arm: add support for memtest
[deliverable/linux.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
ccd979bd 32
ccd979bd
MF
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
9558156b 48#include "ocfs2_trace.h"
ccd979bd
MF
49
50#include "buffer_head_io.h"
24c40b32
JQ
51#include "dir.h"
52#include "namei.h"
53#include "sysfile.h"
ccd979bd
MF
54
55static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56 struct buffer_head *bh_result, int create)
57{
58 int err = -EIO;
59 int status;
60 struct ocfs2_dinode *fe = NULL;
61 struct buffer_head *bh = NULL;
62 struct buffer_head *buffer_cache_bh = NULL;
63 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64 void *kaddr;
65
9558156b
TM
66 trace_ocfs2_symlink_get_block(
67 (unsigned long long)OCFS2_I(inode)->ip_blkno,
68 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
69
70 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74 (unsigned long long)iblock);
75 goto bail;
76 }
77
b657c95c 78 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
79 if (status < 0) {
80 mlog_errno(status);
81 goto bail;
82 }
83 fe = (struct ocfs2_dinode *) bh->b_data;
84
ccd979bd
MF
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
7391a294 87 err = -ENOMEM;
ccd979bd
MF
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
7391a294 100 err = -ENOMEM;
ccd979bd
MF
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 111 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
c4bc8dcb 119 kunmap_atomic(kaddr);
ccd979bd
MF
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130bail:
a81cb88b 131 brelse(bh);
ccd979bd 132
ccd979bd
MF
133 return err;
134}
135
6f70fa51
TM
136int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
ccd979bd
MF
138{
139 int err = 0;
49cb8d2d 140 unsigned int ext_flags;
628a24f5
MF
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
25baf2da 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 144
9558156b
TM
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
628a24f5 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 159 &ext_flags);
ccd979bd
MF
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
ccd979bd
MF
164 goto bail;
165 }
166
628a24f5
MF
167 if (max_blocks < count)
168 count = max_blocks;
169
25baf2da
MF
170 /*
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
ebdec241 174 * allows __block_write_begin() to zero.
c0420ad2
CL
175 *
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
25baf2da 180 */
c0420ad2
CL
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
185 }
25baf2da 186
49cb8d2d
MF
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
189 map_bh(bh_result, inode->i_sb, p_blkno);
190
628a24f5
MF
191 bh_result->b_size = count << inode->i_blkbits;
192
25baf2da
MF
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
1f4cea37 203 goto bail;
25baf2da 204 }
25baf2da 205 }
ccd979bd 206
5693486b 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
208
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
5693486b
JB
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213
ccd979bd
MF
214bail:
215 if (err < 0)
216 err = -EIO;
217
ccd979bd
MF
218 return err;
219}
220
1afc32b9
MF
221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
6798d35a
MF
223{
224 void *kaddr;
d2849fb2 225 loff_t size;
6798d35a
MF
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
232 }
233
234 size = i_size_read(inode);
235
236 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 238 ocfs2_error(inode->i_sb,
d2849fb2
JK
239 "Inode %llu has with inline data has bad size: %Lu",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
6798d35a
MF
242 return -EROFS;
243 }
244
c4bc8dcb 245 kaddr = kmap_atomic(page);
6798d35a
MF
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250 flush_dcache_page(page);
c4bc8dcb 251 kunmap_atomic(kaddr);
6798d35a
MF
252
253 SetPageUptodate(page);
254
255 return 0;
256}
257
258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259{
260 int ret;
261 struct buffer_head *di_bh = NULL;
6798d35a
MF
262
263 BUG_ON(!PageLocked(page));
86c838b0 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 265
b657c95c 266 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
270 }
271
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273out:
274 unlock_page(page);
275
276 brelse(di_bh);
277 return ret;
278}
279
ccd979bd
MF
280static int ocfs2_readpage(struct file *file, struct page *page)
281{
282 struct inode *inode = page->mapping->host;
6798d35a 283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
284 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285 int ret, unlock = 1;
286
9558156b
TM
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
ccd979bd 289
e63aecb6 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
296 }
297
6798d35a 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
299 /*
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
302 */
e9dfc0b2 303 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
e63aecb6 308 goto out_inode_unlock;
e9dfc0b2 309 }
ccd979bd
MF
310
311 /*
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
54cb8821 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
317 * and notice that the page they just read isn't needed.
318 *
319 * XXX sys_readahead() seems to get that wrong?
320 */
321 if (start >= i_size_read(inode)) {
eebd2aa3 322 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
326 }
327
6798d35a
MF
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
332 unlock = 0;
333
ccd979bd
MF
334out_alloc:
335 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
336out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
338out:
339 if (unlock)
340 unlock_page(page);
ccd979bd
MF
341 return ret;
342}
343
628a24f5
MF
344/*
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
347 *
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
352 */
353static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 struct list_head *pages, unsigned nr_pages)
355{
356 int ret, err = -EIO;
357 struct inode *inode = mapping->host;
358 struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 loff_t start;
360 struct page *last;
361
362 /*
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
365 */
366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 if (ret)
368 return err;
369
370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 ocfs2_inode_unlock(inode, 0);
372 return err;
373 }
374
375 /*
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
378 */
379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 goto out_unlock;
381
382 /*
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
385 */
386 last = list_entry(pages->prev, struct page, lru);
387 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388 if (start >= i_size_read(inode))
389 goto out_unlock;
390
391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393out_unlock:
394 up_read(&oi->ip_alloc_sem);
395 ocfs2_inode_unlock(inode, 0);
396
397 return err;
398}
399
ccd979bd
MF
400/* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
403 * ocfs2_writepage.
404 *
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
410 */
411static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412{
9558156b
TM
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 page->index);
ccd979bd 416
9558156b 417 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
418}
419
ccd979bd
MF
420/* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
60b11392
MF
424int walk_page_buffers( handle_t *handle,
425 struct buffer_head *head,
426 unsigned from,
427 unsigned to,
428 int *partial,
429 int (*fn)( handle_t *handle,
430 struct buffer_head *bh))
ccd979bd
MF
431{
432 struct buffer_head *bh;
433 unsigned block_start, block_end;
434 unsigned blocksize = head->b_size;
435 int err, ret = 0;
436 struct buffer_head *next;
437
438 for ( bh = head, block_start = 0;
439 ret == 0 && (bh != head || !block_start);
440 block_start = block_end, bh = next)
441 {
442 next = bh->b_this_page;
443 block_end = block_start + blocksize;
444 if (block_end <= from || block_start >= to) {
445 if (partial && !buffer_uptodate(bh))
446 *partial = 1;
447 continue;
448 }
449 err = (*fn)(handle, bh);
450 if (!ret)
451 ret = err;
452 }
453 return ret;
454}
455
ccd979bd
MF
456static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457{
458 sector_t status;
459 u64 p_blkno = 0;
460 int err = 0;
461 struct inode *inode = mapping->host;
462
9558156b
TM
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 (unsigned long long)block);
ccd979bd
MF
465
466 /* We don't need to lock journal system files, since they aren't
467 * accessed concurrently from multiple nodes.
468 */
469 if (!INODE_JOURNAL(inode)) {
e63aecb6 470 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
471 if (err) {
472 if (err != -ENOENT)
473 mlog_errno(err);
474 goto bail;
475 }
476 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 }
478
6798d35a
MF
479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 NULL);
ccd979bd
MF
482
483 if (!INODE_JOURNAL(inode)) {
484 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 485 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
486 }
487
488 if (err) {
489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 (unsigned long long)block);
491 mlog_errno(err);
492 goto bail;
493 }
494
ccd979bd
MF
495bail:
496 status = err ? 0 : p_blkno;
497
ccd979bd
MF
498 return status;
499}
500
501/*
502 * TODO: Make this into a generic get_blocks function.
503 *
504 * From do_direct_io in direct-io.c:
505 * "So what we do is to permit the ->get_blocks function to populate
506 * bh.b_size with the size of IO which is permitted at this offset and
507 * this i_blkbits."
508 *
509 * This function is called directly from get_more_blocks in direct-io.c.
510 *
511 * called like this: dio->get_blocks(dio->inode, fs_startblk,
512 * fs_count, map_bh, dio->rw == WRITE);
513 */
514static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
515 struct buffer_head *bh_result, int create)
516{
517 int ret;
49255dce
JQ
518 u32 cpos = 0;
519 int alloc_locked = 0;
4f902c37 520 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 521 unsigned int ext_flags;
184d7d20 522 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 523 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce
JQ
524 unsigned long len = bh_result->b_size;
525 unsigned int clusters_to_alloc = 0;
526
527 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 528
ccd979bd
MF
529 /* This function won't even be called if the request isn't all
530 * nicely aligned and of the right size, so there's no need
531 * for us to check any of that. */
532
25baf2da 533 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 534
ccd979bd
MF
535 /* This figures out the size of the next contiguous block, and
536 * our logical offset */
363041a5 537 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 538 &contig_blocks, &ext_flags);
ccd979bd
MF
539 if (ret) {
540 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541 (unsigned long long)iblock);
542 ret = -EIO;
543 goto bail;
544 }
545
cbaee472
TM
546 /* We should already CoW the refcounted extent in case of create. */
547 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
49255dce
JQ
549 /* allocate blocks if no p_blkno is found, and create == 1 */
550 if (!p_blkno && create) {
551 ret = ocfs2_inode_lock(inode, NULL, 1);
552 if (ret < 0) {
553 mlog_errno(ret);
554 goto bail;
555 }
556
557 alloc_locked = 1;
558
559 /* fill hole, allocate blocks can't be larger than the size
560 * of the hole */
561 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562 if (clusters_to_alloc > contig_blocks)
563 clusters_to_alloc = contig_blocks;
564
565 /* allocate extent and insert them into the extent tree */
566 ret = ocfs2_extend_allocation(inode, cpos,
567 clusters_to_alloc, 0);
568 if (ret < 0) {
569 mlog_errno(ret);
570 goto bail;
571 }
572
573 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574 &contig_blocks, &ext_flags);
575 if (ret < 0) {
576 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577 (unsigned long long)iblock);
578 ret = -EIO;
579 goto bail;
580 }
581 }
582
25baf2da
MF
583 /*
584 * get_more_blocks() expects us to describe a hole by clearing
585 * the mapped bit on bh_result().
49cb8d2d
MF
586 *
587 * Consider an unwritten extent as a hole.
25baf2da 588 */
49cb8d2d 589 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 590 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 591 else
25baf2da 592 clear_buffer_mapped(bh_result);
ccd979bd
MF
593
594 /* make sure we don't map more than max_blocks blocks here as
595 that's all the kernel will handle at this point. */
596 if (max_blocks < contig_blocks)
597 contig_blocks = max_blocks;
598 bh_result->b_size = contig_blocks << blocksize_bits;
599bail:
49255dce
JQ
600 if (alloc_locked)
601 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
602 return ret;
603}
604
2bd63216 605/*
ccd979bd 606 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
607 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
608 * to protect io on one node from truncation on another.
ccd979bd
MF
609 */
610static void ocfs2_dio_end_io(struct kiocb *iocb,
611 loff_t offset,
612 ssize_t bytes,
7b7a8665 613 void *private)
ccd979bd 614{
496ad9aa 615 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 616 int level;
ccd979bd
MF
617
618 /* this io's submitter should not have unlocked this before we could */
619 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 620
df2d6f26 621 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 622 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 623
a11f7e63
MF
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
626
c18ceab0 627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
628 }
629
ccd979bd 630 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
631
632 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 633 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
634}
635
03f981cf
JB
636static int ocfs2_releasepage(struct page *page, gfp_t wait)
637{
03f981cf
JB
638 if (!page_has_buffers(page))
639 return 0;
41ecc345 640 return try_to_free_buffers(page);
03f981cf
JB
641}
642
24c40b32
JQ
643static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 struct inode *inode, loff_t offset)
645{
646 int ret = 0;
647 u32 v_cpos = 0;
648 u32 p_cpos = 0;
649 unsigned int num_clusters = 0;
650 unsigned int ext_flags = 0;
651
652 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 &num_clusters, &ext_flags);
655 if (ret < 0) {
656 mlog_errno(ret);
657 return ret;
658 }
659
660 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 return 1;
662
663 return 0;
664}
665
14a5275d
JQ
666static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
667 struct inode *inode, loff_t offset,
668 u64 zero_len, int cluster_align)
669{
670 u32 p_cpos = 0;
671 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
672 unsigned int num_clusters = 0;
673 unsigned int ext_flags = 0;
674 int ret = 0;
675
676 if (offset <= i_size_read(inode) || cluster_align)
677 return 0;
678
679 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
680 &ext_flags);
681 if (ret < 0) {
682 mlog_errno(ret);
683 return ret;
684 }
685
686 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
687 u64 s = i_size_read(inode);
688 sector_t sector = (p_cpos << (osb->s_clustersize_bits - 9)) +
689 (do_div(s, osb->s_clustersize) >> 9);
690
691 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
692 zero_len >> 9, GFP_NOFS, false);
693 if (ret < 0)
694 mlog_errno(ret);
695 }
696
697 return ret;
698}
699
700static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
701 struct inode *inode, loff_t offset)
702{
703 u64 zero_start, zero_len, total_zero_len;
704 u32 p_cpos = 0, clusters_to_add;
705 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
706 unsigned int num_clusters = 0;
707 unsigned int ext_flags = 0;
708 u32 size_div, offset_div;
709 int ret = 0;
710
711 {
712 u64 o = offset;
713 u64 s = i_size_read(inode);
714
715 offset_div = do_div(o, osb->s_clustersize);
716 size_div = do_div(s, osb->s_clustersize);
717 }
718
719 if (offset <= i_size_read(inode))
720 return 0;
721
722 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
723 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
724 total_zero_len = offset - i_size_read(inode);
725 if (clusters_to_add)
726 total_zero_len -= offset_div;
727
728 /* Allocate clusters to fill out holes, and this is only needed
729 * when we add more than one clusters. Otherwise the cluster will
730 * be allocated during direct IO */
731 if (clusters_to_add > 1) {
732 ret = ocfs2_extend_allocation(inode,
733 OCFS2_I(inode)->ip_clusters,
734 clusters_to_add - 1, 0);
735 if (ret) {
736 mlog_errno(ret);
737 goto out;
738 }
739 }
740
741 while (total_zero_len) {
742 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
743 &ext_flags);
744 if (ret < 0) {
745 mlog_errno(ret);
746 goto out;
747 }
748
749 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
750 size_div;
751 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
752 size_div;
753 zero_len = min(total_zero_len, zero_len);
754
755 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
756 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
757 zero_start >> 9, zero_len >> 9,
758 GFP_NOFS, false);
759 if (ret < 0) {
760 mlog_errno(ret);
761 goto out;
762 }
763 }
764
765 total_zero_len -= zero_len;
766 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
767
768 /* Only at first iteration can be cluster not aligned.
769 * So set size_div to 0 for the rest */
770 size_div = 0;
771 }
772
773out:
774 return ret;
775}
776
24c40b32
JQ
777static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
778 struct iov_iter *iter,
779 loff_t offset)
780{
781 ssize_t ret = 0;
782 ssize_t written = 0;
783 bool orphaned = false;
784 int is_overwrite = 0;
785 struct file *file = iocb->ki_filp;
786 struct inode *inode = file_inode(file)->i_mapping->host;
787 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
788 struct buffer_head *di_bh = NULL;
789 size_t count = iter->count;
790 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
791 u64 zero_len_head, zero_len_tail;
792 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
793 loff_t final_size = offset + count;
794 int append_write = offset >= i_size_read(inode) ? 1 : 0;
795 unsigned int num_clusters = 0;
796 unsigned int ext_flags = 0;
797
798 {
799 u64 o = offset;
14a5275d
JQ
800 u64 s = i_size_read(inode);
801
802 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
803 cluster_align_head = !zero_len_head;
24c40b32 804
14a5275d
JQ
805 zero_len_tail = osb->s_clustersize -
806 do_div(s, osb->s_clustersize);
807 if ((offset - i_size_read(inode)) < zero_len_tail)
808 zero_len_tail = offset - i_size_read(inode);
809 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
810 }
811
812 /*
813 * when final_size > inode->i_size, inode->i_size will be
814 * updated after direct write, so add the inode to orphan
815 * dir first.
816 */
817 if (final_size > i_size_read(inode)) {
818 ret = ocfs2_add_inode_to_orphan(osb, inode);
819 if (ret < 0) {
820 mlog_errno(ret);
821 goto out;
822 }
823 orphaned = true;
824 }
825
826 if (append_write) {
7e9b1955 827 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
828 if (ret < 0) {
829 mlog_errno(ret);
830 goto clean_orphan;
831 }
832
14a5275d
JQ
833 /* zeroing out the previously allocated cluster tail
834 * that but not zeroed */
24c40b32 835 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
14a5275d
JQ
836 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
837 zero_len_tail, cluster_align_tail);
24c40b32 838 else
14a5275d 839 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32
JQ
840 offset);
841 if (ret < 0) {
842 mlog_errno(ret);
843 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
844 goto clean_orphan;
845 }
846
847 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
848 if (is_overwrite < 0) {
849 mlog_errno(is_overwrite);
850 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
851 goto clean_orphan;
852 }
853
854 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
855 }
856
857 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
858 iter, offset,
859 ocfs2_direct_IO_get_blocks,
860 ocfs2_dio_end_io, NULL, 0);
861 if (unlikely(written < 0)) {
862 loff_t i_size = i_size_read(inode);
863
864 if (offset + count > i_size) {
865 ret = ocfs2_inode_lock(inode, &di_bh, 1);
866 if (ret < 0) {
867 mlog_errno(ret);
868 goto clean_orphan;
869 }
870
871 if (i_size == i_size_read(inode)) {
872 ret = ocfs2_truncate_file(inode, di_bh,
873 i_size);
874 if (ret < 0) {
875 if (ret != -ENOSPC)
876 mlog_errno(ret);
877
878 ocfs2_inode_unlock(inode, 1);
879 brelse(di_bh);
880 goto clean_orphan;
881 }
882 }
883
884 ocfs2_inode_unlock(inode, 1);
885 brelse(di_bh);
886
887 ret = jbd2_journal_force_commit(journal);
888 if (ret < 0)
889 mlog_errno(ret);
890 }
bdd86215 891 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
892 !cluster_align_head) {
893 /* zeroing out the allocated cluster head */
24c40b32
JQ
894 u32 p_cpos = 0;
895 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896
37a8d89a
JQ
897 ret = ocfs2_inode_lock(inode, NULL, 0);
898 if (ret < 0) {
899 mlog_errno(ret);
900 goto clean_orphan;
901 }
902
24c40b32
JQ
903 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904 &num_clusters, &ext_flags);
905 if (ret < 0) {
906 mlog_errno(ret);
37a8d89a 907 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
908 goto clean_orphan;
909 }
910
911 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912
913 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914 p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 915 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
916 if (ret < 0)
917 mlog_errno(ret);
37a8d89a
JQ
918
919 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
920 }
921
922clean_orphan:
923 if (orphaned) {
924 int tmp_ret;
925 int update_isize = written > 0 ? 1 : 0;
926 loff_t end = update_isize ? offset + written : 0;
927
928 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929 update_isize, end);
930 if (tmp_ret < 0) {
931 ret = tmp_ret;
932 goto out;
933 }
934
935 tmp_ret = jbd2_journal_force_commit(journal);
936 if (tmp_ret < 0) {
937 ret = tmp_ret;
938 mlog_errno(tmp_ret);
939 }
940 }
941
942out:
943 if (ret >= 0)
944 ret = written;
945 return ret;
946}
947
ccd979bd
MF
948static ssize_t ocfs2_direct_IO(int rw,
949 struct kiocb *iocb,
d8d3d94b
AV
950 struct iov_iter *iter,
951 loff_t offset)
ccd979bd
MF
952{
953 struct file *file = iocb->ki_filp;
496ad9aa 954 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
955 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
956 int full_coherency = !(osb->s_mount_opt &
957 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 958
6798d35a
MF
959 /*
960 * Fallback to buffered I/O if we see an inode without
961 * extents.
962 */
963 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
964 return 0;
965
24c40b32
JQ
966 /* Fallback to buffered I/O if we are appending and
967 * concurrent O_DIRECT writes are allowed.
968 */
969 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
970 return 0;
971
24c40b32
JQ
972 if (rw == READ)
973 return __blockdev_direct_IO(rw, iocb, inode,
974 inode->i_sb->s_bdev,
31b14039 975 iter, offset,
c1e8d35e
TM
976 ocfs2_direct_IO_get_blocks,
977 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
978 else
979 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
980}
981
9517bac6
MF
982static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
983 u32 cpos,
984 unsigned int *start,
985 unsigned int *end)
986{
987 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
988
989 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
990 unsigned int cpp;
991
992 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
993
994 cluster_start = cpos % cpp;
995 cluster_start = cluster_start << osb->s_clustersize_bits;
996
997 cluster_end = cluster_start + osb->s_clustersize;
998 }
999
1000 BUG_ON(cluster_start > PAGE_SIZE);
1001 BUG_ON(cluster_end > PAGE_SIZE);
1002
1003 if (start)
1004 *start = cluster_start;
1005 if (end)
1006 *end = cluster_end;
1007}
1008
1009/*
1010 * 'from' and 'to' are the region in the page to avoid zeroing.
1011 *
1012 * If pagesize > clustersize, this function will avoid zeroing outside
1013 * of the cluster boundary.
1014 *
1015 * from == to == 0 is code for "zero the entire cluster region"
1016 */
1017static void ocfs2_clear_page_regions(struct page *page,
1018 struct ocfs2_super *osb, u32 cpos,
1019 unsigned from, unsigned to)
1020{
1021 void *kaddr;
1022 unsigned int cluster_start, cluster_end;
1023
1024 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1025
c4bc8dcb 1026 kaddr = kmap_atomic(page);
9517bac6
MF
1027
1028 if (from || to) {
1029 if (from > cluster_start)
1030 memset(kaddr + cluster_start, 0, from - cluster_start);
1031 if (to < cluster_end)
1032 memset(kaddr + to, 0, cluster_end - to);
1033 } else {
1034 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1035 }
1036
c4bc8dcb 1037 kunmap_atomic(kaddr);
9517bac6
MF
1038}
1039
4e9563fd
MF
1040/*
1041 * Nonsparse file systems fully allocate before we get to the write
1042 * code. This prevents ocfs2_write() from tagging the write as an
1043 * allocating one, which means ocfs2_map_page_blocks() might try to
1044 * read-in the blocks at the tail of our file. Avoid reading them by
1045 * testing i_size against each block offset.
1046 */
1047static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1048 unsigned int block_start)
1049{
1050 u64 offset = page_offset(page) + block_start;
1051
1052 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1053 return 1;
1054
1055 if (i_size_read(inode) > offset)
1056 return 1;
1057
1058 return 0;
1059}
1060
9517bac6 1061/*
ebdec241 1062 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1063 * mapping by now though, and the entire write will be allocating or
1064 * it won't, so not much need to use BH_New.
1065 *
1066 * This will also skip zeroing, which is handled externally.
1067 */
60b11392
MF
1068int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1069 struct inode *inode, unsigned int from,
1070 unsigned int to, int new)
9517bac6
MF
1071{
1072 int ret = 0;
1073 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1074 unsigned int block_end, block_start;
1075 unsigned int bsize = 1 << inode->i_blkbits;
1076
1077 if (!page_has_buffers(page))
1078 create_empty_buffers(page, bsize, 0);
1079
1080 head = page_buffers(page);
1081 for (bh = head, block_start = 0; bh != head || !block_start;
1082 bh = bh->b_this_page, block_start += bsize) {
1083 block_end = block_start + bsize;
1084
3a307ffc
MF
1085 clear_buffer_new(bh);
1086
9517bac6
MF
1087 /*
1088 * Ignore blocks outside of our i/o range -
1089 * they may belong to unallocated clusters.
1090 */
60b11392 1091 if (block_start >= to || block_end <= from) {
9517bac6
MF
1092 if (PageUptodate(page))
1093 set_buffer_uptodate(bh);
1094 continue;
1095 }
1096
1097 /*
1098 * For an allocating write with cluster size >= page
1099 * size, we always write the entire page.
1100 */
3a307ffc
MF
1101 if (new)
1102 set_buffer_new(bh);
9517bac6
MF
1103
1104 if (!buffer_mapped(bh)) {
1105 map_bh(bh, inode->i_sb, *p_blkno);
1106 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1107 }
1108
1109 if (PageUptodate(page)) {
1110 if (!buffer_uptodate(bh))
1111 set_buffer_uptodate(bh);
1112 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1113 !buffer_new(bh) &&
4e9563fd 1114 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1115 (block_start < from || block_end > to)) {
9517bac6
MF
1116 ll_rw_block(READ, 1, &bh);
1117 *wait_bh++=bh;
1118 }
1119
1120 *p_blkno = *p_blkno + 1;
1121 }
1122
1123 /*
1124 * If we issued read requests - let them complete.
1125 */
1126 while(wait_bh > wait) {
1127 wait_on_buffer(*--wait_bh);
1128 if (!buffer_uptodate(*wait_bh))
1129 ret = -EIO;
1130 }
1131
1132 if (ret == 0 || !new)
1133 return ret;
1134
1135 /*
1136 * If we get -EIO above, zero out any newly allocated blocks
1137 * to avoid exposing stale data.
1138 */
1139 bh = head;
1140 block_start = 0;
1141 do {
9517bac6
MF
1142 block_end = block_start + bsize;
1143 if (block_end <= from)
1144 goto next_bh;
1145 if (block_start >= to)
1146 break;
1147
eebd2aa3 1148 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1149 set_buffer_uptodate(bh);
1150 mark_buffer_dirty(bh);
1151
1152next_bh:
1153 block_start = block_end;
1154 bh = bh->b_this_page;
1155 } while (bh != head);
1156
1157 return ret;
1158}
1159
3a307ffc
MF
1160#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1161#define OCFS2_MAX_CTXT_PAGES 1
1162#else
1163#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1164#endif
1165
1166#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1167
6af67d82 1168/*
3a307ffc 1169 * Describe the state of a single cluster to be written to.
6af67d82 1170 */
3a307ffc
MF
1171struct ocfs2_write_cluster_desc {
1172 u32 c_cpos;
1173 u32 c_phys;
1174 /*
1175 * Give this a unique field because c_phys eventually gets
1176 * filled.
1177 */
1178 unsigned c_new;
b27b7cbc 1179 unsigned c_unwritten;
e7432675 1180 unsigned c_needs_zero;
3a307ffc 1181};
6af67d82 1182
3a307ffc
MF
1183struct ocfs2_write_ctxt {
1184 /* Logical cluster position / len of write */
1185 u32 w_cpos;
1186 u32 w_clen;
6af67d82 1187
e7432675
SM
1188 /* First cluster allocated in a nonsparse extend */
1189 u32 w_first_new_cpos;
1190
3a307ffc 1191 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1192
3a307ffc
MF
1193 /*
1194 * This is true if page_size > cluster_size.
1195 *
1196 * It triggers a set of special cases during write which might
1197 * have to deal with allocating writes to partial pages.
1198 */
1199 unsigned int w_large_pages;
6af67d82 1200
3a307ffc
MF
1201 /*
1202 * Pages involved in this write.
1203 *
1204 * w_target_page is the page being written to by the user.
1205 *
1206 * w_pages is an array of pages which always contains
1207 * w_target_page, and in the case of an allocating write with
1208 * page_size < cluster size, it will contain zero'd and mapped
1209 * pages adjacent to w_target_page which need to be written
1210 * out in so that future reads from that region will get
1211 * zero's.
1212 */
3a307ffc 1213 unsigned int w_num_pages;
83fd9c7f 1214 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1215 struct page *w_target_page;
eeb47d12 1216
5cffff9e
WW
1217 /*
1218 * w_target_locked is used for page_mkwrite path indicating no unlocking
1219 * against w_target_page in ocfs2_write_end_nolock.
1220 */
1221 unsigned int w_target_locked:1;
1222
3a307ffc
MF
1223 /*
1224 * ocfs2_write_end() uses this to know what the real range to
1225 * write in the target should be.
1226 */
1227 unsigned int w_target_from;
1228 unsigned int w_target_to;
1229
1230 /*
1231 * We could use journal_current_handle() but this is cleaner,
1232 * IMHO -Mark
1233 */
1234 handle_t *w_handle;
1235
1236 struct buffer_head *w_di_bh;
b27b7cbc
MF
1237
1238 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1239};
1240
1d410a6e 1241void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1242{
1243 int i;
1244
1d410a6e
MF
1245 for(i = 0; i < num_pages; i++) {
1246 if (pages[i]) {
1247 unlock_page(pages[i]);
1248 mark_page_accessed(pages[i]);
1249 page_cache_release(pages[i]);
1250 }
6af67d82 1251 }
1d410a6e
MF
1252}
1253
136f49b9 1254static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1255{
5cffff9e
WW
1256 int i;
1257
1258 /*
1259 * w_target_locked is only set to true in the page_mkwrite() case.
1260 * The intent is to allow us to lock the target page from write_begin()
1261 * to write_end(). The caller must hold a ref on w_target_page.
1262 */
1263 if (wc->w_target_locked) {
1264 BUG_ON(!wc->w_target_page);
1265 for (i = 0; i < wc->w_num_pages; i++) {
1266 if (wc->w_target_page == wc->w_pages[i]) {
1267 wc->w_pages[i] = NULL;
1268 break;
1269 }
1270 }
1271 mark_page_accessed(wc->w_target_page);
1272 page_cache_release(wc->w_target_page);
1273 }
1d410a6e 1274 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1275}
6af67d82 1276
136f49b9
JB
1277static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1278{
1279 ocfs2_unlock_pages(wc);
3a307ffc
MF
1280 brelse(wc->w_di_bh);
1281 kfree(wc);
1282}
1283
1284static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1285 struct ocfs2_super *osb, loff_t pos,
607d44aa 1286 unsigned len, struct buffer_head *di_bh)
3a307ffc 1287{
30b8548f 1288 u32 cend;
3a307ffc
MF
1289 struct ocfs2_write_ctxt *wc;
1290
1291 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1292 if (!wc)
1293 return -ENOMEM;
6af67d82 1294
3a307ffc 1295 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1296 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1297 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1298 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1299 get_bh(di_bh);
1300 wc->w_di_bh = di_bh;
6af67d82 1301
3a307ffc
MF
1302 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1303 wc->w_large_pages = 1;
1304 else
1305 wc->w_large_pages = 0;
1306
b27b7cbc
MF
1307 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1308
3a307ffc 1309 *wcp = wc;
6af67d82 1310
3a307ffc 1311 return 0;
6af67d82
MF
1312}
1313
9517bac6 1314/*
3a307ffc
MF
1315 * If a page has any new buffers, zero them out here, and mark them uptodate
1316 * and dirty so they'll be written out (in order to prevent uninitialised
1317 * block data from leaking). And clear the new bit.
9517bac6 1318 */
3a307ffc 1319static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1320{
3a307ffc
MF
1321 unsigned int block_start, block_end;
1322 struct buffer_head *head, *bh;
9517bac6 1323
3a307ffc
MF
1324 BUG_ON(!PageLocked(page));
1325 if (!page_has_buffers(page))
1326 return;
9517bac6 1327
3a307ffc
MF
1328 bh = head = page_buffers(page);
1329 block_start = 0;
1330 do {
1331 block_end = block_start + bh->b_size;
1332
1333 if (buffer_new(bh)) {
1334 if (block_end > from && block_start < to) {
1335 if (!PageUptodate(page)) {
1336 unsigned start, end;
3a307ffc
MF
1337
1338 start = max(from, block_start);
1339 end = min(to, block_end);
1340
eebd2aa3 1341 zero_user_segment(page, start, end);
3a307ffc
MF
1342 set_buffer_uptodate(bh);
1343 }
1344
1345 clear_buffer_new(bh);
1346 mark_buffer_dirty(bh);
1347 }
1348 }
9517bac6 1349
3a307ffc
MF
1350 block_start = block_end;
1351 bh = bh->b_this_page;
1352 } while (bh != head);
1353}
1354
1355/*
1356 * Only called when we have a failure during allocating write to write
1357 * zero's to the newly allocated region.
1358 */
1359static void ocfs2_write_failure(struct inode *inode,
1360 struct ocfs2_write_ctxt *wc,
1361 loff_t user_pos, unsigned user_len)
1362{
1363 int i;
5c26a7b7
MF
1364 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1365 to = user_pos + user_len;
3a307ffc
MF
1366 struct page *tmppage;
1367
5c26a7b7 1368 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1369
3a307ffc
MF
1370 for(i = 0; i < wc->w_num_pages; i++) {
1371 tmppage = wc->w_pages[i];
9517bac6 1372
961cecbe 1373 if (page_has_buffers(tmppage)) {
53ef99ca 1374 if (ocfs2_should_order_data(inode))
2b4e30fb 1375 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1376
1377 block_commit_write(tmppage, from, to);
1378 }
9517bac6 1379 }
9517bac6
MF
1380}
1381
3a307ffc
MF
1382static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1383 struct ocfs2_write_ctxt *wc,
1384 struct page *page, u32 cpos,
1385 loff_t user_pos, unsigned user_len,
1386 int new)
9517bac6 1387{
3a307ffc
MF
1388 int ret;
1389 unsigned int map_from = 0, map_to = 0;
9517bac6 1390 unsigned int cluster_start, cluster_end;
3a307ffc 1391 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1392
3a307ffc 1393 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1394 &cluster_start, &cluster_end);
1395
272b62c1
GR
1396 /* treat the write as new if the a hole/lseek spanned across
1397 * the page boundary.
1398 */
1399 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1400 (page_offset(page) <= user_pos));
1401
3a307ffc
MF
1402 if (page == wc->w_target_page) {
1403 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1404 map_to = map_from + user_len;
1405
1406 if (new)
1407 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1408 cluster_start, cluster_end,
1409 new);
1410 else
1411 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1412 map_from, map_to, new);
1413 if (ret) {
9517bac6
MF
1414 mlog_errno(ret);
1415 goto out;
1416 }
1417
3a307ffc
MF
1418 user_data_from = map_from;
1419 user_data_to = map_to;
9517bac6 1420 if (new) {
3a307ffc
MF
1421 map_from = cluster_start;
1422 map_to = cluster_end;
9517bac6
MF
1423 }
1424 } else {
1425 /*
1426 * If we haven't allocated the new page yet, we
1427 * shouldn't be writing it out without copying user
1428 * data. This is likely a math error from the caller.
1429 */
1430 BUG_ON(!new);
1431
3a307ffc
MF
1432 map_from = cluster_start;
1433 map_to = cluster_end;
9517bac6
MF
1434
1435 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1436 cluster_start, cluster_end, new);
9517bac6
MF
1437 if (ret) {
1438 mlog_errno(ret);
1439 goto out;
1440 }
1441 }
1442
1443 /*
1444 * Parts of newly allocated pages need to be zero'd.
1445 *
1446 * Above, we have also rewritten 'to' and 'from' - as far as
1447 * the rest of the function is concerned, the entire cluster
1448 * range inside of a page needs to be written.
1449 *
1450 * We can skip this if the page is up to date - it's already
1451 * been zero'd from being read in as a hole.
1452 */
1453 if (new && !PageUptodate(page))
1454 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1455 cpos, user_data_from, user_data_to);
9517bac6
MF
1456
1457 flush_dcache_page(page);
1458
9517bac6 1459out:
3a307ffc 1460 return ret;
9517bac6
MF
1461}
1462
1463/*
3a307ffc 1464 * This function will only grab one clusters worth of pages.
9517bac6 1465 */
3a307ffc
MF
1466static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1467 struct ocfs2_write_ctxt *wc,
693c241a
JB
1468 u32 cpos, loff_t user_pos,
1469 unsigned user_len, int new,
7307de80 1470 struct page *mmap_page)
9517bac6 1471{
3a307ffc 1472 int ret = 0, i;
693c241a 1473 unsigned long start, target_index, end_index, index;
9517bac6 1474 struct inode *inode = mapping->host;
693c241a 1475 loff_t last_byte;
9517bac6 1476
3a307ffc 1477 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1478
1479 /*
1480 * Figure out how many pages we'll be manipulating here. For
60b11392 1481 * non allocating write, we just change the one
693c241a
JB
1482 * page. Otherwise, we'll need a whole clusters worth. If we're
1483 * writing past i_size, we only need enough pages to cover the
1484 * last page of the write.
9517bac6 1485 */
9517bac6 1486 if (new) {
3a307ffc
MF
1487 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1488 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1489 /*
1490 * We need the index *past* the last page we could possibly
1491 * touch. This is the page past the end of the write or
1492 * i_size, whichever is greater.
1493 */
1494 last_byte = max(user_pos + user_len, i_size_read(inode));
1495 BUG_ON(last_byte < 1);
1496 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1497 if ((start + wc->w_num_pages) > end_index)
1498 wc->w_num_pages = end_index - start;
9517bac6 1499 } else {
3a307ffc
MF
1500 wc->w_num_pages = 1;
1501 start = target_index;
9517bac6
MF
1502 }
1503
3a307ffc 1504 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1505 index = start + i;
1506
7307de80
MF
1507 if (index == target_index && mmap_page) {
1508 /*
1509 * ocfs2_pagemkwrite() is a little different
1510 * and wants us to directly use the page
1511 * passed in.
1512 */
1513 lock_page(mmap_page);
1514
5cffff9e 1515 /* Exit and let the caller retry */
7307de80 1516 if (mmap_page->mapping != mapping) {
5cffff9e 1517 WARN_ON(mmap_page->mapping);
7307de80 1518 unlock_page(mmap_page);
5cffff9e 1519 ret = -EAGAIN;
7307de80
MF
1520 goto out;
1521 }
1522
1523 page_cache_get(mmap_page);
1524 wc->w_pages[i] = mmap_page;
5cffff9e 1525 wc->w_target_locked = true;
7307de80
MF
1526 } else {
1527 wc->w_pages[i] = find_or_create_page(mapping, index,
1528 GFP_NOFS);
1529 if (!wc->w_pages[i]) {
1530 ret = -ENOMEM;
1531 mlog_errno(ret);
1532 goto out;
1533 }
9517bac6 1534 }
1269529b 1535 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1536
1537 if (index == target_index)
1538 wc->w_target_page = wc->w_pages[i];
9517bac6 1539 }
3a307ffc 1540out:
5cffff9e
WW
1541 if (ret)
1542 wc->w_target_locked = false;
3a307ffc
MF
1543 return ret;
1544}
1545
1546/*
1547 * Prepare a single cluster for write one cluster into the file.
1548 */
1549static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1550 u32 phys, unsigned int unwritten,
e7432675 1551 unsigned int should_zero,
b27b7cbc 1552 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1553 struct ocfs2_alloc_context *meta_ac,
1554 struct ocfs2_write_ctxt *wc, u32 cpos,
1555 loff_t user_pos, unsigned user_len)
1556{
e7432675 1557 int ret, i, new;
3a307ffc
MF
1558 u64 v_blkno, p_blkno;
1559 struct inode *inode = mapping->host;
f99b9b7c 1560 struct ocfs2_extent_tree et;
3a307ffc
MF
1561
1562 new = phys == 0 ? 1 : 0;
9517bac6 1563 if (new) {
3a307ffc
MF
1564 u32 tmp_pos;
1565
9517bac6
MF
1566 /*
1567 * This is safe to call with the page locks - it won't take
1568 * any additional semaphores or cluster locks.
1569 */
3a307ffc 1570 tmp_pos = cpos;
0eb8d47e
TM
1571 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1572 &tmp_pos, 1, 0, wc->w_di_bh,
1573 wc->w_handle, data_ac,
1574 meta_ac, NULL);
9517bac6
MF
1575 /*
1576 * This shouldn't happen because we must have already
1577 * calculated the correct meta data allocation required. The
1578 * internal tree allocation code should know how to increase
1579 * transaction credits itself.
1580 *
1581 * If need be, we could handle -EAGAIN for a
1582 * RESTART_TRANS here.
1583 */
1584 mlog_bug_on_msg(ret == -EAGAIN,
1585 "Inode %llu: EAGAIN return during allocation.\n",
1586 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1587 if (ret < 0) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
b27b7cbc 1591 } else if (unwritten) {
5e404e9e
JB
1592 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1593 wc->w_di_bh);
f99b9b7c 1594 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1595 wc->w_handle, cpos, 1, phys,
f99b9b7c 1596 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1597 if (ret < 0) {
1598 mlog_errno(ret);
1599 goto out;
1600 }
1601 }
3a307ffc 1602
b27b7cbc 1603 if (should_zero)
3a307ffc 1604 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1605 else
3a307ffc 1606 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1607
3a307ffc
MF
1608 /*
1609 * The only reason this should fail is due to an inability to
1610 * find the extent added.
1611 */
49cb8d2d
MF
1612 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1613 NULL);
9517bac6 1614 if (ret < 0) {
61fb9ea4 1615 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1616 "at logical block %llu",
1617 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1618 (unsigned long long)v_blkno);
9517bac6
MF
1619 goto out;
1620 }
1621
1622 BUG_ON(p_blkno == 0);
1623
3a307ffc
MF
1624 for(i = 0; i < wc->w_num_pages; i++) {
1625 int tmpret;
9517bac6 1626
3a307ffc
MF
1627 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1628 wc->w_pages[i], cpos,
b27b7cbc
MF
1629 user_pos, user_len,
1630 should_zero);
3a307ffc
MF
1631 if (tmpret) {
1632 mlog_errno(tmpret);
1633 if (ret == 0)
cbfa9639 1634 ret = tmpret;
3a307ffc 1635 }
9517bac6
MF
1636 }
1637
3a307ffc
MF
1638 /*
1639 * We only have cleanup to do in case of allocating write.
1640 */
1641 if (ret && new)
1642 ocfs2_write_failure(inode, wc, user_pos, user_len);
1643
9517bac6 1644out:
9517bac6 1645
3a307ffc 1646 return ret;
9517bac6
MF
1647}
1648
0d172baa
MF
1649static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1650 struct ocfs2_alloc_context *data_ac,
1651 struct ocfs2_alloc_context *meta_ac,
1652 struct ocfs2_write_ctxt *wc,
1653 loff_t pos, unsigned len)
1654{
1655 int ret, i;
db56246c
MF
1656 loff_t cluster_off;
1657 unsigned int local_len = len;
0d172baa 1658 struct ocfs2_write_cluster_desc *desc;
db56246c 1659 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1660
1661 for (i = 0; i < wc->w_clen; i++) {
1662 desc = &wc->w_desc[i];
1663
db56246c
MF
1664 /*
1665 * We have to make sure that the total write passed in
1666 * doesn't extend past a single cluster.
1667 */
1668 local_len = len;
1669 cluster_off = pos & (osb->s_clustersize - 1);
1670 if ((cluster_off + local_len) > osb->s_clustersize)
1671 local_len = osb->s_clustersize - cluster_off;
1672
b27b7cbc 1673 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1674 desc->c_unwritten,
1675 desc->c_needs_zero,
1676 data_ac, meta_ac,
db56246c 1677 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1678 if (ret) {
1679 mlog_errno(ret);
1680 goto out;
1681 }
db56246c
MF
1682
1683 len -= local_len;
1684 pos += local_len;
0d172baa
MF
1685 }
1686
1687 ret = 0;
1688out:
1689 return ret;
1690}
1691
3a307ffc
MF
1692/*
1693 * ocfs2_write_end() wants to know which parts of the target page it
1694 * should complete the write on. It's easiest to compute them ahead of
1695 * time when a more complete view of the write is available.
1696 */
1697static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1698 struct ocfs2_write_ctxt *wc,
1699 loff_t pos, unsigned len, int alloc)
9517bac6 1700{
3a307ffc 1701 struct ocfs2_write_cluster_desc *desc;
9517bac6 1702
3a307ffc
MF
1703 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1704 wc->w_target_to = wc->w_target_from + len;
1705
1706 if (alloc == 0)
1707 return;
1708
1709 /*
1710 * Allocating write - we may have different boundaries based
1711 * on page size and cluster size.
1712 *
1713 * NOTE: We can no longer compute one value from the other as
1714 * the actual write length and user provided length may be
1715 * different.
1716 */
9517bac6 1717
3a307ffc
MF
1718 if (wc->w_large_pages) {
1719 /*
1720 * We only care about the 1st and last cluster within
b27b7cbc 1721 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1722 * value may be extended out to the start/end of a
1723 * newly allocated cluster.
1724 */
1725 desc = &wc->w_desc[0];
e7432675 1726 if (desc->c_needs_zero)
3a307ffc
MF
1727 ocfs2_figure_cluster_boundaries(osb,
1728 desc->c_cpos,
1729 &wc->w_target_from,
1730 NULL);
1731
1732 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1733 if (desc->c_needs_zero)
3a307ffc
MF
1734 ocfs2_figure_cluster_boundaries(osb,
1735 desc->c_cpos,
1736 NULL,
1737 &wc->w_target_to);
1738 } else {
1739 wc->w_target_from = 0;
1740 wc->w_target_to = PAGE_CACHE_SIZE;
1741 }
9517bac6
MF
1742}
1743
0d172baa
MF
1744/*
1745 * Populate each single-cluster write descriptor in the write context
1746 * with information about the i/o to be done.
b27b7cbc
MF
1747 *
1748 * Returns the number of clusters that will have to be allocated, as
1749 * well as a worst case estimate of the number of extent records that
1750 * would have to be created during a write to an unwritten region.
0d172baa
MF
1751 */
1752static int ocfs2_populate_write_desc(struct inode *inode,
1753 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1754 unsigned int *clusters_to_alloc,
1755 unsigned int *extents_to_split)
9517bac6 1756{
0d172baa 1757 int ret;
3a307ffc 1758 struct ocfs2_write_cluster_desc *desc;
0d172baa 1759 unsigned int num_clusters = 0;
b27b7cbc 1760 unsigned int ext_flags = 0;
0d172baa
MF
1761 u32 phys = 0;
1762 int i;
9517bac6 1763
b27b7cbc
MF
1764 *clusters_to_alloc = 0;
1765 *extents_to_split = 0;
1766
3a307ffc
MF
1767 for (i = 0; i < wc->w_clen; i++) {
1768 desc = &wc->w_desc[i];
1769 desc->c_cpos = wc->w_cpos + i;
1770
1771 if (num_clusters == 0) {
b27b7cbc
MF
1772 /*
1773 * Need to look up the next extent record.
1774 */
3a307ffc 1775 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1776 &num_clusters, &ext_flags);
3a307ffc
MF
1777 if (ret) {
1778 mlog_errno(ret);
607d44aa 1779 goto out;
3a307ffc 1780 }
b27b7cbc 1781
293b2f70
TM
1782 /* We should already CoW the refcountd extent. */
1783 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1784
b27b7cbc
MF
1785 /*
1786 * Assume worst case - that we're writing in
1787 * the middle of the extent.
1788 *
1789 * We can assume that the write proceeds from
1790 * left to right, in which case the extent
1791 * insert code is smart enough to coalesce the
1792 * next splits into the previous records created.
1793 */
1794 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1795 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1796 } else if (phys) {
1797 /*
1798 * Only increment phys if it doesn't describe
1799 * a hole.
1800 */
1801 phys++;
1802 }
1803
e7432675
SM
1804 /*
1805 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1806 * file that got extended. w_first_new_cpos tells us
1807 * where the newly allocated clusters are so we can
1808 * zero them.
1809 */
1810 if (desc->c_cpos >= wc->w_first_new_cpos) {
1811 BUG_ON(phys == 0);
1812 desc->c_needs_zero = 1;
1813 }
1814
3a307ffc
MF
1815 desc->c_phys = phys;
1816 if (phys == 0) {
1817 desc->c_new = 1;
e7432675 1818 desc->c_needs_zero = 1;
0d172baa 1819 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1820 }
e7432675
SM
1821
1822 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1823 desc->c_unwritten = 1;
e7432675
SM
1824 desc->c_needs_zero = 1;
1825 }
3a307ffc
MF
1826
1827 num_clusters--;
9517bac6
MF
1828 }
1829
0d172baa
MF
1830 ret = 0;
1831out:
1832 return ret;
1833}
1834
1afc32b9
MF
1835static int ocfs2_write_begin_inline(struct address_space *mapping,
1836 struct inode *inode,
1837 struct ocfs2_write_ctxt *wc)
1838{
1839 int ret;
1840 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1841 struct page *page;
1842 handle_t *handle;
1843 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1844
f775da2f
JB
1845 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1846 if (IS_ERR(handle)) {
1847 ret = PTR_ERR(handle);
1848 mlog_errno(ret);
1849 goto out;
1850 }
1851
1afc32b9
MF
1852 page = find_or_create_page(mapping, 0, GFP_NOFS);
1853 if (!page) {
f775da2f 1854 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1855 ret = -ENOMEM;
1856 mlog_errno(ret);
1857 goto out;
1858 }
1859 /*
1860 * If we don't set w_num_pages then this page won't get unlocked
1861 * and freed on cleanup of the write context.
1862 */
1863 wc->w_pages[0] = wc->w_target_page = page;
1864 wc->w_num_pages = 1;
1865
0cf2f763 1866 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1867 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1868 if (ret) {
1869 ocfs2_commit_trans(osb, handle);
1870
1871 mlog_errno(ret);
1872 goto out;
1873 }
1874
1875 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1876 ocfs2_set_inode_data_inline(inode, di);
1877
1878 if (!PageUptodate(page)) {
1879 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1880 if (ret) {
1881 ocfs2_commit_trans(osb, handle);
1882
1883 goto out;
1884 }
1885 }
1886
1887 wc->w_handle = handle;
1888out:
1889 return ret;
1890}
1891
1892int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1893{
1894 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1895
0d8a4e0c 1896 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1897 return 1;
1898 return 0;
1899}
1900
1901static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1902 struct inode *inode, loff_t pos,
1903 unsigned len, struct page *mmap_page,
1904 struct ocfs2_write_ctxt *wc)
1905{
1906 int ret, written = 0;
1907 loff_t end = pos + len;
1908 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1909 struct ocfs2_dinode *di = NULL;
1afc32b9 1910
9558156b
TM
1911 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1912 len, (unsigned long long)pos,
1913 oi->ip_dyn_features);
1afc32b9
MF
1914
1915 /*
1916 * Handle inodes which already have inline data 1st.
1917 */
1918 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1919 if (mmap_page == NULL &&
1920 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1921 goto do_inline_write;
1922
1923 /*
1924 * The write won't fit - we have to give this inode an
1925 * inline extent list now.
1926 */
1927 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1928 if (ret)
1929 mlog_errno(ret);
1930 goto out;
1931 }
1932
1933 /*
1934 * Check whether the inode can accept inline data.
1935 */
1936 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1937 return 0;
1938
1939 /*
1940 * Check whether the write can fit.
1941 */
d9ae49d6
TY
1942 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1943 if (mmap_page ||
1944 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1945 return 0;
1946
1947do_inline_write:
1948 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1949 if (ret) {
1950 mlog_errno(ret);
1951 goto out;
1952 }
1953
1954 /*
1955 * This signals to the caller that the data can be written
1956 * inline.
1957 */
1958 written = 1;
1959out:
1960 return written ? written : ret;
1961}
1962
65ed39d6
MF
1963/*
1964 * This function only does anything for file systems which can't
1965 * handle sparse files.
1966 *
1967 * What we want to do here is fill in any hole between the current end
1968 * of allocation and the end of our write. That way the rest of the
1969 * write path can treat it as an non-allocating write, which has no
1970 * special case code for sparse/nonsparse files.
1971 */
5693486b
JB
1972static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1973 struct buffer_head *di_bh,
1974 loff_t pos, unsigned len,
65ed39d6
MF
1975 struct ocfs2_write_ctxt *wc)
1976{
1977 int ret;
65ed39d6
MF
1978 loff_t newsize = pos + len;
1979
5693486b 1980 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1981
1982 if (newsize <= i_size_read(inode))
1983 return 0;
1984
5693486b 1985 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1986 if (ret)
1987 mlog_errno(ret);
1988
e7432675
SM
1989 wc->w_first_new_cpos =
1990 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1991
65ed39d6
MF
1992 return ret;
1993}
1994
5693486b
JB
1995static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1996 loff_t pos)
1997{
1998 int ret = 0;
1999
2000 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2001 if (pos > i_size_read(inode))
2002 ret = ocfs2_zero_extend(inode, di_bh, pos);
2003
2004 return ret;
2005}
2006
50308d81
TM
2007/*
2008 * Try to flush truncate logs if we can free enough clusters from it.
2009 * As for return value, "< 0" means error, "0" no space and "1" means
2010 * we have freed enough spaces and let the caller try to allocate again.
2011 */
2012static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2013 unsigned int needed)
2014{
2015 tid_t target;
2016 int ret = 0;
2017 unsigned int truncated_clusters;
2018
2019 mutex_lock(&osb->osb_tl_inode->i_mutex);
2020 truncated_clusters = osb->truncated_clusters;
2021 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2022
2023 /*
2024 * Check whether we can succeed in allocating if we free
2025 * the truncate log.
2026 */
2027 if (truncated_clusters < needed)
2028 goto out;
2029
2030 ret = ocfs2_flush_truncate_log(osb);
2031 if (ret) {
2032 mlog_errno(ret);
2033 goto out;
2034 }
2035
2036 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2037 jbd2_log_wait_commit(osb->journal->j_journal, target);
2038 ret = 1;
2039 }
2040out:
2041 return ret;
2042}
2043
0378da0f
TM
2044int ocfs2_write_begin_nolock(struct file *filp,
2045 struct address_space *mapping,
0d172baa
MF
2046 loff_t pos, unsigned len, unsigned flags,
2047 struct page **pagep, void **fsdata,
2048 struct buffer_head *di_bh, struct page *mmap_page)
2049{
e7432675 2050 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2051 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2052 struct ocfs2_write_ctxt *wc;
2053 struct inode *inode = mapping->host;
2054 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2055 struct ocfs2_dinode *di;
2056 struct ocfs2_alloc_context *data_ac = NULL;
2057 struct ocfs2_alloc_context *meta_ac = NULL;
2058 handle_t *handle;
f99b9b7c 2059 struct ocfs2_extent_tree et;
50308d81 2060 int try_free = 1, ret1;
0d172baa 2061
50308d81 2062try_again:
0d172baa
MF
2063 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2064 if (ret) {
2065 mlog_errno(ret);
2066 return ret;
2067 }
2068
1afc32b9
MF
2069 if (ocfs2_supports_inline_data(osb)) {
2070 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2071 mmap_page, wc);
2072 if (ret == 1) {
2073 ret = 0;
2074 goto success;
2075 }
2076 if (ret < 0) {
2077 mlog_errno(ret);
2078 goto out;
2079 }
2080 }
2081
5693486b
JB
2082 if (ocfs2_sparse_alloc(osb))
2083 ret = ocfs2_zero_tail(inode, di_bh, pos);
2084 else
2085 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2086 wc);
65ed39d6
MF
2087 if (ret) {
2088 mlog_errno(ret);
2089 goto out;
2090 }
2091
293b2f70
TM
2092 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2093 if (ret < 0) {
2094 mlog_errno(ret);
2095 goto out;
2096 } else if (ret == 1) {
50308d81 2097 clusters_need = wc->w_clen;
c7dd3392 2098 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2099 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2100 if (ret) {
2101 mlog_errno(ret);
2102 goto out;
2103 }
2104 }
2105
b27b7cbc
MF
2106 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2107 &extents_to_split);
0d172baa
MF
2108 if (ret) {
2109 mlog_errno(ret);
2110 goto out;
2111 }
50308d81 2112 clusters_need += clusters_to_alloc;
0d172baa
MF
2113
2114 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2115
9558156b
TM
2116 trace_ocfs2_write_begin_nolock(
2117 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2118 (long long)i_size_read(inode),
2119 le32_to_cpu(di->i_clusters),
2120 pos, len, flags, mmap_page,
2121 clusters_to_alloc, extents_to_split);
2122
3a307ffc
MF
2123 /*
2124 * We set w_target_from, w_target_to here so that
2125 * ocfs2_write_end() knows which range in the target page to
2126 * write out. An allocation requires that we write the entire
2127 * cluster range.
2128 */
b27b7cbc 2129 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2130 /*
2131 * XXX: We are stretching the limits of
b27b7cbc 2132 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2133 * the work to be done.
2134 */
5e404e9e
JB
2135 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2136 wc->w_di_bh);
f99b9b7c 2137 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2138 clusters_to_alloc, extents_to_split,
f99b9b7c 2139 &data_ac, &meta_ac);
9517bac6
MF
2140 if (ret) {
2141 mlog_errno(ret);
607d44aa 2142 goto out;
9517bac6
MF
2143 }
2144
4fe370af
MF
2145 if (data_ac)
2146 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2147
811f933d 2148 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2149 &di->id2.i_list);
3a307ffc 2150
9517bac6
MF
2151 }
2152
e7432675
SM
2153 /*
2154 * We have to zero sparse allocated clusters, unwritten extent clusters,
2155 * and non-sparse clusters we just extended. For non-sparse writes,
2156 * we know zeros will only be needed in the first and/or last cluster.
2157 */
2158 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2159 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2160 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2161 cluster_of_pages = 1;
2162 else
2163 cluster_of_pages = 0;
2164
2165 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2166
9517bac6
MF
2167 handle = ocfs2_start_trans(osb, credits);
2168 if (IS_ERR(handle)) {
2169 ret = PTR_ERR(handle);
2170 mlog_errno(ret);
607d44aa 2171 goto out;
9517bac6
MF
2172 }
2173
3a307ffc
MF
2174 wc->w_handle = handle;
2175
5dd4056d
CH
2176 if (clusters_to_alloc) {
2177 ret = dquot_alloc_space_nodirty(inode,
2178 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2179 if (ret)
2180 goto out_commit;
a90714c1 2181 }
3a307ffc
MF
2182 /*
2183 * We don't want this to fail in ocfs2_write_end(), so do it
2184 * here.
2185 */
0cf2f763 2186 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2187 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2188 if (ret) {
9517bac6 2189 mlog_errno(ret);
a90714c1 2190 goto out_quota;
9517bac6
MF
2191 }
2192
3a307ffc
MF
2193 /*
2194 * Fill our page array first. That way we've grabbed enough so
2195 * that we can zero and flush if we error after adding the
2196 * extent.
2197 */
693c241a 2198 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2199 cluster_of_pages, mmap_page);
5cffff9e 2200 if (ret && ret != -EAGAIN) {
9517bac6 2201 mlog_errno(ret);
a90714c1 2202 goto out_quota;
9517bac6
MF
2203 }
2204
5cffff9e
WW
2205 /*
2206 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2207 * the target page. In this case, we exit with no error and no target
2208 * page. This will trigger the caller, page_mkwrite(), to re-try
2209 * the operation.
2210 */
2211 if (ret == -EAGAIN) {
2212 BUG_ON(wc->w_target_page);
2213 ret = 0;
2214 goto out_quota;
2215 }
2216
0d172baa
MF
2217 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2218 len);
2219 if (ret) {
2220 mlog_errno(ret);
a90714c1 2221 goto out_quota;
9517bac6 2222 }
9517bac6 2223
3a307ffc
MF
2224 if (data_ac)
2225 ocfs2_free_alloc_context(data_ac);
2226 if (meta_ac)
2227 ocfs2_free_alloc_context(meta_ac);
9517bac6 2228
1afc32b9 2229success:
3a307ffc
MF
2230 *pagep = wc->w_target_page;
2231 *fsdata = wc;
2232 return 0;
a90714c1
JK
2233out_quota:
2234 if (clusters_to_alloc)
5dd4056d 2235 dquot_free_space(inode,
a90714c1 2236 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2237out_commit:
2238 ocfs2_commit_trans(osb, handle);
2239
9517bac6 2240out:
3a307ffc
MF
2241 ocfs2_free_write_ctxt(wc);
2242
b1214e47 2243 if (data_ac) {
9517bac6 2244 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2245 data_ac = NULL;
2246 }
2247 if (meta_ac) {
9517bac6 2248 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2249 meta_ac = NULL;
2250 }
50308d81
TM
2251
2252 if (ret == -ENOSPC && try_free) {
2253 /*
2254 * Try to free some truncate log so that we can have enough
2255 * clusters to allocate.
2256 */
2257 try_free = 0;
2258
2259 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2260 if (ret1 == 1)
2261 goto try_again;
2262
2263 if (ret1 < 0)
2264 mlog_errno(ret1);
2265 }
2266
3a307ffc
MF
2267 return ret;
2268}
2269
b6af1bcd
NP
2270static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2271 loff_t pos, unsigned len, unsigned flags,
2272 struct page **pagep, void **fsdata)
607d44aa
MF
2273{
2274 int ret;
2275 struct buffer_head *di_bh = NULL;
2276 struct inode *inode = mapping->host;
2277
e63aecb6 2278 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2279 if (ret) {
2280 mlog_errno(ret);
2281 return ret;
2282 }
2283
2284 /*
2285 * Take alloc sem here to prevent concurrent lookups. That way
2286 * the mapping, zeroing and tree manipulation within
2287 * ocfs2_write() will be safe against ->readpage(). This
2288 * should also serve to lock out allocation from a shared
2289 * writeable region.
2290 */
2291 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2292
0378da0f 2293 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2294 fsdata, di_bh, NULL);
607d44aa
MF
2295 if (ret) {
2296 mlog_errno(ret);
c934a92d 2297 goto out_fail;
607d44aa
MF
2298 }
2299
2300 brelse(di_bh);
2301
2302 return 0;
2303
607d44aa
MF
2304out_fail:
2305 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2306
2307 brelse(di_bh);
e63aecb6 2308 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2309
2310 return ret;
2311}
2312
1afc32b9
MF
2313static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2314 unsigned len, unsigned *copied,
2315 struct ocfs2_dinode *di,
2316 struct ocfs2_write_ctxt *wc)
2317{
2318 void *kaddr;
2319
2320 if (unlikely(*copied < len)) {
2321 if (!PageUptodate(wc->w_target_page)) {
2322 *copied = 0;
2323 return;
2324 }
2325 }
2326
c4bc8dcb 2327 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2328 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2329 kunmap_atomic(kaddr);
1afc32b9 2330
9558156b
TM
2331 trace_ocfs2_write_end_inline(
2332 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2333 (unsigned long long)pos, *copied,
2334 le16_to_cpu(di->id2.i_data.id_count),
2335 le16_to_cpu(di->i_dyn_features));
2336}
2337
7307de80
MF
2338int ocfs2_write_end_nolock(struct address_space *mapping,
2339 loff_t pos, unsigned len, unsigned copied,
2340 struct page *page, void *fsdata)
3a307ffc
MF
2341{
2342 int i;
2343 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2344 struct inode *inode = mapping->host;
2345 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2346 struct ocfs2_write_ctxt *wc = fsdata;
2347 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2348 handle_t *handle = wc->w_handle;
2349 struct page *tmppage;
2350
1afc32b9
MF
2351 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2352 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2353 goto out_write_size;
2354 }
2355
3a307ffc
MF
2356 if (unlikely(copied < len)) {
2357 if (!PageUptodate(wc->w_target_page))
2358 copied = 0;
2359
2360 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2361 start+len);
2362 }
2363 flush_dcache_page(wc->w_target_page);
2364
2365 for(i = 0; i < wc->w_num_pages; i++) {
2366 tmppage = wc->w_pages[i];
2367
2368 if (tmppage == wc->w_target_page) {
2369 from = wc->w_target_from;
2370 to = wc->w_target_to;
2371
2372 BUG_ON(from > PAGE_CACHE_SIZE ||
2373 to > PAGE_CACHE_SIZE ||
2374 to < from);
2375 } else {
2376 /*
2377 * Pages adjacent to the target (if any) imply
2378 * a hole-filling write in which case we want
2379 * to flush their entire range.
2380 */
2381 from = 0;
2382 to = PAGE_CACHE_SIZE;
2383 }
2384
961cecbe 2385 if (page_has_buffers(tmppage)) {
53ef99ca 2386 if (ocfs2_should_order_data(inode))
2b4e30fb 2387 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2388 block_commit_write(tmppage, from, to);
2389 }
3a307ffc
MF
2390 }
2391
1afc32b9 2392out_write_size:
3a307ffc 2393 pos += copied;
f17c20dd 2394 if (pos > i_size_read(inode)) {
3a307ffc
MF
2395 i_size_write(inode, pos);
2396 mark_inode_dirty(inode);
2397 }
2398 inode->i_blocks = ocfs2_inode_sector_count(inode);
2399 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2400 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2401 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2402 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2403 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2404 ocfs2_journal_dirty(handle, wc->w_di_bh);
2405
136f49b9
JB
2406 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2407 * lock, or it will cause a deadlock since journal commit threads holds
2408 * this lock and will ask for the page lock when flushing the data.
2409 * put it here to preserve the unlock order.
2410 */
2411 ocfs2_unlock_pages(wc);
2412
3a307ffc 2413 ocfs2_commit_trans(osb, handle);
59a5e416 2414
b27b7cbc
MF
2415 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2416
136f49b9
JB
2417 brelse(wc->w_di_bh);
2418 kfree(wc);
607d44aa
MF
2419
2420 return copied;
2421}
2422
b6af1bcd
NP
2423static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2424 loff_t pos, unsigned len, unsigned copied,
2425 struct page *page, void *fsdata)
607d44aa
MF
2426{
2427 int ret;
2428 struct inode *inode = mapping->host;
2429
2430 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2431
3a307ffc 2432 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2433 ocfs2_inode_unlock(inode, 1);
9517bac6 2434
607d44aa 2435 return ret;
9517bac6
MF
2436}
2437
f5e54d6e 2438const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2439 .readpage = ocfs2_readpage,
2440 .readpages = ocfs2_readpages,
2441 .writepage = ocfs2_writepage,
2442 .write_begin = ocfs2_write_begin,
2443 .write_end = ocfs2_write_end,
2444 .bmap = ocfs2_bmap,
1fca3a05 2445 .direct_IO = ocfs2_direct_IO,
41ecc345 2446 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2447 .releasepage = ocfs2_releasepage,
2448 .migratepage = buffer_migrate_page,
2449 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2450 .error_remove_page = generic_error_remove_page,
ccd979bd 2451};
This page took 1.082979 seconds and 5 git commands to generate.