ocfs2: support writing of unwritten extents
[deliverable/linux.git] / fs / ocfs2 / alloc.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * alloc.c
5 *
6 * Extent allocs and frees
7 *
8 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
60b11392 30#include <linux/swap.h>
ccd979bd
MF
31
32#define MLOG_MASK_PREFIX ML_DISK_ALLOC
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
60b11392 38#include "aops.h"
ccd979bd
MF
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "inode.h"
42#include "journal.h"
43#include "localalloc.h"
44#include "suballoc.h"
45#include "sysfile.h"
46#include "file.h"
47#include "super.h"
48#include "uptodate.h"
49
50#include "buffer_head_io.h"
51
dcd0538f 52static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc);
59a5e416
MF
53static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
54 struct ocfs2_extent_block *eb);
ccd979bd 55
dcd0538f
MF
56/*
57 * Structures which describe a path through a btree, and functions to
58 * manipulate them.
59 *
60 * The idea here is to be as generic as possible with the tree
61 * manipulation code.
62 */
63struct ocfs2_path_item {
64 struct buffer_head *bh;
65 struct ocfs2_extent_list *el;
66};
ccd979bd 67
dcd0538f 68#define OCFS2_MAX_PATH_DEPTH 5
ccd979bd 69
dcd0538f
MF
70struct ocfs2_path {
71 int p_tree_depth;
72 struct ocfs2_path_item p_node[OCFS2_MAX_PATH_DEPTH];
73};
ccd979bd 74
dcd0538f
MF
75#define path_root_bh(_path) ((_path)->p_node[0].bh)
76#define path_root_el(_path) ((_path)->p_node[0].el)
77#define path_leaf_bh(_path) ((_path)->p_node[(_path)->p_tree_depth].bh)
78#define path_leaf_el(_path) ((_path)->p_node[(_path)->p_tree_depth].el)
79#define path_num_items(_path) ((_path)->p_tree_depth + 1)
ccd979bd 80
dcd0538f
MF
81/*
82 * Reset the actual path elements so that we can re-use the structure
83 * to build another path. Generally, this involves freeing the buffer
84 * heads.
85 */
86static void ocfs2_reinit_path(struct ocfs2_path *path, int keep_root)
87{
88 int i, start = 0, depth = 0;
89 struct ocfs2_path_item *node;
ccd979bd 90
dcd0538f
MF
91 if (keep_root)
92 start = 1;
ccd979bd 93
dcd0538f
MF
94 for(i = start; i < path_num_items(path); i++) {
95 node = &path->p_node[i];
96
97 brelse(node->bh);
98 node->bh = NULL;
99 node->el = NULL;
100 }
101
102 /*
103 * Tree depth may change during truncate, or insert. If we're
104 * keeping the root extent list, then make sure that our path
105 * structure reflects the proper depth.
106 */
107 if (keep_root)
108 depth = le16_to_cpu(path_root_el(path)->l_tree_depth);
109
110 path->p_tree_depth = depth;
111}
112
113static void ocfs2_free_path(struct ocfs2_path *path)
114{
115 if (path) {
116 ocfs2_reinit_path(path, 0);
117 kfree(path);
118 }
119}
120
328d5752
MF
121/*
122 * All the elements of src into dest. After this call, src could be freed
123 * without affecting dest.
124 *
125 * Both paths should have the same root. Any non-root elements of dest
126 * will be freed.
127 */
128static void ocfs2_cp_path(struct ocfs2_path *dest, struct ocfs2_path *src)
129{
130 int i;
131
132 BUG_ON(path_root_bh(dest) != path_root_bh(src));
133 BUG_ON(path_root_el(dest) != path_root_el(src));
134
135 ocfs2_reinit_path(dest, 1);
136
137 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
138 dest->p_node[i].bh = src->p_node[i].bh;
139 dest->p_node[i].el = src->p_node[i].el;
140
141 if (dest->p_node[i].bh)
142 get_bh(dest->p_node[i].bh);
143 }
144}
145
dcd0538f
MF
146/*
147 * Make the *dest path the same as src and re-initialize src path to
148 * have a root only.
149 */
150static void ocfs2_mv_path(struct ocfs2_path *dest, struct ocfs2_path *src)
151{
152 int i;
153
154 BUG_ON(path_root_bh(dest) != path_root_bh(src));
155
156 for(i = 1; i < OCFS2_MAX_PATH_DEPTH; i++) {
157 brelse(dest->p_node[i].bh);
158
159 dest->p_node[i].bh = src->p_node[i].bh;
160 dest->p_node[i].el = src->p_node[i].el;
161
162 src->p_node[i].bh = NULL;
163 src->p_node[i].el = NULL;
164 }
165}
166
167/*
168 * Insert an extent block at given index.
169 *
170 * This will not take an additional reference on eb_bh.
171 */
172static inline void ocfs2_path_insert_eb(struct ocfs2_path *path, int index,
173 struct buffer_head *eb_bh)
174{
175 struct ocfs2_extent_block *eb = (struct ocfs2_extent_block *)eb_bh->b_data;
176
177 /*
178 * Right now, no root bh is an extent block, so this helps
179 * catch code errors with dinode trees. The assertion can be
180 * safely removed if we ever need to insert extent block
181 * structures at the root.
182 */
183 BUG_ON(index == 0);
184
185 path->p_node[index].bh = eb_bh;
186 path->p_node[index].el = &eb->h_list;
187}
188
189static struct ocfs2_path *ocfs2_new_path(struct buffer_head *root_bh,
190 struct ocfs2_extent_list *root_el)
191{
192 struct ocfs2_path *path;
ccd979bd 193
dcd0538f
MF
194 BUG_ON(le16_to_cpu(root_el->l_tree_depth) >= OCFS2_MAX_PATH_DEPTH);
195
196 path = kzalloc(sizeof(*path), GFP_NOFS);
197 if (path) {
198 path->p_tree_depth = le16_to_cpu(root_el->l_tree_depth);
199 get_bh(root_bh);
200 path_root_bh(path) = root_bh;
201 path_root_el(path) = root_el;
202 }
203
204 return path;
205}
206
207/*
208 * Allocate and initialize a new path based on a disk inode tree.
209 */
210static struct ocfs2_path *ocfs2_new_inode_path(struct buffer_head *di_bh)
211{
212 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
213 struct ocfs2_extent_list *el = &di->id2.i_list;
214
215 return ocfs2_new_path(di_bh, el);
216}
217
218/*
219 * Convenience function to journal all components in a path.
220 */
221static int ocfs2_journal_access_path(struct inode *inode, handle_t *handle,
222 struct ocfs2_path *path)
223{
224 int i, ret = 0;
225
226 if (!path)
227 goto out;
228
229 for(i = 0; i < path_num_items(path); i++) {
230 ret = ocfs2_journal_access(handle, inode, path->p_node[i].bh,
231 OCFS2_JOURNAL_ACCESS_WRITE);
232 if (ret < 0) {
233 mlog_errno(ret);
234 goto out;
235 }
236 }
237
238out:
239 return ret;
240}
241
328d5752
MF
242/*
243 * Return the index of the extent record which contains cluster #v_cluster.
244 * -1 is returned if it was not found.
245 *
246 * Should work fine on interior and exterior nodes.
247 */
248int ocfs2_search_extent_list(struct ocfs2_extent_list *el, u32 v_cluster)
249{
250 int ret = -1;
251 int i;
252 struct ocfs2_extent_rec *rec;
253 u32 rec_end, rec_start, clusters;
254
255 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
256 rec = &el->l_recs[i];
257
258 rec_start = le32_to_cpu(rec->e_cpos);
259 clusters = ocfs2_rec_clusters(el, rec);
260
261 rec_end = rec_start + clusters;
262
263 if (v_cluster >= rec_start && v_cluster < rec_end) {
264 ret = i;
265 break;
266 }
267 }
268
269 return ret;
270}
271
dcd0538f
MF
272enum ocfs2_contig_type {
273 CONTIG_NONE = 0,
274 CONTIG_LEFT,
328d5752
MF
275 CONTIG_RIGHT,
276 CONTIG_LEFTRIGHT,
dcd0538f
MF
277};
278
e48edee2
MF
279
280/*
281 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
282 * ocfs2_extent_contig only work properly against leaf nodes!
283 */
dcd0538f
MF
284static int ocfs2_block_extent_contig(struct super_block *sb,
285 struct ocfs2_extent_rec *ext,
286 u64 blkno)
ccd979bd 287{
e48edee2
MF
288 u64 blk_end = le64_to_cpu(ext->e_blkno);
289
290 blk_end += ocfs2_clusters_to_blocks(sb,
291 le16_to_cpu(ext->e_leaf_clusters));
292
293 return blkno == blk_end;
ccd979bd
MF
294}
295
dcd0538f
MF
296static int ocfs2_extents_adjacent(struct ocfs2_extent_rec *left,
297 struct ocfs2_extent_rec *right)
298{
e48edee2
MF
299 u32 left_range;
300
301 left_range = le32_to_cpu(left->e_cpos) +
302 le16_to_cpu(left->e_leaf_clusters);
303
304 return (left_range == le32_to_cpu(right->e_cpos));
dcd0538f
MF
305}
306
307static enum ocfs2_contig_type
308 ocfs2_extent_contig(struct inode *inode,
309 struct ocfs2_extent_rec *ext,
310 struct ocfs2_extent_rec *insert_rec)
311{
312 u64 blkno = le64_to_cpu(insert_rec->e_blkno);
313
328d5752
MF
314 /*
315 * Refuse to coalesce extent records with different flag
316 * fields - we don't want to mix unwritten extents with user
317 * data.
318 */
319 if (ext->e_flags != insert_rec->e_flags)
320 return CONTIG_NONE;
321
dcd0538f
MF
322 if (ocfs2_extents_adjacent(ext, insert_rec) &&
323 ocfs2_block_extent_contig(inode->i_sb, ext, blkno))
324 return CONTIG_RIGHT;
325
326 blkno = le64_to_cpu(ext->e_blkno);
327 if (ocfs2_extents_adjacent(insert_rec, ext) &&
328 ocfs2_block_extent_contig(inode->i_sb, insert_rec, blkno))
329 return CONTIG_LEFT;
330
331 return CONTIG_NONE;
332}
333
334/*
335 * NOTE: We can have pretty much any combination of contiguousness and
336 * appending.
337 *
338 * The usefulness of APPEND_TAIL is more in that it lets us know that
339 * we'll have to update the path to that leaf.
340 */
341enum ocfs2_append_type {
342 APPEND_NONE = 0,
343 APPEND_TAIL,
344};
345
328d5752
MF
346enum ocfs2_split_type {
347 SPLIT_NONE = 0,
348 SPLIT_LEFT,
349 SPLIT_RIGHT,
350};
351
dcd0538f 352struct ocfs2_insert_type {
328d5752 353 enum ocfs2_split_type ins_split;
dcd0538f
MF
354 enum ocfs2_append_type ins_appending;
355 enum ocfs2_contig_type ins_contig;
356 int ins_contig_index;
357 int ins_free_records;
358 int ins_tree_depth;
359};
360
328d5752
MF
361struct ocfs2_merge_ctxt {
362 enum ocfs2_contig_type c_contig_type;
363 int c_has_empty_extent;
364 int c_split_covers_rec;
365 int c_used_tail_recs;
366};
367
ccd979bd
MF
368/*
369 * How many free extents have we got before we need more meta data?
370 */
371int ocfs2_num_free_extents(struct ocfs2_super *osb,
372 struct inode *inode,
373 struct ocfs2_dinode *fe)
374{
375 int retval;
376 struct ocfs2_extent_list *el;
377 struct ocfs2_extent_block *eb;
378 struct buffer_head *eb_bh = NULL;
379
380 mlog_entry_void();
381
382 if (!OCFS2_IS_VALID_DINODE(fe)) {
383 OCFS2_RO_ON_INVALID_DINODE(inode->i_sb, fe);
384 retval = -EIO;
385 goto bail;
386 }
387
388 if (fe->i_last_eb_blk) {
389 retval = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
390 &eb_bh, OCFS2_BH_CACHED, inode);
391 if (retval < 0) {
392 mlog_errno(retval);
393 goto bail;
394 }
395 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
396 el = &eb->h_list;
397 } else
398 el = &fe->id2.i_list;
399
400 BUG_ON(el->l_tree_depth != 0);
401
402 retval = le16_to_cpu(el->l_count) - le16_to_cpu(el->l_next_free_rec);
403bail:
404 if (eb_bh)
405 brelse(eb_bh);
406
407 mlog_exit(retval);
408 return retval;
409}
410
411/* expects array to already be allocated
412 *
413 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
414 * l_count for you
415 */
416static int ocfs2_create_new_meta_bhs(struct ocfs2_super *osb,
1fabe148 417 handle_t *handle,
ccd979bd
MF
418 struct inode *inode,
419 int wanted,
420 struct ocfs2_alloc_context *meta_ac,
421 struct buffer_head *bhs[])
422{
423 int count, status, i;
424 u16 suballoc_bit_start;
425 u32 num_got;
426 u64 first_blkno;
427 struct ocfs2_extent_block *eb;
428
429 mlog_entry_void();
430
431 count = 0;
432 while (count < wanted) {
433 status = ocfs2_claim_metadata(osb,
434 handle,
435 meta_ac,
436 wanted - count,
437 &suballoc_bit_start,
438 &num_got,
439 &first_blkno);
440 if (status < 0) {
441 mlog_errno(status);
442 goto bail;
443 }
444
445 for(i = count; i < (num_got + count); i++) {
446 bhs[i] = sb_getblk(osb->sb, first_blkno);
447 if (bhs[i] == NULL) {
448 status = -EIO;
449 mlog_errno(status);
450 goto bail;
451 }
452 ocfs2_set_new_buffer_uptodate(inode, bhs[i]);
453
454 status = ocfs2_journal_access(handle, inode, bhs[i],
455 OCFS2_JOURNAL_ACCESS_CREATE);
456 if (status < 0) {
457 mlog_errno(status);
458 goto bail;
459 }
460
461 memset(bhs[i]->b_data, 0, osb->sb->s_blocksize);
462 eb = (struct ocfs2_extent_block *) bhs[i]->b_data;
463 /* Ok, setup the minimal stuff here. */
464 strcpy(eb->h_signature, OCFS2_EXTENT_BLOCK_SIGNATURE);
465 eb->h_blkno = cpu_to_le64(first_blkno);
466 eb->h_fs_generation = cpu_to_le32(osb->fs_generation);
ccd979bd 467 eb->h_suballoc_slot = cpu_to_le16(osb->slot_num);
ccd979bd
MF
468 eb->h_suballoc_bit = cpu_to_le16(suballoc_bit_start);
469 eb->h_list.l_count =
470 cpu_to_le16(ocfs2_extent_recs_per_eb(osb->sb));
471
472 suballoc_bit_start++;
473 first_blkno++;
474
475 /* We'll also be dirtied by the caller, so
476 * this isn't absolutely necessary. */
477 status = ocfs2_journal_dirty(handle, bhs[i]);
478 if (status < 0) {
479 mlog_errno(status);
480 goto bail;
481 }
482 }
483
484 count += num_got;
485 }
486
487 status = 0;
488bail:
489 if (status < 0) {
490 for(i = 0; i < wanted; i++) {
491 if (bhs[i])
492 brelse(bhs[i]);
493 bhs[i] = NULL;
494 }
495 }
496 mlog_exit(status);
497 return status;
498}
499
dcd0538f
MF
500/*
501 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
502 *
503 * Returns the sum of the rightmost extent rec logical offset and
504 * cluster count.
505 *
506 * ocfs2_add_branch() uses this to determine what logical cluster
507 * value should be populated into the leftmost new branch records.
508 *
509 * ocfs2_shift_tree_depth() uses this to determine the # clusters
510 * value for the new topmost tree record.
511 */
512static inline u32 ocfs2_sum_rightmost_rec(struct ocfs2_extent_list *el)
513{
514 int i;
515
516 i = le16_to_cpu(el->l_next_free_rec) - 1;
517
518 return le32_to_cpu(el->l_recs[i].e_cpos) +
e48edee2 519 ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f
MF
520}
521
ccd979bd
MF
522/*
523 * Add an entire tree branch to our inode. eb_bh is the extent block
524 * to start at, if we don't want to start the branch at the dinode
525 * structure.
526 *
527 * last_eb_bh is required as we have to update it's next_leaf pointer
528 * for the new last extent block.
529 *
530 * the new branch will be 'empty' in the sense that every block will
e48edee2 531 * contain a single record with cluster count == 0.
ccd979bd
MF
532 */
533static int ocfs2_add_branch(struct ocfs2_super *osb,
1fabe148 534 handle_t *handle,
ccd979bd
MF
535 struct inode *inode,
536 struct buffer_head *fe_bh,
537 struct buffer_head *eb_bh,
328d5752 538 struct buffer_head **last_eb_bh,
ccd979bd
MF
539 struct ocfs2_alloc_context *meta_ac)
540{
541 int status, new_blocks, i;
542 u64 next_blkno, new_last_eb_blk;
543 struct buffer_head *bh;
544 struct buffer_head **new_eb_bhs = NULL;
545 struct ocfs2_dinode *fe;
546 struct ocfs2_extent_block *eb;
547 struct ocfs2_extent_list *eb_el;
548 struct ocfs2_extent_list *el;
dcd0538f 549 u32 new_cpos;
ccd979bd
MF
550
551 mlog_entry_void();
552
328d5752 553 BUG_ON(!last_eb_bh || !*last_eb_bh);
ccd979bd
MF
554
555 fe = (struct ocfs2_dinode *) fe_bh->b_data;
556
557 if (eb_bh) {
558 eb = (struct ocfs2_extent_block *) eb_bh->b_data;
559 el = &eb->h_list;
560 } else
561 el = &fe->id2.i_list;
562
563 /* we never add a branch to a leaf. */
564 BUG_ON(!el->l_tree_depth);
565
566 new_blocks = le16_to_cpu(el->l_tree_depth);
567
568 /* allocate the number of new eb blocks we need */
569 new_eb_bhs = kcalloc(new_blocks, sizeof(struct buffer_head *),
570 GFP_KERNEL);
571 if (!new_eb_bhs) {
572 status = -ENOMEM;
573 mlog_errno(status);
574 goto bail;
575 }
576
577 status = ocfs2_create_new_meta_bhs(osb, handle, inode, new_blocks,
578 meta_ac, new_eb_bhs);
579 if (status < 0) {
580 mlog_errno(status);
581 goto bail;
582 }
583
328d5752 584 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
dcd0538f
MF
585 new_cpos = ocfs2_sum_rightmost_rec(&eb->h_list);
586
ccd979bd
MF
587 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
588 * linked with the rest of the tree.
589 * conversly, new_eb_bhs[0] is the new bottommost leaf.
590 *
591 * when we leave the loop, new_last_eb_blk will point to the
592 * newest leaf, and next_blkno will point to the topmost extent
593 * block. */
594 next_blkno = new_last_eb_blk = 0;
595 for(i = 0; i < new_blocks; i++) {
596 bh = new_eb_bhs[i];
597 eb = (struct ocfs2_extent_block *) bh->b_data;
598 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
599 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
600 status = -EIO;
601 goto bail;
602 }
603 eb_el = &eb->h_list;
604
605 status = ocfs2_journal_access(handle, inode, bh,
606 OCFS2_JOURNAL_ACCESS_CREATE);
607 if (status < 0) {
608 mlog_errno(status);
609 goto bail;
610 }
611
612 eb->h_next_leaf_blk = 0;
613 eb_el->l_tree_depth = cpu_to_le16(i);
614 eb_el->l_next_free_rec = cpu_to_le16(1);
dcd0538f
MF
615 /*
616 * This actually counts as an empty extent as
617 * c_clusters == 0
618 */
619 eb_el->l_recs[0].e_cpos = cpu_to_le32(new_cpos);
ccd979bd 620 eb_el->l_recs[0].e_blkno = cpu_to_le64(next_blkno);
e48edee2
MF
621 /*
622 * eb_el isn't always an interior node, but even leaf
623 * nodes want a zero'd flags and reserved field so
624 * this gets the whole 32 bits regardless of use.
625 */
626 eb_el->l_recs[0].e_int_clusters = cpu_to_le32(0);
ccd979bd
MF
627 if (!eb_el->l_tree_depth)
628 new_last_eb_blk = le64_to_cpu(eb->h_blkno);
629
630 status = ocfs2_journal_dirty(handle, bh);
631 if (status < 0) {
632 mlog_errno(status);
633 goto bail;
634 }
635
636 next_blkno = le64_to_cpu(eb->h_blkno);
637 }
638
639 /* This is a bit hairy. We want to update up to three blocks
640 * here without leaving any of them in an inconsistent state
641 * in case of error. We don't have to worry about
642 * journal_dirty erroring as it won't unless we've aborted the
643 * handle (in which case we would never be here) so reserving
644 * the write with journal_access is all we need to do. */
328d5752 645 status = ocfs2_journal_access(handle, inode, *last_eb_bh,
ccd979bd
MF
646 OCFS2_JOURNAL_ACCESS_WRITE);
647 if (status < 0) {
648 mlog_errno(status);
649 goto bail;
650 }
651 status = ocfs2_journal_access(handle, inode, fe_bh,
652 OCFS2_JOURNAL_ACCESS_WRITE);
653 if (status < 0) {
654 mlog_errno(status);
655 goto bail;
656 }
657 if (eb_bh) {
658 status = ocfs2_journal_access(handle, inode, eb_bh,
659 OCFS2_JOURNAL_ACCESS_WRITE);
660 if (status < 0) {
661 mlog_errno(status);
662 goto bail;
663 }
664 }
665
666 /* Link the new branch into the rest of the tree (el will
667 * either be on the fe, or the extent block passed in. */
668 i = le16_to_cpu(el->l_next_free_rec);
669 el->l_recs[i].e_blkno = cpu_to_le64(next_blkno);
dcd0538f 670 el->l_recs[i].e_cpos = cpu_to_le32(new_cpos);
e48edee2 671 el->l_recs[i].e_int_clusters = 0;
ccd979bd
MF
672 le16_add_cpu(&el->l_next_free_rec, 1);
673
674 /* fe needs a new last extent block pointer, as does the
675 * next_leaf on the previously last-extent-block. */
676 fe->i_last_eb_blk = cpu_to_le64(new_last_eb_blk);
677
328d5752 678 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
ccd979bd
MF
679 eb->h_next_leaf_blk = cpu_to_le64(new_last_eb_blk);
680
328d5752 681 status = ocfs2_journal_dirty(handle, *last_eb_bh);
ccd979bd
MF
682 if (status < 0)
683 mlog_errno(status);
684 status = ocfs2_journal_dirty(handle, fe_bh);
685 if (status < 0)
686 mlog_errno(status);
687 if (eb_bh) {
688 status = ocfs2_journal_dirty(handle, eb_bh);
689 if (status < 0)
690 mlog_errno(status);
691 }
692
328d5752
MF
693 /*
694 * Some callers want to track the rightmost leaf so pass it
695 * back here.
696 */
697 brelse(*last_eb_bh);
698 get_bh(new_eb_bhs[0]);
699 *last_eb_bh = new_eb_bhs[0];
700
ccd979bd
MF
701 status = 0;
702bail:
703 if (new_eb_bhs) {
704 for (i = 0; i < new_blocks; i++)
705 if (new_eb_bhs[i])
706 brelse(new_eb_bhs[i]);
707 kfree(new_eb_bhs);
708 }
709
710 mlog_exit(status);
711 return status;
712}
713
714/*
715 * adds another level to the allocation tree.
716 * returns back the new extent block so you can add a branch to it
717 * after this call.
718 */
719static int ocfs2_shift_tree_depth(struct ocfs2_super *osb,
1fabe148 720 handle_t *handle,
ccd979bd
MF
721 struct inode *inode,
722 struct buffer_head *fe_bh,
723 struct ocfs2_alloc_context *meta_ac,
724 struct buffer_head **ret_new_eb_bh)
725{
726 int status, i;
dcd0538f 727 u32 new_clusters;
ccd979bd
MF
728 struct buffer_head *new_eb_bh = NULL;
729 struct ocfs2_dinode *fe;
730 struct ocfs2_extent_block *eb;
731 struct ocfs2_extent_list *fe_el;
732 struct ocfs2_extent_list *eb_el;
733
734 mlog_entry_void();
735
736 status = ocfs2_create_new_meta_bhs(osb, handle, inode, 1, meta_ac,
737 &new_eb_bh);
738 if (status < 0) {
739 mlog_errno(status);
740 goto bail;
741 }
742
743 eb = (struct ocfs2_extent_block *) new_eb_bh->b_data;
744 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
745 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
746 status = -EIO;
747 goto bail;
748 }
749
750 eb_el = &eb->h_list;
751 fe = (struct ocfs2_dinode *) fe_bh->b_data;
752 fe_el = &fe->id2.i_list;
753
754 status = ocfs2_journal_access(handle, inode, new_eb_bh,
755 OCFS2_JOURNAL_ACCESS_CREATE);
756 if (status < 0) {
757 mlog_errno(status);
758 goto bail;
759 }
760
761 /* copy the fe data into the new extent block */
762 eb_el->l_tree_depth = fe_el->l_tree_depth;
763 eb_el->l_next_free_rec = fe_el->l_next_free_rec;
e48edee2
MF
764 for(i = 0; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
765 eb_el->l_recs[i] = fe_el->l_recs[i];
ccd979bd
MF
766
767 status = ocfs2_journal_dirty(handle, new_eb_bh);
768 if (status < 0) {
769 mlog_errno(status);
770 goto bail;
771 }
772
773 status = ocfs2_journal_access(handle, inode, fe_bh,
774 OCFS2_JOURNAL_ACCESS_WRITE);
775 if (status < 0) {
776 mlog_errno(status);
777 goto bail;
778 }
779
dcd0538f
MF
780 new_clusters = ocfs2_sum_rightmost_rec(eb_el);
781
ccd979bd
MF
782 /* update fe now */
783 le16_add_cpu(&fe_el->l_tree_depth, 1);
784 fe_el->l_recs[0].e_cpos = 0;
785 fe_el->l_recs[0].e_blkno = eb->h_blkno;
e48edee2
MF
786 fe_el->l_recs[0].e_int_clusters = cpu_to_le32(new_clusters);
787 for(i = 1; i < le16_to_cpu(fe_el->l_next_free_rec); i++)
788 memset(&fe_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
ccd979bd
MF
789 fe_el->l_next_free_rec = cpu_to_le16(1);
790
791 /* If this is our 1st tree depth shift, then last_eb_blk
792 * becomes the allocated extent block */
793 if (fe_el->l_tree_depth == cpu_to_le16(1))
794 fe->i_last_eb_blk = eb->h_blkno;
795
796 status = ocfs2_journal_dirty(handle, fe_bh);
797 if (status < 0) {
798 mlog_errno(status);
799 goto bail;
800 }
801
802 *ret_new_eb_bh = new_eb_bh;
803 new_eb_bh = NULL;
804 status = 0;
805bail:
806 if (new_eb_bh)
807 brelse(new_eb_bh);
808
809 mlog_exit(status);
810 return status;
811}
812
ccd979bd
MF
813/*
814 * Should only be called when there is no space left in any of the
815 * leaf nodes. What we want to do is find the lowest tree depth
816 * non-leaf extent block with room for new records. There are three
817 * valid results of this search:
818 *
819 * 1) a lowest extent block is found, then we pass it back in
820 * *lowest_eb_bh and return '0'
821 *
822 * 2) the search fails to find anything, but the dinode has room. We
823 * pass NULL back in *lowest_eb_bh, but still return '0'
824 *
825 * 3) the search fails to find anything AND the dinode is full, in
826 * which case we return > 0
827 *
828 * return status < 0 indicates an error.
829 */
830static int ocfs2_find_branch_target(struct ocfs2_super *osb,
831 struct inode *inode,
832 struct buffer_head *fe_bh,
833 struct buffer_head **target_bh)
834{
835 int status = 0, i;
836 u64 blkno;
837 struct ocfs2_dinode *fe;
838 struct ocfs2_extent_block *eb;
839 struct ocfs2_extent_list *el;
840 struct buffer_head *bh = NULL;
841 struct buffer_head *lowest_bh = NULL;
842
843 mlog_entry_void();
844
845 *target_bh = NULL;
846
847 fe = (struct ocfs2_dinode *) fe_bh->b_data;
848 el = &fe->id2.i_list;
849
850 while(le16_to_cpu(el->l_tree_depth) > 1) {
851 if (le16_to_cpu(el->l_next_free_rec) == 0) {
b0697053 852 ocfs2_error(inode->i_sb, "Dinode %llu has empty "
ccd979bd 853 "extent list (next_free_rec == 0)",
b0697053 854 (unsigned long long)OCFS2_I(inode)->ip_blkno);
ccd979bd
MF
855 status = -EIO;
856 goto bail;
857 }
858 i = le16_to_cpu(el->l_next_free_rec) - 1;
859 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
860 if (!blkno) {
b0697053 861 ocfs2_error(inode->i_sb, "Dinode %llu has extent "
ccd979bd
MF
862 "list where extent # %d has no physical "
863 "block start",
b0697053 864 (unsigned long long)OCFS2_I(inode)->ip_blkno, i);
ccd979bd
MF
865 status = -EIO;
866 goto bail;
867 }
868
869 if (bh) {
870 brelse(bh);
871 bh = NULL;
872 }
873
874 status = ocfs2_read_block(osb, blkno, &bh, OCFS2_BH_CACHED,
875 inode);
876 if (status < 0) {
877 mlog_errno(status);
878 goto bail;
879 }
dcd0538f
MF
880
881 eb = (struct ocfs2_extent_block *) bh->b_data;
882 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
883 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
884 status = -EIO;
885 goto bail;
886 }
887 el = &eb->h_list;
888
889 if (le16_to_cpu(el->l_next_free_rec) <
890 le16_to_cpu(el->l_count)) {
891 if (lowest_bh)
892 brelse(lowest_bh);
893 lowest_bh = bh;
894 get_bh(lowest_bh);
895 }
896 }
897
898 /* If we didn't find one and the fe doesn't have any room,
899 * then return '1' */
900 if (!lowest_bh
901 && (fe->id2.i_list.l_next_free_rec == fe->id2.i_list.l_count))
902 status = 1;
903
904 *target_bh = lowest_bh;
905bail:
906 if (bh)
907 brelse(bh);
908
909 mlog_exit(status);
910 return status;
911}
912
c3afcbb3
MF
913/*
914 * Grow a b-tree so that it has more records.
915 *
916 * We might shift the tree depth in which case existing paths should
917 * be considered invalid.
918 *
919 * Tree depth after the grow is returned via *final_depth.
328d5752
MF
920 *
921 * *last_eb_bh will be updated by ocfs2_add_branch().
c3afcbb3
MF
922 */
923static int ocfs2_grow_tree(struct inode *inode, handle_t *handle,
924 struct buffer_head *di_bh, int *final_depth,
328d5752 925 struct buffer_head **last_eb_bh,
c3afcbb3
MF
926 struct ocfs2_alloc_context *meta_ac)
927{
928 int ret, shift;
929 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
930 int depth = le16_to_cpu(di->id2.i_list.l_tree_depth);
931 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
932 struct buffer_head *bh = NULL;
933
934 BUG_ON(meta_ac == NULL);
935
936 shift = ocfs2_find_branch_target(osb, inode, di_bh, &bh);
937 if (shift < 0) {
938 ret = shift;
939 mlog_errno(ret);
940 goto out;
941 }
942
943 /* We traveled all the way to the bottom of the allocation tree
944 * and didn't find room for any more extents - we need to add
945 * another tree level */
946 if (shift) {
947 BUG_ON(bh);
948 mlog(0, "need to shift tree depth (current = %d)\n", depth);
949
950 /* ocfs2_shift_tree_depth will return us a buffer with
951 * the new extent block (so we can pass that to
952 * ocfs2_add_branch). */
953 ret = ocfs2_shift_tree_depth(osb, handle, inode, di_bh,
954 meta_ac, &bh);
955 if (ret < 0) {
956 mlog_errno(ret);
957 goto out;
958 }
959 depth++;
328d5752
MF
960 if (depth == 1) {
961 /*
962 * Special case: we have room now if we shifted from
963 * tree_depth 0, so no more work needs to be done.
964 *
965 * We won't be calling add_branch, so pass
966 * back *last_eb_bh as the new leaf. At depth
967 * zero, it should always be null so there's
968 * no reason to brelse.
969 */
970 BUG_ON(*last_eb_bh);
971 get_bh(bh);
972 *last_eb_bh = bh;
c3afcbb3 973 goto out;
328d5752 974 }
c3afcbb3
MF
975 }
976
977 /* call ocfs2_add_branch to add the final part of the tree with
978 * the new data. */
979 mlog(0, "add branch. bh = %p\n", bh);
980 ret = ocfs2_add_branch(osb, handle, inode, di_bh, bh, last_eb_bh,
981 meta_ac);
982 if (ret < 0) {
983 mlog_errno(ret);
984 goto out;
985 }
986
987out:
988 if (final_depth)
989 *final_depth = depth;
990 brelse(bh);
991 return ret;
992}
993
e48edee2
MF
994/*
995 * This is only valid for leaf nodes, which are the only ones that can
996 * have empty extents anyway.
997 */
dcd0538f
MF
998static inline int ocfs2_is_empty_extent(struct ocfs2_extent_rec *rec)
999{
e48edee2 1000 return !rec->e_leaf_clusters;
dcd0538f
MF
1001}
1002
1003/*
1004 * This function will discard the rightmost extent record.
1005 */
1006static void ocfs2_shift_records_right(struct ocfs2_extent_list *el)
1007{
1008 int next_free = le16_to_cpu(el->l_next_free_rec);
1009 int count = le16_to_cpu(el->l_count);
1010 unsigned int num_bytes;
1011
1012 BUG_ON(!next_free);
1013 /* This will cause us to go off the end of our extent list. */
1014 BUG_ON(next_free >= count);
1015
1016 num_bytes = sizeof(struct ocfs2_extent_rec) * next_free;
1017
1018 memmove(&el->l_recs[1], &el->l_recs[0], num_bytes);
1019}
1020
1021static void ocfs2_rotate_leaf(struct ocfs2_extent_list *el,
1022 struct ocfs2_extent_rec *insert_rec)
1023{
1024 int i, insert_index, next_free, has_empty, num_bytes;
1025 u32 insert_cpos = le32_to_cpu(insert_rec->e_cpos);
1026 struct ocfs2_extent_rec *rec;
1027
1028 next_free = le16_to_cpu(el->l_next_free_rec);
1029 has_empty = ocfs2_is_empty_extent(&el->l_recs[0]);
1030
1031 BUG_ON(!next_free);
1032
1033 /* The tree code before us didn't allow enough room in the leaf. */
1034 if (el->l_next_free_rec == el->l_count && !has_empty)
1035 BUG();
1036
1037 /*
1038 * The easiest way to approach this is to just remove the
1039 * empty extent and temporarily decrement next_free.
1040 */
1041 if (has_empty) {
1042 /*
1043 * If next_free was 1 (only an empty extent), this
1044 * loop won't execute, which is fine. We still want
1045 * the decrement above to happen.
1046 */
1047 for(i = 0; i < (next_free - 1); i++)
1048 el->l_recs[i] = el->l_recs[i+1];
1049
1050 next_free--;
1051 }
1052
1053 /*
1054 * Figure out what the new record index should be.
1055 */
1056 for(i = 0; i < next_free; i++) {
1057 rec = &el->l_recs[i];
1058
1059 if (insert_cpos < le32_to_cpu(rec->e_cpos))
1060 break;
1061 }
1062 insert_index = i;
1063
1064 mlog(0, "ins %u: index %d, has_empty %d, next_free %d, count %d\n",
1065 insert_cpos, insert_index, has_empty, next_free, le16_to_cpu(el->l_count));
1066
1067 BUG_ON(insert_index < 0);
1068 BUG_ON(insert_index >= le16_to_cpu(el->l_count));
1069 BUG_ON(insert_index > next_free);
1070
1071 /*
1072 * No need to memmove if we're just adding to the tail.
1073 */
1074 if (insert_index != next_free) {
1075 BUG_ON(next_free >= le16_to_cpu(el->l_count));
1076
1077 num_bytes = next_free - insert_index;
1078 num_bytes *= sizeof(struct ocfs2_extent_rec);
1079 memmove(&el->l_recs[insert_index + 1],
1080 &el->l_recs[insert_index],
1081 num_bytes);
1082 }
1083
1084 /*
1085 * Either we had an empty extent, and need to re-increment or
1086 * there was no empty extent on a non full rightmost leaf node,
1087 * in which case we still need to increment.
1088 */
1089 next_free++;
1090 el->l_next_free_rec = cpu_to_le16(next_free);
1091 /*
1092 * Make sure none of the math above just messed up our tree.
1093 */
1094 BUG_ON(le16_to_cpu(el->l_next_free_rec) > le16_to_cpu(el->l_count));
1095
1096 el->l_recs[insert_index] = *insert_rec;
1097
1098}
1099
328d5752
MF
1100static void ocfs2_remove_empty_extent(struct ocfs2_extent_list *el)
1101{
1102 int size, num_recs = le16_to_cpu(el->l_next_free_rec);
1103
1104 BUG_ON(num_recs == 0);
1105
1106 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
1107 num_recs--;
1108 size = num_recs * sizeof(struct ocfs2_extent_rec);
1109 memmove(&el->l_recs[0], &el->l_recs[1], size);
1110 memset(&el->l_recs[num_recs], 0,
1111 sizeof(struct ocfs2_extent_rec));
1112 el->l_next_free_rec = cpu_to_le16(num_recs);
1113 }
1114}
1115
dcd0538f
MF
1116/*
1117 * Create an empty extent record .
1118 *
1119 * l_next_free_rec may be updated.
1120 *
1121 * If an empty extent already exists do nothing.
1122 */
1123static void ocfs2_create_empty_extent(struct ocfs2_extent_list *el)
1124{
1125 int next_free = le16_to_cpu(el->l_next_free_rec);
1126
e48edee2
MF
1127 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
1128
dcd0538f
MF
1129 if (next_free == 0)
1130 goto set_and_inc;
1131
1132 if (ocfs2_is_empty_extent(&el->l_recs[0]))
1133 return;
1134
1135 mlog_bug_on_msg(el->l_count == el->l_next_free_rec,
1136 "Asked to create an empty extent in a full list:\n"
1137 "count = %u, tree depth = %u",
1138 le16_to_cpu(el->l_count),
1139 le16_to_cpu(el->l_tree_depth));
1140
1141 ocfs2_shift_records_right(el);
1142
1143set_and_inc:
1144 le16_add_cpu(&el->l_next_free_rec, 1);
1145 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1146}
1147
1148/*
1149 * For a rotation which involves two leaf nodes, the "root node" is
1150 * the lowest level tree node which contains a path to both leafs. This
1151 * resulting set of information can be used to form a complete "subtree"
1152 *
1153 * This function is passed two full paths from the dinode down to a
1154 * pair of adjacent leaves. It's task is to figure out which path
1155 * index contains the subtree root - this can be the root index itself
1156 * in a worst-case rotation.
1157 *
1158 * The array index of the subtree root is passed back.
1159 */
1160static int ocfs2_find_subtree_root(struct inode *inode,
1161 struct ocfs2_path *left,
1162 struct ocfs2_path *right)
1163{
1164 int i = 0;
1165
1166 /*
1167 * Check that the caller passed in two paths from the same tree.
1168 */
1169 BUG_ON(path_root_bh(left) != path_root_bh(right));
1170
1171 do {
1172 i++;
1173
1174 /*
1175 * The caller didn't pass two adjacent paths.
1176 */
1177 mlog_bug_on_msg(i > left->p_tree_depth,
1178 "Inode %lu, left depth %u, right depth %u\n"
1179 "left leaf blk %llu, right leaf blk %llu\n",
1180 inode->i_ino, left->p_tree_depth,
1181 right->p_tree_depth,
1182 (unsigned long long)path_leaf_bh(left)->b_blocknr,
1183 (unsigned long long)path_leaf_bh(right)->b_blocknr);
1184 } while (left->p_node[i].bh->b_blocknr ==
1185 right->p_node[i].bh->b_blocknr);
1186
1187 return i - 1;
1188}
1189
1190typedef void (path_insert_t)(void *, struct buffer_head *);
1191
1192/*
1193 * Traverse a btree path in search of cpos, starting at root_el.
1194 *
1195 * This code can be called with a cpos larger than the tree, in which
1196 * case it will return the rightmost path.
1197 */
1198static int __ocfs2_find_path(struct inode *inode,
1199 struct ocfs2_extent_list *root_el, u32 cpos,
1200 path_insert_t *func, void *data)
1201{
1202 int i, ret = 0;
1203 u32 range;
1204 u64 blkno;
1205 struct buffer_head *bh = NULL;
1206 struct ocfs2_extent_block *eb;
1207 struct ocfs2_extent_list *el;
1208 struct ocfs2_extent_rec *rec;
1209 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1210
1211 el = root_el;
1212 while (el->l_tree_depth) {
1213 if (le16_to_cpu(el->l_next_free_rec) == 0) {
1214 ocfs2_error(inode->i_sb,
1215 "Inode %llu has empty extent list at "
1216 "depth %u\n",
1217 (unsigned long long)oi->ip_blkno,
1218 le16_to_cpu(el->l_tree_depth));
1219 ret = -EROFS;
1220 goto out;
1221
1222 }
1223
1224 for(i = 0; i < le16_to_cpu(el->l_next_free_rec) - 1; i++) {
1225 rec = &el->l_recs[i];
1226
1227 /*
1228 * In the case that cpos is off the allocation
1229 * tree, this should just wind up returning the
1230 * rightmost record.
1231 */
1232 range = le32_to_cpu(rec->e_cpos) +
e48edee2 1233 ocfs2_rec_clusters(el, rec);
dcd0538f
MF
1234 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1235 break;
1236 }
1237
1238 blkno = le64_to_cpu(el->l_recs[i].e_blkno);
1239 if (blkno == 0) {
1240 ocfs2_error(inode->i_sb,
1241 "Inode %llu has bad blkno in extent list "
1242 "at depth %u (index %d)\n",
1243 (unsigned long long)oi->ip_blkno,
1244 le16_to_cpu(el->l_tree_depth), i);
1245 ret = -EROFS;
1246 goto out;
1247 }
1248
1249 brelse(bh);
1250 bh = NULL;
1251 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb), blkno,
1252 &bh, OCFS2_BH_CACHED, inode);
1253 if (ret) {
1254 mlog_errno(ret);
1255 goto out;
1256 }
1257
1258 eb = (struct ocfs2_extent_block *) bh->b_data;
1259 el = &eb->h_list;
1260 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
1261 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
1262 ret = -EIO;
1263 goto out;
1264 }
1265
1266 if (le16_to_cpu(el->l_next_free_rec) >
1267 le16_to_cpu(el->l_count)) {
1268 ocfs2_error(inode->i_sb,
1269 "Inode %llu has bad count in extent list "
1270 "at block %llu (next free=%u, count=%u)\n",
1271 (unsigned long long)oi->ip_blkno,
1272 (unsigned long long)bh->b_blocknr,
1273 le16_to_cpu(el->l_next_free_rec),
1274 le16_to_cpu(el->l_count));
1275 ret = -EROFS;
1276 goto out;
1277 }
1278
1279 if (func)
1280 func(data, bh);
1281 }
1282
1283out:
1284 /*
1285 * Catch any trailing bh that the loop didn't handle.
1286 */
1287 brelse(bh);
1288
1289 return ret;
1290}
1291
1292/*
1293 * Given an initialized path (that is, it has a valid root extent
1294 * list), this function will traverse the btree in search of the path
1295 * which would contain cpos.
1296 *
1297 * The path traveled is recorded in the path structure.
1298 *
1299 * Note that this will not do any comparisons on leaf node extent
1300 * records, so it will work fine in the case that we just added a tree
1301 * branch.
1302 */
1303struct find_path_data {
1304 int index;
1305 struct ocfs2_path *path;
1306};
1307static void find_path_ins(void *data, struct buffer_head *bh)
1308{
1309 struct find_path_data *fp = data;
1310
1311 get_bh(bh);
1312 ocfs2_path_insert_eb(fp->path, fp->index, bh);
1313 fp->index++;
1314}
1315static int ocfs2_find_path(struct inode *inode, struct ocfs2_path *path,
1316 u32 cpos)
1317{
1318 struct find_path_data data;
1319
1320 data.index = 1;
1321 data.path = path;
1322 return __ocfs2_find_path(inode, path_root_el(path), cpos,
1323 find_path_ins, &data);
1324}
1325
1326static void find_leaf_ins(void *data, struct buffer_head *bh)
1327{
1328 struct ocfs2_extent_block *eb =(struct ocfs2_extent_block *)bh->b_data;
1329 struct ocfs2_extent_list *el = &eb->h_list;
1330 struct buffer_head **ret = data;
1331
1332 /* We want to retain only the leaf block. */
1333 if (le16_to_cpu(el->l_tree_depth) == 0) {
1334 get_bh(bh);
1335 *ret = bh;
1336 }
1337}
1338/*
1339 * Find the leaf block in the tree which would contain cpos. No
1340 * checking of the actual leaf is done.
1341 *
1342 * Some paths want to call this instead of allocating a path structure
1343 * and calling ocfs2_find_path().
1344 *
1345 * This function doesn't handle non btree extent lists.
1346 */
363041a5
MF
1347int ocfs2_find_leaf(struct inode *inode, struct ocfs2_extent_list *root_el,
1348 u32 cpos, struct buffer_head **leaf_bh)
dcd0538f
MF
1349{
1350 int ret;
1351 struct buffer_head *bh = NULL;
1352
1353 ret = __ocfs2_find_path(inode, root_el, cpos, find_leaf_ins, &bh);
1354 if (ret) {
1355 mlog_errno(ret);
1356 goto out;
1357 }
1358
1359 *leaf_bh = bh;
1360out:
1361 return ret;
1362}
1363
1364/*
1365 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1366 *
1367 * Basically, we've moved stuff around at the bottom of the tree and
1368 * we need to fix up the extent records above the changes to reflect
1369 * the new changes.
1370 *
1371 * left_rec: the record on the left.
1372 * left_child_el: is the child list pointed to by left_rec
1373 * right_rec: the record to the right of left_rec
1374 * right_child_el: is the child list pointed to by right_rec
1375 *
1376 * By definition, this only works on interior nodes.
1377 */
1378static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec *left_rec,
1379 struct ocfs2_extent_list *left_child_el,
1380 struct ocfs2_extent_rec *right_rec,
1381 struct ocfs2_extent_list *right_child_el)
1382{
1383 u32 left_clusters, right_end;
1384
1385 /*
1386 * Interior nodes never have holes. Their cpos is the cpos of
1387 * the leftmost record in their child list. Their cluster
1388 * count covers the full theoretical range of their child list
1389 * - the range between their cpos and the cpos of the record
1390 * immediately to their right.
1391 */
1392 left_clusters = le32_to_cpu(right_child_el->l_recs[0].e_cpos);
328d5752
MF
1393 if (ocfs2_is_empty_extent(&right_child_el->l_recs[0])) {
1394 BUG_ON(le16_to_cpu(right_child_el->l_next_free_rec) <= 1);
1395 left_clusters = le32_to_cpu(right_child_el->l_recs[1].e_cpos);
1396 }
dcd0538f 1397 left_clusters -= le32_to_cpu(left_rec->e_cpos);
e48edee2 1398 left_rec->e_int_clusters = cpu_to_le32(left_clusters);
dcd0538f
MF
1399
1400 /*
1401 * Calculate the rightmost cluster count boundary before
e48edee2 1402 * moving cpos - we will need to adjust clusters after
dcd0538f
MF
1403 * updating e_cpos to keep the same highest cluster count.
1404 */
1405 right_end = le32_to_cpu(right_rec->e_cpos);
e48edee2 1406 right_end += le32_to_cpu(right_rec->e_int_clusters);
dcd0538f
MF
1407
1408 right_rec->e_cpos = left_rec->e_cpos;
1409 le32_add_cpu(&right_rec->e_cpos, left_clusters);
1410
1411 right_end -= le32_to_cpu(right_rec->e_cpos);
e48edee2 1412 right_rec->e_int_clusters = cpu_to_le32(right_end);
dcd0538f
MF
1413}
1414
1415/*
1416 * Adjust the adjacent root node records involved in a
1417 * rotation. left_el_blkno is passed in as a key so that we can easily
1418 * find it's index in the root list.
1419 */
1420static void ocfs2_adjust_root_records(struct ocfs2_extent_list *root_el,
1421 struct ocfs2_extent_list *left_el,
1422 struct ocfs2_extent_list *right_el,
1423 u64 left_el_blkno)
1424{
1425 int i;
1426
1427 BUG_ON(le16_to_cpu(root_el->l_tree_depth) <=
1428 le16_to_cpu(left_el->l_tree_depth));
1429
1430 for(i = 0; i < le16_to_cpu(root_el->l_next_free_rec) - 1; i++) {
1431 if (le64_to_cpu(root_el->l_recs[i].e_blkno) == left_el_blkno)
1432 break;
1433 }
1434
1435 /*
1436 * The path walking code should have never returned a root and
1437 * two paths which are not adjacent.
1438 */
1439 BUG_ON(i >= (le16_to_cpu(root_el->l_next_free_rec) - 1));
1440
1441 ocfs2_adjust_adjacent_records(&root_el->l_recs[i], left_el,
1442 &root_el->l_recs[i + 1], right_el);
1443}
1444
1445/*
1446 * We've changed a leaf block (in right_path) and need to reflect that
1447 * change back up the subtree.
1448 *
1449 * This happens in multiple places:
1450 * - When we've moved an extent record from the left path leaf to the right
1451 * path leaf to make room for an empty extent in the left path leaf.
1452 * - When our insert into the right path leaf is at the leftmost edge
1453 * and requires an update of the path immediately to it's left. This
1454 * can occur at the end of some types of rotation and appending inserts.
1455 */
1456static void ocfs2_complete_edge_insert(struct inode *inode, handle_t *handle,
1457 struct ocfs2_path *left_path,
1458 struct ocfs2_path *right_path,
1459 int subtree_index)
1460{
1461 int ret, i, idx;
1462 struct ocfs2_extent_list *el, *left_el, *right_el;
1463 struct ocfs2_extent_rec *left_rec, *right_rec;
1464 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
1465
1466 /*
1467 * Update the counts and position values within all the
1468 * interior nodes to reflect the leaf rotation we just did.
1469 *
1470 * The root node is handled below the loop.
1471 *
1472 * We begin the loop with right_el and left_el pointing to the
1473 * leaf lists and work our way up.
1474 *
1475 * NOTE: within this loop, left_el and right_el always refer
1476 * to the *child* lists.
1477 */
1478 left_el = path_leaf_el(left_path);
1479 right_el = path_leaf_el(right_path);
1480 for(i = left_path->p_tree_depth - 1; i > subtree_index; i--) {
1481 mlog(0, "Adjust records at index %u\n", i);
1482
1483 /*
1484 * One nice property of knowing that all of these
1485 * nodes are below the root is that we only deal with
1486 * the leftmost right node record and the rightmost
1487 * left node record.
1488 */
1489 el = left_path->p_node[i].el;
1490 idx = le16_to_cpu(left_el->l_next_free_rec) - 1;
1491 left_rec = &el->l_recs[idx];
1492
1493 el = right_path->p_node[i].el;
1494 right_rec = &el->l_recs[0];
1495
1496 ocfs2_adjust_adjacent_records(left_rec, left_el, right_rec,
1497 right_el);
1498
1499 ret = ocfs2_journal_dirty(handle, left_path->p_node[i].bh);
1500 if (ret)
1501 mlog_errno(ret);
1502
1503 ret = ocfs2_journal_dirty(handle, right_path->p_node[i].bh);
1504 if (ret)
1505 mlog_errno(ret);
1506
1507 /*
1508 * Setup our list pointers now so that the current
1509 * parents become children in the next iteration.
1510 */
1511 left_el = left_path->p_node[i].el;
1512 right_el = right_path->p_node[i].el;
1513 }
1514
1515 /*
1516 * At the root node, adjust the two adjacent records which
1517 * begin our path to the leaves.
1518 */
1519
1520 el = left_path->p_node[subtree_index].el;
1521 left_el = left_path->p_node[subtree_index + 1].el;
1522 right_el = right_path->p_node[subtree_index + 1].el;
1523
1524 ocfs2_adjust_root_records(el, left_el, right_el,
1525 left_path->p_node[subtree_index + 1].bh->b_blocknr);
1526
1527 root_bh = left_path->p_node[subtree_index].bh;
1528
1529 ret = ocfs2_journal_dirty(handle, root_bh);
1530 if (ret)
1531 mlog_errno(ret);
1532}
1533
1534static int ocfs2_rotate_subtree_right(struct inode *inode,
1535 handle_t *handle,
1536 struct ocfs2_path *left_path,
1537 struct ocfs2_path *right_path,
1538 int subtree_index)
1539{
1540 int ret, i;
1541 struct buffer_head *right_leaf_bh;
1542 struct buffer_head *left_leaf_bh = NULL;
1543 struct buffer_head *root_bh;
1544 struct ocfs2_extent_list *right_el, *left_el;
1545 struct ocfs2_extent_rec move_rec;
1546
1547 left_leaf_bh = path_leaf_bh(left_path);
1548 left_el = path_leaf_el(left_path);
1549
1550 if (left_el->l_next_free_rec != left_el->l_count) {
1551 ocfs2_error(inode->i_sb,
1552 "Inode %llu has non-full interior leaf node %llu"
1553 "(next free = %u)",
1554 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1555 (unsigned long long)left_leaf_bh->b_blocknr,
1556 le16_to_cpu(left_el->l_next_free_rec));
1557 return -EROFS;
1558 }
1559
1560 /*
1561 * This extent block may already have an empty record, so we
1562 * return early if so.
1563 */
1564 if (ocfs2_is_empty_extent(&left_el->l_recs[0]))
1565 return 0;
1566
1567 root_bh = left_path->p_node[subtree_index].bh;
1568 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
1569
1570 ret = ocfs2_journal_access(handle, inode, root_bh,
1571 OCFS2_JOURNAL_ACCESS_WRITE);
1572 if (ret) {
1573 mlog_errno(ret);
1574 goto out;
1575 }
1576
1577 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
1578 ret = ocfs2_journal_access(handle, inode,
1579 right_path->p_node[i].bh,
1580 OCFS2_JOURNAL_ACCESS_WRITE);
1581 if (ret) {
1582 mlog_errno(ret);
1583 goto out;
1584 }
1585
1586 ret = ocfs2_journal_access(handle, inode,
1587 left_path->p_node[i].bh,
1588 OCFS2_JOURNAL_ACCESS_WRITE);
1589 if (ret) {
1590 mlog_errno(ret);
1591 goto out;
1592 }
1593 }
1594
1595 right_leaf_bh = path_leaf_bh(right_path);
1596 right_el = path_leaf_el(right_path);
1597
1598 /* This is a code error, not a disk corruption. */
1599 mlog_bug_on_msg(!right_el->l_next_free_rec, "Inode %llu: Rotate fails "
1600 "because rightmost leaf block %llu is empty\n",
1601 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1602 (unsigned long long)right_leaf_bh->b_blocknr);
1603
1604 ocfs2_create_empty_extent(right_el);
1605
1606 ret = ocfs2_journal_dirty(handle, right_leaf_bh);
1607 if (ret) {
1608 mlog_errno(ret);
1609 goto out;
1610 }
1611
1612 /* Do the copy now. */
1613 i = le16_to_cpu(left_el->l_next_free_rec) - 1;
1614 move_rec = left_el->l_recs[i];
1615 right_el->l_recs[0] = move_rec;
1616
1617 /*
1618 * Clear out the record we just copied and shift everything
1619 * over, leaving an empty extent in the left leaf.
1620 *
1621 * We temporarily subtract from next_free_rec so that the
1622 * shift will lose the tail record (which is now defunct).
1623 */
1624 le16_add_cpu(&left_el->l_next_free_rec, -1);
1625 ocfs2_shift_records_right(left_el);
1626 memset(&left_el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
1627 le16_add_cpu(&left_el->l_next_free_rec, 1);
1628
1629 ret = ocfs2_journal_dirty(handle, left_leaf_bh);
1630 if (ret) {
1631 mlog_errno(ret);
1632 goto out;
1633 }
1634
1635 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
1636 subtree_index);
1637
1638out:
1639 return ret;
1640}
1641
1642/*
1643 * Given a full path, determine what cpos value would return us a path
1644 * containing the leaf immediately to the left of the current one.
1645 *
1646 * Will return zero if the path passed in is already the leftmost path.
1647 */
1648static int ocfs2_find_cpos_for_left_leaf(struct super_block *sb,
1649 struct ocfs2_path *path, u32 *cpos)
1650{
1651 int i, j, ret = 0;
1652 u64 blkno;
1653 struct ocfs2_extent_list *el;
1654
e48edee2
MF
1655 BUG_ON(path->p_tree_depth == 0);
1656
dcd0538f
MF
1657 *cpos = 0;
1658
1659 blkno = path_leaf_bh(path)->b_blocknr;
1660
1661 /* Start at the tree node just above the leaf and work our way up. */
1662 i = path->p_tree_depth - 1;
1663 while (i >= 0) {
1664 el = path->p_node[i].el;
1665
1666 /*
1667 * Find the extent record just before the one in our
1668 * path.
1669 */
1670 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
1671 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
1672 if (j == 0) {
1673 if (i == 0) {
1674 /*
1675 * We've determined that the
1676 * path specified is already
1677 * the leftmost one - return a
1678 * cpos of zero.
1679 */
1680 goto out;
1681 }
1682 /*
1683 * The leftmost record points to our
1684 * leaf - we need to travel up the
1685 * tree one level.
1686 */
1687 goto next_node;
1688 }
1689
1690 *cpos = le32_to_cpu(el->l_recs[j - 1].e_cpos);
e48edee2
MF
1691 *cpos = *cpos + ocfs2_rec_clusters(el,
1692 &el->l_recs[j - 1]);
1693 *cpos = *cpos - 1;
dcd0538f
MF
1694 goto out;
1695 }
1696 }
1697
1698 /*
1699 * If we got here, we never found a valid node where
1700 * the tree indicated one should be.
1701 */
1702 ocfs2_error(sb,
1703 "Invalid extent tree at extent block %llu\n",
1704 (unsigned long long)blkno);
1705 ret = -EROFS;
1706 goto out;
1707
1708next_node:
1709 blkno = path->p_node[i].bh->b_blocknr;
1710 i--;
1711 }
1712
1713out:
1714 return ret;
1715}
1716
328d5752
MF
1717/*
1718 * Extend the transaction by enough credits to complete the rotation,
1719 * and still leave at least the original number of credits allocated
1720 * to this transaction.
1721 */
dcd0538f 1722static int ocfs2_extend_rotate_transaction(handle_t *handle, int subtree_depth,
328d5752 1723 int op_credits,
dcd0538f
MF
1724 struct ocfs2_path *path)
1725{
328d5752 1726 int credits = (path->p_tree_depth - subtree_depth) * 2 + 1 + op_credits;
dcd0538f
MF
1727
1728 if (handle->h_buffer_credits < credits)
1729 return ocfs2_extend_trans(handle, credits);
1730
1731 return 0;
1732}
1733
1734/*
1735 * Trap the case where we're inserting into the theoretical range past
1736 * the _actual_ left leaf range. Otherwise, we'll rotate a record
1737 * whose cpos is less than ours into the right leaf.
1738 *
1739 * It's only necessary to look at the rightmost record of the left
1740 * leaf because the logic that calls us should ensure that the
1741 * theoretical ranges in the path components above the leaves are
1742 * correct.
1743 */
1744static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path *left_path,
1745 u32 insert_cpos)
1746{
1747 struct ocfs2_extent_list *left_el;
1748 struct ocfs2_extent_rec *rec;
1749 int next_free;
1750
1751 left_el = path_leaf_el(left_path);
1752 next_free = le16_to_cpu(left_el->l_next_free_rec);
1753 rec = &left_el->l_recs[next_free - 1];
1754
1755 if (insert_cpos > le32_to_cpu(rec->e_cpos))
1756 return 1;
1757 return 0;
1758}
1759
328d5752
MF
1760static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list *el, u32 cpos)
1761{
1762 int next_free = le16_to_cpu(el->l_next_free_rec);
1763 unsigned int range;
1764 struct ocfs2_extent_rec *rec;
1765
1766 if (next_free == 0)
1767 return 0;
1768
1769 rec = &el->l_recs[0];
1770 if (ocfs2_is_empty_extent(rec)) {
1771 /* Empty list. */
1772 if (next_free == 1)
1773 return 0;
1774 rec = &el->l_recs[1];
1775 }
1776
1777 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
1778 if (cpos >= le32_to_cpu(rec->e_cpos) && cpos < range)
1779 return 1;
1780 return 0;
1781}
1782
dcd0538f
MF
1783/*
1784 * Rotate all the records in a btree right one record, starting at insert_cpos.
1785 *
1786 * The path to the rightmost leaf should be passed in.
1787 *
1788 * The array is assumed to be large enough to hold an entire path (tree depth).
1789 *
1790 * Upon succesful return from this function:
1791 *
1792 * - The 'right_path' array will contain a path to the leaf block
1793 * whose range contains e_cpos.
1794 * - That leaf block will have a single empty extent in list index 0.
1795 * - In the case that the rotation requires a post-insert update,
1796 * *ret_left_path will contain a valid path which can be passed to
1797 * ocfs2_insert_path().
1798 */
1799static int ocfs2_rotate_tree_right(struct inode *inode,
1800 handle_t *handle,
328d5752 1801 enum ocfs2_split_type split,
dcd0538f
MF
1802 u32 insert_cpos,
1803 struct ocfs2_path *right_path,
1804 struct ocfs2_path **ret_left_path)
1805{
328d5752 1806 int ret, start, orig_credits = handle->h_buffer_credits;
dcd0538f
MF
1807 u32 cpos;
1808 struct ocfs2_path *left_path = NULL;
1809
1810 *ret_left_path = NULL;
1811
1812 left_path = ocfs2_new_path(path_root_bh(right_path),
1813 path_root_el(right_path));
1814 if (!left_path) {
1815 ret = -ENOMEM;
1816 mlog_errno(ret);
1817 goto out;
1818 }
1819
1820 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path, &cpos);
1821 if (ret) {
1822 mlog_errno(ret);
1823 goto out;
1824 }
1825
1826 mlog(0, "Insert: %u, first left path cpos: %u\n", insert_cpos, cpos);
1827
1828 /*
1829 * What we want to do here is:
1830 *
1831 * 1) Start with the rightmost path.
1832 *
1833 * 2) Determine a path to the leaf block directly to the left
1834 * of that leaf.
1835 *
1836 * 3) Determine the 'subtree root' - the lowest level tree node
1837 * which contains a path to both leaves.
1838 *
1839 * 4) Rotate the subtree.
1840 *
1841 * 5) Find the next subtree by considering the left path to be
1842 * the new right path.
1843 *
1844 * The check at the top of this while loop also accepts
1845 * insert_cpos == cpos because cpos is only a _theoretical_
1846 * value to get us the left path - insert_cpos might very well
1847 * be filling that hole.
1848 *
1849 * Stop at a cpos of '0' because we either started at the
1850 * leftmost branch (i.e., a tree with one branch and a
1851 * rotation inside of it), or we've gone as far as we can in
1852 * rotating subtrees.
1853 */
1854 while (cpos && insert_cpos <= cpos) {
1855 mlog(0, "Rotating a tree: ins. cpos: %u, left path cpos: %u\n",
1856 insert_cpos, cpos);
1857
1858 ret = ocfs2_find_path(inode, left_path, cpos);
1859 if (ret) {
1860 mlog_errno(ret);
1861 goto out;
1862 }
1863
1864 mlog_bug_on_msg(path_leaf_bh(left_path) ==
1865 path_leaf_bh(right_path),
1866 "Inode %lu: error during insert of %u "
1867 "(left path cpos %u) results in two identical "
1868 "paths ending at %llu\n",
1869 inode->i_ino, insert_cpos, cpos,
1870 (unsigned long long)
1871 path_leaf_bh(left_path)->b_blocknr);
1872
328d5752
MF
1873 if (split == SPLIT_NONE &&
1874 ocfs2_rotate_requires_path_adjustment(left_path,
dcd0538f 1875 insert_cpos)) {
dcd0538f
MF
1876
1877 /*
1878 * We've rotated the tree as much as we
1879 * should. The rest is up to
1880 * ocfs2_insert_path() to complete, after the
1881 * record insertion. We indicate this
1882 * situation by returning the left path.
1883 *
1884 * The reason we don't adjust the records here
1885 * before the record insert is that an error
1886 * later might break the rule where a parent
1887 * record e_cpos will reflect the actual
1888 * e_cpos of the 1st nonempty record of the
1889 * child list.
1890 */
1891 *ret_left_path = left_path;
1892 goto out_ret_path;
1893 }
1894
1895 start = ocfs2_find_subtree_root(inode, left_path, right_path);
1896
1897 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
1898 start,
1899 (unsigned long long) right_path->p_node[start].bh->b_blocknr,
1900 right_path->p_tree_depth);
1901
1902 ret = ocfs2_extend_rotate_transaction(handle, start,
328d5752 1903 orig_credits, right_path);
dcd0538f
MF
1904 if (ret) {
1905 mlog_errno(ret);
1906 goto out;
1907 }
1908
1909 ret = ocfs2_rotate_subtree_right(inode, handle, left_path,
1910 right_path, start);
1911 if (ret) {
1912 mlog_errno(ret);
1913 goto out;
1914 }
1915
328d5752
MF
1916 if (split != SPLIT_NONE &&
1917 ocfs2_leftmost_rec_contains(path_leaf_el(right_path),
1918 insert_cpos)) {
1919 /*
1920 * A rotate moves the rightmost left leaf
1921 * record over to the leftmost right leaf
1922 * slot. If we're doing an extent split
1923 * instead of a real insert, then we have to
1924 * check that the extent to be split wasn't
1925 * just moved over. If it was, then we can
1926 * exit here, passing left_path back -
1927 * ocfs2_split_extent() is smart enough to
1928 * search both leaves.
1929 */
1930 *ret_left_path = left_path;
1931 goto out_ret_path;
1932 }
1933
dcd0538f
MF
1934 /*
1935 * There is no need to re-read the next right path
1936 * as we know that it'll be our current left
1937 * path. Optimize by copying values instead.
1938 */
1939 ocfs2_mv_path(right_path, left_path);
1940
1941 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
1942 &cpos);
1943 if (ret) {
1944 mlog_errno(ret);
1945 goto out;
1946 }
1947 }
1948
1949out:
1950 ocfs2_free_path(left_path);
1951
1952out_ret_path:
1953 return ret;
1954}
1955
328d5752
MF
1956static void ocfs2_update_edge_lengths(struct inode *inode, handle_t *handle,
1957 struct ocfs2_path *path)
dcd0538f 1958{
328d5752 1959 int i, idx;
dcd0538f 1960 struct ocfs2_extent_rec *rec;
328d5752
MF
1961 struct ocfs2_extent_list *el;
1962 struct ocfs2_extent_block *eb;
1963 u32 range;
dcd0538f 1964
328d5752
MF
1965 /* Path should always be rightmost. */
1966 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
1967 BUG_ON(eb->h_next_leaf_blk != 0ULL);
dcd0538f 1968
328d5752
MF
1969 el = &eb->h_list;
1970 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
1971 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1972 rec = &el->l_recs[idx];
1973 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
dcd0538f 1974
328d5752
MF
1975 for (i = 0; i < path->p_tree_depth; i++) {
1976 el = path->p_node[i].el;
1977 idx = le16_to_cpu(el->l_next_free_rec) - 1;
1978 rec = &el->l_recs[idx];
dcd0538f 1979
328d5752
MF
1980 rec->e_int_clusters = cpu_to_le32(range);
1981 le32_add_cpu(&rec->e_int_clusters, -le32_to_cpu(rec->e_cpos));
dcd0538f 1982
328d5752 1983 ocfs2_journal_dirty(handle, path->p_node[i].bh);
dcd0538f 1984 }
dcd0538f
MF
1985}
1986
328d5752
MF
1987static void ocfs2_unlink_path(struct inode *inode, handle_t *handle,
1988 struct ocfs2_cached_dealloc_ctxt *dealloc,
1989 struct ocfs2_path *path, int unlink_start)
dcd0538f 1990{
328d5752
MF
1991 int ret, i;
1992 struct ocfs2_extent_block *eb;
1993 struct ocfs2_extent_list *el;
1994 struct buffer_head *bh;
1995
1996 for(i = unlink_start; i < path_num_items(path); i++) {
1997 bh = path->p_node[i].bh;
1998
1999 eb = (struct ocfs2_extent_block *)bh->b_data;
2000 /*
2001 * Not all nodes might have had their final count
2002 * decremented by the caller - handle this here.
2003 */
2004 el = &eb->h_list;
2005 if (le16_to_cpu(el->l_next_free_rec) > 1) {
2006 mlog(ML_ERROR,
2007 "Inode %llu, attempted to remove extent block "
2008 "%llu with %u records\n",
2009 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2010 (unsigned long long)le64_to_cpu(eb->h_blkno),
2011 le16_to_cpu(el->l_next_free_rec));
2012
2013 ocfs2_journal_dirty(handle, bh);
2014 ocfs2_remove_from_cache(inode, bh);
2015 continue;
2016 }
2017
2018 el->l_next_free_rec = 0;
2019 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2020
2021 ocfs2_journal_dirty(handle, bh);
2022
2023 ret = ocfs2_cache_extent_block_free(dealloc, eb);
2024 if (ret)
2025 mlog_errno(ret);
2026
2027 ocfs2_remove_from_cache(inode, bh);
2028 }
dcd0538f
MF
2029}
2030
328d5752
MF
2031static void ocfs2_unlink_subtree(struct inode *inode, handle_t *handle,
2032 struct ocfs2_path *left_path,
2033 struct ocfs2_path *right_path,
2034 int subtree_index,
2035 struct ocfs2_cached_dealloc_ctxt *dealloc)
dcd0538f 2036{
328d5752
MF
2037 int i;
2038 struct buffer_head *root_bh = left_path->p_node[subtree_index].bh;
2039 struct ocfs2_extent_list *root_el = left_path->p_node[subtree_index].el;
dcd0538f 2040 struct ocfs2_extent_list *el;
328d5752 2041 struct ocfs2_extent_block *eb;
dcd0538f 2042
328d5752 2043 el = path_leaf_el(left_path);
dcd0538f 2044
328d5752 2045 eb = (struct ocfs2_extent_block *)right_path->p_node[subtree_index + 1].bh->b_data;
e48edee2 2046
328d5752
MF
2047 for(i = 1; i < le16_to_cpu(root_el->l_next_free_rec); i++)
2048 if (root_el->l_recs[i].e_blkno == eb->h_blkno)
2049 break;
dcd0538f 2050
328d5752 2051 BUG_ON(i >= le16_to_cpu(root_el->l_next_free_rec));
dcd0538f 2052
328d5752
MF
2053 memset(&root_el->l_recs[i], 0, sizeof(struct ocfs2_extent_rec));
2054 le16_add_cpu(&root_el->l_next_free_rec, -1);
2055
2056 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2057 eb->h_next_leaf_blk = 0;
2058
2059 ocfs2_journal_dirty(handle, root_bh);
2060 ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2061
2062 ocfs2_unlink_path(inode, handle, dealloc, right_path,
2063 subtree_index + 1);
2064}
2065
2066static int ocfs2_rotate_subtree_left(struct inode *inode, handle_t *handle,
2067 struct ocfs2_path *left_path,
2068 struct ocfs2_path *right_path,
2069 int subtree_index,
2070 struct ocfs2_cached_dealloc_ctxt *dealloc,
2071 int *deleted)
2072{
2073 int ret, i, del_right_subtree = 0, right_has_empty = 0;
2074 struct buffer_head *root_bh, *di_bh = path_root_bh(right_path);
2075 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
2076 struct ocfs2_extent_list *right_leaf_el, *left_leaf_el;
2077 struct ocfs2_extent_block *eb;
2078
2079 *deleted = 0;
2080
2081 right_leaf_el = path_leaf_el(right_path);
2082 left_leaf_el = path_leaf_el(left_path);
2083 root_bh = left_path->p_node[subtree_index].bh;
2084 BUG_ON(root_bh != right_path->p_node[subtree_index].bh);
2085
2086 if (!ocfs2_is_empty_extent(&left_leaf_el->l_recs[0]))
2087 return 0;
dcd0538f 2088
328d5752
MF
2089 eb = (struct ocfs2_extent_block *)path_leaf_bh(right_path)->b_data;
2090 if (ocfs2_is_empty_extent(&right_leaf_el->l_recs[0])) {
dcd0538f 2091 /*
328d5752
MF
2092 * It's legal for us to proceed if the right leaf is
2093 * the rightmost one and it has an empty extent. There
2094 * are two cases to handle - whether the leaf will be
2095 * empty after removal or not. If the leaf isn't empty
2096 * then just remove the empty extent up front. The
2097 * next block will handle empty leaves by flagging
2098 * them for unlink.
2099 *
2100 * Non rightmost leaves will throw -EAGAIN and the
2101 * caller can manually move the subtree and retry.
dcd0538f 2102 */
dcd0538f 2103
328d5752
MF
2104 if (eb->h_next_leaf_blk != 0ULL)
2105 return -EAGAIN;
2106
2107 if (le16_to_cpu(right_leaf_el->l_next_free_rec) > 1) {
2108 ret = ocfs2_journal_access(handle, inode,
2109 path_leaf_bh(right_path),
2110 OCFS2_JOURNAL_ACCESS_WRITE);
dcd0538f
MF
2111 if (ret) {
2112 mlog_errno(ret);
2113 goto out;
2114 }
2115
328d5752
MF
2116 ocfs2_remove_empty_extent(right_leaf_el);
2117 } else
2118 right_has_empty = 1;
dcd0538f
MF
2119 }
2120
328d5752
MF
2121 if (eb->h_next_leaf_blk == 0ULL &&
2122 le16_to_cpu(right_leaf_el->l_next_free_rec) == 1) {
2123 /*
2124 * We have to update i_last_eb_blk during the meta
2125 * data delete.
2126 */
2127 ret = ocfs2_journal_access(handle, inode, di_bh,
2128 OCFS2_JOURNAL_ACCESS_WRITE);
2129 if (ret) {
2130 mlog_errno(ret);
2131 goto out;
2132 }
2133
2134 del_right_subtree = 1;
2135 }
2136
2137 /*
2138 * Getting here with an empty extent in the right path implies
2139 * that it's the rightmost path and will be deleted.
2140 */
2141 BUG_ON(right_has_empty && !del_right_subtree);
2142
2143 ret = ocfs2_journal_access(handle, inode, root_bh,
2144 OCFS2_JOURNAL_ACCESS_WRITE);
2145 if (ret) {
2146 mlog_errno(ret);
2147 goto out;
2148 }
2149
2150 for(i = subtree_index + 1; i < path_num_items(right_path); i++) {
2151 ret = ocfs2_journal_access(handle, inode,
2152 right_path->p_node[i].bh,
2153 OCFS2_JOURNAL_ACCESS_WRITE);
2154 if (ret) {
2155 mlog_errno(ret);
2156 goto out;
2157 }
2158
2159 ret = ocfs2_journal_access(handle, inode,
2160 left_path->p_node[i].bh,
2161 OCFS2_JOURNAL_ACCESS_WRITE);
2162 if (ret) {
2163 mlog_errno(ret);
2164 goto out;
2165 }
2166 }
2167
2168 if (!right_has_empty) {
2169 /*
2170 * Only do this if we're moving a real
2171 * record. Otherwise, the action is delayed until
2172 * after removal of the right path in which case we
2173 * can do a simple shift to remove the empty extent.
2174 */
2175 ocfs2_rotate_leaf(left_leaf_el, &right_leaf_el->l_recs[0]);
2176 memset(&right_leaf_el->l_recs[0], 0,
2177 sizeof(struct ocfs2_extent_rec));
2178 }
2179 if (eb->h_next_leaf_blk == 0ULL) {
2180 /*
2181 * Move recs over to get rid of empty extent, decrease
2182 * next_free. This is allowed to remove the last
2183 * extent in our leaf (setting l_next_free_rec to
2184 * zero) - the delete code below won't care.
2185 */
2186 ocfs2_remove_empty_extent(right_leaf_el);
2187 }
2188
2189 ret = ocfs2_journal_dirty(handle, path_leaf_bh(left_path));
2190 if (ret)
2191 mlog_errno(ret);
2192 ret = ocfs2_journal_dirty(handle, path_leaf_bh(right_path));
2193 if (ret)
2194 mlog_errno(ret);
2195
2196 if (del_right_subtree) {
2197 ocfs2_unlink_subtree(inode, handle, left_path, right_path,
2198 subtree_index, dealloc);
2199 ocfs2_update_edge_lengths(inode, handle, left_path);
2200
2201 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2202 di->i_last_eb_blk = eb->h_blkno;
2203
2204 /*
2205 * Removal of the extent in the left leaf was skipped
2206 * above so we could delete the right path
2207 * 1st.
2208 */
2209 if (right_has_empty)
2210 ocfs2_remove_empty_extent(left_leaf_el);
2211
2212 ret = ocfs2_journal_dirty(handle, di_bh);
2213 if (ret)
2214 mlog_errno(ret);
2215
2216 *deleted = 1;
2217 } else
2218 ocfs2_complete_edge_insert(inode, handle, left_path, right_path,
2219 subtree_index);
2220
2221out:
2222 return ret;
2223}
2224
2225/*
2226 * Given a full path, determine what cpos value would return us a path
2227 * containing the leaf immediately to the right of the current one.
2228 *
2229 * Will return zero if the path passed in is already the rightmost path.
2230 *
2231 * This looks similar, but is subtly different to
2232 * ocfs2_find_cpos_for_left_leaf().
2233 */
2234static int ocfs2_find_cpos_for_right_leaf(struct super_block *sb,
2235 struct ocfs2_path *path, u32 *cpos)
2236{
2237 int i, j, ret = 0;
2238 u64 blkno;
2239 struct ocfs2_extent_list *el;
2240
2241 *cpos = 0;
2242
2243 if (path->p_tree_depth == 0)
2244 return 0;
2245
2246 blkno = path_leaf_bh(path)->b_blocknr;
2247
2248 /* Start at the tree node just above the leaf and work our way up. */
2249 i = path->p_tree_depth - 1;
2250 while (i >= 0) {
2251 int next_free;
2252
2253 el = path->p_node[i].el;
2254
2255 /*
2256 * Find the extent record just after the one in our
2257 * path.
2258 */
2259 next_free = le16_to_cpu(el->l_next_free_rec);
2260 for(j = 0; j < le16_to_cpu(el->l_next_free_rec); j++) {
2261 if (le64_to_cpu(el->l_recs[j].e_blkno) == blkno) {
2262 if (j == (next_free - 1)) {
2263 if (i == 0) {
2264 /*
2265 * We've determined that the
2266 * path specified is already
2267 * the rightmost one - return a
2268 * cpos of zero.
2269 */
2270 goto out;
2271 }
2272 /*
2273 * The rightmost record points to our
2274 * leaf - we need to travel up the
2275 * tree one level.
2276 */
2277 goto next_node;
2278 }
2279
2280 *cpos = le32_to_cpu(el->l_recs[j + 1].e_cpos);
2281 goto out;
2282 }
2283 }
2284
2285 /*
2286 * If we got here, we never found a valid node where
2287 * the tree indicated one should be.
2288 */
2289 ocfs2_error(sb,
2290 "Invalid extent tree at extent block %llu\n",
2291 (unsigned long long)blkno);
2292 ret = -EROFS;
2293 goto out;
2294
2295next_node:
2296 blkno = path->p_node[i].bh->b_blocknr;
2297 i--;
2298 }
2299
2300out:
2301 return ret;
2302}
2303
2304static int ocfs2_rotate_rightmost_leaf_left(struct inode *inode,
2305 handle_t *handle,
2306 struct buffer_head *bh,
2307 struct ocfs2_extent_list *el)
2308{
2309 int ret;
2310
2311 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2312 return 0;
2313
2314 ret = ocfs2_journal_access(handle, inode, bh,
2315 OCFS2_JOURNAL_ACCESS_WRITE);
2316 if (ret) {
2317 mlog_errno(ret);
2318 goto out;
2319 }
2320
2321 ocfs2_remove_empty_extent(el);
2322
2323 ret = ocfs2_journal_dirty(handle, bh);
2324 if (ret)
2325 mlog_errno(ret);
2326
2327out:
2328 return ret;
2329}
2330
2331static int __ocfs2_rotate_tree_left(struct inode *inode,
2332 handle_t *handle, int orig_credits,
2333 struct ocfs2_path *path,
2334 struct ocfs2_cached_dealloc_ctxt *dealloc,
2335 struct ocfs2_path **empty_extent_path)
2336{
2337 int ret, subtree_root, deleted;
2338 u32 right_cpos;
2339 struct ocfs2_path *left_path = NULL;
2340 struct ocfs2_path *right_path = NULL;
2341
2342 BUG_ON(!ocfs2_is_empty_extent(&(path_leaf_el(path)->l_recs[0])));
2343
2344 *empty_extent_path = NULL;
2345
2346 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, path,
2347 &right_cpos);
2348 if (ret) {
2349 mlog_errno(ret);
2350 goto out;
2351 }
2352
2353 left_path = ocfs2_new_path(path_root_bh(path),
2354 path_root_el(path));
2355 if (!left_path) {
2356 ret = -ENOMEM;
2357 mlog_errno(ret);
2358 goto out;
2359 }
2360
2361 ocfs2_cp_path(left_path, path);
2362
2363 right_path = ocfs2_new_path(path_root_bh(path),
2364 path_root_el(path));
2365 if (!right_path) {
2366 ret = -ENOMEM;
2367 mlog_errno(ret);
2368 goto out;
2369 }
2370
2371 while (right_cpos) {
2372 ret = ocfs2_find_path(inode, right_path, right_cpos);
2373 if (ret) {
2374 mlog_errno(ret);
2375 goto out;
2376 }
2377
2378 subtree_root = ocfs2_find_subtree_root(inode, left_path,
2379 right_path);
2380
2381 mlog(0, "Subtree root at index %d (blk %llu, depth %d)\n",
2382 subtree_root,
2383 (unsigned long long)
2384 right_path->p_node[subtree_root].bh->b_blocknr,
2385 right_path->p_tree_depth);
2386
2387 ret = ocfs2_extend_rotate_transaction(handle, subtree_root,
2388 orig_credits, left_path);
2389 if (ret) {
2390 mlog_errno(ret);
2391 goto out;
2392 }
2393
2394 ret = ocfs2_rotate_subtree_left(inode, handle, left_path,
2395 right_path, subtree_root,
2396 dealloc, &deleted);
2397 if (ret == -EAGAIN) {
2398 /*
2399 * The rotation has to temporarily stop due to
2400 * the right subtree having an empty
2401 * extent. Pass it back to the caller for a
2402 * fixup.
2403 */
2404 *empty_extent_path = right_path;
2405 right_path = NULL;
2406 goto out;
2407 }
2408 if (ret) {
2409 mlog_errno(ret);
2410 goto out;
2411 }
2412
2413 /*
2414 * The subtree rotate might have removed records on
2415 * the rightmost edge. If so, then rotation is
2416 * complete.
2417 */
2418 if (deleted)
2419 break;
2420
2421 ocfs2_mv_path(left_path, right_path);
2422
2423 ret = ocfs2_find_cpos_for_right_leaf(inode->i_sb, left_path,
2424 &right_cpos);
2425 if (ret) {
2426 mlog_errno(ret);
2427 goto out;
2428 }
2429 }
2430
2431out:
2432 ocfs2_free_path(right_path);
2433 ocfs2_free_path(left_path);
2434
2435 return ret;
2436}
2437
2438static int ocfs2_remove_rightmost_path(struct inode *inode, handle_t *handle,
2439 struct ocfs2_path *path,
2440 struct ocfs2_cached_dealloc_ctxt *dealloc)
2441{
2442 int ret, subtree_index;
2443 u32 cpos;
2444 struct ocfs2_path *left_path = NULL;
2445 struct ocfs2_dinode *di;
2446 struct ocfs2_extent_block *eb;
2447 struct ocfs2_extent_list *el;
2448
2449 /*
2450 * XXX: This code assumes that the root is an inode, which is
2451 * true for now but may change as tree code gets generic.
2452 */
2453 di = (struct ocfs2_dinode *)path_root_bh(path)->b_data;
2454 if (!OCFS2_IS_VALID_DINODE(di)) {
2455 ret = -EIO;
2456 ocfs2_error(inode->i_sb,
2457 "Inode %llu has invalid path root",
2458 (unsigned long long)OCFS2_I(inode)->ip_blkno);
2459 goto out;
2460 }
2461
2462 /*
2463 * There's two ways we handle this depending on
2464 * whether path is the only existing one.
2465 */
2466 ret = ocfs2_extend_rotate_transaction(handle, 0,
2467 handle->h_buffer_credits,
2468 path);
2469 if (ret) {
2470 mlog_errno(ret);
2471 goto out;
2472 }
2473
2474 ret = ocfs2_journal_access_path(inode, handle, path);
2475 if (ret) {
2476 mlog_errno(ret);
2477 goto out;
2478 }
2479
2480 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
2481 if (ret) {
2482 mlog_errno(ret);
2483 goto out;
2484 }
2485
2486 if (cpos) {
2487 /*
2488 * We have a path to the left of this one - it needs
2489 * an update too.
2490 */
2491 left_path = ocfs2_new_path(path_root_bh(path),
2492 path_root_el(path));
2493 if (!left_path) {
2494 ret = -ENOMEM;
2495 mlog_errno(ret);
2496 goto out;
2497 }
2498
2499 ret = ocfs2_find_path(inode, left_path, cpos);
2500 if (ret) {
2501 mlog_errno(ret);
2502 goto out;
2503 }
2504
2505 ret = ocfs2_journal_access_path(inode, handle, left_path);
2506 if (ret) {
2507 mlog_errno(ret);
2508 goto out;
2509 }
2510
2511 subtree_index = ocfs2_find_subtree_root(inode, left_path, path);
2512
2513 ocfs2_unlink_subtree(inode, handle, left_path, path,
2514 subtree_index, dealloc);
2515 ocfs2_update_edge_lengths(inode, handle, left_path);
2516
2517 eb = (struct ocfs2_extent_block *)path_leaf_bh(left_path)->b_data;
2518 di->i_last_eb_blk = eb->h_blkno;
2519 } else {
2520 /*
2521 * 'path' is also the leftmost path which
2522 * means it must be the only one. This gets
2523 * handled differently because we want to
2524 * revert the inode back to having extents
2525 * in-line.
2526 */
2527 ocfs2_unlink_path(inode, handle, dealloc, path, 1);
2528
2529 el = &di->id2.i_list;
2530 el->l_tree_depth = 0;
2531 el->l_next_free_rec = 0;
2532 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2533
2534 di->i_last_eb_blk = 0;
2535 }
2536
2537 ocfs2_journal_dirty(handle, path_root_bh(path));
2538
2539out:
2540 ocfs2_free_path(left_path);
2541 return ret;
2542}
2543
2544/*
2545 * Left rotation of btree records.
2546 *
2547 * In many ways, this is (unsurprisingly) the opposite of right
2548 * rotation. We start at some non-rightmost path containing an empty
2549 * extent in the leaf block. The code works its way to the rightmost
2550 * path by rotating records to the left in every subtree.
2551 *
2552 * This is used by any code which reduces the number of extent records
2553 * in a leaf. After removal, an empty record should be placed in the
2554 * leftmost list position.
2555 *
2556 * This won't handle a length update of the rightmost path records if
2557 * the rightmost tree leaf record is removed so the caller is
2558 * responsible for detecting and correcting that.
2559 */
2560static int ocfs2_rotate_tree_left(struct inode *inode, handle_t *handle,
2561 struct ocfs2_path *path,
2562 struct ocfs2_cached_dealloc_ctxt *dealloc)
2563{
2564 int ret, orig_credits = handle->h_buffer_credits;
2565 struct ocfs2_path *tmp_path = NULL, *restart_path = NULL;
2566 struct ocfs2_extent_block *eb;
2567 struct ocfs2_extent_list *el;
2568
2569 el = path_leaf_el(path);
2570 if (!ocfs2_is_empty_extent(&el->l_recs[0]))
2571 return 0;
2572
2573 if (path->p_tree_depth == 0) {
2574rightmost_no_delete:
2575 /*
2576 * In-inode extents. This is trivially handled, so do
2577 * it up front.
2578 */
2579 ret = ocfs2_rotate_rightmost_leaf_left(inode, handle,
2580 path_leaf_bh(path),
2581 path_leaf_el(path));
2582 if (ret)
2583 mlog_errno(ret);
2584 goto out;
2585 }
2586
2587 /*
2588 * Handle rightmost branch now. There's several cases:
2589 * 1) simple rotation leaving records in there. That's trivial.
2590 * 2) rotation requiring a branch delete - there's no more
2591 * records left. Two cases of this:
2592 * a) There are branches to the left.
2593 * b) This is also the leftmost (the only) branch.
2594 *
2595 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
2596 * 2a) we need the left branch so that we can update it with the unlink
2597 * 2b) we need to bring the inode back to inline extents.
2598 */
2599
2600 eb = (struct ocfs2_extent_block *)path_leaf_bh(path)->b_data;
2601 el = &eb->h_list;
2602 if (eb->h_next_leaf_blk == 0) {
2603 /*
2604 * This gets a bit tricky if we're going to delete the
2605 * rightmost path. Get the other cases out of the way
2606 * 1st.
2607 */
2608 if (le16_to_cpu(el->l_next_free_rec) > 1)
2609 goto rightmost_no_delete;
2610
2611 if (le16_to_cpu(el->l_next_free_rec) == 0) {
2612 ret = -EIO;
2613 ocfs2_error(inode->i_sb,
2614 "Inode %llu has empty extent block at %llu",
2615 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2616 (unsigned long long)le64_to_cpu(eb->h_blkno));
2617 goto out;
2618 }
2619
2620 /*
2621 * XXX: The caller can not trust "path" any more after
2622 * this as it will have been deleted. What do we do?
2623 *
2624 * In theory the rotate-for-merge code will never get
2625 * here because it'll always ask for a rotate in a
2626 * nonempty list.
2627 */
2628
2629 ret = ocfs2_remove_rightmost_path(inode, handle, path,
2630 dealloc);
2631 if (ret)
2632 mlog_errno(ret);
2633 goto out;
2634 }
2635
2636 /*
2637 * Now we can loop, remembering the path we get from -EAGAIN
2638 * and restarting from there.
2639 */
2640try_rotate:
2641 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits, path,
2642 dealloc, &restart_path);
2643 if (ret && ret != -EAGAIN) {
2644 mlog_errno(ret);
2645 goto out;
2646 }
2647
2648 while (ret == -EAGAIN) {
2649 tmp_path = restart_path;
2650 restart_path = NULL;
2651
2652 ret = __ocfs2_rotate_tree_left(inode, handle, orig_credits,
2653 tmp_path, dealloc,
2654 &restart_path);
2655 if (ret && ret != -EAGAIN) {
2656 mlog_errno(ret);
2657 goto out;
2658 }
2659
2660 ocfs2_free_path(tmp_path);
2661 tmp_path = NULL;
2662
2663 if (ret == 0)
2664 goto try_rotate;
2665 }
2666
2667out:
2668 ocfs2_free_path(tmp_path);
2669 ocfs2_free_path(restart_path);
2670 return ret;
2671}
2672
2673static void ocfs2_cleanup_merge(struct ocfs2_extent_list *el,
2674 int index)
2675{
2676 struct ocfs2_extent_rec *rec = &el->l_recs[index];
2677 unsigned int size;
2678
2679 if (rec->e_leaf_clusters == 0) {
2680 /*
2681 * We consumed all of the merged-from record. An empty
2682 * extent cannot exist anywhere but the 1st array
2683 * position, so move things over if the merged-from
2684 * record doesn't occupy that position.
2685 *
2686 * This creates a new empty extent so the caller
2687 * should be smart enough to have removed any existing
2688 * ones.
2689 */
2690 if (index > 0) {
2691 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
2692 size = index * sizeof(struct ocfs2_extent_rec);
2693 memmove(&el->l_recs[1], &el->l_recs[0], size);
2694 }
2695
2696 /*
2697 * Always memset - the caller doesn't check whether it
2698 * created an empty extent, so there could be junk in
2699 * the other fields.
2700 */
2701 memset(&el->l_recs[0], 0, sizeof(struct ocfs2_extent_rec));
2702 }
2703}
2704
2705/*
2706 * Remove split_rec clusters from the record at index and merge them
2707 * onto the beginning of the record at index + 1.
2708 */
2709static int ocfs2_merge_rec_right(struct inode *inode, struct buffer_head *bh,
2710 handle_t *handle,
2711 struct ocfs2_extent_rec *split_rec,
2712 struct ocfs2_extent_list *el, int index)
2713{
2714 int ret;
2715 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2716 struct ocfs2_extent_rec *left_rec;
2717 struct ocfs2_extent_rec *right_rec;
2718
2719 BUG_ON(index >= le16_to_cpu(el->l_next_free_rec));
2720
2721 left_rec = &el->l_recs[index];
2722 right_rec = &el->l_recs[index + 1];
2723
2724 ret = ocfs2_journal_access(handle, inode, bh,
2725 OCFS2_JOURNAL_ACCESS_WRITE);
2726 if (ret) {
2727 mlog_errno(ret);
2728 goto out;
2729 }
2730
2731 le16_add_cpu(&left_rec->e_leaf_clusters, -split_clusters);
2732
2733 le32_add_cpu(&right_rec->e_cpos, -split_clusters);
2734 le64_add_cpu(&right_rec->e_blkno,
2735 -ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2736 le16_add_cpu(&right_rec->e_leaf_clusters, split_clusters);
2737
2738 ocfs2_cleanup_merge(el, index);
2739
2740 ret = ocfs2_journal_dirty(handle, bh);
2741 if (ret)
2742 mlog_errno(ret);
2743
2744out:
2745 return ret;
2746}
2747
2748/*
2749 * Remove split_rec clusters from the record at index and merge them
2750 * onto the tail of the record at index - 1.
2751 */
2752static int ocfs2_merge_rec_left(struct inode *inode, struct buffer_head *bh,
2753 handle_t *handle,
2754 struct ocfs2_extent_rec *split_rec,
2755 struct ocfs2_extent_list *el, int index)
2756{
2757 int ret, has_empty_extent = 0;
2758 unsigned int split_clusters = le16_to_cpu(split_rec->e_leaf_clusters);
2759 struct ocfs2_extent_rec *left_rec;
2760 struct ocfs2_extent_rec *right_rec;
2761
2762 BUG_ON(index <= 0);
2763
2764 left_rec = &el->l_recs[index - 1];
2765 right_rec = &el->l_recs[index];
2766 if (ocfs2_is_empty_extent(&el->l_recs[0]))
2767 has_empty_extent = 1;
2768
2769 ret = ocfs2_journal_access(handle, inode, bh,
2770 OCFS2_JOURNAL_ACCESS_WRITE);
2771 if (ret) {
2772 mlog_errno(ret);
2773 goto out;
2774 }
2775
2776 if (has_empty_extent && index == 1) {
2777 /*
2778 * The easy case - we can just plop the record right in.
2779 */
2780 *left_rec = *split_rec;
2781
2782 has_empty_extent = 0;
2783 } else {
2784 le16_add_cpu(&left_rec->e_leaf_clusters, split_clusters);
2785 }
2786
2787 le32_add_cpu(&right_rec->e_cpos, split_clusters);
2788 le64_add_cpu(&right_rec->e_blkno,
2789 ocfs2_clusters_to_blocks(inode->i_sb, split_clusters));
2790 le16_add_cpu(&right_rec->e_leaf_clusters, -split_clusters);
2791
2792 ocfs2_cleanup_merge(el, index);
2793
2794 ret = ocfs2_journal_dirty(handle, bh);
2795 if (ret)
2796 mlog_errno(ret);
2797
2798out:
2799 return ret;
2800}
2801
2802static int ocfs2_try_to_merge_extent(struct inode *inode,
2803 handle_t *handle,
2804 struct ocfs2_path *left_path,
2805 int split_index,
2806 struct ocfs2_extent_rec *split_rec,
2807 struct ocfs2_cached_dealloc_ctxt *dealloc,
2808 struct ocfs2_merge_ctxt *ctxt)
2809
2810{
2811 int ret = 0, delete_tail_recs = 0;
2812 struct ocfs2_extent_list *el = path_leaf_el(left_path);
2813 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
2814
2815 BUG_ON(ctxt->c_contig_type == CONTIG_NONE);
2816
2817 if (ctxt->c_split_covers_rec) {
2818 delete_tail_recs++;
2819
2820 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT ||
2821 ctxt->c_has_empty_extent)
2822 delete_tail_recs++;
2823
2824 if (ctxt->c_has_empty_extent) {
2825 /*
2826 * The merge code will need to create an empty
2827 * extent to take the place of the newly
2828 * emptied slot. Remove any pre-existing empty
2829 * extents - having more than one in a leaf is
2830 * illegal.
2831 */
2832 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2833 dealloc);
2834 if (ret) {
2835 mlog_errno(ret);
2836 goto out;
2837 }
2838 split_index--;
2839 rec = &el->l_recs[split_index];
2840 }
2841 }
2842
2843 if (ctxt->c_contig_type == CONTIG_LEFTRIGHT) {
2844 /*
2845 * Left-right contig implies this.
2846 */
2847 BUG_ON(!ctxt->c_split_covers_rec);
2848 BUG_ON(split_index == 0);
2849
2850 /*
2851 * Since the leftright insert always covers the entire
2852 * extent, this call will delete the insert record
2853 * entirely, resulting in an empty extent record added to
2854 * the extent block.
2855 *
2856 * Since the adding of an empty extent shifts
2857 * everything back to the right, there's no need to
2858 * update split_index here.
2859 */
2860 ret = ocfs2_merge_rec_left(inode, path_leaf_bh(left_path),
2861 handle, split_rec, el, split_index);
2862 if (ret) {
2863 mlog_errno(ret);
2864 goto out;
2865 }
2866
2867 /*
2868 * We can only get this from logic error above.
2869 */
2870 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2871
2872 /*
2873 * The left merge left us with an empty extent, remove
2874 * it.
2875 */
2876 ret = ocfs2_rotate_tree_left(inode, handle, left_path, dealloc);
2877 if (ret) {
2878 mlog_errno(ret);
2879 goto out;
2880 }
2881 split_index--;
2882 rec = &el->l_recs[split_index];
2883
2884 /*
2885 * Note that we don't pass split_rec here on purpose -
2886 * we've merged it into the left side.
2887 */
2888 ret = ocfs2_merge_rec_right(inode, path_leaf_bh(left_path),
2889 handle, rec, el, split_index);
2890 if (ret) {
2891 mlog_errno(ret);
2892 goto out;
2893 }
2894
2895 BUG_ON(!ocfs2_is_empty_extent(&el->l_recs[0]));
2896
2897 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2898 dealloc);
2899 /*
2900 * Error from this last rotate is not critical, so
2901 * print but don't bubble it up.
2902 */
2903 if (ret)
2904 mlog_errno(ret);
2905 ret = 0;
2906 } else {
2907 /*
2908 * Merge a record to the left or right.
2909 *
2910 * 'contig_type' is relative to the existing record,
2911 * so for example, if we're "right contig", it's to
2912 * the record on the left (hence the left merge).
2913 */
2914 if (ctxt->c_contig_type == CONTIG_RIGHT) {
2915 ret = ocfs2_merge_rec_left(inode,
2916 path_leaf_bh(left_path),
2917 handle, split_rec, el,
2918 split_index);
2919 if (ret) {
2920 mlog_errno(ret);
2921 goto out;
2922 }
2923 } else {
2924 ret = ocfs2_merge_rec_right(inode,
2925 path_leaf_bh(left_path),
2926 handle, split_rec, el,
2927 split_index);
2928 if (ret) {
2929 mlog_errno(ret);
2930 goto out;
2931 }
2932 }
2933
2934 if (ctxt->c_split_covers_rec) {
2935 /*
2936 * The merge may have left an empty extent in
2937 * our leaf. Try to rotate it away.
2938 */
2939 ret = ocfs2_rotate_tree_left(inode, handle, left_path,
2940 dealloc);
2941 if (ret)
2942 mlog_errno(ret);
2943 ret = 0;
2944 }
2945 }
2946
2947out:
2948 return ret;
2949}
2950
2951static void ocfs2_subtract_from_rec(struct super_block *sb,
2952 enum ocfs2_split_type split,
2953 struct ocfs2_extent_rec *rec,
2954 struct ocfs2_extent_rec *split_rec)
2955{
2956 u64 len_blocks;
2957
2958 len_blocks = ocfs2_clusters_to_blocks(sb,
2959 le16_to_cpu(split_rec->e_leaf_clusters));
2960
2961 if (split == SPLIT_LEFT) {
2962 /*
2963 * Region is on the left edge of the existing
2964 * record.
2965 */
2966 le32_add_cpu(&rec->e_cpos,
2967 le16_to_cpu(split_rec->e_leaf_clusters));
2968 le64_add_cpu(&rec->e_blkno, len_blocks);
2969 le16_add_cpu(&rec->e_leaf_clusters,
2970 -le16_to_cpu(split_rec->e_leaf_clusters));
2971 } else {
2972 /*
2973 * Region is on the right edge of the existing
2974 * record.
2975 */
2976 le16_add_cpu(&rec->e_leaf_clusters,
2977 -le16_to_cpu(split_rec->e_leaf_clusters));
2978 }
2979}
2980
2981/*
2982 * Do the final bits of extent record insertion at the target leaf
2983 * list. If this leaf is part of an allocation tree, it is assumed
2984 * that the tree above has been prepared.
2985 */
2986static void ocfs2_insert_at_leaf(struct ocfs2_extent_rec *insert_rec,
2987 struct ocfs2_extent_list *el,
2988 struct ocfs2_insert_type *insert,
2989 struct inode *inode)
2990{
2991 int i = insert->ins_contig_index;
2992 unsigned int range;
2993 struct ocfs2_extent_rec *rec;
2994
2995 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
2996
2997 if (insert->ins_split != SPLIT_NONE) {
2998 i = ocfs2_search_extent_list(el, le32_to_cpu(insert_rec->e_cpos));
2999 BUG_ON(i == -1);
3000 rec = &el->l_recs[i];
3001 ocfs2_subtract_from_rec(inode->i_sb, insert->ins_split, rec,
3002 insert_rec);
3003 goto rotate;
3004 }
3005
3006 /*
3007 * Contiguous insert - either left or right.
3008 */
3009 if (insert->ins_contig != CONTIG_NONE) {
3010 rec = &el->l_recs[i];
3011 if (insert->ins_contig == CONTIG_LEFT) {
3012 rec->e_blkno = insert_rec->e_blkno;
3013 rec->e_cpos = insert_rec->e_cpos;
3014 }
3015 le16_add_cpu(&rec->e_leaf_clusters,
3016 le16_to_cpu(insert_rec->e_leaf_clusters));
3017 return;
3018 }
3019
3020 /*
3021 * Handle insert into an empty leaf.
3022 */
3023 if (le16_to_cpu(el->l_next_free_rec) == 0 ||
3024 ((le16_to_cpu(el->l_next_free_rec) == 1) &&
3025 ocfs2_is_empty_extent(&el->l_recs[0]))) {
3026 el->l_recs[0] = *insert_rec;
3027 el->l_next_free_rec = cpu_to_le16(1);
3028 return;
3029 }
3030
3031 /*
3032 * Appending insert.
3033 */
3034 if (insert->ins_appending == APPEND_TAIL) {
3035 i = le16_to_cpu(el->l_next_free_rec) - 1;
3036 rec = &el->l_recs[i];
3037 range = le32_to_cpu(rec->e_cpos)
3038 + le16_to_cpu(rec->e_leaf_clusters);
3039 BUG_ON(le32_to_cpu(insert_rec->e_cpos) < range);
3040
3041 mlog_bug_on_msg(le16_to_cpu(el->l_next_free_rec) >=
3042 le16_to_cpu(el->l_count),
3043 "inode %lu, depth %u, count %u, next free %u, "
3044 "rec.cpos %u, rec.clusters %u, "
3045 "insert.cpos %u, insert.clusters %u\n",
3046 inode->i_ino,
3047 le16_to_cpu(el->l_tree_depth),
3048 le16_to_cpu(el->l_count),
3049 le16_to_cpu(el->l_next_free_rec),
3050 le32_to_cpu(el->l_recs[i].e_cpos),
3051 le16_to_cpu(el->l_recs[i].e_leaf_clusters),
3052 le32_to_cpu(insert_rec->e_cpos),
3053 le16_to_cpu(insert_rec->e_leaf_clusters));
3054 i++;
3055 el->l_recs[i] = *insert_rec;
3056 le16_add_cpu(&el->l_next_free_rec, 1);
3057 return;
3058 }
3059
3060rotate:
3061 /*
3062 * Ok, we have to rotate.
3063 *
3064 * At this point, it is safe to assume that inserting into an
3065 * empty leaf and appending to a leaf have both been handled
3066 * above.
3067 *
3068 * This leaf needs to have space, either by the empty 1st
3069 * extent record, or by virtue of an l_next_rec < l_count.
3070 */
3071 ocfs2_rotate_leaf(el, insert_rec);
3072}
3073
3074static inline void ocfs2_update_dinode_clusters(struct inode *inode,
3075 struct ocfs2_dinode *di,
3076 u32 clusters)
3077{
3078 le32_add_cpu(&di->i_clusters, clusters);
3079 spin_lock(&OCFS2_I(inode)->ip_lock);
3080 OCFS2_I(inode)->ip_clusters = le32_to_cpu(di->i_clusters);
3081 spin_unlock(&OCFS2_I(inode)->ip_lock);
3082}
3083
3084static void ocfs2_adjust_rightmost_records(struct inode *inode,
3085 handle_t *handle,
3086 struct ocfs2_path *path,
3087 struct ocfs2_extent_rec *insert_rec)
3088{
3089 int ret, i, next_free;
3090 struct buffer_head *bh;
3091 struct ocfs2_extent_list *el;
3092 struct ocfs2_extent_rec *rec;
3093
3094 /*
3095 * Update everything except the leaf block.
3096 */
3097 for (i = 0; i < path->p_tree_depth; i++) {
3098 bh = path->p_node[i].bh;
3099 el = path->p_node[i].el;
3100
dcd0538f
MF
3101 next_free = le16_to_cpu(el->l_next_free_rec);
3102 if (next_free == 0) {
3103 ocfs2_error(inode->i_sb,
3104 "Dinode %llu has a bad extent list",
3105 (unsigned long long)OCFS2_I(inode)->ip_blkno);
3106 ret = -EIO;
328d5752
MF
3107 return;
3108 }
3109
3110 rec = &el->l_recs[next_free - 1];
3111
3112 rec->e_int_clusters = insert_rec->e_cpos;
3113 le32_add_cpu(&rec->e_int_clusters,
3114 le16_to_cpu(insert_rec->e_leaf_clusters));
3115 le32_add_cpu(&rec->e_int_clusters,
3116 -le32_to_cpu(rec->e_cpos));
3117
3118 ret = ocfs2_journal_dirty(handle, bh);
3119 if (ret)
3120 mlog_errno(ret);
3121
3122 }
3123}
3124
3125static int ocfs2_append_rec_to_path(struct inode *inode, handle_t *handle,
3126 struct ocfs2_extent_rec *insert_rec,
3127 struct ocfs2_path *right_path,
3128 struct ocfs2_path **ret_left_path)
3129{
3130 int ret, next_free;
3131 struct ocfs2_extent_list *el;
3132 struct ocfs2_path *left_path = NULL;
3133
3134 *ret_left_path = NULL;
3135
3136 /*
3137 * This shouldn't happen for non-trees. The extent rec cluster
3138 * count manipulation below only works for interior nodes.
3139 */
3140 BUG_ON(right_path->p_tree_depth == 0);
3141
3142 /*
3143 * If our appending insert is at the leftmost edge of a leaf,
3144 * then we might need to update the rightmost records of the
3145 * neighboring path.
3146 */
3147 el = path_leaf_el(right_path);
3148 next_free = le16_to_cpu(el->l_next_free_rec);
3149 if (next_free == 0 ||
3150 (next_free == 1 && ocfs2_is_empty_extent(&el->l_recs[0]))) {
3151 u32 left_cpos;
3152
3153 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, right_path,
3154 &left_cpos);
3155 if (ret) {
3156 mlog_errno(ret);
dcd0538f
MF
3157 goto out;
3158 }
3159
328d5752
MF
3160 mlog(0, "Append may need a left path update. cpos: %u, "
3161 "left_cpos: %u\n", le32_to_cpu(insert_rec->e_cpos),
3162 left_cpos);
e48edee2 3163
328d5752
MF
3164 /*
3165 * No need to worry if the append is already in the
3166 * leftmost leaf.
3167 */
3168 if (left_cpos) {
3169 left_path = ocfs2_new_path(path_root_bh(right_path),
3170 path_root_el(right_path));
3171 if (!left_path) {
3172 ret = -ENOMEM;
3173 mlog_errno(ret);
3174 goto out;
3175 }
dcd0538f 3176
328d5752
MF
3177 ret = ocfs2_find_path(inode, left_path, left_cpos);
3178 if (ret) {
3179 mlog_errno(ret);
3180 goto out;
3181 }
dcd0538f 3182
328d5752
MF
3183 /*
3184 * ocfs2_insert_path() will pass the left_path to the
3185 * journal for us.
3186 */
3187 }
3188 }
dcd0538f 3189
328d5752
MF
3190 ret = ocfs2_journal_access_path(inode, handle, right_path);
3191 if (ret) {
3192 mlog_errno(ret);
3193 goto out;
dcd0538f
MF
3194 }
3195
328d5752
MF
3196 ocfs2_adjust_rightmost_records(inode, handle, right_path, insert_rec);
3197
dcd0538f
MF
3198 *ret_left_path = left_path;
3199 ret = 0;
3200out:
3201 if (ret != 0)
3202 ocfs2_free_path(left_path);
3203
3204 return ret;
3205}
3206
328d5752
MF
3207static void ocfs2_split_record(struct inode *inode,
3208 struct ocfs2_path *left_path,
3209 struct ocfs2_path *right_path,
3210 struct ocfs2_extent_rec *split_rec,
3211 enum ocfs2_split_type split)
3212{
3213 int index;
3214 u32 cpos = le32_to_cpu(split_rec->e_cpos);
3215 struct ocfs2_extent_list *left_el = NULL, *right_el, *insert_el, *el;
3216 struct ocfs2_extent_rec *rec, *tmprec;
3217
3218 right_el = path_leaf_el(right_path);;
3219 if (left_path)
3220 left_el = path_leaf_el(left_path);
3221
3222 el = right_el;
3223 insert_el = right_el;
3224 index = ocfs2_search_extent_list(el, cpos);
3225 if (index != -1) {
3226 if (index == 0 && left_path) {
3227 BUG_ON(ocfs2_is_empty_extent(&el->l_recs[0]));
3228
3229 /*
3230 * This typically means that the record
3231 * started in the left path but moved to the
3232 * right as a result of rotation. We either
3233 * move the existing record to the left, or we
3234 * do the later insert there.
3235 *
3236 * In this case, the left path should always
3237 * exist as the rotate code will have passed
3238 * it back for a post-insert update.
3239 */
3240
3241 if (split == SPLIT_LEFT) {
3242 /*
3243 * It's a left split. Since we know
3244 * that the rotate code gave us an
3245 * empty extent in the left path, we
3246 * can just do the insert there.
3247 */
3248 insert_el = left_el;
3249 } else {
3250 /*
3251 * Right split - we have to move the
3252 * existing record over to the left
3253 * leaf. The insert will be into the
3254 * newly created empty extent in the
3255 * right leaf.
3256 */
3257 tmprec = &right_el->l_recs[index];
3258 ocfs2_rotate_leaf(left_el, tmprec);
3259 el = left_el;
3260
3261 memset(tmprec, 0, sizeof(*tmprec));
3262 index = ocfs2_search_extent_list(left_el, cpos);
3263 BUG_ON(index == -1);
3264 }
3265 }
3266 } else {
3267 BUG_ON(!left_path);
3268 BUG_ON(!ocfs2_is_empty_extent(&left_el->l_recs[0]));
3269 /*
3270 * Left path is easy - we can just allow the insert to
3271 * happen.
3272 */
3273 el = left_el;
3274 insert_el = left_el;
3275 index = ocfs2_search_extent_list(el, cpos);
3276 BUG_ON(index == -1);
3277 }
3278
3279 rec = &el->l_recs[index];
3280 ocfs2_subtract_from_rec(inode->i_sb, split, rec, split_rec);
3281 ocfs2_rotate_leaf(insert_el, split_rec);
3282}
3283
dcd0538f
MF
3284/*
3285 * This function only does inserts on an allocation b-tree. For dinode
3286 * lists, ocfs2_insert_at_leaf() is called directly.
3287 *
3288 * right_path is the path we want to do the actual insert
3289 * in. left_path should only be passed in if we need to update that
3290 * portion of the tree after an edge insert.
3291 */
3292static int ocfs2_insert_path(struct inode *inode,
3293 handle_t *handle,
3294 struct ocfs2_path *left_path,
3295 struct ocfs2_path *right_path,
3296 struct ocfs2_extent_rec *insert_rec,
3297 struct ocfs2_insert_type *insert)
3298{
3299 int ret, subtree_index;
3300 struct buffer_head *leaf_bh = path_leaf_bh(right_path);
dcd0538f
MF
3301
3302 /*
3303 * Pass both paths to the journal. The majority of inserts
3304 * will be touching all components anyway.
3305 */
3306 ret = ocfs2_journal_access_path(inode, handle, right_path);
3307 if (ret < 0) {
3308 mlog_errno(ret);
3309 goto out;
3310 }
3311
3312 if (left_path) {
3313 int credits = handle->h_buffer_credits;
3314
3315 /*
3316 * There's a chance that left_path got passed back to
3317 * us without being accounted for in the
3318 * journal. Extend our transaction here to be sure we
3319 * can change those blocks.
3320 */
3321 credits += left_path->p_tree_depth;
3322
3323 ret = ocfs2_extend_trans(handle, credits);
3324 if (ret < 0) {
3325 mlog_errno(ret);
3326 goto out;
3327 }
3328
3329 ret = ocfs2_journal_access_path(inode, handle, left_path);
3330 if (ret < 0) {
3331 mlog_errno(ret);
3332 goto out;
3333 }
3334 }
3335
328d5752
MF
3336 if (insert->ins_split != SPLIT_NONE) {
3337 /*
3338 * We could call ocfs2_insert_at_leaf() for some types
3339 * of splits, but it's easier to just let one seperate
3340 * function sort it all out.
3341 */
3342 ocfs2_split_record(inode, left_path, right_path,
3343 insert_rec, insert->ins_split);
3344 } else
3345 ocfs2_insert_at_leaf(insert_rec, path_leaf_el(right_path),
3346 insert, inode);
dcd0538f 3347
dcd0538f
MF
3348 ret = ocfs2_journal_dirty(handle, leaf_bh);
3349 if (ret)
3350 mlog_errno(ret);
3351
3352 if (left_path) {
3353 /*
3354 * The rotate code has indicated that we need to fix
3355 * up portions of the tree after the insert.
3356 *
3357 * XXX: Should we extend the transaction here?
3358 */
3359 subtree_index = ocfs2_find_subtree_root(inode, left_path,
3360 right_path);
3361 ocfs2_complete_edge_insert(inode, handle, left_path,
3362 right_path, subtree_index);
3363 }
3364
3365 ret = 0;
3366out:
3367 return ret;
3368}
3369
3370static int ocfs2_do_insert_extent(struct inode *inode,
3371 handle_t *handle,
3372 struct buffer_head *di_bh,
3373 struct ocfs2_extent_rec *insert_rec,
3374 struct ocfs2_insert_type *type)
3375{
3376 int ret, rotate = 0;
3377 u32 cpos;
3378 struct ocfs2_path *right_path = NULL;
3379 struct ocfs2_path *left_path = NULL;
3380 struct ocfs2_dinode *di;
3381 struct ocfs2_extent_list *el;
3382
3383 di = (struct ocfs2_dinode *) di_bh->b_data;
3384 el = &di->id2.i_list;
3385
3386 ret = ocfs2_journal_access(handle, inode, di_bh,
3387 OCFS2_JOURNAL_ACCESS_WRITE);
3388 if (ret) {
3389 mlog_errno(ret);
3390 goto out;
3391 }
3392
3393 if (le16_to_cpu(el->l_tree_depth) == 0) {
3394 ocfs2_insert_at_leaf(insert_rec, el, type, inode);
3395 goto out_update_clusters;
3396 }
3397
3398 right_path = ocfs2_new_inode_path(di_bh);
3399 if (!right_path) {
3400 ret = -ENOMEM;
3401 mlog_errno(ret);
3402 goto out;
3403 }
3404
3405 /*
3406 * Determine the path to start with. Rotations need the
3407 * rightmost path, everything else can go directly to the
3408 * target leaf.
3409 */
3410 cpos = le32_to_cpu(insert_rec->e_cpos);
3411 if (type->ins_appending == APPEND_NONE &&
3412 type->ins_contig == CONTIG_NONE) {
3413 rotate = 1;
3414 cpos = UINT_MAX;
3415 }
3416
3417 ret = ocfs2_find_path(inode, right_path, cpos);
3418 if (ret) {
3419 mlog_errno(ret);
3420 goto out;
3421 }
3422
3423 /*
3424 * Rotations and appends need special treatment - they modify
3425 * parts of the tree's above them.
3426 *
3427 * Both might pass back a path immediate to the left of the
3428 * one being inserted to. This will be cause
3429 * ocfs2_insert_path() to modify the rightmost records of
3430 * left_path to account for an edge insert.
3431 *
3432 * XXX: When modifying this code, keep in mind that an insert
3433 * can wind up skipping both of these two special cases...
3434 */
3435 if (rotate) {
328d5752 3436 ret = ocfs2_rotate_tree_right(inode, handle, type->ins_split,
dcd0538f
MF
3437 le32_to_cpu(insert_rec->e_cpos),
3438 right_path, &left_path);
3439 if (ret) {
3440 mlog_errno(ret);
3441 goto out;
3442 }
3443 } else if (type->ins_appending == APPEND_TAIL
3444 && type->ins_contig != CONTIG_LEFT) {
3445 ret = ocfs2_append_rec_to_path(inode, handle, insert_rec,
3446 right_path, &left_path);
3447 if (ret) {
3448 mlog_errno(ret);
3449 goto out;
3450 }
3451 }
3452
3453 ret = ocfs2_insert_path(inode, handle, left_path, right_path,
3454 insert_rec, type);
3455 if (ret) {
3456 mlog_errno(ret);
3457 goto out;
3458 }
3459
3460out_update_clusters:
328d5752
MF
3461 if (type->ins_split == SPLIT_NONE)
3462 ocfs2_update_dinode_clusters(inode, di,
3463 le16_to_cpu(insert_rec->e_leaf_clusters));
dcd0538f
MF
3464
3465 ret = ocfs2_journal_dirty(handle, di_bh);
3466 if (ret)
3467 mlog_errno(ret);
3468
3469out:
3470 ocfs2_free_path(left_path);
3471 ocfs2_free_path(right_path);
3472
3473 return ret;
3474}
3475
328d5752
MF
3476static enum ocfs2_contig_type
3477ocfs2_figure_merge_contig_type(struct inode *inode,
3478 struct ocfs2_extent_list *el, int index,
3479 struct ocfs2_extent_rec *split_rec)
3480{
3481 struct ocfs2_extent_rec *rec;
3482 enum ocfs2_contig_type ret = CONTIG_NONE;
3483
3484 /*
3485 * We're careful to check for an empty extent record here -
3486 * the merge code will know what to do if it sees one.
3487 */
3488
3489 if (index > 0) {
3490 rec = &el->l_recs[index - 1];
3491 if (index == 1 && ocfs2_is_empty_extent(rec)) {
3492 if (split_rec->e_cpos == el->l_recs[index].e_cpos)
3493 ret = CONTIG_RIGHT;
3494 } else {
3495 ret = ocfs2_extent_contig(inode, rec, split_rec);
3496 }
3497 }
3498
3499 if (index < (le16_to_cpu(el->l_next_free_rec) - 1)) {
3500 enum ocfs2_contig_type contig_type;
3501
3502 rec = &el->l_recs[index + 1];
3503 contig_type = ocfs2_extent_contig(inode, rec, split_rec);
3504
3505 if (contig_type == CONTIG_LEFT && ret == CONTIG_RIGHT)
3506 ret = CONTIG_LEFTRIGHT;
3507 else if (ret == CONTIG_NONE)
3508 ret = contig_type;
3509 }
3510
3511 return ret;
3512}
3513
dcd0538f
MF
3514static void ocfs2_figure_contig_type(struct inode *inode,
3515 struct ocfs2_insert_type *insert,
3516 struct ocfs2_extent_list *el,
3517 struct ocfs2_extent_rec *insert_rec)
3518{
3519 int i;
3520 enum ocfs2_contig_type contig_type = CONTIG_NONE;
3521
e48edee2
MF
3522 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
3523
dcd0538f
MF
3524 for(i = 0; i < le16_to_cpu(el->l_next_free_rec); i++) {
3525 contig_type = ocfs2_extent_contig(inode, &el->l_recs[i],
3526 insert_rec);
3527 if (contig_type != CONTIG_NONE) {
3528 insert->ins_contig_index = i;
3529 break;
3530 }
3531 }
3532 insert->ins_contig = contig_type;
3533}
3534
3535/*
3536 * This should only be called against the righmost leaf extent list.
3537 *
3538 * ocfs2_figure_appending_type() will figure out whether we'll have to
3539 * insert at the tail of the rightmost leaf.
3540 *
3541 * This should also work against the dinode list for tree's with 0
3542 * depth. If we consider the dinode list to be the rightmost leaf node
3543 * then the logic here makes sense.
3544 */
3545static void ocfs2_figure_appending_type(struct ocfs2_insert_type *insert,
3546 struct ocfs2_extent_list *el,
3547 struct ocfs2_extent_rec *insert_rec)
3548{
3549 int i;
3550 u32 cpos = le32_to_cpu(insert_rec->e_cpos);
3551 struct ocfs2_extent_rec *rec;
3552
3553 insert->ins_appending = APPEND_NONE;
3554
e48edee2 3555 BUG_ON(le16_to_cpu(el->l_tree_depth) != 0);
dcd0538f
MF
3556
3557 if (!el->l_next_free_rec)
3558 goto set_tail_append;
3559
3560 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3561 /* Were all records empty? */
3562 if (le16_to_cpu(el->l_next_free_rec) == 1)
3563 goto set_tail_append;
3564 }
3565
3566 i = le16_to_cpu(el->l_next_free_rec) - 1;
3567 rec = &el->l_recs[i];
3568
e48edee2
MF
3569 if (cpos >=
3570 (le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)))
dcd0538f
MF
3571 goto set_tail_append;
3572
3573 return;
3574
3575set_tail_append:
3576 insert->ins_appending = APPEND_TAIL;
3577}
3578
3579/*
3580 * Helper function called at the begining of an insert.
3581 *
3582 * This computes a few things that are commonly used in the process of
3583 * inserting into the btree:
3584 * - Whether the new extent is contiguous with an existing one.
3585 * - The current tree depth.
3586 * - Whether the insert is an appending one.
3587 * - The total # of free records in the tree.
3588 *
3589 * All of the information is stored on the ocfs2_insert_type
3590 * structure.
3591 */
3592static int ocfs2_figure_insert_type(struct inode *inode,
3593 struct buffer_head *di_bh,
3594 struct buffer_head **last_eb_bh,
3595 struct ocfs2_extent_rec *insert_rec,
3596 struct ocfs2_insert_type *insert)
3597{
3598 int ret;
3599 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
3600 struct ocfs2_extent_block *eb;
3601 struct ocfs2_extent_list *el;
3602 struct ocfs2_path *path = NULL;
3603 struct buffer_head *bh = NULL;
3604
328d5752
MF
3605 insert->ins_split = SPLIT_NONE;
3606
dcd0538f
MF
3607 el = &di->id2.i_list;
3608 insert->ins_tree_depth = le16_to_cpu(el->l_tree_depth);
3609
3610 if (el->l_tree_depth) {
3611 /*
3612 * If we have tree depth, we read in the
3613 * rightmost extent block ahead of time as
3614 * ocfs2_figure_insert_type() and ocfs2_add_branch()
3615 * may want it later.
3616 */
3617 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
3618 le64_to_cpu(di->i_last_eb_blk), &bh,
3619 OCFS2_BH_CACHED, inode);
3620 if (ret) {
3621 mlog_exit(ret);
3622 goto out;
3623 }
ccd979bd 3624 eb = (struct ocfs2_extent_block *) bh->b_data;
ccd979bd 3625 el = &eb->h_list;
dcd0538f 3626 }
ccd979bd 3627
dcd0538f
MF
3628 /*
3629 * Unless we have a contiguous insert, we'll need to know if
3630 * there is room left in our allocation tree for another
3631 * extent record.
3632 *
3633 * XXX: This test is simplistic, we can search for empty
3634 * extent records too.
3635 */
3636 insert->ins_free_records = le16_to_cpu(el->l_count) -
3637 le16_to_cpu(el->l_next_free_rec);
3638
3639 if (!insert->ins_tree_depth) {
3640 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3641 ocfs2_figure_appending_type(insert, el, insert_rec);
3642 return 0;
ccd979bd
MF
3643 }
3644
dcd0538f
MF
3645 path = ocfs2_new_inode_path(di_bh);
3646 if (!path) {
3647 ret = -ENOMEM;
3648 mlog_errno(ret);
3649 goto out;
3650 }
ccd979bd 3651
dcd0538f
MF
3652 /*
3653 * In the case that we're inserting past what the tree
3654 * currently accounts for, ocfs2_find_path() will return for
3655 * us the rightmost tree path. This is accounted for below in
3656 * the appending code.
3657 */
3658 ret = ocfs2_find_path(inode, path, le32_to_cpu(insert_rec->e_cpos));
3659 if (ret) {
3660 mlog_errno(ret);
3661 goto out;
3662 }
ccd979bd 3663
dcd0538f
MF
3664 el = path_leaf_el(path);
3665
3666 /*
3667 * Now that we have the path, there's two things we want to determine:
3668 * 1) Contiguousness (also set contig_index if this is so)
3669 *
3670 * 2) Are we doing an append? We can trivially break this up
3671 * into two types of appends: simple record append, or a
3672 * rotate inside the tail leaf.
3673 */
3674 ocfs2_figure_contig_type(inode, insert, el, insert_rec);
3675
3676 /*
3677 * The insert code isn't quite ready to deal with all cases of
3678 * left contiguousness. Specifically, if it's an insert into
3679 * the 1st record in a leaf, it will require the adjustment of
e48edee2 3680 * cluster count on the last record of the path directly to it's
dcd0538f
MF
3681 * left. For now, just catch that case and fool the layers
3682 * above us. This works just fine for tree_depth == 0, which
3683 * is why we allow that above.
3684 */
3685 if (insert->ins_contig == CONTIG_LEFT &&
3686 insert->ins_contig_index == 0)
3687 insert->ins_contig = CONTIG_NONE;
3688
3689 /*
3690 * Ok, so we can simply compare against last_eb to figure out
3691 * whether the path doesn't exist. This will only happen in
3692 * the case that we're doing a tail append, so maybe we can
3693 * take advantage of that information somehow.
3694 */
3695 if (le64_to_cpu(di->i_last_eb_blk) == path_leaf_bh(path)->b_blocknr) {
3696 /*
3697 * Ok, ocfs2_find_path() returned us the rightmost
3698 * tree path. This might be an appending insert. There are
3699 * two cases:
3700 * 1) We're doing a true append at the tail:
3701 * -This might even be off the end of the leaf
3702 * 2) We're "appending" by rotating in the tail
3703 */
3704 ocfs2_figure_appending_type(insert, el, insert_rec);
3705 }
3706
3707out:
3708 ocfs2_free_path(path);
3709
3710 if (ret == 0)
3711 *last_eb_bh = bh;
3712 else
3713 brelse(bh);
3714 return ret;
ccd979bd
MF
3715}
3716
dcd0538f
MF
3717/*
3718 * Insert an extent into an inode btree.
3719 *
3720 * The caller needs to update fe->i_clusters
3721 */
ccd979bd 3722int ocfs2_insert_extent(struct ocfs2_super *osb,
1fabe148 3723 handle_t *handle,
ccd979bd
MF
3724 struct inode *inode,
3725 struct buffer_head *fe_bh,
dcd0538f 3726 u32 cpos,
ccd979bd
MF
3727 u64 start_blk,
3728 u32 new_clusters,
3729 struct ocfs2_alloc_context *meta_ac)
3730{
c3afcbb3 3731 int status;
ccd979bd
MF
3732 struct buffer_head *last_eb_bh = NULL;
3733 struct buffer_head *bh = NULL;
dcd0538f
MF
3734 struct ocfs2_insert_type insert = {0, };
3735 struct ocfs2_extent_rec rec;
3736
3737 mlog(0, "add %u clusters at position %u to inode %llu\n",
3738 new_clusters, cpos, (unsigned long long)OCFS2_I(inode)->ip_blkno);
3739
3740 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb) &&
3741 (OCFS2_I(inode)->ip_clusters != cpos),
3742 "Device %s, asking for sparse allocation: inode %llu, "
3743 "cpos %u, clusters %u\n",
3744 osb->dev_str,
3745 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos,
3746 OCFS2_I(inode)->ip_clusters);
3747
e48edee2 3748 memset(&rec, 0, sizeof(rec));
dcd0538f
MF
3749 rec.e_cpos = cpu_to_le32(cpos);
3750 rec.e_blkno = cpu_to_le64(start_blk);
e48edee2 3751 rec.e_leaf_clusters = cpu_to_le16(new_clusters);
dcd0538f
MF
3752
3753 status = ocfs2_figure_insert_type(inode, fe_bh, &last_eb_bh, &rec,
3754 &insert);
3755 if (status < 0) {
3756 mlog_errno(status);
3757 goto bail;
ccd979bd
MF
3758 }
3759
dcd0538f
MF
3760 mlog(0, "Insert.appending: %u, Insert.Contig: %u, "
3761 "Insert.contig_index: %d, Insert.free_records: %d, "
3762 "Insert.tree_depth: %d\n",
3763 insert.ins_appending, insert.ins_contig, insert.ins_contig_index,
3764 insert.ins_free_records, insert.ins_tree_depth);
ccd979bd 3765
c3afcbb3
MF
3766 if (insert.ins_contig == CONTIG_NONE && insert.ins_free_records == 0) {
3767 status = ocfs2_grow_tree(inode, handle, fe_bh,
328d5752 3768 &insert.ins_tree_depth, &last_eb_bh,
c3afcbb3
MF
3769 meta_ac);
3770 if (status) {
ccd979bd
MF
3771 mlog_errno(status);
3772 goto bail;
3773 }
ccd979bd
MF
3774 }
3775
dcd0538f
MF
3776 /* Finally, we can add clusters. This might rotate the tree for us. */
3777 status = ocfs2_do_insert_extent(inode, handle, fe_bh, &rec, &insert);
ccd979bd
MF
3778 if (status < 0)
3779 mlog_errno(status);
83418978
MF
3780 else
3781 ocfs2_extent_map_insert_rec(inode, &rec);
ccd979bd
MF
3782
3783bail:
3784 if (bh)
3785 brelse(bh);
3786
3787 if (last_eb_bh)
3788 brelse(last_eb_bh);
3789
3790 mlog_exit(status);
3791 return status;
3792}
3793
328d5752
MF
3794static void ocfs2_make_right_split_rec(struct super_block *sb,
3795 struct ocfs2_extent_rec *split_rec,
3796 u32 cpos,
3797 struct ocfs2_extent_rec *rec)
3798{
3799 u32 rec_cpos = le32_to_cpu(rec->e_cpos);
3800 u32 rec_range = rec_cpos + le16_to_cpu(rec->e_leaf_clusters);
3801
3802 memset(split_rec, 0, sizeof(struct ocfs2_extent_rec));
3803
3804 split_rec->e_cpos = cpu_to_le32(cpos);
3805 split_rec->e_leaf_clusters = cpu_to_le16(rec_range - cpos);
3806
3807 split_rec->e_blkno = rec->e_blkno;
3808 le64_add_cpu(&split_rec->e_blkno,
3809 ocfs2_clusters_to_blocks(sb, cpos - rec_cpos));
3810
3811 split_rec->e_flags = rec->e_flags;
3812}
3813
3814static int ocfs2_split_and_insert(struct inode *inode,
3815 handle_t *handle,
3816 struct ocfs2_path *path,
3817 struct buffer_head *di_bh,
3818 struct buffer_head **last_eb_bh,
3819 int split_index,
3820 struct ocfs2_extent_rec *orig_split_rec,
3821 struct ocfs2_alloc_context *meta_ac)
3822{
3823 int ret = 0, depth;
3824 unsigned int insert_range, rec_range, do_leftright = 0;
3825 struct ocfs2_extent_rec tmprec;
3826 struct ocfs2_extent_list *rightmost_el;
3827 struct ocfs2_extent_rec rec;
3828 struct ocfs2_extent_rec split_rec = *orig_split_rec;
3829 struct ocfs2_insert_type insert;
3830 struct ocfs2_extent_block *eb;
3831 struct ocfs2_dinode *di;
3832
3833leftright:
3834 /*
3835 * Store a copy of the record on the stack - it might move
3836 * around as the tree is manipulated below.
3837 */
3838 rec = path_leaf_el(path)->l_recs[split_index];
3839
3840 di = (struct ocfs2_dinode *)di_bh->b_data;
3841 rightmost_el = &di->id2.i_list;
3842
3843 depth = le16_to_cpu(rightmost_el->l_tree_depth);
3844 if (depth) {
3845 BUG_ON(!(*last_eb_bh));
3846 eb = (struct ocfs2_extent_block *) (*last_eb_bh)->b_data;
3847 rightmost_el = &eb->h_list;
3848 }
3849
3850 if (le16_to_cpu(rightmost_el->l_next_free_rec) ==
3851 le16_to_cpu(rightmost_el->l_count)) {
3852 int old_depth = depth;
3853
3854 ret = ocfs2_grow_tree(inode, handle, di_bh, &depth, last_eb_bh,
3855 meta_ac);
3856 if (ret) {
3857 mlog_errno(ret);
3858 goto out;
3859 }
3860
3861 if (old_depth != depth) {
3862 eb = (struct ocfs2_extent_block *)(*last_eb_bh)->b_data;
3863 rightmost_el = &eb->h_list;
3864 }
3865 }
3866
3867 memset(&insert, 0, sizeof(struct ocfs2_insert_type));
3868 insert.ins_appending = APPEND_NONE;
3869 insert.ins_contig = CONTIG_NONE;
3870 insert.ins_free_records = le16_to_cpu(rightmost_el->l_count)
3871 - le16_to_cpu(rightmost_el->l_next_free_rec);
3872 insert.ins_tree_depth = depth;
3873
3874 insert_range = le32_to_cpu(split_rec.e_cpos) +
3875 le16_to_cpu(split_rec.e_leaf_clusters);
3876 rec_range = le32_to_cpu(rec.e_cpos) +
3877 le16_to_cpu(rec.e_leaf_clusters);
3878
3879 if (split_rec.e_cpos == rec.e_cpos) {
3880 insert.ins_split = SPLIT_LEFT;
3881 } else if (insert_range == rec_range) {
3882 insert.ins_split = SPLIT_RIGHT;
3883 } else {
3884 /*
3885 * Left/right split. We fake this as a right split
3886 * first and then make a second pass as a left split.
3887 */
3888 insert.ins_split = SPLIT_RIGHT;
3889
3890 ocfs2_make_right_split_rec(inode->i_sb, &tmprec, insert_range,
3891 &rec);
3892
3893 split_rec = tmprec;
3894
3895 BUG_ON(do_leftright);
3896 do_leftright = 1;
3897 }
3898
3899 ret = ocfs2_do_insert_extent(inode, handle, di_bh, &split_rec,
3900 &insert);
3901 if (ret) {
3902 mlog_errno(ret);
3903 goto out;
3904 }
3905
3906 if (do_leftright == 1) {
3907 u32 cpos;
3908 struct ocfs2_extent_list *el;
3909
3910 do_leftright++;
3911 split_rec = *orig_split_rec;
3912
3913 ocfs2_reinit_path(path, 1);
3914
3915 cpos = le32_to_cpu(split_rec.e_cpos);
3916 ret = ocfs2_find_path(inode, path, cpos);
3917 if (ret) {
3918 mlog_errno(ret);
3919 goto out;
3920 }
3921
3922 el = path_leaf_el(path);
3923 split_index = ocfs2_search_extent_list(el, cpos);
3924 goto leftright;
3925 }
3926out:
3927
3928 return ret;
3929}
3930
3931/*
3932 * Mark part or all of the extent record at split_index in the leaf
3933 * pointed to by path as written. This removes the unwritten
3934 * extent flag.
3935 *
3936 * Care is taken to handle contiguousness so as to not grow the tree.
3937 *
3938 * meta_ac is not strictly necessary - we only truly need it if growth
3939 * of the tree is required. All other cases will degrade into a less
3940 * optimal tree layout.
3941 *
3942 * last_eb_bh should be the rightmost leaf block for any inode with a
3943 * btree. Since a split may grow the tree or a merge might shrink it, the caller cannot trust the contents of that buffer after this call.
3944 *
3945 * This code is optimized for readability - several passes might be
3946 * made over certain portions of the tree. All of those blocks will
3947 * have been brought into cache (and pinned via the journal), so the
3948 * extra overhead is not expressed in terms of disk reads.
3949 */
3950static int __ocfs2_mark_extent_written(struct inode *inode,
3951 struct buffer_head *di_bh,
3952 handle_t *handle,
3953 struct ocfs2_path *path,
3954 int split_index,
3955 struct ocfs2_extent_rec *split_rec,
3956 struct ocfs2_alloc_context *meta_ac,
3957 struct ocfs2_cached_dealloc_ctxt *dealloc)
3958{
3959 int ret = 0;
3960 struct ocfs2_extent_list *el = path_leaf_el(path);
3961 struct buffer_head *eb_bh, *last_eb_bh = NULL;
3962 struct ocfs2_extent_rec *rec = &el->l_recs[split_index];
3963 struct ocfs2_merge_ctxt ctxt;
3964 struct ocfs2_extent_list *rightmost_el;
3965
3966 if (!rec->e_flags & OCFS2_EXT_UNWRITTEN) {
3967 ret = -EIO;
3968 mlog_errno(ret);
3969 goto out;
3970 }
3971
3972 if (le32_to_cpu(rec->e_cpos) > le32_to_cpu(split_rec->e_cpos) ||
3973 ((le32_to_cpu(rec->e_cpos) + le16_to_cpu(rec->e_leaf_clusters)) <
3974 (le32_to_cpu(split_rec->e_cpos) + le16_to_cpu(split_rec->e_leaf_clusters)))) {
3975 ret = -EIO;
3976 mlog_errno(ret);
3977 goto out;
3978 }
3979
3980 eb_bh = path_leaf_bh(path);
3981 ret = ocfs2_journal_access(handle, inode, eb_bh,
3982 OCFS2_JOURNAL_ACCESS_WRITE);
3983 if (ret) {
3984 mlog_errno(ret);
3985 goto out;
3986 }
3987
3988 ctxt.c_contig_type = ocfs2_figure_merge_contig_type(inode, el,
3989 split_index,
3990 split_rec);
3991
3992 /*
3993 * The core merge / split code wants to know how much room is
3994 * left in this inodes allocation tree, so we pass the
3995 * rightmost extent list.
3996 */
3997 if (path->p_tree_depth) {
3998 struct ocfs2_extent_block *eb;
3999 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
4000
4001 ret = ocfs2_read_block(OCFS2_SB(inode->i_sb),
4002 le64_to_cpu(di->i_last_eb_blk),
4003 &last_eb_bh, OCFS2_BH_CACHED, inode);
4004 if (ret) {
4005 mlog_exit(ret);
4006 goto out;
4007 }
4008
4009 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
4010 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4011 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4012 ret = -EROFS;
4013 goto out;
4014 }
4015
4016 rightmost_el = &eb->h_list;
4017 } else
4018 rightmost_el = path_root_el(path);
4019
4020 ctxt.c_used_tail_recs = le16_to_cpu(rightmost_el->l_next_free_rec);
4021 if (ctxt.c_used_tail_recs > 0 &&
4022 ocfs2_is_empty_extent(&rightmost_el->l_recs[0]))
4023 ctxt.c_used_tail_recs--;
4024
4025 if (rec->e_cpos == split_rec->e_cpos &&
4026 rec->e_leaf_clusters == split_rec->e_leaf_clusters)
4027 ctxt.c_split_covers_rec = 1;
4028 else
4029 ctxt.c_split_covers_rec = 0;
4030
4031 ctxt.c_has_empty_extent = ocfs2_is_empty_extent(&el->l_recs[0]);
4032
4033 mlog(0, "index: %d, contig: %u, used_tail_recs: %u, "
4034 "has_empty: %u, split_covers: %u\n", split_index,
4035 ctxt.c_contig_type, ctxt.c_used_tail_recs,
4036 ctxt.c_has_empty_extent, ctxt.c_split_covers_rec);
4037
4038 if (ctxt.c_contig_type == CONTIG_NONE) {
4039 if (ctxt.c_split_covers_rec)
4040 el->l_recs[split_index] = *split_rec;
4041 else
4042 ret = ocfs2_split_and_insert(inode, handle, path, di_bh,
4043 &last_eb_bh, split_index,
4044 split_rec, meta_ac);
4045 if (ret)
4046 mlog_errno(ret);
4047 } else {
4048 ret = ocfs2_try_to_merge_extent(inode, handle, path,
4049 split_index, split_rec,
4050 dealloc, &ctxt);
4051 if (ret)
4052 mlog_errno(ret);
4053 }
4054
4055 ocfs2_journal_dirty(handle, eb_bh);
4056
4057out:
4058 brelse(last_eb_bh);
4059 return ret;
4060}
4061
4062/*
4063 * Mark the already-existing extent at cpos as written for len clusters.
4064 *
4065 * If the existing extent is larger than the request, initiate a
4066 * split. An attempt will be made at merging with adjacent extents.
4067 *
4068 * The caller is responsible for passing down meta_ac if we'll need it.
4069 */
4070int ocfs2_mark_extent_written(struct inode *inode, struct buffer_head *di_bh,
4071 handle_t *handle, u32 cpos, u32 len, u32 phys,
4072 struct ocfs2_alloc_context *meta_ac,
4073 struct ocfs2_cached_dealloc_ctxt *dealloc)
4074{
4075 int ret, index;
4076 u64 start_blkno = ocfs2_clusters_to_blocks(inode->i_sb, phys);
4077 struct ocfs2_extent_rec split_rec;
4078 struct ocfs2_path *left_path = NULL;
4079 struct ocfs2_extent_list *el;
4080
4081 mlog(0, "Inode %lu cpos %u, len %u, phys %u (%llu)\n",
4082 inode->i_ino, cpos, len, phys, (unsigned long long)start_blkno);
4083
4084 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode->i_sb))) {
4085 ocfs2_error(inode->i_sb, "Inode %llu has unwritten extents "
4086 "that are being written to, but the feature bit "
4087 "is not set in the super block.",
4088 (unsigned long long)OCFS2_I(inode)->ip_blkno);
4089 ret = -EROFS;
4090 goto out;
4091 }
4092
4093 /*
4094 * XXX: This should be fixed up so that we just re-insert the
4095 * next extent records.
4096 */
4097 ocfs2_extent_map_trunc(inode, 0);
4098
4099 left_path = ocfs2_new_inode_path(di_bh);
4100 if (!left_path) {
4101 ret = -ENOMEM;
4102 mlog_errno(ret);
4103 goto out;
4104 }
4105
4106 ret = ocfs2_find_path(inode, left_path, cpos);
4107 if (ret) {
4108 mlog_errno(ret);
4109 goto out;
4110 }
4111 el = path_leaf_el(left_path);
4112
4113 index = ocfs2_search_extent_list(el, cpos);
4114 if (index == -1 || index >= le16_to_cpu(el->l_next_free_rec)) {
4115 ocfs2_error(inode->i_sb,
4116 "Inode %llu has an extent at cpos %u which can no "
4117 "longer be found.\n",
4118 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
4119 ret = -EROFS;
4120 goto out;
4121 }
4122
4123 memset(&split_rec, 0, sizeof(struct ocfs2_extent_rec));
4124 split_rec.e_cpos = cpu_to_le32(cpos);
4125 split_rec.e_leaf_clusters = cpu_to_le16(len);
4126 split_rec.e_blkno = cpu_to_le64(start_blkno);
4127 split_rec.e_flags = path_leaf_el(left_path)->l_recs[index].e_flags;
4128 split_rec.e_flags &= ~OCFS2_EXT_UNWRITTEN;
4129
4130 ret = __ocfs2_mark_extent_written(inode, di_bh, handle, left_path,
4131 index, &split_rec, meta_ac, dealloc);
4132 if (ret)
4133 mlog_errno(ret);
4134
4135out:
4136 ocfs2_free_path(left_path);
4137 return ret;
4138}
4139
ccd979bd
MF
4140static inline int ocfs2_truncate_log_needs_flush(struct ocfs2_super *osb)
4141{
4142 struct buffer_head *tl_bh = osb->osb_tl_bh;
4143 struct ocfs2_dinode *di;
4144 struct ocfs2_truncate_log *tl;
4145
4146 di = (struct ocfs2_dinode *) tl_bh->b_data;
4147 tl = &di->id2.i_dealloc;
4148
4149 mlog_bug_on_msg(le16_to_cpu(tl->tl_used) > le16_to_cpu(tl->tl_count),
4150 "slot %d, invalid truncate log parameters: used = "
4151 "%u, count = %u\n", osb->slot_num,
4152 le16_to_cpu(tl->tl_used), le16_to_cpu(tl->tl_count));
4153 return le16_to_cpu(tl->tl_used) == le16_to_cpu(tl->tl_count);
4154}
4155
4156static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log *tl,
4157 unsigned int new_start)
4158{
4159 unsigned int tail_index;
4160 unsigned int current_tail;
4161
4162 /* No records, nothing to coalesce */
4163 if (!le16_to_cpu(tl->tl_used))
4164 return 0;
4165
4166 tail_index = le16_to_cpu(tl->tl_used) - 1;
4167 current_tail = le32_to_cpu(tl->tl_recs[tail_index].t_start);
4168 current_tail += le32_to_cpu(tl->tl_recs[tail_index].t_clusters);
4169
4170 return current_tail == new_start;
4171}
4172
4173static int ocfs2_truncate_log_append(struct ocfs2_super *osb,
1fabe148 4174 handle_t *handle,
ccd979bd
MF
4175 u64 start_blk,
4176 unsigned int num_clusters)
4177{
4178 int status, index;
4179 unsigned int start_cluster, tl_count;
4180 struct inode *tl_inode = osb->osb_tl_inode;
4181 struct buffer_head *tl_bh = osb->osb_tl_bh;
4182 struct ocfs2_dinode *di;
4183 struct ocfs2_truncate_log *tl;
4184
b0697053
MF
4185 mlog_entry("start_blk = %llu, num_clusters = %u\n",
4186 (unsigned long long)start_blk, num_clusters);
ccd979bd 4187
1b1dcc1b 4188 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
ccd979bd
MF
4189
4190 start_cluster = ocfs2_blocks_to_clusters(osb->sb, start_blk);
4191
4192 di = (struct ocfs2_dinode *) tl_bh->b_data;
4193 tl = &di->id2.i_dealloc;
4194 if (!OCFS2_IS_VALID_DINODE(di)) {
4195 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4196 status = -EIO;
4197 goto bail;
4198 }
4199
4200 tl_count = le16_to_cpu(tl->tl_count);
4201 mlog_bug_on_msg(tl_count > ocfs2_truncate_recs_per_inode(osb->sb) ||
4202 tl_count == 0,
b0697053
MF
4203 "Truncate record count on #%llu invalid "
4204 "wanted %u, actual %u\n",
4205 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno,
ccd979bd
MF
4206 ocfs2_truncate_recs_per_inode(osb->sb),
4207 le16_to_cpu(tl->tl_count));
4208
4209 /* Caller should have known to flush before calling us. */
4210 index = le16_to_cpu(tl->tl_used);
4211 if (index >= tl_count) {
4212 status = -ENOSPC;
4213 mlog_errno(status);
4214 goto bail;
4215 }
4216
4217 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4218 OCFS2_JOURNAL_ACCESS_WRITE);
4219 if (status < 0) {
4220 mlog_errno(status);
4221 goto bail;
4222 }
4223
4224 mlog(0, "Log truncate of %u clusters starting at cluster %u to "
b0697053
MF
4225 "%llu (index = %d)\n", num_clusters, start_cluster,
4226 (unsigned long long)OCFS2_I(tl_inode)->ip_blkno, index);
ccd979bd
MF
4227
4228 if (ocfs2_truncate_log_can_coalesce(tl, start_cluster)) {
4229 /*
4230 * Move index back to the record we are coalescing with.
4231 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
4232 */
4233 index--;
4234
4235 num_clusters += le32_to_cpu(tl->tl_recs[index].t_clusters);
4236 mlog(0, "Coalesce with index %u (start = %u, clusters = %u)\n",
4237 index, le32_to_cpu(tl->tl_recs[index].t_start),
4238 num_clusters);
4239 } else {
4240 tl->tl_recs[index].t_start = cpu_to_le32(start_cluster);
4241 tl->tl_used = cpu_to_le16(index + 1);
4242 }
4243 tl->tl_recs[index].t_clusters = cpu_to_le32(num_clusters);
4244
4245 status = ocfs2_journal_dirty(handle, tl_bh);
4246 if (status < 0) {
4247 mlog_errno(status);
4248 goto bail;
4249 }
4250
4251bail:
4252 mlog_exit(status);
4253 return status;
4254}
4255
4256static int ocfs2_replay_truncate_records(struct ocfs2_super *osb,
1fabe148 4257 handle_t *handle,
ccd979bd
MF
4258 struct inode *data_alloc_inode,
4259 struct buffer_head *data_alloc_bh)
4260{
4261 int status = 0;
4262 int i;
4263 unsigned int num_clusters;
4264 u64 start_blk;
4265 struct ocfs2_truncate_rec rec;
4266 struct ocfs2_dinode *di;
4267 struct ocfs2_truncate_log *tl;
4268 struct inode *tl_inode = osb->osb_tl_inode;
4269 struct buffer_head *tl_bh = osb->osb_tl_bh;
4270
4271 mlog_entry_void();
4272
4273 di = (struct ocfs2_dinode *) tl_bh->b_data;
4274 tl = &di->id2.i_dealloc;
4275 i = le16_to_cpu(tl->tl_used) - 1;
4276 while (i >= 0) {
4277 /* Caller has given us at least enough credits to
4278 * update the truncate log dinode */
4279 status = ocfs2_journal_access(handle, tl_inode, tl_bh,
4280 OCFS2_JOURNAL_ACCESS_WRITE);
4281 if (status < 0) {
4282 mlog_errno(status);
4283 goto bail;
4284 }
4285
4286 tl->tl_used = cpu_to_le16(i);
4287
4288 status = ocfs2_journal_dirty(handle, tl_bh);
4289 if (status < 0) {
4290 mlog_errno(status);
4291 goto bail;
4292 }
4293
4294 /* TODO: Perhaps we can calculate the bulk of the
4295 * credits up front rather than extending like
4296 * this. */
4297 status = ocfs2_extend_trans(handle,
4298 OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC);
4299 if (status < 0) {
4300 mlog_errno(status);
4301 goto bail;
4302 }
4303
4304 rec = tl->tl_recs[i];
4305 start_blk = ocfs2_clusters_to_blocks(data_alloc_inode->i_sb,
4306 le32_to_cpu(rec.t_start));
4307 num_clusters = le32_to_cpu(rec.t_clusters);
4308
4309 /* if start_blk is not set, we ignore the record as
4310 * invalid. */
4311 if (start_blk) {
4312 mlog(0, "free record %d, start = %u, clusters = %u\n",
4313 i, le32_to_cpu(rec.t_start), num_clusters);
4314
4315 status = ocfs2_free_clusters(handle, data_alloc_inode,
4316 data_alloc_bh, start_blk,
4317 num_clusters);
4318 if (status < 0) {
4319 mlog_errno(status);
4320 goto bail;
4321 }
4322 }
4323 i--;
4324 }
4325
4326bail:
4327 mlog_exit(status);
4328 return status;
4329}
4330
1b1dcc1b 4331/* Expects you to already be holding tl_inode->i_mutex */
ccd979bd
MF
4332static int __ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4333{
4334 int status;
4335 unsigned int num_to_flush;
1fabe148 4336 handle_t *handle;
ccd979bd
MF
4337 struct inode *tl_inode = osb->osb_tl_inode;
4338 struct inode *data_alloc_inode = NULL;
4339 struct buffer_head *tl_bh = osb->osb_tl_bh;
4340 struct buffer_head *data_alloc_bh = NULL;
4341 struct ocfs2_dinode *di;
4342 struct ocfs2_truncate_log *tl;
4343
4344 mlog_entry_void();
4345
1b1dcc1b 4346 BUG_ON(mutex_trylock(&tl_inode->i_mutex));
ccd979bd
MF
4347
4348 di = (struct ocfs2_dinode *) tl_bh->b_data;
4349 tl = &di->id2.i_dealloc;
4350 if (!OCFS2_IS_VALID_DINODE(di)) {
4351 OCFS2_RO_ON_INVALID_DINODE(osb->sb, di);
4352 status = -EIO;
e08dc8b9 4353 goto out;
ccd979bd
MF
4354 }
4355
4356 num_to_flush = le16_to_cpu(tl->tl_used);
b0697053
MF
4357 mlog(0, "Flush %u records from truncate log #%llu\n",
4358 num_to_flush, (unsigned long long)OCFS2_I(tl_inode)->ip_blkno);
ccd979bd
MF
4359 if (!num_to_flush) {
4360 status = 0;
e08dc8b9 4361 goto out;
ccd979bd
MF
4362 }
4363
4364 data_alloc_inode = ocfs2_get_system_file_inode(osb,
4365 GLOBAL_BITMAP_SYSTEM_INODE,
4366 OCFS2_INVALID_SLOT);
4367 if (!data_alloc_inode) {
4368 status = -EINVAL;
4369 mlog(ML_ERROR, "Could not get bitmap inode!\n");
e08dc8b9 4370 goto out;
ccd979bd
MF
4371 }
4372
e08dc8b9
MF
4373 mutex_lock(&data_alloc_inode->i_mutex);
4374
4bcec184 4375 status = ocfs2_meta_lock(data_alloc_inode, &data_alloc_bh, 1);
ccd979bd
MF
4376 if (status < 0) {
4377 mlog_errno(status);
e08dc8b9 4378 goto out_mutex;
ccd979bd
MF
4379 }
4380
65eff9cc 4381 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
ccd979bd
MF
4382 if (IS_ERR(handle)) {
4383 status = PTR_ERR(handle);
ccd979bd 4384 mlog_errno(status);
e08dc8b9 4385 goto out_unlock;
ccd979bd
MF
4386 }
4387
4388 status = ocfs2_replay_truncate_records(osb, handle, data_alloc_inode,
4389 data_alloc_bh);
e08dc8b9 4390 if (status < 0)
ccd979bd 4391 mlog_errno(status);
ccd979bd 4392
02dc1af4 4393 ocfs2_commit_trans(osb, handle);
ccd979bd 4394
e08dc8b9
MF
4395out_unlock:
4396 brelse(data_alloc_bh);
4397 ocfs2_meta_unlock(data_alloc_inode, 1);
ccd979bd 4398
e08dc8b9
MF
4399out_mutex:
4400 mutex_unlock(&data_alloc_inode->i_mutex);
4401 iput(data_alloc_inode);
ccd979bd 4402
e08dc8b9 4403out:
ccd979bd
MF
4404 mlog_exit(status);
4405 return status;
4406}
4407
4408int ocfs2_flush_truncate_log(struct ocfs2_super *osb)
4409{
4410 int status;
4411 struct inode *tl_inode = osb->osb_tl_inode;
4412
1b1dcc1b 4413 mutex_lock(&tl_inode->i_mutex);
ccd979bd 4414 status = __ocfs2_flush_truncate_log(osb);
1b1dcc1b 4415 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
4416
4417 return status;
4418}
4419
c4028958 4420static void ocfs2_truncate_log_worker(struct work_struct *work)
ccd979bd
MF
4421{
4422 int status;
c4028958
DH
4423 struct ocfs2_super *osb =
4424 container_of(work, struct ocfs2_super,
4425 osb_truncate_log_wq.work);
ccd979bd
MF
4426
4427 mlog_entry_void();
4428
4429 status = ocfs2_flush_truncate_log(osb);
4430 if (status < 0)
4431 mlog_errno(status);
4432
4433 mlog_exit(status);
4434}
4435
4436#define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
4437void ocfs2_schedule_truncate_log_flush(struct ocfs2_super *osb,
4438 int cancel)
4439{
4440 if (osb->osb_tl_inode) {
4441 /* We want to push off log flushes while truncates are
4442 * still running. */
4443 if (cancel)
4444 cancel_delayed_work(&osb->osb_truncate_log_wq);
4445
4446 queue_delayed_work(ocfs2_wq, &osb->osb_truncate_log_wq,
4447 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL);
4448 }
4449}
4450
4451static int ocfs2_get_truncate_log_info(struct ocfs2_super *osb,
4452 int slot_num,
4453 struct inode **tl_inode,
4454 struct buffer_head **tl_bh)
4455{
4456 int status;
4457 struct inode *inode = NULL;
4458 struct buffer_head *bh = NULL;
4459
4460 inode = ocfs2_get_system_file_inode(osb,
4461 TRUNCATE_LOG_SYSTEM_INODE,
4462 slot_num);
4463 if (!inode) {
4464 status = -EINVAL;
4465 mlog(ML_ERROR, "Could not get load truncate log inode!\n");
4466 goto bail;
4467 }
4468
4469 status = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &bh,
4470 OCFS2_BH_CACHED, inode);
4471 if (status < 0) {
4472 iput(inode);
4473 mlog_errno(status);
4474 goto bail;
4475 }
4476
4477 *tl_inode = inode;
4478 *tl_bh = bh;
4479bail:
4480 mlog_exit(status);
4481 return status;
4482}
4483
4484/* called during the 1st stage of node recovery. we stamp a clean
4485 * truncate log and pass back a copy for processing later. if the
4486 * truncate log does not require processing, a *tl_copy is set to
4487 * NULL. */
4488int ocfs2_begin_truncate_log_recovery(struct ocfs2_super *osb,
4489 int slot_num,
4490 struct ocfs2_dinode **tl_copy)
4491{
4492 int status;
4493 struct inode *tl_inode = NULL;
4494 struct buffer_head *tl_bh = NULL;
4495 struct ocfs2_dinode *di;
4496 struct ocfs2_truncate_log *tl;
4497
4498 *tl_copy = NULL;
4499
4500 mlog(0, "recover truncate log from slot %d\n", slot_num);
4501
4502 status = ocfs2_get_truncate_log_info(osb, slot_num, &tl_inode, &tl_bh);
4503 if (status < 0) {
4504 mlog_errno(status);
4505 goto bail;
4506 }
4507
4508 di = (struct ocfs2_dinode *) tl_bh->b_data;
4509 tl = &di->id2.i_dealloc;
4510 if (!OCFS2_IS_VALID_DINODE(di)) {
4511 OCFS2_RO_ON_INVALID_DINODE(tl_inode->i_sb, di);
4512 status = -EIO;
4513 goto bail;
4514 }
4515
4516 if (le16_to_cpu(tl->tl_used)) {
4517 mlog(0, "We'll have %u logs to recover\n",
4518 le16_to_cpu(tl->tl_used));
4519
4520 *tl_copy = kmalloc(tl_bh->b_size, GFP_KERNEL);
4521 if (!(*tl_copy)) {
4522 status = -ENOMEM;
4523 mlog_errno(status);
4524 goto bail;
4525 }
4526
4527 /* Assuming the write-out below goes well, this copy
4528 * will be passed back to recovery for processing. */
4529 memcpy(*tl_copy, tl_bh->b_data, tl_bh->b_size);
4530
4531 /* All we need to do to clear the truncate log is set
4532 * tl_used. */
4533 tl->tl_used = 0;
4534
4535 status = ocfs2_write_block(osb, tl_bh, tl_inode);
4536 if (status < 0) {
4537 mlog_errno(status);
4538 goto bail;
4539 }
4540 }
4541
4542bail:
4543 if (tl_inode)
4544 iput(tl_inode);
4545 if (tl_bh)
4546 brelse(tl_bh);
4547
4548 if (status < 0 && (*tl_copy)) {
4549 kfree(*tl_copy);
4550 *tl_copy = NULL;
4551 }
4552
4553 mlog_exit(status);
4554 return status;
4555}
4556
4557int ocfs2_complete_truncate_log_recovery(struct ocfs2_super *osb,
4558 struct ocfs2_dinode *tl_copy)
4559{
4560 int status = 0;
4561 int i;
4562 unsigned int clusters, num_recs, start_cluster;
4563 u64 start_blk;
1fabe148 4564 handle_t *handle;
ccd979bd
MF
4565 struct inode *tl_inode = osb->osb_tl_inode;
4566 struct ocfs2_truncate_log *tl;
4567
4568 mlog_entry_void();
4569
4570 if (OCFS2_I(tl_inode)->ip_blkno == le64_to_cpu(tl_copy->i_blkno)) {
4571 mlog(ML_ERROR, "Asked to recover my own truncate log!\n");
4572 return -EINVAL;
4573 }
4574
4575 tl = &tl_copy->id2.i_dealloc;
4576 num_recs = le16_to_cpu(tl->tl_used);
b0697053 4577 mlog(0, "cleanup %u records from %llu\n", num_recs,
1ca1a111 4578 (unsigned long long)le64_to_cpu(tl_copy->i_blkno));
ccd979bd 4579
1b1dcc1b 4580 mutex_lock(&tl_inode->i_mutex);
ccd979bd
MF
4581 for(i = 0; i < num_recs; i++) {
4582 if (ocfs2_truncate_log_needs_flush(osb)) {
4583 status = __ocfs2_flush_truncate_log(osb);
4584 if (status < 0) {
4585 mlog_errno(status);
4586 goto bail_up;
4587 }
4588 }
4589
65eff9cc 4590 handle = ocfs2_start_trans(osb, OCFS2_TRUNCATE_LOG_UPDATE);
ccd979bd
MF
4591 if (IS_ERR(handle)) {
4592 status = PTR_ERR(handle);
4593 mlog_errno(status);
4594 goto bail_up;
4595 }
4596
4597 clusters = le32_to_cpu(tl->tl_recs[i].t_clusters);
4598 start_cluster = le32_to_cpu(tl->tl_recs[i].t_start);
4599 start_blk = ocfs2_clusters_to_blocks(osb->sb, start_cluster);
4600
4601 status = ocfs2_truncate_log_append(osb, handle,
4602 start_blk, clusters);
02dc1af4 4603 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
4604 if (status < 0) {
4605 mlog_errno(status);
4606 goto bail_up;
4607 }
4608 }
4609
4610bail_up:
1b1dcc1b 4611 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
4612
4613 mlog_exit(status);
4614 return status;
4615}
4616
4617void ocfs2_truncate_log_shutdown(struct ocfs2_super *osb)
4618{
4619 int status;
4620 struct inode *tl_inode = osb->osb_tl_inode;
4621
4622 mlog_entry_void();
4623
4624 if (tl_inode) {
4625 cancel_delayed_work(&osb->osb_truncate_log_wq);
4626 flush_workqueue(ocfs2_wq);
4627
4628 status = ocfs2_flush_truncate_log(osb);
4629 if (status < 0)
4630 mlog_errno(status);
4631
4632 brelse(osb->osb_tl_bh);
4633 iput(osb->osb_tl_inode);
4634 }
4635
4636 mlog_exit_void();
4637}
4638
4639int ocfs2_truncate_log_init(struct ocfs2_super *osb)
4640{
4641 int status;
4642 struct inode *tl_inode = NULL;
4643 struct buffer_head *tl_bh = NULL;
4644
4645 mlog_entry_void();
4646
4647 status = ocfs2_get_truncate_log_info(osb,
4648 osb->slot_num,
4649 &tl_inode,
4650 &tl_bh);
4651 if (status < 0)
4652 mlog_errno(status);
4653
4654 /* ocfs2_truncate_log_shutdown keys on the existence of
4655 * osb->osb_tl_inode so we don't set any of the osb variables
4656 * until we're sure all is well. */
c4028958
DH
4657 INIT_DELAYED_WORK(&osb->osb_truncate_log_wq,
4658 ocfs2_truncate_log_worker);
ccd979bd
MF
4659 osb->osb_tl_bh = tl_bh;
4660 osb->osb_tl_inode = tl_inode;
4661
4662 mlog_exit(status);
4663 return status;
4664}
4665
2b604351
MF
4666/*
4667 * Delayed de-allocation of suballocator blocks.
4668 *
4669 * Some sets of block de-allocations might involve multiple suballocator inodes.
4670 *
4671 * The locking for this can get extremely complicated, especially when
4672 * the suballocator inodes to delete from aren't known until deep
4673 * within an unrelated codepath.
4674 *
4675 * ocfs2_extent_block structures are a good example of this - an inode
4676 * btree could have been grown by any number of nodes each allocating
4677 * out of their own suballoc inode.
4678 *
4679 * These structures allow the delay of block de-allocation until a
4680 * later time, when locking of multiple cluster inodes won't cause
4681 * deadlock.
4682 */
4683
4684/*
4685 * Describes a single block free from a suballocator
4686 */
4687struct ocfs2_cached_block_free {
4688 struct ocfs2_cached_block_free *free_next;
4689 u64 free_blk;
4690 unsigned int free_bit;
4691};
4692
4693struct ocfs2_per_slot_free_list {
4694 struct ocfs2_per_slot_free_list *f_next_suballocator;
4695 int f_inode_type;
4696 int f_slot;
4697 struct ocfs2_cached_block_free *f_first;
4698};
4699
4700static int ocfs2_free_cached_items(struct ocfs2_super *osb,
4701 int sysfile_type,
4702 int slot,
4703 struct ocfs2_cached_block_free *head)
4704{
4705 int ret;
4706 u64 bg_blkno;
4707 handle_t *handle;
4708 struct inode *inode;
4709 struct buffer_head *di_bh = NULL;
4710 struct ocfs2_cached_block_free *tmp;
4711
4712 inode = ocfs2_get_system_file_inode(osb, sysfile_type, slot);
4713 if (!inode) {
4714 ret = -EINVAL;
4715 mlog_errno(ret);
4716 goto out;
4717 }
4718
4719 mutex_lock(&inode->i_mutex);
4720
4721 ret = ocfs2_meta_lock(inode, &di_bh, 1);
4722 if (ret) {
4723 mlog_errno(ret);
4724 goto out_mutex;
4725 }
4726
4727 handle = ocfs2_start_trans(osb, OCFS2_SUBALLOC_FREE);
4728 if (IS_ERR(handle)) {
4729 ret = PTR_ERR(handle);
4730 mlog_errno(ret);
4731 goto out_unlock;
4732 }
4733
4734 while (head) {
4735 bg_blkno = ocfs2_which_suballoc_group(head->free_blk,
4736 head->free_bit);
4737 mlog(0, "Free bit: (bit %u, blkno %llu)\n",
4738 head->free_bit, (unsigned long long)head->free_blk);
4739
4740 ret = ocfs2_free_suballoc_bits(handle, inode, di_bh,
4741 head->free_bit, bg_blkno, 1);
4742 if (ret) {
4743 mlog_errno(ret);
4744 goto out_journal;
4745 }
4746
4747 ret = ocfs2_extend_trans(handle, OCFS2_SUBALLOC_FREE);
4748 if (ret) {
4749 mlog_errno(ret);
4750 goto out_journal;
4751 }
4752
4753 tmp = head;
4754 head = head->free_next;
4755 kfree(tmp);
4756 }
4757
4758out_journal:
4759 ocfs2_commit_trans(osb, handle);
4760
4761out_unlock:
4762 ocfs2_meta_unlock(inode, 1);
4763 brelse(di_bh);
4764out_mutex:
4765 mutex_unlock(&inode->i_mutex);
4766 iput(inode);
4767out:
4768 while(head) {
4769 /* Premature exit may have left some dangling items. */
4770 tmp = head;
4771 head = head->free_next;
4772 kfree(tmp);
4773 }
4774
4775 return ret;
4776}
4777
4778int ocfs2_run_deallocs(struct ocfs2_super *osb,
4779 struct ocfs2_cached_dealloc_ctxt *ctxt)
4780{
4781 int ret = 0, ret2;
4782 struct ocfs2_per_slot_free_list *fl;
4783
4784 if (!ctxt)
4785 return 0;
4786
4787 while (ctxt->c_first_suballocator) {
4788 fl = ctxt->c_first_suballocator;
4789
4790 if (fl->f_first) {
4791 mlog(0, "Free items: (type %u, slot %d)\n",
4792 fl->f_inode_type, fl->f_slot);
4793 ret2 = ocfs2_free_cached_items(osb, fl->f_inode_type,
4794 fl->f_slot, fl->f_first);
4795 if (ret2)
4796 mlog_errno(ret2);
4797 if (!ret)
4798 ret = ret2;
4799 }
4800
4801 ctxt->c_first_suballocator = fl->f_next_suballocator;
4802 kfree(fl);
4803 }
4804
4805 return ret;
4806}
4807
4808static struct ocfs2_per_slot_free_list *
4809ocfs2_find_per_slot_free_list(int type,
4810 int slot,
4811 struct ocfs2_cached_dealloc_ctxt *ctxt)
4812{
4813 struct ocfs2_per_slot_free_list *fl = ctxt->c_first_suballocator;
4814
4815 while (fl) {
4816 if (fl->f_inode_type == type && fl->f_slot == slot)
4817 return fl;
4818
4819 fl = fl->f_next_suballocator;
4820 }
4821
4822 fl = kmalloc(sizeof(*fl), GFP_NOFS);
4823 if (fl) {
4824 fl->f_inode_type = type;
4825 fl->f_slot = slot;
4826 fl->f_first = NULL;
4827 fl->f_next_suballocator = ctxt->c_first_suballocator;
4828
4829 ctxt->c_first_suballocator = fl;
4830 }
4831 return fl;
4832}
4833
4834static int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt *ctxt,
4835 int type, int slot, u64 blkno,
4836 unsigned int bit)
4837{
4838 int ret;
4839 struct ocfs2_per_slot_free_list *fl;
4840 struct ocfs2_cached_block_free *item;
4841
4842 fl = ocfs2_find_per_slot_free_list(type, slot, ctxt);
4843 if (fl == NULL) {
4844 ret = -ENOMEM;
4845 mlog_errno(ret);
4846 goto out;
4847 }
4848
4849 item = kmalloc(sizeof(*item), GFP_NOFS);
4850 if (item == NULL) {
4851 ret = -ENOMEM;
4852 mlog_errno(ret);
4853 goto out;
4854 }
4855
4856 mlog(0, "Insert: (type %d, slot %u, bit %u, blk %llu)\n",
4857 type, slot, bit, (unsigned long long)blkno);
4858
4859 item->free_blk = blkno;
4860 item->free_bit = bit;
4861 item->free_next = fl->f_first;
4862
4863 fl->f_first = item;
4864
4865 ret = 0;
4866out:
4867 return ret;
4868}
4869
59a5e416
MF
4870static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt *ctxt,
4871 struct ocfs2_extent_block *eb)
4872{
4873 return ocfs2_cache_block_dealloc(ctxt, EXTENT_ALLOC_SYSTEM_INODE,
4874 le16_to_cpu(eb->h_suballoc_slot),
4875 le64_to_cpu(eb->h_blkno),
4876 le16_to_cpu(eb->h_suballoc_bit));
4877}
4878
ccd979bd
MF
4879/* This function will figure out whether the currently last extent
4880 * block will be deleted, and if it will, what the new last extent
4881 * block will be so we can update his h_next_leaf_blk field, as well
4882 * as the dinodes i_last_eb_blk */
dcd0538f 4883static int ocfs2_find_new_last_ext_blk(struct inode *inode,
3a0782d0 4884 unsigned int clusters_to_del,
dcd0538f 4885 struct ocfs2_path *path,
ccd979bd
MF
4886 struct buffer_head **new_last_eb)
4887{
3a0782d0 4888 int next_free, ret = 0;
dcd0538f 4889 u32 cpos;
3a0782d0 4890 struct ocfs2_extent_rec *rec;
ccd979bd
MF
4891 struct ocfs2_extent_block *eb;
4892 struct ocfs2_extent_list *el;
4893 struct buffer_head *bh = NULL;
4894
4895 *new_last_eb = NULL;
4896
ccd979bd 4897 /* we have no tree, so of course, no last_eb. */
dcd0538f
MF
4898 if (!path->p_tree_depth)
4899 goto out;
ccd979bd
MF
4900
4901 /* trunc to zero special case - this makes tree_depth = 0
4902 * regardless of what it is. */
3a0782d0 4903 if (OCFS2_I(inode)->ip_clusters == clusters_to_del)
dcd0538f 4904 goto out;
ccd979bd 4905
dcd0538f 4906 el = path_leaf_el(path);
ccd979bd
MF
4907 BUG_ON(!el->l_next_free_rec);
4908
3a0782d0
MF
4909 /*
4910 * Make sure that this extent list will actually be empty
4911 * after we clear away the data. We can shortcut out if
4912 * there's more than one non-empty extent in the
4913 * list. Otherwise, a check of the remaining extent is
4914 * necessary.
4915 */
4916 next_free = le16_to_cpu(el->l_next_free_rec);
4917 rec = NULL;
dcd0538f 4918 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
3a0782d0 4919 if (next_free > 2)
dcd0538f 4920 goto out;
3a0782d0
MF
4921
4922 /* We may have a valid extent in index 1, check it. */
4923 if (next_free == 2)
4924 rec = &el->l_recs[1];
4925
4926 /*
4927 * Fall through - no more nonempty extents, so we want
4928 * to delete this leaf.
4929 */
4930 } else {
4931 if (next_free > 1)
4932 goto out;
4933
4934 rec = &el->l_recs[0];
4935 }
4936
4937 if (rec) {
4938 /*
4939 * Check it we'll only be trimming off the end of this
4940 * cluster.
4941 */
e48edee2 4942 if (le16_to_cpu(rec->e_leaf_clusters) > clusters_to_del)
3a0782d0
MF
4943 goto out;
4944 }
ccd979bd 4945
dcd0538f
MF
4946 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, path, &cpos);
4947 if (ret) {
4948 mlog_errno(ret);
4949 goto out;
4950 }
ccd979bd 4951
dcd0538f
MF
4952 ret = ocfs2_find_leaf(inode, path_root_el(path), cpos, &bh);
4953 if (ret) {
4954 mlog_errno(ret);
4955 goto out;
4956 }
ccd979bd 4957
dcd0538f
MF
4958 eb = (struct ocfs2_extent_block *) bh->b_data;
4959 el = &eb->h_list;
4960 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
4961 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
4962 ret = -EROFS;
4963 goto out;
4964 }
ccd979bd
MF
4965
4966 *new_last_eb = bh;
4967 get_bh(*new_last_eb);
dcd0538f
MF
4968 mlog(0, "returning block %llu, (cpos: %u)\n",
4969 (unsigned long long)le64_to_cpu(eb->h_blkno), cpos);
4970out:
4971 brelse(bh);
ccd979bd 4972
dcd0538f 4973 return ret;
ccd979bd
MF
4974}
4975
3a0782d0
MF
4976/*
4977 * Trim some clusters off the rightmost edge of a tree. Only called
4978 * during truncate.
4979 *
4980 * The caller needs to:
4981 * - start journaling of each path component.
4982 * - compute and fully set up any new last ext block
4983 */
4984static int ocfs2_trim_tree(struct inode *inode, struct ocfs2_path *path,
4985 handle_t *handle, struct ocfs2_truncate_context *tc,
4986 u32 clusters_to_del, u64 *delete_start)
4987{
4988 int ret, i, index = path->p_tree_depth;
4989 u32 new_edge = 0;
4990 u64 deleted_eb = 0;
4991 struct buffer_head *bh;
4992 struct ocfs2_extent_list *el;
4993 struct ocfs2_extent_rec *rec;
4994
4995 *delete_start = 0;
4996
4997 while (index >= 0) {
4998 bh = path->p_node[index].bh;
4999 el = path->p_node[index].el;
5000
5001 mlog(0, "traveling tree (index = %d, block = %llu)\n",
5002 index, (unsigned long long)bh->b_blocknr);
5003
5004 BUG_ON(le16_to_cpu(el->l_next_free_rec) == 0);
5005
5006 if (index !=
5007 (path->p_tree_depth - le16_to_cpu(el->l_tree_depth))) {
5008 ocfs2_error(inode->i_sb,
5009 "Inode %lu has invalid ext. block %llu",
5010 inode->i_ino,
5011 (unsigned long long)bh->b_blocknr);
5012 ret = -EROFS;
5013 goto out;
5014 }
5015
5016find_tail_record:
5017 i = le16_to_cpu(el->l_next_free_rec) - 1;
5018 rec = &el->l_recs[i];
5019
5020 mlog(0, "Extent list before: record %d: (%u, %u, %llu), "
5021 "next = %u\n", i, le32_to_cpu(rec->e_cpos),
e48edee2 5022 ocfs2_rec_clusters(el, rec),
3a0782d0
MF
5023 (unsigned long long)le64_to_cpu(rec->e_blkno),
5024 le16_to_cpu(el->l_next_free_rec));
5025
e48edee2 5026 BUG_ON(ocfs2_rec_clusters(el, rec) < clusters_to_del);
3a0782d0
MF
5027
5028 if (le16_to_cpu(el->l_tree_depth) == 0) {
5029 /*
5030 * If the leaf block contains a single empty
5031 * extent and no records, we can just remove
5032 * the block.
5033 */
5034 if (i == 0 && ocfs2_is_empty_extent(rec)) {
5035 memset(rec, 0,
5036 sizeof(struct ocfs2_extent_rec));
5037 el->l_next_free_rec = cpu_to_le16(0);
5038
5039 goto delete;
5040 }
5041
5042 /*
5043 * Remove any empty extents by shifting things
5044 * left. That should make life much easier on
5045 * the code below. This condition is rare
5046 * enough that we shouldn't see a performance
5047 * hit.
5048 */
5049 if (ocfs2_is_empty_extent(&el->l_recs[0])) {
5050 le16_add_cpu(&el->l_next_free_rec, -1);
5051
5052 for(i = 0;
5053 i < le16_to_cpu(el->l_next_free_rec); i++)
5054 el->l_recs[i] = el->l_recs[i + 1];
5055
5056 memset(&el->l_recs[i], 0,
5057 sizeof(struct ocfs2_extent_rec));
5058
5059 /*
5060 * We've modified our extent list. The
5061 * simplest way to handle this change
5062 * is to being the search from the
5063 * start again.
5064 */
5065 goto find_tail_record;
5066 }
5067
e48edee2 5068 le16_add_cpu(&rec->e_leaf_clusters, -clusters_to_del);
3a0782d0
MF
5069
5070 /*
5071 * We'll use "new_edge" on our way back up the
5072 * tree to know what our rightmost cpos is.
5073 */
e48edee2 5074 new_edge = le16_to_cpu(rec->e_leaf_clusters);
3a0782d0
MF
5075 new_edge += le32_to_cpu(rec->e_cpos);
5076
5077 /*
5078 * The caller will use this to delete data blocks.
5079 */
5080 *delete_start = le64_to_cpu(rec->e_blkno)
5081 + ocfs2_clusters_to_blocks(inode->i_sb,
e48edee2 5082 le16_to_cpu(rec->e_leaf_clusters));
3a0782d0
MF
5083
5084 /*
5085 * If it's now empty, remove this record.
5086 */
e48edee2 5087 if (le16_to_cpu(rec->e_leaf_clusters) == 0) {
3a0782d0
MF
5088 memset(rec, 0,
5089 sizeof(struct ocfs2_extent_rec));
5090 le16_add_cpu(&el->l_next_free_rec, -1);
5091 }
5092 } else {
5093 if (le64_to_cpu(rec->e_blkno) == deleted_eb) {
5094 memset(rec, 0,
5095 sizeof(struct ocfs2_extent_rec));
5096 le16_add_cpu(&el->l_next_free_rec, -1);
5097
5098 goto delete;
5099 }
5100
5101 /* Can this actually happen? */
5102 if (le16_to_cpu(el->l_next_free_rec) == 0)
5103 goto delete;
5104
5105 /*
5106 * We never actually deleted any clusters
5107 * because our leaf was empty. There's no
5108 * reason to adjust the rightmost edge then.
5109 */
5110 if (new_edge == 0)
5111 goto delete;
5112
e48edee2
MF
5113 rec->e_int_clusters = cpu_to_le32(new_edge);
5114 le32_add_cpu(&rec->e_int_clusters,
3a0782d0
MF
5115 -le32_to_cpu(rec->e_cpos));
5116
5117 /*
5118 * A deleted child record should have been
5119 * caught above.
5120 */
e48edee2 5121 BUG_ON(le32_to_cpu(rec->e_int_clusters) == 0);
3a0782d0
MF
5122 }
5123
5124delete:
5125 ret = ocfs2_journal_dirty(handle, bh);
5126 if (ret) {
5127 mlog_errno(ret);
5128 goto out;
5129 }
5130
5131 mlog(0, "extent list container %llu, after: record %d: "
5132 "(%u, %u, %llu), next = %u.\n",
5133 (unsigned long long)bh->b_blocknr, i,
e48edee2 5134 le32_to_cpu(rec->e_cpos), ocfs2_rec_clusters(el, rec),
3a0782d0
MF
5135 (unsigned long long)le64_to_cpu(rec->e_blkno),
5136 le16_to_cpu(el->l_next_free_rec));
5137
5138 /*
5139 * We must be careful to only attempt delete of an
5140 * extent block (and not the root inode block).
5141 */
5142 if (index > 0 && le16_to_cpu(el->l_next_free_rec) == 0) {
5143 struct ocfs2_extent_block *eb =
5144 (struct ocfs2_extent_block *)bh->b_data;
5145
5146 /*
5147 * Save this for use when processing the
5148 * parent block.
5149 */
5150 deleted_eb = le64_to_cpu(eb->h_blkno);
5151
5152 mlog(0, "deleting this extent block.\n");
5153
5154 ocfs2_remove_from_cache(inode, bh);
5155
e48edee2 5156 BUG_ON(ocfs2_rec_clusters(el, &el->l_recs[0]));
3a0782d0
MF
5157 BUG_ON(le32_to_cpu(el->l_recs[0].e_cpos));
5158 BUG_ON(le64_to_cpu(el->l_recs[0].e_blkno));
5159
59a5e416
MF
5160 ret = ocfs2_cache_extent_block_free(&tc->tc_dealloc, eb);
5161 /* An error here is not fatal. */
5162 if (ret < 0)
5163 mlog_errno(ret);
3a0782d0
MF
5164 } else {
5165 deleted_eb = 0;
5166 }
5167
5168 index--;
5169 }
5170
5171 ret = 0;
5172out:
5173 return ret;
5174}
5175
ccd979bd
MF
5176static int ocfs2_do_truncate(struct ocfs2_super *osb,
5177 unsigned int clusters_to_del,
5178 struct inode *inode,
5179 struct buffer_head *fe_bh,
1fabe148 5180 handle_t *handle,
dcd0538f
MF
5181 struct ocfs2_truncate_context *tc,
5182 struct ocfs2_path *path)
ccd979bd 5183{
3a0782d0 5184 int status;
ccd979bd 5185 struct ocfs2_dinode *fe;
ccd979bd
MF
5186 struct ocfs2_extent_block *last_eb = NULL;
5187 struct ocfs2_extent_list *el;
ccd979bd 5188 struct buffer_head *last_eb_bh = NULL;
ccd979bd
MF
5189 u64 delete_blk = 0;
5190
5191 fe = (struct ocfs2_dinode *) fe_bh->b_data;
5192
3a0782d0 5193 status = ocfs2_find_new_last_ext_blk(inode, clusters_to_del,
dcd0538f 5194 path, &last_eb_bh);
ccd979bd
MF
5195 if (status < 0) {
5196 mlog_errno(status);
5197 goto bail;
5198 }
dcd0538f
MF
5199
5200 /*
5201 * Each component will be touched, so we might as well journal
5202 * here to avoid having to handle errors later.
5203 */
3a0782d0
MF
5204 status = ocfs2_journal_access_path(inode, handle, path);
5205 if (status < 0) {
5206 mlog_errno(status);
5207 goto bail;
dcd0538f
MF
5208 }
5209
5210 if (last_eb_bh) {
5211 status = ocfs2_journal_access(handle, inode, last_eb_bh,
5212 OCFS2_JOURNAL_ACCESS_WRITE);
5213 if (status < 0) {
5214 mlog_errno(status);
5215 goto bail;
5216 }
5217
ccd979bd 5218 last_eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
dcd0538f 5219 }
ccd979bd 5220
dcd0538f
MF
5221 el = &(fe->id2.i_list);
5222
5223 /*
5224 * Lower levels depend on this never happening, but it's best
5225 * to check it up here before changing the tree.
5226 */
e48edee2 5227 if (el->l_tree_depth && el->l_recs[0].e_int_clusters == 0) {
dcd0538f
MF
5228 ocfs2_error(inode->i_sb,
5229 "Inode %lu has an empty extent record, depth %u\n",
5230 inode->i_ino, le16_to_cpu(el->l_tree_depth));
3a0782d0 5231 status = -EROFS;
ccd979bd
MF
5232 goto bail;
5233 }
ccd979bd
MF
5234
5235 spin_lock(&OCFS2_I(inode)->ip_lock);
5236 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters) -
5237 clusters_to_del;
5238 spin_unlock(&OCFS2_I(inode)->ip_lock);
5239 le32_add_cpu(&fe->i_clusters, -clusters_to_del);
ccd979bd 5240
3a0782d0
MF
5241 status = ocfs2_trim_tree(inode, path, handle, tc,
5242 clusters_to_del, &delete_blk);
5243 if (status) {
5244 mlog_errno(status);
5245 goto bail;
ccd979bd
MF
5246 }
5247
dcd0538f 5248 if (le32_to_cpu(fe->i_clusters) == 0) {
ccd979bd
MF
5249 /* trunc to zero is a special case. */
5250 el->l_tree_depth = 0;
5251 fe->i_last_eb_blk = 0;
5252 } else if (last_eb)
5253 fe->i_last_eb_blk = last_eb->h_blkno;
5254
5255 status = ocfs2_journal_dirty(handle, fe_bh);
5256 if (status < 0) {
5257 mlog_errno(status);
5258 goto bail;
5259 }
5260
5261 if (last_eb) {
5262 /* If there will be a new last extent block, then by
5263 * definition, there cannot be any leaves to the right of
5264 * him. */
ccd979bd
MF
5265 last_eb->h_next_leaf_blk = 0;
5266 status = ocfs2_journal_dirty(handle, last_eb_bh);
5267 if (status < 0) {
5268 mlog_errno(status);
5269 goto bail;
5270 }
5271 }
5272
3a0782d0
MF
5273 if (delete_blk) {
5274 status = ocfs2_truncate_log_append(osb, handle, delete_blk,
5275 clusters_to_del);
ccd979bd
MF
5276 if (status < 0) {
5277 mlog_errno(status);
5278 goto bail;
5279 }
ccd979bd
MF
5280 }
5281 status = 0;
5282bail:
dcd0538f 5283
ccd979bd
MF
5284 mlog_exit(status);
5285 return status;
5286}
5287
60b11392
MF
5288static int ocfs2_writeback_zero_func(handle_t *handle, struct buffer_head *bh)
5289{
5290 set_buffer_uptodate(bh);
5291 mark_buffer_dirty(bh);
5292 return 0;
5293}
5294
5295static int ocfs2_ordered_zero_func(handle_t *handle, struct buffer_head *bh)
5296{
5297 set_buffer_uptodate(bh);
5298 mark_buffer_dirty(bh);
5299 return ocfs2_journal_dirty_data(handle, bh);
5300}
5301
5302static void ocfs2_zero_cluster_pages(struct inode *inode, loff_t isize,
5303 struct page **pages, int numpages,
5304 u64 phys, handle_t *handle)
5305{
5306 int i, ret, partial = 0;
5307 void *kaddr;
5308 struct page *page;
5309 unsigned int from, to = PAGE_CACHE_SIZE;
5310 struct super_block *sb = inode->i_sb;
5311
5312 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5313
5314 if (numpages == 0)
5315 goto out;
5316
5317 from = isize & (PAGE_CACHE_SIZE - 1); /* 1st page offset */
5318 if (PAGE_CACHE_SHIFT > OCFS2_SB(sb)->s_clustersize_bits) {
5319 /*
5320 * Since 'from' has been capped to a value below page
5321 * size, this calculation won't be able to overflow
5322 * 'to'
5323 */
5324 to = ocfs2_align_bytes_to_clusters(sb, from);
5325
5326 /*
5327 * The truncate tail in this case should never contain
5328 * more than one page at maximum. The loop below also
5329 * assumes this.
5330 */
5331 BUG_ON(numpages != 1);
5332 }
5333
5334 for(i = 0; i < numpages; i++) {
5335 page = pages[i];
5336
5337 BUG_ON(from > PAGE_CACHE_SIZE);
5338 BUG_ON(to > PAGE_CACHE_SIZE);
5339
5340 ret = ocfs2_map_page_blocks(page, &phys, inode, from, to, 0);
5341 if (ret)
5342 mlog_errno(ret);
5343
5344 kaddr = kmap_atomic(page, KM_USER0);
5345 memset(kaddr + from, 0, to - from);
5346 kunmap_atomic(kaddr, KM_USER0);
5347
5348 /*
5349 * Need to set the buffers we zero'd into uptodate
5350 * here if they aren't - ocfs2_map_page_blocks()
5351 * might've skipped some
5352 */
5353 if (ocfs2_should_order_data(inode)) {
5354 ret = walk_page_buffers(handle,
5355 page_buffers(page),
5356 from, to, &partial,
5357 ocfs2_ordered_zero_func);
5358 if (ret < 0)
5359 mlog_errno(ret);
5360 } else {
5361 ret = walk_page_buffers(handle, page_buffers(page),
5362 from, to, &partial,
5363 ocfs2_writeback_zero_func);
5364 if (ret < 0)
5365 mlog_errno(ret);
5366 }
5367
5368 if (!partial)
5369 SetPageUptodate(page);
5370
5371 flush_dcache_page(page);
5372
5373 /*
5374 * Every page after the 1st one should be completely zero'd.
5375 */
5376 from = 0;
5377 }
5378out:
5379 if (pages) {
5380 for (i = 0; i < numpages; i++) {
5381 page = pages[i];
5382 unlock_page(page);
5383 mark_page_accessed(page);
5384 page_cache_release(page);
5385 }
5386 }
5387}
5388
5389static int ocfs2_grab_eof_pages(struct inode *inode, loff_t isize, struct page **pages,
5390 int *num, u64 *phys)
5391{
5392 int i, numpages = 0, ret = 0;
5393 unsigned int csize = OCFS2_SB(inode->i_sb)->s_clustersize;
49cb8d2d 5394 unsigned int ext_flags;
60b11392
MF
5395 struct super_block *sb = inode->i_sb;
5396 struct address_space *mapping = inode->i_mapping;
5397 unsigned long index;
5398 u64 next_cluster_bytes;
5399
5400 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb)));
5401
5402 /* Cluster boundary, so we don't need to grab any pages. */
5403 if ((isize & (csize - 1)) == 0)
5404 goto out;
5405
5406 ret = ocfs2_extent_map_get_blocks(inode, isize >> sb->s_blocksize_bits,
49cb8d2d 5407 phys, NULL, &ext_flags);
60b11392
MF
5408 if (ret) {
5409 mlog_errno(ret);
5410 goto out;
5411 }
5412
5413 /* Tail is a hole. */
5414 if (*phys == 0)
5415 goto out;
5416
49cb8d2d
MF
5417 /* Tail is marked as unwritten, we can count on write to zero
5418 * in that case. */
5419 if (ext_flags & OCFS2_EXT_UNWRITTEN)
5420 goto out;
5421
60b11392
MF
5422 next_cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, isize);
5423 index = isize >> PAGE_CACHE_SHIFT;
5424 do {
5425 pages[numpages] = grab_cache_page(mapping, index);
5426 if (!pages[numpages]) {
5427 ret = -ENOMEM;
5428 mlog_errno(ret);
5429 goto out;
5430 }
5431
5432 numpages++;
5433 index++;
5434 } while (index < (next_cluster_bytes >> PAGE_CACHE_SHIFT));
5435
5436out:
5437 if (ret != 0) {
5438 if (pages) {
5439 for (i = 0; i < numpages; i++) {
5440 if (pages[i]) {
5441 unlock_page(pages[i]);
5442 page_cache_release(pages[i]);
5443 }
5444 }
5445 }
5446 numpages = 0;
5447 }
5448
5449 *num = numpages;
5450
5451 return ret;
5452}
5453
5454/*
5455 * Zero the area past i_size but still within an allocated
5456 * cluster. This avoids exposing nonzero data on subsequent file
5457 * extends.
5458 *
5459 * We need to call this before i_size is updated on the inode because
5460 * otherwise block_write_full_page() will skip writeout of pages past
5461 * i_size. The new_i_size parameter is passed for this reason.
5462 */
5463int ocfs2_zero_tail_for_truncate(struct inode *inode, handle_t *handle,
5464 u64 new_i_size)
5465{
5466 int ret, numpages;
fa41045f 5467 loff_t endbyte;
60b11392
MF
5468 struct page **pages = NULL;
5469 u64 phys;
5470
5471 /*
5472 * File systems which don't support sparse files zero on every
5473 * extend.
5474 */
5475 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
5476 return 0;
5477
5478 pages = kcalloc(ocfs2_pages_per_cluster(inode->i_sb),
5479 sizeof(struct page *), GFP_NOFS);
5480 if (pages == NULL) {
5481 ret = -ENOMEM;
5482 mlog_errno(ret);
5483 goto out;
5484 }
5485
5486 ret = ocfs2_grab_eof_pages(inode, new_i_size, pages, &numpages, &phys);
5487 if (ret) {
5488 mlog_errno(ret);
5489 goto out;
5490 }
5491
60b11392
MF
5492 if (numpages == 0)
5493 goto out;
5494
5495 ocfs2_zero_cluster_pages(inode, new_i_size, pages, numpages, phys,
5496 handle);
5497
5498 /*
5499 * Initiate writeout of the pages we zero'd here. We don't
5500 * wait on them - the truncate_inode_pages() call later will
5501 * do that for us.
5502 */
fa41045f
MF
5503 endbyte = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
5504 ret = do_sync_mapping_range(inode->i_mapping, new_i_size,
5505 endbyte - 1, SYNC_FILE_RANGE_WRITE);
60b11392
MF
5506 if (ret)
5507 mlog_errno(ret);
5508
5509out:
5510 if (pages)
5511 kfree(pages);
5512
5513 return ret;
5514}
5515
ccd979bd
MF
5516/*
5517 * It is expected, that by the time you call this function,
5518 * inode->i_size and fe->i_size have been adjusted.
5519 *
5520 * WARNING: This will kfree the truncate context
5521 */
5522int ocfs2_commit_truncate(struct ocfs2_super *osb,
5523 struct inode *inode,
5524 struct buffer_head *fe_bh,
5525 struct ocfs2_truncate_context *tc)
5526{
5527 int status, i, credits, tl_sem = 0;
dcd0538f 5528 u32 clusters_to_del, new_highest_cpos, range;
ccd979bd 5529 struct ocfs2_extent_list *el;
1fabe148 5530 handle_t *handle = NULL;
ccd979bd 5531 struct inode *tl_inode = osb->osb_tl_inode;
dcd0538f 5532 struct ocfs2_path *path = NULL;
ccd979bd
MF
5533
5534 mlog_entry_void();
5535
dcd0538f 5536 new_highest_cpos = ocfs2_clusters_for_bytes(osb->sb,
ccd979bd
MF
5537 i_size_read(inode));
5538
dcd0538f
MF
5539 path = ocfs2_new_inode_path(fe_bh);
5540 if (!path) {
5541 status = -ENOMEM;
5542 mlog_errno(status);
5543 goto bail;
5544 }
83418978
MF
5545
5546 ocfs2_extent_map_trunc(inode, new_highest_cpos);
5547
ccd979bd 5548start:
3a0782d0
MF
5549 /*
5550 * Check that we still have allocation to delete.
5551 */
5552 if (OCFS2_I(inode)->ip_clusters == 0) {
5553 status = 0;
5554 goto bail;
5555 }
5556
dcd0538f
MF
5557 /*
5558 * Truncate always works against the rightmost tree branch.
5559 */
5560 status = ocfs2_find_path(inode, path, UINT_MAX);
5561 if (status) {
5562 mlog_errno(status);
5563 goto bail;
ccd979bd
MF
5564 }
5565
dcd0538f
MF
5566 mlog(0, "inode->ip_clusters = %u, tree_depth = %u\n",
5567 OCFS2_I(inode)->ip_clusters, path->p_tree_depth);
5568
5569 /*
5570 * By now, el will point to the extent list on the bottom most
5571 * portion of this tree. Only the tail record is considered in
5572 * each pass.
5573 *
5574 * We handle the following cases, in order:
5575 * - empty extent: delete the remaining branch
5576 * - remove the entire record
5577 * - remove a partial record
5578 * - no record needs to be removed (truncate has completed)
5579 */
5580 el = path_leaf_el(path);
3a0782d0
MF
5581 if (le16_to_cpu(el->l_next_free_rec) == 0) {
5582 ocfs2_error(inode->i_sb,
5583 "Inode %llu has empty extent block at %llu\n",
5584 (unsigned long long)OCFS2_I(inode)->ip_blkno,
5585 (unsigned long long)path_leaf_bh(path)->b_blocknr);
5586 status = -EROFS;
5587 goto bail;
5588 }
5589
ccd979bd 5590 i = le16_to_cpu(el->l_next_free_rec) - 1;
dcd0538f 5591 range = le32_to_cpu(el->l_recs[i].e_cpos) +
e48edee2 5592 ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f
MF
5593 if (i == 0 && ocfs2_is_empty_extent(&el->l_recs[i])) {
5594 clusters_to_del = 0;
5595 } else if (le32_to_cpu(el->l_recs[i].e_cpos) >= new_highest_cpos) {
e48edee2 5596 clusters_to_del = ocfs2_rec_clusters(el, &el->l_recs[i]);
dcd0538f 5597 } else if (range > new_highest_cpos) {
e48edee2 5598 clusters_to_del = (ocfs2_rec_clusters(el, &el->l_recs[i]) +
ccd979bd 5599 le32_to_cpu(el->l_recs[i].e_cpos)) -
dcd0538f
MF
5600 new_highest_cpos;
5601 } else {
5602 status = 0;
5603 goto bail;
5604 }
ccd979bd 5605
dcd0538f
MF
5606 mlog(0, "clusters_to_del = %u in this pass, tail blk=%llu\n",
5607 clusters_to_del, (unsigned long long)path_leaf_bh(path)->b_blocknr);
5608
5609 BUG_ON(clusters_to_del == 0);
ccd979bd 5610
1b1dcc1b 5611 mutex_lock(&tl_inode->i_mutex);
ccd979bd
MF
5612 tl_sem = 1;
5613 /* ocfs2_truncate_log_needs_flush guarantees us at least one
5614 * record is free for use. If there isn't any, we flush to get
5615 * an empty truncate log. */
5616 if (ocfs2_truncate_log_needs_flush(osb)) {
5617 status = __ocfs2_flush_truncate_log(osb);
5618 if (status < 0) {
5619 mlog_errno(status);
5620 goto bail;
5621 }
5622 }
5623
5624 credits = ocfs2_calc_tree_trunc_credits(osb->sb, clusters_to_del,
dcd0538f
MF
5625 (struct ocfs2_dinode *)fe_bh->b_data,
5626 el);
65eff9cc 5627 handle = ocfs2_start_trans(osb, credits);
ccd979bd
MF
5628 if (IS_ERR(handle)) {
5629 status = PTR_ERR(handle);
5630 handle = NULL;
5631 mlog_errno(status);
5632 goto bail;
5633 }
5634
dcd0538f
MF
5635 status = ocfs2_do_truncate(osb, clusters_to_del, inode, fe_bh, handle,
5636 tc, path);
ccd979bd
MF
5637 if (status < 0) {
5638 mlog_errno(status);
5639 goto bail;
5640 }
5641
1b1dcc1b 5642 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
5643 tl_sem = 0;
5644
02dc1af4 5645 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
5646 handle = NULL;
5647
dcd0538f
MF
5648 ocfs2_reinit_path(path, 1);
5649
5650 /*
3a0782d0
MF
5651 * The check above will catch the case where we've truncated
5652 * away all allocation.
dcd0538f 5653 */
3a0782d0
MF
5654 goto start;
5655
ccd979bd 5656bail:
ccd979bd
MF
5657
5658 ocfs2_schedule_truncate_log_flush(osb, 1);
5659
5660 if (tl_sem)
1b1dcc1b 5661 mutex_unlock(&tl_inode->i_mutex);
ccd979bd
MF
5662
5663 if (handle)
02dc1af4 5664 ocfs2_commit_trans(osb, handle);
ccd979bd 5665
59a5e416
MF
5666 ocfs2_run_deallocs(osb, &tc->tc_dealloc);
5667
dcd0538f 5668 ocfs2_free_path(path);
ccd979bd
MF
5669
5670 /* This will drop the ext_alloc cluster lock for us */
5671 ocfs2_free_truncate_context(tc);
5672
5673 mlog_exit(status);
5674 return status;
5675}
5676
ccd979bd 5677/*
59a5e416 5678 * Expects the inode to already be locked.
ccd979bd
MF
5679 */
5680int ocfs2_prepare_truncate(struct ocfs2_super *osb,
5681 struct inode *inode,
5682 struct buffer_head *fe_bh,
5683 struct ocfs2_truncate_context **tc)
5684{
59a5e416 5685 int status;
ccd979bd
MF
5686 unsigned int new_i_clusters;
5687 struct ocfs2_dinode *fe;
5688 struct ocfs2_extent_block *eb;
ccd979bd 5689 struct buffer_head *last_eb_bh = NULL;
ccd979bd
MF
5690
5691 mlog_entry_void();
5692
5693 *tc = NULL;
5694
5695 new_i_clusters = ocfs2_clusters_for_bytes(osb->sb,
5696 i_size_read(inode));
5697 fe = (struct ocfs2_dinode *) fe_bh->b_data;
5698
5699 mlog(0, "fe->i_clusters = %u, new_i_clusters = %u, fe->i_size ="
1ca1a111
MF
5700 "%llu\n", le32_to_cpu(fe->i_clusters), new_i_clusters,
5701 (unsigned long long)le64_to_cpu(fe->i_size));
ccd979bd 5702
cd861280 5703 *tc = kzalloc(sizeof(struct ocfs2_truncate_context), GFP_KERNEL);
ccd979bd
MF
5704 if (!(*tc)) {
5705 status = -ENOMEM;
5706 mlog_errno(status);
5707 goto bail;
5708 }
59a5e416 5709 ocfs2_init_dealloc_ctxt(&(*tc)->tc_dealloc);
ccd979bd 5710
ccd979bd 5711 if (fe->id2.i_list.l_tree_depth) {
ccd979bd
MF
5712 status = ocfs2_read_block(osb, le64_to_cpu(fe->i_last_eb_blk),
5713 &last_eb_bh, OCFS2_BH_CACHED, inode);
5714 if (status < 0) {
5715 mlog_errno(status);
5716 goto bail;
5717 }
5718 eb = (struct ocfs2_extent_block *) last_eb_bh->b_data;
5719 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb)) {
5720 OCFS2_RO_ON_INVALID_EXTENT_BLOCK(inode->i_sb, eb);
5721
5722 brelse(last_eb_bh);
5723 status = -EIO;
5724 goto bail;
5725 }
ccd979bd
MF
5726 }
5727
5728 (*tc)->tc_last_eb_bh = last_eb_bh;
5729
ccd979bd
MF
5730 status = 0;
5731bail:
5732 if (status < 0) {
5733 if (*tc)
5734 ocfs2_free_truncate_context(*tc);
5735 *tc = NULL;
5736 }
5737 mlog_exit_void();
5738 return status;
5739}
5740
5741static void ocfs2_free_truncate_context(struct ocfs2_truncate_context *tc)
5742{
59a5e416
MF
5743 /*
5744 * The caller is responsible for completing deallocation
5745 * before freeing the context.
5746 */
5747 if (tc->tc_dealloc.c_first_suballocator != NULL)
5748 mlog(ML_NOTICE,
5749 "Truncate completion has non-empty dealloc context\n");
ccd979bd
MF
5750
5751 if (tc->tc_last_eb_bh)
5752 brelse(tc->tc_last_eb_bh);
5753
5754 kfree(tc);
5755}
This page took 0.528831 seconds and 5 git commands to generate.