
535 p = p->mnt_parent;
536 }
537 }
538 return list_entry(next, struct vfsmount, mnt_child);
539}
540
9676f0c6
RP
541static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
542{
543 struct list_head *prev = p->mnt_mounts.prev;
544 while (prev != &p->mnt_mounts) {
545 p = list_entry(prev, struct vfsmount, mnt_child);
546 prev = p->mnt_mounts.prev;
547 }
548 return p;
549}
550
36341f64
RP
551static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
552 int flag)
1da177e4
LT
553{
554 struct super_block *sb = old->mnt_sb;
555 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
556
557 if (mnt) {
719f5d7f
MS
558 if (flag & (CL_SLAVE | CL_PRIVATE))
559 mnt->mnt_group_id = 0; /* not a peer of original */
560 else
561 mnt->mnt_group_id = old->mnt_group_id;
562
563 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
564 int err = mnt_alloc_group_id(mnt);
565 if (err)
566 goto out_free;
567 }
568
1da177e4
LT
569 mnt->mnt_flags = old->mnt_flags;
570 atomic_inc(&sb->s_active);
571 mnt->mnt_sb = sb;
572 mnt->mnt_root = dget(root);
573 mnt->mnt_mountpoint = mnt->mnt_root;
574 mnt->mnt_parent = mnt;
b90fa9ae 575
5afe0022
RP
576 if (flag & CL_SLAVE) {
577 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
578 mnt->mnt_master = old;
579 CLEAR_MNT_SHARED(mnt);
8aec0809 580 } else if (!(flag & CL_PRIVATE)) {
5afe0022
RP
581 if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
582 list_add(&mnt->mnt_share, &old->mnt_share);
583 if (IS_MNT_SLAVE(old))
584 list_add(&mnt->mnt_slave, &old->mnt_slave);
585 mnt->mnt_master = old->mnt_master;
586 }
b90fa9ae
RP
587 if (flag & CL_MAKE_SHARED)
588 set_mnt_shared(mnt);
1da177e4
LT
589
590 /* stick the duplicate mount on the same expiry list
591 * as the original if that was on one */
36341f64 592 if (flag & CL_EXPIRE) {
36341f64
RP
593 if (!list_empty(&old->mnt_expire))
594 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 595 }
1da177e4
LT
596 }
597 return mnt;
719f5d7f
MS
598
599 out_free:
600 free_vfsmnt(mnt);
601 return NULL;
1da177e4
LT
602}
603
7b7b1ace 604static inline void __mntput(struct vfsmount *mnt)
1da177e4 605{
3d733633 606 int cpu;
1da177e4 607 struct super_block *sb = mnt->mnt_sb;
3d733633
DH
608 /*
609 * We don't have to hold all of the locks at the
610 * same time here because we know that we're the
611 * last reference to mnt and that no new writers
612 * can come in.
613 */
614 for_each_possible_cpu(cpu) {
615 struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
616 if (cpu_writer->mnt != mnt)
617 continue;
618 spin_lock(&cpu_writer->lock);
619 atomic_add(cpu_writer->count, &mnt->__mnt_writers);
620 cpu_writer->count = 0;
621 /*
622 * Might as well do this so that no one
623 * ever sees the pointer and expects
624 * it to be valid.
625 */
626 cpu_writer->mnt = NULL;
627 spin_unlock(&cpu_writer->lock);
628 }
629 /*
630 * This probably indicates that somebody messed
631 * up a mnt_want/drop_write() pair. If this
632 * happens, the filesystem was probably unable
633 * to make r/w->r/o transitions.
634 */
635 WARN_ON(atomic_read(&mnt->__mnt_writers));
1da177e4
LT
636 dput(mnt->mnt_root);
637 free_vfsmnt(mnt);
638 deactivate_super(sb);
639}
640
7b7b1ace
AV
641void mntput_no_expire(struct vfsmount *mnt)
642{
643repeat:
644 if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
645 if (likely(!mnt->mnt_pinned)) {
646 spin_unlock(&vfsmount_lock);
647 __mntput(mnt);
648 return;
649 }
650 atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
651 mnt->mnt_pinned = 0;
652 spin_unlock(&vfsmount_lock);
653 acct_auto_close_mnt(mnt);
654 security_sb_umount_close(mnt);
655 goto repeat;
656 }
657}
658
659EXPORT_SYMBOL(mntput_no_expire);
660
661void mnt_pin(struct vfsmount *mnt)
662{
663 spin_lock(&vfsmount_lock);
664 mnt->mnt_pinned++;
665 spin_unlock(&vfsmount_lock);
666}
667
668EXPORT_SYMBOL(mnt_pin);
669
670void mnt_unpin(struct vfsmount *mnt)
671{
672 spin_lock(&vfsmount_lock);
673 if (mnt->mnt_pinned) {
674 atomic_inc(&mnt->mnt_count);
675 mnt->mnt_pinned--;
676 }
677 spin_unlock(&vfsmount_lock);
678}
679
680EXPORT_SYMBOL(mnt_unpin);
1da177e4 681
b3b304a2
MS
682static inline void mangle(struct seq_file *m, const char *s)
683{
684 seq_escape(m, s, " \t\n\\");
685}
686
687/*
688 * Simple .show_options callback for filesystems which don't want to
689 * implement more complex mount option showing.
690 *
691 * See also save_mount_options().
692 */
693int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
694{
695 const char *options = mnt->mnt_sb->s_options;
696
697 if (options != NULL && options[0]) {
698 seq_putc(m, ',');
699 mangle(m, options);
700 }
701
702 return 0;
703}
704EXPORT_SYMBOL(generic_show_options);
705
706/*
707 * If filesystem uses generic_show_options(), this function should be
708 * called from the fill_super() callback.
709 *
710 * The .remount_fs callback usually needs to be handled in a special
711 * way, to make sure, that previous options are not overwritten if the
712 * remount fails.
713 *
714 * Also note, that if the filesystem's .remount_fs function doesn't
715 * reset all options to their default value, but changes only newly
716 * given options, then the displayed options will not reflect reality
717 * any more.
718 */
719void save_mount_options(struct super_block *sb, char *options)
720{
721 kfree(sb->s_options);
722 sb->s_options = kstrdup(options, GFP_KERNEL);
723}
724EXPORT_SYMBOL(save_mount_options);
725
a1a2c409 726#ifdef CONFIG_PROC_FS
1da177e4
LT
727/* iterator */
728static void *m_start(struct seq_file *m, loff_t *pos)
729{
a1a2c409 730 struct proc_mounts *p = m->private;
1da177e4 731
390c6843 732 down_read(&namespace_sem);
a1a2c409 733 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
734}
735
736static void *m_next(struct seq_file *m, void *v, loff_t *pos)
737{
a1a2c409 738 struct proc_mounts *p = m->private;
b0765fb8 739
a1a2c409 740 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
741}
742
743static void m_stop(struct seq_file *m, void *v)
744{
390c6843 745 up_read(&namespace_sem);
1da177e4
LT
746}
747
2d4d4864
RP
748struct proc_fs_info {
749 int flag;
750 const char *str;
751};
752
2069f457 753static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 754{
2d4d4864 755 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
756 { MS_SYNCHRONOUS, ",sync" },
757 { MS_DIRSYNC, ",dirsync" },
758 { MS_MANDLOCK, ",mand" },
1da177e4
LT
759 { 0, NULL }
760 };
2d4d4864
RP
761 const struct proc_fs_info *fs_infop;
762
763 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
764 if (sb->s_flags & fs_infop->flag)
765 seq_puts(m, fs_infop->str);
766 }
2069f457
EP
767
768 return security_sb_show_options(m, sb);
2d4d4864
RP
769}
770
771static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
772{
773 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
774 { MNT_NOSUID, ",nosuid" },
775 { MNT_NODEV, ",nodev" },
776 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
777 { MNT_NOATIME, ",noatime" },
778 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 779 { MNT_RELATIME, ",relatime" },
1da177e4
LT
780 { 0, NULL }
781 };
2d4d4864
RP
782 const struct proc_fs_info *fs_infop;
783
784 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
785 if (mnt->mnt_flags & fs_infop->flag)
786 seq_puts(m, fs_infop->str);
787 }
788}
789
790static void show_type(struct seq_file *m, struct super_block *sb)
791{
792 mangle(m, sb->s_type->name);
793 if (sb->s_subtype && sb->s_subtype[0]) {
794 seq_putc(m, '.');
795 mangle(m, sb->s_subtype);
796 }
797}
798
799static int show_vfsmnt(struct seq_file *m, void *v)
800{
801 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
802 int err = 0;
c32c2f63 803 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
804
805 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
806 seq_putc(m, ' ');
c32c2f63 807 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 808 seq_putc(m, ' ');
2d4d4864 809 show_type(m, mnt->mnt_sb);
2e4b7fcd 810 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
811 err = show_sb_opts(m, mnt->mnt_sb);
812 if (err)
813 goto out;
2d4d4864 814 show_mnt_opts(m, mnt);
1da177e4
LT
815 if (mnt->mnt_sb->s_op->show_options)
816 err = mnt->mnt_sb->s_op->show_options(m, mnt);
817 seq_puts(m, " 0 0\n");
2069f457 818out:
1da177e4
LT
819 return err;
820}
821
a1a2c409 822const struct seq_operations mounts_op = {
1da177e4
LT
823 .start = m_start,
824 .next = m_next,
825 .stop = m_stop,
826 .show = show_vfsmnt
827};
828
2d4d4864
RP
829static int show_mountinfo(struct seq_file *m, void *v)
830{
831 struct proc_mounts *p = m->private;
832 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
833 struct super_block *sb = mnt->mnt_sb;
834 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
835 struct path root = p->root;
836 int err = 0;
837
838 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
839 MAJOR(sb->s_dev), MINOR(sb->s_dev));
840 seq_dentry(m, mnt->mnt_root, " \t\n\\");
841 seq_putc(m, ' ');
842 seq_path_root(m, &mnt_path, &root, " \t\n\\");
843 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
844 /*
845 * Mountpoint is outside root, discard that one. Ugly,
846 * but less so than trying to do that in iterator in a
847 * race-free way (due to renames).
848 */
849 return SEQ_SKIP;
850 }
851 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
852 show_mnt_opts(m, mnt);
853
854 /* Tagged fields ("foo:X" or "bar") */
855 if (IS_MNT_SHARED(mnt))
856 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
857 if (IS_MNT_SLAVE(mnt)) {
858 int master = mnt->mnt_master->mnt_group_id;
859 int dom = get_dominating_id(mnt, &p->root);
860 seq_printf(m, " master:%i", master);
861 if (dom && dom != master)
862 seq_printf(m, " propagate_from:%i", dom);
863 }
2d4d4864
RP
864 if (IS_MNT_UNBINDABLE(mnt))
865 seq_puts(m, " unbindable");
866
867 /* Filesystem specific data */
868 seq_puts(m, " - ");
869 show_type(m, sb);
870 seq_putc(m, ' ');
871 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
872 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
873 err = show_sb_opts(m, sb);
874 if (err)
875 goto out;
2d4d4864
RP
876 if (sb->s_op->show_options)
877 err = sb->s_op->show_options(m, mnt);
878 seq_putc(m, '\n');
2069f457 879out:
2d4d4864
RP
880 return err;
881}
882
883const struct seq_operations mountinfo_op = {
884 .start = m_start,
885 .next = m_next,
886 .stop = m_stop,
887 .show = show_mountinfo,
888};
889
b4629fe2
CL
890static int show_vfsstat(struct seq_file *m, void *v)
891{
b0765fb8 892 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 893 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
894 int err = 0;
895
896 /* device */
897 if (mnt->mnt_devname) {
898 seq_puts(m, "device ");
899 mangle(m, mnt->mnt_devname);
900 } else
901 seq_puts(m, "no device");
902
903 /* mount point */
904 seq_puts(m, " mounted on ");
c32c2f63 905 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
906 seq_putc(m, ' ');
907
908 /* file system type */
909 seq_puts(m, "with fstype ");
2d4d4864 910 show_type(m, mnt->mnt_sb);
b4629fe2
CL
911
912 /* optional statistics */
913 if (mnt->mnt_sb->s_op->show_stats) {
914 seq_putc(m, ' ');
915 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
916 }
917
918 seq_putc(m, '\n');
919 return err;
920}
921
a1a2c409 922const struct seq_operations mountstats_op = {
b4629fe2
CL
923 .start = m_start,
924 .next = m_next,
925 .stop = m_stop,
926 .show = show_vfsstat,
927};
a1a2c409 928#endif /* CONFIG_PROC_FS */
b4629fe2 929
1da177e4
LT
930/**
931 * may_umount_tree - check if a mount tree is busy
932 * @mnt: root of mount tree
933 *
934 * This is called to check if a tree of mounts has any
935 * open files, pwds, chroots or sub mounts that are
936 * busy.
937 */
938int may_umount_tree(struct vfsmount *mnt)
939{
36341f64
RP
940 int actual_refs = 0;
941 int minimum_refs = 0;
942 struct vfsmount *p;
1da177e4
LT
943
944 spin_lock(&vfsmount_lock);
36341f64 945 for (p = mnt; p; p = next_mnt(p, mnt)) {
1da177e4
LT
946 actual_refs += atomic_read(&p->mnt_count);
947 minimum_refs += 2;
1da177e4
LT
948 }
949 spin_unlock(&vfsmount_lock);
950
951 if (actual_refs > minimum_refs)
e3474a8e 952 return 0;
1da177e4 953
e3474a8e 954 return 1;
1da177e4
LT
955}
956
957EXPORT_SYMBOL(may_umount_tree);
958
959/**
960 * may_umount - check if a mount point is busy
961 * @mnt: root of mount
962 *
963 * This is called to check if a mount point has any
964 * open files, pwds, chroots or sub mounts. If the
965 * mount has sub mounts this will return busy
966 * regardless of whether the sub mounts are busy.
967 *
968 * Doesn't take quota and stuff into account. IOW, in some cases it will
969 * give false negatives. The main reason why it's here is that we need
970 * a non-destructive way to look for easily umountable filesystems.
971 */
972int may_umount(struct vfsmount *mnt)
973{
e3474a8e 974 int ret = 1;
a05964f3
RP
975 spin_lock(&vfsmount_lock);
976 if (propagate_mount_busy(mnt, 2))
e3474a8e 977 ret = 0;
a05964f3
RP
978 spin_unlock(&vfsmount_lock);
979 return ret;
1da177e4
LT
980}
981
982EXPORT_SYMBOL(may_umount);
983
b90fa9ae 984void release_mounts(struct list_head *head)
70fbcdf4
RP
985{
986 struct vfsmount *mnt;
bf066c7d 987 while (!list_empty(head)) {
b5e61818 988 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
989 list_del_init(&mnt->mnt_hash);
990 if (mnt->mnt_parent != mnt) {
991 struct dentry *dentry;
992 struct vfsmount *m;
993 spin_lock(&vfsmount_lock);
994 dentry = mnt->mnt_mountpoint;
995 m = mnt->mnt_parent;
996 mnt->mnt_mountpoint = mnt->mnt_root;
997 mnt->mnt_parent = mnt;
7c4b93d8 998 m->mnt_ghosts--;
70fbcdf4
RP
999 spin_unlock(&vfsmount_lock);
1000 dput(dentry);
1001 mntput(m);
1002 }
1003 mntput(mnt);
1004 }
1005}
1006
a05964f3 1007void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4
LT
1008{
1009 struct vfsmount *p;
1da177e4 1010
1bfba4e8
AM
1011 for (p = mnt; p; p = next_mnt(p, mnt))
1012 list_move(&p->mnt_hash, kill);
1da177e4 1013
a05964f3
RP
1014 if (propagate)
1015 propagate_umount(kill);
1016
70fbcdf4
RP
1017 list_for_each_entry(p, kill, mnt_hash) {
1018 list_del_init(&p->mnt_expire);
1019 list_del_init(&p->mnt_list);
6b3286ed
KK
1020 __touch_mnt_namespace(p->mnt_ns);
1021 p->mnt_ns = NULL;
70fbcdf4 1022 list_del_init(&p->mnt_child);
7c4b93d8
AV
1023 if (p->mnt_parent != p) {
1024 p->mnt_parent->mnt_ghosts++;
f30ac319 1025 p->mnt_mountpoint->d_mounted--;
7c4b93d8 1026 }
a05964f3 1027 change_mnt_propagation(p, MS_PRIVATE);
1da177e4
LT
1028 }
1029}
1030
c35038be
AV
1031static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1032
1da177e4
LT
1033static int do_umount(struct vfsmount *mnt, int flags)
1034{
b58fed8b 1035 struct super_block *sb = mnt->mnt_sb;
1da177e4 1036 int retval;
70fbcdf4 1037 LIST_HEAD(umount_list);
1da177e4
LT
1038
1039 retval = security_sb_umount(mnt, flags);
1040 if (retval)
1041 return retval;
1042
1043 /*
1044 * Allow userspace to request a mountpoint be expired rather than
1045 * unmounting unconditionally. Unmount only happens if:
1046 * (1) the mark is already set (the mark is cleared by mntput())
1047 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1048 */
1049 if (flags & MNT_EXPIRE) {
6ac08c39 1050 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1051 flags & (MNT_FORCE | MNT_DETACH))
1052 return -EINVAL;
1053
1054 if (atomic_read(&mnt->mnt_count) != 2)
1055 return -EBUSY;
1056
1057 if (!xchg(&mnt->mnt_expiry_mark, 1))
1058 return -EAGAIN;
1059 }
1060
1061 /*
1062 * If we may have to abort operations to get out of this
1063 * mount, and they will themselves hold resources we must
1064 * allow the fs to do things. In the Unix tradition of
1065 * 'Gee thats tricky lets do it in userspace' the umount_begin
1066 * might fail to complete on the first run through as other tasks
1067 * must return, and the like. Thats for the mount program to worry
1068 * about for the moment.
1069 */
1070
42faad99
AV
1071 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1072 lock_kernel();
1073 sb->s_op->umount_begin(sb);
1074 unlock_kernel();
1075 }
1da177e4
LT
1076
1077 /*
1078 * No sense to grab the lock for this test, but test itself looks
1079 * somewhat bogus. Suggestions for better replacement?
1080 * Ho-hum... In principle, we might treat that as umount + switch
1081 * to rootfs. GC would eventually take care of the old vfsmount.
1082 * Actually it makes sense, especially if rootfs would contain a
1083 * /reboot - static binary that would close all descriptors and
1084 * call reboot(9). Then init(8) could umount root and exec /reboot.
1085 */
6ac08c39 1086 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1087 /*
1088 * Special case for "unmounting" root ...
1089 * we just try to remount it readonly.
1090 */
1091 down_write(&sb->s_umount);
1092 if (!(sb->s_flags & MS_RDONLY)) {
1093 lock_kernel();
1da177e4
LT
1094 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1095 unlock_kernel();
1096 }
1097 up_write(&sb->s_umount);
1098 return retval;
1099 }
1100
390c6843 1101 down_write(&namespace_sem);
1da177e4 1102 spin_lock(&vfsmount_lock);
5addc5dd 1103 event++;
1da177e4 1104
c35038be
AV
1105 if (!(flags & MNT_DETACH))
1106 shrink_submounts(mnt, &umount_list);
1107
1da177e4 1108 retval = -EBUSY;
a05964f3 1109 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1110 if (!list_empty(&mnt->mnt_list))
a05964f3 1111 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1112 retval = 0;
1113 }
1114 spin_unlock(&vfsmount_lock);
1115 if (retval)
1116 security_sb_umount_busy(mnt);
390c6843 1117 up_write(&namespace_sem);
70fbcdf4 1118 release_mounts(&umount_list);
1da177e4
LT
1119 return retval;
1120}
1121
1122/*
1123 * Now umount can handle mount points as well as block devices.
1124 * This is important for filesystems which use unnamed block devices.
1125 *
1126 * We now support a flag for forced unmount like the other 'big iron'
1127 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1128 */
1129
1130asmlinkage long sys_umount(char __user * name, int flags)
1131{
1132 struct nameidata nd;
1133 int retval;
1134
1135 retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
1136 if (retval)
1137 goto out;
1138 retval = -EINVAL;
4ac91378 1139 if (nd.path.dentry != nd.path.mnt->mnt_root)
1da177e4 1140 goto dput_and_out;
4ac91378 1141 if (!check_mnt(nd.path.mnt))
1da177e4
LT
1142 goto dput_and_out;
1143
1144 retval = -EPERM;
1145 if (!capable(CAP_SYS_ADMIN))
1146 goto dput_and_out;
1147
4ac91378 1148 retval = do_umount(nd.path.mnt, flags);
1da177e4 1149dput_and_out:
429731b1 1150 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
4ac91378
JB
1151 dput(nd.path.dentry);
1152 mntput_no_expire(nd.path.mnt);
1da177e4
LT
1153out:
1154 return retval;
1155}
1156
1157#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1158
1159/*
b58fed8b 1160 * The 2.0 compatible umount. No flags.
1da177e4 1161 */
1da177e4
LT
1162asmlinkage long sys_oldumount(char __user * name)
1163{
b58fed8b 1164 return sys_umount(name, 0);
1da177e4
LT
1165}
1166
1167#endif
1168
1169static int mount_is_safe(struct nameidata *nd)
1170{
1171 if (capable(CAP_SYS_ADMIN))
1172 return 0;
1173 return -EPERM;
1174#ifdef notyet
4ac91378 1175 if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
1da177e4 1176 return -EPERM;
4ac91378
JB
1177 if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
1178 if (current->uid != nd->path.dentry->d_inode->i_uid)
1da177e4
LT
1179 return -EPERM;
1180 }
e4543edd 1181 if (vfs_permission(nd, MAY_WRITE))
1da177e4
LT
1182 return -EPERM;
1183 return 0;
1184#endif
1185}
1186
b90fa9ae 1187struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1188 int flag)
1da177e4
LT
1189{
1190 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1191 struct path path;
1da177e4 1192
9676f0c6
RP
1193 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1194 return NULL;
1195
36341f64 1196 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1197 if (!q)
1198 goto Enomem;
1199 q->mnt_mountpoint = mnt->mnt_mountpoint;
1200
1201 p = mnt;
fdadd65f 1202 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1203 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1204 continue;
1205
1206 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1207 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1208 s = skip_mnt_tree(s);
1209 continue;
1210 }
1da177e4
LT
1211 while (p != s->mnt_parent) {
1212 p = p->mnt_parent;
1213 q = q->mnt_parent;
1214 }
1215 p = s;
1a390689
AV
1216 path.mnt = q;
1217 path.dentry = p->mnt_mountpoint;
36341f64 1218 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1219 if (!q)
1220 goto Enomem;
1221 spin_lock(&vfsmount_lock);
1222 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1223 attach_mnt(q, &path);
1da177e4
LT
1224 spin_unlock(&vfsmount_lock);
1225 }
1226 }
1227 return res;
b58fed8b 1228Enomem:
1da177e4 1229 if (res) {
70fbcdf4 1230 LIST_HEAD(umount_list);
1da177e4 1231 spin_lock(&vfsmount_lock);
a05964f3 1232 umount_tree(res, 0, &umount_list);
1da177e4 1233 spin_unlock(&vfsmount_lock);
70fbcdf4 1234 release_mounts(&umount_list);
1da177e4
LT
1235 }
1236 return NULL;
1237}
1238
8aec0809
AV
1239struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
1240{
1241 struct vfsmount *tree;
1a60a280 1242 down_write(&namespace_sem);
8aec0809 1243 tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1244 up_write(&namespace_sem);
8aec0809
AV
1245 return tree;
1246}
1247
1248void drop_collected_mounts(struct vfsmount *mnt)
1249{
1250 LIST_HEAD(umount_list);
1a60a280 1251 down_write(&namespace_sem);
8aec0809
AV
1252 spin_lock(&vfsmount_lock);
1253 umount_tree(mnt, 0, &umount_list);
1254 spin_unlock(&vfsmount_lock);
1a60a280 1255 up_write(&namespace_sem);
8aec0809
AV
1256 release_mounts(&umount_list);
1257}
1258
719f5d7f
MS
1259static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1260{
1261 struct vfsmount *p;
1262
1263 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1264 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1265 mnt_release_group_id(p);
1266 }
1267}
1268
1269static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1270{
1271 struct vfsmount *p;
1272
1273 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1274 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1275 int err = mnt_alloc_group_id(p);
1276 if (err) {
1277 cleanup_group_ids(mnt, p);
1278 return err;
1279 }
1280 }
1281 }
1282
1283 return 0;
1284}
1285
b90fa9ae
RP
1286/*
1287 * @source_mnt : mount tree to be attached
21444403
RP
1288 * @nd : place the mount tree @source_mnt is attached
1289 * @parent_nd : if non-null, detach the source_mnt from its parent and
1290 * store the parent mount and mountpoint dentry.
1291 * (done when source_mnt is moved)
b90fa9ae
RP
1292 *
1293 * NOTE: in the table below explains the semantics when a source mount
1294 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1295 * ---------------------------------------------------------------------------
1296 * | BIND MOUNT OPERATION |
1297 * |**************************************************************************
1298 * | source-->| shared | private | slave | unbindable |
1299 * | dest | | | | |
1300 * | | | | | | |
1301 * | v | | | | |
1302 * |**************************************************************************
1303 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1304 * | | | | | |
1305 * |non-shared| shared (+) | private | slave (*) | invalid |
1306 * ***************************************************************************
b90fa9ae
RP
1307 * A bind operation clones the source mount and mounts the clone on the
1308 * destination mount.
1309 *
1310 * (++) the cloned mount is propagated to all the mounts in the propagation
1311 * tree of the destination mount and the cloned mount is added to
1312 * the peer group of the source mount.
1313 * (+) the cloned mount is created under the destination mount and is marked
1314 * as shared. The cloned mount is added to the peer group of the source
1315 * mount.
5afe0022
RP
1316 * (+++) the mount is propagated to all the mounts in the propagation tree
1317 * of the destination mount and the cloned mount is made slave
1318 * of the same master as that of the source mount. The cloned mount
1319 * is marked as 'shared and slave'.
1320 * (*) the cloned mount is made a slave of the same master as that of the
1321 * source mount.
1322 *
9676f0c6
RP
1323 * ---------------------------------------------------------------------------
1324 * | MOVE MOUNT OPERATION |
1325 * |**************************************************************************
1326 * | source-->| shared | private | slave | unbindable |
1327 * | dest | | | | |
1328 * | | | | | | |
1329 * | v | | | | |
1330 * |**************************************************************************
1331 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1332 * | | | | | |
1333 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1334 * ***************************************************************************
5afe0022
RP
1335 *
1336 * (+) the mount is moved to the destination. And is then propagated to
1337 * all the mounts in the propagation tree of the destination mount.
21444403 1338 * (+*) the mount is moved to the destination.
5afe0022
RP
1339 * (+++) the mount is moved to the destination and is then propagated to
1340 * all the mounts belonging to the destination mount's propagation tree.
1341 * the mount is marked as 'shared and slave'.
1342 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1343 *
1344 * if the source mount is a tree, the operations explained above is
1345 * applied to each mount in the tree.
1346 * Must be called without spinlocks held, since this function can sleep
1347 * in allocations.
1348 */
1349static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1350 struct path *path, struct path *parent_path)
b90fa9ae
RP
1351{
1352 LIST_HEAD(tree_list);
1a390689
AV
1353 struct vfsmount *dest_mnt = path->mnt;
1354 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1355 struct vfsmount *child, *p;
719f5d7f 1356 int err;
b90fa9ae 1357
719f5d7f
MS
1358 if (IS_MNT_SHARED(dest_mnt)) {
1359 err = invent_group_ids(source_mnt, true);
1360 if (err)
1361 goto out;
1362 }
1363 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1364 if (err)
1365 goto out_cleanup_ids;
b90fa9ae
RP
1366
1367 if (IS_MNT_SHARED(dest_mnt)) {
1368 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1369 set_mnt_shared(p);
1370 }
1371
1372 spin_lock(&vfsmount_lock);
1a390689
AV
1373 if (parent_path) {
1374 detach_mnt(source_mnt, parent_path);
1375 attach_mnt(source_mnt, path);
6b3286ed 1376 touch_mnt_namespace(current->nsproxy->mnt_ns);
21444403
RP
1377 } else {
1378 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1379 commit_tree(source_mnt);
1380 }
b90fa9ae
RP
1381
1382 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1383 list_del_init(&child->mnt_hash);
1384 commit_tree(child);
1385 }
1386 spin_unlock(&vfsmount_lock);
1387 return 0;
719f5d7f
MS
1388
1389 out_cleanup_ids:
1390 if (IS_MNT_SHARED(dest_mnt))
1391 cleanup_group_ids(source_mnt, NULL);
1392 out:
1393 return err;
b90fa9ae
RP
1394}
1395
8c3ee42e 1396static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1397{
1398 int err;
1399 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1400 return -EINVAL;
1401
8c3ee42e 1402 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1403 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1404 return -ENOTDIR;
1405
1406 err = -ENOENT;
8c3ee42e
AV
1407 mutex_lock(&path->dentry->d_inode->i_mutex);
1408 if (IS_DEADDIR(path->dentry->d_inode))
1da177e4
LT
1409 goto out_unlock;
1410
8c3ee42e 1411 err = security_sb_check_sb(mnt, path);
1da177e4
LT
1412 if (err)
1413 goto out_unlock;
1414
1415 err = -ENOENT;
8c3ee42e
AV
1416 if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
1417 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1418out_unlock:
8c3ee42e 1419 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1420 if (!err)
8c3ee42e 1421 security_sb_post_addmount(mnt, path);
1da177e4
LT
1422 return err;
1423}
1424
07b20889
RP
1425/*
1426 * recursively change the type of the mountpoint.
2dafe1c4 1427 * noinline this do_mount helper to save do_mount stack space.
07b20889 1428 */
2dafe1c4 1429static noinline int do_change_type(struct nameidata *nd, int flag)
07b20889 1430{
4ac91378 1431 struct vfsmount *m, *mnt = nd->path.mnt;
07b20889
RP
1432 int recurse = flag & MS_REC;
1433 int type = flag & ~MS_REC;
719f5d7f 1434 int err = 0;
07b20889 1435
ee6f9582
MS
1436 if (!capable(CAP_SYS_ADMIN))
1437 return -EPERM;
1438
4ac91378 1439 if (nd->path.dentry != nd->path.mnt->mnt_root)
07b20889
RP
1440 return -EINVAL;
1441
1442 down_write(&namespace_sem);
719f5d7f
MS
1443 if (type == MS_SHARED) {
1444 err = invent_group_ids(mnt, recurse);
1445 if (err)
1446 goto out_unlock;
1447 }
1448
07b20889
RP
1449 spin_lock(&vfsmount_lock);
1450 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1451 change_mnt_propagation(m, type);
1452 spin_unlock(&vfsmount_lock);
719f5d7f
MS
1453
1454 out_unlock:
07b20889 1455 up_write(&namespace_sem);
719f5d7f 1456 return err;
07b20889
RP
1457}
1458
1da177e4
LT
1459/*
1460 * do loopback mount.
2dafe1c4 1461 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1462 */
2dafe1c4
ES
1463static noinline int do_loopback(struct nameidata *nd, char *old_name,
1464 int recurse)
1da177e4
LT
1465{
1466 struct nameidata old_nd;
1467 struct vfsmount *mnt = NULL;
1468 int err = mount_is_safe(nd);
1469 if (err)
1470 return err;
1471 if (!old_name || !*old_name)
1472 return -EINVAL;
1473 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1474 if (err)
1475 return err;
1476
390c6843 1477 down_write(&namespace_sem);
1da177e4 1478 err = -EINVAL;
4ac91378
JB
1479 if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
1480 goto out;
9676f0c6 1481
4ac91378 1482 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
ccd48bc7 1483 goto out;
1da177e4 1484
ccd48bc7
AV
1485 err = -ENOMEM;
1486 if (recurse)
4ac91378 1487 mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7 1488 else
4ac91378 1489 mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
ccd48bc7
AV
1490
1491 if (!mnt)
1492 goto out;
1493
8c3ee42e 1494 err = graft_tree(mnt, &nd->path);
ccd48bc7 1495 if (err) {
70fbcdf4 1496 LIST_HEAD(umount_list);
1da177e4 1497 spin_lock(&vfsmount_lock);
a05964f3 1498 umount_tree(mnt, 0, &umount_list);
1da177e4 1499 spin_unlock(&vfsmount_lock);
70fbcdf4 1500 release_mounts(&umount_list);
5b83d2c5 1501 }
1da177e4 1502
ccd48bc7 1503out:
390c6843 1504 up_write(&namespace_sem);
1d957f9b 1505 path_put(&old_nd.path);
1da177e4
LT
1506 return err;
1507}
1508
2e4b7fcd
DH
1509static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1510{
1511 int error = 0;
1512 int readonly_request = 0;
1513
1514 if (ms_flags & MS_RDONLY)
1515 readonly_request = 1;
1516 if (readonly_request == __mnt_is_readonly(mnt))
1517 return 0;
1518
1519 if (readonly_request)
1520 error = mnt_make_readonly(mnt);
1521 else
1522 __mnt_unmake_readonly(mnt);
1523 return error;
1524}
1525
1da177e4
LT
1526/*
1527 * change filesystem flags. dir should be a physical root of filesystem.
1528 * If you've mounted a non-root directory somewhere and want to do remount
1529 * on it - tough luck.
2dafe1c4 1530 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1531 */
2dafe1c4 1532static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
1da177e4
LT
1533 void *data)
1534{
1535 int err;
4ac91378 1536 struct super_block *sb = nd->path.mnt->mnt_sb;
1da177e4
LT
1537
1538 if (!capable(CAP_SYS_ADMIN))
1539 return -EPERM;
1540
4ac91378 1541 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1542 return -EINVAL;
1543
4ac91378 1544 if (nd->path.dentry != nd->path.mnt->mnt_root)
1da177e4
LT
1545 return -EINVAL;
1546
1547 down_write(&sb->s_umount);
2e4b7fcd
DH
1548 if (flags & MS_BIND)
1549 err = change_mount_flags(nd->path.mnt, flags);
1550 else
1551 err = do_remount_sb(sb, flags, data, 0);
1da177e4 1552 if (!err)
4ac91378 1553 nd->path.mnt->mnt_flags = mnt_flags;
1da177e4
LT
1554 up_write(&sb->s_umount);
1555 if (!err)
4ac91378 1556 security_sb_post_remount(nd->path.mnt, flags, data);
1da177e4
LT
1557 return err;
1558}
1559
9676f0c6
RP
1560static inline int tree_contains_unbindable(struct vfsmount *mnt)
1561{
1562 struct vfsmount *p;
1563 for (p = mnt; p; p = next_mnt(p, mnt)) {
1564 if (IS_MNT_UNBINDABLE(p))
1565 return 1;
1566 }
1567 return 0;
1568}
1569
2dafe1c4
ES
1570/*
1571 * noinline this do_mount helper to save do_mount stack space.
1572 */
1573static noinline int do_move_mount(struct nameidata *nd, char *old_name)
1da177e4 1574{
1a390689
AV
1575 struct nameidata old_nd;
1576 struct path parent_path;
1da177e4
LT
1577 struct vfsmount *p;
1578 int err = 0;
1579 if (!capable(CAP_SYS_ADMIN))
1580 return -EPERM;
1581 if (!old_name || !*old_name)
1582 return -EINVAL;
1583 err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
1584 if (err)
1585 return err;
1586
390c6843 1587 down_write(&namespace_sem);
4ac91378
JB
1588 while (d_mountpoint(nd->path.dentry) &&
1589 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1590 ;
1591 err = -EINVAL;
4ac91378 1592 if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
1da177e4
LT
1593 goto out;
1594
1595 err = -ENOENT;
4ac91378
JB
1596 mutex_lock(&nd->path.dentry->d_inode->i_mutex);
1597 if (IS_DEADDIR(nd->path.dentry->d_inode))
1da177e4
LT
1598 goto out1;
1599
4ac91378 1600 if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
21444403 1601 goto out1;
1da177e4
LT
1602
1603 err = -EINVAL;
4ac91378 1604 if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
21444403 1605 goto out1;
1da177e4 1606
4ac91378 1607 if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
21444403 1608 goto out1;
1da177e4 1609
4ac91378
JB
1610 if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
1611 S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
21444403
RP
1612 goto out1;
1613 /*
1614 * Don't move a mount residing in a shared parent.
1615 */
4ac91378
JB
1616 if (old_nd.path.mnt->mnt_parent &&
1617 IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
21444403 1618 goto out1;
9676f0c6
RP
1619 /*
1620 * Don't move a mount tree containing unbindable mounts to a destination
1621 * mount which is shared.
1622 */
4ac91378
JB
1623 if (IS_MNT_SHARED(nd->path.mnt) &&
1624 tree_contains_unbindable(old_nd.path.mnt))
9676f0c6 1625 goto out1;
1da177e4 1626 err = -ELOOP;
4ac91378
JB
1627 for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
1628 if (p == old_nd.path.mnt)
21444403 1629 goto out1;
1da177e4 1630
1a390689 1631 err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
4ac91378 1632 if (err)
21444403 1633 goto out1;
1da177e4
LT
1634
1635 /* if the mount is moved, it should no longer be expire
1636 * automatically */
4ac91378 1637 list_del_init(&old_nd.path.mnt->mnt_expire);
1da177e4 1638out1:
4ac91378 1639 mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
1da177e4 1640out:
390c6843 1641 up_write(&namespace_sem);
1da177e4 1642 if (!err)
1a390689 1643 path_put(&parent_path);
1d957f9b 1644 path_put(&old_nd.path);
1da177e4
LT
1645 return err;
1646}
1647
1648/*
1649 * create a new mount for userspace and request it to be added into the
1650 * namespace's tree
2dafe1c4 1651 * noinline this do_mount helper to save do_mount stack space.
1da177e4 1652 */
2dafe1c4 1653static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
1da177e4
LT
1654 int mnt_flags, char *name, void *data)
1655{
1656 struct vfsmount *mnt;
1657
1658 if (!type || !memchr(type, 0, PAGE_SIZE))
1659 return -EINVAL;
1660
1661 /* we need capabilities... */
1662 if (!capable(CAP_SYS_ADMIN))
1663 return -EPERM;
1664
1665 mnt = do_kern_mount(type, flags, name, data);
1666 if (IS_ERR(mnt))
1667 return PTR_ERR(mnt);
1668
1669 return do_add_mount(mnt, nd, mnt_flags, NULL);
1670}
1671
1672/*
1673 * add a mount into a namespace's mount tree
1674 * - provide the option of adding the new mount to an expiration list
1675 */
1676int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
1677 int mnt_flags, struct list_head *fslist)
1678{
1679 int err;
1680
390c6843 1681 down_write(&namespace_sem);
1da177e4 1682 /* Something was mounted here while we slept */
4ac91378
JB
1683 while (d_mountpoint(nd->path.dentry) &&
1684 follow_down(&nd->path.mnt, &nd->path.dentry))
1da177e4
LT
1685 ;
1686 err = -EINVAL;
4ac91378 1687 if (!check_mnt(nd->path.mnt))
1da177e4
LT
1688 goto unlock;
1689
1690 /* Refuse the same filesystem on the same mount point */
1691 err = -EBUSY;
4ac91378
JB
1692 if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
1693 nd->path.mnt->mnt_root == nd->path.dentry)
1da177e4
LT
1694 goto unlock;
1695
1696 err = -EINVAL;
1697 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1698 goto unlock;
1699
1700 newmnt->mnt_flags = mnt_flags;
8c3ee42e 1701 if ((err = graft_tree(newmnt, &nd->path)))
5b83d2c5 1702 goto unlock;
1da177e4 1703
6758f953 1704 if (fslist) /* add to the specified expiration list */
55e700b9 1705 list_add_tail(&newmnt->mnt_expire, fslist);
6758f953 1706
390c6843 1707 up_write(&namespace_sem);
5b83d2c5 1708 return 0;
1da177e4
LT
1709
1710unlock:
390c6843 1711 up_write(&namespace_sem);
1da177e4
LT
1712 mntput(newmnt);
1713 return err;
1714}
1715
1716EXPORT_SYMBOL_GPL(do_add_mount);
1717
1718/*
1719 * process a list of expirable mountpoints with the intent of discarding any
1720 * mountpoints that aren't in use and haven't been touched since last we came
1721 * here
1722 */
1723void mark_mounts_for_expiry(struct list_head *mounts)
1724{
1da177e4
LT
1725 struct vfsmount *mnt, *next;
1726 LIST_HEAD(graveyard);
bcc5c7d2 1727 LIST_HEAD(umounts);
1da177e4
LT
1728
1729 if (list_empty(mounts))
1730 return;
1731
bcc5c7d2 1732 down_write(&namespace_sem);
1da177e4
LT
1733 spin_lock(&vfsmount_lock);
1734
1735 /* extract from the expiration list every vfsmount that matches the
1736 * following criteria:
1737 * - only referenced by its parent vfsmount
1738 * - still marked for expiry (marked on the last call here; marks are
1739 * cleared by mntput())
1740 */
55e700b9 1741 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1742 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1743 propagate_mount_busy(mnt, 1))
1da177e4 1744 continue;
55e700b9 1745 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1746 }
bcc5c7d2
AV
1747 while (!list_empty(&graveyard)) {
1748 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1749 touch_mnt_namespace(mnt->mnt_ns);
1750 umount_tree(mnt, 1, &umounts);
1751 }
5528f911 1752 spin_unlock(&vfsmount_lock);
bcc5c7d2
AV
1753 up_write(&namespace_sem);
1754
1755 release_mounts(&umounts);
5528f911
TM
1756}
1757
1758EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1759
1760/*
1761 * Ripoff of 'select_parent()'
1762 *
1763 * search the list of submounts for a given mountpoint, and move any
1764 * shrinkable submounts to the 'graveyard' list.
1765 */
1766static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
1767{
1768 struct vfsmount *this_parent = parent;
1769 struct list_head *next;
1770 int found = 0;
1771
1772repeat:
1773 next = this_parent->mnt_mounts.next;
1774resume:
1775 while (next != &this_parent->mnt_mounts) {
1776 struct list_head *tmp = next;
1777 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
1778
1779 next = tmp->next;
1780 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 1781 continue;
5528f911
TM
1782 /*
1783 * Descend a level if the d_mounts list is non-empty.
1784 */
1785 if (!list_empty(&mnt->mnt_mounts)) {
1786 this_parent = mnt;
1787 goto repeat;
1788 }
1da177e4 1789
5528f911 1790 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
1791 list_move_tail(&mnt->mnt_expire, graveyard);
1792 found++;
1793 }
1da177e4 1794 }
5528f911
TM
1795 /*
1796 * All done at this level ... ascend and resume the search
1797 */
1798 if (this_parent != parent) {
1799 next = this_parent->mnt_child.next;
1800 this_parent = this_parent->mnt_parent;
1801 goto resume;
1802 }
1803 return found;
1804}
1805
1806/*
1807 * process a list of expirable mountpoints with the intent of discarding any
1808 * submounts of a specific parent mountpoint
1809 */
c35038be 1810static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
1811{
1812 LIST_HEAD(graveyard);
c35038be 1813 struct vfsmount *m;
5528f911 1814
5528f911 1815 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 1816 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 1817 while (!list_empty(&graveyard)) {
c35038be 1818 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2
AV
1819 mnt_expire);
1820 touch_mnt_namespace(mnt->mnt_ns);
c35038be 1821 umount_tree(mnt, 1, umounts);
bcc5c7d2
AV
1822 }
1823 }
1da177e4
LT
1824}
1825
1da177e4
LT
1826/*
1827 * Some copy_from_user() implementations do not return the exact number of
1828 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
1829 * Note that this function differs from copy_from_user() in that it will oops
1830 * on bad values of `to', rather than returning a short copy.
1831 */
b58fed8b
RP
1832static long exact_copy_from_user(void *to, const void __user * from,
1833 unsigned long n)
1da177e4
LT
1834{
1835 char *t = to;
1836 const char __user *f = from;
1837 char c;
1838
1839 if (!access_ok(VERIFY_READ, from, n))
1840 return n;
1841
1842 while (n) {
1843 if (__get_user(c, f)) {
1844 memset(t, 0, n);
1845 break;
1846 }
1847 *t++ = c;
1848 f++;
1849 n--;
1850 }
1851 return n;
1852}
1853
b58fed8b 1854int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
1855{
1856 int i;
1857 unsigned long page;
1858 unsigned long size;
b58fed8b 1859
1da177e4
LT
1860 *where = 0;
1861 if (!data)
1862 return 0;
1863
1864 if (!(page = __get_free_page(GFP_KERNEL)))
1865 return -ENOMEM;
1866
1867 /* We only care that *some* data at the address the user
1868 * gave us is valid. Just in case, we'll zero
1869 * the remainder of the page.
1870 */
1871 /* copy_from_user cannot cross TASK_SIZE ! */
1872 size = TASK_SIZE - (unsigned long)data;
1873 if (size > PAGE_SIZE)
1874 size = PAGE_SIZE;
1875
1876 i = size - exact_copy_from_user((void *)page, data, size);
1877 if (!i) {
b58fed8b 1878 free_page(page);
1da177e4
LT
1879 return -EFAULT;
1880 }
1881 if (i != PAGE_SIZE)
1882 memset((char *)page + i, 0, PAGE_SIZE - i);
1883 *where = page;
1884 return 0;
1885}
1886
1887/*
1888 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
1889 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
1890 *
1891 * data is a (void *) that can point to any structure up to
1892 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
1893 * information (or be NULL).
1894 *
1895 * Pre-0.97 versions of mount() didn't have a flags word.
1896 * When the flags word was introduced its top half was required
1897 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
1898 * Therefore, if this magic number is present, it carries no information
1899 * and must be discarded.
1900 */
b58fed8b 1901long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
1902 unsigned long flags, void *data_page)
1903{
1904 struct nameidata nd;
1905 int retval = 0;
1906 int mnt_flags = 0;
1907
1908 /* Discard magic */
1909 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
1910 flags &= ~MS_MGC_MSK;
1911
1912 /* Basic sanity checks */
1913
1914 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
1915 return -EINVAL;
1916 if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
1917 return -EINVAL;
1918
1919 if (data_page)
1920 ((char *)data_page)[PAGE_SIZE - 1] = 0;
1921
1922 /* Separate the per-mountpoint flags */
1923 if (flags & MS_NOSUID)
1924 mnt_flags |= MNT_NOSUID;
1925 if (flags & MS_NODEV)
1926 mnt_flags |= MNT_NODEV;
1927 if (flags & MS_NOEXEC)
1928 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
1929 if (flags & MS_NOATIME)
1930 mnt_flags |= MNT_NOATIME;
1931 if (flags & MS_NODIRATIME)
1932 mnt_flags |= MNT_NODIRATIME;
47ae32d6
VH
1933 if (flags & MS_RELATIME)
1934 mnt_flags |= MNT_RELATIME;
2e4b7fcd
DH
1935 if (flags & MS_RDONLY)
1936 mnt_flags |= MNT_READONLY;
fc33a7bb
CH
1937
1938 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
8bf9725c 1939 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
1da177e4
LT
1940
1941 /* ... and get the mountpoint */
1942 retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
1943 if (retval)
1944 return retval;
1945
b5266eb4
AV
1946 retval = security_sb_mount(dev_name, &nd.path,
1947 type_page, flags, data_page);
1da177e4
LT
1948 if (retval)
1949 goto dput_out;
1950
1951 if (flags & MS_REMOUNT)
1952 retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
1953 data_page);
1954 else if (flags & MS_BIND)
eee391a6 1955 retval = do_loopback(&nd, dev_name, flags & MS_REC);
9676f0c6 1956 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
07b20889 1957 retval = do_change_type(&nd, flags);
1da177e4
LT
1958 else if (flags & MS_MOVE)
1959 retval = do_move_mount(&nd, dev_name);
1960 else
1961 retval = do_new_mount(&nd, type_page, flags, mnt_flags,
1962 dev_name, data_page);
1963dput_out:
1d957f9b 1964 path_put(&nd.path);
1da177e4
LT
1965 return retval;
1966}
1967
741a2951
JD
1968/*
1969 * Allocate a new namespace structure and populate it with contents
1970 * copied from the namespace of the passed in task structure.
1971 */
e3222c4e 1972static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 1973 struct fs_struct *fs)
1da177e4 1974{
6b3286ed 1975 struct mnt_namespace *new_ns;
1da177e4 1976 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
1da177e4
LT
1977 struct vfsmount *p, *q;
1978
6b3286ed 1979 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
1da177e4 1980 if (!new_ns)
467e9f4b 1981 return ERR_PTR(-ENOMEM);
1da177e4
LT
1982
1983 atomic_set(&new_ns->count, 1);
1da177e4 1984 INIT_LIST_HEAD(&new_ns->list);
5addc5dd
AV
1985 init_waitqueue_head(&new_ns->poll);
1986 new_ns->event = 0;
1da177e4 1987
390c6843 1988 down_write(&namespace_sem);
1da177e4 1989 /* First pass: copy the tree topology */
6b3286ed 1990 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 1991 CL_COPY_ALL | CL_EXPIRE);
1da177e4 1992 if (!new_ns->root) {
390c6843 1993 up_write(&namespace_sem);
1da177e4 1994 kfree(new_ns);
467e9f4b 1995 return ERR_PTR(-ENOMEM);;
1da177e4
LT
1996 }
1997 spin_lock(&vfsmount_lock);
1998 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
1999 spin_unlock(&vfsmount_lock);
2000
2001 /*
2002 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2003 * as belonging to new namespace. We have already acquired a private
2004 * fs_struct, so tsk->fs->lock is not needed.
2005 */
6b3286ed 2006 p = mnt_ns->root;
1da177e4
LT
2007 q = new_ns->root;
2008 while (p) {
6b3286ed 2009 q->mnt_ns = new_ns;
1da177e4 2010 if (fs) {
6ac08c39 2011 if (p == fs->root.mnt) {
1da177e4 2012 rootmnt = p;
6ac08c39 2013 fs->root.mnt = mntget(q);
1da177e4 2014 }
6ac08c39 2015 if (p == fs->pwd.mnt) {
1da177e4 2016 pwdmnt = p;
6ac08c39 2017 fs->pwd.mnt = mntget(q);
1da177e4 2018 }
6ac08c39 2019 if (p == fs->altroot.mnt) {
1da177e4 2020 altrootmnt = p;
6ac08c39 2021 fs->altroot.mnt = mntget(q);
1da177e4
LT
2022 }
2023 }
6b3286ed 2024 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2025 q = next_mnt(q, new_ns->root);
2026 }
390c6843 2027 up_write(&namespace_sem);
1da177e4 2028
1da177e4
LT
2029 if (rootmnt)
2030 mntput(rootmnt);
2031 if (pwdmnt)
2032 mntput(pwdmnt);
2033 if (altrootmnt)
2034 mntput(altrootmnt);
2035
741a2951
JD
2036 return new_ns;
2037}
2038
213dd266 2039struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2040 struct fs_struct *new_fs)
741a2951 2041{
6b3286ed 2042 struct mnt_namespace *new_ns;
741a2951 2043
e3222c4e 2044 BUG_ON(!ns);
6b3286ed 2045 get_mnt_ns(ns);
741a2951
JD
2046
2047 if (!(flags & CLONE_NEWNS))
e3222c4e 2048 return ns;
741a2951 2049
e3222c4e 2050 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2051
6b3286ed 2052 put_mnt_ns(ns);
e3222c4e 2053 return new_ns;
1da177e4
LT
2054}
2055
2056asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
2057 char __user * type, unsigned long flags,
2058 void __user * data)
2059{
2060 int retval;
2061 unsigned long data_page;
2062 unsigned long type_page;
2063 unsigned long dev_page;
2064 char *dir_page;
2065
b58fed8b 2066 retval = copy_mount_options(type, &type_page);
1da177e4
LT
2067 if (retval < 0)
2068 return retval;
2069
2070 dir_page = getname(dir_name);
2071 retval = PTR_ERR(dir_page);
2072 if (IS_ERR(dir_page))
2073 goto out1;
2074
b58fed8b 2075 retval = copy_mount_options(dev_name, &dev_page);
1da177e4
LT
2076 if (retval < 0)
2077 goto out2;
2078
b58fed8b 2079 retval = copy_mount_options(data, &data_page);
1da177e4
LT
2080 if (retval < 0)
2081 goto out3;
2082
2083 lock_kernel();
b58fed8b
RP
2084 retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
2085 flags, (void *)data_page);
1da177e4
LT
2086 unlock_kernel();
2087 free_page(data_page);
2088
2089out3:
2090 free_page(dev_page);
2091out2:
2092 putname(dir_page);
2093out1:
2094 free_page(type_page);
2095 return retval;
2096}
2097
2098/*
2099 * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
2100 * It can block. Requires the big lock held.
2101 */
ac748a09 2102void set_fs_root(struct fs_struct *fs, struct path *path)
1da177e4 2103{
6ac08c39
JB
2104 struct path old_root;
2105
1da177e4
LT
2106 write_lock(&fs->lock);
2107 old_root = fs->root;
ac748a09
JB
2108 fs->root = *path;
2109 path_get(path);
1da177e4 2110 write_unlock(&fs->lock);
6ac08c39
JB
2111 if (old_root.dentry)
2112 path_put(&old_root);
1da177e4
LT
2113}
2114
2115/*
2116 * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
2117 * It can block. Requires the big lock held.
2118 */
ac748a09 2119void set_fs_pwd(struct fs_struct *fs, struct path *path)
1da177e4 2120{
6ac08c39 2121 struct path old_pwd;
1da177e4
LT
2122
2123 write_lock(&fs->lock);
2124 old_pwd = fs->pwd;
ac748a09
JB
2125 fs->pwd = *path;
2126 path_get(path);
1da177e4
LT
2127 write_unlock(&fs->lock);
2128
6ac08c39
JB
2129 if (old_pwd.dentry)
2130 path_put(&old_pwd);
1da177e4
LT
2131}
2132
1a390689 2133static void chroot_fs_refs(struct path *old_root, struct path *new_root)
1da177e4
LT
2134{
2135 struct task_struct *g, *p;
2136 struct fs_struct *fs;
2137
2138 read_lock(&tasklist_lock);
2139 do_each_thread(g, p) {
2140 task_lock(p);
2141 fs = p->fs;
2142 if (fs) {
2143 atomic_inc(&fs->count);
2144 task_unlock(p);
1a390689
AV
2145 if (fs->root.dentry == old_root->dentry
2146 && fs->root.mnt == old_root->mnt)
2147 set_fs_root(fs, new_root);
2148 if (fs->pwd.dentry == old_root->dentry
2149 && fs->pwd.mnt == old_root->mnt)
2150 set_fs_pwd(fs, new_root);
1da177e4
LT
2151 put_fs_struct(fs);
2152 } else
2153 task_unlock(p);
2154 } while_each_thread(g, p);
2155 read_unlock(&tasklist_lock);
2156}
2157
2158/*
2159 * pivot_root Semantics:
2160 * Moves the root file system of the current process to the directory put_old,
2161 * makes new_root as the new root file system of the current process, and sets
2162 * root/cwd of all processes which had them on the current root to new_root.
2163 *
2164 * Restrictions:
2165 * The new_root and put_old must be directories, and must not be on the
2166 * same file system as the current process root. The put_old must be
2167 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2168 * pointed to by put_old must yield the same directory as new_root. No other
2169 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2170 *
4a0d11fa
NB
2171 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2172 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2173 * in this situation.
2174 *
1da177e4
LT
2175 * Notes:
2176 * - we don't move root/cwd if they are not at the root (reason: if something
2177 * cared enough to change them, it's probably wrong to force them elsewhere)
2178 * - it's okay to pick a root that isn't the root of a file system, e.g.
2179 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2180 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2181 * first.
2182 */
b58fed8b
RP
2183asmlinkage long sys_pivot_root(const char __user * new_root,
2184 const char __user * put_old)
1da177e4
LT
2185{
2186 struct vfsmount *tmp;
8c3ee42e
AV
2187 struct nameidata new_nd, old_nd;
2188 struct path parent_path, root_parent, root;
1da177e4
LT
2189 int error;
2190
2191 if (!capable(CAP_SYS_ADMIN))
2192 return -EPERM;
2193
b58fed8b
RP
2194 error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
2195 &new_nd);
1da177e4
LT
2196 if (error)
2197 goto out0;
2198 error = -EINVAL;
4ac91378 2199 if (!check_mnt(new_nd.path.mnt))
1da177e4
LT
2200 goto out1;
2201
b58fed8b 2202 error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
1da177e4
LT
2203 if (error)
2204 goto out1;
2205
b5266eb4 2206 error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
1da177e4 2207 if (error) {
1d957f9b 2208 path_put(&old_nd.path);
1da177e4
LT
2209 goto out1;
2210 }
2211
2212 read_lock(&current->fs->lock);
8c3ee42e 2213 root = current->fs->root;
6ac08c39 2214 path_get(&current->fs->root);
1da177e4 2215 read_unlock(&current->fs->lock);
390c6843 2216 down_write(&namespace_sem);
4ac91378 2217 mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
1da177e4 2218 error = -EINVAL;
4ac91378
JB
2219 if (IS_MNT_SHARED(old_nd.path.mnt) ||
2220 IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
8c3ee42e 2221 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2222 goto out2;
8c3ee42e 2223 if (!check_mnt(root.mnt))
1da177e4
LT
2224 goto out2;
2225 error = -ENOENT;
4ac91378 2226 if (IS_DEADDIR(new_nd.path.dentry->d_inode))
1da177e4 2227 goto out2;
4ac91378 2228 if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
1da177e4 2229 goto out2;
4ac91378 2230 if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
1da177e4
LT
2231 goto out2;
2232 error = -EBUSY;
8c3ee42e
AV
2233 if (new_nd.path.mnt == root.mnt ||
2234 old_nd.path.mnt == root.mnt)
1da177e4
LT
2235 goto out2; /* loop, on the same file system */
2236 error = -EINVAL;
8c3ee42e 2237 if (root.mnt->mnt_root != root.dentry)
1da177e4 2238 goto out2; /* not a mountpoint */
8c3ee42e 2239 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2240 goto out2; /* not attached */
4ac91378 2241 if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
1da177e4 2242 goto out2; /* not a mountpoint */
4ac91378 2243 if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
0bb6fcc1 2244 goto out2; /* not attached */
4ac91378
JB
2245 /* make sure we can reach put_old from new_root */
2246 tmp = old_nd.path.mnt;
1da177e4 2247 spin_lock(&vfsmount_lock);
4ac91378 2248 if (tmp != new_nd.path.mnt) {
1da177e4
LT
2249 for (;;) {
2250 if (tmp->mnt_parent == tmp)
2251 goto out3; /* already mounted on put_old */
4ac91378 2252 if (tmp->mnt_parent == new_nd.path.mnt)
1da177e4
LT
2253 break;
2254 tmp = tmp->mnt_parent;
2255 }
4ac91378 2256 if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
1da177e4 2257 goto out3;
4ac91378 2258 } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
1da177e4 2259 goto out3;
1a390689 2260 detach_mnt(new_nd.path.mnt, &parent_path);
8c3ee42e 2261 detach_mnt(root.mnt, &root_parent);
4ac91378 2262 /* mount old root on put_old */
8c3ee42e 2263 attach_mnt(root.mnt, &old_nd.path);
4ac91378
JB
2264 /* mount new_root on / */
2265 attach_mnt(new_nd.path.mnt, &root_parent);
6b3286ed 2266 touch_mnt_namespace(current->nsproxy->mnt_ns);
1da177e4 2267 spin_unlock(&vfsmount_lock);
8c3ee42e
AV
2268 chroot_fs_refs(&root, &new_nd.path);
2269 security_sb_post_pivotroot(&root, &new_nd.path);
1da177e4 2270 error = 0;
1a390689
AV
2271 path_put(&root_parent);
2272 path_put(&parent_path);
1da177e4 2273out2:
4ac91378 2274 mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
390c6843 2275 up_write(&namespace_sem);
8c3ee42e 2276 path_put(&root);
1d957f9b 2277 path_put(&old_nd.path);
1da177e4 2278out1:
1d957f9b 2279 path_put(&new_nd.path);
1da177e4 2280out0:
1da177e4
LT
2281 return error;
2282out3:
2283 spin_unlock(&vfsmount_lock);
2284 goto out2;
2285}
2286
2287static void __init init_mount_tree(void)
2288{
2289 struct vfsmount *mnt;
6b3286ed 2290 struct mnt_namespace *ns;
ac748a09 2291 struct path root;
1da177e4
LT
2292
2293 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2294 if (IS_ERR(mnt))
2295 panic("Can't create rootfs");
6b3286ed
KK
2296 ns = kmalloc(sizeof(*ns), GFP_KERNEL);
2297 if (!ns)
1da177e4 2298 panic("Can't allocate initial namespace");
6b3286ed
KK
2299 atomic_set(&ns->count, 1);
2300 INIT_LIST_HEAD(&ns->list);
2301 init_waitqueue_head(&ns->poll);
2302 ns->event = 0;
2303 list_add(&mnt->mnt_list, &ns->list);
2304 ns->root = mnt;
2305 mnt->mnt_ns = ns;
2306
2307 init_task.nsproxy->mnt_ns = ns;
2308 get_mnt_ns(ns);
2309
ac748a09
JB
2310 root.mnt = ns->root;
2311 root.dentry = ns->root->mnt_root;
2312
2313 set_fs_pwd(current->fs, &root);
2314 set_fs_root(current->fs, &root);
1da177e4
LT
2315}
2316
74bf17cf 2317void __init mnt_init(void)
1da177e4 2318{
13f14b4d 2319 unsigned u;
15a67dd8 2320 int err;
1da177e4 2321
390c6843
RP
2322 init_rwsem(&namespace_sem);
2323
1da177e4 2324 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2325 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2326
b58fed8b 2327 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2328
2329 if (!mount_hashtable)
2330 panic("Failed to allocate mount hash table\n");
2331
13f14b4d
ED
2332 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2333
2334 for (u = 0; u < HASH_SIZE; u++)
2335 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2336
15a67dd8
RD
2337 err = sysfs_init();
2338 if (err)
2339 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2340 __func__, err);
00d26666
GKH
2341 fs_kobj = kobject_create_and_add("fs", NULL);
2342 if (!fs_kobj)
8e24eea7 2343 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2344 init_rootfs();
2345 init_mount_tree();
2346}
2347
6b3286ed 2348void __put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2349{
6b3286ed 2350 struct vfsmount *root = ns->root;
70fbcdf4 2351 LIST_HEAD(umount_list);
6b3286ed 2352 ns->root = NULL;
1ce88cf4 2353 spin_unlock(&vfsmount_lock);
390c6843 2354 down_write(&namespace_sem);
1da177e4 2355 spin_lock(&vfsmount_lock);
a05964f3 2356 umount_tree(root, 0, &umount_list);
1da177e4 2357 spin_unlock(&vfsmount_lock);
390c6843 2358 up_write(&namespace_sem);
70fbcdf4 2359 release_mounts(&umount_list);
6b3286ed 2360 kfree(ns);
1da177e4 2361}
This page took 0.902074 seconds and 5 git commands to generate.