[PATCH] md: fix BUG when raid10 rebuilds without enough drives
[deliverable/linux.git] / fs / ntfs / aops.c
CommitLineData
1da177e4
LT
1/**
2 * aops.c - NTFS kernel address space operations and page cache handling.
3 * Part of the Linux-NTFS project.
4 *
b6ad6c52 5 * Copyright (c) 2001-2005 Anton Altaparmakov
1da177e4
LT
6 * Copyright (c) 2002 Richard Russon
7 *
8 * This program/include file is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as published
10 * by the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program/include file is distributed in the hope that it will be
14 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program (in the main directory of the Linux-NTFS
20 * distribution in the file COPYING); if not, write to the Free Software
21 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 */
23
24#include <linux/errno.h>
25#include <linux/mm.h>
26#include <linux/pagemap.h>
27#include <linux/swap.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30
31#include "aops.h"
32#include "attrib.h"
33#include "debug.h"
34#include "inode.h"
35#include "mft.h"
36#include "runlist.h"
37#include "types.h"
38#include "ntfs.h"
39
40/**
41 * ntfs_end_buffer_async_read - async io completion for reading attributes
42 * @bh: buffer head on which io is completed
43 * @uptodate: whether @bh is now uptodate or not
44 *
45 * Asynchronous I/O completion handler for reading pages belonging to the
46 * attribute address space of an inode. The inodes can either be files or
47 * directories or they can be fake inodes describing some attribute.
48 *
49 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
50 * page has been completed and mark the page uptodate or set the error bit on
51 * the page. To determine the size of the records that need fixing up, we
52 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
53 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
54 * record size.
55 */
56static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
57{
1da177e4 58 unsigned long flags;
e604635c 59 struct buffer_head *first, *tmp;
1da177e4
LT
60 struct page *page;
61 ntfs_inode *ni;
62 int page_uptodate = 1;
63
64 page = bh->b_page;
65 ni = NTFS_I(page->mapping->host);
66
67 if (likely(uptodate)) {
07a4e2da 68 s64 file_ofs, initialized_size;
1da177e4
LT
69
70 set_buffer_uptodate(bh);
71
72 file_ofs = ((s64)page->index << PAGE_CACHE_SHIFT) +
73 bh_offset(bh);
07a4e2da
AA
74 read_lock_irqsave(&ni->size_lock, flags);
75 initialized_size = ni->initialized_size;
76 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4 77 /* Check for the current buffer head overflowing. */
07a4e2da 78 if (file_ofs + bh->b_size > initialized_size) {
1da177e4
LT
79 char *addr;
80 int ofs = 0;
81
07a4e2da
AA
82 if (file_ofs < initialized_size)
83 ofs = initialized_size - file_ofs;
1da177e4
LT
84 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
85 memset(addr + bh_offset(bh) + ofs, 0, bh->b_size - ofs);
86 flush_dcache_page(page);
87 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
88 }
89 } else {
90 clear_buffer_uptodate(bh);
e604635c 91 SetPageError(page);
1da177e4
LT
92 ntfs_error(ni->vol->sb, "Buffer I/O error, logical block %llu.",
93 (unsigned long long)bh->b_blocknr);
1da177e4 94 }
e604635c
AA
95 first = page_buffers(page);
96 local_irq_save(flags);
97 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
98 clear_buffer_async_read(bh);
99 unlock_buffer(bh);
100 tmp = bh;
101 do {
102 if (!buffer_uptodate(tmp))
103 page_uptodate = 0;
104 if (buffer_async_read(tmp)) {
105 if (likely(buffer_locked(tmp)))
106 goto still_busy;
107 /* Async buffers must be locked. */
108 BUG();
109 }
110 tmp = tmp->b_this_page;
111 } while (tmp != bh);
e604635c
AA
112 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
113 local_irq_restore(flags);
1da177e4
LT
114 /*
115 * If none of the buffers had errors then we can set the page uptodate,
116 * but we first have to perform the post read mst fixups, if the
117 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
118 * Note we ignore fixup errors as those are detected when
119 * map_mft_record() is called which gives us per record granularity
120 * rather than per page granularity.
121 */
122 if (!NInoMstProtected(ni)) {
123 if (likely(page_uptodate && !PageError(page)))
124 SetPageUptodate(page);
125 } else {
126 char *addr;
127 unsigned int i, recs;
128 u32 rec_size;
129
130 rec_size = ni->itype.index.block_size;
131 recs = PAGE_CACHE_SIZE / rec_size;
132 /* Should have been verified before we got here... */
133 BUG_ON(!recs);
134 addr = kmap_atomic(page, KM_BIO_SRC_IRQ);
135 for (i = 0; i < recs; i++)
136 post_read_mst_fixup((NTFS_RECORD*)(addr +
137 i * rec_size), rec_size);
138 flush_dcache_page(page);
139 kunmap_atomic(addr, KM_BIO_SRC_IRQ);
b6ad6c52 140 if (likely(page_uptodate && !PageError(page)))
1da177e4
LT
141 SetPageUptodate(page);
142 }
143 unlock_page(page);
144 return;
145still_busy:
e604635c
AA
146 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
147 local_irq_restore(flags);
1da177e4
LT
148 return;
149}
150
151/**
152 * ntfs_read_block - fill a @page of an address space with data
153 * @page: page cache page to fill with data
154 *
155 * Fill the page @page of the address space belonging to the @page->host inode.
156 * We read each buffer asynchronously and when all buffers are read in, our io
157 * completion handler ntfs_end_buffer_read_async(), if required, automatically
158 * applies the mst fixups to the page before finally marking it uptodate and
159 * unlocking it.
160 *
161 * We only enforce allocated_size limit because i_size is checked for in
162 * generic_file_read().
163 *
164 * Return 0 on success and -errno on error.
165 *
166 * Contains an adapted version of fs/buffer.c::block_read_full_page().
167 */
168static int ntfs_read_block(struct page *page)
169{
170 VCN vcn;
171 LCN lcn;
172 ntfs_inode *ni;
173 ntfs_volume *vol;
174 runlist_element *rl;
175 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
176 sector_t iblock, lblock, zblock;
07a4e2da 177 unsigned long flags;
1da177e4
LT
178 unsigned int blocksize, vcn_ofs;
179 int i, nr;
180 unsigned char blocksize_bits;
181
182 ni = NTFS_I(page->mapping->host);
183 vol = ni->vol;
184
185 /* $MFT/$DATA must have its complete runlist in memory at all times. */
186 BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
187
188 blocksize_bits = VFS_I(ni)->i_blkbits;
189 blocksize = 1 << blocksize_bits;
190
a01ac532 191 if (!page_has_buffers(page)) {
1da177e4 192 create_empty_buffers(page, blocksize, 0);
a01ac532
AA
193 if (unlikely(!page_has_buffers(page))) {
194 unlock_page(page);
195 return -ENOMEM;
196 }
1da177e4 197 }
a01ac532
AA
198 bh = head = page_buffers(page);
199 BUG_ON(!bh);
1da177e4
LT
200
201 iblock = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
07a4e2da 202 read_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
203 lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
204 zblock = (ni->initialized_size + blocksize - 1) >> blocksize_bits;
07a4e2da 205 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
206
207 /* Loop through all the buffers in the page. */
208 rl = NULL;
209 nr = i = 0;
210 do {
211 u8 *kaddr;
8273d5d4 212 int err;
1da177e4
LT
213
214 if (unlikely(buffer_uptodate(bh)))
215 continue;
216 if (unlikely(buffer_mapped(bh))) {
217 arr[nr++] = bh;
218 continue;
219 }
8273d5d4 220 err = 0;
1da177e4
LT
221 bh->b_bdev = vol->sb->s_bdev;
222 /* Is the block within the allowed limits? */
223 if (iblock < lblock) {
224 BOOL is_retry = FALSE;
225
226 /* Convert iblock into corresponding vcn and offset. */
227 vcn = (VCN)iblock << blocksize_bits >>
228 vol->cluster_size_bits;
229 vcn_ofs = ((VCN)iblock << blocksize_bits) &
230 vol->cluster_size_mask;
231 if (!rl) {
232lock_retry_remap:
233 down_read(&ni->runlist.lock);
234 rl = ni->runlist.rl;
235 }
236 if (likely(rl != NULL)) {
237 /* Seek to element containing target vcn. */
238 while (rl->length && rl[1].vcn <= vcn)
239 rl++;
240 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
241 } else
242 lcn = LCN_RL_NOT_MAPPED;
243 /* Successful remap. */
244 if (lcn >= 0) {
245 /* Setup buffer head to correct block. */
246 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
247 + vcn_ofs) >> blocksize_bits;
248 set_buffer_mapped(bh);
249 /* Only read initialized data blocks. */
250 if (iblock < zblock) {
251 arr[nr++] = bh;
252 continue;
253 }
254 /* Fully non-initialized data block, zero it. */
255 goto handle_zblock;
256 }
257 /* It is a hole, need to zero it. */
258 if (lcn == LCN_HOLE)
259 goto handle_hole;
260 /* If first try and runlist unmapped, map and retry. */
261 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
1da177e4
LT
262 is_retry = TRUE;
263 /*
264 * Attempt to map runlist, dropping lock for
265 * the duration.
266 */
267 up_read(&ni->runlist.lock);
268 err = ntfs_map_runlist(ni, vcn);
269 if (likely(!err))
270 goto lock_retry_remap;
271 rl = NULL;
9f993fe4
AA
272 } else if (!rl)
273 up_read(&ni->runlist.lock);
8273d5d4
AA
274 /*
275 * If buffer is outside the runlist, treat it as a
276 * hole. This can happen due to concurrent truncate
277 * for example.
278 */
279 if (err == -ENOENT || lcn == LCN_ENOENT) {
280 err = 0;
281 goto handle_hole;
282 }
1da177e4 283 /* Hard error, zero out region. */
8273d5d4
AA
284 if (!err)
285 err = -EIO;
1da177e4
LT
286 bh->b_blocknr = -1;
287 SetPageError(page);
288 ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
289 "attribute type 0x%x, vcn 0x%llx, "
290 "offset 0x%x because its location on "
291 "disk could not be determined%s "
8273d5d4 292 "(error code %i).", ni->mft_no,
1da177e4
LT
293 ni->type, (unsigned long long)vcn,
294 vcn_ofs, is_retry ? " even after "
8273d5d4 295 "retrying" : "", err);
1da177e4
LT
296 }
297 /*
298 * Either iblock was outside lblock limits or
299 * ntfs_rl_vcn_to_lcn() returned error. Just zero that portion
300 * of the page and set the buffer uptodate.
301 */
302handle_hole:
303 bh->b_blocknr = -1UL;
304 clear_buffer_mapped(bh);
305handle_zblock:
306 kaddr = kmap_atomic(page, KM_USER0);
307 memset(kaddr + i * blocksize, 0, blocksize);
1da177e4 308 kunmap_atomic(kaddr, KM_USER0);
8273d5d4
AA
309 flush_dcache_page(page);
310 if (likely(!err))
311 set_buffer_uptodate(bh);
1da177e4
LT
312 } while (i++, iblock++, (bh = bh->b_this_page) != head);
313
314 /* Release the lock if we took it. */
315 if (rl)
316 up_read(&ni->runlist.lock);
317
318 /* Check we have at least one buffer ready for i/o. */
319 if (nr) {
320 struct buffer_head *tbh;
321
322 /* Lock the buffers. */
323 for (i = 0; i < nr; i++) {
324 tbh = arr[i];
325 lock_buffer(tbh);
326 tbh->b_end_io = ntfs_end_buffer_async_read;
327 set_buffer_async_read(tbh);
328 }
329 /* Finally, start i/o on the buffers. */
330 for (i = 0; i < nr; i++) {
331 tbh = arr[i];
332 if (likely(!buffer_uptodate(tbh)))
333 submit_bh(READ, tbh);
334 else
335 ntfs_end_buffer_async_read(tbh, 1);
336 }
337 return 0;
338 }
339 /* No i/o was scheduled on any of the buffers. */
340 if (likely(!PageError(page)))
341 SetPageUptodate(page);
342 else /* Signal synchronous i/o error. */
343 nr = -EIO;
344 unlock_page(page);
345 return nr;
346}
347
348/**
349 * ntfs_readpage - fill a @page of a @file with data from the device
350 * @file: open file to which the page @page belongs or NULL
351 * @page: page cache page to fill with data
352 *
353 * For non-resident attributes, ntfs_readpage() fills the @page of the open
354 * file @file by calling the ntfs version of the generic block_read_full_page()
355 * function, ntfs_read_block(), which in turn creates and reads in the buffers
356 * associated with the page asynchronously.
357 *
358 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
359 * data from the mft record (which at this stage is most likely in memory) and
360 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
361 * even if the mft record is not cached at this point in time, we need to wait
362 * for it to be read in before we can do the copy.
363 *
364 * Return 0 on success and -errno on error.
365 */
366static int ntfs_readpage(struct file *file, struct page *page)
367{
1da177e4
LT
368 ntfs_inode *ni, *base_ni;
369 u8 *kaddr;
370 ntfs_attr_search_ctx *ctx;
371 MFT_RECORD *mrec;
b6ad6c52 372 unsigned long flags;
1da177e4
LT
373 u32 attr_len;
374 int err = 0;
375
905685f6 376retry_readpage:
1da177e4
LT
377 BUG_ON(!PageLocked(page));
378 /*
379 * This can potentially happen because we clear PageUptodate() during
380 * ntfs_writepage() of MstProtected() attributes.
381 */
382 if (PageUptodate(page)) {
383 unlock_page(page);
384 return 0;
385 }
386 ni = NTFS_I(page->mapping->host);
311120ec
AA
387 /*
388 * Only $DATA attributes can be encrypted and only unnamed $DATA
389 * attributes can be compressed. Index root can have the flags set but
390 * this means to create compressed/encrypted files, not that the
391 * attribute is compressed/encrypted.
392 */
393 if (ni->type != AT_INDEX_ROOT) {
394 /* If attribute is encrypted, deny access, just like NT4. */
395 if (NInoEncrypted(ni)) {
396 BUG_ON(ni->type != AT_DATA);
397 err = -EACCES;
398 goto err_out;
399 }
400 /* Compressed data streams are handled in compress.c. */
401 if (NInoNonResident(ni) && NInoCompressed(ni)) {
402 BUG_ON(ni->type != AT_DATA);
403 BUG_ON(ni->name_len);
404 return ntfs_read_compressed_block(page);
405 }
406 }
1da177e4
LT
407 /* NInoNonResident() == NInoIndexAllocPresent() */
408 if (NInoNonResident(ni)) {
311120ec 409 /* Normal, non-resident data stream. */
1da177e4
LT
410 return ntfs_read_block(page);
411 }
412 /*
413 * Attribute is resident, implying it is not compressed or encrypted.
414 * This also means the attribute is smaller than an mft record and
415 * hence smaller than a page, so can simply zero out any pages with
311120ec
AA
416 * index above 0. Note the attribute can actually be marked compressed
417 * but if it is resident the actual data is not compressed so we are
418 * ok to ignore the compressed flag here.
1da177e4 419 */
b6ad6c52 420 if (unlikely(page->index > 0)) {
1da177e4
LT
421 kaddr = kmap_atomic(page, KM_USER0);
422 memset(kaddr, 0, PAGE_CACHE_SIZE);
423 flush_dcache_page(page);
424 kunmap_atomic(kaddr, KM_USER0);
425 goto done;
426 }
427 if (!NInoAttr(ni))
428 base_ni = ni;
429 else
430 base_ni = ni->ext.base_ntfs_ino;
431 /* Map, pin, and lock the mft record. */
432 mrec = map_mft_record(base_ni);
433 if (IS_ERR(mrec)) {
434 err = PTR_ERR(mrec);
435 goto err_out;
436 }
905685f6
AA
437 /*
438 * If a parallel write made the attribute non-resident, drop the mft
439 * record and retry the readpage.
440 */
441 if (unlikely(NInoNonResident(ni))) {
442 unmap_mft_record(base_ni);
443 goto retry_readpage;
444 }
1da177e4
LT
445 ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
446 if (unlikely(!ctx)) {
447 err = -ENOMEM;
448 goto unm_err_out;
449 }
450 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
451 CASE_SENSITIVE, 0, NULL, 0, ctx);
452 if (unlikely(err))
453 goto put_unm_err_out;
454 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
b6ad6c52
AA
455 read_lock_irqsave(&ni->size_lock, flags);
456 if (unlikely(attr_len > ni->initialized_size))
457 attr_len = ni->initialized_size;
458 read_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
459 kaddr = kmap_atomic(page, KM_USER0);
460 /* Copy the data to the page. */
461 memcpy(kaddr, (u8*)ctx->attr +
462 le16_to_cpu(ctx->attr->data.resident.value_offset),
463 attr_len);
464 /* Zero the remainder of the page. */
465 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
466 flush_dcache_page(page);
467 kunmap_atomic(kaddr, KM_USER0);
468put_unm_err_out:
469 ntfs_attr_put_search_ctx(ctx);
470unm_err_out:
471 unmap_mft_record(base_ni);
472done:
473 SetPageUptodate(page);
474err_out:
475 unlock_page(page);
476 return err;
477}
478
479#ifdef NTFS_RW
480
481/**
482 * ntfs_write_block - write a @page to the backing store
483 * @page: page cache page to write out
484 * @wbc: writeback control structure
485 *
486 * This function is for writing pages belonging to non-resident, non-mst
487 * protected attributes to their backing store.
488 *
489 * For a page with buffers, map and write the dirty buffers asynchronously
490 * under page writeback. For a page without buffers, create buffers for the
491 * page, then proceed as above.
492 *
493 * If a page doesn't have buffers the page dirty state is definitive. If a page
494 * does have buffers, the page dirty state is just a hint, and the buffer dirty
495 * state is definitive. (A hint which has rules: dirty buffers against a clean
496 * page is illegal. Other combinations are legal and need to be handled. In
497 * particular a dirty page containing clean buffers for example.)
498 *
499 * Return 0 on success and -errno on error.
500 *
501 * Based on ntfs_read_block() and __block_write_full_page().
502 */
503static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
504{
505 VCN vcn;
506 LCN lcn;
07a4e2da
AA
507 s64 initialized_size;
508 loff_t i_size;
1da177e4
LT
509 sector_t block, dblock, iblock;
510 struct inode *vi;
511 ntfs_inode *ni;
512 ntfs_volume *vol;
513 runlist_element *rl;
514 struct buffer_head *bh, *head;
07a4e2da 515 unsigned long flags;
1da177e4
LT
516 unsigned int blocksize, vcn_ofs;
517 int err;
518 BOOL need_end_writeback;
519 unsigned char blocksize_bits;
520
521 vi = page->mapping->host;
522 ni = NTFS_I(vi);
523 vol = ni->vol;
524
525 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
526 "0x%lx.", ni->mft_no, ni->type, page->index);
527
528 BUG_ON(!NInoNonResident(ni));
529 BUG_ON(NInoMstProtected(ni));
530
531 blocksize_bits = vi->i_blkbits;
532 blocksize = 1 << blocksize_bits;
533
534 if (!page_has_buffers(page)) {
535 BUG_ON(!PageUptodate(page));
536 create_empty_buffers(page, blocksize,
537 (1 << BH_Uptodate) | (1 << BH_Dirty));
a01ac532
AA
538 if (unlikely(!page_has_buffers(page))) {
539 ntfs_warning(vol->sb, "Error allocating page "
540 "buffers. Redirtying page so we try "
541 "again later.");
542 /*
543 * Put the page back on mapping->dirty_pages, but leave
544 * its buffers' dirty state as-is.
545 */
546 redirty_page_for_writepage(wbc, page);
547 unlock_page(page);
548 return 0;
549 }
1da177e4
LT
550 }
551 bh = head = page_buffers(page);
a01ac532 552 BUG_ON(!bh);
1da177e4
LT
553
554 /* NOTE: Different naming scheme to ntfs_read_block()! */
555
556 /* The first block in the page. */
557 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
558
07a4e2da
AA
559 read_lock_irqsave(&ni->size_lock, flags);
560 i_size = i_size_read(vi);
561 initialized_size = ni->initialized_size;
562 read_unlock_irqrestore(&ni->size_lock, flags);
563
1da177e4 564 /* The first out of bounds block for the data size. */
07a4e2da 565 dblock = (i_size + blocksize - 1) >> blocksize_bits;
1da177e4
LT
566
567 /* The last (fully or partially) initialized block. */
07a4e2da 568 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
569
570 /*
571 * Be very careful. We have no exclusion from __set_page_dirty_buffers
572 * here, and the (potentially unmapped) buffers may become dirty at
573 * any time. If a buffer becomes dirty here after we've inspected it
574 * then we just miss that fact, and the page stays dirty.
575 *
576 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
577 * handle that here by just cleaning them.
578 */
579
580 /*
581 * Loop through all the buffers in the page, mapping all the dirty
582 * buffers to disk addresses and handling any aliases from the
583 * underlying block device's mapping.
584 */
585 rl = NULL;
586 err = 0;
587 do {
588 BOOL is_retry = FALSE;
589
590 if (unlikely(block >= dblock)) {
591 /*
592 * Mapped buffers outside i_size will occur, because
593 * this page can be outside i_size when there is a
594 * truncate in progress. The contents of such buffers
595 * were zeroed by ntfs_writepage().
596 *
597 * FIXME: What about the small race window where
598 * ntfs_writepage() has not done any clearing because
599 * the page was within i_size but before we get here,
600 * vmtruncate() modifies i_size?
601 */
602 clear_buffer_dirty(bh);
603 set_buffer_uptodate(bh);
604 continue;
605 }
606
607 /* Clean buffers are not written out, so no need to map them. */
608 if (!buffer_dirty(bh))
609 continue;
610
611 /* Make sure we have enough initialized size. */
612 if (unlikely((block >= iblock) &&
07a4e2da 613 (initialized_size < i_size))) {
1da177e4
LT
614 /*
615 * If this page is fully outside initialized size, zero
616 * out all pages between the current initialized size
617 * and the current page. Just use ntfs_readpage() to do
618 * the zeroing transparently.
619 */
620 if (block > iblock) {
621 // TODO:
622 // For each page do:
623 // - read_cache_page()
624 // Again for each page do:
625 // - wait_on_page_locked()
626 // - Check (PageUptodate(page) &&
627 // !PageError(page))
628 // Update initialized size in the attribute and
629 // in the inode.
630 // Again, for each page do:
631 // __set_page_dirty_buffers();
632 // page_cache_release()
633 // We don't need to wait on the writes.
634 // Update iblock.
635 }
636 /*
637 * The current page straddles initialized size. Zero
638 * all non-uptodate buffers and set them uptodate (and
639 * dirty?). Note, there aren't any non-uptodate buffers
640 * if the page is uptodate.
641 * FIXME: For an uptodate page, the buffers may need to
642 * be written out because they were not initialized on
643 * disk before.
644 */
645 if (!PageUptodate(page)) {
646 // TODO:
647 // Zero any non-uptodate buffers up to i_size.
648 // Set them uptodate and dirty.
649 }
650 // TODO:
651 // Update initialized size in the attribute and in the
652 // inode (up to i_size).
653 // Update iblock.
654 // FIXME: This is inefficient. Try to batch the two
655 // size changes to happen in one go.
656 ntfs_error(vol->sb, "Writing beyond initialized size "
657 "is not supported yet. Sorry.");
658 err = -EOPNOTSUPP;
659 break;
660 // Do NOT set_buffer_new() BUT DO clear buffer range
661 // outside write request range.
662 // set_buffer_uptodate() on complete buffers as well as
663 // set_buffer_dirty().
664 }
665
666 /* No need to map buffers that are already mapped. */
667 if (buffer_mapped(bh))
668 continue;
669
670 /* Unmapped, dirty buffer. Need to map it. */
671 bh->b_bdev = vol->sb->s_bdev;
672
673 /* Convert block into corresponding vcn and offset. */
674 vcn = (VCN)block << blocksize_bits;
675 vcn_ofs = vcn & vol->cluster_size_mask;
676 vcn >>= vol->cluster_size_bits;
677 if (!rl) {
678lock_retry_remap:
679 down_read(&ni->runlist.lock);
680 rl = ni->runlist.rl;
681 }
682 if (likely(rl != NULL)) {
683 /* Seek to element containing target vcn. */
684 while (rl->length && rl[1].vcn <= vcn)
685 rl++;
686 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
687 } else
688 lcn = LCN_RL_NOT_MAPPED;
689 /* Successful remap. */
690 if (lcn >= 0) {
691 /* Setup buffer head to point to correct block. */
692 bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
693 vcn_ofs) >> blocksize_bits;
694 set_buffer_mapped(bh);
695 continue;
696 }
697 /* It is a hole, need to instantiate it. */
698 if (lcn == LCN_HOLE) {
8dcdebaf
AA
699 u8 *kaddr;
700 unsigned long *bpos, *bend;
701
702 /* Check if the buffer is zero. */
703 kaddr = kmap_atomic(page, KM_USER0);
704 bpos = (unsigned long *)(kaddr + bh_offset(bh));
705 bend = (unsigned long *)((u8*)bpos + blocksize);
706 do {
707 if (unlikely(*bpos))
708 break;
709 } while (likely(++bpos < bend));
710 kunmap_atomic(kaddr, KM_USER0);
711 if (bpos == bend) {
712 /*
713 * Buffer is zero and sparse, no need to write
714 * it.
715 */
716 bh->b_blocknr = -1;
717 clear_buffer_dirty(bh);
718 continue;
719 }
1da177e4
LT
720 // TODO: Instantiate the hole.
721 // clear_buffer_new(bh);
722 // unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
723 ntfs_error(vol->sb, "Writing into sparse regions is "
724 "not supported yet. Sorry.");
725 err = -EOPNOTSUPP;
726 break;
727 }
728 /* If first try and runlist unmapped, map and retry. */
729 if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
730 is_retry = TRUE;
731 /*
732 * Attempt to map runlist, dropping lock for
733 * the duration.
734 */
735 up_read(&ni->runlist.lock);
736 err = ntfs_map_runlist(ni, vcn);
737 if (likely(!err))
738 goto lock_retry_remap;
739 rl = NULL;
9f993fe4
AA
740 } else if (!rl)
741 up_read(&ni->runlist.lock);
8273d5d4
AA
742 /*
743 * If buffer is outside the runlist, truncate has cut it out
744 * of the runlist. Just clean and clear the buffer and set it
745 * uptodate so it can get discarded by the VM.
746 */
747 if (err == -ENOENT || lcn == LCN_ENOENT) {
748 u8 *kaddr;
749
750 bh->b_blocknr = -1;
751 clear_buffer_dirty(bh);
752 kaddr = kmap_atomic(page, KM_USER0);
753 memset(kaddr + bh_offset(bh), 0, blocksize);
754 kunmap_atomic(kaddr, KM_USER0);
755 flush_dcache_page(page);
756 set_buffer_uptodate(bh);
757 err = 0;
758 continue;
759 }
1da177e4 760 /* Failed to map the buffer, even after retrying. */
8273d5d4
AA
761 if (!err)
762 err = -EIO;
1da177e4
LT
763 bh->b_blocknr = -1;
764 ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
765 "attribute type 0x%x, vcn 0x%llx, offset 0x%x "
766 "because its location on disk could not be "
8273d5d4 767 "determined%s (error code %i).", ni->mft_no,
1da177e4
LT
768 ni->type, (unsigned long long)vcn,
769 vcn_ofs, is_retry ? " even after "
8273d5d4 770 "retrying" : "", err);
1da177e4
LT
771 break;
772 } while (block++, (bh = bh->b_this_page) != head);
773
774 /* Release the lock if we took it. */
775 if (rl)
776 up_read(&ni->runlist.lock);
777
778 /* For the error case, need to reset bh to the beginning. */
779 bh = head;
780
54b02eb0 781 /* Just an optimization, so ->readpage() is not called later. */
1da177e4
LT
782 if (unlikely(!PageUptodate(page))) {
783 int uptodate = 1;
784 do {
785 if (!buffer_uptodate(bh)) {
786 uptodate = 0;
787 bh = head;
788 break;
789 }
790 } while ((bh = bh->b_this_page) != head);
791 if (uptodate)
792 SetPageUptodate(page);
793 }
794
795 /* Setup all mapped, dirty buffers for async write i/o. */
796 do {
1da177e4
LT
797 if (buffer_mapped(bh) && buffer_dirty(bh)) {
798 lock_buffer(bh);
799 if (test_clear_buffer_dirty(bh)) {
800 BUG_ON(!buffer_uptodate(bh));
801 mark_buffer_async_write(bh);
802 } else
803 unlock_buffer(bh);
804 } else if (unlikely(err)) {
805 /*
806 * For the error case. The buffer may have been set
807 * dirty during attachment to a dirty page.
808 */
809 if (err != -ENOMEM)
810 clear_buffer_dirty(bh);
811 }
812 } while ((bh = bh->b_this_page) != head);
813
814 if (unlikely(err)) {
815 // TODO: Remove the -EOPNOTSUPP check later on...
816 if (unlikely(err == -EOPNOTSUPP))
817 err = 0;
818 else if (err == -ENOMEM) {
819 ntfs_warning(vol->sb, "Error allocating memory. "
820 "Redirtying page so we try again "
821 "later.");
822 /*
823 * Put the page back on mapping->dirty_pages, but
824 * leave its buffer's dirty state as-is.
825 */
826 redirty_page_for_writepage(wbc, page);
827 err = 0;
828 } else
829 SetPageError(page);
830 }
831
832 BUG_ON(PageWriteback(page));
833 set_page_writeback(page); /* Keeps try_to_free_buffers() away. */
1da177e4 834
54b02eb0 835 /* Submit the prepared buffers for i/o. */
1da177e4
LT
836 need_end_writeback = TRUE;
837 do {
838 struct buffer_head *next = bh->b_this_page;
839 if (buffer_async_write(bh)) {
840 submit_bh(WRITE, bh);
841 need_end_writeback = FALSE;
842 }
1da177e4
LT
843 bh = next;
844 } while (bh != head);
54b02eb0 845 unlock_page(page);
1da177e4
LT
846
847 /* If no i/o was started, need to end_page_writeback(). */
848 if (unlikely(need_end_writeback))
849 end_page_writeback(page);
850
851 ntfs_debug("Done.");
852 return err;
853}
854
855/**
856 * ntfs_write_mst_block - write a @page to the backing store
857 * @page: page cache page to write out
858 * @wbc: writeback control structure
859 *
860 * This function is for writing pages belonging to non-resident, mst protected
861 * attributes to their backing store. The only supported attributes are index
862 * allocation and $MFT/$DATA. Both directory inodes and index inodes are
863 * supported for the index allocation case.
864 *
865 * The page must remain locked for the duration of the write because we apply
866 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
867 * page before undoing the fixups, any other user of the page will see the
868 * page contents as corrupt.
869 *
870 * We clear the page uptodate flag for the duration of the function to ensure
871 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
872 * are about to apply the mst fixups to.
873 *
874 * Return 0 on success and -errno on error.
875 *
876 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
877 * write_mft_record_nolock().
878 */
879static int ntfs_write_mst_block(struct page *page,
880 struct writeback_control *wbc)
881{
882 sector_t block, dblock, rec_block;
883 struct inode *vi = page->mapping->host;
884 ntfs_inode *ni = NTFS_I(vi);
885 ntfs_volume *vol = ni->vol;
886 u8 *kaddr;
1da177e4
LT
887 unsigned int rec_size = ni->itype.index.block_size;
888 ntfs_inode *locked_nis[PAGE_CACHE_SIZE / rec_size];
889 struct buffer_head *bh, *head, *tbh, *rec_start_bh;
d53ee322 890 struct buffer_head *bhs[MAX_BUF_PER_PAGE];
1da177e4 891 runlist_element *rl;
d53ee322
AA
892 int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
893 unsigned bh_size, rec_size_bits;
1da177e4 894 BOOL sync, is_mft, page_is_dirty, rec_is_dirty;
d53ee322 895 unsigned char bh_size_bits;
1da177e4
LT
896
897 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
898 "0x%lx.", vi->i_ino, ni->type, page->index);
899 BUG_ON(!NInoNonResident(ni));
900 BUG_ON(!NInoMstProtected(ni));
901 is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
902 /*
903 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
904 * in its page cache were to be marked dirty. However this should
905 * never happen with the current driver and considering we do not
906 * handle this case here we do want to BUG(), at least for now.
907 */
908 BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
909 (NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
d53ee322
AA
910 bh_size_bits = vi->i_blkbits;
911 bh_size = 1 << bh_size_bits;
912 max_bhs = PAGE_CACHE_SIZE / bh_size;
1da177e4 913 BUG_ON(!max_bhs);
d53ee322 914 BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
1da177e4
LT
915
916 /* Were we called for sync purposes? */
917 sync = (wbc->sync_mode == WB_SYNC_ALL);
918
919 /* Make sure we have mapped buffers. */
1da177e4
LT
920 bh = head = page_buffers(page);
921 BUG_ON(!bh);
922
923 rec_size_bits = ni->itype.index.block_size_bits;
924 BUG_ON(!(PAGE_CACHE_SIZE >> rec_size_bits));
925 bhs_per_rec = rec_size >> bh_size_bits;
926 BUG_ON(!bhs_per_rec);
927
928 /* The first block in the page. */
929 rec_block = block = (sector_t)page->index <<
930 (PAGE_CACHE_SHIFT - bh_size_bits);
931
932 /* The first out of bounds block for the data size. */
07a4e2da 933 dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
1da177e4
LT
934
935 rl = NULL;
936 err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
937 page_is_dirty = rec_is_dirty = FALSE;
938 rec_start_bh = NULL;
939 do {
940 BOOL is_retry = FALSE;
941
942 if (likely(block < rec_block)) {
943 if (unlikely(block >= dblock)) {
944 clear_buffer_dirty(bh);
946929d8 945 set_buffer_uptodate(bh);
1da177e4
LT
946 continue;
947 }
948 /*
949 * This block is not the first one in the record. We
950 * ignore the buffer's dirty state because we could
951 * have raced with a parallel mark_ntfs_record_dirty().
952 */
953 if (!rec_is_dirty)
954 continue;
955 if (unlikely(err2)) {
956 if (err2 != -ENOMEM)
957 clear_buffer_dirty(bh);
958 continue;
959 }
960 } else /* if (block == rec_block) */ {
961 BUG_ON(block > rec_block);
962 /* This block is the first one in the record. */
963 rec_block += bhs_per_rec;
964 err2 = 0;
965 if (unlikely(block >= dblock)) {
966 clear_buffer_dirty(bh);
967 continue;
968 }
969 if (!buffer_dirty(bh)) {
970 /* Clean records are not written out. */
971 rec_is_dirty = FALSE;
972 continue;
973 }
974 rec_is_dirty = TRUE;
975 rec_start_bh = bh;
976 }
977 /* Need to map the buffer if it is not mapped already. */
978 if (unlikely(!buffer_mapped(bh))) {
979 VCN vcn;
980 LCN lcn;
981 unsigned int vcn_ofs;
982
481d0374 983 bh->b_bdev = vol->sb->s_bdev;
1da177e4
LT
984 /* Obtain the vcn and offset of the current block. */
985 vcn = (VCN)block << bh_size_bits;
986 vcn_ofs = vcn & vol->cluster_size_mask;
987 vcn >>= vol->cluster_size_bits;
988 if (!rl) {
989lock_retry_remap:
990 down_read(&ni->runlist.lock);
991 rl = ni->runlist.rl;
992 }
993 if (likely(rl != NULL)) {
994 /* Seek to element containing target vcn. */
995 while (rl->length && rl[1].vcn <= vcn)
996 rl++;
997 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
998 } else
999 lcn = LCN_RL_NOT_MAPPED;
1000 /* Successful remap. */
1001 if (likely(lcn >= 0)) {
1002 /* Setup buffer head to correct block. */
1003 bh->b_blocknr = ((lcn <<
1004 vol->cluster_size_bits) +
1005 vcn_ofs) >> bh_size_bits;
1006 set_buffer_mapped(bh);
1007 } else {
1008 /*
1009 * Remap failed. Retry to map the runlist once
1010 * unless we are working on $MFT which always
1011 * has the whole of its runlist in memory.
1012 */
1013 if (!is_mft && !is_retry &&
1014 lcn == LCN_RL_NOT_MAPPED) {
1015 is_retry = TRUE;
1016 /*
1017 * Attempt to map runlist, dropping
1018 * lock for the duration.
1019 */
1020 up_read(&ni->runlist.lock);
1021 err2 = ntfs_map_runlist(ni, vcn);
1022 if (likely(!err2))
1023 goto lock_retry_remap;
1024 if (err2 == -ENOMEM)
1025 page_is_dirty = TRUE;
1026 lcn = err2;
9f993fe4 1027 } else {
1da177e4 1028 err2 = -EIO;
9f993fe4
AA
1029 if (!rl)
1030 up_read(&ni->runlist.lock);
1031 }
1da177e4
LT
1032 /* Hard error. Abort writing this record. */
1033 if (!err || err == -ENOMEM)
1034 err = err2;
1035 bh->b_blocknr = -1;
1036 ntfs_error(vol->sb, "Cannot write ntfs record "
1037 "0x%llx (inode 0x%lx, "
1038 "attribute type 0x%x) because "
1039 "its location on disk could "
1040 "not be determined (error "
8907547d
RD
1041 "code %lli).",
1042 (long long)block <<
1da177e4
LT
1043 bh_size_bits >>
1044 vol->mft_record_size_bits,
1045 ni->mft_no, ni->type,
1046 (long long)lcn);
1047 /*
1048 * If this is not the first buffer, remove the
1049 * buffers in this record from the list of
1050 * buffers to write and clear their dirty bit
1051 * if not error -ENOMEM.
1052 */
1053 if (rec_start_bh != bh) {
1054 while (bhs[--nr_bhs] != rec_start_bh)
1055 ;
1056 if (err2 != -ENOMEM) {
1057 do {
1058 clear_buffer_dirty(
1059 rec_start_bh);
1060 } while ((rec_start_bh =
1061 rec_start_bh->
1062 b_this_page) !=
1063 bh);
1064 }
1065 }
1066 continue;
1067 }
1068 }
1069 BUG_ON(!buffer_uptodate(bh));
1070 BUG_ON(nr_bhs >= max_bhs);
1071 bhs[nr_bhs++] = bh;
1072 } while (block++, (bh = bh->b_this_page) != head);
1073 if (unlikely(rl))
1074 up_read(&ni->runlist.lock);
1075 /* If there were no dirty buffers, we are done. */
1076 if (!nr_bhs)
1077 goto done;
1078 /* Map the page so we can access its contents. */
1079 kaddr = kmap(page);
1080 /* Clear the page uptodate flag whilst the mst fixups are applied. */
1081 BUG_ON(!PageUptodate(page));
1082 ClearPageUptodate(page);
1083 for (i = 0; i < nr_bhs; i++) {
1084 unsigned int ofs;
1085
1086 /* Skip buffers which are not at the beginning of records. */
1087 if (i % bhs_per_rec)
1088 continue;
1089 tbh = bhs[i];
1090 ofs = bh_offset(tbh);
1091 if (is_mft) {
1092 ntfs_inode *tni;
1093 unsigned long mft_no;
1094
1095 /* Get the mft record number. */
1096 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1097 >> rec_size_bits;
1098 /* Check whether to write this mft record. */
1099 tni = NULL;
1100 if (!ntfs_may_write_mft_record(vol, mft_no,
1101 (MFT_RECORD*)(kaddr + ofs), &tni)) {
1102 /*
1103 * The record should not be written. This
1104 * means we need to redirty the page before
1105 * returning.
1106 */
1107 page_is_dirty = TRUE;
1108 /*
1109 * Remove the buffers in this mft record from
1110 * the list of buffers to write.
1111 */
1112 do {
1113 bhs[i] = NULL;
1114 } while (++i % bhs_per_rec);
1115 continue;
1116 }
1117 /*
1118 * The record should be written. If a locked ntfs
1119 * inode was returned, add it to the array of locked
1120 * ntfs inodes.
1121 */
1122 if (tni)
1123 locked_nis[nr_locked_nis++] = tni;
1124 }
1125 /* Apply the mst protection fixups. */
1126 err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1127 rec_size);
1128 if (unlikely(err2)) {
1129 if (!err || err == -ENOMEM)
1130 err = -EIO;
1131 ntfs_error(vol->sb, "Failed to apply mst fixups "
1132 "(inode 0x%lx, attribute type 0x%x, "
1133 "page index 0x%lx, page offset 0x%x)!"
1134 " Unmount and run chkdsk.", vi->i_ino,
1135 ni->type, page->index, ofs);
1136 /*
1137 * Mark all the buffers in this record clean as we do
1138 * not want to write corrupt data to disk.
1139 */
1140 do {
1141 clear_buffer_dirty(bhs[i]);
1142 bhs[i] = NULL;
1143 } while (++i % bhs_per_rec);
1144 continue;
1145 }
1146 nr_recs++;
1147 }
1148 /* If no records are to be written out, we are done. */
1149 if (!nr_recs)
1150 goto unm_done;
1151 flush_dcache_page(page);
1152 /* Lock buffers and start synchronous write i/o on them. */
1153 for (i = 0; i < nr_bhs; i++) {
1154 tbh = bhs[i];
1155 if (!tbh)
1156 continue;
1157 if (unlikely(test_set_buffer_locked(tbh)))
1158 BUG();
1159 /* The buffer dirty state is now irrelevant, just clean it. */
1160 clear_buffer_dirty(tbh);
1161 BUG_ON(!buffer_uptodate(tbh));
1162 BUG_ON(!buffer_mapped(tbh));
1163 get_bh(tbh);
1164 tbh->b_end_io = end_buffer_write_sync;
1165 submit_bh(WRITE, tbh);
1166 }
1167 /* Synchronize the mft mirror now if not @sync. */
1168 if (is_mft && !sync)
1169 goto do_mirror;
1170do_wait:
1171 /* Wait on i/o completion of buffers. */
1172 for (i = 0; i < nr_bhs; i++) {
1173 tbh = bhs[i];
1174 if (!tbh)
1175 continue;
1176 wait_on_buffer(tbh);
1177 if (unlikely(!buffer_uptodate(tbh))) {
1178 ntfs_error(vol->sb, "I/O error while writing ntfs "
1179 "record buffer (inode 0x%lx, "
1180 "attribute type 0x%x, page index "
1181 "0x%lx, page offset 0x%lx)! Unmount "
1182 "and run chkdsk.", vi->i_ino, ni->type,
1183 page->index, bh_offset(tbh));
1184 if (!err || err == -ENOMEM)
1185 err = -EIO;
1186 /*
1187 * Set the buffer uptodate so the page and buffer
1188 * states do not become out of sync.
1189 */
1190 set_buffer_uptodate(tbh);
1191 }
1192 }
1193 /* If @sync, now synchronize the mft mirror. */
1194 if (is_mft && sync) {
1195do_mirror:
1196 for (i = 0; i < nr_bhs; i++) {
1197 unsigned long mft_no;
1198 unsigned int ofs;
1199
1200 /*
1201 * Skip buffers which are not at the beginning of
1202 * records.
1203 */
1204 if (i % bhs_per_rec)
1205 continue;
1206 tbh = bhs[i];
1207 /* Skip removed buffers (and hence records). */
1208 if (!tbh)
1209 continue;
1210 ofs = bh_offset(tbh);
1211 /* Get the mft record number. */
1212 mft_no = (((s64)page->index << PAGE_CACHE_SHIFT) + ofs)
1213 >> rec_size_bits;
1214 if (mft_no < vol->mftmirr_size)
1215 ntfs_sync_mft_mirror(vol, mft_no,
1216 (MFT_RECORD*)(kaddr + ofs),
1217 sync);
1218 }
1219 if (!sync)
1220 goto do_wait;
1221 }
1222 /* Remove the mst protection fixups again. */
1223 for (i = 0; i < nr_bhs; i++) {
1224 if (!(i % bhs_per_rec)) {
1225 tbh = bhs[i];
1226 if (!tbh)
1227 continue;
1228 post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1229 bh_offset(tbh)));
1230 }
1231 }
1232 flush_dcache_page(page);
1233unm_done:
1234 /* Unlock any locked inodes. */
1235 while (nr_locked_nis-- > 0) {
1236 ntfs_inode *tni, *base_tni;
1237
1238 tni = locked_nis[nr_locked_nis];
1239 /* Get the base inode. */
1240 down(&tni->extent_lock);
1241 if (tni->nr_extents >= 0)
1242 base_tni = tni;
1243 else {
1244 base_tni = tni->ext.base_ntfs_ino;
1245 BUG_ON(!base_tni);
1246 }
1247 up(&tni->extent_lock);
1248 ntfs_debug("Unlocking %s inode 0x%lx.",
1249 tni == base_tni ? "base" : "extent",
1250 tni->mft_no);
1251 up(&tni->mrec_lock);
1252 atomic_dec(&tni->count);
1253 iput(VFS_I(base_tni));
1254 }
1255 SetPageUptodate(page);
1256 kunmap(page);
1257done:
1258 if (unlikely(err && err != -ENOMEM)) {
1259 /*
1260 * Set page error if there is only one ntfs record in the page.
1261 * Otherwise we would loose per-record granularity.
1262 */
1263 if (ni->itype.index.block_size == PAGE_CACHE_SIZE)
1264 SetPageError(page);
1265 NVolSetErrors(vol);
1266 }
1267 if (page_is_dirty) {
1268 ntfs_debug("Page still contains one or more dirty ntfs "
1269 "records. Redirtying the page starting at "
1270 "record 0x%lx.", page->index <<
1271 (PAGE_CACHE_SHIFT - rec_size_bits));
1272 redirty_page_for_writepage(wbc, page);
1273 unlock_page(page);
1274 } else {
1275 /*
1276 * Keep the VM happy. This must be done otherwise the
1277 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1278 * the page is clean.
1279 */
1280 BUG_ON(PageWriteback(page));
1281 set_page_writeback(page);
1282 unlock_page(page);
1283 end_page_writeback(page);
1284 }
1285 if (likely(!err))
1286 ntfs_debug("Done.");
1287 return err;
1288}
1289
1290/**
1291 * ntfs_writepage - write a @page to the backing store
1292 * @page: page cache page to write out
1293 * @wbc: writeback control structure
1294 *
1295 * This is called from the VM when it wants to have a dirty ntfs page cache
1296 * page cleaned. The VM has already locked the page and marked it clean.
1297 *
1298 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1299 * the ntfs version of the generic block_write_full_page() function,
1300 * ntfs_write_block(), which in turn if necessary creates and writes the
1301 * buffers associated with the page asynchronously.
1302 *
1303 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1304 * the data to the mft record (which at this stage is most likely in memory).
1305 * The mft record is then marked dirty and written out asynchronously via the
1306 * vfs inode dirty code path for the inode the mft record belongs to or via the
1307 * vm page dirty code path for the page the mft record is in.
1308 *
1309 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1310 *
1311 * Return 0 on success and -errno on error.
1312 */
1313static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1314{
1315 loff_t i_size;
149f0c52
AA
1316 struct inode *vi = page->mapping->host;
1317 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1da177e4 1318 char *kaddr;
149f0c52
AA
1319 ntfs_attr_search_ctx *ctx = NULL;
1320 MFT_RECORD *m = NULL;
1da177e4
LT
1321 u32 attr_len;
1322 int err;
1323
905685f6 1324retry_writepage:
1da177e4 1325 BUG_ON(!PageLocked(page));
1da177e4 1326 i_size = i_size_read(vi);
1da177e4
LT
1327 /* Is the page fully outside i_size? (truncate in progress) */
1328 if (unlikely(page->index >= (i_size + PAGE_CACHE_SIZE - 1) >>
1329 PAGE_CACHE_SHIFT)) {
1330 /*
1331 * The page may have dirty, unmapped buffers. Make them
1332 * freeable here, so the page does not leak.
1333 */
1334 block_invalidatepage(page, 0);
1335 unlock_page(page);
1336 ntfs_debug("Write outside i_size - truncated?");
1337 return 0;
1338 }
bd45fdd2
AA
1339 /*
1340 * Only $DATA attributes can be encrypted and only unnamed $DATA
1341 * attributes can be compressed. Index root can have the flags set but
1342 * this means to create compressed/encrypted files, not that the
1343 * attribute is compressed/encrypted.
1344 */
1345 if (ni->type != AT_INDEX_ROOT) {
1346 /* If file is encrypted, deny access, just like NT4. */
1347 if (NInoEncrypted(ni)) {
1348 unlock_page(page);
1349 BUG_ON(ni->type != AT_DATA);
1350 ntfs_debug("Denying write access to encrypted "
1351 "file.");
1352 return -EACCES;
1353 }
1354 /* Compressed data streams are handled in compress.c. */
1355 if (NInoNonResident(ni) && NInoCompressed(ni)) {
1356 BUG_ON(ni->type != AT_DATA);
1357 BUG_ON(ni->name_len);
1358 // TODO: Implement and replace this with
1359 // return ntfs_write_compressed_block(page);
1360 unlock_page(page);
1361 ntfs_error(vi->i_sb, "Writing to compressed files is "
1362 "not supported yet. Sorry.");
1363 return -EOPNOTSUPP;
1364 }
1365 // TODO: Implement and remove this check.
1366 if (NInoNonResident(ni) && NInoSparse(ni)) {
1367 unlock_page(page);
1368 ntfs_error(vi->i_sb, "Writing to sparse files is not "
1369 "supported yet. Sorry.");
1370 return -EOPNOTSUPP;
1371 }
1372 }
1da177e4
LT
1373 /* NInoNonResident() == NInoIndexAllocPresent() */
1374 if (NInoNonResident(ni)) {
1da177e4
LT
1375 /* We have to zero every time due to mmap-at-end-of-file. */
1376 if (page->index >= (i_size >> PAGE_CACHE_SHIFT)) {
1377 /* The page straddles i_size. */
1378 unsigned int ofs = i_size & ~PAGE_CACHE_MASK;
1379 kaddr = kmap_atomic(page, KM_USER0);
1380 memset(kaddr + ofs, 0, PAGE_CACHE_SIZE - ofs);
1381 flush_dcache_page(page);
1382 kunmap_atomic(kaddr, KM_USER0);
1383 }
1384 /* Handle mst protected attributes. */
1385 if (NInoMstProtected(ni))
1386 return ntfs_write_mst_block(page, wbc);
bd45fdd2 1387 /* Normal, non-resident data stream. */
1da177e4
LT
1388 return ntfs_write_block(page, wbc);
1389 }
1390 /*
bd45fdd2
AA
1391 * Attribute is resident, implying it is not compressed, encrypted, or
1392 * mst protected. This also means the attribute is smaller than an mft
1393 * record and hence smaller than a page, so can simply return error on
1394 * any pages with index above 0. Note the attribute can actually be
1395 * marked compressed but if it is resident the actual data is not
1396 * compressed so we are ok to ignore the compressed flag here.
1da177e4
LT
1397 */
1398 BUG_ON(page_has_buffers(page));
1399 BUG_ON(!PageUptodate(page));
1400 if (unlikely(page->index > 0)) {
1401 ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0. "
1402 "Aborting write.", page->index);
1403 BUG_ON(PageWriteback(page));
1404 set_page_writeback(page);
1405 unlock_page(page);
1406 end_page_writeback(page);
1407 return -EIO;
1408 }
1409 if (!NInoAttr(ni))
1410 base_ni = ni;
1411 else
1412 base_ni = ni->ext.base_ntfs_ino;
1413 /* Map, pin, and lock the mft record. */
1414 m = map_mft_record(base_ni);
1415 if (IS_ERR(m)) {
1416 err = PTR_ERR(m);
1417 m = NULL;
1418 ctx = NULL;
1419 goto err_out;
1420 }
905685f6
AA
1421 /*
1422 * If a parallel write made the attribute non-resident, drop the mft
1423 * record and retry the writepage.
1424 */
1425 if (unlikely(NInoNonResident(ni))) {
1426 unmap_mft_record(base_ni);
1427 goto retry_writepage;
1428 }
1da177e4
LT
1429 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1430 if (unlikely(!ctx)) {
1431 err = -ENOMEM;
1432 goto err_out;
1433 }
1434 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1435 CASE_SENSITIVE, 0, NULL, 0, ctx);
1436 if (unlikely(err))
1437 goto err_out;
1438 /*
1439 * Keep the VM happy. This must be done otherwise the radix-tree tag
1440 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1441 */
1442 BUG_ON(PageWriteback(page));
1443 set_page_writeback(page);
1444 unlock_page(page);
1da177e4 1445 /*
bd45fdd2
AA
1446 * Here, we do not need to zero the out of bounds area everytime
1447 * because the below memcpy() already takes care of the
1448 * mmap-at-end-of-file requirements. If the file is converted to a
1449 * non-resident one, then the code path use is switched to the
1450 * non-resident one where the zeroing happens on each ntfs_writepage()
1451 * invocation.
1da177e4 1452 */
1da177e4 1453 attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
07a4e2da 1454 i_size = i_size_read(vi);
1da177e4 1455 if (unlikely(attr_len > i_size)) {
1da177e4 1456 attr_len = i_size;
f40661be 1457 ctx->attr->data.resident.value_length = cpu_to_le32(attr_len);
1da177e4 1458 }
f40661be 1459 kaddr = kmap_atomic(page, KM_USER0);
1da177e4
LT
1460 /* Copy the data from the page to the mft record. */
1461 memcpy((u8*)ctx->attr +
1462 le16_to_cpu(ctx->attr->data.resident.value_offset),
1463 kaddr, attr_len);
1464 flush_dcache_mft_record_page(ctx->ntfs_ino);
1465 /* Zero out of bounds area in the page cache page. */
1466 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
1467 flush_dcache_page(page);
1468 kunmap_atomic(kaddr, KM_USER0);
1469
1470 end_page_writeback(page);
1471
1472 /* Mark the mft record dirty, so it gets written back. */
1473 mark_mft_record_dirty(ctx->ntfs_ino);
1474 ntfs_attr_put_search_ctx(ctx);
1475 unmap_mft_record(base_ni);
1476 return 0;
1477err_out:
1478 if (err == -ENOMEM) {
1479 ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1480 "page so we try again later.");
1481 /*
1482 * Put the page back on mapping->dirty_pages, but leave its
1483 * buffers' dirty state as-is.
1484 */
1485 redirty_page_for_writepage(wbc, page);
1486 err = 0;
1487 } else {
1488 ntfs_error(vi->i_sb, "Resident attribute write failed with "
149f0c52 1489 "error %i.", err);
1da177e4 1490 SetPageError(page);
149f0c52
AA
1491 NVolSetErrors(ni->vol);
1492 make_bad_inode(vi);
1da177e4
LT
1493 }
1494 unlock_page(page);
1495 if (ctx)
1496 ntfs_attr_put_search_ctx(ctx);
1497 if (m)
1498 unmap_mft_record(base_ni);
1499 return err;
1500}
1501
1502/**
1503 * ntfs_prepare_nonresident_write -
1504 *
1505 */
1506static int ntfs_prepare_nonresident_write(struct page *page,
1507 unsigned from, unsigned to)
1508{
1509 VCN vcn;
1510 LCN lcn;
07a4e2da
AA
1511 s64 initialized_size;
1512 loff_t i_size;
1da177e4
LT
1513 sector_t block, ablock, iblock;
1514 struct inode *vi;
1515 ntfs_inode *ni;
1516 ntfs_volume *vol;
1517 runlist_element *rl;
1518 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
07a4e2da 1519 unsigned long flags;
1da177e4
LT
1520 unsigned int vcn_ofs, block_start, block_end, blocksize;
1521 int err;
1522 BOOL is_retry;
1523 unsigned char blocksize_bits;
1524
1525 vi = page->mapping->host;
1526 ni = NTFS_I(vi);
1527 vol = ni->vol;
1528
1529 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1530 "0x%lx, from = %u, to = %u.", ni->mft_no, ni->type,
1531 page->index, from, to);
1532
1533 BUG_ON(!NInoNonResident(ni));
1534
1535 blocksize_bits = vi->i_blkbits;
1536 blocksize = 1 << blocksize_bits;
1537
1538 /*
1539 * create_empty_buffers() will create uptodate/dirty buffers if the
1540 * page is uptodate/dirty.
1541 */
1542 if (!page_has_buffers(page))
1543 create_empty_buffers(page, blocksize, 0);
1544 bh = head = page_buffers(page);
1545 if (unlikely(!bh))
1546 return -ENOMEM;
1547
1548 /* The first block in the page. */
1549 block = (s64)page->index << (PAGE_CACHE_SHIFT - blocksize_bits);
1550
07a4e2da 1551 read_lock_irqsave(&ni->size_lock, flags);
1da177e4 1552 /*
b6ad6c52 1553 * The first out of bounds block for the allocated size. No need to
1da177e4
LT
1554 * round up as allocated_size is in multiples of cluster size and the
1555 * minimum cluster size is 512 bytes, which is equal to the smallest
1556 * blocksize.
1557 */
1558 ablock = ni->allocated_size >> blocksize_bits;
07a4e2da
AA
1559 i_size = i_size_read(vi);
1560 initialized_size = ni->initialized_size;
1561 read_unlock_irqrestore(&ni->size_lock, flags);
1562
1da177e4 1563 /* The last (fully or partially) initialized block. */
07a4e2da 1564 iblock = initialized_size >> blocksize_bits;
1da177e4
LT
1565
1566 /* Loop through all the buffers in the page. */
1567 block_start = 0;
1568 rl = NULL;
1569 err = 0;
1570 do {
1571 block_end = block_start + blocksize;
1572 /*
1573 * If buffer @bh is outside the write, just mark it uptodate
1574 * if the page is uptodate and continue with the next buffer.
1575 */
1576 if (block_end <= from || block_start >= to) {
1577 if (PageUptodate(page)) {
1578 if (!buffer_uptodate(bh))
1579 set_buffer_uptodate(bh);
1580 }
1581 continue;
1582 }
1583 /*
1584 * @bh is at least partially being written to.
1585 * Make sure it is not marked as new.
1586 */
1587 //if (buffer_new(bh))
1588 // clear_buffer_new(bh);
1589
1590 if (block >= ablock) {
1591 // TODO: block is above allocated_size, need to
1592 // allocate it. Best done in one go to accommodate not
1593 // only block but all above blocks up to and including:
1594 // ((page->index << PAGE_CACHE_SHIFT) + to + blocksize
1595 // - 1) >> blobksize_bits. Obviously will need to round
1596 // up to next cluster boundary, too. This should be
1597 // done with a helper function, so it can be reused.
1598 ntfs_error(vol->sb, "Writing beyond allocated size "
1599 "is not supported yet. Sorry.");
1600 err = -EOPNOTSUPP;
1601 goto err_out;
1602 // Need to update ablock.
1603 // Need to set_buffer_new() on all block bhs that are
1604 // newly allocated.
1605 }
1606 /*
1607 * Now we have enough allocated size to fulfill the whole
1608 * request, i.e. block < ablock is true.
1609 */
1610 if (unlikely((block >= iblock) &&
07a4e2da 1611 (initialized_size < i_size))) {
1da177e4
LT
1612 /*
1613 * If this page is fully outside initialized size, zero
1614 * out all pages between the current initialized size
1615 * and the current page. Just use ntfs_readpage() to do
1616 * the zeroing transparently.
1617 */
1618 if (block > iblock) {
1619 // TODO:
1620 // For each page do:
1621 // - read_cache_page()
1622 // Again for each page do:
1623 // - wait_on_page_locked()
1624 // - Check (PageUptodate(page) &&
1625 // !PageError(page))
1626 // Update initialized size in the attribute and
1627 // in the inode.
1628 // Again, for each page do:
1629 // __set_page_dirty_buffers();
1630 // page_cache_release()
1631 // We don't need to wait on the writes.
1632 // Update iblock.
1633 }
1634 /*
1635 * The current page straddles initialized size. Zero
1636 * all non-uptodate buffers and set them uptodate (and
1637 * dirty?). Note, there aren't any non-uptodate buffers
1638 * if the page is uptodate.
1639 * FIXME: For an uptodate page, the buffers may need to
1640 * be written out because they were not initialized on
1641 * disk before.
1642 */
1643 if (!PageUptodate(page)) {
1644 // TODO:
1645 // Zero any non-uptodate buffers up to i_size.
1646 // Set them uptodate and dirty.
1647 }
1648 // TODO:
1649 // Update initialized size in the attribute and in the
1650 // inode (up to i_size).
1651 // Update iblock.
1652 // FIXME: This is inefficient. Try to batch the two
1653 // size changes to happen in one go.
1654 ntfs_error(vol->sb, "Writing beyond initialized size "
1655 "is not supported yet. Sorry.");
1656 err = -EOPNOTSUPP;
1657 goto err_out;
1658 // Do NOT set_buffer_new() BUT DO clear buffer range
1659 // outside write request range.
1660 // set_buffer_uptodate() on complete buffers as well as
1661 // set_buffer_dirty().
1662 }
1663
1664 /* Need to map unmapped buffers. */
1665 if (!buffer_mapped(bh)) {
1666 /* Unmapped buffer. Need to map it. */
1667 bh->b_bdev = vol->sb->s_bdev;
1668
1669 /* Convert block into corresponding vcn and offset. */
1670 vcn = (VCN)block << blocksize_bits >>
1671 vol->cluster_size_bits;
1672 vcn_ofs = ((VCN)block << blocksize_bits) &
1673 vol->cluster_size_mask;
1674
1675 is_retry = FALSE;
1676 if (!rl) {
1677lock_retry_remap:
1678 down_read(&ni->runlist.lock);
1679 rl = ni->runlist.rl;
1680 }
1681 if (likely(rl != NULL)) {
1682 /* Seek to element containing target vcn. */
1683 while (rl->length && rl[1].vcn <= vcn)
1684 rl++;
1685 lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1686 } else
1687 lcn = LCN_RL_NOT_MAPPED;
1688 if (unlikely(lcn < 0)) {
1689 /*
1690 * We extended the attribute allocation above.
1691 * If we hit an ENOENT here it means that the
1692 * allocation was insufficient which is a bug.
1693 */
1694 BUG_ON(lcn == LCN_ENOENT);
1695
1696 /* It is a hole, need to instantiate it. */
1697 if (lcn == LCN_HOLE) {
1698 // TODO: Instantiate the hole.
1699 // clear_buffer_new(bh);
1700 // unmap_underlying_metadata(bh->b_bdev,
1701 // bh->b_blocknr);
1702 // For non-uptodate buffers, need to
1703 // zero out the region outside the
1704 // request in this bh or all bhs,
1705 // depending on what we implemented
1706 // above.
1707 // Need to flush_dcache_page().
1708 // Or could use set_buffer_new()
1709 // instead?
1710 ntfs_error(vol->sb, "Writing into "
1711 "sparse regions is "
1712 "not supported yet. "
1713 "Sorry.");
1714 err = -EOPNOTSUPP;
9f993fe4
AA
1715 if (!rl)
1716 up_read(&ni->runlist.lock);
1da177e4
LT
1717 goto err_out;
1718 } else if (!is_retry &&
1719 lcn == LCN_RL_NOT_MAPPED) {
1720 is_retry = TRUE;
1721 /*
1722 * Attempt to map runlist, dropping
1723 * lock for the duration.
1724 */
1725 up_read(&ni->runlist.lock);
1726 err = ntfs_map_runlist(ni, vcn);
1727 if (likely(!err))
1728 goto lock_retry_remap;
1729 rl = NULL;
9f993fe4
AA
1730 } else if (!rl)
1731 up_read(&ni->runlist.lock);
1da177e4
LT
1732 /*
1733 * Failed to map the buffer, even after
1734 * retrying.
1735 */
7d333d6c
AA
1736 if (!err)
1737 err = -EIO;
1da177e4
LT
1738 bh->b_blocknr = -1;
1739 ntfs_error(vol->sb, "Failed to write to inode "
1740 "0x%lx, attribute type 0x%x, "
1741 "vcn 0x%llx, offset 0x%x "
1742 "because its location on disk "
1743 "could not be determined%s "
7d333d6c 1744 "(error code %i).",
1da177e4
LT
1745 ni->mft_no, ni->type,
1746 (unsigned long long)vcn,
1747 vcn_ofs, is_retry ? " even "
7d333d6c 1748 "after retrying" : "", err);
1da177e4
LT
1749 goto err_out;
1750 }
1751 /* We now have a successful remap, i.e. lcn >= 0. */
1752
1753 /* Setup buffer head to correct block. */
1754 bh->b_blocknr = ((lcn << vol->cluster_size_bits)
1755 + vcn_ofs) >> blocksize_bits;
1756 set_buffer_mapped(bh);
1757
1758 // FIXME: Something analogous to this is needed for
1759 // each newly allocated block, i.e. BH_New.
1760 // FIXME: Might need to take this out of the
1761 // if (!buffer_mapped(bh)) {}, depending on how we
1762 // implement things during the allocated_size and
1763 // initialized_size extension code above.
1764 if (buffer_new(bh)) {
1765 clear_buffer_new(bh);
1766 unmap_underlying_metadata(bh->b_bdev,
1767 bh->b_blocknr);
1768 if (PageUptodate(page)) {
1769 set_buffer_uptodate(bh);
1770 continue;
1771 }
1772 /*
1773 * Page is _not_ uptodate, zero surrounding
1774 * region. NOTE: This is how we decide if to
1775 * zero or not!
1776 */
1777 if (block_end > to || block_start < from) {
1778 void *kaddr;
1779
1780 kaddr = kmap_atomic(page, KM_USER0);
1781 if (block_end > to)
1782 memset(kaddr + to, 0,
1783 block_end - to);
1784 if (block_start < from)
1785 memset(kaddr + block_start, 0,
1786 from -
1787 block_start);
1788 flush_dcache_page(page);
1789 kunmap_atomic(kaddr, KM_USER0);
1790 }
1791 continue;
1792 }
1793 }
1794 /* @bh is mapped, set it uptodate if the page is uptodate. */
1795 if (PageUptodate(page)) {
1796 if (!buffer_uptodate(bh))
1797 set_buffer_uptodate(bh);
1798 continue;
1799 }
1800 /*
1801 * The page is not uptodate. The buffer is mapped. If it is not
1802 * uptodate, and it is only partially being written to, we need
1803 * to read the buffer in before the write, i.e. right now.
1804 */
1805 if (!buffer_uptodate(bh) &&
1806 (block_start < from || block_end > to)) {
1807 ll_rw_block(READ, 1, &bh);
1808 *wait_bh++ = bh;
1809 }
1810 } while (block++, block_start = block_end,
1811 (bh = bh->b_this_page) != head);
1812
1813 /* Release the lock if we took it. */
1814 if (rl) {
1815 up_read(&ni->runlist.lock);
1816 rl = NULL;
1817 }
1818
1819 /* If we issued read requests, let them complete. */
1820 while (wait_bh > wait) {
1821 wait_on_buffer(*--wait_bh);
1822 if (!buffer_uptodate(*wait_bh))
1823 return -EIO;
1824 }
1825
1826 ntfs_debug("Done.");
1827 return 0;
1828err_out:
1829 /*
1830 * Zero out any newly allocated blocks to avoid exposing stale data.
1831 * If BH_New is set, we know that the block was newly allocated in the
1832 * above loop.
1833 * FIXME: What about initialized_size increments? Have we done all the
1834 * required zeroing above? If not this error handling is broken, and
1835 * in particular the if (block_end <= from) check is completely bogus.
1836 */
1837 bh = head;
1838 block_start = 0;
1839 is_retry = FALSE;
1840 do {
1841 block_end = block_start + blocksize;
1842 if (block_end <= from)
1843 continue;
1844 if (block_start >= to)
1845 break;
1846 if (buffer_new(bh)) {
1847 void *kaddr;
1848
1849 clear_buffer_new(bh);
1850 kaddr = kmap_atomic(page, KM_USER0);
1851 memset(kaddr + block_start, 0, bh->b_size);
1852 kunmap_atomic(kaddr, KM_USER0);
1853 set_buffer_uptodate(bh);
1854 mark_buffer_dirty(bh);
1855 is_retry = TRUE;
1856 }
1857 } while (block_start = block_end, (bh = bh->b_this_page) != head);
1858 if (is_retry)
1859 flush_dcache_page(page);
1860 if (rl)
1861 up_read(&ni->runlist.lock);
1862 return err;
1863}
1864
1865/**
1866 * ntfs_prepare_write - prepare a page for receiving data
1867 *
1868 * This is called from generic_file_write() with i_sem held on the inode
1869 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
1870 * data has not yet been copied into the @page.
1871 *
1872 * Need to extend the attribute/fill in holes if necessary, create blocks and
1873 * make partially overwritten blocks uptodate,
1874 *
1875 * i_size is not to be modified yet.
1876 *
1877 * Return 0 on success or -errno on error.
1878 *
1879 * Should be using block_prepare_write() [support for sparse files] or
1880 * cont_prepare_write() [no support for sparse files]. Cannot do that due to
1881 * ntfs specifics but can look at them for implementation guidance.
1882 *
1883 * Note: In the range, @from is inclusive and @to is exclusive, i.e. @from is
1884 * the first byte in the page that will be written to and @to is the first byte
1885 * after the last byte that will be written to.
1886 */
1887static int ntfs_prepare_write(struct file *file, struct page *page,
1888 unsigned from, unsigned to)
1889{
1890 s64 new_size;
f40661be 1891 loff_t i_size;
1da177e4
LT
1892 struct inode *vi = page->mapping->host;
1893 ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1894 ntfs_volume *vol = ni->vol;
1895 ntfs_attr_search_ctx *ctx = NULL;
1896 MFT_RECORD *m = NULL;
1897 ATTR_RECORD *a;
1898 u8 *kaddr;
1899 u32 attr_len;
1900 int err;
1901
1902 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
1903 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
1904 page->index, from, to);
1905 BUG_ON(!PageLocked(page));
1906 BUG_ON(from > PAGE_CACHE_SIZE);
1907 BUG_ON(to > PAGE_CACHE_SIZE);
1908 BUG_ON(from > to);
1909 BUG_ON(NInoMstProtected(ni));
1910 /*
1911 * If a previous ntfs_truncate() failed, repeat it and abort if it
1912 * fails again.
1913 */
1914 if (unlikely(NInoTruncateFailed(ni))) {
1915 down_write(&vi->i_alloc_sem);
1916 err = ntfs_truncate(vi);
1917 up_write(&vi->i_alloc_sem);
1918 if (err || NInoTruncateFailed(ni)) {
1919 if (!err)
1920 err = -EIO;
1921 goto err_out;
1922 }
1923 }
1924 /* If the attribute is not resident, deal with it elsewhere. */
1925 if (NInoNonResident(ni)) {
1926 /*
1927 * Only unnamed $DATA attributes can be compressed, encrypted,
1928 * and/or sparse.
1929 */
1930 if (ni->type == AT_DATA && !ni->name_len) {
1931 /* If file is encrypted, deny access, just like NT4. */
1932 if (NInoEncrypted(ni)) {
1933 ntfs_debug("Denying write access to encrypted "
1934 "file.");
1935 return -EACCES;
1936 }
1937 /* Compressed data streams are handled in compress.c. */
1938 if (NInoCompressed(ni)) {
1939 // TODO: Implement and replace this check with
1940 // return ntfs_write_compressed_block(page);
1941 ntfs_error(vi->i_sb, "Writing to compressed "
1942 "files is not supported yet. "
1943 "Sorry.");
1944 return -EOPNOTSUPP;
1945 }
1946 // TODO: Implement and remove this check.
1947 if (NInoSparse(ni)) {
1948 ntfs_error(vi->i_sb, "Writing to sparse files "
1949 "is not supported yet. Sorry.");
1950 return -EOPNOTSUPP;
1951 }
1952 }
1953 /* Normal data stream. */
1954 return ntfs_prepare_nonresident_write(page, from, to);
1955 }
1956 /*
1957 * Attribute is resident, implying it is not compressed, encrypted, or
1958 * sparse.
1959 */
1960 BUG_ON(page_has_buffers(page));
1961 new_size = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
1962 /* If we do not need to resize the attribute allocation we are done. */
07a4e2da 1963 if (new_size <= i_size_read(vi))
1da177e4 1964 goto done;
1da177e4
LT
1965 /* Map, pin, and lock the (base) mft record. */
1966 if (!NInoAttr(ni))
1967 base_ni = ni;
1968 else
1969 base_ni = ni->ext.base_ntfs_ino;
1970 m = map_mft_record(base_ni);
1971 if (IS_ERR(m)) {
1972 err = PTR_ERR(m);
1973 m = NULL;
1974 ctx = NULL;
1975 goto err_out;
1976 }
1977 ctx = ntfs_attr_get_search_ctx(base_ni, m);
1978 if (unlikely(!ctx)) {
1979 err = -ENOMEM;
1980 goto err_out;
1981 }
1982 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1983 CASE_SENSITIVE, 0, NULL, 0, ctx);
1984 if (unlikely(err)) {
1985 if (err == -ENOENT)
1986 err = -EIO;
1987 goto err_out;
1988 }
1989 m = ctx->mrec;
1990 a = ctx->attr;
1991 /* The total length of the attribute value. */
1992 attr_len = le32_to_cpu(a->data.resident.value_length);
946929d8 1993 /* Fix an eventual previous failure of ntfs_commit_write(). */
f40661be
AA
1994 i_size = i_size_read(vi);
1995 if (unlikely(attr_len > i_size)) {
1996 attr_len = i_size;
946929d8 1997 a->data.resident.value_length = cpu_to_le32(attr_len);
946929d8 1998 }
946929d8
AA
1999 /* If we do not need to resize the attribute allocation we are done. */
2000 if (new_size <= attr_len)
2001 goto done_unm;
1da177e4
LT
2002 /* Check if new size is allowed in $AttrDef. */
2003 err = ntfs_attr_size_bounds_check(vol, ni->type, new_size);
2004 if (unlikely(err)) {
2005 if (err == -ERANGE) {
2006 ntfs_error(vol->sb, "Write would cause the inode "
2007 "0x%lx to exceed the maximum size for "
2008 "its attribute type (0x%x). Aborting "
2009 "write.", vi->i_ino,
2010 le32_to_cpu(ni->type));
2011 } else {
2012 ntfs_error(vol->sb, "Inode 0x%lx has unknown "
2013 "attribute type 0x%x. Aborting "
2014 "write.", vi->i_ino,
2015 le32_to_cpu(ni->type));
2016 err = -EIO;
2017 }
2018 goto err_out2;
2019 }
2020 /*
2021 * Extend the attribute record to be able to store the new attribute
2022 * size.
2023 */
2024 if (new_size >= vol->mft_record_size || ntfs_attr_record_resize(m, a,
2025 le16_to_cpu(a->data.resident.value_offset) +
2026 new_size)) {
2027 /* Not enough space in the mft record. */
2028 ntfs_error(vol->sb, "Not enough space in the mft record for "
2029 "the resized attribute value. This is not "
2030 "supported yet. Aborting write.");
2031 err = -EOPNOTSUPP;
2032 goto err_out2;
2033 }
2034 /*
2035 * We have enough space in the mft record to fit the write. This
2036 * implies the attribute is smaller than the mft record and hence the
2037 * attribute must be in a single page and hence page->index must be 0.
2038 */
2039 BUG_ON(page->index);
2040 /*
2041 * If the beginning of the write is past the old size, enlarge the
2042 * attribute value up to the beginning of the write and fill it with
2043 * zeroes.
2044 */
2045 if (from > attr_len) {
2046 memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
2047 attr_len, 0, from - attr_len);
2048 a->data.resident.value_length = cpu_to_le32(from);
2049 /* Zero the corresponding area in the page as well. */
2050 if (PageUptodate(page)) {
2051 kaddr = kmap_atomic(page, KM_USER0);
2052 memset(kaddr + attr_len, 0, from - attr_len);
2053 kunmap_atomic(kaddr, KM_USER0);
2054 flush_dcache_page(page);
2055 }
2056 }
2057 flush_dcache_mft_record_page(ctx->ntfs_ino);
2058 mark_mft_record_dirty(ctx->ntfs_ino);
946929d8 2059done_unm:
1da177e4
LT
2060 ntfs_attr_put_search_ctx(ctx);
2061 unmap_mft_record(base_ni);
2062 /*
2063 * Because resident attributes are handled by memcpy() to/from the
2064 * corresponding MFT record, and because this form of i/o is byte
2065 * aligned rather than block aligned, there is no need to bring the
2066 * page uptodate here as in the non-resident case where we need to
2067 * bring the buffers straddled by the write uptodate before
2068 * generic_file_write() does the copying from userspace.
2069 *
2070 * We thus defer the uptodate bringing of the page region outside the
2071 * region written to to ntfs_commit_write(), which makes the code
2072 * simpler and saves one atomic kmap which is good.
2073 */
2074done:
2075 ntfs_debug("Done.");
2076 return 0;
2077err_out:
2078 if (err == -ENOMEM)
2079 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2080 "prepare the write.");
2081 else {
2082 ntfs_error(vi->i_sb, "Resident attribute prepare write failed "
2083 "with error %i.", err);
2084 NVolSetErrors(vol);
2085 make_bad_inode(vi);
2086 }
2087err_out2:
2088 if (ctx)
2089 ntfs_attr_put_search_ctx(ctx);
2090 if (m)
2091 unmap_mft_record(base_ni);
2092 return err;
2093}
2094
2095/**
2096 * ntfs_commit_nonresident_write -
2097 *
2098 */
2099static int ntfs_commit_nonresident_write(struct page *page,
2100 unsigned from, unsigned to)
2101{
2102 s64 pos = ((s64)page->index << PAGE_CACHE_SHIFT) + to;
2103 struct inode *vi = page->mapping->host;
2104 struct buffer_head *bh, *head;
2105 unsigned int block_start, block_end, blocksize;
2106 BOOL partial;
2107
2108 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2109 "0x%lx, from = %u, to = %u.", vi->i_ino,
2110 NTFS_I(vi)->type, page->index, from, to);
2111 blocksize = 1 << vi->i_blkbits;
2112
2113 // FIXME: We need a whole slew of special cases in here for compressed
2114 // files for example...
2115 // For now, we know ntfs_prepare_write() would have failed so we can't
2116 // get here in any of the cases which we have to special case, so we
2117 // are just a ripped off, unrolled generic_commit_write().
2118
2119 bh = head = page_buffers(page);
2120 block_start = 0;
2121 partial = FALSE;
2122 do {
2123 block_end = block_start + blocksize;
2124 if (block_end <= from || block_start >= to) {
2125 if (!buffer_uptodate(bh))
2126 partial = TRUE;
2127 } else {
2128 set_buffer_uptodate(bh);
2129 mark_buffer_dirty(bh);
2130 }
2131 } while (block_start = block_end, (bh = bh->b_this_page) != head);
2132 /*
2133 * If this is a partial write which happened to make all buffers
2134 * uptodate then we can optimize away a bogus ->readpage() for the next
2135 * read(). Here we 'discover' whether the page went uptodate as a
2136 * result of this (potentially partial) write.
2137 */
2138 if (!partial)
2139 SetPageUptodate(page);
2140 /*
2141 * Not convinced about this at all. See disparity comment above. For
2142 * now we know ntfs_prepare_write() would have failed in the write
2143 * exceeds i_size case, so this will never trigger which is fine.
2144 */
07a4e2da 2145 if (pos > i_size_read(vi)) {
1da177e4
LT
2146 ntfs_error(vi->i_sb, "Writing beyond the existing file size is "
2147 "not supported yet. Sorry.");
2148 return -EOPNOTSUPP;
2149 // vi->i_size = pos;
2150 // mark_inode_dirty(vi);
2151 }
2152 ntfs_debug("Done.");
2153 return 0;
2154}
2155
2156/**
2157 * ntfs_commit_write - commit the received data
2158 *
2159 * This is called from generic_file_write() with i_sem held on the inode
2160 * (@page->mapping->host). The @page is locked but not kmap()ped. The source
2161 * data has already been copied into the @page. ntfs_prepare_write() has been
2162 * called before the data copied and it returned success so we can take the
2163 * results of various BUG checks and some error handling for granted.
2164 *
2165 * Need to mark modified blocks dirty so they get written out later when
2166 * ntfs_writepage() is invoked by the VM.
2167 *
2168 * Return 0 on success or -errno on error.
2169 *
2170 * Should be using generic_commit_write(). This marks buffers uptodate and
2171 * dirty, sets the page uptodate if all buffers in the page are uptodate, and
2172 * updates i_size if the end of io is beyond i_size. In that case, it also
2173 * marks the inode dirty.
2174 *
2175 * Cannot use generic_commit_write() due to ntfs specialities but can look at
2176 * it for implementation guidance.
2177 *
2178 * If things have gone as outlined in ntfs_prepare_write(), then we do not
2179 * need to do any page content modifications here at all, except in the write
2180 * to resident attribute case, where we need to do the uptodate bringing here
2181 * which we combine with the copying into the mft record which means we save
2182 * one atomic kmap.
2183 */
2184static int ntfs_commit_write(struct file *file, struct page *page,
2185 unsigned from, unsigned to)
2186{
2187 struct inode *vi = page->mapping->host;
2188 ntfs_inode *base_ni, *ni = NTFS_I(vi);
2189 char *kaddr, *kattr;
2190 ntfs_attr_search_ctx *ctx;
2191 MFT_RECORD *m;
2192 ATTR_RECORD *a;
2193 u32 attr_len;
2194 int err;
2195
2196 ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
2197 "0x%lx, from = %u, to = %u.", vi->i_ino, ni->type,
2198 page->index, from, to);
2199 /* If the attribute is not resident, deal with it elsewhere. */
2200 if (NInoNonResident(ni)) {
2201 /* Only unnamed $DATA attributes can be compressed/encrypted. */
2202 if (ni->type == AT_DATA && !ni->name_len) {
2203 /* Encrypted files need separate handling. */
2204 if (NInoEncrypted(ni)) {
2205 // We never get here at present!
2206 BUG();
2207 }
2208 /* Compressed data streams are handled in compress.c. */
2209 if (NInoCompressed(ni)) {
2210 // TODO: Implement this!
2211 // return ntfs_write_compressed_block(page);
2212 // We never get here at present!
2213 BUG();
2214 }
2215 }
2216 /* Normal data stream. */
2217 return ntfs_commit_nonresident_write(page, from, to);
2218 }
2219 /*
2220 * Attribute is resident, implying it is not compressed, encrypted, or
2221 * sparse.
2222 */
2223 if (!NInoAttr(ni))
2224 base_ni = ni;
2225 else
2226 base_ni = ni->ext.base_ntfs_ino;
2227 /* Map, pin, and lock the mft record. */
2228 m = map_mft_record(base_ni);
2229 if (IS_ERR(m)) {
2230 err = PTR_ERR(m);
2231 m = NULL;
2232 ctx = NULL;
2233 goto err_out;
2234 }
2235 ctx = ntfs_attr_get_search_ctx(base_ni, m);
2236 if (unlikely(!ctx)) {
2237 err = -ENOMEM;
2238 goto err_out;
2239 }
2240 err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2241 CASE_SENSITIVE, 0, NULL, 0, ctx);
2242 if (unlikely(err)) {
2243 if (err == -ENOENT)
2244 err = -EIO;
2245 goto err_out;
2246 }
2247 a = ctx->attr;
2248 /* The total length of the attribute value. */
2249 attr_len = le32_to_cpu(a->data.resident.value_length);
2250 BUG_ON(from > attr_len);
2251 kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset);
2252 kaddr = kmap_atomic(page, KM_USER0);
2253 /* Copy the received data from the page to the mft record. */
2254 memcpy(kattr + from, kaddr + from, to - from);
2255 /* Update the attribute length if necessary. */
2256 if (to > attr_len) {
2257 attr_len = to;
2258 a->data.resident.value_length = cpu_to_le32(attr_len);
2259 }
2260 /*
2261 * If the page is not uptodate, bring the out of bounds area(s)
2262 * uptodate by copying data from the mft record to the page.
2263 */
2264 if (!PageUptodate(page)) {
2265 if (from > 0)
2266 memcpy(kaddr, kattr, from);
2267 if (to < attr_len)
2268 memcpy(kaddr + to, kattr + to, attr_len - to);
2269 /* Zero the region outside the end of the attribute value. */
2270 if (attr_len < PAGE_CACHE_SIZE)
2271 memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len);
2272 /*
2273 * The probability of not having done any of the above is
2274 * extremely small, so we just flush unconditionally.
2275 */
2276 flush_dcache_page(page);
2277 SetPageUptodate(page);
2278 }
2279 kunmap_atomic(kaddr, KM_USER0);
2280 /* Update i_size if necessary. */
07a4e2da
AA
2281 if (i_size_read(vi) < attr_len) {
2282 unsigned long flags;
2283
2284 write_lock_irqsave(&ni->size_lock, flags);
1da177e4
LT
2285 ni->allocated_size = ni->initialized_size = attr_len;
2286 i_size_write(vi, attr_len);
07a4e2da 2287 write_unlock_irqrestore(&ni->size_lock, flags);
1da177e4
LT
2288 }
2289 /* Mark the mft record dirty, so it gets written back. */
2290 flush_dcache_mft_record_page(ctx->ntfs_ino);
2291 mark_mft_record_dirty(ctx->ntfs_ino);
2292 ntfs_attr_put_search_ctx(ctx);
2293 unmap_mft_record(base_ni);
2294 ntfs_debug("Done.");
2295 return 0;
2296err_out:
2297 if (err == -ENOMEM) {
2298 ntfs_warning(vi->i_sb, "Error allocating memory required to "
2299 "commit the write.");
2300 if (PageUptodate(page)) {
2301 ntfs_warning(vi->i_sb, "Page is uptodate, setting "
2302 "dirty so the write will be retried "
2303 "later on by the VM.");
2304 /*
2305 * Put the page on mapping->dirty_pages, but leave its
2306 * buffers' dirty state as-is.
2307 */
2308 __set_page_dirty_nobuffers(page);
2309 err = 0;
2310 } else
2311 ntfs_error(vi->i_sb, "Page is not uptodate. Written "
2312 "data has been lost.");
2313 } else {
2314 ntfs_error(vi->i_sb, "Resident attribute commit write failed "
2315 "with error %i.", err);
2316 NVolSetErrors(ni->vol);
2317 make_bad_inode(vi);
2318 }
2319 if (ctx)
2320 ntfs_attr_put_search_ctx(ctx);
2321 if (m)
2322 unmap_mft_record(base_ni);
2323 return err;
2324}
2325
2326#endif /* NTFS_RW */
2327
2328/**
2329 * ntfs_aops - general address space operations for inodes and attributes
2330 */
2331struct address_space_operations ntfs_aops = {
2332 .readpage = ntfs_readpage, /* Fill page with data. */
2333 .sync_page = block_sync_page, /* Currently, just unplugs the
2334 disk request queue. */
2335#ifdef NTFS_RW
2336 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2337 .prepare_write = ntfs_prepare_write, /* Prepare page and buffers
2338 ready to receive data. */
2339 .commit_write = ntfs_commit_write, /* Commit received data. */
2340#endif /* NTFS_RW */
2341};
2342
2343/**
2344 * ntfs_mst_aops - general address space operations for mst protecteed inodes
2345 * and attributes
2346 */
2347struct address_space_operations ntfs_mst_aops = {
2348 .readpage = ntfs_readpage, /* Fill page with data. */
2349 .sync_page = block_sync_page, /* Currently, just unplugs the
2350 disk request queue. */
2351#ifdef NTFS_RW
2352 .writepage = ntfs_writepage, /* Write dirty page to disk. */
2353 .set_page_dirty = __set_page_dirty_nobuffers, /* Set the page dirty
2354 without touching the buffers
2355 belonging to the page. */
2356#endif /* NTFS_RW */
2357};
2358
2359#ifdef NTFS_RW
2360
2361/**
2362 * mark_ntfs_record_dirty - mark an ntfs record dirty
2363 * @page: page containing the ntfs record to mark dirty
2364 * @ofs: byte offset within @page at which the ntfs record begins
2365 *
2366 * Set the buffers and the page in which the ntfs record is located dirty.
2367 *
2368 * The latter also marks the vfs inode the ntfs record belongs to dirty
2369 * (I_DIRTY_PAGES only).
2370 *
2371 * If the page does not have buffers, we create them and set them uptodate.
2372 * The page may not be locked which is why we need to handle the buffers under
2373 * the mapping->private_lock. Once the buffers are marked dirty we no longer
2374 * need the lock since try_to_free_buffers() does not free dirty buffers.
2375 */
2376void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
2377 struct address_space *mapping = page->mapping;
2378 ntfs_inode *ni = NTFS_I(mapping->host);
2379 struct buffer_head *bh, *head, *buffers_to_free = NULL;
2380 unsigned int end, bh_size, bh_ofs;
2381
2382 BUG_ON(!PageUptodate(page));
2383 end = ofs + ni->itype.index.block_size;
2384 bh_size = 1 << VFS_I(ni)->i_blkbits;
2385 spin_lock(&mapping->private_lock);
2386 if (unlikely(!page_has_buffers(page))) {
2387 spin_unlock(&mapping->private_lock);
2388 bh = head = alloc_page_buffers(page, bh_size, 1);
2389 spin_lock(&mapping->private_lock);
2390 if (likely(!page_has_buffers(page))) {
2391 struct buffer_head *tail;
2392
2393 do {
2394 set_buffer_uptodate(bh);
2395 tail = bh;
2396 bh = bh->b_this_page;
2397 } while (bh);
2398 tail->b_this_page = head;
2399 attach_page_buffers(page, head);
2400 } else
2401 buffers_to_free = bh;
2402 }
2403 bh = head = page_buffers(page);
a01ac532 2404 BUG_ON(!bh);
1da177e4
LT
2405 do {
2406 bh_ofs = bh_offset(bh);
2407 if (bh_ofs + bh_size <= ofs)
2408 continue;
2409 if (unlikely(bh_ofs >= end))
2410 break;
2411 set_buffer_dirty(bh);
2412 } while ((bh = bh->b_this_page) != head);
2413 spin_unlock(&mapping->private_lock);
2414 __set_page_dirty_nobuffers(page);
2415 if (unlikely(buffers_to_free)) {
2416 do {
2417 bh = buffers_to_free->b_this_page;
2418 free_buffer_head(buffers_to_free);
2419 buffers_to_free = bh;
2420 } while (buffers_to_free);
2421 }
2422}
2423
2424#endif /* NTFS_RW */
This page took 0.145624 seconds and 5 git commands to generate.