Merge branch 'for-2.6.29' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
ccd979bd
MF
30
31#define MLOG_MASK_PREFIX ML_FILE_IO
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
46
47#include "buffer_head_io.h"
48
49static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
50 struct buffer_head *bh_result, int create)
51{
52 int err = -EIO;
53 int status;
54 struct ocfs2_dinode *fe = NULL;
55 struct buffer_head *bh = NULL;
56 struct buffer_head *buffer_cache_bh = NULL;
57 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58 void *kaddr;
59
60 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
61 (unsigned long long)iblock, bh_result, create);
62
63 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64
65 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
66 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
67 (unsigned long long)iblock);
68 goto bail;
69 }
70
0fcaa56a 71 status = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &bh);
ccd979bd
MF
72 if (status < 0) {
73 mlog_errno(status);
74 goto bail;
75 }
76 fe = (struct ocfs2_dinode *) bh->b_data;
77
78 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053 79 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
1ca1a111
MF
80 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
81 fe->i_signature);
ccd979bd
MF
82 goto bail;
83 }
84
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 mlog(ML_ERROR, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock);
89 goto bail;
90 }
91
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96 iblock;
97 buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 if (!buffer_cache_bh) {
99 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100 goto bail;
101 }
102
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh)
108 && ocfs2_inode_is_new(inode)) {
109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110 if (!kaddr) {
111 mlog(ML_ERROR, "couldn't kmap!\n");
112 goto bail;
113 }
114 memcpy(kaddr + (bh_result->b_size * iblock),
115 buffer_cache_bh->b_data,
116 bh_result->b_size);
117 kunmap_atomic(kaddr, KM_USER0);
118 set_buffer_uptodate(bh_result);
119 }
120 brelse(buffer_cache_bh);
121 }
122
123 map_bh(bh_result, inode->i_sb,
124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125
126 err = 0;
127
128bail:
a81cb88b 129 brelse(bh);
ccd979bd
MF
130
131 mlog_exit(err);
132 return err;
133}
134
135static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create)
137{
138 int err = 0;
49cb8d2d 139 unsigned int ext_flags;
628a24f5
MF
140 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
141 u64 p_blkno, count, past_eof;
25baf2da 142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
143
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145 (unsigned long long)iblock, bh_result, create);
146
147 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149 inode, inode->i_ino);
150
151 if (S_ISLNK(inode->i_mode)) {
152 /* this always does I/O for some reason. */
153 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
154 goto bail;
155 }
156
628a24f5 157 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 158 &ext_flags);
ccd979bd
MF
159 if (err) {
160 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
161 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162 (unsigned long long)p_blkno);
ccd979bd
MF
163 goto bail;
164 }
165
628a24f5
MF
166 if (max_blocks < count)
167 count = max_blocks;
168
25baf2da
MF
169 /*
170 * ocfs2 never allocates in this function - the only time we
171 * need to use BH_New is when we're extending i_size on a file
172 * system which doesn't support holes, in which case BH_New
173 * allows block_prepare_write() to zero.
c0420ad2
CL
174 *
175 * If we see this on a sparse file system, then a truncate has
176 * raced us and removed the cluster. In this case, we clear
177 * the buffers dirty and uptodate bits and let the buffer code
178 * ignore it as a hole.
25baf2da 179 */
c0420ad2
CL
180 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
181 clear_buffer_dirty(bh_result);
182 clear_buffer_uptodate(bh_result);
183 goto bail;
184 }
25baf2da 185
49cb8d2d
MF
186 /* Treat the unwritten extent as a hole for zeroing purposes. */
187 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
188 map_bh(bh_result, inode->i_sb, p_blkno);
189
628a24f5
MF
190 bh_result->b_size = count << inode->i_blkbits;
191
25baf2da
MF
192 if (!ocfs2_sparse_alloc(osb)) {
193 if (p_blkno == 0) {
194 err = -EIO;
195 mlog(ML_ERROR,
196 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
197 (unsigned long long)iblock,
198 (unsigned long long)p_blkno,
199 (unsigned long long)OCFS2_I(inode)->ip_blkno);
200 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
201 dump_stack();
202 }
ccd979bd 203
25baf2da
MF
204 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
205 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
206 (unsigned long long)past_eof);
ccd979bd 207
25baf2da
MF
208 if (create && (iblock >= past_eof))
209 set_buffer_new(bh_result);
210 }
ccd979bd
MF
211
212bail:
213 if (err < 0)
214 err = -EIO;
215
216 mlog_exit(err);
217 return err;
218}
219
1afc32b9
MF
220int ocfs2_read_inline_data(struct inode *inode, struct page *page,
221 struct buffer_head *di_bh)
6798d35a
MF
222{
223 void *kaddr;
d2849fb2 224 loff_t size;
6798d35a
MF
225 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
226
227 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
228 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
229 (unsigned long long)OCFS2_I(inode)->ip_blkno);
230 return -EROFS;
231 }
232
233 size = i_size_read(inode);
234
235 if (size > PAGE_CACHE_SIZE ||
236 size > ocfs2_max_inline_data(inode->i_sb)) {
237 ocfs2_error(inode->i_sb,
d2849fb2
JK
238 "Inode %llu has with inline data has bad size: %Lu",
239 (unsigned long long)OCFS2_I(inode)->ip_blkno,
240 (unsigned long long)size);
6798d35a
MF
241 return -EROFS;
242 }
243
244 kaddr = kmap_atomic(page, KM_USER0);
245 if (size)
246 memcpy(kaddr, di->id2.i_data.id_data, size);
247 /* Clear the remaining part of the page */
248 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
249 flush_dcache_page(page);
250 kunmap_atomic(kaddr, KM_USER0);
251
252 SetPageUptodate(page);
253
254 return 0;
255}
256
257static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
258{
259 int ret;
260 struct buffer_head *di_bh = NULL;
6798d35a
MF
261
262 BUG_ON(!PageLocked(page));
86c838b0 263 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 264
0fcaa56a 265 ret = ocfs2_read_block(inode, OCFS2_I(inode)->ip_blkno, &di_bh);
6798d35a
MF
266 if (ret) {
267 mlog_errno(ret);
268 goto out;
269 }
270
271 ret = ocfs2_read_inline_data(inode, page, di_bh);
272out:
273 unlock_page(page);
274
275 brelse(di_bh);
276 return ret;
277}
278
ccd979bd
MF
279static int ocfs2_readpage(struct file *file, struct page *page)
280{
281 struct inode *inode = page->mapping->host;
6798d35a 282 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
283 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
284 int ret, unlock = 1;
285
286 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
287
e63aecb6 288 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
289 if (ret != 0) {
290 if (ret == AOP_TRUNCATED_PAGE)
291 unlock = 0;
292 mlog_errno(ret);
293 goto out;
294 }
295
6798d35a 296 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
e9dfc0b2 297 ret = AOP_TRUNCATED_PAGE;
e63aecb6 298 goto out_inode_unlock;
e9dfc0b2 299 }
ccd979bd
MF
300
301 /*
302 * i_size might have just been updated as we grabed the meta lock. We
303 * might now be discovering a truncate that hit on another node.
304 * block_read_full_page->get_block freaks out if it is asked to read
305 * beyond the end of a file, so we check here. Callers
54cb8821 306 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
307 * and notice that the page they just read isn't needed.
308 *
309 * XXX sys_readahead() seems to get that wrong?
310 */
311 if (start >= i_size_read(inode)) {
eebd2aa3 312 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
313 SetPageUptodate(page);
314 ret = 0;
315 goto out_alloc;
316 }
317
6798d35a
MF
318 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
319 ret = ocfs2_readpage_inline(inode, page);
320 else
321 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
322 unlock = 0;
323
ccd979bd
MF
324out_alloc:
325 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
326out_inode_unlock:
327 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
328out:
329 if (unlock)
330 unlock_page(page);
331 mlog_exit(ret);
332 return ret;
333}
334
628a24f5
MF
335/*
336 * This is used only for read-ahead. Failures or difficult to handle
337 * situations are safe to ignore.
338 *
339 * Right now, we don't bother with BH_Boundary - in-inode extent lists
340 * are quite large (243 extents on 4k blocks), so most inodes don't
341 * grow out to a tree. If need be, detecting boundary extents could
342 * trivially be added in a future version of ocfs2_get_block().
343 */
344static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
345 struct list_head *pages, unsigned nr_pages)
346{
347 int ret, err = -EIO;
348 struct inode *inode = mapping->host;
349 struct ocfs2_inode_info *oi = OCFS2_I(inode);
350 loff_t start;
351 struct page *last;
352
353 /*
354 * Use the nonblocking flag for the dlm code to avoid page
355 * lock inversion, but don't bother with retrying.
356 */
357 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
358 if (ret)
359 return err;
360
361 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
362 ocfs2_inode_unlock(inode, 0);
363 return err;
364 }
365
366 /*
367 * Don't bother with inline-data. There isn't anything
368 * to read-ahead in that case anyway...
369 */
370 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
371 goto out_unlock;
372
373 /*
374 * Check whether a remote node truncated this file - we just
375 * drop out in that case as it's not worth handling here.
376 */
377 last = list_entry(pages->prev, struct page, lru);
378 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
379 if (start >= i_size_read(inode))
380 goto out_unlock;
381
382 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
383
384out_unlock:
385 up_read(&oi->ip_alloc_sem);
386 ocfs2_inode_unlock(inode, 0);
387
388 return err;
389}
390
ccd979bd
MF
391/* Note: Because we don't support holes, our allocation has
392 * already happened (allocation writes zeros to the file data)
393 * so we don't have to worry about ordered writes in
394 * ocfs2_writepage.
395 *
396 * ->writepage is called during the process of invalidating the page cache
397 * during blocked lock processing. It can't block on any cluster locks
398 * to during block mapping. It's relying on the fact that the block
399 * mapping can't have disappeared under the dirty pages that it is
400 * being asked to write back.
401 */
402static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
403{
404 int ret;
405
406 mlog_entry("(0x%p)\n", page);
407
408 ret = block_write_full_page(page, ocfs2_get_block, wbc);
409
410 mlog_exit(ret);
411
412 return ret;
413}
414
5069120b
MF
415/*
416 * This is called from ocfs2_write_zero_page() which has handled it's
417 * own cluster locking and has ensured allocation exists for those
418 * blocks to be written.
419 */
53013cba
MF
420int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
421 unsigned from, unsigned to)
422{
423 int ret;
424
53013cba
MF
425 ret = block_prepare_write(page, from, to, ocfs2_get_block);
426
53013cba
MF
427 return ret;
428}
429
ccd979bd
MF
430/* Taken from ext3. We don't necessarily need the full blown
431 * functionality yet, but IMHO it's better to cut and paste the whole
432 * thing so we can avoid introducing our own bugs (and easily pick up
433 * their fixes when they happen) --Mark */
60b11392
MF
434int walk_page_buffers( handle_t *handle,
435 struct buffer_head *head,
436 unsigned from,
437 unsigned to,
438 int *partial,
439 int (*fn)( handle_t *handle,
440 struct buffer_head *bh))
ccd979bd
MF
441{
442 struct buffer_head *bh;
443 unsigned block_start, block_end;
444 unsigned blocksize = head->b_size;
445 int err, ret = 0;
446 struct buffer_head *next;
447
448 for ( bh = head, block_start = 0;
449 ret == 0 && (bh != head || !block_start);
450 block_start = block_end, bh = next)
451 {
452 next = bh->b_this_page;
453 block_end = block_start + blocksize;
454 if (block_end <= from || block_start >= to) {
455 if (partial && !buffer_uptodate(bh))
456 *partial = 1;
457 continue;
458 }
459 err = (*fn)(handle, bh);
460 if (!ret)
461 ret = err;
462 }
463 return ret;
464}
465
1fabe148 466handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
467 struct page *page,
468 unsigned from,
469 unsigned to)
470{
471 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
58dadcdb 472 handle_t *handle;
ccd979bd
MF
473 int ret = 0;
474
65eff9cc 475 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
58dadcdb 476 if (IS_ERR(handle)) {
ccd979bd
MF
477 ret = -ENOMEM;
478 mlog_errno(ret);
479 goto out;
480 }
481
482 if (ocfs2_should_order_data(inode)) {
2b4e30fb
JB
483 ret = ocfs2_jbd2_file_inode(handle, inode);
484#ifdef CONFIG_OCFS2_COMPAT_JBD
1fabe148 485 ret = walk_page_buffers(handle,
ccd979bd
MF
486 page_buffers(page),
487 from, to, NULL,
488 ocfs2_journal_dirty_data);
2b4e30fb
JB
489#endif
490 if (ret < 0)
ccd979bd
MF
491 mlog_errno(ret);
492 }
493out:
494 if (ret) {
58dadcdb 495 if (!IS_ERR(handle))
02dc1af4 496 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
497 handle = ERR_PTR(ret);
498 }
499 return handle;
500}
501
ccd979bd
MF
502static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
503{
504 sector_t status;
505 u64 p_blkno = 0;
506 int err = 0;
507 struct inode *inode = mapping->host;
508
509 mlog_entry("(block = %llu)\n", (unsigned long long)block);
510
511 /* We don't need to lock journal system files, since they aren't
512 * accessed concurrently from multiple nodes.
513 */
514 if (!INODE_JOURNAL(inode)) {
e63aecb6 515 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
516 if (err) {
517 if (err != -ENOENT)
518 mlog_errno(err);
519 goto bail;
520 }
521 down_read(&OCFS2_I(inode)->ip_alloc_sem);
522 }
523
6798d35a
MF
524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
525 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
526 NULL);
ccd979bd
MF
527
528 if (!INODE_JOURNAL(inode)) {
529 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 530 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
531 }
532
533 if (err) {
534 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
535 (unsigned long long)block);
536 mlog_errno(err);
537 goto bail;
538 }
539
ccd979bd
MF
540bail:
541 status = err ? 0 : p_blkno;
542
543 mlog_exit((int)status);
544
545 return status;
546}
547
548/*
549 * TODO: Make this into a generic get_blocks function.
550 *
551 * From do_direct_io in direct-io.c:
552 * "So what we do is to permit the ->get_blocks function to populate
553 * bh.b_size with the size of IO which is permitted at this offset and
554 * this i_blkbits."
555 *
556 * This function is called directly from get_more_blocks in direct-io.c.
557 *
558 * called like this: dio->get_blocks(dio->inode, fs_startblk,
559 * fs_count, map_bh, dio->rw == WRITE);
560 */
561static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
562 struct buffer_head *bh_result, int create)
563{
564 int ret;
4f902c37 565 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 566 unsigned int ext_flags;
184d7d20 567 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 568 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 569
ccd979bd
MF
570 /* This function won't even be called if the request isn't all
571 * nicely aligned and of the right size, so there's no need
572 * for us to check any of that. */
573
25baf2da 574 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
575
576 /*
577 * Any write past EOF is not allowed because we'd be extending.
578 */
579 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
580 ret = -EIO;
581 goto bail;
582 }
ccd979bd
MF
583
584 /* This figures out the size of the next contiguous block, and
585 * our logical offset */
363041a5 586 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 587 &contig_blocks, &ext_flags);
ccd979bd
MF
588 if (ret) {
589 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
590 (unsigned long long)iblock);
591 ret = -EIO;
592 goto bail;
593 }
594
0e116227 595 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
25baf2da
MF
596 ocfs2_error(inode->i_sb,
597 "Inode %llu has a hole at block %llu\n",
598 (unsigned long long)OCFS2_I(inode)->ip_blkno,
599 (unsigned long long)iblock);
600 ret = -EROFS;
601 goto bail;
602 }
603
604 /*
605 * get_more_blocks() expects us to describe a hole by clearing
606 * the mapped bit on bh_result().
49cb8d2d
MF
607 *
608 * Consider an unwritten extent as a hole.
25baf2da 609 */
49cb8d2d 610 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
611 map_bh(bh_result, inode->i_sb, p_blkno);
612 else {
613 /*
614 * ocfs2_prepare_inode_for_write() should have caught
615 * the case where we'd be filling a hole and triggered
616 * a buffered write instead.
617 */
618 if (create) {
619 ret = -EIO;
620 mlog_errno(ret);
621 goto bail;
622 }
623
624 clear_buffer_mapped(bh_result);
625 }
ccd979bd
MF
626
627 /* make sure we don't map more than max_blocks blocks here as
628 that's all the kernel will handle at this point. */
629 if (max_blocks < contig_blocks)
630 contig_blocks = max_blocks;
631 bh_result->b_size = contig_blocks << blocksize_bits;
632bail:
633 return ret;
634}
635
636/*
637 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
638 * particularly interested in the aio/dio case. Like the core uses
639 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
640 * truncation on another.
641 */
642static void ocfs2_dio_end_io(struct kiocb *iocb,
643 loff_t offset,
644 ssize_t bytes,
645 void *private)
646{
d28c9174 647 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
7cdfc3a1 648 int level;
ccd979bd
MF
649
650 /* this io's submitter should not have unlocked this before we could */
651 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 652
ccd979bd 653 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
654
655 level = ocfs2_iocb_rw_locked_level(iocb);
656 if (!level)
657 up_read(&inode->i_alloc_sem);
658 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
659}
660
03f981cf
JB
661/*
662 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
663 * from ext3. PageChecked() bits have been removed as OCFS2 does not
664 * do journalled data.
665 */
666static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
667{
668 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
669
2b4e30fb 670 jbd2_journal_invalidatepage(journal, page, offset);
03f981cf
JB
671}
672
673static int ocfs2_releasepage(struct page *page, gfp_t wait)
674{
675 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
676
677 if (!page_has_buffers(page))
678 return 0;
2b4e30fb 679 return jbd2_journal_try_to_free_buffers(journal, page, wait);
03f981cf
JB
680}
681
ccd979bd
MF
682static ssize_t ocfs2_direct_IO(int rw,
683 struct kiocb *iocb,
684 const struct iovec *iov,
685 loff_t offset,
686 unsigned long nr_segs)
687{
688 struct file *file = iocb->ki_filp;
d28c9174 689 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
690 int ret;
691
692 mlog_entry_void();
53013cba 693
6798d35a
MF
694 /*
695 * Fallback to buffered I/O if we see an inode without
696 * extents.
697 */
698 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
699 return 0;
700
ccd979bd
MF
701 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
702 inode->i_sb->s_bdev, iov, offset,
703 nr_segs,
704 ocfs2_direct_IO_get_blocks,
705 ocfs2_dio_end_io);
c934a92d 706
ccd979bd
MF
707 mlog_exit(ret);
708 return ret;
709}
710
9517bac6
MF
711static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
712 u32 cpos,
713 unsigned int *start,
714 unsigned int *end)
715{
716 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
717
718 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
719 unsigned int cpp;
720
721 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
722
723 cluster_start = cpos % cpp;
724 cluster_start = cluster_start << osb->s_clustersize_bits;
725
726 cluster_end = cluster_start + osb->s_clustersize;
727 }
728
729 BUG_ON(cluster_start > PAGE_SIZE);
730 BUG_ON(cluster_end > PAGE_SIZE);
731
732 if (start)
733 *start = cluster_start;
734 if (end)
735 *end = cluster_end;
736}
737
738/*
739 * 'from' and 'to' are the region in the page to avoid zeroing.
740 *
741 * If pagesize > clustersize, this function will avoid zeroing outside
742 * of the cluster boundary.
743 *
744 * from == to == 0 is code for "zero the entire cluster region"
745 */
746static void ocfs2_clear_page_regions(struct page *page,
747 struct ocfs2_super *osb, u32 cpos,
748 unsigned from, unsigned to)
749{
750 void *kaddr;
751 unsigned int cluster_start, cluster_end;
752
753 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
754
755 kaddr = kmap_atomic(page, KM_USER0);
756
757 if (from || to) {
758 if (from > cluster_start)
759 memset(kaddr + cluster_start, 0, from - cluster_start);
760 if (to < cluster_end)
761 memset(kaddr + to, 0, cluster_end - to);
762 } else {
763 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
764 }
765
766 kunmap_atomic(kaddr, KM_USER0);
767}
768
4e9563fd
MF
769/*
770 * Nonsparse file systems fully allocate before we get to the write
771 * code. This prevents ocfs2_write() from tagging the write as an
772 * allocating one, which means ocfs2_map_page_blocks() might try to
773 * read-in the blocks at the tail of our file. Avoid reading them by
774 * testing i_size against each block offset.
775 */
776static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
777 unsigned int block_start)
778{
779 u64 offset = page_offset(page) + block_start;
780
781 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
782 return 1;
783
784 if (i_size_read(inode) > offset)
785 return 1;
786
787 return 0;
788}
789
9517bac6
MF
790/*
791 * Some of this taken from block_prepare_write(). We already have our
792 * mapping by now though, and the entire write will be allocating or
793 * it won't, so not much need to use BH_New.
794 *
795 * This will also skip zeroing, which is handled externally.
796 */
60b11392
MF
797int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
798 struct inode *inode, unsigned int from,
799 unsigned int to, int new)
9517bac6
MF
800{
801 int ret = 0;
802 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
803 unsigned int block_end, block_start;
804 unsigned int bsize = 1 << inode->i_blkbits;
805
806 if (!page_has_buffers(page))
807 create_empty_buffers(page, bsize, 0);
808
809 head = page_buffers(page);
810 for (bh = head, block_start = 0; bh != head || !block_start;
811 bh = bh->b_this_page, block_start += bsize) {
812 block_end = block_start + bsize;
813
3a307ffc
MF
814 clear_buffer_new(bh);
815
9517bac6
MF
816 /*
817 * Ignore blocks outside of our i/o range -
818 * they may belong to unallocated clusters.
819 */
60b11392 820 if (block_start >= to || block_end <= from) {
9517bac6
MF
821 if (PageUptodate(page))
822 set_buffer_uptodate(bh);
823 continue;
824 }
825
826 /*
827 * For an allocating write with cluster size >= page
828 * size, we always write the entire page.
829 */
3a307ffc
MF
830 if (new)
831 set_buffer_new(bh);
9517bac6
MF
832
833 if (!buffer_mapped(bh)) {
834 map_bh(bh, inode->i_sb, *p_blkno);
835 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
836 }
837
838 if (PageUptodate(page)) {
839 if (!buffer_uptodate(bh))
840 set_buffer_uptodate(bh);
841 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 842 !buffer_new(bh) &&
4e9563fd 843 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 844 (block_start < from || block_end > to)) {
9517bac6
MF
845 ll_rw_block(READ, 1, &bh);
846 *wait_bh++=bh;
847 }
848
849 *p_blkno = *p_blkno + 1;
850 }
851
852 /*
853 * If we issued read requests - let them complete.
854 */
855 while(wait_bh > wait) {
856 wait_on_buffer(*--wait_bh);
857 if (!buffer_uptodate(*wait_bh))
858 ret = -EIO;
859 }
860
861 if (ret == 0 || !new)
862 return ret;
863
864 /*
865 * If we get -EIO above, zero out any newly allocated blocks
866 * to avoid exposing stale data.
867 */
868 bh = head;
869 block_start = 0;
870 do {
9517bac6
MF
871 block_end = block_start + bsize;
872 if (block_end <= from)
873 goto next_bh;
874 if (block_start >= to)
875 break;
876
eebd2aa3 877 zero_user(page, block_start, bh->b_size);
9517bac6
MF
878 set_buffer_uptodate(bh);
879 mark_buffer_dirty(bh);
880
881next_bh:
882 block_start = block_end;
883 bh = bh->b_this_page;
884 } while (bh != head);
885
886 return ret;
887}
888
3a307ffc
MF
889#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
890#define OCFS2_MAX_CTXT_PAGES 1
891#else
892#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
893#endif
894
895#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
896
6af67d82 897/*
3a307ffc 898 * Describe the state of a single cluster to be written to.
6af67d82 899 */
3a307ffc
MF
900struct ocfs2_write_cluster_desc {
901 u32 c_cpos;
902 u32 c_phys;
903 /*
904 * Give this a unique field because c_phys eventually gets
905 * filled.
906 */
907 unsigned c_new;
b27b7cbc 908 unsigned c_unwritten;
3a307ffc 909};
6af67d82 910
b27b7cbc
MF
911static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
912{
913 return d->c_new || d->c_unwritten;
914}
915
3a307ffc
MF
916struct ocfs2_write_ctxt {
917 /* Logical cluster position / len of write */
918 u32 w_cpos;
919 u32 w_clen;
6af67d82 920
3a307ffc 921 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 922
3a307ffc
MF
923 /*
924 * This is true if page_size > cluster_size.
925 *
926 * It triggers a set of special cases during write which might
927 * have to deal with allocating writes to partial pages.
928 */
929 unsigned int w_large_pages;
6af67d82 930
3a307ffc
MF
931 /*
932 * Pages involved in this write.
933 *
934 * w_target_page is the page being written to by the user.
935 *
936 * w_pages is an array of pages which always contains
937 * w_target_page, and in the case of an allocating write with
938 * page_size < cluster size, it will contain zero'd and mapped
939 * pages adjacent to w_target_page which need to be written
940 * out in so that future reads from that region will get
941 * zero's.
942 */
943 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
944 unsigned int w_num_pages;
945 struct page *w_target_page;
eeb47d12 946
3a307ffc
MF
947 /*
948 * ocfs2_write_end() uses this to know what the real range to
949 * write in the target should be.
950 */
951 unsigned int w_target_from;
952 unsigned int w_target_to;
953
954 /*
955 * We could use journal_current_handle() but this is cleaner,
956 * IMHO -Mark
957 */
958 handle_t *w_handle;
959
960 struct buffer_head *w_di_bh;
b27b7cbc
MF
961
962 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
963};
964
1d410a6e 965void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
966{
967 int i;
968
1d410a6e
MF
969 for(i = 0; i < num_pages; i++) {
970 if (pages[i]) {
971 unlock_page(pages[i]);
972 mark_page_accessed(pages[i]);
973 page_cache_release(pages[i]);
974 }
6af67d82 975 }
1d410a6e
MF
976}
977
978static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
979{
980 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 981
3a307ffc
MF
982 brelse(wc->w_di_bh);
983 kfree(wc);
984}
985
986static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
987 struct ocfs2_super *osb, loff_t pos,
607d44aa 988 unsigned len, struct buffer_head *di_bh)
3a307ffc 989{
30b8548f 990 u32 cend;
3a307ffc
MF
991 struct ocfs2_write_ctxt *wc;
992
993 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
994 if (!wc)
995 return -ENOMEM;
6af67d82 996
3a307ffc 997 wc->w_cpos = pos >> osb->s_clustersize_bits;
30b8548f 998 cend = (pos + len - 1) >> osb->s_clustersize_bits;
999 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1000 get_bh(di_bh);
1001 wc->w_di_bh = di_bh;
6af67d82 1002
3a307ffc
MF
1003 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1004 wc->w_large_pages = 1;
1005 else
1006 wc->w_large_pages = 0;
1007
b27b7cbc
MF
1008 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1009
3a307ffc 1010 *wcp = wc;
6af67d82 1011
3a307ffc 1012 return 0;
6af67d82
MF
1013}
1014
9517bac6 1015/*
3a307ffc
MF
1016 * If a page has any new buffers, zero them out here, and mark them uptodate
1017 * and dirty so they'll be written out (in order to prevent uninitialised
1018 * block data from leaking). And clear the new bit.
9517bac6 1019 */
3a307ffc 1020static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1021{
3a307ffc
MF
1022 unsigned int block_start, block_end;
1023 struct buffer_head *head, *bh;
9517bac6 1024
3a307ffc
MF
1025 BUG_ON(!PageLocked(page));
1026 if (!page_has_buffers(page))
1027 return;
9517bac6 1028
3a307ffc
MF
1029 bh = head = page_buffers(page);
1030 block_start = 0;
1031 do {
1032 block_end = block_start + bh->b_size;
1033
1034 if (buffer_new(bh)) {
1035 if (block_end > from && block_start < to) {
1036 if (!PageUptodate(page)) {
1037 unsigned start, end;
3a307ffc
MF
1038
1039 start = max(from, block_start);
1040 end = min(to, block_end);
1041
eebd2aa3 1042 zero_user_segment(page, start, end);
3a307ffc
MF
1043 set_buffer_uptodate(bh);
1044 }
1045
1046 clear_buffer_new(bh);
1047 mark_buffer_dirty(bh);
1048 }
1049 }
9517bac6 1050
3a307ffc
MF
1051 block_start = block_end;
1052 bh = bh->b_this_page;
1053 } while (bh != head);
1054}
1055
1056/*
1057 * Only called when we have a failure during allocating write to write
1058 * zero's to the newly allocated region.
1059 */
1060static void ocfs2_write_failure(struct inode *inode,
1061 struct ocfs2_write_ctxt *wc,
1062 loff_t user_pos, unsigned user_len)
1063{
1064 int i;
5c26a7b7
MF
1065 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1066 to = user_pos + user_len;
3a307ffc
MF
1067 struct page *tmppage;
1068
5c26a7b7 1069 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1070
3a307ffc
MF
1071 for(i = 0; i < wc->w_num_pages; i++) {
1072 tmppage = wc->w_pages[i];
9517bac6 1073
961cecbe 1074 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1075 if (ocfs2_should_order_data(inode)) {
1076 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1077#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1078 walk_page_buffers(wc->w_handle,
1079 page_buffers(tmppage),
1080 from, to, NULL,
1081 ocfs2_journal_dirty_data);
2b4e30fb
JB
1082#endif
1083 }
961cecbe
SM
1084
1085 block_commit_write(tmppage, from, to);
1086 }
9517bac6 1087 }
9517bac6
MF
1088}
1089
3a307ffc
MF
1090static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1091 struct ocfs2_write_ctxt *wc,
1092 struct page *page, u32 cpos,
1093 loff_t user_pos, unsigned user_len,
1094 int new)
9517bac6 1095{
3a307ffc
MF
1096 int ret;
1097 unsigned int map_from = 0, map_to = 0;
9517bac6 1098 unsigned int cluster_start, cluster_end;
3a307ffc 1099 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1100
3a307ffc 1101 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1102 &cluster_start, &cluster_end);
1103
3a307ffc
MF
1104 if (page == wc->w_target_page) {
1105 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1106 map_to = map_from + user_len;
1107
1108 if (new)
1109 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1110 cluster_start, cluster_end,
1111 new);
1112 else
1113 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1114 map_from, map_to, new);
1115 if (ret) {
9517bac6
MF
1116 mlog_errno(ret);
1117 goto out;
1118 }
1119
3a307ffc
MF
1120 user_data_from = map_from;
1121 user_data_to = map_to;
9517bac6 1122 if (new) {
3a307ffc
MF
1123 map_from = cluster_start;
1124 map_to = cluster_end;
9517bac6
MF
1125 }
1126 } else {
1127 /*
1128 * If we haven't allocated the new page yet, we
1129 * shouldn't be writing it out without copying user
1130 * data. This is likely a math error from the caller.
1131 */
1132 BUG_ON(!new);
1133
3a307ffc
MF
1134 map_from = cluster_start;
1135 map_to = cluster_end;
9517bac6
MF
1136
1137 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1138 cluster_start, cluster_end, new);
9517bac6
MF
1139 if (ret) {
1140 mlog_errno(ret);
1141 goto out;
1142 }
1143 }
1144
1145 /*
1146 * Parts of newly allocated pages need to be zero'd.
1147 *
1148 * Above, we have also rewritten 'to' and 'from' - as far as
1149 * the rest of the function is concerned, the entire cluster
1150 * range inside of a page needs to be written.
1151 *
1152 * We can skip this if the page is up to date - it's already
1153 * been zero'd from being read in as a hole.
1154 */
1155 if (new && !PageUptodate(page))
1156 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1157 cpos, user_data_from, user_data_to);
9517bac6
MF
1158
1159 flush_dcache_page(page);
1160
9517bac6 1161out:
3a307ffc 1162 return ret;
9517bac6
MF
1163}
1164
1165/*
3a307ffc 1166 * This function will only grab one clusters worth of pages.
9517bac6 1167 */
3a307ffc
MF
1168static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1169 struct ocfs2_write_ctxt *wc,
7307de80
MF
1170 u32 cpos, loff_t user_pos, int new,
1171 struct page *mmap_page)
9517bac6 1172{
3a307ffc
MF
1173 int ret = 0, i;
1174 unsigned long start, target_index, index;
9517bac6 1175 struct inode *inode = mapping->host;
9517bac6 1176
3a307ffc 1177 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1178
1179 /*
1180 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1181 * non allocating write, we just change the one
1182 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1183 */
9517bac6 1184 if (new) {
3a307ffc
MF
1185 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1186 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
9517bac6 1187 } else {
3a307ffc
MF
1188 wc->w_num_pages = 1;
1189 start = target_index;
9517bac6
MF
1190 }
1191
3a307ffc 1192 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1193 index = start + i;
1194
7307de80
MF
1195 if (index == target_index && mmap_page) {
1196 /*
1197 * ocfs2_pagemkwrite() is a little different
1198 * and wants us to directly use the page
1199 * passed in.
1200 */
1201 lock_page(mmap_page);
1202
1203 if (mmap_page->mapping != mapping) {
1204 unlock_page(mmap_page);
1205 /*
1206 * Sanity check - the locking in
1207 * ocfs2_pagemkwrite() should ensure
1208 * that this code doesn't trigger.
1209 */
1210 ret = -EINVAL;
1211 mlog_errno(ret);
1212 goto out;
1213 }
1214
1215 page_cache_get(mmap_page);
1216 wc->w_pages[i] = mmap_page;
1217 } else {
1218 wc->w_pages[i] = find_or_create_page(mapping, index,
1219 GFP_NOFS);
1220 if (!wc->w_pages[i]) {
1221 ret = -ENOMEM;
1222 mlog_errno(ret);
1223 goto out;
1224 }
9517bac6 1225 }
3a307ffc
MF
1226
1227 if (index == target_index)
1228 wc->w_target_page = wc->w_pages[i];
9517bac6 1229 }
3a307ffc
MF
1230out:
1231 return ret;
1232}
1233
1234/*
1235 * Prepare a single cluster for write one cluster into the file.
1236 */
1237static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc
MF
1238 u32 phys, unsigned int unwritten,
1239 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1240 struct ocfs2_alloc_context *meta_ac,
1241 struct ocfs2_write_ctxt *wc, u32 cpos,
1242 loff_t user_pos, unsigned user_len)
1243{
b27b7cbc 1244 int ret, i, new, should_zero = 0;
3a307ffc
MF
1245 u64 v_blkno, p_blkno;
1246 struct inode *inode = mapping->host;
f99b9b7c 1247 struct ocfs2_extent_tree et;
3a307ffc
MF
1248
1249 new = phys == 0 ? 1 : 0;
b27b7cbc
MF
1250 if (new || unwritten)
1251 should_zero = 1;
9517bac6
MF
1252
1253 if (new) {
3a307ffc
MF
1254 u32 tmp_pos;
1255
9517bac6
MF
1256 /*
1257 * This is safe to call with the page locks - it won't take
1258 * any additional semaphores or cluster locks.
1259 */
3a307ffc 1260 tmp_pos = cpos;
0eb8d47e
TM
1261 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1262 &tmp_pos, 1, 0, wc->w_di_bh,
1263 wc->w_handle, data_ac,
1264 meta_ac, NULL);
9517bac6
MF
1265 /*
1266 * This shouldn't happen because we must have already
1267 * calculated the correct meta data allocation required. The
1268 * internal tree allocation code should know how to increase
1269 * transaction credits itself.
1270 *
1271 * If need be, we could handle -EAGAIN for a
1272 * RESTART_TRANS here.
1273 */
1274 mlog_bug_on_msg(ret == -EAGAIN,
1275 "Inode %llu: EAGAIN return during allocation.\n",
1276 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1277 if (ret < 0) {
1278 mlog_errno(ret);
1279 goto out;
1280 }
b27b7cbc 1281 } else if (unwritten) {
8d6220d6 1282 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1283 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1284 wc->w_handle, cpos, 1, phys,
f99b9b7c 1285 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1286 if (ret < 0) {
1287 mlog_errno(ret);
1288 goto out;
1289 }
1290 }
3a307ffc 1291
b27b7cbc 1292 if (should_zero)
3a307ffc 1293 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1294 else
3a307ffc 1295 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1296
3a307ffc
MF
1297 /*
1298 * The only reason this should fail is due to an inability to
1299 * find the extent added.
1300 */
49cb8d2d
MF
1301 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1302 NULL);
9517bac6 1303 if (ret < 0) {
3a307ffc
MF
1304 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1305 "at logical block %llu",
1306 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1307 (unsigned long long)v_blkno);
9517bac6
MF
1308 goto out;
1309 }
1310
1311 BUG_ON(p_blkno == 0);
1312
3a307ffc
MF
1313 for(i = 0; i < wc->w_num_pages; i++) {
1314 int tmpret;
9517bac6 1315
3a307ffc
MF
1316 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1317 wc->w_pages[i], cpos,
b27b7cbc
MF
1318 user_pos, user_len,
1319 should_zero);
3a307ffc
MF
1320 if (tmpret) {
1321 mlog_errno(tmpret);
1322 if (ret == 0)
1323 tmpret = ret;
1324 }
9517bac6
MF
1325 }
1326
3a307ffc
MF
1327 /*
1328 * We only have cleanup to do in case of allocating write.
1329 */
1330 if (ret && new)
1331 ocfs2_write_failure(inode, wc, user_pos, user_len);
1332
9517bac6 1333out:
9517bac6 1334
3a307ffc 1335 return ret;
9517bac6
MF
1336}
1337
0d172baa
MF
1338static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1339 struct ocfs2_alloc_context *data_ac,
1340 struct ocfs2_alloc_context *meta_ac,
1341 struct ocfs2_write_ctxt *wc,
1342 loff_t pos, unsigned len)
1343{
1344 int ret, i;
db56246c
MF
1345 loff_t cluster_off;
1346 unsigned int local_len = len;
0d172baa 1347 struct ocfs2_write_cluster_desc *desc;
db56246c 1348 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1349
1350 for (i = 0; i < wc->w_clen; i++) {
1351 desc = &wc->w_desc[i];
1352
db56246c
MF
1353 /*
1354 * We have to make sure that the total write passed in
1355 * doesn't extend past a single cluster.
1356 */
1357 local_len = len;
1358 cluster_off = pos & (osb->s_clustersize - 1);
1359 if ((cluster_off + local_len) > osb->s_clustersize)
1360 local_len = osb->s_clustersize - cluster_off;
1361
b27b7cbc
MF
1362 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1363 desc->c_unwritten, data_ac, meta_ac,
db56246c 1364 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1365 if (ret) {
1366 mlog_errno(ret);
1367 goto out;
1368 }
db56246c
MF
1369
1370 len -= local_len;
1371 pos += local_len;
0d172baa
MF
1372 }
1373
1374 ret = 0;
1375out:
1376 return ret;
1377}
1378
3a307ffc
MF
1379/*
1380 * ocfs2_write_end() wants to know which parts of the target page it
1381 * should complete the write on. It's easiest to compute them ahead of
1382 * time when a more complete view of the write is available.
1383 */
1384static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1385 struct ocfs2_write_ctxt *wc,
1386 loff_t pos, unsigned len, int alloc)
9517bac6 1387{
3a307ffc 1388 struct ocfs2_write_cluster_desc *desc;
9517bac6 1389
3a307ffc
MF
1390 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1391 wc->w_target_to = wc->w_target_from + len;
1392
1393 if (alloc == 0)
1394 return;
1395
1396 /*
1397 * Allocating write - we may have different boundaries based
1398 * on page size and cluster size.
1399 *
1400 * NOTE: We can no longer compute one value from the other as
1401 * the actual write length and user provided length may be
1402 * different.
1403 */
9517bac6 1404
3a307ffc
MF
1405 if (wc->w_large_pages) {
1406 /*
1407 * We only care about the 1st and last cluster within
b27b7cbc 1408 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1409 * value may be extended out to the start/end of a
1410 * newly allocated cluster.
1411 */
1412 desc = &wc->w_desc[0];
b27b7cbc 1413 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1414 ocfs2_figure_cluster_boundaries(osb,
1415 desc->c_cpos,
1416 &wc->w_target_from,
1417 NULL);
1418
1419 desc = &wc->w_desc[wc->w_clen - 1];
b27b7cbc 1420 if (ocfs2_should_zero_cluster(desc))
3a307ffc
MF
1421 ocfs2_figure_cluster_boundaries(osb,
1422 desc->c_cpos,
1423 NULL,
1424 &wc->w_target_to);
1425 } else {
1426 wc->w_target_from = 0;
1427 wc->w_target_to = PAGE_CACHE_SIZE;
1428 }
9517bac6
MF
1429}
1430
0d172baa
MF
1431/*
1432 * Populate each single-cluster write descriptor in the write context
1433 * with information about the i/o to be done.
b27b7cbc
MF
1434 *
1435 * Returns the number of clusters that will have to be allocated, as
1436 * well as a worst case estimate of the number of extent records that
1437 * would have to be created during a write to an unwritten region.
0d172baa
MF
1438 */
1439static int ocfs2_populate_write_desc(struct inode *inode,
1440 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1441 unsigned int *clusters_to_alloc,
1442 unsigned int *extents_to_split)
9517bac6 1443{
0d172baa 1444 int ret;
3a307ffc 1445 struct ocfs2_write_cluster_desc *desc;
0d172baa 1446 unsigned int num_clusters = 0;
b27b7cbc 1447 unsigned int ext_flags = 0;
0d172baa
MF
1448 u32 phys = 0;
1449 int i;
9517bac6 1450
b27b7cbc
MF
1451 *clusters_to_alloc = 0;
1452 *extents_to_split = 0;
1453
3a307ffc
MF
1454 for (i = 0; i < wc->w_clen; i++) {
1455 desc = &wc->w_desc[i];
1456 desc->c_cpos = wc->w_cpos + i;
1457
1458 if (num_clusters == 0) {
b27b7cbc
MF
1459 /*
1460 * Need to look up the next extent record.
1461 */
3a307ffc 1462 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1463 &num_clusters, &ext_flags);
3a307ffc
MF
1464 if (ret) {
1465 mlog_errno(ret);
607d44aa 1466 goto out;
3a307ffc 1467 }
b27b7cbc
MF
1468
1469 /*
1470 * Assume worst case - that we're writing in
1471 * the middle of the extent.
1472 *
1473 * We can assume that the write proceeds from
1474 * left to right, in which case the extent
1475 * insert code is smart enough to coalesce the
1476 * next splits into the previous records created.
1477 */
1478 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1479 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1480 } else if (phys) {
1481 /*
1482 * Only increment phys if it doesn't describe
1483 * a hole.
1484 */
1485 phys++;
1486 }
1487
1488 desc->c_phys = phys;
1489 if (phys == 0) {
1490 desc->c_new = 1;
0d172baa 1491 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1492 }
b27b7cbc
MF
1493 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1494 desc->c_unwritten = 1;
3a307ffc
MF
1495
1496 num_clusters--;
9517bac6
MF
1497 }
1498
0d172baa
MF
1499 ret = 0;
1500out:
1501 return ret;
1502}
1503
1afc32b9
MF
1504static int ocfs2_write_begin_inline(struct address_space *mapping,
1505 struct inode *inode,
1506 struct ocfs2_write_ctxt *wc)
1507{
1508 int ret;
1509 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1510 struct page *page;
1511 handle_t *handle;
1512 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1513
1514 page = find_or_create_page(mapping, 0, GFP_NOFS);
1515 if (!page) {
1516 ret = -ENOMEM;
1517 mlog_errno(ret);
1518 goto out;
1519 }
1520 /*
1521 * If we don't set w_num_pages then this page won't get unlocked
1522 * and freed on cleanup of the write context.
1523 */
1524 wc->w_pages[0] = wc->w_target_page = page;
1525 wc->w_num_pages = 1;
1526
1527 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1528 if (IS_ERR(handle)) {
1529 ret = PTR_ERR(handle);
1530 mlog_errno(ret);
1531 goto out;
1532 }
1533
1534 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1535 OCFS2_JOURNAL_ACCESS_WRITE);
1536 if (ret) {
1537 ocfs2_commit_trans(osb, handle);
1538
1539 mlog_errno(ret);
1540 goto out;
1541 }
1542
1543 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1544 ocfs2_set_inode_data_inline(inode, di);
1545
1546 if (!PageUptodate(page)) {
1547 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1548 if (ret) {
1549 ocfs2_commit_trans(osb, handle);
1550
1551 goto out;
1552 }
1553 }
1554
1555 wc->w_handle = handle;
1556out:
1557 return ret;
1558}
1559
1560int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1561{
1562 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1563
0d8a4e0c 1564 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1565 return 1;
1566 return 0;
1567}
1568
1569static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1570 struct inode *inode, loff_t pos,
1571 unsigned len, struct page *mmap_page,
1572 struct ocfs2_write_ctxt *wc)
1573{
1574 int ret, written = 0;
1575 loff_t end = pos + len;
1576 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1577
1578 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1579 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1580 oi->ip_dyn_features);
1581
1582 /*
1583 * Handle inodes which already have inline data 1st.
1584 */
1585 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1586 if (mmap_page == NULL &&
1587 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1588 goto do_inline_write;
1589
1590 /*
1591 * The write won't fit - we have to give this inode an
1592 * inline extent list now.
1593 */
1594 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1595 if (ret)
1596 mlog_errno(ret);
1597 goto out;
1598 }
1599
1600 /*
1601 * Check whether the inode can accept inline data.
1602 */
1603 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1604 return 0;
1605
1606 /*
1607 * Check whether the write can fit.
1608 */
1609 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1610 return 0;
1611
1612do_inline_write:
1613 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1614 if (ret) {
1615 mlog_errno(ret);
1616 goto out;
1617 }
1618
1619 /*
1620 * This signals to the caller that the data can be written
1621 * inline.
1622 */
1623 written = 1;
1624out:
1625 return written ? written : ret;
1626}
1627
65ed39d6
MF
1628/*
1629 * This function only does anything for file systems which can't
1630 * handle sparse files.
1631 *
1632 * What we want to do here is fill in any hole between the current end
1633 * of allocation and the end of our write. That way the rest of the
1634 * write path can treat it as an non-allocating write, which has no
1635 * special case code for sparse/nonsparse files.
1636 */
1637static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1638 unsigned len,
1639 struct ocfs2_write_ctxt *wc)
1640{
1641 int ret;
1642 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1643 loff_t newsize = pos + len;
1644
1645 if (ocfs2_sparse_alloc(osb))
1646 return 0;
1647
1648 if (newsize <= i_size_read(inode))
1649 return 0;
1650
1651 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1652 if (ret)
1653 mlog_errno(ret);
1654
1655 return ret;
1656}
1657
0d172baa
MF
1658int ocfs2_write_begin_nolock(struct address_space *mapping,
1659 loff_t pos, unsigned len, unsigned flags,
1660 struct page **pagep, void **fsdata,
1661 struct buffer_head *di_bh, struct page *mmap_page)
1662{
1663 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
b27b7cbc 1664 unsigned int clusters_to_alloc, extents_to_split;
0d172baa
MF
1665 struct ocfs2_write_ctxt *wc;
1666 struct inode *inode = mapping->host;
1667 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1668 struct ocfs2_dinode *di;
1669 struct ocfs2_alloc_context *data_ac = NULL;
1670 struct ocfs2_alloc_context *meta_ac = NULL;
1671 handle_t *handle;
f99b9b7c 1672 struct ocfs2_extent_tree et;
0d172baa
MF
1673
1674 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1675 if (ret) {
1676 mlog_errno(ret);
1677 return ret;
1678 }
1679
1afc32b9
MF
1680 if (ocfs2_supports_inline_data(osb)) {
1681 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1682 mmap_page, wc);
1683 if (ret == 1) {
1684 ret = 0;
1685 goto success;
1686 }
1687 if (ret < 0) {
1688 mlog_errno(ret);
1689 goto out;
1690 }
1691 }
1692
65ed39d6
MF
1693 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1694 if (ret) {
1695 mlog_errno(ret);
1696 goto out;
1697 }
1698
b27b7cbc
MF
1699 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1700 &extents_to_split);
0d172baa
MF
1701 if (ret) {
1702 mlog_errno(ret);
1703 goto out;
1704 }
1705
1706 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1707
3a307ffc
MF
1708 /*
1709 * We set w_target_from, w_target_to here so that
1710 * ocfs2_write_end() knows which range in the target page to
1711 * write out. An allocation requires that we write the entire
1712 * cluster range.
1713 */
b27b7cbc 1714 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1715 /*
1716 * XXX: We are stretching the limits of
b27b7cbc 1717 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1718 * the work to be done.
1719 */
e7d4cb6b
TM
1720 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1721 " clusters_to_add = %u, extents_to_split = %u\n",
1722 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1723 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1724 clusters_to_alloc, extents_to_split);
1725
8d6220d6 1726 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
f99b9b7c 1727 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1728 clusters_to_alloc, extents_to_split,
f99b9b7c 1729 &data_ac, &meta_ac);
9517bac6
MF
1730 if (ret) {
1731 mlog_errno(ret);
607d44aa 1732 goto out;
9517bac6
MF
1733 }
1734
811f933d
TM
1735 credits = ocfs2_calc_extend_credits(inode->i_sb,
1736 &di->id2.i_list,
3a307ffc
MF
1737 clusters_to_alloc);
1738
9517bac6
MF
1739 }
1740
b27b7cbc
MF
1741 ocfs2_set_target_boundaries(osb, wc, pos, len,
1742 clusters_to_alloc + extents_to_split);
3a307ffc 1743
9517bac6
MF
1744 handle = ocfs2_start_trans(osb, credits);
1745 if (IS_ERR(handle)) {
1746 ret = PTR_ERR(handle);
1747 mlog_errno(ret);
607d44aa 1748 goto out;
9517bac6
MF
1749 }
1750
3a307ffc
MF
1751 wc->w_handle = handle;
1752
1753 /*
1754 * We don't want this to fail in ocfs2_write_end(), so do it
1755 * here.
1756 */
1757 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1758 OCFS2_JOURNAL_ACCESS_WRITE);
1759 if (ret) {
9517bac6
MF
1760 mlog_errno(ret);
1761 goto out_commit;
1762 }
1763
3a307ffc
MF
1764 /*
1765 * Fill our page array first. That way we've grabbed enough so
1766 * that we can zero and flush if we error after adding the
1767 * extent.
1768 */
1769 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
b27b7cbc
MF
1770 clusters_to_alloc + extents_to_split,
1771 mmap_page);
9517bac6
MF
1772 if (ret) {
1773 mlog_errno(ret);
1774 goto out_commit;
1775 }
1776
0d172baa
MF
1777 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1778 len);
1779 if (ret) {
1780 mlog_errno(ret);
1781 goto out_commit;
9517bac6 1782 }
9517bac6 1783
3a307ffc
MF
1784 if (data_ac)
1785 ocfs2_free_alloc_context(data_ac);
1786 if (meta_ac)
1787 ocfs2_free_alloc_context(meta_ac);
9517bac6 1788
1afc32b9 1789success:
3a307ffc
MF
1790 *pagep = wc->w_target_page;
1791 *fsdata = wc;
1792 return 0;
9517bac6
MF
1793out_commit:
1794 ocfs2_commit_trans(osb, handle);
1795
9517bac6 1796out:
3a307ffc
MF
1797 ocfs2_free_write_ctxt(wc);
1798
9517bac6
MF
1799 if (data_ac)
1800 ocfs2_free_alloc_context(data_ac);
1801 if (meta_ac)
1802 ocfs2_free_alloc_context(meta_ac);
3a307ffc
MF
1803 return ret;
1804}
1805
b6af1bcd
NP
1806static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1807 loff_t pos, unsigned len, unsigned flags,
1808 struct page **pagep, void **fsdata)
607d44aa
MF
1809{
1810 int ret;
1811 struct buffer_head *di_bh = NULL;
1812 struct inode *inode = mapping->host;
1813
e63aecb6 1814 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1815 if (ret) {
1816 mlog_errno(ret);
1817 return ret;
1818 }
1819
1820 /*
1821 * Take alloc sem here to prevent concurrent lookups. That way
1822 * the mapping, zeroing and tree manipulation within
1823 * ocfs2_write() will be safe against ->readpage(). This
1824 * should also serve to lock out allocation from a shared
1825 * writeable region.
1826 */
1827 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1828
607d44aa 1829 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
7307de80 1830 fsdata, di_bh, NULL);
607d44aa
MF
1831 if (ret) {
1832 mlog_errno(ret);
c934a92d 1833 goto out_fail;
607d44aa
MF
1834 }
1835
1836 brelse(di_bh);
1837
1838 return 0;
1839
607d44aa
MF
1840out_fail:
1841 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1842
1843 brelse(di_bh);
e63aecb6 1844 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1845
1846 return ret;
1847}
1848
1afc32b9
MF
1849static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1850 unsigned len, unsigned *copied,
1851 struct ocfs2_dinode *di,
1852 struct ocfs2_write_ctxt *wc)
1853{
1854 void *kaddr;
1855
1856 if (unlikely(*copied < len)) {
1857 if (!PageUptodate(wc->w_target_page)) {
1858 *copied = 0;
1859 return;
1860 }
1861 }
1862
1863 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1864 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1865 kunmap_atomic(kaddr, KM_USER0);
1866
1867 mlog(0, "Data written to inode at offset %llu. "
1868 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1869 (unsigned long long)pos, *copied,
1870 le16_to_cpu(di->id2.i_data.id_count),
1871 le16_to_cpu(di->i_dyn_features));
1872}
1873
7307de80
MF
1874int ocfs2_write_end_nolock(struct address_space *mapping,
1875 loff_t pos, unsigned len, unsigned copied,
1876 struct page *page, void *fsdata)
3a307ffc
MF
1877{
1878 int i;
1879 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1880 struct inode *inode = mapping->host;
1881 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1882 struct ocfs2_write_ctxt *wc = fsdata;
1883 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1884 handle_t *handle = wc->w_handle;
1885 struct page *tmppage;
1886
1afc32b9
MF
1887 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1888 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1889 goto out_write_size;
1890 }
1891
3a307ffc
MF
1892 if (unlikely(copied < len)) {
1893 if (!PageUptodate(wc->w_target_page))
1894 copied = 0;
1895
1896 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1897 start+len);
1898 }
1899 flush_dcache_page(wc->w_target_page);
1900
1901 for(i = 0; i < wc->w_num_pages; i++) {
1902 tmppage = wc->w_pages[i];
1903
1904 if (tmppage == wc->w_target_page) {
1905 from = wc->w_target_from;
1906 to = wc->w_target_to;
1907
1908 BUG_ON(from > PAGE_CACHE_SIZE ||
1909 to > PAGE_CACHE_SIZE ||
1910 to < from);
1911 } else {
1912 /*
1913 * Pages adjacent to the target (if any) imply
1914 * a hole-filling write in which case we want
1915 * to flush their entire range.
1916 */
1917 from = 0;
1918 to = PAGE_CACHE_SIZE;
1919 }
1920
961cecbe 1921 if (page_has_buffers(tmppage)) {
2b4e30fb
JB
1922 if (ocfs2_should_order_data(inode)) {
1923 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1924#ifdef CONFIG_OCFS2_COMPAT_JBD
961cecbe
SM
1925 walk_page_buffers(wc->w_handle,
1926 page_buffers(tmppage),
1927 from, to, NULL,
1928 ocfs2_journal_dirty_data);
2b4e30fb
JB
1929#endif
1930 }
961cecbe
SM
1931 block_commit_write(tmppage, from, to);
1932 }
3a307ffc
MF
1933 }
1934
1afc32b9 1935out_write_size:
3a307ffc
MF
1936 pos += copied;
1937 if (pos > inode->i_size) {
1938 i_size_write(inode, pos);
1939 mark_inode_dirty(inode);
1940 }
1941 inode->i_blocks = ocfs2_inode_sector_count(inode);
1942 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1943 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1944 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1945 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
3a307ffc
MF
1946 ocfs2_journal_dirty(handle, wc->w_di_bh);
1947
1948 ocfs2_commit_trans(osb, handle);
59a5e416 1949
b27b7cbc
MF
1950 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1951
607d44aa
MF
1952 ocfs2_free_write_ctxt(wc);
1953
1954 return copied;
1955}
1956
b6af1bcd
NP
1957static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1958 loff_t pos, unsigned len, unsigned copied,
1959 struct page *page, void *fsdata)
607d44aa
MF
1960{
1961 int ret;
1962 struct inode *inode = mapping->host;
1963
1964 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1965
3a307ffc 1966 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 1967 ocfs2_inode_unlock(inode, 1);
9517bac6 1968
607d44aa 1969 return ret;
9517bac6
MF
1970}
1971
f5e54d6e 1972const struct address_space_operations ocfs2_aops = {
ccd979bd 1973 .readpage = ocfs2_readpage,
628a24f5 1974 .readpages = ocfs2_readpages,
ccd979bd 1975 .writepage = ocfs2_writepage,
b6af1bcd
NP
1976 .write_begin = ocfs2_write_begin,
1977 .write_end = ocfs2_write_end,
ccd979bd
MF
1978 .bmap = ocfs2_bmap,
1979 .sync_page = block_sync_page,
03f981cf
JB
1980 .direct_IO = ocfs2_direct_IO,
1981 .invalidatepage = ocfs2_invalidatepage,
1982 .releasepage = ocfs2_releasepage,
1983 .migratepage = buffer_migrate_page,
ccd979bd 1984};
This page took 0.460956 seconds and 5 git commands to generate.