ocfs2: fix race between dio and recover orphan
[deliverable/linux.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
d2849fb2
JK
240 "Inode %llu has with inline data has bad size: %Lu",
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 * "So what we do is to permit the ->get_blocks function to populate
507 * bh.b_size with the size of IO which is permitted at this offset and
508 * this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
516 struct buffer_head *bh_result, int create)
517{
518 int ret;
49255dce
JQ
519 u32 cpos = 0;
520 int alloc_locked = 0;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce 525 unsigned long len = bh_result->b_size;
ae1f0814 526 unsigned int clusters_to_alloc = 0, contig_clusters = 0;
49255dce
JQ
527
528 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 529
ccd979bd
MF
530 /* This function won't even be called if the request isn't all
531 * nicely aligned and of the right size, so there's no need
532 * for us to check any of that. */
533
25baf2da 534 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 535
ccd979bd
MF
536 /* This figures out the size of the next contiguous block, and
537 * our logical offset */
363041a5 538 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 539 &contig_blocks, &ext_flags);
ccd979bd
MF
540 if (ret) {
541 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542 (unsigned long long)iblock);
543 ret = -EIO;
544 goto bail;
545 }
546
cbaee472
TM
547 /* We should already CoW the refcounted extent in case of create. */
548 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
49255dce
JQ
550 /* allocate blocks if no p_blkno is found, and create == 1 */
551 if (!p_blkno && create) {
552 ret = ocfs2_inode_lock(inode, NULL, 1);
553 if (ret < 0) {
554 mlog_errno(ret);
555 goto bail;
556 }
557
558 alloc_locked = 1;
559
560 /* fill hole, allocate blocks can't be larger than the size
561 * of the hole */
562 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
ae1f0814
JQ
563 contig_clusters = ocfs2_clusters_for_blocks(inode->i_sb,
564 contig_blocks);
565 if (clusters_to_alloc > contig_clusters)
566 clusters_to_alloc = contig_clusters;
49255dce
JQ
567
568 /* allocate extent and insert them into the extent tree */
569 ret = ocfs2_extend_allocation(inode, cpos,
570 clusters_to_alloc, 0);
571 if (ret < 0) {
572 mlog_errno(ret);
573 goto bail;
574 }
575
576 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
577 &contig_blocks, &ext_flags);
578 if (ret < 0) {
579 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
580 (unsigned long long)iblock);
581 ret = -EIO;
582 goto bail;
583 }
584 }
585
25baf2da
MF
586 /*
587 * get_more_blocks() expects us to describe a hole by clearing
588 * the mapped bit on bh_result().
49cb8d2d
MF
589 *
590 * Consider an unwritten extent as a hole.
25baf2da 591 */
49cb8d2d 592 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 593 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 594 else
25baf2da 595 clear_buffer_mapped(bh_result);
ccd979bd
MF
596
597 /* make sure we don't map more than max_blocks blocks here as
598 that's all the kernel will handle at this point. */
599 if (max_blocks < contig_blocks)
600 contig_blocks = max_blocks;
601 bh_result->b_size = contig_blocks << blocksize_bits;
602bail:
49255dce
JQ
603 if (alloc_locked)
604 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
605 return ret;
606}
607
2bd63216 608/*
ccd979bd 609 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
610 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
611 * to protect io on one node from truncation on another.
ccd979bd
MF
612 */
613static void ocfs2_dio_end_io(struct kiocb *iocb,
614 loff_t offset,
615 ssize_t bytes,
7b7a8665 616 void *private)
ccd979bd 617{
496ad9aa 618 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 619 int level;
ccd979bd
MF
620
621 /* this io's submitter should not have unlocked this before we could */
622 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 623
a11f7e63
MF
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
626
c18ceab0 627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
628 }
629
512f62ac
JQ
630 /* Let rw unlock to be done later to protect append direct io write */
631 if (offset + bytes <= i_size_read(inode)) {
632 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1 633
512f62ac
JQ
634 level = ocfs2_iocb_rw_locked_level(iocb);
635 ocfs2_rw_unlock(inode, level);
636 }
ccd979bd
MF
637}
638
03f981cf
JB
639static int ocfs2_releasepage(struct page *page, gfp_t wait)
640{
03f981cf
JB
641 if (!page_has_buffers(page))
642 return 0;
41ecc345 643 return try_to_free_buffers(page);
03f981cf
JB
644}
645
24c40b32
JQ
646static int ocfs2_is_overwrite(struct ocfs2_super *osb,
647 struct inode *inode, loff_t offset)
648{
649 int ret = 0;
650 u32 v_cpos = 0;
651 u32 p_cpos = 0;
652 unsigned int num_clusters = 0;
653 unsigned int ext_flags = 0;
654
655 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
656 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
657 &num_clusters, &ext_flags);
658 if (ret < 0) {
659 mlog_errno(ret);
660 return ret;
661 }
662
663 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
664 return 1;
665
666 return 0;
667}
668
14a5275d
JQ
669static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
670 struct inode *inode, loff_t offset,
671 u64 zero_len, int cluster_align)
672{
673 u32 p_cpos = 0;
674 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
675 unsigned int num_clusters = 0;
676 unsigned int ext_flags = 0;
677 int ret = 0;
678
679 if (offset <= i_size_read(inode) || cluster_align)
680 return 0;
681
682 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
683 &ext_flags);
684 if (ret < 0) {
685 mlog_errno(ret);
686 return ret;
687 }
688
689 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
690 u64 s = i_size_read(inode);
32e5a2a2 691 sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
14a5275d
JQ
692 (do_div(s, osb->s_clustersize) >> 9);
693
694 ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
695 zero_len >> 9, GFP_NOFS, false);
696 if (ret < 0)
697 mlog_errno(ret);
698 }
699
700 return ret;
701}
702
703static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
704 struct inode *inode, loff_t offset)
705{
706 u64 zero_start, zero_len, total_zero_len;
707 u32 p_cpos = 0, clusters_to_add;
708 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
709 unsigned int num_clusters = 0;
710 unsigned int ext_flags = 0;
711 u32 size_div, offset_div;
712 int ret = 0;
713
714 {
715 u64 o = offset;
716 u64 s = i_size_read(inode);
717
718 offset_div = do_div(o, osb->s_clustersize);
719 size_div = do_div(s, osb->s_clustersize);
720 }
721
722 if (offset <= i_size_read(inode))
723 return 0;
724
725 clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
726 ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
727 total_zero_len = offset - i_size_read(inode);
728 if (clusters_to_add)
729 total_zero_len -= offset_div;
730
731 /* Allocate clusters to fill out holes, and this is only needed
732 * when we add more than one clusters. Otherwise the cluster will
733 * be allocated during direct IO */
734 if (clusters_to_add > 1) {
735 ret = ocfs2_extend_allocation(inode,
736 OCFS2_I(inode)->ip_clusters,
737 clusters_to_add - 1, 0);
738 if (ret) {
739 mlog_errno(ret);
740 goto out;
741 }
742 }
743
744 while (total_zero_len) {
745 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
746 &ext_flags);
747 if (ret < 0) {
748 mlog_errno(ret);
749 goto out;
750 }
751
752 zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
753 size_div;
754 zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
755 size_div;
756 zero_len = min(total_zero_len, zero_len);
757
758 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
759 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
760 zero_start >> 9, zero_len >> 9,
761 GFP_NOFS, false);
762 if (ret < 0) {
763 mlog_errno(ret);
764 goto out;
765 }
766 }
767
768 total_zero_len -= zero_len;
769 v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
770
771 /* Only at first iteration can be cluster not aligned.
772 * So set size_div to 0 for the rest */
773 size_div = 0;
774 }
775
776out:
777 return ret;
778}
779
24c40b32
JQ
780static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
781 struct iov_iter *iter,
782 loff_t offset)
783{
784 ssize_t ret = 0;
785 ssize_t written = 0;
786 bool orphaned = false;
787 int is_overwrite = 0;
788 struct file *file = iocb->ki_filp;
789 struct inode *inode = file_inode(file)->i_mapping->host;
790 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
791 struct buffer_head *di_bh = NULL;
792 size_t count = iter->count;
793 journal_t *journal = osb->journal->j_journal;
14a5275d
JQ
794 u64 zero_len_head, zero_len_tail;
795 int cluster_align_head, cluster_align_tail;
24c40b32
JQ
796 loff_t final_size = offset + count;
797 int append_write = offset >= i_size_read(inode) ? 1 : 0;
798 unsigned int num_clusters = 0;
799 unsigned int ext_flags = 0;
800
801 {
802 u64 o = offset;
14a5275d
JQ
803 u64 s = i_size_read(inode);
804
805 zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
806 cluster_align_head = !zero_len_head;
24c40b32 807
14a5275d
JQ
808 zero_len_tail = osb->s_clustersize -
809 do_div(s, osb->s_clustersize);
810 if ((offset - i_size_read(inode)) < zero_len_tail)
811 zero_len_tail = offset - i_size_read(inode);
812 cluster_align_tail = !zero_len_tail;
24c40b32
JQ
813 }
814
815 /*
816 * when final_size > inode->i_size, inode->i_size will be
817 * updated after direct write, so add the inode to orphan
818 * dir first.
819 */
820 if (final_size > i_size_read(inode)) {
821 ret = ocfs2_add_inode_to_orphan(osb, inode);
822 if (ret < 0) {
823 mlog_errno(ret);
824 goto out;
825 }
826 orphaned = true;
827 }
828
829 if (append_write) {
7e9b1955 830 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
831 if (ret < 0) {
832 mlog_errno(ret);
833 goto clean_orphan;
834 }
835
14a5275d
JQ
836 /* zeroing out the previously allocated cluster tail
837 * that but not zeroed */
24c40b32 838 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
14a5275d
JQ
839 ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
840 zero_len_tail, cluster_align_tail);
24c40b32 841 else
14a5275d 842 ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
24c40b32
JQ
843 offset);
844 if (ret < 0) {
845 mlog_errno(ret);
846 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
847 goto clean_orphan;
848 }
849
850 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
851 if (is_overwrite < 0) {
852 mlog_errno(is_overwrite);
853 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
854 goto clean_orphan;
855 }
856
857 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
858 }
859
17f8c842
OS
860 written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
861 offset, ocfs2_direct_IO_get_blocks,
862 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
863 if (unlikely(written < 0)) {
864 loff_t i_size = i_size_read(inode);
865
866 if (offset + count > i_size) {
867 ret = ocfs2_inode_lock(inode, &di_bh, 1);
868 if (ret < 0) {
869 mlog_errno(ret);
870 goto clean_orphan;
871 }
872
873 if (i_size == i_size_read(inode)) {
874 ret = ocfs2_truncate_file(inode, di_bh,
875 i_size);
876 if (ret < 0) {
877 if (ret != -ENOSPC)
878 mlog_errno(ret);
879
880 ocfs2_inode_unlock(inode, 1);
881 brelse(di_bh);
882 goto clean_orphan;
883 }
884 }
885
886 ocfs2_inode_unlock(inode, 1);
887 brelse(di_bh);
888
889 ret = jbd2_journal_force_commit(journal);
890 if (ret < 0)
891 mlog_errno(ret);
892 }
bdd86215 893 } else if (written > 0 && append_write && !is_overwrite &&
14a5275d
JQ
894 !cluster_align_head) {
895 /* zeroing out the allocated cluster head */
24c40b32
JQ
896 u32 p_cpos = 0;
897 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
898
37a8d89a
JQ
899 ret = ocfs2_inode_lock(inode, NULL, 0);
900 if (ret < 0) {
901 mlog_errno(ret);
902 goto clean_orphan;
903 }
904
24c40b32
JQ
905 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
906 &num_clusters, &ext_flags);
907 if (ret < 0) {
908 mlog_errno(ret);
37a8d89a 909 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
910 goto clean_orphan;
911 }
912
913 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
914
915 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
32e5a2a2 916 (u64)p_cpos << (osb->s_clustersize_bits - 9),
14a5275d 917 zero_len_head >> 9, GFP_NOFS, false);
24c40b32
JQ
918 if (ret < 0)
919 mlog_errno(ret);
37a8d89a
JQ
920
921 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
922 }
923
924clean_orphan:
925 if (orphaned) {
926 int tmp_ret;
927 int update_isize = written > 0 ? 1 : 0;
928 loff_t end = update_isize ? offset + written : 0;
929
cf1776a9
JQ
930 tmp_ret = ocfs2_inode_lock(inode, &di_bh, 1);
931 if (tmp_ret < 0) {
932 ret = tmp_ret;
933 mlog_errno(ret);
934 goto out;
935 }
936
937 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
24c40b32
JQ
938 update_isize, end);
939 if (tmp_ret < 0) {
940 ret = tmp_ret;
cf1776a9 941 mlog_errno(ret);
24c40b32
JQ
942 goto out;
943 }
944
cf1776a9
JQ
945 ocfs2_inode_unlock(inode, 1);
946
24c40b32
JQ
947 tmp_ret = jbd2_journal_force_commit(journal);
948 if (tmp_ret < 0) {
949 ret = tmp_ret;
950 mlog_errno(tmp_ret);
951 }
952 }
953
954out:
955 if (ret >= 0)
956 ret = written;
957 return ret;
958}
959
22c6186e 960static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
d8d3d94b 961 loff_t offset)
ccd979bd
MF
962{
963 struct file *file = iocb->ki_filp;
496ad9aa 964 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
965 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
966 int full_coherency = !(osb->s_mount_opt &
967 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 968
6798d35a
MF
969 /*
970 * Fallback to buffered I/O if we see an inode without
971 * extents.
972 */
973 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
974 return 0;
975
24c40b32
JQ
976 /* Fallback to buffered I/O if we are appending and
977 * concurrent O_DIRECT writes are allowed.
978 */
979 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
980 return 0;
981
6f673763 982 if (iov_iter_rw(iter) == READ)
17f8c842
OS
983 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
984 iter, offset,
985 ocfs2_direct_IO_get_blocks,
986 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
987 else
988 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
989}
990
9517bac6
MF
991static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
992 u32 cpos,
993 unsigned int *start,
994 unsigned int *end)
995{
996 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
997
998 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
999 unsigned int cpp;
1000
1001 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
1002
1003 cluster_start = cpos % cpp;
1004 cluster_start = cluster_start << osb->s_clustersize_bits;
1005
1006 cluster_end = cluster_start + osb->s_clustersize;
1007 }
1008
1009 BUG_ON(cluster_start > PAGE_SIZE);
1010 BUG_ON(cluster_end > PAGE_SIZE);
1011
1012 if (start)
1013 *start = cluster_start;
1014 if (end)
1015 *end = cluster_end;
1016}
1017
1018/*
1019 * 'from' and 'to' are the region in the page to avoid zeroing.
1020 *
1021 * If pagesize > clustersize, this function will avoid zeroing outside
1022 * of the cluster boundary.
1023 *
1024 * from == to == 0 is code for "zero the entire cluster region"
1025 */
1026static void ocfs2_clear_page_regions(struct page *page,
1027 struct ocfs2_super *osb, u32 cpos,
1028 unsigned from, unsigned to)
1029{
1030 void *kaddr;
1031 unsigned int cluster_start, cluster_end;
1032
1033 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1034
c4bc8dcb 1035 kaddr = kmap_atomic(page);
9517bac6
MF
1036
1037 if (from || to) {
1038 if (from > cluster_start)
1039 memset(kaddr + cluster_start, 0, from - cluster_start);
1040 if (to < cluster_end)
1041 memset(kaddr + to, 0, cluster_end - to);
1042 } else {
1043 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1044 }
1045
c4bc8dcb 1046 kunmap_atomic(kaddr);
9517bac6
MF
1047}
1048
4e9563fd
MF
1049/*
1050 * Nonsparse file systems fully allocate before we get to the write
1051 * code. This prevents ocfs2_write() from tagging the write as an
1052 * allocating one, which means ocfs2_map_page_blocks() might try to
1053 * read-in the blocks at the tail of our file. Avoid reading them by
1054 * testing i_size against each block offset.
1055 */
1056static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1057 unsigned int block_start)
1058{
1059 u64 offset = page_offset(page) + block_start;
1060
1061 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1062 return 1;
1063
1064 if (i_size_read(inode) > offset)
1065 return 1;
1066
1067 return 0;
1068}
1069
9517bac6 1070/*
ebdec241 1071 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
1072 * mapping by now though, and the entire write will be allocating or
1073 * it won't, so not much need to use BH_New.
1074 *
1075 * This will also skip zeroing, which is handled externally.
1076 */
60b11392
MF
1077int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1078 struct inode *inode, unsigned int from,
1079 unsigned int to, int new)
9517bac6
MF
1080{
1081 int ret = 0;
1082 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1083 unsigned int block_end, block_start;
1084 unsigned int bsize = 1 << inode->i_blkbits;
1085
1086 if (!page_has_buffers(page))
1087 create_empty_buffers(page, bsize, 0);
1088
1089 head = page_buffers(page);
1090 for (bh = head, block_start = 0; bh != head || !block_start;
1091 bh = bh->b_this_page, block_start += bsize) {
1092 block_end = block_start + bsize;
1093
3a307ffc
MF
1094 clear_buffer_new(bh);
1095
9517bac6
MF
1096 /*
1097 * Ignore blocks outside of our i/o range -
1098 * they may belong to unallocated clusters.
1099 */
60b11392 1100 if (block_start >= to || block_end <= from) {
9517bac6
MF
1101 if (PageUptodate(page))
1102 set_buffer_uptodate(bh);
1103 continue;
1104 }
1105
1106 /*
1107 * For an allocating write with cluster size >= page
1108 * size, we always write the entire page.
1109 */
3a307ffc
MF
1110 if (new)
1111 set_buffer_new(bh);
9517bac6
MF
1112
1113 if (!buffer_mapped(bh)) {
1114 map_bh(bh, inode->i_sb, *p_blkno);
1115 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1116 }
1117
1118 if (PageUptodate(page)) {
1119 if (!buffer_uptodate(bh))
1120 set_buffer_uptodate(bh);
1121 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 1122 !buffer_new(bh) &&
4e9563fd 1123 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 1124 (block_start < from || block_end > to)) {
9517bac6
MF
1125 ll_rw_block(READ, 1, &bh);
1126 *wait_bh++=bh;
1127 }
1128
1129 *p_blkno = *p_blkno + 1;
1130 }
1131
1132 /*
1133 * If we issued read requests - let them complete.
1134 */
1135 while(wait_bh > wait) {
1136 wait_on_buffer(*--wait_bh);
1137 if (!buffer_uptodate(*wait_bh))
1138 ret = -EIO;
1139 }
1140
1141 if (ret == 0 || !new)
1142 return ret;
1143
1144 /*
1145 * If we get -EIO above, zero out any newly allocated blocks
1146 * to avoid exposing stale data.
1147 */
1148 bh = head;
1149 block_start = 0;
1150 do {
9517bac6
MF
1151 block_end = block_start + bsize;
1152 if (block_end <= from)
1153 goto next_bh;
1154 if (block_start >= to)
1155 break;
1156
eebd2aa3 1157 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1158 set_buffer_uptodate(bh);
1159 mark_buffer_dirty(bh);
1160
1161next_bh:
1162 block_start = block_end;
1163 bh = bh->b_this_page;
1164 } while (bh != head);
1165
1166 return ret;
1167}
1168
3a307ffc
MF
1169#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1170#define OCFS2_MAX_CTXT_PAGES 1
1171#else
1172#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1173#endif
1174
1175#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1176
6af67d82 1177/*
3a307ffc 1178 * Describe the state of a single cluster to be written to.
6af67d82 1179 */
3a307ffc
MF
1180struct ocfs2_write_cluster_desc {
1181 u32 c_cpos;
1182 u32 c_phys;
1183 /*
1184 * Give this a unique field because c_phys eventually gets
1185 * filled.
1186 */
1187 unsigned c_new;
b27b7cbc 1188 unsigned c_unwritten;
e7432675 1189 unsigned c_needs_zero;
3a307ffc 1190};
6af67d82 1191
3a307ffc
MF
1192struct ocfs2_write_ctxt {
1193 /* Logical cluster position / len of write */
1194 u32 w_cpos;
1195 u32 w_clen;
6af67d82 1196
e7432675
SM
1197 /* First cluster allocated in a nonsparse extend */
1198 u32 w_first_new_cpos;
1199
3a307ffc 1200 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1201
3a307ffc
MF
1202 /*
1203 * This is true if page_size > cluster_size.
1204 *
1205 * It triggers a set of special cases during write which might
1206 * have to deal with allocating writes to partial pages.
1207 */
1208 unsigned int w_large_pages;
6af67d82 1209
3a307ffc
MF
1210 /*
1211 * Pages involved in this write.
1212 *
1213 * w_target_page is the page being written to by the user.
1214 *
1215 * w_pages is an array of pages which always contains
1216 * w_target_page, and in the case of an allocating write with
1217 * page_size < cluster size, it will contain zero'd and mapped
1218 * pages adjacent to w_target_page which need to be written
1219 * out in so that future reads from that region will get
1220 * zero's.
1221 */
3a307ffc 1222 unsigned int w_num_pages;
83fd9c7f 1223 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1224 struct page *w_target_page;
eeb47d12 1225
5cffff9e
WW
1226 /*
1227 * w_target_locked is used for page_mkwrite path indicating no unlocking
1228 * against w_target_page in ocfs2_write_end_nolock.
1229 */
1230 unsigned int w_target_locked:1;
1231
3a307ffc
MF
1232 /*
1233 * ocfs2_write_end() uses this to know what the real range to
1234 * write in the target should be.
1235 */
1236 unsigned int w_target_from;
1237 unsigned int w_target_to;
1238
1239 /*
1240 * We could use journal_current_handle() but this is cleaner,
1241 * IMHO -Mark
1242 */
1243 handle_t *w_handle;
1244
1245 struct buffer_head *w_di_bh;
b27b7cbc
MF
1246
1247 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1248};
1249
1d410a6e 1250void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1251{
1252 int i;
1253
1d410a6e
MF
1254 for(i = 0; i < num_pages; i++) {
1255 if (pages[i]) {
1256 unlock_page(pages[i]);
1257 mark_page_accessed(pages[i]);
1258 page_cache_release(pages[i]);
1259 }
6af67d82 1260 }
1d410a6e
MF
1261}
1262
136f49b9 1263static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1264{
5cffff9e
WW
1265 int i;
1266
1267 /*
1268 * w_target_locked is only set to true in the page_mkwrite() case.
1269 * The intent is to allow us to lock the target page from write_begin()
1270 * to write_end(). The caller must hold a ref on w_target_page.
1271 */
1272 if (wc->w_target_locked) {
1273 BUG_ON(!wc->w_target_page);
1274 for (i = 0; i < wc->w_num_pages; i++) {
1275 if (wc->w_target_page == wc->w_pages[i]) {
1276 wc->w_pages[i] = NULL;
1277 break;
1278 }
1279 }
1280 mark_page_accessed(wc->w_target_page);
1281 page_cache_release(wc->w_target_page);
1282 }
1d410a6e 1283 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1284}
6af67d82 1285
136f49b9
JB
1286static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1287{
1288 ocfs2_unlock_pages(wc);
3a307ffc
MF
1289 brelse(wc->w_di_bh);
1290 kfree(wc);
1291}
1292
1293static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1294 struct ocfs2_super *osb, loff_t pos,
607d44aa 1295 unsigned len, struct buffer_head *di_bh)
3a307ffc 1296{
30b8548f 1297 u32 cend;
3a307ffc
MF
1298 struct ocfs2_write_ctxt *wc;
1299
1300 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1301 if (!wc)
1302 return -ENOMEM;
6af67d82 1303
3a307ffc 1304 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1305 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1306 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1307 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1308 get_bh(di_bh);
1309 wc->w_di_bh = di_bh;
6af67d82 1310
3a307ffc
MF
1311 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1312 wc->w_large_pages = 1;
1313 else
1314 wc->w_large_pages = 0;
1315
b27b7cbc
MF
1316 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1317
3a307ffc 1318 *wcp = wc;
6af67d82 1319
3a307ffc 1320 return 0;
6af67d82
MF
1321}
1322
9517bac6 1323/*
3a307ffc
MF
1324 * If a page has any new buffers, zero them out here, and mark them uptodate
1325 * and dirty so they'll be written out (in order to prevent uninitialised
1326 * block data from leaking). And clear the new bit.
9517bac6 1327 */
3a307ffc 1328static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1329{
3a307ffc
MF
1330 unsigned int block_start, block_end;
1331 struct buffer_head *head, *bh;
9517bac6 1332
3a307ffc
MF
1333 BUG_ON(!PageLocked(page));
1334 if (!page_has_buffers(page))
1335 return;
9517bac6 1336
3a307ffc
MF
1337 bh = head = page_buffers(page);
1338 block_start = 0;
1339 do {
1340 block_end = block_start + bh->b_size;
1341
1342 if (buffer_new(bh)) {
1343 if (block_end > from && block_start < to) {
1344 if (!PageUptodate(page)) {
1345 unsigned start, end;
3a307ffc
MF
1346
1347 start = max(from, block_start);
1348 end = min(to, block_end);
1349
eebd2aa3 1350 zero_user_segment(page, start, end);
3a307ffc
MF
1351 set_buffer_uptodate(bh);
1352 }
1353
1354 clear_buffer_new(bh);
1355 mark_buffer_dirty(bh);
1356 }
1357 }
9517bac6 1358
3a307ffc
MF
1359 block_start = block_end;
1360 bh = bh->b_this_page;
1361 } while (bh != head);
1362}
1363
1364/*
1365 * Only called when we have a failure during allocating write to write
1366 * zero's to the newly allocated region.
1367 */
1368static void ocfs2_write_failure(struct inode *inode,
1369 struct ocfs2_write_ctxt *wc,
1370 loff_t user_pos, unsigned user_len)
1371{
1372 int i;
5c26a7b7
MF
1373 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1374 to = user_pos + user_len;
3a307ffc
MF
1375 struct page *tmppage;
1376
5c26a7b7 1377 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1378
3a307ffc
MF
1379 for(i = 0; i < wc->w_num_pages; i++) {
1380 tmppage = wc->w_pages[i];
9517bac6 1381
961cecbe 1382 if (page_has_buffers(tmppage)) {
53ef99ca 1383 if (ocfs2_should_order_data(inode))
2b4e30fb 1384 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1385
1386 block_commit_write(tmppage, from, to);
1387 }
9517bac6 1388 }
9517bac6
MF
1389}
1390
3a307ffc
MF
1391static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1392 struct ocfs2_write_ctxt *wc,
1393 struct page *page, u32 cpos,
1394 loff_t user_pos, unsigned user_len,
1395 int new)
9517bac6 1396{
3a307ffc
MF
1397 int ret;
1398 unsigned int map_from = 0, map_to = 0;
9517bac6 1399 unsigned int cluster_start, cluster_end;
3a307ffc 1400 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1401
3a307ffc 1402 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1403 &cluster_start, &cluster_end);
1404
272b62c1
GR
1405 /* treat the write as new if the a hole/lseek spanned across
1406 * the page boundary.
1407 */
1408 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1409 (page_offset(page) <= user_pos));
1410
3a307ffc
MF
1411 if (page == wc->w_target_page) {
1412 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1413 map_to = map_from + user_len;
1414
1415 if (new)
1416 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1417 cluster_start, cluster_end,
1418 new);
1419 else
1420 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1421 map_from, map_to, new);
1422 if (ret) {
9517bac6
MF
1423 mlog_errno(ret);
1424 goto out;
1425 }
1426
3a307ffc
MF
1427 user_data_from = map_from;
1428 user_data_to = map_to;
9517bac6 1429 if (new) {
3a307ffc
MF
1430 map_from = cluster_start;
1431 map_to = cluster_end;
9517bac6
MF
1432 }
1433 } else {
1434 /*
1435 * If we haven't allocated the new page yet, we
1436 * shouldn't be writing it out without copying user
1437 * data. This is likely a math error from the caller.
1438 */
1439 BUG_ON(!new);
1440
3a307ffc
MF
1441 map_from = cluster_start;
1442 map_to = cluster_end;
9517bac6
MF
1443
1444 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1445 cluster_start, cluster_end, new);
9517bac6
MF
1446 if (ret) {
1447 mlog_errno(ret);
1448 goto out;
1449 }
1450 }
1451
1452 /*
1453 * Parts of newly allocated pages need to be zero'd.
1454 *
1455 * Above, we have also rewritten 'to' and 'from' - as far as
1456 * the rest of the function is concerned, the entire cluster
1457 * range inside of a page needs to be written.
1458 *
1459 * We can skip this if the page is up to date - it's already
1460 * been zero'd from being read in as a hole.
1461 */
1462 if (new && !PageUptodate(page))
1463 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1464 cpos, user_data_from, user_data_to);
9517bac6
MF
1465
1466 flush_dcache_page(page);
1467
9517bac6 1468out:
3a307ffc 1469 return ret;
9517bac6
MF
1470}
1471
1472/*
3a307ffc 1473 * This function will only grab one clusters worth of pages.
9517bac6 1474 */
3a307ffc
MF
1475static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1476 struct ocfs2_write_ctxt *wc,
693c241a
JB
1477 u32 cpos, loff_t user_pos,
1478 unsigned user_len, int new,
7307de80 1479 struct page *mmap_page)
9517bac6 1480{
3a307ffc 1481 int ret = 0, i;
693c241a 1482 unsigned long start, target_index, end_index, index;
9517bac6 1483 struct inode *inode = mapping->host;
693c241a 1484 loff_t last_byte;
9517bac6 1485
3a307ffc 1486 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1487
1488 /*
1489 * Figure out how many pages we'll be manipulating here. For
60b11392 1490 * non allocating write, we just change the one
693c241a
JB
1491 * page. Otherwise, we'll need a whole clusters worth. If we're
1492 * writing past i_size, we only need enough pages to cover the
1493 * last page of the write.
9517bac6 1494 */
9517bac6 1495 if (new) {
3a307ffc
MF
1496 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1497 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1498 /*
1499 * We need the index *past* the last page we could possibly
1500 * touch. This is the page past the end of the write or
1501 * i_size, whichever is greater.
1502 */
1503 last_byte = max(user_pos + user_len, i_size_read(inode));
1504 BUG_ON(last_byte < 1);
1505 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1506 if ((start + wc->w_num_pages) > end_index)
1507 wc->w_num_pages = end_index - start;
9517bac6 1508 } else {
3a307ffc
MF
1509 wc->w_num_pages = 1;
1510 start = target_index;
9517bac6
MF
1511 }
1512
3a307ffc 1513 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1514 index = start + i;
1515
7307de80
MF
1516 if (index == target_index && mmap_page) {
1517 /*
1518 * ocfs2_pagemkwrite() is a little different
1519 * and wants us to directly use the page
1520 * passed in.
1521 */
1522 lock_page(mmap_page);
1523
5cffff9e 1524 /* Exit and let the caller retry */
7307de80 1525 if (mmap_page->mapping != mapping) {
5cffff9e 1526 WARN_ON(mmap_page->mapping);
7307de80 1527 unlock_page(mmap_page);
5cffff9e 1528 ret = -EAGAIN;
7307de80
MF
1529 goto out;
1530 }
1531
1532 page_cache_get(mmap_page);
1533 wc->w_pages[i] = mmap_page;
5cffff9e 1534 wc->w_target_locked = true;
7307de80
MF
1535 } else {
1536 wc->w_pages[i] = find_or_create_page(mapping, index,
1537 GFP_NOFS);
1538 if (!wc->w_pages[i]) {
1539 ret = -ENOMEM;
1540 mlog_errno(ret);
1541 goto out;
1542 }
9517bac6 1543 }
1269529b 1544 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1545
1546 if (index == target_index)
1547 wc->w_target_page = wc->w_pages[i];
9517bac6 1548 }
3a307ffc 1549out:
5cffff9e
WW
1550 if (ret)
1551 wc->w_target_locked = false;
3a307ffc
MF
1552 return ret;
1553}
1554
1555/*
1556 * Prepare a single cluster for write one cluster into the file.
1557 */
1558static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1559 u32 phys, unsigned int unwritten,
e7432675 1560 unsigned int should_zero,
b27b7cbc 1561 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1562 struct ocfs2_alloc_context *meta_ac,
1563 struct ocfs2_write_ctxt *wc, u32 cpos,
1564 loff_t user_pos, unsigned user_len)
1565{
e7432675 1566 int ret, i, new;
3a307ffc
MF
1567 u64 v_blkno, p_blkno;
1568 struct inode *inode = mapping->host;
f99b9b7c 1569 struct ocfs2_extent_tree et;
3a307ffc
MF
1570
1571 new = phys == 0 ? 1 : 0;
9517bac6 1572 if (new) {
3a307ffc
MF
1573 u32 tmp_pos;
1574
9517bac6
MF
1575 /*
1576 * This is safe to call with the page locks - it won't take
1577 * any additional semaphores or cluster locks.
1578 */
3a307ffc 1579 tmp_pos = cpos;
0eb8d47e
TM
1580 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1581 &tmp_pos, 1, 0, wc->w_di_bh,
1582 wc->w_handle, data_ac,
1583 meta_ac, NULL);
9517bac6
MF
1584 /*
1585 * This shouldn't happen because we must have already
1586 * calculated the correct meta data allocation required. The
1587 * internal tree allocation code should know how to increase
1588 * transaction credits itself.
1589 *
1590 * If need be, we could handle -EAGAIN for a
1591 * RESTART_TRANS here.
1592 */
1593 mlog_bug_on_msg(ret == -EAGAIN,
1594 "Inode %llu: EAGAIN return during allocation.\n",
1595 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1596 if (ret < 0) {
1597 mlog_errno(ret);
1598 goto out;
1599 }
b27b7cbc 1600 } else if (unwritten) {
5e404e9e
JB
1601 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1602 wc->w_di_bh);
f99b9b7c 1603 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1604 wc->w_handle, cpos, 1, phys,
f99b9b7c 1605 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1606 if (ret < 0) {
1607 mlog_errno(ret);
1608 goto out;
1609 }
1610 }
3a307ffc 1611
b27b7cbc 1612 if (should_zero)
3a307ffc 1613 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1614 else
3a307ffc 1615 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1616
3a307ffc
MF
1617 /*
1618 * The only reason this should fail is due to an inability to
1619 * find the extent added.
1620 */
49cb8d2d
MF
1621 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1622 NULL);
9517bac6 1623 if (ret < 0) {
61fb9ea4 1624 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1625 "at logical block %llu",
1626 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1627 (unsigned long long)v_blkno);
9517bac6
MF
1628 goto out;
1629 }
1630
1631 BUG_ON(p_blkno == 0);
1632
3a307ffc
MF
1633 for(i = 0; i < wc->w_num_pages; i++) {
1634 int tmpret;
9517bac6 1635
3a307ffc
MF
1636 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1637 wc->w_pages[i], cpos,
b27b7cbc
MF
1638 user_pos, user_len,
1639 should_zero);
3a307ffc
MF
1640 if (tmpret) {
1641 mlog_errno(tmpret);
1642 if (ret == 0)
cbfa9639 1643 ret = tmpret;
3a307ffc 1644 }
9517bac6
MF
1645 }
1646
3a307ffc
MF
1647 /*
1648 * We only have cleanup to do in case of allocating write.
1649 */
1650 if (ret && new)
1651 ocfs2_write_failure(inode, wc, user_pos, user_len);
1652
9517bac6 1653out:
9517bac6 1654
3a307ffc 1655 return ret;
9517bac6
MF
1656}
1657
0d172baa
MF
1658static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1659 struct ocfs2_alloc_context *data_ac,
1660 struct ocfs2_alloc_context *meta_ac,
1661 struct ocfs2_write_ctxt *wc,
1662 loff_t pos, unsigned len)
1663{
1664 int ret, i;
db56246c
MF
1665 loff_t cluster_off;
1666 unsigned int local_len = len;
0d172baa 1667 struct ocfs2_write_cluster_desc *desc;
db56246c 1668 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1669
1670 for (i = 0; i < wc->w_clen; i++) {
1671 desc = &wc->w_desc[i];
1672
db56246c
MF
1673 /*
1674 * We have to make sure that the total write passed in
1675 * doesn't extend past a single cluster.
1676 */
1677 local_len = len;
1678 cluster_off = pos & (osb->s_clustersize - 1);
1679 if ((cluster_off + local_len) > osb->s_clustersize)
1680 local_len = osb->s_clustersize - cluster_off;
1681
b27b7cbc 1682 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1683 desc->c_unwritten,
1684 desc->c_needs_zero,
1685 data_ac, meta_ac,
db56246c 1686 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1687 if (ret) {
1688 mlog_errno(ret);
1689 goto out;
1690 }
db56246c
MF
1691
1692 len -= local_len;
1693 pos += local_len;
0d172baa
MF
1694 }
1695
1696 ret = 0;
1697out:
1698 return ret;
1699}
1700
3a307ffc
MF
1701/*
1702 * ocfs2_write_end() wants to know which parts of the target page it
1703 * should complete the write on. It's easiest to compute them ahead of
1704 * time when a more complete view of the write is available.
1705 */
1706static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1707 struct ocfs2_write_ctxt *wc,
1708 loff_t pos, unsigned len, int alloc)
9517bac6 1709{
3a307ffc 1710 struct ocfs2_write_cluster_desc *desc;
9517bac6 1711
3a307ffc
MF
1712 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1713 wc->w_target_to = wc->w_target_from + len;
1714
1715 if (alloc == 0)
1716 return;
1717
1718 /*
1719 * Allocating write - we may have different boundaries based
1720 * on page size and cluster size.
1721 *
1722 * NOTE: We can no longer compute one value from the other as
1723 * the actual write length and user provided length may be
1724 * different.
1725 */
9517bac6 1726
3a307ffc
MF
1727 if (wc->w_large_pages) {
1728 /*
1729 * We only care about the 1st and last cluster within
b27b7cbc 1730 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1731 * value may be extended out to the start/end of a
1732 * newly allocated cluster.
1733 */
1734 desc = &wc->w_desc[0];
e7432675 1735 if (desc->c_needs_zero)
3a307ffc
MF
1736 ocfs2_figure_cluster_boundaries(osb,
1737 desc->c_cpos,
1738 &wc->w_target_from,
1739 NULL);
1740
1741 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1742 if (desc->c_needs_zero)
3a307ffc
MF
1743 ocfs2_figure_cluster_boundaries(osb,
1744 desc->c_cpos,
1745 NULL,
1746 &wc->w_target_to);
1747 } else {
1748 wc->w_target_from = 0;
1749 wc->w_target_to = PAGE_CACHE_SIZE;
1750 }
9517bac6
MF
1751}
1752
0d172baa
MF
1753/*
1754 * Populate each single-cluster write descriptor in the write context
1755 * with information about the i/o to be done.
b27b7cbc
MF
1756 *
1757 * Returns the number of clusters that will have to be allocated, as
1758 * well as a worst case estimate of the number of extent records that
1759 * would have to be created during a write to an unwritten region.
0d172baa
MF
1760 */
1761static int ocfs2_populate_write_desc(struct inode *inode,
1762 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1763 unsigned int *clusters_to_alloc,
1764 unsigned int *extents_to_split)
9517bac6 1765{
0d172baa 1766 int ret;
3a307ffc 1767 struct ocfs2_write_cluster_desc *desc;
0d172baa 1768 unsigned int num_clusters = 0;
b27b7cbc 1769 unsigned int ext_flags = 0;
0d172baa
MF
1770 u32 phys = 0;
1771 int i;
9517bac6 1772
b27b7cbc
MF
1773 *clusters_to_alloc = 0;
1774 *extents_to_split = 0;
1775
3a307ffc
MF
1776 for (i = 0; i < wc->w_clen; i++) {
1777 desc = &wc->w_desc[i];
1778 desc->c_cpos = wc->w_cpos + i;
1779
1780 if (num_clusters == 0) {
b27b7cbc
MF
1781 /*
1782 * Need to look up the next extent record.
1783 */
3a307ffc 1784 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1785 &num_clusters, &ext_flags);
3a307ffc
MF
1786 if (ret) {
1787 mlog_errno(ret);
607d44aa 1788 goto out;
3a307ffc 1789 }
b27b7cbc 1790
293b2f70
TM
1791 /* We should already CoW the refcountd extent. */
1792 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1793
b27b7cbc
MF
1794 /*
1795 * Assume worst case - that we're writing in
1796 * the middle of the extent.
1797 *
1798 * We can assume that the write proceeds from
1799 * left to right, in which case the extent
1800 * insert code is smart enough to coalesce the
1801 * next splits into the previous records created.
1802 */
1803 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1804 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1805 } else if (phys) {
1806 /*
1807 * Only increment phys if it doesn't describe
1808 * a hole.
1809 */
1810 phys++;
1811 }
1812
e7432675
SM
1813 /*
1814 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1815 * file that got extended. w_first_new_cpos tells us
1816 * where the newly allocated clusters are so we can
1817 * zero them.
1818 */
1819 if (desc->c_cpos >= wc->w_first_new_cpos) {
1820 BUG_ON(phys == 0);
1821 desc->c_needs_zero = 1;
1822 }
1823
3a307ffc
MF
1824 desc->c_phys = phys;
1825 if (phys == 0) {
1826 desc->c_new = 1;
e7432675 1827 desc->c_needs_zero = 1;
0d172baa 1828 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1829 }
e7432675
SM
1830
1831 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1832 desc->c_unwritten = 1;
e7432675
SM
1833 desc->c_needs_zero = 1;
1834 }
3a307ffc
MF
1835
1836 num_clusters--;
9517bac6
MF
1837 }
1838
0d172baa
MF
1839 ret = 0;
1840out:
1841 return ret;
1842}
1843
1afc32b9
MF
1844static int ocfs2_write_begin_inline(struct address_space *mapping,
1845 struct inode *inode,
1846 struct ocfs2_write_ctxt *wc)
1847{
1848 int ret;
1849 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1850 struct page *page;
1851 handle_t *handle;
1852 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1853
f775da2f
JB
1854 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1855 if (IS_ERR(handle)) {
1856 ret = PTR_ERR(handle);
1857 mlog_errno(ret);
1858 goto out;
1859 }
1860
1afc32b9
MF
1861 page = find_or_create_page(mapping, 0, GFP_NOFS);
1862 if (!page) {
f775da2f 1863 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1864 ret = -ENOMEM;
1865 mlog_errno(ret);
1866 goto out;
1867 }
1868 /*
1869 * If we don't set w_num_pages then this page won't get unlocked
1870 * and freed on cleanup of the write context.
1871 */
1872 wc->w_pages[0] = wc->w_target_page = page;
1873 wc->w_num_pages = 1;
1874
0cf2f763 1875 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1876 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1877 if (ret) {
1878 ocfs2_commit_trans(osb, handle);
1879
1880 mlog_errno(ret);
1881 goto out;
1882 }
1883
1884 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1885 ocfs2_set_inode_data_inline(inode, di);
1886
1887 if (!PageUptodate(page)) {
1888 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1889 if (ret) {
1890 ocfs2_commit_trans(osb, handle);
1891
1892 goto out;
1893 }
1894 }
1895
1896 wc->w_handle = handle;
1897out:
1898 return ret;
1899}
1900
1901int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1902{
1903 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1904
0d8a4e0c 1905 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1906 return 1;
1907 return 0;
1908}
1909
1910static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1911 struct inode *inode, loff_t pos,
1912 unsigned len, struct page *mmap_page,
1913 struct ocfs2_write_ctxt *wc)
1914{
1915 int ret, written = 0;
1916 loff_t end = pos + len;
1917 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1918 struct ocfs2_dinode *di = NULL;
1afc32b9 1919
9558156b
TM
1920 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1921 len, (unsigned long long)pos,
1922 oi->ip_dyn_features);
1afc32b9
MF
1923
1924 /*
1925 * Handle inodes which already have inline data 1st.
1926 */
1927 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1928 if (mmap_page == NULL &&
1929 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1930 goto do_inline_write;
1931
1932 /*
1933 * The write won't fit - we have to give this inode an
1934 * inline extent list now.
1935 */
1936 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1937 if (ret)
1938 mlog_errno(ret);
1939 goto out;
1940 }
1941
1942 /*
1943 * Check whether the inode can accept inline data.
1944 */
1945 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1946 return 0;
1947
1948 /*
1949 * Check whether the write can fit.
1950 */
d9ae49d6
TY
1951 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1952 if (mmap_page ||
1953 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1954 return 0;
1955
1956do_inline_write:
1957 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1958 if (ret) {
1959 mlog_errno(ret);
1960 goto out;
1961 }
1962
1963 /*
1964 * This signals to the caller that the data can be written
1965 * inline.
1966 */
1967 written = 1;
1968out:
1969 return written ? written : ret;
1970}
1971
65ed39d6
MF
1972/*
1973 * This function only does anything for file systems which can't
1974 * handle sparse files.
1975 *
1976 * What we want to do here is fill in any hole between the current end
1977 * of allocation and the end of our write. That way the rest of the
1978 * write path can treat it as an non-allocating write, which has no
1979 * special case code for sparse/nonsparse files.
1980 */
5693486b
JB
1981static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1982 struct buffer_head *di_bh,
1983 loff_t pos, unsigned len,
65ed39d6
MF
1984 struct ocfs2_write_ctxt *wc)
1985{
1986 int ret;
65ed39d6
MF
1987 loff_t newsize = pos + len;
1988
5693486b 1989 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1990
1991 if (newsize <= i_size_read(inode))
1992 return 0;
1993
5693486b 1994 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1995 if (ret)
1996 mlog_errno(ret);
1997
e7432675
SM
1998 wc->w_first_new_cpos =
1999 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
2000
65ed39d6
MF
2001 return ret;
2002}
2003
5693486b
JB
2004static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
2005 loff_t pos)
2006{
2007 int ret = 0;
2008
2009 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
2010 if (pos > i_size_read(inode))
2011 ret = ocfs2_zero_extend(inode, di_bh, pos);
2012
2013 return ret;
2014}
2015
50308d81
TM
2016/*
2017 * Try to flush truncate logs if we can free enough clusters from it.
2018 * As for return value, "< 0" means error, "0" no space and "1" means
2019 * we have freed enough spaces and let the caller try to allocate again.
2020 */
2021static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2022 unsigned int needed)
2023{
2024 tid_t target;
2025 int ret = 0;
2026 unsigned int truncated_clusters;
2027
2028 mutex_lock(&osb->osb_tl_inode->i_mutex);
2029 truncated_clusters = osb->truncated_clusters;
2030 mutex_unlock(&osb->osb_tl_inode->i_mutex);
2031
2032 /*
2033 * Check whether we can succeed in allocating if we free
2034 * the truncate log.
2035 */
2036 if (truncated_clusters < needed)
2037 goto out;
2038
2039 ret = ocfs2_flush_truncate_log(osb);
2040 if (ret) {
2041 mlog_errno(ret);
2042 goto out;
2043 }
2044
2045 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2046 jbd2_log_wait_commit(osb->journal->j_journal, target);
2047 ret = 1;
2048 }
2049out:
2050 return ret;
2051}
2052
0378da0f
TM
2053int ocfs2_write_begin_nolock(struct file *filp,
2054 struct address_space *mapping,
0d172baa
MF
2055 loff_t pos, unsigned len, unsigned flags,
2056 struct page **pagep, void **fsdata,
2057 struct buffer_head *di_bh, struct page *mmap_page)
2058{
e7432675 2059 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 2060 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
2061 struct ocfs2_write_ctxt *wc;
2062 struct inode *inode = mapping->host;
2063 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2064 struct ocfs2_dinode *di;
2065 struct ocfs2_alloc_context *data_ac = NULL;
2066 struct ocfs2_alloc_context *meta_ac = NULL;
2067 handle_t *handle;
f99b9b7c 2068 struct ocfs2_extent_tree et;
50308d81 2069 int try_free = 1, ret1;
0d172baa 2070
50308d81 2071try_again:
0d172baa
MF
2072 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2073 if (ret) {
2074 mlog_errno(ret);
2075 return ret;
2076 }
2077
1afc32b9
MF
2078 if (ocfs2_supports_inline_data(osb)) {
2079 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2080 mmap_page, wc);
2081 if (ret == 1) {
2082 ret = 0;
2083 goto success;
2084 }
2085 if (ret < 0) {
2086 mlog_errno(ret);
2087 goto out;
2088 }
2089 }
2090
5693486b
JB
2091 if (ocfs2_sparse_alloc(osb))
2092 ret = ocfs2_zero_tail(inode, di_bh, pos);
2093 else
2094 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2095 wc);
65ed39d6
MF
2096 if (ret) {
2097 mlog_errno(ret);
2098 goto out;
2099 }
2100
293b2f70
TM
2101 ret = ocfs2_check_range_for_refcount(inode, pos, len);
2102 if (ret < 0) {
2103 mlog_errno(ret);
2104 goto out;
2105 } else if (ret == 1) {
50308d81 2106 clusters_need = wc->w_clen;
c7dd3392 2107 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 2108 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
2109 if (ret) {
2110 mlog_errno(ret);
2111 goto out;
2112 }
2113 }
2114
b27b7cbc
MF
2115 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2116 &extents_to_split);
0d172baa
MF
2117 if (ret) {
2118 mlog_errno(ret);
2119 goto out;
2120 }
50308d81 2121 clusters_need += clusters_to_alloc;
0d172baa
MF
2122
2123 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2124
9558156b
TM
2125 trace_ocfs2_write_begin_nolock(
2126 (unsigned long long)OCFS2_I(inode)->ip_blkno,
2127 (long long)i_size_read(inode),
2128 le32_to_cpu(di->i_clusters),
2129 pos, len, flags, mmap_page,
2130 clusters_to_alloc, extents_to_split);
2131
3a307ffc
MF
2132 /*
2133 * We set w_target_from, w_target_to here so that
2134 * ocfs2_write_end() knows which range in the target page to
2135 * write out. An allocation requires that we write the entire
2136 * cluster range.
2137 */
b27b7cbc 2138 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2139 /*
2140 * XXX: We are stretching the limits of
b27b7cbc 2141 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2142 * the work to be done.
2143 */
5e404e9e
JB
2144 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2145 wc->w_di_bh);
f99b9b7c 2146 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2147 clusters_to_alloc, extents_to_split,
f99b9b7c 2148 &data_ac, &meta_ac);
9517bac6
MF
2149 if (ret) {
2150 mlog_errno(ret);
607d44aa 2151 goto out;
9517bac6
MF
2152 }
2153
4fe370af
MF
2154 if (data_ac)
2155 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2156
811f933d 2157 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2158 &di->id2.i_list);
3a307ffc 2159
9517bac6
MF
2160 }
2161
e7432675
SM
2162 /*
2163 * We have to zero sparse allocated clusters, unwritten extent clusters,
2164 * and non-sparse clusters we just extended. For non-sparse writes,
2165 * we know zeros will only be needed in the first and/or last cluster.
2166 */
2167 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2168 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2169 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2170 cluster_of_pages = 1;
2171 else
2172 cluster_of_pages = 0;
2173
2174 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2175
9517bac6
MF
2176 handle = ocfs2_start_trans(osb, credits);
2177 if (IS_ERR(handle)) {
2178 ret = PTR_ERR(handle);
2179 mlog_errno(ret);
607d44aa 2180 goto out;
9517bac6
MF
2181 }
2182
3a307ffc
MF
2183 wc->w_handle = handle;
2184
5dd4056d
CH
2185 if (clusters_to_alloc) {
2186 ret = dquot_alloc_space_nodirty(inode,
2187 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2188 if (ret)
2189 goto out_commit;
a90714c1 2190 }
3a307ffc
MF
2191 /*
2192 * We don't want this to fail in ocfs2_write_end(), so do it
2193 * here.
2194 */
0cf2f763 2195 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2196 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2197 if (ret) {
9517bac6 2198 mlog_errno(ret);
a90714c1 2199 goto out_quota;
9517bac6
MF
2200 }
2201
3a307ffc
MF
2202 /*
2203 * Fill our page array first. That way we've grabbed enough so
2204 * that we can zero and flush if we error after adding the
2205 * extent.
2206 */
693c241a 2207 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2208 cluster_of_pages, mmap_page);
5cffff9e 2209 if (ret && ret != -EAGAIN) {
9517bac6 2210 mlog_errno(ret);
a90714c1 2211 goto out_quota;
9517bac6
MF
2212 }
2213
5cffff9e
WW
2214 /*
2215 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2216 * the target page. In this case, we exit with no error and no target
2217 * page. This will trigger the caller, page_mkwrite(), to re-try
2218 * the operation.
2219 */
2220 if (ret == -EAGAIN) {
2221 BUG_ON(wc->w_target_page);
2222 ret = 0;
2223 goto out_quota;
2224 }
2225
0d172baa
MF
2226 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2227 len);
2228 if (ret) {
2229 mlog_errno(ret);
a90714c1 2230 goto out_quota;
9517bac6 2231 }
9517bac6 2232
3a307ffc
MF
2233 if (data_ac)
2234 ocfs2_free_alloc_context(data_ac);
2235 if (meta_ac)
2236 ocfs2_free_alloc_context(meta_ac);
9517bac6 2237
1afc32b9 2238success:
3a307ffc
MF
2239 *pagep = wc->w_target_page;
2240 *fsdata = wc;
2241 return 0;
a90714c1
JK
2242out_quota:
2243 if (clusters_to_alloc)
5dd4056d 2244 dquot_free_space(inode,
a90714c1 2245 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2246out_commit:
2247 ocfs2_commit_trans(osb, handle);
2248
9517bac6 2249out:
3a307ffc
MF
2250 ocfs2_free_write_ctxt(wc);
2251
b1214e47 2252 if (data_ac) {
9517bac6 2253 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2254 data_ac = NULL;
2255 }
2256 if (meta_ac) {
9517bac6 2257 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2258 meta_ac = NULL;
2259 }
50308d81
TM
2260
2261 if (ret == -ENOSPC && try_free) {
2262 /*
2263 * Try to free some truncate log so that we can have enough
2264 * clusters to allocate.
2265 */
2266 try_free = 0;
2267
2268 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2269 if (ret1 == 1)
2270 goto try_again;
2271
2272 if (ret1 < 0)
2273 mlog_errno(ret1);
2274 }
2275
3a307ffc
MF
2276 return ret;
2277}
2278
b6af1bcd
NP
2279static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2280 loff_t pos, unsigned len, unsigned flags,
2281 struct page **pagep, void **fsdata)
607d44aa
MF
2282{
2283 int ret;
2284 struct buffer_head *di_bh = NULL;
2285 struct inode *inode = mapping->host;
2286
e63aecb6 2287 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2288 if (ret) {
2289 mlog_errno(ret);
2290 return ret;
2291 }
2292
2293 /*
2294 * Take alloc sem here to prevent concurrent lookups. That way
2295 * the mapping, zeroing and tree manipulation within
2296 * ocfs2_write() will be safe against ->readpage(). This
2297 * should also serve to lock out allocation from a shared
2298 * writeable region.
2299 */
2300 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2301
0378da0f 2302 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2303 fsdata, di_bh, NULL);
607d44aa
MF
2304 if (ret) {
2305 mlog_errno(ret);
c934a92d 2306 goto out_fail;
607d44aa
MF
2307 }
2308
2309 brelse(di_bh);
2310
2311 return 0;
2312
607d44aa
MF
2313out_fail:
2314 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2315
2316 brelse(di_bh);
e63aecb6 2317 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2318
2319 return ret;
2320}
2321
1afc32b9
MF
2322static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2323 unsigned len, unsigned *copied,
2324 struct ocfs2_dinode *di,
2325 struct ocfs2_write_ctxt *wc)
2326{
2327 void *kaddr;
2328
2329 if (unlikely(*copied < len)) {
2330 if (!PageUptodate(wc->w_target_page)) {
2331 *copied = 0;
2332 return;
2333 }
2334 }
2335
c4bc8dcb 2336 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2337 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2338 kunmap_atomic(kaddr);
1afc32b9 2339
9558156b
TM
2340 trace_ocfs2_write_end_inline(
2341 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2342 (unsigned long long)pos, *copied,
2343 le16_to_cpu(di->id2.i_data.id_count),
2344 le16_to_cpu(di->i_dyn_features));
2345}
2346
7307de80
MF
2347int ocfs2_write_end_nolock(struct address_space *mapping,
2348 loff_t pos, unsigned len, unsigned copied,
2349 struct page *page, void *fsdata)
3a307ffc
MF
2350{
2351 int i;
2352 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2353 struct inode *inode = mapping->host;
2354 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2355 struct ocfs2_write_ctxt *wc = fsdata;
2356 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2357 handle_t *handle = wc->w_handle;
2358 struct page *tmppage;
2359
1afc32b9
MF
2360 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2361 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2362 goto out_write_size;
2363 }
2364
3a307ffc
MF
2365 if (unlikely(copied < len)) {
2366 if (!PageUptodate(wc->w_target_page))
2367 copied = 0;
2368
2369 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2370 start+len);
2371 }
2372 flush_dcache_page(wc->w_target_page);
2373
2374 for(i = 0; i < wc->w_num_pages; i++) {
2375 tmppage = wc->w_pages[i];
2376
2377 if (tmppage == wc->w_target_page) {
2378 from = wc->w_target_from;
2379 to = wc->w_target_to;
2380
2381 BUG_ON(from > PAGE_CACHE_SIZE ||
2382 to > PAGE_CACHE_SIZE ||
2383 to < from);
2384 } else {
2385 /*
2386 * Pages adjacent to the target (if any) imply
2387 * a hole-filling write in which case we want
2388 * to flush their entire range.
2389 */
2390 from = 0;
2391 to = PAGE_CACHE_SIZE;
2392 }
2393
961cecbe 2394 if (page_has_buffers(tmppage)) {
53ef99ca 2395 if (ocfs2_should_order_data(inode))
2b4e30fb 2396 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2397 block_commit_write(tmppage, from, to);
2398 }
3a307ffc
MF
2399 }
2400
1afc32b9 2401out_write_size:
3a307ffc 2402 pos += copied;
f17c20dd 2403 if (pos > i_size_read(inode)) {
3a307ffc
MF
2404 i_size_write(inode, pos);
2405 mark_inode_dirty(inode);
2406 }
2407 inode->i_blocks = ocfs2_inode_sector_count(inode);
2408 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2409 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2410 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2411 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2412 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2413 ocfs2_journal_dirty(handle, wc->w_di_bh);
2414
136f49b9
JB
2415 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2416 * lock, or it will cause a deadlock since journal commit threads holds
2417 * this lock and will ask for the page lock when flushing the data.
2418 * put it here to preserve the unlock order.
2419 */
2420 ocfs2_unlock_pages(wc);
2421
3a307ffc 2422 ocfs2_commit_trans(osb, handle);
59a5e416 2423
b27b7cbc
MF
2424 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2425
136f49b9
JB
2426 brelse(wc->w_di_bh);
2427 kfree(wc);
607d44aa
MF
2428
2429 return copied;
2430}
2431
b6af1bcd
NP
2432static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2433 loff_t pos, unsigned len, unsigned copied,
2434 struct page *page, void *fsdata)
607d44aa
MF
2435{
2436 int ret;
2437 struct inode *inode = mapping->host;
2438
2439 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2440
3a307ffc 2441 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2442 ocfs2_inode_unlock(inode, 1);
9517bac6 2443
607d44aa 2444 return ret;
9517bac6
MF
2445}
2446
f5e54d6e 2447const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2448 .readpage = ocfs2_readpage,
2449 .readpages = ocfs2_readpages,
2450 .writepage = ocfs2_writepage,
2451 .write_begin = ocfs2_write_begin,
2452 .write_end = ocfs2_write_end,
2453 .bmap = ocfs2_bmap,
1fca3a05 2454 .direct_IO = ocfs2_direct_IO,
41ecc345 2455 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2456 .releasepage = ocfs2_releasepage,
2457 .migratepage = buffer_migrate_page,
2458 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2459 .error_remove_page = generic_error_remove_page,
ccd979bd 2460};
This page took 0.801336 seconds and 5 git commands to generate.