fs/btrfs: Fix build of ctree
[deliverable/linux.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
155static inline void mnt_set_count(struct vfsmount *mnt, int n)
156{
157#ifdef CONFIG_SMP
158 this_cpu_write(mnt->mnt_pcp->mnt_count, n);
159#else
160 mnt->mnt_count = n;
161#endif
162}
163
164/*
165 * vfsmount lock must be held for read
166 */
167static inline void mnt_inc_count(struct vfsmount *mnt)
168{
169 mnt_add_count(mnt, 1);
170}
171
172/*
173 * vfsmount lock must be held for read
174 */
175static inline void mnt_dec_count(struct vfsmount *mnt)
176{
177 mnt_add_count(mnt, -1);
178}
179
180/*
181 * vfsmount lock must be held for write
182 */
183unsigned int mnt_get_count(struct vfsmount *mnt)
184{
185#ifdef CONFIG_SMP
f03c6599 186 unsigned int count = 0;
b3e19d92
NP
187 int cpu;
188
189 for_each_possible_cpu(cpu) {
190 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
191 }
192
193 return count;
194#else
195 return mnt->mnt_count;
196#endif
197}
198
1da177e4
LT
199struct vfsmount *alloc_vfsmnt(const char *name)
200{
c3762229 201 struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
1da177e4 202 if (mnt) {
73cd49ec
MS
203 int err;
204
205 err = mnt_alloc_id(mnt);
88b38782
LZ
206 if (err)
207 goto out_free_cache;
208
209 if (name) {
210 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
211 if (!mnt->mnt_devname)
212 goto out_free_id;
73cd49ec
MS
213 }
214
b3e19d92
NP
215#ifdef CONFIG_SMP
216 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
217 if (!mnt->mnt_pcp)
218 goto out_free_devname;
219
f03c6599 220 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
221#else
222 mnt->mnt_count = 1;
223 mnt->mnt_writers = 0;
224#endif
225
1da177e4
LT
226 INIT_LIST_HEAD(&mnt->mnt_hash);
227 INIT_LIST_HEAD(&mnt->mnt_child);
228 INIT_LIST_HEAD(&mnt->mnt_mounts);
229 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 230 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 231 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
232 INIT_LIST_HEAD(&mnt->mnt_slave_list);
233 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
234#ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 236#endif
1da177e4
LT
237 }
238 return mnt;
88b38782 239
d3ef3d73 240#ifdef CONFIG_SMP
241out_free_devname:
242 kfree(mnt->mnt_devname);
243#endif
88b38782
LZ
244out_free_id:
245 mnt_free_id(mnt);
246out_free_cache:
247 kmem_cache_free(mnt_cache, mnt);
248 return NULL;
1da177e4
LT
249}
250
3d733633
DH
251/*
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
257 * a filesystem.
258 */
259/*
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
262 *
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
268 * r/w.
269 */
270int __mnt_is_readonly(struct vfsmount *mnt)
271{
2e4b7fcd
DH
272 if (mnt->mnt_flags & MNT_READONLY)
273 return 1;
274 if (mnt->mnt_sb->s_flags & MS_RDONLY)
275 return 1;
276 return 0;
3d733633
DH
277}
278EXPORT_SYMBOL_GPL(__mnt_is_readonly);
279
c6653a83 280static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73 281{
282#ifdef CONFIG_SMP
b3e19d92 283 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 284#else
285 mnt->mnt_writers++;
286#endif
287}
3d733633 288
c6653a83 289static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 290{
d3ef3d73 291#ifdef CONFIG_SMP
b3e19d92 292 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 293#else
294 mnt->mnt_writers--;
295#endif
3d733633 296}
3d733633 297
c6653a83 298static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 299{
d3ef3d73 300#ifdef CONFIG_SMP
301 unsigned int count = 0;
3d733633 302 int cpu;
3d733633
DH
303
304 for_each_possible_cpu(cpu) {
b3e19d92 305 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 306 }
3d733633 307
d3ef3d73 308 return count;
309#else
310 return mnt->mnt_writers;
311#endif
3d733633
DH
312}
313
8366025e
DH
314/*
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
320 * a filesystem.
321 */
322/**
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
325 *
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
331 */
332int mnt_want_write(struct vfsmount *mnt)
333{
3d733633 334 int ret = 0;
3d733633 335
d3ef3d73 336 preempt_disable();
c6653a83 337 mnt_inc_writers(mnt);
d3ef3d73 338 /*
c6653a83 339 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
342 */
343 smp_mb();
344 while (mnt->mnt_flags & MNT_WRITE_HOLD)
345 cpu_relax();
346 /*
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
350 */
351 smp_rmb();
3d733633 352 if (__mnt_is_readonly(mnt)) {
c6653a83 353 mnt_dec_writers(mnt);
3d733633
DH
354 ret = -EROFS;
355 goto out;
356 }
3d733633 357out:
d3ef3d73 358 preempt_enable();
3d733633 359 return ret;
8366025e
DH
360}
361EXPORT_SYMBOL_GPL(mnt_want_write);
362
96029c4e 363/**
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
366 *
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
371 *
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
374 */
375int mnt_clone_write(struct vfsmount *mnt)
376{
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt))
379 return -EROFS;
380 preempt_disable();
c6653a83 381 mnt_inc_writers(mnt);
96029c4e 382 preempt_enable();
383 return 0;
384}
385EXPORT_SYMBOL_GPL(mnt_clone_write);
386
387/**
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
390 *
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
393 */
394int mnt_want_write_file(struct file *file)
395{
2d8dd38a
OH
396 struct inode *inode = file->f_dentry->d_inode;
397 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 398 return mnt_want_write(file->f_path.mnt);
399 else
400 return mnt_clone_write(file->f_path.mnt);
401}
402EXPORT_SYMBOL_GPL(mnt_want_write_file);
403
8366025e
DH
404/**
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
407 *
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
411 */
412void mnt_drop_write(struct vfsmount *mnt)
413{
d3ef3d73 414 preempt_disable();
c6653a83 415 mnt_dec_writers(mnt);
d3ef3d73 416 preempt_enable();
8366025e
DH
417}
418EXPORT_SYMBOL_GPL(mnt_drop_write);
419
2e4b7fcd 420static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 421{
3d733633
DH
422 int ret = 0;
423
99b7db7b 424 br_write_lock(vfsmount_lock);
d3ef3d73 425 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 426 /*
d3ef3d73 427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
3d733633 429 */
d3ef3d73 430 smp_mb();
431
3d733633 432 /*
d3ef3d73 433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
437 *
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
3d733633 447 */
c6653a83 448 if (mnt_get_writers(mnt) > 0)
d3ef3d73 449 ret = -EBUSY;
450 else
2e4b7fcd 451 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 452 /*
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
455 */
456 smp_wmb();
457 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 458 br_write_unlock(vfsmount_lock);
3d733633 459 return ret;
8366025e 460}
8366025e 461
2e4b7fcd
DH
462static void __mnt_unmake_readonly(struct vfsmount *mnt)
463{
99b7db7b 464 br_write_lock(vfsmount_lock);
2e4b7fcd 465 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 466 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
467}
468
a3ec947c 469void simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
454e2398
DH
470{
471 mnt->mnt_sb = sb;
472 mnt->mnt_root = dget(sb->s_root);
454e2398
DH
473}
474
475EXPORT_SYMBOL(simple_set_mnt);
476
1da177e4
LT
477void free_vfsmnt(struct vfsmount *mnt)
478{
479 kfree(mnt->mnt_devname);
73cd49ec 480 mnt_free_id(mnt);
d3ef3d73 481#ifdef CONFIG_SMP
b3e19d92 482 free_percpu(mnt->mnt_pcp);
d3ef3d73 483#endif
1da177e4
LT
484 kmem_cache_free(mnt_cache, mnt);
485}
486
487/*
a05964f3
RP
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 490 * vfsmount_lock must be held for read or write.
1da177e4 491 */
a05964f3
RP
492struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
493 int dir)
1da177e4 494{
b58fed8b
RP
495 struct list_head *head = mount_hashtable + hash(mnt, dentry);
496 struct list_head *tmp = head;
1da177e4
LT
497 struct vfsmount *p, *found = NULL;
498
1da177e4 499 for (;;) {
a05964f3 500 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
501 p = NULL;
502 if (tmp == head)
503 break;
504 p = list_entry(tmp, struct vfsmount, mnt_hash);
505 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 506 found = p;
1da177e4
LT
507 break;
508 }
509 }
1da177e4
LT
510 return found;
511}
512
a05964f3
RP
513/*
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
516 */
1c755af4 517struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
518{
519 struct vfsmount *child_mnt;
99b7db7b
NP
520
521 br_read_lock(vfsmount_lock);
1c755af4 522 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 523 mntget(child_mnt);
99b7db7b 524 br_read_unlock(vfsmount_lock);
a05964f3
RP
525 return child_mnt;
526}
527
1da177e4
LT
528static inline int check_mnt(struct vfsmount *mnt)
529{
6b3286ed 530 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
531}
532
99b7db7b
NP
533/*
534 * vfsmount lock must be held for write
535 */
6b3286ed 536static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
537{
538 if (ns) {
539 ns->event = ++event;
540 wake_up_interruptible(&ns->poll);
541 }
542}
543
99b7db7b
NP
544/*
545 * vfsmount lock must be held for write
546 */
6b3286ed 547static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
548{
549 if (ns && ns->event != event) {
550 ns->event = event;
551 wake_up_interruptible(&ns->poll);
552 }
553}
554
5f57cbcc
NP
555/*
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
558 */
559static void dentry_reset_mounted(struct vfsmount *mnt, struct dentry *dentry)
560{
561 unsigned u;
562
563 for (u = 0; u < HASH_SIZE; u++) {
564 struct vfsmount *p;
565
566 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
567 if (p->mnt_mountpoint == dentry)
568 return;
569 }
570 }
571 spin_lock(&dentry->d_lock);
572 dentry->d_flags &= ~DCACHE_MOUNTED;
573 spin_unlock(&dentry->d_lock);
574}
575
99b7db7b
NP
576/*
577 * vfsmount lock must be held for write
578 */
1a390689 579static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 580{
1a390689
AV
581 old_path->dentry = mnt->mnt_mountpoint;
582 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
583 mnt->mnt_parent = mnt;
584 mnt->mnt_mountpoint = mnt->mnt_root;
585 list_del_init(&mnt->mnt_child);
586 list_del_init(&mnt->mnt_hash);
5f57cbcc 587 dentry_reset_mounted(old_path->mnt, old_path->dentry);
1da177e4
LT
588}
589
99b7db7b
NP
590/*
591 * vfsmount lock must be held for write
592 */
b90fa9ae
RP
593void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
594 struct vfsmount *child_mnt)
595{
596 child_mnt->mnt_parent = mntget(mnt);
597 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
598 spin_lock(&dentry->d_lock);
599 dentry->d_flags |= DCACHE_MOUNTED;
600 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
601}
602
99b7db7b
NP
603/*
604 * vfsmount lock must be held for write
605 */
1a390689 606static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 607{
1a390689 608 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 609 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
610 hash(path->mnt, path->dentry));
611 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
612}
613
614/*
99b7db7b 615 * vfsmount lock must be held for write
b90fa9ae
RP
616 */
617static void commit_tree(struct vfsmount *mnt)
618{
619 struct vfsmount *parent = mnt->mnt_parent;
620 struct vfsmount *m;
621 LIST_HEAD(head);
6b3286ed 622 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
623
624 BUG_ON(parent == mnt);
625
626 list_add_tail(&head, &mnt->mnt_list);
f03c6599 627 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 628 m->mnt_ns = n;
f03c6599
AV
629 atomic_inc(&m->mnt_longterm);
630 }
631
b90fa9ae
RP
632 list_splice(&head, n->list.prev);
633
634 list_add_tail(&mnt->mnt_hash, mount_hashtable +
635 hash(parent, mnt->mnt_mountpoint));
636 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 637 touch_mnt_namespace(n);
1da177e4
LT
638}
639
640static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
641{
642 struct list_head *next = p->mnt_mounts.next;
643 if (next == &p->mnt_mounts) {
644 while (1) {
645 if (p == root)
646 return NULL;
647 next = p->mnt_child.next;
648 if (next != &p->mnt_parent->mnt_mounts)
649 break;
650 p = p->mnt_parent;
651 }
652 }
653 return list_entry(next, struct vfsmount, mnt_child);
654}
655
9676f0c6
RP
656static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
657{
658 struct list_head *prev = p->mnt_mounts.prev;
659 while (prev != &p->mnt_mounts) {
660 p = list_entry(prev, struct vfsmount, mnt_child);
661 prev = p->mnt_mounts.prev;
662 }
663 return p;
664}
665
36341f64
RP
666static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
667 int flag)
1da177e4
LT
668{
669 struct super_block *sb = old->mnt_sb;
670 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
671
672 if (mnt) {
719f5d7f
MS
673 if (flag & (CL_SLAVE | CL_PRIVATE))
674 mnt->mnt_group_id = 0; /* not a peer of original */
675 else
676 mnt->mnt_group_id = old->mnt_group_id;
677
678 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
679 int err = mnt_alloc_group_id(mnt);
680 if (err)
681 goto out_free;
682 }
683
be1a16a0 684 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
685 atomic_inc(&sb->s_active);
686 mnt->mnt_sb = sb;
687 mnt->mnt_root = dget(root);
688 mnt->mnt_mountpoint = mnt->mnt_root;
689 mnt->mnt_parent = mnt;
b90fa9ae 690
5afe0022
RP
691 if (flag & CL_SLAVE) {
692 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
693 mnt->mnt_master = old;
694 CLEAR_MNT_SHARED(mnt);
8aec0809 695 } else if (!(flag & CL_PRIVATE)) {
796a6b52 696 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
697 list_add(&mnt->mnt_share, &old->mnt_share);
698 if (IS_MNT_SLAVE(old))
699 list_add(&mnt->mnt_slave, &old->mnt_slave);
700 mnt->mnt_master = old->mnt_master;
701 }
b90fa9ae
RP
702 if (flag & CL_MAKE_SHARED)
703 set_mnt_shared(mnt);
1da177e4
LT
704
705 /* stick the duplicate mount on the same expiry list
706 * as the original if that was on one */
36341f64 707 if (flag & CL_EXPIRE) {
36341f64
RP
708 if (!list_empty(&old->mnt_expire))
709 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 710 }
1da177e4
LT
711 }
712 return mnt;
719f5d7f
MS
713
714 out_free:
715 free_vfsmnt(mnt);
716 return NULL;
1da177e4
LT
717}
718
b3e19d92 719static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
720{
721 struct super_block *sb = mnt->mnt_sb;
b3e19d92 722
3d733633
DH
723 /*
724 * This probably indicates that somebody messed
725 * up a mnt_want/drop_write() pair. If this
726 * happens, the filesystem was probably unable
727 * to make r/w->r/o transitions.
728 */
d3ef3d73 729 /*
b3e19d92
NP
730 * The locking used to deal with mnt_count decrement provides barriers,
731 * so mnt_get_writers() below is safe.
d3ef3d73 732 */
c6653a83 733 WARN_ON(mnt_get_writers(mnt));
ca9c726e 734 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
735 dput(mnt->mnt_root);
736 free_vfsmnt(mnt);
737 deactivate_super(sb);
738}
739
f03c6599 740static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 741{
b3e19d92 742put_again:
f03c6599
AV
743#ifdef CONFIG_SMP
744 br_read_lock(vfsmount_lock);
745 if (likely(atomic_read(&mnt->mnt_longterm))) {
746 mnt_dec_count(mnt);
b3e19d92 747 br_read_unlock(vfsmount_lock);
f03c6599 748 return;
b3e19d92 749 }
f03c6599 750 br_read_unlock(vfsmount_lock);
b3e19d92 751
99b7db7b 752 br_write_lock(vfsmount_lock);
f03c6599 753 mnt_dec_count(mnt);
b3e19d92 754 if (mnt_get_count(mnt)) {
99b7db7b
NP
755 br_write_unlock(vfsmount_lock);
756 return;
757 }
b3e19d92 758#else
b3e19d92
NP
759 mnt_dec_count(mnt);
760 if (likely(mnt_get_count(mnt)))
99b7db7b 761 return;
b3e19d92 762 br_write_lock(vfsmount_lock);
f03c6599 763#endif
b3e19d92
NP
764 if (unlikely(mnt->mnt_pinned)) {
765 mnt_add_count(mnt, mnt->mnt_pinned + 1);
766 mnt->mnt_pinned = 0;
767 br_write_unlock(vfsmount_lock);
768 acct_auto_close_mnt(mnt);
769 goto put_again;
7b7b1ace 770 }
99b7db7b 771 br_write_unlock(vfsmount_lock);
b3e19d92
NP
772 mntfree(mnt);
773}
b3e19d92
NP
774
775void mntput(struct vfsmount *mnt)
776{
777 if (mnt) {
778 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
779 if (unlikely(mnt->mnt_expiry_mark))
780 mnt->mnt_expiry_mark = 0;
f03c6599 781 mntput_no_expire(mnt);
b3e19d92
NP
782 }
783}
784EXPORT_SYMBOL(mntput);
785
786struct vfsmount *mntget(struct vfsmount *mnt)
787{
788 if (mnt)
789 mnt_inc_count(mnt);
790 return mnt;
791}
792EXPORT_SYMBOL(mntget);
793
7b7b1ace
AV
794void mnt_pin(struct vfsmount *mnt)
795{
99b7db7b 796 br_write_lock(vfsmount_lock);
7b7b1ace 797 mnt->mnt_pinned++;
99b7db7b 798 br_write_unlock(vfsmount_lock);
7b7b1ace 799}
7b7b1ace
AV
800EXPORT_SYMBOL(mnt_pin);
801
802void mnt_unpin(struct vfsmount *mnt)
803{
99b7db7b 804 br_write_lock(vfsmount_lock);
7b7b1ace 805 if (mnt->mnt_pinned) {
b3e19d92 806 mnt_inc_count(mnt);
7b7b1ace
AV
807 mnt->mnt_pinned--;
808 }
99b7db7b 809 br_write_unlock(vfsmount_lock);
7b7b1ace 810}
7b7b1ace 811EXPORT_SYMBOL(mnt_unpin);
1da177e4 812
b3b304a2
MS
813static inline void mangle(struct seq_file *m, const char *s)
814{
815 seq_escape(m, s, " \t\n\\");
816}
817
818/*
819 * Simple .show_options callback for filesystems which don't want to
820 * implement more complex mount option showing.
821 *
822 * See also save_mount_options().
823 */
824int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
825{
2a32cebd
AV
826 const char *options;
827
828 rcu_read_lock();
829 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
830
831 if (options != NULL && options[0]) {
832 seq_putc(m, ',');
833 mangle(m, options);
834 }
2a32cebd 835 rcu_read_unlock();
b3b304a2
MS
836
837 return 0;
838}
839EXPORT_SYMBOL(generic_show_options);
840
841/*
842 * If filesystem uses generic_show_options(), this function should be
843 * called from the fill_super() callback.
844 *
845 * The .remount_fs callback usually needs to be handled in a special
846 * way, to make sure, that previous options are not overwritten if the
847 * remount fails.
848 *
849 * Also note, that if the filesystem's .remount_fs function doesn't
850 * reset all options to their default value, but changes only newly
851 * given options, then the displayed options will not reflect reality
852 * any more.
853 */
854void save_mount_options(struct super_block *sb, char *options)
855{
2a32cebd
AV
856 BUG_ON(sb->s_options);
857 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
858}
859EXPORT_SYMBOL(save_mount_options);
860
2a32cebd
AV
861void replace_mount_options(struct super_block *sb, char *options)
862{
863 char *old = sb->s_options;
864 rcu_assign_pointer(sb->s_options, options);
865 if (old) {
866 synchronize_rcu();
867 kfree(old);
868 }
869}
870EXPORT_SYMBOL(replace_mount_options);
871
a1a2c409 872#ifdef CONFIG_PROC_FS
1da177e4
LT
873/* iterator */
874static void *m_start(struct seq_file *m, loff_t *pos)
875{
a1a2c409 876 struct proc_mounts *p = m->private;
1da177e4 877
390c6843 878 down_read(&namespace_sem);
a1a2c409 879 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
880}
881
882static void *m_next(struct seq_file *m, void *v, loff_t *pos)
883{
a1a2c409 884 struct proc_mounts *p = m->private;
b0765fb8 885
a1a2c409 886 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
887}
888
889static void m_stop(struct seq_file *m, void *v)
890{
390c6843 891 up_read(&namespace_sem);
1da177e4
LT
892}
893
9f5596af
AV
894int mnt_had_events(struct proc_mounts *p)
895{
896 struct mnt_namespace *ns = p->ns;
897 int res = 0;
898
99b7db7b 899 br_read_lock(vfsmount_lock);
9f5596af
AV
900 if (p->event != ns->event) {
901 p->event = ns->event;
902 res = 1;
903 }
99b7db7b 904 br_read_unlock(vfsmount_lock);
9f5596af
AV
905
906 return res;
907}
908
2d4d4864
RP
909struct proc_fs_info {
910 int flag;
911 const char *str;
912};
913
2069f457 914static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 915{
2d4d4864 916 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
917 { MS_SYNCHRONOUS, ",sync" },
918 { MS_DIRSYNC, ",dirsync" },
919 { MS_MANDLOCK, ",mand" },
1da177e4
LT
920 { 0, NULL }
921 };
2d4d4864
RP
922 const struct proc_fs_info *fs_infop;
923
924 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
925 if (sb->s_flags & fs_infop->flag)
926 seq_puts(m, fs_infop->str);
927 }
2069f457
EP
928
929 return security_sb_show_options(m, sb);
2d4d4864
RP
930}
931
932static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
933{
934 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
935 { MNT_NOSUID, ",nosuid" },
936 { MNT_NODEV, ",nodev" },
937 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
938 { MNT_NOATIME, ",noatime" },
939 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 940 { MNT_RELATIME, ",relatime" },
1da177e4
LT
941 { 0, NULL }
942 };
2d4d4864
RP
943 const struct proc_fs_info *fs_infop;
944
945 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
946 if (mnt->mnt_flags & fs_infop->flag)
947 seq_puts(m, fs_infop->str);
948 }
949}
950
951static void show_type(struct seq_file *m, struct super_block *sb)
952{
953 mangle(m, sb->s_type->name);
954 if (sb->s_subtype && sb->s_subtype[0]) {
955 seq_putc(m, '.');
956 mangle(m, sb->s_subtype);
957 }
958}
959
960static int show_vfsmnt(struct seq_file *m, void *v)
961{
962 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
963 int err = 0;
c32c2f63 964 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4
LT
965
966 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
967 seq_putc(m, ' ');
c32c2f63 968 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 969 seq_putc(m, ' ');
2d4d4864 970 show_type(m, mnt->mnt_sb);
2e4b7fcd 971 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
972 err = show_sb_opts(m, mnt->mnt_sb);
973 if (err)
974 goto out;
2d4d4864 975 show_mnt_opts(m, mnt);
1da177e4
LT
976 if (mnt->mnt_sb->s_op->show_options)
977 err = mnt->mnt_sb->s_op->show_options(m, mnt);
978 seq_puts(m, " 0 0\n");
2069f457 979out:
1da177e4
LT
980 return err;
981}
982
a1a2c409 983const struct seq_operations mounts_op = {
1da177e4
LT
984 .start = m_start,
985 .next = m_next,
986 .stop = m_stop,
987 .show = show_vfsmnt
988};
989
2d4d4864
RP
990static int show_mountinfo(struct seq_file *m, void *v)
991{
992 struct proc_mounts *p = m->private;
993 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
994 struct super_block *sb = mnt->mnt_sb;
995 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
996 struct path root = p->root;
997 int err = 0;
998
999 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1000 MAJOR(sb->s_dev), MINOR(sb->s_dev));
1001 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1002 seq_putc(m, ' ');
1003 seq_path_root(m, &mnt_path, &root, " \t\n\\");
1004 if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
1005 /*
1006 * Mountpoint is outside root, discard that one. Ugly,
1007 * but less so than trying to do that in iterator in a
1008 * race-free way (due to renames).
1009 */
1010 return SEQ_SKIP;
1011 }
1012 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1013 show_mnt_opts(m, mnt);
1014
1015 /* Tagged fields ("foo:X" or "bar") */
1016 if (IS_MNT_SHARED(mnt))
1017 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1018 if (IS_MNT_SLAVE(mnt)) {
1019 int master = mnt->mnt_master->mnt_group_id;
1020 int dom = get_dominating_id(mnt, &p->root);
1021 seq_printf(m, " master:%i", master);
1022 if (dom && dom != master)
1023 seq_printf(m, " propagate_from:%i", dom);
1024 }
2d4d4864
RP
1025 if (IS_MNT_UNBINDABLE(mnt))
1026 seq_puts(m, " unbindable");
1027
1028 /* Filesystem specific data */
1029 seq_puts(m, " - ");
1030 show_type(m, sb);
1031 seq_putc(m, ' ');
1032 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1033 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1034 err = show_sb_opts(m, sb);
1035 if (err)
1036 goto out;
2d4d4864
RP
1037 if (sb->s_op->show_options)
1038 err = sb->s_op->show_options(m, mnt);
1039 seq_putc(m, '\n');
2069f457 1040out:
2d4d4864
RP
1041 return err;
1042}
1043
1044const struct seq_operations mountinfo_op = {
1045 .start = m_start,
1046 .next = m_next,
1047 .stop = m_stop,
1048 .show = show_mountinfo,
1049};
1050
b4629fe2
CL
1051static int show_vfsstat(struct seq_file *m, void *v)
1052{
b0765fb8 1053 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1054 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1055 int err = 0;
1056
1057 /* device */
1058 if (mnt->mnt_devname) {
1059 seq_puts(m, "device ");
1060 mangle(m, mnt->mnt_devname);
1061 } else
1062 seq_puts(m, "no device");
1063
1064 /* mount point */
1065 seq_puts(m, " mounted on ");
c32c2f63 1066 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1067 seq_putc(m, ' ');
1068
1069 /* file system type */
1070 seq_puts(m, "with fstype ");
2d4d4864 1071 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1072
1073 /* optional statistics */
1074 if (mnt->mnt_sb->s_op->show_stats) {
1075 seq_putc(m, ' ');
1076 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
1077 }
1078
1079 seq_putc(m, '\n');
1080 return err;
1081}
1082
a1a2c409 1083const struct seq_operations mountstats_op = {
b4629fe2
CL
1084 .start = m_start,
1085 .next = m_next,
1086 .stop = m_stop,
1087 .show = show_vfsstat,
1088};
a1a2c409 1089#endif /* CONFIG_PROC_FS */
b4629fe2 1090
1da177e4
LT
1091/**
1092 * may_umount_tree - check if a mount tree is busy
1093 * @mnt: root of mount tree
1094 *
1095 * This is called to check if a tree of mounts has any
1096 * open files, pwds, chroots or sub mounts that are
1097 * busy.
1098 */
1099int may_umount_tree(struct vfsmount *mnt)
1100{
36341f64
RP
1101 int actual_refs = 0;
1102 int minimum_refs = 0;
1103 struct vfsmount *p;
1da177e4 1104
b3e19d92
NP
1105 /* write lock needed for mnt_get_count */
1106 br_write_lock(vfsmount_lock);
36341f64 1107 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1108 actual_refs += mnt_get_count(p);
1da177e4 1109 minimum_refs += 2;
1da177e4 1110 }
b3e19d92 1111 br_write_unlock(vfsmount_lock);
1da177e4
LT
1112
1113 if (actual_refs > minimum_refs)
e3474a8e 1114 return 0;
1da177e4 1115
e3474a8e 1116 return 1;
1da177e4
LT
1117}
1118
1119EXPORT_SYMBOL(may_umount_tree);
1120
1121/**
1122 * may_umount - check if a mount point is busy
1123 * @mnt: root of mount
1124 *
1125 * This is called to check if a mount point has any
1126 * open files, pwds, chroots or sub mounts. If the
1127 * mount has sub mounts this will return busy
1128 * regardless of whether the sub mounts are busy.
1129 *
1130 * Doesn't take quota and stuff into account. IOW, in some cases it will
1131 * give false negatives. The main reason why it's here is that we need
1132 * a non-destructive way to look for easily umountable filesystems.
1133 */
1134int may_umount(struct vfsmount *mnt)
1135{
e3474a8e 1136 int ret = 1;
8ad08d8a 1137 down_read(&namespace_sem);
b3e19d92 1138 br_write_lock(vfsmount_lock);
a05964f3 1139 if (propagate_mount_busy(mnt, 2))
e3474a8e 1140 ret = 0;
b3e19d92 1141 br_write_unlock(vfsmount_lock);
8ad08d8a 1142 up_read(&namespace_sem);
a05964f3 1143 return ret;
1da177e4
LT
1144}
1145
1146EXPORT_SYMBOL(may_umount);
1147
b90fa9ae 1148void release_mounts(struct list_head *head)
70fbcdf4
RP
1149{
1150 struct vfsmount *mnt;
bf066c7d 1151 while (!list_empty(head)) {
b5e61818 1152 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4
RP
1153 list_del_init(&mnt->mnt_hash);
1154 if (mnt->mnt_parent != mnt) {
1155 struct dentry *dentry;
1156 struct vfsmount *m;
99b7db7b
NP
1157
1158 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1159 dentry = mnt->mnt_mountpoint;
1160 m = mnt->mnt_parent;
1161 mnt->mnt_mountpoint = mnt->mnt_root;
1162 mnt->mnt_parent = mnt;
7c4b93d8 1163 m->mnt_ghosts--;
99b7db7b 1164 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1165 dput(dentry);
1166 mntput(m);
1167 }
f03c6599 1168 mntput(mnt);
70fbcdf4
RP
1169 }
1170}
1171
99b7db7b
NP
1172/*
1173 * vfsmount lock must be held for write
1174 * namespace_sem must be held for write
1175 */
a05964f3 1176void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1177{
7b8a53fd 1178 LIST_HEAD(tmp_list);
1da177e4 1179 struct vfsmount *p;
1da177e4 1180
1bfba4e8 1181 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1182 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1183
a05964f3 1184 if (propagate)
7b8a53fd 1185 propagate_umount(&tmp_list);
a05964f3 1186
7b8a53fd 1187 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1188 list_del_init(&p->mnt_expire);
1189 list_del_init(&p->mnt_list);
6b3286ed
KK
1190 __touch_mnt_namespace(p->mnt_ns);
1191 p->mnt_ns = NULL;
f03c6599 1192 atomic_dec(&p->mnt_longterm);
70fbcdf4 1193 list_del_init(&p->mnt_child);
7c4b93d8
AV
1194 if (p->mnt_parent != p) {
1195 p->mnt_parent->mnt_ghosts++;
5f57cbcc 1196 dentry_reset_mounted(p->mnt_parent, p->mnt_mountpoint);
7c4b93d8 1197 }
a05964f3 1198 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1199 }
7b8a53fd 1200 list_splice(&tmp_list, kill);
1da177e4
LT
1201}
1202
c35038be
AV
1203static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1204
1da177e4
LT
1205static int do_umount(struct vfsmount *mnt, int flags)
1206{
b58fed8b 1207 struct super_block *sb = mnt->mnt_sb;
1da177e4 1208 int retval;
70fbcdf4 1209 LIST_HEAD(umount_list);
1da177e4
LT
1210
1211 retval = security_sb_umount(mnt, flags);
1212 if (retval)
1213 return retval;
1214
1215 /*
1216 * Allow userspace to request a mountpoint be expired rather than
1217 * unmounting unconditionally. Unmount only happens if:
1218 * (1) the mark is already set (the mark is cleared by mntput())
1219 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1220 */
1221 if (flags & MNT_EXPIRE) {
6ac08c39 1222 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1223 flags & (MNT_FORCE | MNT_DETACH))
1224 return -EINVAL;
1225
b3e19d92
NP
1226 /*
1227 * probably don't strictly need the lock here if we examined
1228 * all race cases, but it's a slowpath.
1229 */
1230 br_write_lock(vfsmount_lock);
1231 if (mnt_get_count(mnt) != 2) {
1232 br_write_lock(vfsmount_lock);
1da177e4 1233 return -EBUSY;
b3e19d92
NP
1234 }
1235 br_write_unlock(vfsmount_lock);
1da177e4
LT
1236
1237 if (!xchg(&mnt->mnt_expiry_mark, 1))
1238 return -EAGAIN;
1239 }
1240
1241 /*
1242 * If we may have to abort operations to get out of this
1243 * mount, and they will themselves hold resources we must
1244 * allow the fs to do things. In the Unix tradition of
1245 * 'Gee thats tricky lets do it in userspace' the umount_begin
1246 * might fail to complete on the first run through as other tasks
1247 * must return, and the like. Thats for the mount program to worry
1248 * about for the moment.
1249 */
1250
42faad99 1251 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1252 sb->s_op->umount_begin(sb);
42faad99 1253 }
1da177e4
LT
1254
1255 /*
1256 * No sense to grab the lock for this test, but test itself looks
1257 * somewhat bogus. Suggestions for better replacement?
1258 * Ho-hum... In principle, we might treat that as umount + switch
1259 * to rootfs. GC would eventually take care of the old vfsmount.
1260 * Actually it makes sense, especially if rootfs would contain a
1261 * /reboot - static binary that would close all descriptors and
1262 * call reboot(9). Then init(8) could umount root and exec /reboot.
1263 */
6ac08c39 1264 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1265 /*
1266 * Special case for "unmounting" root ...
1267 * we just try to remount it readonly.
1268 */
1269 down_write(&sb->s_umount);
4aa98cf7 1270 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1271 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1272 up_write(&sb->s_umount);
1273 return retval;
1274 }
1275
390c6843 1276 down_write(&namespace_sem);
99b7db7b 1277 br_write_lock(vfsmount_lock);
5addc5dd 1278 event++;
1da177e4 1279
c35038be
AV
1280 if (!(flags & MNT_DETACH))
1281 shrink_submounts(mnt, &umount_list);
1282
1da177e4 1283 retval = -EBUSY;
a05964f3 1284 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1285 if (!list_empty(&mnt->mnt_list))
a05964f3 1286 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1287 retval = 0;
1288 }
99b7db7b 1289 br_write_unlock(vfsmount_lock);
390c6843 1290 up_write(&namespace_sem);
70fbcdf4 1291 release_mounts(&umount_list);
1da177e4
LT
1292 return retval;
1293}
1294
1295/*
1296 * Now umount can handle mount points as well as block devices.
1297 * This is important for filesystems which use unnamed block devices.
1298 *
1299 * We now support a flag for forced unmount like the other 'big iron'
1300 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1301 */
1302
bdc480e3 1303SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1304{
2d8f3038 1305 struct path path;
1da177e4 1306 int retval;
db1f05bb 1307 int lookup_flags = 0;
1da177e4 1308
db1f05bb
MS
1309 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1310 return -EINVAL;
1311
1312 if (!(flags & UMOUNT_NOFOLLOW))
1313 lookup_flags |= LOOKUP_FOLLOW;
1314
1315 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1316 if (retval)
1317 goto out;
1318 retval = -EINVAL;
2d8f3038 1319 if (path.dentry != path.mnt->mnt_root)
1da177e4 1320 goto dput_and_out;
2d8f3038 1321 if (!check_mnt(path.mnt))
1da177e4
LT
1322 goto dput_and_out;
1323
1324 retval = -EPERM;
1325 if (!capable(CAP_SYS_ADMIN))
1326 goto dput_and_out;
1327
2d8f3038 1328 retval = do_umount(path.mnt, flags);
1da177e4 1329dput_and_out:
429731b1 1330 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1331 dput(path.dentry);
1332 mntput_no_expire(path.mnt);
1da177e4
LT
1333out:
1334 return retval;
1335}
1336
1337#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1338
1339/*
b58fed8b 1340 * The 2.0 compatible umount. No flags.
1da177e4 1341 */
bdc480e3 1342SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1343{
b58fed8b 1344 return sys_umount(name, 0);
1da177e4
LT
1345}
1346
1347#endif
1348
2d92ab3c 1349static int mount_is_safe(struct path *path)
1da177e4
LT
1350{
1351 if (capable(CAP_SYS_ADMIN))
1352 return 0;
1353 return -EPERM;
1354#ifdef notyet
2d92ab3c 1355 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1356 return -EPERM;
2d92ab3c 1357 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1358 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1359 return -EPERM;
1360 }
2d92ab3c 1361 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1362 return -EPERM;
1363 return 0;
1364#endif
1365}
1366
b90fa9ae 1367struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1368 int flag)
1da177e4
LT
1369{
1370 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1371 struct path path;
1da177e4 1372
9676f0c6
RP
1373 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1374 return NULL;
1375
36341f64 1376 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1377 if (!q)
1378 goto Enomem;
1379 q->mnt_mountpoint = mnt->mnt_mountpoint;
1380
1381 p = mnt;
fdadd65f 1382 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1383 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1384 continue;
1385
1386 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1387 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1388 s = skip_mnt_tree(s);
1389 continue;
1390 }
1da177e4
LT
1391 while (p != s->mnt_parent) {
1392 p = p->mnt_parent;
1393 q = q->mnt_parent;
1394 }
1395 p = s;
1a390689
AV
1396 path.mnt = q;
1397 path.dentry = p->mnt_mountpoint;
36341f64 1398 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1399 if (!q)
1400 goto Enomem;
99b7db7b 1401 br_write_lock(vfsmount_lock);
1da177e4 1402 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1403 attach_mnt(q, &path);
99b7db7b 1404 br_write_unlock(vfsmount_lock);
1da177e4
LT
1405 }
1406 }
1407 return res;
b58fed8b 1408Enomem:
1da177e4 1409 if (res) {
70fbcdf4 1410 LIST_HEAD(umount_list);
99b7db7b 1411 br_write_lock(vfsmount_lock);
a05964f3 1412 umount_tree(res, 0, &umount_list);
99b7db7b 1413 br_write_unlock(vfsmount_lock);
70fbcdf4 1414 release_mounts(&umount_list);
1da177e4
LT
1415 }
1416 return NULL;
1417}
1418
589ff870 1419struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1420{
1421 struct vfsmount *tree;
1a60a280 1422 down_write(&namespace_sem);
589ff870 1423 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1424 up_write(&namespace_sem);
8aec0809
AV
1425 return tree;
1426}
1427
1428void drop_collected_mounts(struct vfsmount *mnt)
1429{
1430 LIST_HEAD(umount_list);
1a60a280 1431 down_write(&namespace_sem);
99b7db7b 1432 br_write_lock(vfsmount_lock);
8aec0809 1433 umount_tree(mnt, 0, &umount_list);
99b7db7b 1434 br_write_unlock(vfsmount_lock);
1a60a280 1435 up_write(&namespace_sem);
8aec0809
AV
1436 release_mounts(&umount_list);
1437}
1438
1f707137
AV
1439int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1440 struct vfsmount *root)
1441{
1442 struct vfsmount *mnt;
1443 int res = f(root, arg);
1444 if (res)
1445 return res;
1446 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1447 res = f(mnt, arg);
1448 if (res)
1449 return res;
1450 }
1451 return 0;
1452}
1453
719f5d7f
MS
1454static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1455{
1456 struct vfsmount *p;
1457
1458 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1459 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1460 mnt_release_group_id(p);
1461 }
1462}
1463
1464static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1465{
1466 struct vfsmount *p;
1467
1468 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1469 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1470 int err = mnt_alloc_group_id(p);
1471 if (err) {
1472 cleanup_group_ids(mnt, p);
1473 return err;
1474 }
1475 }
1476 }
1477
1478 return 0;
1479}
1480
b90fa9ae
RP
1481/*
1482 * @source_mnt : mount tree to be attached
21444403
RP
1483 * @nd : place the mount tree @source_mnt is attached
1484 * @parent_nd : if non-null, detach the source_mnt from its parent and
1485 * store the parent mount and mountpoint dentry.
1486 * (done when source_mnt is moved)
b90fa9ae
RP
1487 *
1488 * NOTE: in the table below explains the semantics when a source mount
1489 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1490 * ---------------------------------------------------------------------------
1491 * | BIND MOUNT OPERATION |
1492 * |**************************************************************************
1493 * | source-->| shared | private | slave | unbindable |
1494 * | dest | | | | |
1495 * | | | | | | |
1496 * | v | | | | |
1497 * |**************************************************************************
1498 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1499 * | | | | | |
1500 * |non-shared| shared (+) | private | slave (*) | invalid |
1501 * ***************************************************************************
b90fa9ae
RP
1502 * A bind operation clones the source mount and mounts the clone on the
1503 * destination mount.
1504 *
1505 * (++) the cloned mount is propagated to all the mounts in the propagation
1506 * tree of the destination mount and the cloned mount is added to
1507 * the peer group of the source mount.
1508 * (+) the cloned mount is created under the destination mount and is marked
1509 * as shared. The cloned mount is added to the peer group of the source
1510 * mount.
5afe0022
RP
1511 * (+++) the mount is propagated to all the mounts in the propagation tree
1512 * of the destination mount and the cloned mount is made slave
1513 * of the same master as that of the source mount. The cloned mount
1514 * is marked as 'shared and slave'.
1515 * (*) the cloned mount is made a slave of the same master as that of the
1516 * source mount.
1517 *
9676f0c6
RP
1518 * ---------------------------------------------------------------------------
1519 * | MOVE MOUNT OPERATION |
1520 * |**************************************************************************
1521 * | source-->| shared | private | slave | unbindable |
1522 * | dest | | | | |
1523 * | | | | | | |
1524 * | v | | | | |
1525 * |**************************************************************************
1526 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1527 * | | | | | |
1528 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1529 * ***************************************************************************
5afe0022
RP
1530 *
1531 * (+) the mount is moved to the destination. And is then propagated to
1532 * all the mounts in the propagation tree of the destination mount.
21444403 1533 * (+*) the mount is moved to the destination.
5afe0022
RP
1534 * (+++) the mount is moved to the destination and is then propagated to
1535 * all the mounts belonging to the destination mount's propagation tree.
1536 * the mount is marked as 'shared and slave'.
1537 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1538 *
1539 * if the source mount is a tree, the operations explained above is
1540 * applied to each mount in the tree.
1541 * Must be called without spinlocks held, since this function can sleep
1542 * in allocations.
1543 */
1544static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1545 struct path *path, struct path *parent_path)
b90fa9ae
RP
1546{
1547 LIST_HEAD(tree_list);
1a390689
AV
1548 struct vfsmount *dest_mnt = path->mnt;
1549 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1550 struct vfsmount *child, *p;
719f5d7f 1551 int err;
b90fa9ae 1552
719f5d7f
MS
1553 if (IS_MNT_SHARED(dest_mnt)) {
1554 err = invent_group_ids(source_mnt, true);
1555 if (err)
1556 goto out;
1557 }
1558 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1559 if (err)
1560 goto out_cleanup_ids;
b90fa9ae 1561
99b7db7b 1562 br_write_lock(vfsmount_lock);
df1a1ad2 1563
b90fa9ae
RP
1564 if (IS_MNT_SHARED(dest_mnt)) {
1565 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1566 set_mnt_shared(p);
1567 }
1a390689
AV
1568 if (parent_path) {
1569 detach_mnt(source_mnt, parent_path);
1570 attach_mnt(source_mnt, path);
e5d67f07 1571 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1572 } else {
1573 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1574 commit_tree(source_mnt);
1575 }
b90fa9ae
RP
1576
1577 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1578 list_del_init(&child->mnt_hash);
1579 commit_tree(child);
1580 }
99b7db7b
NP
1581 br_write_unlock(vfsmount_lock);
1582
b90fa9ae 1583 return 0;
719f5d7f
MS
1584
1585 out_cleanup_ids:
1586 if (IS_MNT_SHARED(dest_mnt))
1587 cleanup_group_ids(source_mnt, NULL);
1588 out:
1589 return err;
b90fa9ae
RP
1590}
1591
8c3ee42e 1592static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4
LT
1593{
1594 int err;
1595 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1596 return -EINVAL;
1597
8c3ee42e 1598 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1599 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1600 return -ENOTDIR;
1601
1602 err = -ENOENT;
8c3ee42e 1603 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1604 if (cant_mount(path->dentry))
1da177e4
LT
1605 goto out_unlock;
1606
f3da392e 1607 if (!d_unlinked(path->dentry))
8c3ee42e 1608 err = attach_recursive_mnt(mnt, path, NULL);
1da177e4 1609out_unlock:
8c3ee42e 1610 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4
LT
1611 return err;
1612}
1613
7a2e8a8f
VA
1614/*
1615 * Sanity check the flags to change_mnt_propagation.
1616 */
1617
1618static int flags_to_propagation_type(int flags)
1619{
1620 int type = flags & ~MS_REC;
1621
1622 /* Fail if any non-propagation flags are set */
1623 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1624 return 0;
1625 /* Only one propagation flag should be set */
1626 if (!is_power_of_2(type))
1627 return 0;
1628 return type;
1629}
1630
07b20889
RP
1631/*
1632 * recursively change the type of the mountpoint.
1633 */
0a0d8a46 1634static int do_change_type(struct path *path, int flag)
07b20889 1635{
2d92ab3c 1636 struct vfsmount *m, *mnt = path->mnt;
07b20889 1637 int recurse = flag & MS_REC;
7a2e8a8f 1638 int type;
719f5d7f 1639 int err = 0;
07b20889 1640
ee6f9582
MS
1641 if (!capable(CAP_SYS_ADMIN))
1642 return -EPERM;
1643
2d92ab3c 1644 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1645 return -EINVAL;
1646
7a2e8a8f
VA
1647 type = flags_to_propagation_type(flag);
1648 if (!type)
1649 return -EINVAL;
1650
07b20889 1651 down_write(&namespace_sem);
719f5d7f
MS
1652 if (type == MS_SHARED) {
1653 err = invent_group_ids(mnt, recurse);
1654 if (err)
1655 goto out_unlock;
1656 }
1657
99b7db7b 1658 br_write_lock(vfsmount_lock);
07b20889
RP
1659 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1660 change_mnt_propagation(m, type);
99b7db7b 1661 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1662
1663 out_unlock:
07b20889 1664 up_write(&namespace_sem);
719f5d7f 1665 return err;
07b20889
RP
1666}
1667
1da177e4
LT
1668/*
1669 * do loopback mount.
1670 */
0a0d8a46 1671static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1672 int recurse)
1da177e4 1673{
2d92ab3c 1674 struct path old_path;
1da177e4 1675 struct vfsmount *mnt = NULL;
2d92ab3c 1676 int err = mount_is_safe(path);
1da177e4
LT
1677 if (err)
1678 return err;
1679 if (!old_name || !*old_name)
1680 return -EINVAL;
2d92ab3c 1681 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1682 if (err)
1683 return err;
1684
390c6843 1685 down_write(&namespace_sem);
1da177e4 1686 err = -EINVAL;
2d92ab3c 1687 if (IS_MNT_UNBINDABLE(old_path.mnt))
4ac91378 1688 goto out;
9676f0c6 1689
2d92ab3c 1690 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
ccd48bc7 1691 goto out;
1da177e4 1692
ccd48bc7
AV
1693 err = -ENOMEM;
1694 if (recurse)
2d92ab3c 1695 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1696 else
2d92ab3c 1697 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1698
1699 if (!mnt)
1700 goto out;
1701
2d92ab3c 1702 err = graft_tree(mnt, path);
ccd48bc7 1703 if (err) {
70fbcdf4 1704 LIST_HEAD(umount_list);
99b7db7b
NP
1705
1706 br_write_lock(vfsmount_lock);
a05964f3 1707 umount_tree(mnt, 0, &umount_list);
99b7db7b 1708 br_write_unlock(vfsmount_lock);
70fbcdf4 1709 release_mounts(&umount_list);
5b83d2c5 1710 }
1da177e4 1711
ccd48bc7 1712out:
390c6843 1713 up_write(&namespace_sem);
2d92ab3c 1714 path_put(&old_path);
1da177e4
LT
1715 return err;
1716}
1717
2e4b7fcd
DH
1718static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1719{
1720 int error = 0;
1721 int readonly_request = 0;
1722
1723 if (ms_flags & MS_RDONLY)
1724 readonly_request = 1;
1725 if (readonly_request == __mnt_is_readonly(mnt))
1726 return 0;
1727
1728 if (readonly_request)
1729 error = mnt_make_readonly(mnt);
1730 else
1731 __mnt_unmake_readonly(mnt);
1732 return error;
1733}
1734
1da177e4
LT
1735/*
1736 * change filesystem flags. dir should be a physical root of filesystem.
1737 * If you've mounted a non-root directory somewhere and want to do remount
1738 * on it - tough luck.
1739 */
0a0d8a46 1740static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1741 void *data)
1742{
1743 int err;
2d92ab3c 1744 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1745
1746 if (!capable(CAP_SYS_ADMIN))
1747 return -EPERM;
1748
2d92ab3c 1749 if (!check_mnt(path->mnt))
1da177e4
LT
1750 return -EINVAL;
1751
2d92ab3c 1752 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1753 return -EINVAL;
1754
1755 down_write(&sb->s_umount);
2e4b7fcd 1756 if (flags & MS_BIND)
2d92ab3c 1757 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1758 else
2e4b7fcd 1759 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1760 if (!err) {
99b7db7b 1761 br_write_lock(vfsmount_lock);
495d6c9c 1762 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1763 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1764 br_write_unlock(vfsmount_lock);
7b43a79f 1765 }
1da177e4 1766 up_write(&sb->s_umount);
0e55a7cc 1767 if (!err) {
99b7db7b 1768 br_write_lock(vfsmount_lock);
0e55a7cc 1769 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1770 br_write_unlock(vfsmount_lock);
0e55a7cc 1771 }
1da177e4
LT
1772 return err;
1773}
1774
9676f0c6
RP
1775static inline int tree_contains_unbindable(struct vfsmount *mnt)
1776{
1777 struct vfsmount *p;
1778 for (p = mnt; p; p = next_mnt(p, mnt)) {
1779 if (IS_MNT_UNBINDABLE(p))
1780 return 1;
1781 }
1782 return 0;
1783}
1784
0a0d8a46 1785static int do_move_mount(struct path *path, char *old_name)
1da177e4 1786{
2d92ab3c 1787 struct path old_path, parent_path;
1da177e4
LT
1788 struct vfsmount *p;
1789 int err = 0;
1790 if (!capable(CAP_SYS_ADMIN))
1791 return -EPERM;
1792 if (!old_name || !*old_name)
1793 return -EINVAL;
2d92ab3c 1794 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1795 if (err)
1796 return err;
1797
390c6843 1798 down_write(&namespace_sem);
cc53ce53
DH
1799 err = follow_down(path, true);
1800 if (err < 0)
1801 goto out;
1802
1da177e4 1803 err = -EINVAL;
2d92ab3c 1804 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1805 goto out;
1806
1807 err = -ENOENT;
2d92ab3c 1808 mutex_lock(&path->dentry->d_inode->i_mutex);
d83c49f3 1809 if (cant_mount(path->dentry))
1da177e4
LT
1810 goto out1;
1811
f3da392e 1812 if (d_unlinked(path->dentry))
21444403 1813 goto out1;
1da177e4
LT
1814
1815 err = -EINVAL;
2d92ab3c 1816 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1817 goto out1;
1da177e4 1818
2d92ab3c 1819 if (old_path.mnt == old_path.mnt->mnt_parent)
21444403 1820 goto out1;
1da177e4 1821
2d92ab3c
AV
1822 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1823 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1824 goto out1;
1825 /*
1826 * Don't move a mount residing in a shared parent.
1827 */
2d92ab3c
AV
1828 if (old_path.mnt->mnt_parent &&
1829 IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1830 goto out1;
9676f0c6
RP
1831 /*
1832 * Don't move a mount tree containing unbindable mounts to a destination
1833 * mount which is shared.
1834 */
2d92ab3c
AV
1835 if (IS_MNT_SHARED(path->mnt) &&
1836 tree_contains_unbindable(old_path.mnt))
9676f0c6 1837 goto out1;
1da177e4 1838 err = -ELOOP;
2d92ab3c
AV
1839 for (p = path->mnt; p->mnt_parent != p; p = p->mnt_parent)
1840 if (p == old_path.mnt)
21444403 1841 goto out1;
1da177e4 1842
2d92ab3c 1843 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1844 if (err)
21444403 1845 goto out1;
1da177e4
LT
1846
1847 /* if the mount is moved, it should no longer be expire
1848 * automatically */
2d92ab3c 1849 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1850out1:
2d92ab3c 1851 mutex_unlock(&path->dentry->d_inode->i_mutex);
1da177e4 1852out:
390c6843 1853 up_write(&namespace_sem);
1da177e4 1854 if (!err)
1a390689 1855 path_put(&parent_path);
2d92ab3c 1856 path_put(&old_path);
1da177e4
LT
1857 return err;
1858}
1859
1860/*
1861 * create a new mount for userspace and request it to be added into the
1862 * namespace's tree
1863 */
0a0d8a46 1864static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1865 int mnt_flags, char *name, void *data)
1866{
1867 struct vfsmount *mnt;
1868
eca6f534 1869 if (!type)
1da177e4
LT
1870 return -EINVAL;
1871
1872 /* we need capabilities... */
1873 if (!capable(CAP_SYS_ADMIN))
1874 return -EPERM;
1875
1876 mnt = do_kern_mount(type, flags, name, data);
1877 if (IS_ERR(mnt))
1878 return PTR_ERR(mnt);
1879
ea5b778a 1880 return do_add_mount(mnt, path, mnt_flags);
1da177e4
LT
1881}
1882
1883/*
1884 * add a mount into a namespace's mount tree
ea5b778a 1885 * - this unconditionally eats one of the caller's references to newmnt.
1da177e4 1886 */
ea5b778a 1887int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1da177e4
LT
1888{
1889 int err;
1890
8089352a 1891 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
27d55f1f 1892
390c6843 1893 down_write(&namespace_sem);
1da177e4 1894 /* Something was mounted here while we slept */
cc53ce53
DH
1895 err = follow_down(path, true);
1896 if (err < 0)
1897 goto unlock;
1898
1da177e4 1899 err = -EINVAL;
dd5cae6e 1900 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1da177e4
LT
1901 goto unlock;
1902
1903 /* Refuse the same filesystem on the same mount point */
1904 err = -EBUSY;
8d66bf54
AV
1905 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1906 path->mnt->mnt_root == path->dentry)
1da177e4
LT
1907 goto unlock;
1908
1909 err = -EINVAL;
1910 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1911 goto unlock;
1912
1913 newmnt->mnt_flags = mnt_flags;
8d66bf54 1914 if ((err = graft_tree(newmnt, path)))
5b83d2c5 1915 goto unlock;
1da177e4 1916
390c6843 1917 up_write(&namespace_sem);
5b83d2c5 1918 return 0;
1da177e4
LT
1919
1920unlock:
390c6843 1921 up_write(&namespace_sem);
f03c6599 1922 mntput(newmnt);
1da177e4
LT
1923 return err;
1924}
1925
ea5b778a
DH
1926/**
1927 * mnt_set_expiry - Put a mount on an expiration list
1928 * @mnt: The mount to list.
1929 * @expiry_list: The list to add the mount to.
1930 */
1931void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1932{
1933 down_write(&namespace_sem);
1934 br_write_lock(vfsmount_lock);
1935
1936 list_add_tail(&mnt->mnt_expire, expiry_list);
1937
1938 br_write_unlock(vfsmount_lock);
1939 up_write(&namespace_sem);
1940}
1941EXPORT_SYMBOL(mnt_set_expiry);
1942
1943/*
1944 * Remove a vfsmount from any expiration list it may be on
1945 */
1946void mnt_clear_expiry(struct vfsmount *mnt)
1947{
1948 if (!list_empty(&mnt->mnt_expire)) {
1949 down_write(&namespace_sem);
1950 br_write_lock(vfsmount_lock);
1951 list_del_init(&mnt->mnt_expire);
1952 br_write_unlock(vfsmount_lock);
1953 up_write(&namespace_sem);
1954 }
1955}
1da177e4
LT
1956
1957/*
1958 * process a list of expirable mountpoints with the intent of discarding any
1959 * mountpoints that aren't in use and haven't been touched since last we came
1960 * here
1961 */
1962void mark_mounts_for_expiry(struct list_head *mounts)
1963{
1da177e4
LT
1964 struct vfsmount *mnt, *next;
1965 LIST_HEAD(graveyard);
bcc5c7d2 1966 LIST_HEAD(umounts);
1da177e4
LT
1967
1968 if (list_empty(mounts))
1969 return;
1970
bcc5c7d2 1971 down_write(&namespace_sem);
99b7db7b 1972 br_write_lock(vfsmount_lock);
1da177e4
LT
1973
1974 /* extract from the expiration list every vfsmount that matches the
1975 * following criteria:
1976 * - only referenced by its parent vfsmount
1977 * - still marked for expiry (marked on the last call here; marks are
1978 * cleared by mntput())
1979 */
55e700b9 1980 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 1981 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 1982 propagate_mount_busy(mnt, 1))
1da177e4 1983 continue;
55e700b9 1984 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 1985 }
bcc5c7d2
AV
1986 while (!list_empty(&graveyard)) {
1987 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
1988 touch_mnt_namespace(mnt->mnt_ns);
1989 umount_tree(mnt, 1, &umounts);
1990 }
99b7db7b 1991 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
1992 up_write(&namespace_sem);
1993
1994 release_mounts(&umounts);
5528f911
TM
1995}
1996
1997EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
1998
1999/*
2000 * Ripoff of 'select_parent()'
2001 *
2002 * search the list of submounts for a given mountpoint, and move any
2003 * shrinkable submounts to the 'graveyard' list.
2004 */
2005static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2006{
2007 struct vfsmount *this_parent = parent;
2008 struct list_head *next;
2009 int found = 0;
2010
2011repeat:
2012 next = this_parent->mnt_mounts.next;
2013resume:
2014 while (next != &this_parent->mnt_mounts) {
2015 struct list_head *tmp = next;
2016 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2017
2018 next = tmp->next;
2019 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2020 continue;
5528f911
TM
2021 /*
2022 * Descend a level if the d_mounts list is non-empty.
2023 */
2024 if (!list_empty(&mnt->mnt_mounts)) {
2025 this_parent = mnt;
2026 goto repeat;
2027 }
1da177e4 2028
5528f911 2029 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2030 list_move_tail(&mnt->mnt_expire, graveyard);
2031 found++;
2032 }
1da177e4 2033 }
5528f911
TM
2034 /*
2035 * All done at this level ... ascend and resume the search
2036 */
2037 if (this_parent != parent) {
2038 next = this_parent->mnt_child.next;
2039 this_parent = this_parent->mnt_parent;
2040 goto resume;
2041 }
2042 return found;
2043}
2044
2045/*
2046 * process a list of expirable mountpoints with the intent of discarding any
2047 * submounts of a specific parent mountpoint
99b7db7b
NP
2048 *
2049 * vfsmount_lock must be held for write
5528f911 2050 */
c35038be 2051static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2052{
2053 LIST_HEAD(graveyard);
c35038be 2054 struct vfsmount *m;
5528f911 2055
5528f911 2056 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2057 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2058 while (!list_empty(&graveyard)) {
c35038be 2059 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2060 mnt_expire);
afef80b3
EB
2061 touch_mnt_namespace(m->mnt_ns);
2062 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2063 }
2064 }
1da177e4
LT
2065}
2066
1da177e4
LT
2067/*
2068 * Some copy_from_user() implementations do not return the exact number of
2069 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2070 * Note that this function differs from copy_from_user() in that it will oops
2071 * on bad values of `to', rather than returning a short copy.
2072 */
b58fed8b
RP
2073static long exact_copy_from_user(void *to, const void __user * from,
2074 unsigned long n)
1da177e4
LT
2075{
2076 char *t = to;
2077 const char __user *f = from;
2078 char c;
2079
2080 if (!access_ok(VERIFY_READ, from, n))
2081 return n;
2082
2083 while (n) {
2084 if (__get_user(c, f)) {
2085 memset(t, 0, n);
2086 break;
2087 }
2088 *t++ = c;
2089 f++;
2090 n--;
2091 }
2092 return n;
2093}
2094
b58fed8b 2095int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2096{
2097 int i;
2098 unsigned long page;
2099 unsigned long size;
b58fed8b 2100
1da177e4
LT
2101 *where = 0;
2102 if (!data)
2103 return 0;
2104
2105 if (!(page = __get_free_page(GFP_KERNEL)))
2106 return -ENOMEM;
2107
2108 /* We only care that *some* data at the address the user
2109 * gave us is valid. Just in case, we'll zero
2110 * the remainder of the page.
2111 */
2112 /* copy_from_user cannot cross TASK_SIZE ! */
2113 size = TASK_SIZE - (unsigned long)data;
2114 if (size > PAGE_SIZE)
2115 size = PAGE_SIZE;
2116
2117 i = size - exact_copy_from_user((void *)page, data, size);
2118 if (!i) {
b58fed8b 2119 free_page(page);
1da177e4
LT
2120 return -EFAULT;
2121 }
2122 if (i != PAGE_SIZE)
2123 memset((char *)page + i, 0, PAGE_SIZE - i);
2124 *where = page;
2125 return 0;
2126}
2127
eca6f534
VN
2128int copy_mount_string(const void __user *data, char **where)
2129{
2130 char *tmp;
2131
2132 if (!data) {
2133 *where = NULL;
2134 return 0;
2135 }
2136
2137 tmp = strndup_user(data, PAGE_SIZE);
2138 if (IS_ERR(tmp))
2139 return PTR_ERR(tmp);
2140
2141 *where = tmp;
2142 return 0;
2143}
2144
1da177e4
LT
2145/*
2146 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2147 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2148 *
2149 * data is a (void *) that can point to any structure up to
2150 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2151 * information (or be NULL).
2152 *
2153 * Pre-0.97 versions of mount() didn't have a flags word.
2154 * When the flags word was introduced its top half was required
2155 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2156 * Therefore, if this magic number is present, it carries no information
2157 * and must be discarded.
2158 */
b58fed8b 2159long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2160 unsigned long flags, void *data_page)
2161{
2d92ab3c 2162 struct path path;
1da177e4
LT
2163 int retval = 0;
2164 int mnt_flags = 0;
2165
2166 /* Discard magic */
2167 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2168 flags &= ~MS_MGC_MSK;
2169
2170 /* Basic sanity checks */
2171
2172 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2173 return -EINVAL;
1da177e4
LT
2174
2175 if (data_page)
2176 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2177
a27ab9f2
TH
2178 /* ... and get the mountpoint */
2179 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2180 if (retval)
2181 return retval;
2182
2183 retval = security_sb_mount(dev_name, &path,
2184 type_page, flags, data_page);
2185 if (retval)
2186 goto dput_out;
2187
613cbe3d
AK
2188 /* Default to relatime unless overriden */
2189 if (!(flags & MS_NOATIME))
2190 mnt_flags |= MNT_RELATIME;
0a1c01c9 2191
1da177e4
LT
2192 /* Separate the per-mountpoint flags */
2193 if (flags & MS_NOSUID)
2194 mnt_flags |= MNT_NOSUID;
2195 if (flags & MS_NODEV)
2196 mnt_flags |= MNT_NODEV;
2197 if (flags & MS_NOEXEC)
2198 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2199 if (flags & MS_NOATIME)
2200 mnt_flags |= MNT_NOATIME;
2201 if (flags & MS_NODIRATIME)
2202 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2203 if (flags & MS_STRICTATIME)
2204 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2205 if (flags & MS_RDONLY)
2206 mnt_flags |= MNT_READONLY;
fc33a7bb 2207
7a4dec53 2208 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2209 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2210 MS_STRICTATIME);
1da177e4 2211
1da177e4 2212 if (flags & MS_REMOUNT)
2d92ab3c 2213 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2214 data_page);
2215 else if (flags & MS_BIND)
2d92ab3c 2216 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2217 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2218 retval = do_change_type(&path, flags);
1da177e4 2219 else if (flags & MS_MOVE)
2d92ab3c 2220 retval = do_move_mount(&path, dev_name);
1da177e4 2221 else
2d92ab3c 2222 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2223 dev_name, data_page);
2224dput_out:
2d92ab3c 2225 path_put(&path);
1da177e4
LT
2226 return retval;
2227}
2228
cf8d2c11
TM
2229static struct mnt_namespace *alloc_mnt_ns(void)
2230{
2231 struct mnt_namespace *new_ns;
2232
2233 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2234 if (!new_ns)
2235 return ERR_PTR(-ENOMEM);
2236 atomic_set(&new_ns->count, 1);
2237 new_ns->root = NULL;
2238 INIT_LIST_HEAD(&new_ns->list);
2239 init_waitqueue_head(&new_ns->poll);
2240 new_ns->event = 0;
2241 return new_ns;
2242}
2243
f03c6599
AV
2244void mnt_make_longterm(struct vfsmount *mnt)
2245{
2246 atomic_inc(&mnt->mnt_longterm);
2247}
2248
2249void mnt_make_shortterm(struct vfsmount *mnt)
2250{
2251 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2252 return;
2253 br_write_lock(vfsmount_lock);
2254 atomic_dec(&mnt->mnt_longterm);
2255 br_write_unlock(vfsmount_lock);
2256}
2257
741a2951
JD
2258/*
2259 * Allocate a new namespace structure and populate it with contents
2260 * copied from the namespace of the passed in task structure.
2261 */
e3222c4e 2262static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2263 struct fs_struct *fs)
1da177e4 2264{
6b3286ed 2265 struct mnt_namespace *new_ns;
7f2da1e7 2266 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2267 struct vfsmount *p, *q;
2268
cf8d2c11
TM
2269 new_ns = alloc_mnt_ns();
2270 if (IS_ERR(new_ns))
2271 return new_ns;
1da177e4 2272
390c6843 2273 down_write(&namespace_sem);
1da177e4 2274 /* First pass: copy the tree topology */
6b3286ed 2275 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2276 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2277 if (!new_ns->root) {
390c6843 2278 up_write(&namespace_sem);
1da177e4 2279 kfree(new_ns);
5cc4a034 2280 return ERR_PTR(-ENOMEM);
1da177e4 2281 }
99b7db7b 2282 br_write_lock(vfsmount_lock);
1da177e4 2283 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2284 br_write_unlock(vfsmount_lock);
1da177e4
LT
2285
2286 /*
2287 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2288 * as belonging to new namespace. We have already acquired a private
2289 * fs_struct, so tsk->fs->lock is not needed.
2290 */
6b3286ed 2291 p = mnt_ns->root;
1da177e4
LT
2292 q = new_ns->root;
2293 while (p) {
6b3286ed 2294 q->mnt_ns = new_ns;
f03c6599 2295 atomic_inc(&q->mnt_longterm);
1da177e4 2296 if (fs) {
6ac08c39 2297 if (p == fs->root.mnt) {
f03c6599
AV
2298 fs->root.mnt = mntget(q);
2299 atomic_inc(&q->mnt_longterm);
2300 mnt_make_shortterm(p);
1da177e4 2301 rootmnt = p;
1da177e4 2302 }
6ac08c39 2303 if (p == fs->pwd.mnt) {
f03c6599
AV
2304 fs->pwd.mnt = mntget(q);
2305 atomic_inc(&q->mnt_longterm);
2306 mnt_make_shortterm(p);
1da177e4 2307 pwdmnt = p;
1da177e4 2308 }
1da177e4 2309 }
6b3286ed 2310 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2311 q = next_mnt(q, new_ns->root);
2312 }
390c6843 2313 up_write(&namespace_sem);
1da177e4 2314
1da177e4 2315 if (rootmnt)
f03c6599 2316 mntput(rootmnt);
1da177e4 2317 if (pwdmnt)
f03c6599 2318 mntput(pwdmnt);
1da177e4 2319
741a2951
JD
2320 return new_ns;
2321}
2322
213dd266 2323struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2324 struct fs_struct *new_fs)
741a2951 2325{
6b3286ed 2326 struct mnt_namespace *new_ns;
741a2951 2327
e3222c4e 2328 BUG_ON(!ns);
6b3286ed 2329 get_mnt_ns(ns);
741a2951
JD
2330
2331 if (!(flags & CLONE_NEWNS))
e3222c4e 2332 return ns;
741a2951 2333
e3222c4e 2334 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2335
6b3286ed 2336 put_mnt_ns(ns);
e3222c4e 2337 return new_ns;
1da177e4
LT
2338}
2339
cf8d2c11
TM
2340/**
2341 * create_mnt_ns - creates a private namespace and adds a root filesystem
2342 * @mnt: pointer to the new root filesystem mountpoint
2343 */
a2770d86 2344struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2345{
2346 struct mnt_namespace *new_ns;
2347
2348 new_ns = alloc_mnt_ns();
2349 if (!IS_ERR(new_ns)) {
2350 mnt->mnt_ns = new_ns;
f03c6599 2351 atomic_inc(&mnt->mnt_longterm);
cf8d2c11
TM
2352 new_ns->root = mnt;
2353 list_add(&new_ns->list, &new_ns->root->mnt_list);
2354 }
2355 return new_ns;
2356}
a2770d86 2357EXPORT_SYMBOL(create_mnt_ns);
cf8d2c11 2358
bdc480e3
HC
2359SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2360 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2361{
eca6f534
VN
2362 int ret;
2363 char *kernel_type;
2364 char *kernel_dir;
2365 char *kernel_dev;
1da177e4 2366 unsigned long data_page;
1da177e4 2367
eca6f534
VN
2368 ret = copy_mount_string(type, &kernel_type);
2369 if (ret < 0)
2370 goto out_type;
1da177e4 2371
eca6f534
VN
2372 kernel_dir = getname(dir_name);
2373 if (IS_ERR(kernel_dir)) {
2374 ret = PTR_ERR(kernel_dir);
2375 goto out_dir;
2376 }
1da177e4 2377
eca6f534
VN
2378 ret = copy_mount_string(dev_name, &kernel_dev);
2379 if (ret < 0)
2380 goto out_dev;
1da177e4 2381
eca6f534
VN
2382 ret = copy_mount_options(data, &data_page);
2383 if (ret < 0)
2384 goto out_data;
1da177e4 2385
eca6f534
VN
2386 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2387 (void *) data_page);
1da177e4 2388
eca6f534
VN
2389 free_page(data_page);
2390out_data:
2391 kfree(kernel_dev);
2392out_dev:
2393 putname(kernel_dir);
2394out_dir:
2395 kfree(kernel_type);
2396out_type:
2397 return ret;
1da177e4
LT
2398}
2399
1da177e4
LT
2400/*
2401 * pivot_root Semantics:
2402 * Moves the root file system of the current process to the directory put_old,
2403 * makes new_root as the new root file system of the current process, and sets
2404 * root/cwd of all processes which had them on the current root to new_root.
2405 *
2406 * Restrictions:
2407 * The new_root and put_old must be directories, and must not be on the
2408 * same file system as the current process root. The put_old must be
2409 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2410 * pointed to by put_old must yield the same directory as new_root. No other
2411 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2412 *
4a0d11fa
NB
2413 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2414 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2415 * in this situation.
2416 *
1da177e4
LT
2417 * Notes:
2418 * - we don't move root/cwd if they are not at the root (reason: if something
2419 * cared enough to change them, it's probably wrong to force them elsewhere)
2420 * - it's okay to pick a root that isn't the root of a file system, e.g.
2421 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2422 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2423 * first.
2424 */
3480b257
HC
2425SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2426 const char __user *, put_old)
1da177e4
LT
2427{
2428 struct vfsmount *tmp;
2d8f3038 2429 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2430 int error;
2431
2432 if (!capable(CAP_SYS_ADMIN))
2433 return -EPERM;
2434
2d8f3038 2435 error = user_path_dir(new_root, &new);
1da177e4
LT
2436 if (error)
2437 goto out0;
2438 error = -EINVAL;
2d8f3038 2439 if (!check_mnt(new.mnt))
1da177e4
LT
2440 goto out1;
2441
2d8f3038 2442 error = user_path_dir(put_old, &old);
1da177e4
LT
2443 if (error)
2444 goto out1;
2445
2d8f3038 2446 error = security_sb_pivotroot(&old, &new);
1da177e4 2447 if (error) {
2d8f3038 2448 path_put(&old);
1da177e4
LT
2449 goto out1;
2450 }
2451
f7ad3c6b 2452 get_fs_root(current->fs, &root);
390c6843 2453 down_write(&namespace_sem);
2d8f3038 2454 mutex_lock(&old.dentry->d_inode->i_mutex);
1da177e4 2455 error = -EINVAL;
2d8f3038
AV
2456 if (IS_MNT_SHARED(old.mnt) ||
2457 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2458 IS_MNT_SHARED(root.mnt->mnt_parent))
21444403 2459 goto out2;
8c3ee42e 2460 if (!check_mnt(root.mnt))
1da177e4
LT
2461 goto out2;
2462 error = -ENOENT;
d83c49f3 2463 if (cant_mount(old.dentry))
1da177e4 2464 goto out2;
f3da392e 2465 if (d_unlinked(new.dentry))
1da177e4 2466 goto out2;
f3da392e 2467 if (d_unlinked(old.dentry))
1da177e4
LT
2468 goto out2;
2469 error = -EBUSY;
2d8f3038
AV
2470 if (new.mnt == root.mnt ||
2471 old.mnt == root.mnt)
1da177e4
LT
2472 goto out2; /* loop, on the same file system */
2473 error = -EINVAL;
8c3ee42e 2474 if (root.mnt->mnt_root != root.dentry)
1da177e4 2475 goto out2; /* not a mountpoint */
8c3ee42e 2476 if (root.mnt->mnt_parent == root.mnt)
0bb6fcc1 2477 goto out2; /* not attached */
2d8f3038 2478 if (new.mnt->mnt_root != new.dentry)
1da177e4 2479 goto out2; /* not a mountpoint */
2d8f3038 2480 if (new.mnt->mnt_parent == new.mnt)
0bb6fcc1 2481 goto out2; /* not attached */
4ac91378 2482 /* make sure we can reach put_old from new_root */
2d8f3038 2483 tmp = old.mnt;
99b7db7b 2484 br_write_lock(vfsmount_lock);
2d8f3038 2485 if (tmp != new.mnt) {
1da177e4
LT
2486 for (;;) {
2487 if (tmp->mnt_parent == tmp)
2488 goto out3; /* already mounted on put_old */
2d8f3038 2489 if (tmp->mnt_parent == new.mnt)
1da177e4
LT
2490 break;
2491 tmp = tmp->mnt_parent;
2492 }
2d8f3038 2493 if (!is_subdir(tmp->mnt_mountpoint, new.dentry))
1da177e4 2494 goto out3;
2d8f3038 2495 } else if (!is_subdir(old.dentry, new.dentry))
1da177e4 2496 goto out3;
2d8f3038 2497 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2498 detach_mnt(root.mnt, &root_parent);
4ac91378 2499 /* mount old root on put_old */
2d8f3038 2500 attach_mnt(root.mnt, &old);
4ac91378 2501 /* mount new_root on / */
2d8f3038 2502 attach_mnt(new.mnt, &root_parent);
6b3286ed 2503 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2504 br_write_unlock(vfsmount_lock);
2d8f3038 2505 chroot_fs_refs(&root, &new);
b3e19d92 2506
1da177e4 2507 error = 0;
1a390689
AV
2508 path_put(&root_parent);
2509 path_put(&parent_path);
1da177e4 2510out2:
2d8f3038 2511 mutex_unlock(&old.dentry->d_inode->i_mutex);
390c6843 2512 up_write(&namespace_sem);
8c3ee42e 2513 path_put(&root);
2d8f3038 2514 path_put(&old);
1da177e4 2515out1:
2d8f3038 2516 path_put(&new);
1da177e4 2517out0:
1da177e4
LT
2518 return error;
2519out3:
99b7db7b 2520 br_write_unlock(vfsmount_lock);
1da177e4
LT
2521 goto out2;
2522}
2523
2524static void __init init_mount_tree(void)
2525{
2526 struct vfsmount *mnt;
6b3286ed 2527 struct mnt_namespace *ns;
ac748a09 2528 struct path root;
1da177e4
LT
2529
2530 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2531 if (IS_ERR(mnt))
2532 panic("Can't create rootfs");
b3e19d92 2533
3b22edc5
TM
2534 ns = create_mnt_ns(mnt);
2535 if (IS_ERR(ns))
1da177e4 2536 panic("Can't allocate initial namespace");
6b3286ed
KK
2537
2538 init_task.nsproxy->mnt_ns = ns;
2539 get_mnt_ns(ns);
2540
ac748a09
JB
2541 root.mnt = ns->root;
2542 root.dentry = ns->root->mnt_root;
2543
2544 set_fs_pwd(current->fs, &root);
2545 set_fs_root(current->fs, &root);
1da177e4
LT
2546}
2547
74bf17cf 2548void __init mnt_init(void)
1da177e4 2549{
13f14b4d 2550 unsigned u;
15a67dd8 2551 int err;
1da177e4 2552
390c6843
RP
2553 init_rwsem(&namespace_sem);
2554
1da177e4 2555 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
20c2df83 2556 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2557
b58fed8b 2558 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2559
2560 if (!mount_hashtable)
2561 panic("Failed to allocate mount hash table\n");
2562
13f14b4d
ED
2563 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
2564
2565 for (u = 0; u < HASH_SIZE; u++)
2566 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2567
99b7db7b
NP
2568 br_lock_init(vfsmount_lock);
2569
15a67dd8
RD
2570 err = sysfs_init();
2571 if (err)
2572 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2573 __func__, err);
00d26666
GKH
2574 fs_kobj = kobject_create_and_add("fs", NULL);
2575 if (!fs_kobj)
8e24eea7 2576 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2577 init_rootfs();
2578 init_mount_tree();
2579}
2580
616511d0 2581void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2582{
70fbcdf4 2583 LIST_HEAD(umount_list);
616511d0 2584
d498b25a 2585 if (!atomic_dec_and_test(&ns->count))
616511d0 2586 return;
390c6843 2587 down_write(&namespace_sem);
99b7db7b 2588 br_write_lock(vfsmount_lock);
d498b25a 2589 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2590 br_write_unlock(vfsmount_lock);
390c6843 2591 up_write(&namespace_sem);
70fbcdf4 2592 release_mounts(&umount_list);
6b3286ed 2593 kfree(ns);
1da177e4 2594}
cf8d2c11 2595EXPORT_SYMBOL(put_mnt_ns);
This page took 1.115454 seconds and 5 git commands to generate.