ocfs2: Teach ocfs2_get_block() about holes
[deliverable/linux.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
ccd979bd
MF
28
29#define MLOG_MASK_PREFIX ML_FILE_IO
30#include <cluster/masklog.h>
31
32#include "ocfs2.h"
33
34#include "alloc.h"
35#include "aops.h"
36#include "dlmglue.h"
37#include "extent_map.h"
38#include "file.h"
39#include "inode.h"
40#include "journal.h"
9517bac6 41#include "suballoc.h"
ccd979bd
MF
42#include "super.h"
43#include "symlink.h"
44
45#include "buffer_head_io.h"
46
47static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
48 struct buffer_head *bh_result, int create)
49{
50 int err = -EIO;
51 int status;
52 struct ocfs2_dinode *fe = NULL;
53 struct buffer_head *bh = NULL;
54 struct buffer_head *buffer_cache_bh = NULL;
55 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
56 void *kaddr;
57
58 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
59 (unsigned long long)iblock, bh_result, create);
60
61 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
62
63 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
64 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
65 (unsigned long long)iblock);
66 goto bail;
67 }
68
69 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
70 OCFS2_I(inode)->ip_blkno,
71 &bh, OCFS2_BH_CACHED, inode);
72 if (status < 0) {
73 mlog_errno(status);
74 goto bail;
75 }
76 fe = (struct ocfs2_dinode *) bh->b_data;
77
78 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053
MF
79 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
80 (unsigned long long)fe->i_blkno, 7, fe->i_signature);
ccd979bd
MF
81 goto bail;
82 }
83
84 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
85 le32_to_cpu(fe->i_clusters))) {
86 mlog(ML_ERROR, "block offset is outside the allocated size: "
87 "%llu\n", (unsigned long long)iblock);
88 goto bail;
89 }
90
91 /* We don't use the page cache to create symlink data, so if
92 * need be, copy it over from the buffer cache. */
93 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
94 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
95 iblock;
96 buffer_cache_bh = sb_getblk(osb->sb, blkno);
97 if (!buffer_cache_bh) {
98 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
99 goto bail;
100 }
101
102 /* we haven't locked out transactions, so a commit
103 * could've happened. Since we've got a reference on
104 * the bh, even if it commits while we're doing the
105 * copy, the data is still good. */
106 if (buffer_jbd(buffer_cache_bh)
107 && ocfs2_inode_is_new(inode)) {
108 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
109 if (!kaddr) {
110 mlog(ML_ERROR, "couldn't kmap!\n");
111 goto bail;
112 }
113 memcpy(kaddr + (bh_result->b_size * iblock),
114 buffer_cache_bh->b_data,
115 bh_result->b_size);
116 kunmap_atomic(kaddr, KM_USER0);
117 set_buffer_uptodate(bh_result);
118 }
119 brelse(buffer_cache_bh);
120 }
121
122 map_bh(bh_result, inode->i_sb,
123 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
124
125 err = 0;
126
127bail:
128 if (bh)
129 brelse(bh);
130
131 mlog_exit(err);
132 return err;
133}
134
135static int ocfs2_get_block(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create)
137{
138 int err = 0;
139 u64 p_blkno, past_eof;
25baf2da 140 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
141
142 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
143 (unsigned long long)iblock, bh_result, create);
144
145 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
146 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
147 inode, inode->i_ino);
148
149 if (S_ISLNK(inode->i_mode)) {
150 /* this always does I/O for some reason. */
151 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
152 goto bail;
153 }
154
363041a5 155 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL);
ccd979bd
MF
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
ccd979bd
MF
160 goto bail;
161 }
162
25baf2da
MF
163 /*
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
168 */
169 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
170 "ino %lu, iblock %llu\n", inode->i_ino,
171 (unsigned long long)iblock);
172
173 if (p_blkno)
174 map_bh(bh_result, inode->i_sb, p_blkno);
175
176 if (!ocfs2_sparse_alloc(osb)) {
177 if (p_blkno == 0) {
178 err = -EIO;
179 mlog(ML_ERROR,
180 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
181 (unsigned long long)iblock,
182 (unsigned long long)p_blkno,
183 (unsigned long long)OCFS2_I(inode)->ip_blkno);
184 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
185 dump_stack();
186 }
ccd979bd 187
25baf2da
MF
188 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
189 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
190 (unsigned long long)past_eof);
ccd979bd 191
25baf2da
MF
192 if (create && (iblock >= past_eof))
193 set_buffer_new(bh_result);
194 }
ccd979bd
MF
195
196bail:
197 if (err < 0)
198 err = -EIO;
199
200 mlog_exit(err);
201 return err;
202}
203
204static int ocfs2_readpage(struct file *file, struct page *page)
205{
206 struct inode *inode = page->mapping->host;
207 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
208 int ret, unlock = 1;
209
210 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
211
4bcec184 212 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
213 if (ret != 0) {
214 if (ret == AOP_TRUNCATED_PAGE)
215 unlock = 0;
216 mlog_errno(ret);
217 goto out;
218 }
219
220 down_read(&OCFS2_I(inode)->ip_alloc_sem);
221
222 /*
223 * i_size might have just been updated as we grabed the meta lock. We
224 * might now be discovering a truncate that hit on another node.
225 * block_read_full_page->get_block freaks out if it is asked to read
226 * beyond the end of a file, so we check here. Callers
227 * (generic_file_read, fault->nopage) are clever enough to check i_size
228 * and notice that the page they just read isn't needed.
229 *
230 * XXX sys_readahead() seems to get that wrong?
231 */
232 if (start >= i_size_read(inode)) {
233 char *addr = kmap(page);
234 memset(addr, 0, PAGE_SIZE);
235 flush_dcache_page(page);
236 kunmap(page);
237 SetPageUptodate(page);
238 ret = 0;
239 goto out_alloc;
240 }
241
242 ret = ocfs2_data_lock_with_page(inode, 0, page);
243 if (ret != 0) {
244 if (ret == AOP_TRUNCATED_PAGE)
245 unlock = 0;
246 mlog_errno(ret);
247 goto out_alloc;
248 }
249
250 ret = block_read_full_page(page, ocfs2_get_block);
251 unlock = 0;
252
253 ocfs2_data_unlock(inode, 0);
254out_alloc:
255 up_read(&OCFS2_I(inode)->ip_alloc_sem);
256 ocfs2_meta_unlock(inode, 0);
257out:
258 if (unlock)
259 unlock_page(page);
260 mlog_exit(ret);
261 return ret;
262}
263
264/* Note: Because we don't support holes, our allocation has
265 * already happened (allocation writes zeros to the file data)
266 * so we don't have to worry about ordered writes in
267 * ocfs2_writepage.
268 *
269 * ->writepage is called during the process of invalidating the page cache
270 * during blocked lock processing. It can't block on any cluster locks
271 * to during block mapping. It's relying on the fact that the block
272 * mapping can't have disappeared under the dirty pages that it is
273 * being asked to write back.
274 */
275static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
276{
277 int ret;
278
279 mlog_entry("(0x%p)\n", page);
280
281 ret = block_write_full_page(page, ocfs2_get_block, wbc);
282
283 mlog_exit(ret);
284
285 return ret;
286}
287
5069120b
MF
288/*
289 * This is called from ocfs2_write_zero_page() which has handled it's
290 * own cluster locking and has ensured allocation exists for those
291 * blocks to be written.
292 */
53013cba
MF
293int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
294 unsigned from, unsigned to)
295{
296 int ret;
297
298 down_read(&OCFS2_I(inode)->ip_alloc_sem);
299
300 ret = block_prepare_write(page, from, to, ocfs2_get_block);
301
302 up_read(&OCFS2_I(inode)->ip_alloc_sem);
303
304 return ret;
305}
306
ccd979bd
MF
307/* Taken from ext3. We don't necessarily need the full blown
308 * functionality yet, but IMHO it's better to cut and paste the whole
309 * thing so we can avoid introducing our own bugs (and easily pick up
310 * their fixes when they happen) --Mark */
311static int walk_page_buffers( handle_t *handle,
312 struct buffer_head *head,
313 unsigned from,
314 unsigned to,
315 int *partial,
316 int (*fn)( handle_t *handle,
317 struct buffer_head *bh))
318{
319 struct buffer_head *bh;
320 unsigned block_start, block_end;
321 unsigned blocksize = head->b_size;
322 int err, ret = 0;
323 struct buffer_head *next;
324
325 for ( bh = head, block_start = 0;
326 ret == 0 && (bh != head || !block_start);
327 block_start = block_end, bh = next)
328 {
329 next = bh->b_this_page;
330 block_end = block_start + blocksize;
331 if (block_end <= from || block_start >= to) {
332 if (partial && !buffer_uptodate(bh))
333 *partial = 1;
334 continue;
335 }
336 err = (*fn)(handle, bh);
337 if (!ret)
338 ret = err;
339 }
340 return ret;
341}
342
1fabe148 343handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
344 struct page *page,
345 unsigned from,
346 unsigned to)
347{
348 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1fabe148 349 handle_t *handle = NULL;
ccd979bd
MF
350 int ret = 0;
351
65eff9cc 352 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
ccd979bd
MF
353 if (!handle) {
354 ret = -ENOMEM;
355 mlog_errno(ret);
356 goto out;
357 }
358
359 if (ocfs2_should_order_data(inode)) {
1fabe148 360 ret = walk_page_buffers(handle,
ccd979bd
MF
361 page_buffers(page),
362 from, to, NULL,
363 ocfs2_journal_dirty_data);
364 if (ret < 0)
365 mlog_errno(ret);
366 }
367out:
368 if (ret) {
369 if (handle)
02dc1af4 370 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
371 handle = ERR_PTR(ret);
372 }
373 return handle;
374}
375
ccd979bd
MF
376static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
377{
378 sector_t status;
379 u64 p_blkno = 0;
380 int err = 0;
381 struct inode *inode = mapping->host;
382
383 mlog_entry("(block = %llu)\n", (unsigned long long)block);
384
385 /* We don't need to lock journal system files, since they aren't
386 * accessed concurrently from multiple nodes.
387 */
388 if (!INODE_JOURNAL(inode)) {
4bcec184 389 err = ocfs2_meta_lock(inode, NULL, 0);
ccd979bd
MF
390 if (err) {
391 if (err != -ENOENT)
392 mlog_errno(err);
393 goto bail;
394 }
395 down_read(&OCFS2_I(inode)->ip_alloc_sem);
396 }
397
363041a5 398 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL);
ccd979bd
MF
399
400 if (!INODE_JOURNAL(inode)) {
401 up_read(&OCFS2_I(inode)->ip_alloc_sem);
402 ocfs2_meta_unlock(inode, 0);
403 }
404
405 if (err) {
406 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
407 (unsigned long long)block);
408 mlog_errno(err);
409 goto bail;
410 }
411
412
413bail:
414 status = err ? 0 : p_blkno;
415
416 mlog_exit((int)status);
417
418 return status;
419}
420
421/*
422 * TODO: Make this into a generic get_blocks function.
423 *
424 * From do_direct_io in direct-io.c:
425 * "So what we do is to permit the ->get_blocks function to populate
426 * bh.b_size with the size of IO which is permitted at this offset and
427 * this i_blkbits."
428 *
429 * This function is called directly from get_more_blocks in direct-io.c.
430 *
431 * called like this: dio->get_blocks(dio->inode, fs_startblk,
432 * fs_count, map_bh, dio->rw == WRITE);
433 */
434static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
435 struct buffer_head *bh_result, int create)
436{
437 int ret;
564f8a32 438 u64 p_blkno, inode_blocks;
ccd979bd 439 int contig_blocks;
184d7d20 440 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 441 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 442
ccd979bd
MF
443 /* This function won't even be called if the request isn't all
444 * nicely aligned and of the right size, so there's no need
445 * for us to check any of that. */
446
25baf2da 447 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
448
449 /*
450 * Any write past EOF is not allowed because we'd be extending.
451 */
452 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
453 ret = -EIO;
454 goto bail;
455 }
ccd979bd
MF
456
457 /* This figures out the size of the next contiguous block, and
458 * our logical offset */
363041a5 459 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
ccd979bd
MF
460 &contig_blocks);
461 if (ret) {
462 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
463 (unsigned long long)iblock);
464 ret = -EIO;
465 goto bail;
466 }
467
25baf2da
MF
468 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
469 ocfs2_error(inode->i_sb,
470 "Inode %llu has a hole at block %llu\n",
471 (unsigned long long)OCFS2_I(inode)->ip_blkno,
472 (unsigned long long)iblock);
473 ret = -EROFS;
474 goto bail;
475 }
476
477 /*
478 * get_more_blocks() expects us to describe a hole by clearing
479 * the mapped bit on bh_result().
480 */
481 if (p_blkno)
482 map_bh(bh_result, inode->i_sb, p_blkno);
483 else {
484 /*
485 * ocfs2_prepare_inode_for_write() should have caught
486 * the case where we'd be filling a hole and triggered
487 * a buffered write instead.
488 */
489 if (create) {
490 ret = -EIO;
491 mlog_errno(ret);
492 goto bail;
493 }
494
495 clear_buffer_mapped(bh_result);
496 }
ccd979bd
MF
497
498 /* make sure we don't map more than max_blocks blocks here as
499 that's all the kernel will handle at this point. */
500 if (max_blocks < contig_blocks)
501 contig_blocks = max_blocks;
502 bh_result->b_size = contig_blocks << blocksize_bits;
503bail:
504 return ret;
505}
506
507/*
508 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
509 * particularly interested in the aio/dio case. Like the core uses
510 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
511 * truncation on another.
512 */
513static void ocfs2_dio_end_io(struct kiocb *iocb,
514 loff_t offset,
515 ssize_t bytes,
516 void *private)
517{
d28c9174 518 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
ccd979bd
MF
519
520 /* this io's submitter should not have unlocked this before we could */
521 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
522 ocfs2_iocb_clear_rw_locked(iocb);
523 up_read(&inode->i_alloc_sem);
524 ocfs2_rw_unlock(inode, 0);
525}
526
03f981cf
JB
527/*
528 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
529 * from ext3. PageChecked() bits have been removed as OCFS2 does not
530 * do journalled data.
531 */
532static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
533{
534 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
535
536 journal_invalidatepage(journal, page, offset);
537}
538
539static int ocfs2_releasepage(struct page *page, gfp_t wait)
540{
541 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
542
543 if (!page_has_buffers(page))
544 return 0;
545 return journal_try_to_free_buffers(journal, page, wait);
546}
547
ccd979bd
MF
548static ssize_t ocfs2_direct_IO(int rw,
549 struct kiocb *iocb,
550 const struct iovec *iov,
551 loff_t offset,
552 unsigned long nr_segs)
553{
554 struct file *file = iocb->ki_filp;
d28c9174 555 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
556 int ret;
557
558 mlog_entry_void();
53013cba 559
9517bac6
MF
560 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
561 /*
562 * We get PR data locks even for O_DIRECT. This
563 * allows concurrent O_DIRECT I/O but doesn't let
564 * O_DIRECT with extending and buffered zeroing writes
565 * race. If they did race then the buffered zeroing
566 * could be written back after the O_DIRECT I/O. It's
567 * one thing to tell people not to mix buffered and
568 * O_DIRECT writes, but expecting them to understand
569 * that file extension is also an implicit buffered
570 * write is too much. By getting the PR we force
571 * writeback of the buffered zeroing before
572 * proceeding.
573 */
574 ret = ocfs2_data_lock(inode, 0);
575 if (ret < 0) {
576 mlog_errno(ret);
577 goto out;
578 }
579 ocfs2_data_unlock(inode, 0);
53013cba 580 }
53013cba 581
ccd979bd
MF
582 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
583 inode->i_sb->s_bdev, iov, offset,
584 nr_segs,
585 ocfs2_direct_IO_get_blocks,
586 ocfs2_dio_end_io);
53013cba 587out:
ccd979bd
MF
588 mlog_exit(ret);
589 return ret;
590}
591
9517bac6
MF
592static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
593 u32 cpos,
594 unsigned int *start,
595 unsigned int *end)
596{
597 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
598
599 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
600 unsigned int cpp;
601
602 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
603
604 cluster_start = cpos % cpp;
605 cluster_start = cluster_start << osb->s_clustersize_bits;
606
607 cluster_end = cluster_start + osb->s_clustersize;
608 }
609
610 BUG_ON(cluster_start > PAGE_SIZE);
611 BUG_ON(cluster_end > PAGE_SIZE);
612
613 if (start)
614 *start = cluster_start;
615 if (end)
616 *end = cluster_end;
617}
618
619/*
620 * 'from' and 'to' are the region in the page to avoid zeroing.
621 *
622 * If pagesize > clustersize, this function will avoid zeroing outside
623 * of the cluster boundary.
624 *
625 * from == to == 0 is code for "zero the entire cluster region"
626 */
627static void ocfs2_clear_page_regions(struct page *page,
628 struct ocfs2_super *osb, u32 cpos,
629 unsigned from, unsigned to)
630{
631 void *kaddr;
632 unsigned int cluster_start, cluster_end;
633
634 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
635
636 kaddr = kmap_atomic(page, KM_USER0);
637
638 if (from || to) {
639 if (from > cluster_start)
640 memset(kaddr + cluster_start, 0, from - cluster_start);
641 if (to < cluster_end)
642 memset(kaddr + to, 0, cluster_end - to);
643 } else {
644 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
645 }
646
647 kunmap_atomic(kaddr, KM_USER0);
648}
649
650/*
651 * Some of this taken from block_prepare_write(). We already have our
652 * mapping by now though, and the entire write will be allocating or
653 * it won't, so not much need to use BH_New.
654 *
655 * This will also skip zeroing, which is handled externally.
656 */
657static int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
658 struct inode *inode, unsigned int from,
659 unsigned int to, int new)
660{
661 int ret = 0;
662 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
663 unsigned int block_end, block_start;
664 unsigned int bsize = 1 << inode->i_blkbits;
665
666 if (!page_has_buffers(page))
667 create_empty_buffers(page, bsize, 0);
668
669 head = page_buffers(page);
670 for (bh = head, block_start = 0; bh != head || !block_start;
671 bh = bh->b_this_page, block_start += bsize) {
672 block_end = block_start + bsize;
673
674 /*
675 * Ignore blocks outside of our i/o range -
676 * they may belong to unallocated clusters.
677 */
678 if (block_start >= to ||
679 (block_start + bsize) <= from) {
680 if (PageUptodate(page))
681 set_buffer_uptodate(bh);
682 continue;
683 }
684
685 /*
686 * For an allocating write with cluster size >= page
687 * size, we always write the entire page.
688 */
689
690 if (buffer_new(bh))
691 clear_buffer_new(bh);
692
693 if (!buffer_mapped(bh)) {
694 map_bh(bh, inode->i_sb, *p_blkno);
695 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
696 }
697
698 if (PageUptodate(page)) {
699 if (!buffer_uptodate(bh))
700 set_buffer_uptodate(bh);
701 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
702 (block_start < from || block_end > to)) {
703 ll_rw_block(READ, 1, &bh);
704 *wait_bh++=bh;
705 }
706
707 *p_blkno = *p_blkno + 1;
708 }
709
710 /*
711 * If we issued read requests - let them complete.
712 */
713 while(wait_bh > wait) {
714 wait_on_buffer(*--wait_bh);
715 if (!buffer_uptodate(*wait_bh))
716 ret = -EIO;
717 }
718
719 if (ret == 0 || !new)
720 return ret;
721
722 /*
723 * If we get -EIO above, zero out any newly allocated blocks
724 * to avoid exposing stale data.
725 */
726 bh = head;
727 block_start = 0;
728 do {
729 void *kaddr;
730
731 block_end = block_start + bsize;
732 if (block_end <= from)
733 goto next_bh;
734 if (block_start >= to)
735 break;
736
737 kaddr = kmap_atomic(page, KM_USER0);
738 memset(kaddr+block_start, 0, bh->b_size);
739 flush_dcache_page(page);
740 kunmap_atomic(kaddr, KM_USER0);
741 set_buffer_uptodate(bh);
742 mark_buffer_dirty(bh);
743
744next_bh:
745 block_start = block_end;
746 bh = bh->b_this_page;
747 } while (bh != head);
748
749 return ret;
750}
751
752/*
753 * This will copy user data from the iovec in the buffered write
754 * context.
755 */
756int ocfs2_map_and_write_user_data(struct inode *inode,
757 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
758 unsigned int *ret_from, unsigned int *ret_to)
759{
760 int ret;
761 unsigned int to, from, cluster_start, cluster_end;
762 unsigned long bytes, src_from;
763 char *dst;
764 struct ocfs2_buffered_write_priv *bp = wc->w_private;
765 const struct iovec *cur_iov = bp->b_cur_iov;
766 char __user *buf;
767 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
768
769 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
770 &cluster_end);
771
772 buf = cur_iov->iov_base + bp->b_cur_off;
773 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
774
775 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
776
777 /*
778 * This is a lot of comparisons, but it reads quite
779 * easily, which is important here.
780 */
781 /* Stay within the src page */
782 bytes = PAGE_SIZE - src_from;
783 /* Stay within the vector */
784 bytes = min(bytes,
785 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
786 /* Stay within count */
787 bytes = min(bytes, (unsigned long)wc->w_count);
788 /*
789 * For clustersize > page size, just stay within
790 * target page, otherwise we have to calculate pos
791 * within the cluster and obey the rightmost
792 * boundary.
793 */
794 if (wc->w_large_pages) {
795 /*
796 * For cluster size < page size, we have to
797 * calculate pos within the cluster and obey
798 * the rightmost boundary.
799 */
800 bytes = min(bytes, (unsigned long)(osb->s_clustersize
801 - (wc->w_pos & (osb->s_clustersize - 1))));
802 } else {
803 /*
804 * cluster size > page size is the most common
805 * case - we just stay within the target page
806 * boundary.
807 */
808 bytes = min(bytes, PAGE_CACHE_SIZE - from);
809 }
810
811 to = from + bytes;
812
813 if (wc->w_this_page_new)
814 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
815 cluster_start, cluster_end, 1);
816 else
817 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
818 from, to, 0);
819 if (ret) {
820 mlog_errno(ret);
821 goto out;
822 }
823
824 BUG_ON(from > PAGE_CACHE_SIZE);
825 BUG_ON(to > PAGE_CACHE_SIZE);
826 BUG_ON(from > osb->s_clustersize);
827 BUG_ON(to > osb->s_clustersize);
828
829 dst = kmap(wc->w_this_page);
830 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
831 kunmap(wc->w_this_page);
832
833 /*
834 * XXX: This is slow, but simple. The caller of
835 * ocfs2_buffered_write_cluster() is responsible for
836 * passing through the iovecs, so it's difficult to
837 * predict what our next step is in here after our
838 * initial write. A future version should be pushing
839 * that iovec manipulation further down.
840 *
841 * By setting this, we indicate that a copy from user
842 * data was done, and subsequent calls for this
843 * cluster will skip copying more data.
844 */
845 wc->w_finished_copy = 1;
846
847 *ret_from = from;
848 *ret_to = to;
849out:
850
851 return bytes ? (unsigned int)bytes : ret;
852}
853
854/*
855 * Map, fill and write a page to disk.
856 *
857 * The work of copying data is done via callback. Newly allocated
858 * pages which don't take user data will be zero'd (set 'new' to
859 * indicate an allocating write)
860 *
861 * Returns a negative error code or the number of bytes copied into
862 * the page.
863 */
864int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
865 u64 *p_blkno, struct page *page,
866 struct ocfs2_write_ctxt *wc, int new)
867{
868 int ret, copied = 0;
869 unsigned int from = 0, to = 0;
870 unsigned int cluster_start, cluster_end;
871 unsigned int zero_from = 0, zero_to = 0;
872
873 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
874 &cluster_start, &cluster_end);
875
876 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
877 && !wc->w_finished_copy) {
878
879 wc->w_this_page = page;
880 wc->w_this_page_new = new;
881 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
882 if (ret < 0) {
883 mlog_errno(ret);
884 goto out;
885 }
886
887 copied = ret;
888
889 zero_from = from;
890 zero_to = to;
891 if (new) {
892 from = cluster_start;
893 to = cluster_end;
894 }
895 } else {
896 /*
897 * If we haven't allocated the new page yet, we
898 * shouldn't be writing it out without copying user
899 * data. This is likely a math error from the caller.
900 */
901 BUG_ON(!new);
902
903 from = cluster_start;
904 to = cluster_end;
905
906 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
907 cluster_start, cluster_end, 1);
908 if (ret) {
909 mlog_errno(ret);
910 goto out;
911 }
912 }
913
914 /*
915 * Parts of newly allocated pages need to be zero'd.
916 *
917 * Above, we have also rewritten 'to' and 'from' - as far as
918 * the rest of the function is concerned, the entire cluster
919 * range inside of a page needs to be written.
920 *
921 * We can skip this if the page is up to date - it's already
922 * been zero'd from being read in as a hole.
923 */
924 if (new && !PageUptodate(page))
925 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
926 wc->w_cpos, zero_from, zero_to);
927
928 flush_dcache_page(page);
929
930 if (ocfs2_should_order_data(inode)) {
931 ret = walk_page_buffers(handle,
932 page_buffers(page),
933 from, to, NULL,
934 ocfs2_journal_dirty_data);
935 if (ret < 0)
936 mlog_errno(ret);
937 }
938
939 /*
940 * We don't use generic_commit_write() because we need to
941 * handle our own i_size update.
942 */
943 ret = block_commit_write(page, from, to);
944 if (ret)
945 mlog_errno(ret);
946out:
947
948 return copied ? copied : ret;
949}
950
951/*
952 * Do the actual write of some data into an inode. Optionally allocate
953 * in order to fulfill the write.
954 *
955 * cpos is the logical cluster offset within the file to write at
956 *
957 * 'phys' is the physical mapping of that offset. a 'phys' value of
958 * zero indicates that allocation is required. In this case, data_ac
959 * and meta_ac should be valid (meta_ac can be null if metadata
960 * allocation isn't required).
961 */
962static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
963 struct buffer_head *di_bh,
964 struct ocfs2_alloc_context *data_ac,
965 struct ocfs2_alloc_context *meta_ac,
966 struct ocfs2_write_ctxt *wc)
967{
968 int ret, i, numpages = 1, new;
969 unsigned int copied = 0;
970 u32 tmp_pos;
971 u64 v_blkno, p_blkno;
972 struct address_space *mapping = file->f_mapping;
973 struct inode *inode = mapping->host;
974 unsigned int cbits = OCFS2_SB(inode->i_sb)->s_clustersize_bits;
975 unsigned long index, start;
976 struct page **cpages;
977
978 new = phys == 0 ? 1 : 0;
979
980 /*
981 * Figure out how many pages we'll be manipulating here. For
982 * non-allocating write, or any writes where cluster size is
983 * less than page size, we only need one page. Otherwise,
984 * allocating writes of cluster size larger than page size
985 * need cluster size pages.
986 */
987 if (new && !wc->w_large_pages)
988 numpages = (1 << cbits) / PAGE_SIZE;
989
990 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
991 if (!cpages) {
992 ret = -ENOMEM;
993 mlog_errno(ret);
994 return ret;
995 }
996
997 /*
998 * Fill our page array first. That way we've grabbed enough so
999 * that we can zero and flush if we error after adding the
1000 * extent.
1001 */
1002 if (new) {
1003 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1004 wc->w_cpos);
1005 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1006 } else {
1007 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1008 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1009 }
1010
1011 for(i = 0; i < numpages; i++) {
1012 index = start + i;
1013
1014 cpages[i] = grab_cache_page(mapping, index);
1015 if (!cpages[i]) {
1016 ret = -ENOMEM;
1017 mlog_errno(ret);
1018 goto out;
1019 }
1020 }
1021
1022 if (new) {
1023 /*
1024 * This is safe to call with the page locks - it won't take
1025 * any additional semaphores or cluster locks.
1026 */
1027 tmp_pos = wc->w_cpos;
1028 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1029 &tmp_pos, 1, di_bh, handle,
1030 data_ac, meta_ac, NULL);
1031 /*
1032 * This shouldn't happen because we must have already
1033 * calculated the correct meta data allocation required. The
1034 * internal tree allocation code should know how to increase
1035 * transaction credits itself.
1036 *
1037 * If need be, we could handle -EAGAIN for a
1038 * RESTART_TRANS here.
1039 */
1040 mlog_bug_on_msg(ret == -EAGAIN,
1041 "Inode %llu: EAGAIN return during allocation.\n",
1042 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1043 if (ret < 0) {
1044 mlog_errno(ret);
1045 goto out;
1046 }
1047 }
1048
1049 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL);
1050 if (ret < 0) {
1051
1052 /*
1053 * XXX: Should we go readonly here?
1054 */
1055
1056 mlog_errno(ret);
1057 goto out;
1058 }
1059
1060 BUG_ON(p_blkno == 0);
1061
1062 for(i = 0; i < numpages; i++) {
1063 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1064 wc, new);
1065 if (ret < 0) {
1066 mlog_errno(ret);
1067 goto out;
1068 }
1069
1070 copied += ret;
1071 }
1072
1073out:
1074 for(i = 0; i < numpages; i++) {
1075 unlock_page(cpages[i]);
1076 mark_page_accessed(cpages[i]);
1077 page_cache_release(cpages[i]);
1078 }
1079 kfree(cpages);
1080
1081 return copied ? copied : ret;
1082}
1083
1084static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1085 struct ocfs2_super *osb, loff_t pos,
1086 size_t count, ocfs2_page_writer *cb,
1087 void *cb_priv)
1088{
1089 wc->w_count = count;
1090 wc->w_pos = pos;
1091 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1092 wc->w_finished_copy = 0;
1093
1094 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1095 wc->w_large_pages = 1;
1096 else
1097 wc->w_large_pages = 0;
1098
1099 wc->w_write_data_page = cb;
1100 wc->w_private = cb_priv;
1101}
1102
1103/*
1104 * Write a cluster to an inode. The cluster may not be allocated yet,
1105 * in which case it will be. This only exists for buffered writes -
1106 * O_DIRECT takes a more "traditional" path through the kernel.
1107 *
1108 * The caller is responsible for incrementing pos, written counts, etc
1109 *
1110 * For file systems that don't support sparse files, pre-allocation
1111 * and page zeroing up until cpos should be done prior to this
1112 * function call.
1113 *
1114 * Callers should be holding i_sem, and the rw cluster lock.
1115 *
1116 * Returns the number of user bytes written, or less than zero for
1117 * error.
1118 */
1119ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1120 size_t count, ocfs2_page_writer *actor,
1121 void *priv)
1122{
1123 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1124 ssize_t written = 0;
1125 u32 phys;
1126 struct inode *inode = file->f_mapping->host;
1127 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1128 struct buffer_head *di_bh = NULL;
1129 struct ocfs2_dinode *di;
1130 struct ocfs2_alloc_context *data_ac = NULL;
1131 struct ocfs2_alloc_context *meta_ac = NULL;
1132 handle_t *handle;
1133 struct ocfs2_write_ctxt wc;
1134
1135 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1136
1137 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1138 if (ret) {
1139 mlog_errno(ret);
1140 goto out;
1141 }
1142 di = (struct ocfs2_dinode *)di_bh->b_data;
1143
1144 /*
1145 * Take alloc sem here to prevent concurrent lookups. That way
1146 * the mapping, zeroing and tree manipulation within
1147 * ocfs2_write() will be safe against ->readpage(). This
1148 * should also serve to lock out allocation from a shared
1149 * writeable region.
1150 */
1151 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1152
1153 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL);
1154 if (ret) {
1155 mlog_errno(ret);
1156 goto out_meta;
1157 }
1158
1159 /* phys == 0 means that allocation is required. */
1160 if (phys == 0) {
1161 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1162 if (ret) {
1163 mlog_errno(ret);
1164 goto out_meta;
1165 }
1166
1167 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1168 }
1169
1170 ret = ocfs2_data_lock(inode, 1);
1171 if (ret) {
1172 mlog_errno(ret);
1173 goto out_meta;
1174 }
1175
1176 handle = ocfs2_start_trans(osb, credits);
1177 if (IS_ERR(handle)) {
1178 ret = PTR_ERR(handle);
1179 mlog_errno(ret);
1180 goto out_data;
1181 }
1182
1183 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1184 meta_ac, &wc);
1185 if (written < 0) {
1186 ret = written;
1187 mlog_errno(ret);
1188 goto out_commit;
1189 }
1190
1191 ret = ocfs2_journal_access(handle, inode, di_bh,
1192 OCFS2_JOURNAL_ACCESS_WRITE);
1193 if (ret) {
1194 mlog_errno(ret);
1195 goto out_commit;
1196 }
1197
1198 pos += written;
1199 if (pos > inode->i_size) {
1200 i_size_write(inode, pos);
1201 mark_inode_dirty(inode);
1202 }
1203 inode->i_blocks = ocfs2_align_bytes_to_sectors((u64)(i_size_read(inode)));
1204 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1205 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1206 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1207 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1208
1209 ret = ocfs2_journal_dirty(handle, di_bh);
1210 if (ret)
1211 mlog_errno(ret);
1212
1213out_commit:
1214 ocfs2_commit_trans(osb, handle);
1215
1216out_data:
1217 ocfs2_data_unlock(inode, 1);
1218
1219out_meta:
1220 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1221 ocfs2_meta_unlock(inode, 1);
1222
1223out:
1224 brelse(di_bh);
1225 if (data_ac)
1226 ocfs2_free_alloc_context(data_ac);
1227 if (meta_ac)
1228 ocfs2_free_alloc_context(meta_ac);
1229
1230 return written ? written : ret;
1231}
1232
f5e54d6e 1233const struct address_space_operations ocfs2_aops = {
ccd979bd
MF
1234 .readpage = ocfs2_readpage,
1235 .writepage = ocfs2_writepage,
ccd979bd
MF
1236 .bmap = ocfs2_bmap,
1237 .sync_page = block_sync_page,
03f981cf
JB
1238 .direct_IO = ocfs2_direct_IO,
1239 .invalidatepage = ocfs2_invalidatepage,
1240 .releasepage = ocfs2_releasepage,
1241 .migratepage = buffer_migrate_page,
ccd979bd 1242};
This page took 0.197842 seconds and 5 git commands to generate.