ocfs2: Fix up i_blocks calculation to know about holes
[deliverable/linux.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
ccd979bd
MF
29
30#define MLOG_MASK_PREFIX ML_FILE_IO
31#include <cluster/masklog.h>
32
33#include "ocfs2.h"
34
35#include "alloc.h"
36#include "aops.h"
37#include "dlmglue.h"
38#include "extent_map.h"
39#include "file.h"
40#include "inode.h"
41#include "journal.h"
9517bac6 42#include "suballoc.h"
ccd979bd
MF
43#include "super.h"
44#include "symlink.h"
45
46#include "buffer_head_io.h"
47
48static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
50{
51 int err = -EIO;
52 int status;
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
57 void *kaddr;
58
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
61
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
63
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
67 goto bail;
68 }
69
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
73 if (status < 0) {
74 mlog_errno(status);
75 goto bail;
76 }
77 fe = (struct ocfs2_dinode *) bh->b_data;
78
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
b0697053
MF
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)fe->i_blkno, 7, fe->i_signature);
ccd979bd
MF
82 goto bail;
83 }
84
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
87 mlog(ML_ERROR, "block offset is outside the allocated size: "
88 "%llu\n", (unsigned long long)iblock);
89 goto bail;
90 }
91
92 /* We don't use the page cache to create symlink data, so if
93 * need be, copy it over from the buffer cache. */
94 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
95 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
96 iblock;
97 buffer_cache_bh = sb_getblk(osb->sb, blkno);
98 if (!buffer_cache_bh) {
99 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
100 goto bail;
101 }
102
103 /* we haven't locked out transactions, so a commit
104 * could've happened. Since we've got a reference on
105 * the bh, even if it commits while we're doing the
106 * copy, the data is still good. */
107 if (buffer_jbd(buffer_cache_bh)
108 && ocfs2_inode_is_new(inode)) {
109 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
110 if (!kaddr) {
111 mlog(ML_ERROR, "couldn't kmap!\n");
112 goto bail;
113 }
114 memcpy(kaddr + (bh_result->b_size * iblock),
115 buffer_cache_bh->b_data,
116 bh_result->b_size);
117 kunmap_atomic(kaddr, KM_USER0);
118 set_buffer_uptodate(bh_result);
119 }
120 brelse(buffer_cache_bh);
121 }
122
123 map_bh(bh_result, inode->i_sb,
124 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
125
126 err = 0;
127
128bail:
129 if (bh)
130 brelse(bh);
131
132 mlog_exit(err);
133 return err;
134}
135
136static int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
138{
139 int err = 0;
49cb8d2d 140 unsigned int ext_flags;
ccd979bd 141 u64 p_blkno, past_eof;
25baf2da 142 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd
MF
143
144 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
145 (unsigned long long)iblock, bh_result, create);
146
147 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
148 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
149 inode, inode->i_ino);
150
151 if (S_ISLNK(inode->i_mode)) {
152 /* this always does I/O for some reason. */
153 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
154 goto bail;
155 }
156
49cb8d2d
MF
157 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
158 &ext_flags);
ccd979bd
MF
159 if (err) {
160 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
161 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
162 (unsigned long long)p_blkno);
ccd979bd
MF
163 goto bail;
164 }
165
25baf2da
MF
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
170 * allows block_prepare_write() to zero.
171 */
172 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
173 "ino %lu, iblock %llu\n", inode->i_ino,
174 (unsigned long long)iblock);
175
49cb8d2d
MF
176 /* Treat the unwritten extent as a hole for zeroing purposes. */
177 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
178 map_bh(bh_result, inode->i_sb, p_blkno);
179
180 if (!ocfs2_sparse_alloc(osb)) {
181 if (p_blkno == 0) {
182 err = -EIO;
183 mlog(ML_ERROR,
184 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
185 (unsigned long long)iblock,
186 (unsigned long long)p_blkno,
187 (unsigned long long)OCFS2_I(inode)->ip_blkno);
188 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
189 dump_stack();
190 }
ccd979bd 191
25baf2da
MF
192 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
193 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
194 (unsigned long long)past_eof);
ccd979bd 195
25baf2da
MF
196 if (create && (iblock >= past_eof))
197 set_buffer_new(bh_result);
198 }
ccd979bd
MF
199
200bail:
201 if (err < 0)
202 err = -EIO;
203
204 mlog_exit(err);
205 return err;
206}
207
208static int ocfs2_readpage(struct file *file, struct page *page)
209{
210 struct inode *inode = page->mapping->host;
211 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
212 int ret, unlock = 1;
213
214 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
215
4bcec184 216 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
217 if (ret != 0) {
218 if (ret == AOP_TRUNCATED_PAGE)
219 unlock = 0;
220 mlog_errno(ret);
221 goto out;
222 }
223
224 down_read(&OCFS2_I(inode)->ip_alloc_sem);
225
226 /*
227 * i_size might have just been updated as we grabed the meta lock. We
228 * might now be discovering a truncate that hit on another node.
229 * block_read_full_page->get_block freaks out if it is asked to read
230 * beyond the end of a file, so we check here. Callers
231 * (generic_file_read, fault->nopage) are clever enough to check i_size
232 * and notice that the page they just read isn't needed.
233 *
234 * XXX sys_readahead() seems to get that wrong?
235 */
236 if (start >= i_size_read(inode)) {
237 char *addr = kmap(page);
238 memset(addr, 0, PAGE_SIZE);
239 flush_dcache_page(page);
240 kunmap(page);
241 SetPageUptodate(page);
242 ret = 0;
243 goto out_alloc;
244 }
245
246 ret = ocfs2_data_lock_with_page(inode, 0, page);
247 if (ret != 0) {
248 if (ret == AOP_TRUNCATED_PAGE)
249 unlock = 0;
250 mlog_errno(ret);
251 goto out_alloc;
252 }
253
254 ret = block_read_full_page(page, ocfs2_get_block);
255 unlock = 0;
256
257 ocfs2_data_unlock(inode, 0);
258out_alloc:
259 up_read(&OCFS2_I(inode)->ip_alloc_sem);
260 ocfs2_meta_unlock(inode, 0);
261out:
262 if (unlock)
263 unlock_page(page);
264 mlog_exit(ret);
265 return ret;
266}
267
268/* Note: Because we don't support holes, our allocation has
269 * already happened (allocation writes zeros to the file data)
270 * so we don't have to worry about ordered writes in
271 * ocfs2_writepage.
272 *
273 * ->writepage is called during the process of invalidating the page cache
274 * during blocked lock processing. It can't block on any cluster locks
275 * to during block mapping. It's relying on the fact that the block
276 * mapping can't have disappeared under the dirty pages that it is
277 * being asked to write back.
278 */
279static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
280{
281 int ret;
282
283 mlog_entry("(0x%p)\n", page);
284
285 ret = block_write_full_page(page, ocfs2_get_block, wbc);
286
287 mlog_exit(ret);
288
289 return ret;
290}
291
5069120b
MF
292/*
293 * This is called from ocfs2_write_zero_page() which has handled it's
294 * own cluster locking and has ensured allocation exists for those
295 * blocks to be written.
296 */
53013cba
MF
297int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
298 unsigned from, unsigned to)
299{
300 int ret;
301
302 down_read(&OCFS2_I(inode)->ip_alloc_sem);
303
304 ret = block_prepare_write(page, from, to, ocfs2_get_block);
305
306 up_read(&OCFS2_I(inode)->ip_alloc_sem);
307
308 return ret;
309}
310
ccd979bd
MF
311/* Taken from ext3. We don't necessarily need the full blown
312 * functionality yet, but IMHO it's better to cut and paste the whole
313 * thing so we can avoid introducing our own bugs (and easily pick up
314 * their fixes when they happen) --Mark */
60b11392
MF
315int walk_page_buffers( handle_t *handle,
316 struct buffer_head *head,
317 unsigned from,
318 unsigned to,
319 int *partial,
320 int (*fn)( handle_t *handle,
321 struct buffer_head *bh))
ccd979bd
MF
322{
323 struct buffer_head *bh;
324 unsigned block_start, block_end;
325 unsigned blocksize = head->b_size;
326 int err, ret = 0;
327 struct buffer_head *next;
328
329 for ( bh = head, block_start = 0;
330 ret == 0 && (bh != head || !block_start);
331 block_start = block_end, bh = next)
332 {
333 next = bh->b_this_page;
334 block_end = block_start + blocksize;
335 if (block_end <= from || block_start >= to) {
336 if (partial && !buffer_uptodate(bh))
337 *partial = 1;
338 continue;
339 }
340 err = (*fn)(handle, bh);
341 if (!ret)
342 ret = err;
343 }
344 return ret;
345}
346
1fabe148 347handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
ccd979bd
MF
348 struct page *page,
349 unsigned from,
350 unsigned to)
351{
352 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1fabe148 353 handle_t *handle = NULL;
ccd979bd
MF
354 int ret = 0;
355
65eff9cc 356 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
ccd979bd
MF
357 if (!handle) {
358 ret = -ENOMEM;
359 mlog_errno(ret);
360 goto out;
361 }
362
363 if (ocfs2_should_order_data(inode)) {
1fabe148 364 ret = walk_page_buffers(handle,
ccd979bd
MF
365 page_buffers(page),
366 from, to, NULL,
367 ocfs2_journal_dirty_data);
368 if (ret < 0)
369 mlog_errno(ret);
370 }
371out:
372 if (ret) {
373 if (handle)
02dc1af4 374 ocfs2_commit_trans(osb, handle);
ccd979bd
MF
375 handle = ERR_PTR(ret);
376 }
377 return handle;
378}
379
ccd979bd
MF
380static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
381{
382 sector_t status;
383 u64 p_blkno = 0;
384 int err = 0;
385 struct inode *inode = mapping->host;
386
387 mlog_entry("(block = %llu)\n", (unsigned long long)block);
388
389 /* We don't need to lock journal system files, since they aren't
390 * accessed concurrently from multiple nodes.
391 */
392 if (!INODE_JOURNAL(inode)) {
4bcec184 393 err = ocfs2_meta_lock(inode, NULL, 0);
ccd979bd
MF
394 if (err) {
395 if (err != -ENOENT)
396 mlog_errno(err);
397 goto bail;
398 }
399 down_read(&OCFS2_I(inode)->ip_alloc_sem);
400 }
401
49cb8d2d 402 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL, NULL);
ccd979bd
MF
403
404 if (!INODE_JOURNAL(inode)) {
405 up_read(&OCFS2_I(inode)->ip_alloc_sem);
406 ocfs2_meta_unlock(inode, 0);
407 }
408
409 if (err) {
410 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
411 (unsigned long long)block);
412 mlog_errno(err);
413 goto bail;
414 }
415
416
417bail:
418 status = err ? 0 : p_blkno;
419
420 mlog_exit((int)status);
421
422 return status;
423}
424
425/*
426 * TODO: Make this into a generic get_blocks function.
427 *
428 * From do_direct_io in direct-io.c:
429 * "So what we do is to permit the ->get_blocks function to populate
430 * bh.b_size with the size of IO which is permitted at this offset and
431 * this i_blkbits."
432 *
433 * This function is called directly from get_more_blocks in direct-io.c.
434 *
435 * called like this: dio->get_blocks(dio->inode, fs_startblk,
436 * fs_count, map_bh, dio->rw == WRITE);
437 */
438static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
439 struct buffer_head *bh_result, int create)
440{
441 int ret;
4f902c37 442 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 443 unsigned int ext_flags;
184d7d20 444 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 445 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 446
ccd979bd
MF
447 /* This function won't even be called if the request isn't all
448 * nicely aligned and of the right size, so there's no need
449 * for us to check any of that. */
450
25baf2da 451 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32
MF
452
453 /*
454 * Any write past EOF is not allowed because we'd be extending.
455 */
456 if (create && (iblock + max_blocks) > inode_blocks) {
ccd979bd
MF
457 ret = -EIO;
458 goto bail;
459 }
ccd979bd
MF
460
461 /* This figures out the size of the next contiguous block, and
462 * our logical offset */
363041a5 463 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 464 &contig_blocks, &ext_flags);
ccd979bd
MF
465 if (ret) {
466 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
467 (unsigned long long)iblock);
468 ret = -EIO;
469 goto bail;
470 }
471
25baf2da
MF
472 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
473 ocfs2_error(inode->i_sb,
474 "Inode %llu has a hole at block %llu\n",
475 (unsigned long long)OCFS2_I(inode)->ip_blkno,
476 (unsigned long long)iblock);
477 ret = -EROFS;
478 goto bail;
479 }
480
481 /*
482 * get_more_blocks() expects us to describe a hole by clearing
483 * the mapped bit on bh_result().
49cb8d2d
MF
484 *
485 * Consider an unwritten extent as a hole.
25baf2da 486 */
49cb8d2d 487 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
488 map_bh(bh_result, inode->i_sb, p_blkno);
489 else {
490 /*
491 * ocfs2_prepare_inode_for_write() should have caught
492 * the case where we'd be filling a hole and triggered
493 * a buffered write instead.
494 */
495 if (create) {
496 ret = -EIO;
497 mlog_errno(ret);
498 goto bail;
499 }
500
501 clear_buffer_mapped(bh_result);
502 }
ccd979bd
MF
503
504 /* make sure we don't map more than max_blocks blocks here as
505 that's all the kernel will handle at this point. */
506 if (max_blocks < contig_blocks)
507 contig_blocks = max_blocks;
508 bh_result->b_size = contig_blocks << blocksize_bits;
509bail:
510 return ret;
511}
512
513/*
514 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
515 * particularly interested in the aio/dio case. Like the core uses
516 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
517 * truncation on another.
518 */
519static void ocfs2_dio_end_io(struct kiocb *iocb,
520 loff_t offset,
521 ssize_t bytes,
522 void *private)
523{
d28c9174 524 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
ccd979bd
MF
525
526 /* this io's submitter should not have unlocked this before we could */
527 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
528 ocfs2_iocb_clear_rw_locked(iocb);
529 up_read(&inode->i_alloc_sem);
530 ocfs2_rw_unlock(inode, 0);
531}
532
03f981cf
JB
533/*
534 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
535 * from ext3. PageChecked() bits have been removed as OCFS2 does not
536 * do journalled data.
537 */
538static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
539{
540 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
541
542 journal_invalidatepage(journal, page, offset);
543}
544
545static int ocfs2_releasepage(struct page *page, gfp_t wait)
546{
547 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
548
549 if (!page_has_buffers(page))
550 return 0;
551 return journal_try_to_free_buffers(journal, page, wait);
552}
553
ccd979bd
MF
554static ssize_t ocfs2_direct_IO(int rw,
555 struct kiocb *iocb,
556 const struct iovec *iov,
557 loff_t offset,
558 unsigned long nr_segs)
559{
560 struct file *file = iocb->ki_filp;
d28c9174 561 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
ccd979bd
MF
562 int ret;
563
564 mlog_entry_void();
53013cba 565
9517bac6
MF
566 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
567 /*
568 * We get PR data locks even for O_DIRECT. This
569 * allows concurrent O_DIRECT I/O but doesn't let
570 * O_DIRECT with extending and buffered zeroing writes
571 * race. If they did race then the buffered zeroing
572 * could be written back after the O_DIRECT I/O. It's
573 * one thing to tell people not to mix buffered and
574 * O_DIRECT writes, but expecting them to understand
575 * that file extension is also an implicit buffered
576 * write is too much. By getting the PR we force
577 * writeback of the buffered zeroing before
578 * proceeding.
579 */
580 ret = ocfs2_data_lock(inode, 0);
581 if (ret < 0) {
582 mlog_errno(ret);
583 goto out;
584 }
585 ocfs2_data_unlock(inode, 0);
53013cba 586 }
53013cba 587
ccd979bd
MF
588 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
589 inode->i_sb->s_bdev, iov, offset,
590 nr_segs,
591 ocfs2_direct_IO_get_blocks,
592 ocfs2_dio_end_io);
53013cba 593out:
ccd979bd
MF
594 mlog_exit(ret);
595 return ret;
596}
597
9517bac6
MF
598static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
599 u32 cpos,
600 unsigned int *start,
601 unsigned int *end)
602{
603 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
604
605 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
606 unsigned int cpp;
607
608 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
609
610 cluster_start = cpos % cpp;
611 cluster_start = cluster_start << osb->s_clustersize_bits;
612
613 cluster_end = cluster_start + osb->s_clustersize;
614 }
615
616 BUG_ON(cluster_start > PAGE_SIZE);
617 BUG_ON(cluster_end > PAGE_SIZE);
618
619 if (start)
620 *start = cluster_start;
621 if (end)
622 *end = cluster_end;
623}
624
625/*
626 * 'from' and 'to' are the region in the page to avoid zeroing.
627 *
628 * If pagesize > clustersize, this function will avoid zeroing outside
629 * of the cluster boundary.
630 *
631 * from == to == 0 is code for "zero the entire cluster region"
632 */
633static void ocfs2_clear_page_regions(struct page *page,
634 struct ocfs2_super *osb, u32 cpos,
635 unsigned from, unsigned to)
636{
637 void *kaddr;
638 unsigned int cluster_start, cluster_end;
639
640 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
641
642 kaddr = kmap_atomic(page, KM_USER0);
643
644 if (from || to) {
645 if (from > cluster_start)
646 memset(kaddr + cluster_start, 0, from - cluster_start);
647 if (to < cluster_end)
648 memset(kaddr + to, 0, cluster_end - to);
649 } else {
650 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
651 }
652
653 kunmap_atomic(kaddr, KM_USER0);
654}
655
656/*
657 * Some of this taken from block_prepare_write(). We already have our
658 * mapping by now though, and the entire write will be allocating or
659 * it won't, so not much need to use BH_New.
660 *
661 * This will also skip zeroing, which is handled externally.
662 */
60b11392
MF
663int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
664 struct inode *inode, unsigned int from,
665 unsigned int to, int new)
9517bac6
MF
666{
667 int ret = 0;
668 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
669 unsigned int block_end, block_start;
670 unsigned int bsize = 1 << inode->i_blkbits;
671
672 if (!page_has_buffers(page))
673 create_empty_buffers(page, bsize, 0);
674
675 head = page_buffers(page);
676 for (bh = head, block_start = 0; bh != head || !block_start;
677 bh = bh->b_this_page, block_start += bsize) {
678 block_end = block_start + bsize;
679
680 /*
681 * Ignore blocks outside of our i/o range -
682 * they may belong to unallocated clusters.
683 */
60b11392 684 if (block_start >= to || block_end <= from) {
9517bac6
MF
685 if (PageUptodate(page))
686 set_buffer_uptodate(bh);
687 continue;
688 }
689
690 /*
691 * For an allocating write with cluster size >= page
692 * size, we always write the entire page.
693 */
694
695 if (buffer_new(bh))
696 clear_buffer_new(bh);
697
698 if (!buffer_mapped(bh)) {
699 map_bh(bh, inode->i_sb, *p_blkno);
700 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
701 }
702
703 if (PageUptodate(page)) {
704 if (!buffer_uptodate(bh))
705 set_buffer_uptodate(bh);
706 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
707 (block_start < from || block_end > to)) {
708 ll_rw_block(READ, 1, &bh);
709 *wait_bh++=bh;
710 }
711
712 *p_blkno = *p_blkno + 1;
713 }
714
715 /*
716 * If we issued read requests - let them complete.
717 */
718 while(wait_bh > wait) {
719 wait_on_buffer(*--wait_bh);
720 if (!buffer_uptodate(*wait_bh))
721 ret = -EIO;
722 }
723
724 if (ret == 0 || !new)
725 return ret;
726
727 /*
728 * If we get -EIO above, zero out any newly allocated blocks
729 * to avoid exposing stale data.
730 */
731 bh = head;
732 block_start = 0;
733 do {
734 void *kaddr;
735
736 block_end = block_start + bsize;
737 if (block_end <= from)
738 goto next_bh;
739 if (block_start >= to)
740 break;
741
742 kaddr = kmap_atomic(page, KM_USER0);
743 memset(kaddr+block_start, 0, bh->b_size);
744 flush_dcache_page(page);
745 kunmap_atomic(kaddr, KM_USER0);
746 set_buffer_uptodate(bh);
747 mark_buffer_dirty(bh);
748
749next_bh:
750 block_start = block_end;
751 bh = bh->b_this_page;
752 } while (bh != head);
753
754 return ret;
755}
756
6af67d82
MF
757/*
758 * This will copy user data from the buffer page in the splice
759 * context.
760 *
761 * For now, we ignore SPLICE_F_MOVE as that would require some extra
762 * communication out all the way to ocfs2_write().
763 */
764int ocfs2_map_and_write_splice_data(struct inode *inode,
765 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
766 unsigned int *ret_from, unsigned int *ret_to)
767{
768 int ret;
769 unsigned int to, from, cluster_start, cluster_end;
770 char *src, *dst;
771 struct ocfs2_splice_write_priv *sp = wc->w_private;
772 struct pipe_buffer *buf = sp->s_buf;
773 unsigned long bytes, src_from;
774 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
775
776 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
777 &cluster_end);
778
779 from = sp->s_offset;
780 src_from = sp->s_buf_offset;
781 bytes = wc->w_count;
782
783 if (wc->w_large_pages) {
784 /*
785 * For cluster size < page size, we have to
786 * calculate pos within the cluster and obey
787 * the rightmost boundary.
788 */
789 bytes = min(bytes, (unsigned long)(osb->s_clustersize
790 - (wc->w_pos & (osb->s_clustersize - 1))));
791 }
792 to = from + bytes;
793
794 if (wc->w_this_page_new)
795 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
796 cluster_start, cluster_end, 1);
797 else
798 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
799 from, to, 0);
800 if (ret) {
801 mlog_errno(ret);
802 goto out;
803 }
804
805 BUG_ON(from > PAGE_CACHE_SIZE);
806 BUG_ON(to > PAGE_CACHE_SIZE);
807 BUG_ON(from > osb->s_clustersize);
808 BUG_ON(to > osb->s_clustersize);
809
810 src = buf->ops->map(sp->s_pipe, buf, 1);
811 dst = kmap_atomic(wc->w_this_page, KM_USER1);
812 memcpy(dst + from, src + src_from, bytes);
813 kunmap_atomic(wc->w_this_page, KM_USER1);
814 buf->ops->unmap(sp->s_pipe, buf, src);
815
816 wc->w_finished_copy = 1;
817
818 *ret_from = from;
819 *ret_to = to;
820out:
821
822 return bytes ? (unsigned int)bytes : ret;
823}
824
9517bac6
MF
825/*
826 * This will copy user data from the iovec in the buffered write
827 * context.
828 */
829int ocfs2_map_and_write_user_data(struct inode *inode,
830 struct ocfs2_write_ctxt *wc, u64 *p_blkno,
831 unsigned int *ret_from, unsigned int *ret_to)
832{
833 int ret;
834 unsigned int to, from, cluster_start, cluster_end;
835 unsigned long bytes, src_from;
836 char *dst;
837 struct ocfs2_buffered_write_priv *bp = wc->w_private;
838 const struct iovec *cur_iov = bp->b_cur_iov;
839 char __user *buf;
840 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
841
842 ocfs2_figure_cluster_boundaries(osb, wc->w_cpos, &cluster_start,
843 &cluster_end);
844
845 buf = cur_iov->iov_base + bp->b_cur_off;
846 src_from = (unsigned long)buf & ~PAGE_CACHE_MASK;
847
848 from = wc->w_pos & (PAGE_CACHE_SIZE - 1);
849
850 /*
851 * This is a lot of comparisons, but it reads quite
852 * easily, which is important here.
853 */
854 /* Stay within the src page */
855 bytes = PAGE_SIZE - src_from;
856 /* Stay within the vector */
857 bytes = min(bytes,
858 (unsigned long)(cur_iov->iov_len - bp->b_cur_off));
859 /* Stay within count */
860 bytes = min(bytes, (unsigned long)wc->w_count);
861 /*
862 * For clustersize > page size, just stay within
863 * target page, otherwise we have to calculate pos
864 * within the cluster and obey the rightmost
865 * boundary.
866 */
867 if (wc->w_large_pages) {
868 /*
869 * For cluster size < page size, we have to
870 * calculate pos within the cluster and obey
871 * the rightmost boundary.
872 */
873 bytes = min(bytes, (unsigned long)(osb->s_clustersize
874 - (wc->w_pos & (osb->s_clustersize - 1))));
875 } else {
876 /*
877 * cluster size > page size is the most common
878 * case - we just stay within the target page
879 * boundary.
880 */
881 bytes = min(bytes, PAGE_CACHE_SIZE - from);
882 }
883
884 to = from + bytes;
885
886 if (wc->w_this_page_new)
887 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
888 cluster_start, cluster_end, 1);
889 else
890 ret = ocfs2_map_page_blocks(wc->w_this_page, p_blkno, inode,
891 from, to, 0);
892 if (ret) {
893 mlog_errno(ret);
894 goto out;
895 }
896
897 BUG_ON(from > PAGE_CACHE_SIZE);
898 BUG_ON(to > PAGE_CACHE_SIZE);
899 BUG_ON(from > osb->s_clustersize);
900 BUG_ON(to > osb->s_clustersize);
901
902 dst = kmap(wc->w_this_page);
903 memcpy(dst + from, bp->b_src_buf + src_from, bytes);
904 kunmap(wc->w_this_page);
905
906 /*
907 * XXX: This is slow, but simple. The caller of
908 * ocfs2_buffered_write_cluster() is responsible for
909 * passing through the iovecs, so it's difficult to
910 * predict what our next step is in here after our
911 * initial write. A future version should be pushing
912 * that iovec manipulation further down.
913 *
914 * By setting this, we indicate that a copy from user
915 * data was done, and subsequent calls for this
916 * cluster will skip copying more data.
917 */
918 wc->w_finished_copy = 1;
919
920 *ret_from = from;
921 *ret_to = to;
922out:
923
924 return bytes ? (unsigned int)bytes : ret;
925}
926
927/*
928 * Map, fill and write a page to disk.
929 *
930 * The work of copying data is done via callback. Newly allocated
931 * pages which don't take user data will be zero'd (set 'new' to
932 * indicate an allocating write)
933 *
934 * Returns a negative error code or the number of bytes copied into
935 * the page.
936 */
937int ocfs2_write_data_page(struct inode *inode, handle_t *handle,
938 u64 *p_blkno, struct page *page,
939 struct ocfs2_write_ctxt *wc, int new)
940{
941 int ret, copied = 0;
942 unsigned int from = 0, to = 0;
943 unsigned int cluster_start, cluster_end;
944 unsigned int zero_from = 0, zero_to = 0;
945
946 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), wc->w_cpos,
947 &cluster_start, &cluster_end);
948
949 if ((wc->w_pos >> PAGE_CACHE_SHIFT) == page->index
950 && !wc->w_finished_copy) {
951
952 wc->w_this_page = page;
953 wc->w_this_page_new = new;
954 ret = wc->w_write_data_page(inode, wc, p_blkno, &from, &to);
955 if (ret < 0) {
956 mlog_errno(ret);
957 goto out;
958 }
959
960 copied = ret;
961
962 zero_from = from;
963 zero_to = to;
964 if (new) {
965 from = cluster_start;
966 to = cluster_end;
967 }
968 } else {
969 /*
970 * If we haven't allocated the new page yet, we
971 * shouldn't be writing it out without copying user
972 * data. This is likely a math error from the caller.
973 */
974 BUG_ON(!new);
975
976 from = cluster_start;
977 to = cluster_end;
978
979 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
980 cluster_start, cluster_end, 1);
981 if (ret) {
982 mlog_errno(ret);
983 goto out;
984 }
985 }
986
987 /*
988 * Parts of newly allocated pages need to be zero'd.
989 *
990 * Above, we have also rewritten 'to' and 'from' - as far as
991 * the rest of the function is concerned, the entire cluster
992 * range inside of a page needs to be written.
993 *
994 * We can skip this if the page is up to date - it's already
995 * been zero'd from being read in as a hole.
996 */
997 if (new && !PageUptodate(page))
998 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
999 wc->w_cpos, zero_from, zero_to);
1000
1001 flush_dcache_page(page);
1002
1003 if (ocfs2_should_order_data(inode)) {
1004 ret = walk_page_buffers(handle,
1005 page_buffers(page),
1006 from, to, NULL,
1007 ocfs2_journal_dirty_data);
1008 if (ret < 0)
1009 mlog_errno(ret);
1010 }
1011
1012 /*
1013 * We don't use generic_commit_write() because we need to
1014 * handle our own i_size update.
1015 */
1016 ret = block_commit_write(page, from, to);
1017 if (ret)
1018 mlog_errno(ret);
1019out:
1020
1021 return copied ? copied : ret;
1022}
1023
1024/*
1025 * Do the actual write of some data into an inode. Optionally allocate
1026 * in order to fulfill the write.
1027 *
1028 * cpos is the logical cluster offset within the file to write at
1029 *
1030 * 'phys' is the physical mapping of that offset. a 'phys' value of
1031 * zero indicates that allocation is required. In this case, data_ac
1032 * and meta_ac should be valid (meta_ac can be null if metadata
1033 * allocation isn't required).
1034 */
1035static ssize_t ocfs2_write(struct file *file, u32 phys, handle_t *handle,
1036 struct buffer_head *di_bh,
1037 struct ocfs2_alloc_context *data_ac,
1038 struct ocfs2_alloc_context *meta_ac,
1039 struct ocfs2_write_ctxt *wc)
1040{
1041 int ret, i, numpages = 1, new;
1042 unsigned int copied = 0;
1043 u32 tmp_pos;
1044 u64 v_blkno, p_blkno;
1045 struct address_space *mapping = file->f_mapping;
1046 struct inode *inode = mapping->host;
9517bac6
MF
1047 unsigned long index, start;
1048 struct page **cpages;
1049
1050 new = phys == 0 ? 1 : 0;
1051
1052 /*
1053 * Figure out how many pages we'll be manipulating here. For
60b11392
MF
1054 * non allocating write, we just change the one
1055 * page. Otherwise, we'll need a whole clusters worth.
9517bac6 1056 */
60b11392
MF
1057 if (new)
1058 numpages = ocfs2_pages_per_cluster(inode->i_sb);
9517bac6
MF
1059
1060 cpages = kzalloc(sizeof(*cpages) * numpages, GFP_NOFS);
1061 if (!cpages) {
1062 ret = -ENOMEM;
1063 mlog_errno(ret);
1064 return ret;
1065 }
1066
1067 /*
1068 * Fill our page array first. That way we've grabbed enough so
1069 * that we can zero and flush if we error after adding the
1070 * extent.
1071 */
1072 if (new) {
1073 start = ocfs2_align_clusters_to_page_index(inode->i_sb,
1074 wc->w_cpos);
1075 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, wc->w_cpos);
1076 } else {
1077 start = wc->w_pos >> PAGE_CACHE_SHIFT;
1078 v_blkno = wc->w_pos >> inode->i_sb->s_blocksize_bits;
1079 }
1080
1081 for(i = 0; i < numpages; i++) {
1082 index = start + i;
1083
1084 cpages[i] = grab_cache_page(mapping, index);
1085 if (!cpages[i]) {
1086 ret = -ENOMEM;
1087 mlog_errno(ret);
1088 goto out;
1089 }
1090 }
1091
1092 if (new) {
1093 /*
1094 * This is safe to call with the page locks - it won't take
1095 * any additional semaphores or cluster locks.
1096 */
1097 tmp_pos = wc->w_cpos;
1098 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1099 &tmp_pos, 1, di_bh, handle,
1100 data_ac, meta_ac, NULL);
1101 /*
1102 * This shouldn't happen because we must have already
1103 * calculated the correct meta data allocation required. The
1104 * internal tree allocation code should know how to increase
1105 * transaction credits itself.
1106 *
1107 * If need be, we could handle -EAGAIN for a
1108 * RESTART_TRANS here.
1109 */
1110 mlog_bug_on_msg(ret == -EAGAIN,
1111 "Inode %llu: EAGAIN return during allocation.\n",
1112 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1113 if (ret < 0) {
1114 mlog_errno(ret);
1115 goto out;
1116 }
1117 }
1118
49cb8d2d
MF
1119 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1120 NULL);
9517bac6
MF
1121 if (ret < 0) {
1122
1123 /*
1124 * XXX: Should we go readonly here?
1125 */
1126
1127 mlog_errno(ret);
1128 goto out;
1129 }
1130
1131 BUG_ON(p_blkno == 0);
1132
1133 for(i = 0; i < numpages; i++) {
1134 ret = ocfs2_write_data_page(inode, handle, &p_blkno, cpages[i],
1135 wc, new);
1136 if (ret < 0) {
1137 mlog_errno(ret);
1138 goto out;
1139 }
1140
1141 copied += ret;
1142 }
1143
1144out:
1145 for(i = 0; i < numpages; i++) {
1146 unlock_page(cpages[i]);
1147 mark_page_accessed(cpages[i]);
1148 page_cache_release(cpages[i]);
1149 }
1150 kfree(cpages);
1151
1152 return copied ? copied : ret;
1153}
1154
1155static void ocfs2_write_ctxt_init(struct ocfs2_write_ctxt *wc,
1156 struct ocfs2_super *osb, loff_t pos,
1157 size_t count, ocfs2_page_writer *cb,
1158 void *cb_priv)
1159{
1160 wc->w_count = count;
1161 wc->w_pos = pos;
1162 wc->w_cpos = wc->w_pos >> osb->s_clustersize_bits;
1163 wc->w_finished_copy = 0;
1164
1165 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1166 wc->w_large_pages = 1;
1167 else
1168 wc->w_large_pages = 0;
1169
1170 wc->w_write_data_page = cb;
1171 wc->w_private = cb_priv;
1172}
1173
1174/*
1175 * Write a cluster to an inode. The cluster may not be allocated yet,
1176 * in which case it will be. This only exists for buffered writes -
1177 * O_DIRECT takes a more "traditional" path through the kernel.
1178 *
1179 * The caller is responsible for incrementing pos, written counts, etc
1180 *
1181 * For file systems that don't support sparse files, pre-allocation
1182 * and page zeroing up until cpos should be done prior to this
1183 * function call.
1184 *
1185 * Callers should be holding i_sem, and the rw cluster lock.
1186 *
1187 * Returns the number of user bytes written, or less than zero for
1188 * error.
1189 */
1190ssize_t ocfs2_buffered_write_cluster(struct file *file, loff_t pos,
1191 size_t count, ocfs2_page_writer *actor,
1192 void *priv)
1193{
1194 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1195 ssize_t written = 0;
1196 u32 phys;
1197 struct inode *inode = file->f_mapping->host;
1198 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1199 struct buffer_head *di_bh = NULL;
1200 struct ocfs2_dinode *di;
1201 struct ocfs2_alloc_context *data_ac = NULL;
1202 struct ocfs2_alloc_context *meta_ac = NULL;
1203 handle_t *handle;
1204 struct ocfs2_write_ctxt wc;
1205
1206 ocfs2_write_ctxt_init(&wc, osb, pos, count, actor, priv);
1207
1208 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1209 if (ret) {
1210 mlog_errno(ret);
1211 goto out;
1212 }
1213 di = (struct ocfs2_dinode *)di_bh->b_data;
1214
1215 /*
1216 * Take alloc sem here to prevent concurrent lookups. That way
1217 * the mapping, zeroing and tree manipulation within
1218 * ocfs2_write() will be safe against ->readpage(). This
1219 * should also serve to lock out allocation from a shared
1220 * writeable region.
1221 */
1222 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1223
49cb8d2d 1224 ret = ocfs2_get_clusters(inode, wc.w_cpos, &phys, NULL, NULL);
9517bac6
MF
1225 if (ret) {
1226 mlog_errno(ret);
1227 goto out_meta;
1228 }
1229
1230 /* phys == 0 means that allocation is required. */
1231 if (phys == 0) {
1232 ret = ocfs2_lock_allocators(inode, di, 1, &data_ac, &meta_ac);
1233 if (ret) {
1234 mlog_errno(ret);
1235 goto out_meta;
1236 }
1237
1238 credits = ocfs2_calc_extend_credits(inode->i_sb, di, 1);
1239 }
1240
1241 ret = ocfs2_data_lock(inode, 1);
1242 if (ret) {
1243 mlog_errno(ret);
1244 goto out_meta;
1245 }
1246
1247 handle = ocfs2_start_trans(osb, credits);
1248 if (IS_ERR(handle)) {
1249 ret = PTR_ERR(handle);
1250 mlog_errno(ret);
1251 goto out_data;
1252 }
1253
1254 written = ocfs2_write(file, phys, handle, di_bh, data_ac,
1255 meta_ac, &wc);
1256 if (written < 0) {
1257 ret = written;
1258 mlog_errno(ret);
1259 goto out_commit;
1260 }
1261
1262 ret = ocfs2_journal_access(handle, inode, di_bh,
1263 OCFS2_JOURNAL_ACCESS_WRITE);
1264 if (ret) {
1265 mlog_errno(ret);
1266 goto out_commit;
1267 }
1268
1269 pos += written;
1270 if (pos > inode->i_size) {
1271 i_size_write(inode, pos);
1272 mark_inode_dirty(inode);
1273 }
8110b073 1274 inode->i_blocks = ocfs2_inode_sector_count(inode);
9517bac6
MF
1275 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1276 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1277 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1278 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1279
1280 ret = ocfs2_journal_dirty(handle, di_bh);
1281 if (ret)
1282 mlog_errno(ret);
1283
1284out_commit:
1285 ocfs2_commit_trans(osb, handle);
1286
1287out_data:
1288 ocfs2_data_unlock(inode, 1);
1289
1290out_meta:
1291 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1292 ocfs2_meta_unlock(inode, 1);
1293
1294out:
1295 brelse(di_bh);
1296 if (data_ac)
1297 ocfs2_free_alloc_context(data_ac);
1298 if (meta_ac)
1299 ocfs2_free_alloc_context(meta_ac);
1300
1301 return written ? written : ret;
1302}
1303
f5e54d6e 1304const struct address_space_operations ocfs2_aops = {
ccd979bd
MF
1305 .readpage = ocfs2_readpage,
1306 .writepage = ocfs2_writepage,
ccd979bd
MF
1307 .bmap = ocfs2_bmap,
1308 .sync_page = block_sync_page,
03f981cf
JB
1309 .direct_IO = ocfs2_direct_IO,
1310 .invalidatepage = ocfs2_invalidatepage,
1311 .releasepage = ocfs2_releasepage,
1312 .migratepage = buffer_migrate_page,
ccd979bd 1313};
This page took 0.216637 seconds and 5 git commands to generate.