ocfs2/cluster: Heartbeat mismatch message improved
[deliverable/linux.git] / fs / ocfs2 / journal.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * journal.c
5 *
6 * Defines functions of journalling api
7 *
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
24 */
25
26#include <linux/fs.h>
27#include <linux/types.h>
28#include <linux/slab.h>
29#include <linux/highmem.h>
30#include <linux/kthread.h>
83273932
SE
31#include <linux/time.h>
32#include <linux/random.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
50655ae9 39#include "blockcheck.h"
316f4b9f 40#include "dir.h"
ccd979bd
MF
41#include "dlmglue.h"
42#include "extent_map.h"
43#include "heartbeat.h"
44#include "inode.h"
45#include "journal.h"
46#include "localalloc.h"
ccd979bd
MF
47#include "slot_map.h"
48#include "super.h"
ccd979bd 49#include "sysfile.h"
0cf2f763 50#include "uptodate.h"
2205363d 51#include "quota.h"
ccd979bd
MF
52
53#include "buffer_head_io.h"
b4107950 54#include "ocfs2_trace.h"
ccd979bd 55
34af946a 56DEFINE_SPINLOCK(trans_inc_lock);
ccd979bd 57
83273932
SE
58#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
59
ccd979bd
MF
60static int ocfs2_force_read_journal(struct inode *inode);
61static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 62 int node_num, int slot_num);
ccd979bd
MF
63static int __ocfs2_recovery_thread(void *arg);
64static int ocfs2_commit_cache(struct ocfs2_super *osb);
19ece546 65static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
ccd979bd 66static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 67 int dirty, int replayed);
ccd979bd
MF
68static int ocfs2_trylock_journal(struct ocfs2_super *osb,
69 int slot_num);
70static int ocfs2_recover_orphans(struct ocfs2_super *osb,
71 int slot);
72static int ocfs2_commit_thread(void *arg);
9140db04
SE
73static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
74 int slot_num,
75 struct ocfs2_dinode *la_dinode,
76 struct ocfs2_dinode *tl_dinode,
77 struct ocfs2_quota_recovery *qrec);
ccd979bd 78
19ece546
JK
79static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
80{
81 return __ocfs2_wait_on_mount(osb, 0);
82}
83
84static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
85{
86 return __ocfs2_wait_on_mount(osb, 1);
87}
88
9140db04
SE
89/*
90 * This replay_map is to track online/offline slots, so we could recover
91 * offline slots during recovery and mount
92 */
93
94enum ocfs2_replay_state {
95 REPLAY_UNNEEDED = 0, /* Replay is not needed, so ignore this map */
96 REPLAY_NEEDED, /* Replay slots marked in rm_replay_slots */
97 REPLAY_DONE /* Replay was already queued */
98};
99
100struct ocfs2_replay_map {
101 unsigned int rm_slots;
102 enum ocfs2_replay_state rm_state;
103 unsigned char rm_replay_slots[0];
104};
105
106void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
107{
108 if (!osb->replay_map)
109 return;
110
111 /* If we've already queued the replay, we don't have any more to do */
112 if (osb->replay_map->rm_state == REPLAY_DONE)
113 return;
114
115 osb->replay_map->rm_state = state;
116}
117
118int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
119{
120 struct ocfs2_replay_map *replay_map;
121 int i, node_num;
122
123 /* If replay map is already set, we don't do it again */
124 if (osb->replay_map)
125 return 0;
126
127 replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
128 (osb->max_slots * sizeof(char)), GFP_KERNEL);
129
130 if (!replay_map) {
131 mlog_errno(-ENOMEM);
132 return -ENOMEM;
133 }
134
135 spin_lock(&osb->osb_lock);
136
137 replay_map->rm_slots = osb->max_slots;
138 replay_map->rm_state = REPLAY_UNNEEDED;
139
140 /* set rm_replay_slots for offline slot(s) */
141 for (i = 0; i < replay_map->rm_slots; i++) {
142 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
143 replay_map->rm_replay_slots[i] = 1;
144 }
145
146 osb->replay_map = replay_map;
147 spin_unlock(&osb->osb_lock);
148 return 0;
149}
150
151void ocfs2_queue_replay_slots(struct ocfs2_super *osb)
152{
153 struct ocfs2_replay_map *replay_map = osb->replay_map;
154 int i;
155
156 if (!replay_map)
157 return;
158
159 if (replay_map->rm_state != REPLAY_NEEDED)
160 return;
161
162 for (i = 0; i < replay_map->rm_slots; i++)
163 if (replay_map->rm_replay_slots[i])
164 ocfs2_queue_recovery_completion(osb->journal, i, NULL,
165 NULL, NULL);
166 replay_map->rm_state = REPLAY_DONE;
167}
168
169void ocfs2_free_replay_slots(struct ocfs2_super *osb)
170{
171 struct ocfs2_replay_map *replay_map = osb->replay_map;
172
173 if (!osb->replay_map)
174 return;
175
176 kfree(replay_map);
177 osb->replay_map = NULL;
178}
179
553abd04
JB
180int ocfs2_recovery_init(struct ocfs2_super *osb)
181{
182 struct ocfs2_recovery_map *rm;
183
184 mutex_init(&osb->recovery_lock);
185 osb->disable_recovery = 0;
186 osb->recovery_thread_task = NULL;
187 init_waitqueue_head(&osb->recovery_event);
188
189 rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
190 osb->max_slots * sizeof(unsigned int),
191 GFP_KERNEL);
192 if (!rm) {
193 mlog_errno(-ENOMEM);
194 return -ENOMEM;
195 }
196
197 rm->rm_entries = (unsigned int *)((char *)rm +
198 sizeof(struct ocfs2_recovery_map));
199 osb->recovery_map = rm;
200
201 return 0;
202}
203
204/* we can't grab the goofy sem lock from inside wait_event, so we use
205 * memory barriers to make sure that we'll see the null task before
206 * being woken up */
207static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
208{
209 mb();
210 return osb->recovery_thread_task != NULL;
211}
212
213void ocfs2_recovery_exit(struct ocfs2_super *osb)
214{
215 struct ocfs2_recovery_map *rm;
216
217 /* disable any new recovery threads and wait for any currently
218 * running ones to exit. Do this before setting the vol_state. */
219 mutex_lock(&osb->recovery_lock);
220 osb->disable_recovery = 1;
221 mutex_unlock(&osb->recovery_lock);
222 wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
223
224 /* At this point, we know that no more recovery threads can be
225 * launched, so wait for any recovery completion work to
226 * complete. */
227 flush_workqueue(ocfs2_wq);
228
229 /*
230 * Now that recovery is shut down, and the osb is about to be
231 * freed, the osb_lock is not taken here.
232 */
233 rm = osb->recovery_map;
234 /* XXX: Should we bug if there are dirty entries? */
235
236 kfree(rm);
237}
238
239static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
240 unsigned int node_num)
241{
242 int i;
243 struct ocfs2_recovery_map *rm = osb->recovery_map;
244
245 assert_spin_locked(&osb->osb_lock);
246
247 for (i = 0; i < rm->rm_used; i++) {
248 if (rm->rm_entries[i] == node_num)
249 return 1;
250 }
251
252 return 0;
253}
254
255/* Behaves like test-and-set. Returns the previous value */
256static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
257 unsigned int node_num)
258{
259 struct ocfs2_recovery_map *rm = osb->recovery_map;
260
261 spin_lock(&osb->osb_lock);
262 if (__ocfs2_recovery_map_test(osb, node_num)) {
263 spin_unlock(&osb->osb_lock);
264 return 1;
265 }
266
267 /* XXX: Can this be exploited? Not from o2dlm... */
268 BUG_ON(rm->rm_used >= osb->max_slots);
269
270 rm->rm_entries[rm->rm_used] = node_num;
271 rm->rm_used++;
272 spin_unlock(&osb->osb_lock);
273
274 return 0;
275}
276
277static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
278 unsigned int node_num)
279{
280 int i;
281 struct ocfs2_recovery_map *rm = osb->recovery_map;
282
283 spin_lock(&osb->osb_lock);
284
285 for (i = 0; i < rm->rm_used; i++) {
286 if (rm->rm_entries[i] == node_num)
287 break;
288 }
289
290 if (i < rm->rm_used) {
291 /* XXX: be careful with the pointer math */
292 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
293 (rm->rm_used - i - 1) * sizeof(unsigned int));
294 rm->rm_used--;
295 }
296
297 spin_unlock(&osb->osb_lock);
298}
299
ccd979bd
MF
300static int ocfs2_commit_cache(struct ocfs2_super *osb)
301{
302 int status = 0;
303 unsigned int flushed;
ccd979bd
MF
304 struct ocfs2_journal *journal = NULL;
305
ccd979bd
MF
306 journal = osb->journal;
307
308 /* Flush all pending commits and checkpoint the journal. */
309 down_write(&journal->j_trans_barrier);
310
b4107950
TM
311 flushed = atomic_read(&journal->j_num_trans);
312 trace_ocfs2_commit_cache_begin(flushed);
313 if (flushed == 0) {
ccd979bd 314 up_write(&journal->j_trans_barrier);
ccd979bd
MF
315 goto finally;
316 }
317
2b4e30fb
JB
318 jbd2_journal_lock_updates(journal->j_journal);
319 status = jbd2_journal_flush(journal->j_journal);
320 jbd2_journal_unlock_updates(journal->j_journal);
ccd979bd
MF
321 if (status < 0) {
322 up_write(&journal->j_trans_barrier);
323 mlog_errno(status);
324 goto finally;
325 }
326
f9c57ada 327 ocfs2_inc_trans_id(journal);
ccd979bd
MF
328
329 flushed = atomic_read(&journal->j_num_trans);
330 atomic_set(&journal->j_num_trans, 0);
331 up_write(&journal->j_trans_barrier);
332
b4107950 333 trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
ccd979bd 334
34d024f8 335 ocfs2_wake_downconvert_thread(osb);
ccd979bd
MF
336 wake_up(&journal->j_checkpointed);
337finally:
ccd979bd
MF
338 return status;
339}
340
1fabe148 341handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
ccd979bd 342{
ccd979bd 343 journal_t *journal = osb->journal->j_journal;
1fabe148 344 handle_t *handle;
ccd979bd 345
ebdec83b 346 BUG_ON(!osb || !osb->journal->j_journal);
ccd979bd 347
65eff9cc
MF
348 if (ocfs2_is_hard_readonly(osb))
349 return ERR_PTR(-EROFS);
ccd979bd
MF
350
351 BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
352 BUG_ON(max_buffs <= 0);
353
90e86a63
JK
354 /* Nested transaction? Just return the handle... */
355 if (journal_current_handle())
356 return jbd2_journal_start(journal, max_buffs);
ccd979bd 357
ccd979bd
MF
358 down_read(&osb->journal->j_trans_barrier);
359
2b4e30fb 360 handle = jbd2_journal_start(journal, max_buffs);
1fabe148 361 if (IS_ERR(handle)) {
ccd979bd
MF
362 up_read(&osb->journal->j_trans_barrier);
363
1fabe148 364 mlog_errno(PTR_ERR(handle));
ccd979bd
MF
365
366 if (is_journal_aborted(journal)) {
367 ocfs2_abort(osb->sb, "Detected aborted journal");
1fabe148 368 handle = ERR_PTR(-EROFS);
ccd979bd 369 }
c271c5c2
SM
370 } else {
371 if (!ocfs2_mount_local(osb))
372 atomic_inc(&(osb->journal->j_num_trans));
373 }
ccd979bd 374
ccd979bd 375 return handle;
ccd979bd
MF
376}
377
1fabe148
MF
378int ocfs2_commit_trans(struct ocfs2_super *osb,
379 handle_t *handle)
ccd979bd 380{
90e86a63 381 int ret, nested;
02dc1af4 382 struct ocfs2_journal *journal = osb->journal;
ccd979bd
MF
383
384 BUG_ON(!handle);
385
90e86a63 386 nested = handle->h_ref > 1;
2b4e30fb 387 ret = jbd2_journal_stop(handle);
1fabe148
MF
388 if (ret < 0)
389 mlog_errno(ret);
ccd979bd 390
90e86a63
JK
391 if (!nested)
392 up_read(&journal->j_trans_barrier);
ccd979bd 393
1fabe148 394 return ret;
ccd979bd
MF
395}
396
397/*
c901fb00 398 * 'nblocks' is what you want to add to the current transaction.
ccd979bd 399 *
2b4e30fb 400 * This might call jbd2_journal_restart() which will commit dirty buffers
e8aed345
MF
401 * and then restart the transaction. Before calling
402 * ocfs2_extend_trans(), any changed blocks should have been
403 * dirtied. After calling it, all blocks which need to be changed must
404 * go through another set of journal_access/journal_dirty calls.
405 *
ccd979bd
MF
406 * WARNING: This will not release any semaphores or disk locks taken
407 * during the transaction, so make sure they were taken *before*
408 * start_trans or we'll have ordering deadlocks.
409 *
410 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
411 * good because transaction ids haven't yet been recorded on the
412 * cluster locks associated with this handle.
413 */
1fc58146 414int ocfs2_extend_trans(handle_t *handle, int nblocks)
ccd979bd 415{
c901fb00 416 int status, old_nblocks;
ccd979bd
MF
417
418 BUG_ON(!handle);
c901fb00 419 BUG_ON(nblocks < 0);
ccd979bd 420
c901fb00
TM
421 if (!nblocks)
422 return 0;
423
424 old_nblocks = handle->h_buffer_credits;
ccd979bd 425
b4107950 426 trace_ocfs2_extend_trans(old_nblocks, nblocks);
ccd979bd 427
e407e397 428#ifdef CONFIG_OCFS2_DEBUG_FS
0879c584
MF
429 status = 1;
430#else
2b4e30fb 431 status = jbd2_journal_extend(handle, nblocks);
ccd979bd
MF
432 if (status < 0) {
433 mlog_errno(status);
434 goto bail;
435 }
0879c584 436#endif
ccd979bd
MF
437
438 if (status > 0) {
b4107950 439 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
c901fb00
TM
440 status = jbd2_journal_restart(handle,
441 old_nblocks + nblocks);
ccd979bd 442 if (status < 0) {
ccd979bd
MF
443 mlog_errno(status);
444 goto bail;
445 }
01ddf1e1 446 }
ccd979bd
MF
447
448 status = 0;
449bail:
ccd979bd
MF
450 return status;
451}
452
50655ae9
JB
453struct ocfs2_triggers {
454 struct jbd2_buffer_trigger_type ot_triggers;
455 int ot_offset;
456};
457
458static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
459{
460 return container_of(triggers, struct ocfs2_triggers, ot_triggers);
461}
462
13ceef09 463static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
464 struct buffer_head *bh,
465 void *data, size_t size)
466{
467 struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
468
469 /*
470 * We aren't guaranteed to have the superblock here, so we
471 * must unconditionally compute the ecc data.
472 * __ocfs2_journal_access() will only set the triggers if
473 * metaecc is enabled.
474 */
475 ocfs2_block_check_compute(data, size, data + ot->ot_offset);
476}
477
478/*
479 * Quota blocks have their own trigger because the struct ocfs2_block_check
480 * offset depends on the blocksize.
481 */
13ceef09 482static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
50655ae9
JB
483 struct buffer_head *bh,
484 void *data, size_t size)
485{
486 struct ocfs2_disk_dqtrailer *dqt =
487 ocfs2_block_dqtrailer(size, data);
488
489 /*
490 * We aren't guaranteed to have the superblock here, so we
491 * must unconditionally compute the ecc data.
492 * __ocfs2_journal_access() will only set the triggers if
493 * metaecc is enabled.
494 */
495 ocfs2_block_check_compute(data, size, &dqt->dq_check);
496}
497
c175a518
JB
498/*
499 * Directory blocks also have their own trigger because the
500 * struct ocfs2_block_check offset depends on the blocksize.
501 */
13ceef09 502static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
c175a518
JB
503 struct buffer_head *bh,
504 void *data, size_t size)
505{
506 struct ocfs2_dir_block_trailer *trailer =
507 ocfs2_dir_trailer_from_size(size, data);
508
509 /*
510 * We aren't guaranteed to have the superblock here, so we
511 * must unconditionally compute the ecc data.
512 * __ocfs2_journal_access() will only set the triggers if
513 * metaecc is enabled.
514 */
515 ocfs2_block_check_compute(data, size, &trailer->db_check);
516}
517
50655ae9
JB
518static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
519 struct buffer_head *bh)
520{
521 mlog(ML_ERROR,
522 "ocfs2_abort_trigger called by JBD2. bh = 0x%lx, "
523 "bh->b_blocknr = %llu\n",
524 (unsigned long)bh,
525 (unsigned long long)bh->b_blocknr);
526
527 /* We aren't guaranteed to have the superblock here - but if we
528 * don't, it'll just crash. */
529 ocfs2_error(bh->b_assoc_map->host->i_sb,
530 "JBD2 has aborted our journal, ocfs2 cannot continue\n");
531}
532
533static struct ocfs2_triggers di_triggers = {
534 .ot_triggers = {
13ceef09 535 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
536 .t_abort = ocfs2_abort_trigger,
537 },
538 .ot_offset = offsetof(struct ocfs2_dinode, i_check),
539};
540
541static struct ocfs2_triggers eb_triggers = {
542 .ot_triggers = {
13ceef09 543 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
544 .t_abort = ocfs2_abort_trigger,
545 },
546 .ot_offset = offsetof(struct ocfs2_extent_block, h_check),
547};
548
93c97087
TM
549static struct ocfs2_triggers rb_triggers = {
550 .ot_triggers = {
13ceef09 551 .t_frozen = ocfs2_frozen_trigger,
93c97087
TM
552 .t_abort = ocfs2_abort_trigger,
553 },
554 .ot_offset = offsetof(struct ocfs2_refcount_block, rf_check),
555};
556
50655ae9
JB
557static struct ocfs2_triggers gd_triggers = {
558 .ot_triggers = {
13ceef09 559 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
560 .t_abort = ocfs2_abort_trigger,
561 },
562 .ot_offset = offsetof(struct ocfs2_group_desc, bg_check),
563};
564
c175a518
JB
565static struct ocfs2_triggers db_triggers = {
566 .ot_triggers = {
13ceef09 567 .t_frozen = ocfs2_db_frozen_trigger,
c175a518
JB
568 .t_abort = ocfs2_abort_trigger,
569 },
570};
571
50655ae9
JB
572static struct ocfs2_triggers xb_triggers = {
573 .ot_triggers = {
13ceef09 574 .t_frozen = ocfs2_frozen_trigger,
50655ae9
JB
575 .t_abort = ocfs2_abort_trigger,
576 },
577 .ot_offset = offsetof(struct ocfs2_xattr_block, xb_check),
578};
579
580static struct ocfs2_triggers dq_triggers = {
581 .ot_triggers = {
13ceef09 582 .t_frozen = ocfs2_dq_frozen_trigger,
50655ae9
JB
583 .t_abort = ocfs2_abort_trigger,
584 },
585};
586
9b7895ef
MF
587static struct ocfs2_triggers dr_triggers = {
588 .ot_triggers = {
13ceef09 589 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
590 .t_abort = ocfs2_abort_trigger,
591 },
592 .ot_offset = offsetof(struct ocfs2_dx_root_block, dr_check),
593};
594
595static struct ocfs2_triggers dl_triggers = {
596 .ot_triggers = {
13ceef09 597 .t_frozen = ocfs2_frozen_trigger,
9b7895ef
MF
598 .t_abort = ocfs2_abort_trigger,
599 },
600 .ot_offset = offsetof(struct ocfs2_dx_leaf, dl_check),
601};
602
50655ae9 603static int __ocfs2_journal_access(handle_t *handle,
0cf2f763 604 struct ocfs2_caching_info *ci,
50655ae9
JB
605 struct buffer_head *bh,
606 struct ocfs2_triggers *triggers,
607 int type)
ccd979bd
MF
608{
609 int status;
0cf2f763
JB
610 struct ocfs2_super *osb =
611 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
ccd979bd 612
0cf2f763 613 BUG_ON(!ci || !ci->ci_ops);
ccd979bd
MF
614 BUG_ON(!handle);
615 BUG_ON(!bh);
ccd979bd 616
b4107950
TM
617 trace_ocfs2_journal_access(
618 (unsigned long long)ocfs2_metadata_cache_owner(ci),
619 (unsigned long long)bh->b_blocknr, type, bh->b_size);
ccd979bd
MF
620
621 /* we can safely remove this assertion after testing. */
622 if (!buffer_uptodate(bh)) {
623 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
624 mlog(ML_ERROR, "b_blocknr=%llu\n",
625 (unsigned long long)bh->b_blocknr);
626 BUG();
627 }
628
0cf2f763 629 /* Set the current transaction information on the ci so
ccd979bd 630 * that the locking code knows whether it can drop it's locks
0cf2f763 631 * on this ci or not. We're protected from the commit
ccd979bd
MF
632 * thread updating the current transaction id until
633 * ocfs2_commit_trans() because ocfs2_start_trans() took
634 * j_trans_barrier for us. */
0cf2f763 635 ocfs2_set_ci_lock_trans(osb->journal, ci);
ccd979bd 636
0cf2f763 637 ocfs2_metadata_cache_io_lock(ci);
ccd979bd
MF
638 switch (type) {
639 case OCFS2_JOURNAL_ACCESS_CREATE:
640 case OCFS2_JOURNAL_ACCESS_WRITE:
2b4e30fb 641 status = jbd2_journal_get_write_access(handle, bh);
ccd979bd
MF
642 break;
643
644 case OCFS2_JOURNAL_ACCESS_UNDO:
2b4e30fb 645 status = jbd2_journal_get_undo_access(handle, bh);
ccd979bd
MF
646 break;
647
648 default:
649 status = -EINVAL;
af901ca1 650 mlog(ML_ERROR, "Unknown access type!\n");
ccd979bd 651 }
0cf2f763 652 if (!status && ocfs2_meta_ecc(osb) && triggers)
50655ae9 653 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
0cf2f763 654 ocfs2_metadata_cache_io_unlock(ci);
ccd979bd
MF
655
656 if (status < 0)
657 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
658 status, type);
659
ccd979bd
MF
660 return status;
661}
662
0cf2f763
JB
663int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
664 struct buffer_head *bh, int type)
50655ae9 665{
0cf2f763 666 return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
50655ae9
JB
667}
668
0cf2f763 669int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
670 struct buffer_head *bh, int type)
671{
0cf2f763 672 return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
50655ae9
JB
673}
674
93c97087
TM
675int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
676 struct buffer_head *bh, int type)
677{
678 return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
679 type);
680}
681
0cf2f763 682int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
683 struct buffer_head *bh, int type)
684{
0cf2f763 685 return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
50655ae9
JB
686}
687
0cf2f763 688int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
689 struct buffer_head *bh, int type)
690{
0cf2f763 691 return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
50655ae9
JB
692}
693
0cf2f763 694int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
695 struct buffer_head *bh, int type)
696{
0cf2f763 697 return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
50655ae9
JB
698}
699
0cf2f763 700int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
701 struct buffer_head *bh, int type)
702{
0cf2f763 703 return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
50655ae9
JB
704}
705
0cf2f763 706int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
707 struct buffer_head *bh, int type)
708{
0cf2f763 709 return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
9b7895ef
MF
710}
711
0cf2f763 712int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
9b7895ef
MF
713 struct buffer_head *bh, int type)
714{
0cf2f763 715 return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
9b7895ef
MF
716}
717
0cf2f763 718int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
50655ae9
JB
719 struct buffer_head *bh, int type)
720{
0cf2f763 721 return __ocfs2_journal_access(handle, ci, bh, NULL, type);
50655ae9
JB
722}
723
ec20cec7 724void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
ccd979bd
MF
725{
726 int status;
727
b4107950 728 trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
ccd979bd 729
2b4e30fb 730 status = jbd2_journal_dirty_metadata(handle, bh);
ec20cec7 731 BUG_ON(status);
ccd979bd
MF
732}
733
2b4e30fb 734#define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
ccd979bd
MF
735
736void ocfs2_set_journal_params(struct ocfs2_super *osb)
737{
738 journal_t *journal = osb->journal->j_journal;
d147b3d6
MF
739 unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
740
741 if (osb->osb_commit_interval)
742 commit_interval = osb->osb_commit_interval;
ccd979bd 743
a931da6a 744 write_lock(&journal->j_state_lock);
d147b3d6 745 journal->j_commit_interval = commit_interval;
ccd979bd 746 if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
2b4e30fb 747 journal->j_flags |= JBD2_BARRIER;
ccd979bd 748 else
2b4e30fb 749 journal->j_flags &= ~JBD2_BARRIER;
a931da6a 750 write_unlock(&journal->j_state_lock);
ccd979bd
MF
751}
752
753int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
754{
755 int status = -1;
756 struct inode *inode = NULL; /* the journal inode */
757 journal_t *j_journal = NULL;
758 struct ocfs2_dinode *di = NULL;
759 struct buffer_head *bh = NULL;
760 struct ocfs2_super *osb;
e63aecb6 761 int inode_lock = 0;
ccd979bd 762
ccd979bd
MF
763 BUG_ON(!journal);
764
765 osb = journal->j_osb;
766
767 /* already have the inode for our journal */
768 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
769 osb->slot_num);
770 if (inode == NULL) {
771 status = -EACCES;
772 mlog_errno(status);
773 goto done;
774 }
775 if (is_bad_inode(inode)) {
776 mlog(ML_ERROR, "access error (bad inode)\n");
777 iput(inode);
778 inode = NULL;
779 status = -EACCES;
780 goto done;
781 }
782
783 SET_INODE_JOURNAL(inode);
784 OCFS2_I(inode)->ip_open_count++;
785
6eff5790
MF
786 /* Skip recovery waits here - journal inode metadata never
787 * changes in a live cluster so it can be considered an
788 * exception to the rule. */
e63aecb6 789 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd
MF
790 if (status < 0) {
791 if (status != -ERESTARTSYS)
792 mlog(ML_ERROR, "Could not get lock on journal!\n");
793 goto done;
794 }
795
e63aecb6 796 inode_lock = 1;
ccd979bd
MF
797 di = (struct ocfs2_dinode *)bh->b_data;
798
799 if (inode->i_size < OCFS2_MIN_JOURNAL_SIZE) {
800 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
801 inode->i_size);
802 status = -EINVAL;
803 goto done;
804 }
805
b4107950
TM
806 trace_ocfs2_journal_init(inode->i_size,
807 (unsigned long long)inode->i_blocks,
808 OCFS2_I(inode)->ip_clusters);
ccd979bd
MF
809
810 /* call the kernels journal init function now */
2b4e30fb 811 j_journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
812 if (j_journal == NULL) {
813 mlog(ML_ERROR, "Linux journal layer error\n");
814 status = -EINVAL;
815 goto done;
816 }
817
b4107950 818 trace_ocfs2_journal_init_maxlen(j_journal->j_maxlen);
ccd979bd
MF
819
820 *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
821 OCFS2_JOURNAL_DIRTY_FL);
822
823 journal->j_journal = j_journal;
824 journal->j_inode = inode;
825 journal->j_bh = bh;
826
827 ocfs2_set_journal_params(osb);
828
829 journal->j_state = OCFS2_JOURNAL_LOADED;
830
831 status = 0;
832done:
833 if (status < 0) {
e63aecb6
MF
834 if (inode_lock)
835 ocfs2_inode_unlock(inode, 1);
a81cb88b 836 brelse(bh);
ccd979bd
MF
837 if (inode) {
838 OCFS2_I(inode)->ip_open_count--;
839 iput(inode);
840 }
841 }
842
ccd979bd
MF
843 return status;
844}
845
539d8264
SM
846static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
847{
848 le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
849}
850
851static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
852{
853 return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
854}
855
ccd979bd 856static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
539d8264 857 int dirty, int replayed)
ccd979bd
MF
858{
859 int status;
860 unsigned int flags;
861 struct ocfs2_journal *journal = osb->journal;
862 struct buffer_head *bh = journal->j_bh;
863 struct ocfs2_dinode *fe;
864
ccd979bd 865 fe = (struct ocfs2_dinode *)bh->b_data;
10995aa2
JB
866
867 /* The journal bh on the osb always comes from ocfs2_journal_init()
868 * and was validated there inside ocfs2_inode_lock_full(). It's a
869 * code bug if we mess it up. */
870 BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
ccd979bd
MF
871
872 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
873 if (dirty)
874 flags |= OCFS2_JOURNAL_DIRTY_FL;
875 else
876 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
877 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
878
539d8264
SM
879 if (replayed)
880 ocfs2_bump_recovery_generation(fe);
881
13723d00 882 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 883 status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
ccd979bd
MF
884 if (status < 0)
885 mlog_errno(status);
886
ccd979bd
MF
887 return status;
888}
889
890/*
891 * If the journal has been kmalloc'd it needs to be freed after this
892 * call.
893 */
894void ocfs2_journal_shutdown(struct ocfs2_super *osb)
895{
896 struct ocfs2_journal *journal = NULL;
897 int status = 0;
898 struct inode *inode = NULL;
899 int num_running_trans = 0;
900
ebdec83b 901 BUG_ON(!osb);
ccd979bd
MF
902
903 journal = osb->journal;
904 if (!journal)
905 goto done;
906
907 inode = journal->j_inode;
908
909 if (journal->j_state != OCFS2_JOURNAL_LOADED)
910 goto done;
911
2b4e30fb 912 /* need to inc inode use count - jbd2_journal_destroy will iput. */
ccd979bd
MF
913 if (!igrab(inode))
914 BUG();
915
916 num_running_trans = atomic_read(&(osb->journal->j_num_trans));
b4107950 917 trace_ocfs2_journal_shutdown(num_running_trans);
ccd979bd
MF
918
919 /* Do a commit_cache here. It will flush our journal, *and*
920 * release any locks that are still held.
921 * set the SHUTDOWN flag and release the trans lock.
922 * the commit thread will take the trans lock for us below. */
923 journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
924
925 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
926 * drop the trans_lock (which we want to hold until we
927 * completely destroy the journal. */
928 if (osb->commit_task) {
929 /* Wait for the commit thread */
b4107950 930 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
ccd979bd
MF
931 kthread_stop(osb->commit_task);
932 osb->commit_task = NULL;
933 }
934
935 BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
936
c271c5c2 937 if (ocfs2_mount_local(osb)) {
2b4e30fb
JB
938 jbd2_journal_lock_updates(journal->j_journal);
939 status = jbd2_journal_flush(journal->j_journal);
940 jbd2_journal_unlock_updates(journal->j_journal);
c271c5c2
SM
941 if (status < 0)
942 mlog_errno(status);
943 }
944
945 if (status == 0) {
946 /*
947 * Do not toggle if flush was unsuccessful otherwise
948 * will leave dirty metadata in a "clean" journal
949 */
539d8264 950 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
c271c5c2
SM
951 if (status < 0)
952 mlog_errno(status);
953 }
ccd979bd
MF
954
955 /* Shutdown the kernel journal system */
2b4e30fb 956 jbd2_journal_destroy(journal->j_journal);
ae0dff68 957 journal->j_journal = NULL;
ccd979bd
MF
958
959 OCFS2_I(inode)->ip_open_count--;
960
961 /* unlock our journal */
e63aecb6 962 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
963
964 brelse(journal->j_bh);
965 journal->j_bh = NULL;
966
967 journal->j_state = OCFS2_JOURNAL_FREE;
968
969// up_write(&journal->j_trans_barrier);
970done:
971 if (inode)
972 iput(inode);
ccd979bd
MF
973}
974
975static void ocfs2_clear_journal_error(struct super_block *sb,
976 journal_t *journal,
977 int slot)
978{
979 int olderr;
980
2b4e30fb 981 olderr = jbd2_journal_errno(journal);
ccd979bd
MF
982 if (olderr) {
983 mlog(ML_ERROR, "File system error %d recorded in "
984 "journal %u.\n", olderr, slot);
985 mlog(ML_ERROR, "File system on device %s needs checking.\n",
986 sb->s_id);
987
2b4e30fb
JB
988 jbd2_journal_ack_err(journal);
989 jbd2_journal_clear_err(journal);
ccd979bd
MF
990 }
991}
992
539d8264 993int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
ccd979bd
MF
994{
995 int status = 0;
996 struct ocfs2_super *osb;
997
b1f3550f 998 BUG_ON(!journal);
ccd979bd
MF
999
1000 osb = journal->j_osb;
1001
2b4e30fb 1002 status = jbd2_journal_load(journal->j_journal);
ccd979bd
MF
1003 if (status < 0) {
1004 mlog(ML_ERROR, "Failed to load journal!\n");
1005 goto done;
1006 }
1007
1008 ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1009
539d8264 1010 status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
ccd979bd
MF
1011 if (status < 0) {
1012 mlog_errno(status);
1013 goto done;
1014 }
1015
1016 /* Launch the commit thread */
c271c5c2
SM
1017 if (!local) {
1018 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1019 "ocfs2cmt");
1020 if (IS_ERR(osb->commit_task)) {
1021 status = PTR_ERR(osb->commit_task);
1022 osb->commit_task = NULL;
1023 mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1024 "error=%d", status);
1025 goto done;
1026 }
1027 } else
ccd979bd 1028 osb->commit_task = NULL;
ccd979bd
MF
1029
1030done:
ccd979bd
MF
1031 return status;
1032}
1033
1034
1035/* 'full' flag tells us whether we clear out all blocks or if we just
1036 * mark the journal clean */
1037int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1038{
1039 int status;
1040
ebdec83b 1041 BUG_ON(!journal);
ccd979bd 1042
2b4e30fb 1043 status = jbd2_journal_wipe(journal->j_journal, full);
ccd979bd
MF
1044 if (status < 0) {
1045 mlog_errno(status);
1046 goto bail;
1047 }
1048
539d8264 1049 status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
ccd979bd
MF
1050 if (status < 0)
1051 mlog_errno(status);
1052
1053bail:
ccd979bd
MF
1054 return status;
1055}
1056
553abd04
JB
1057static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1058{
1059 int empty;
1060 struct ocfs2_recovery_map *rm = osb->recovery_map;
1061
1062 spin_lock(&osb->osb_lock);
1063 empty = (rm->rm_used == 0);
1064 spin_unlock(&osb->osb_lock);
1065
1066 return empty;
1067}
1068
1069void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1070{
1071 wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1072}
1073
ccd979bd
MF
1074/*
1075 * JBD Might read a cached version of another nodes journal file. We
1076 * don't want this as this file changes often and we get no
1077 * notification on those changes. The only way to be sure that we've
1078 * got the most up to date version of those blocks then is to force
1079 * read them off disk. Just searching through the buffer cache won't
1080 * work as there may be pages backing this file which are still marked
1081 * up to date. We know things can't change on this file underneath us
1082 * as we have the lock by now :)
1083 */
1084static int ocfs2_force_read_journal(struct inode *inode)
1085{
1086 int status = 0;
4f902c37 1087 int i;
8110b073 1088 u64 v_blkno, p_blkno, p_blocks, num_blocks;
4f902c37 1089#define CONCURRENT_JOURNAL_FILL 32ULL
ccd979bd
MF
1090 struct buffer_head *bhs[CONCURRENT_JOURNAL_FILL];
1091
ccd979bd
MF
1092 memset(bhs, 0, sizeof(struct buffer_head *) * CONCURRENT_JOURNAL_FILL);
1093
8110b073 1094 num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, inode->i_size);
ccd979bd 1095 v_blkno = 0;
8110b073 1096 while (v_blkno < num_blocks) {
ccd979bd 1097 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
49cb8d2d 1098 &p_blkno, &p_blocks, NULL);
ccd979bd
MF
1099 if (status < 0) {
1100 mlog_errno(status);
1101 goto bail;
1102 }
1103
1104 if (p_blocks > CONCURRENT_JOURNAL_FILL)
1105 p_blocks = CONCURRENT_JOURNAL_FILL;
1106
dd4a2c2b
MF
1107 /* We are reading journal data which should not
1108 * be put in the uptodate cache */
da1e9098
JB
1109 status = ocfs2_read_blocks_sync(OCFS2_SB(inode->i_sb),
1110 p_blkno, p_blocks, bhs);
ccd979bd
MF
1111 if (status < 0) {
1112 mlog_errno(status);
1113 goto bail;
1114 }
1115
1116 for(i = 0; i < p_blocks; i++) {
1117 brelse(bhs[i]);
1118 bhs[i] = NULL;
1119 }
1120
1121 v_blkno += p_blocks;
1122 }
1123
1124bail:
1125 for(i = 0; i < CONCURRENT_JOURNAL_FILL; i++)
a81cb88b 1126 brelse(bhs[i]);
ccd979bd
MF
1127 return status;
1128}
1129
1130struct ocfs2_la_recovery_item {
1131 struct list_head lri_list;
1132 int lri_slot;
1133 struct ocfs2_dinode *lri_la_dinode;
1134 struct ocfs2_dinode *lri_tl_dinode;
2205363d 1135 struct ocfs2_quota_recovery *lri_qrec;
ccd979bd
MF
1136};
1137
1138/* Does the second half of the recovery process. By this point, the
1139 * node is marked clean and can actually be considered recovered,
1140 * hence it's no longer in the recovery map, but there's still some
1141 * cleanup we can do which shouldn't happen within the recovery thread
1142 * as locking in that context becomes very difficult if we are to take
1143 * recovering nodes into account.
1144 *
1145 * NOTE: This function can and will sleep on recovery of other nodes
1146 * during cluster locking, just like any other ocfs2 process.
1147 */
c4028958 1148void ocfs2_complete_recovery(struct work_struct *work)
ccd979bd 1149{
b4107950 1150 int ret = 0;
c4028958
DH
1151 struct ocfs2_journal *journal =
1152 container_of(work, struct ocfs2_journal, j_recovery_work);
1153 struct ocfs2_super *osb = journal->j_osb;
ccd979bd 1154 struct ocfs2_dinode *la_dinode, *tl_dinode;
800deef3 1155 struct ocfs2_la_recovery_item *item, *n;
2205363d 1156 struct ocfs2_quota_recovery *qrec;
ccd979bd
MF
1157 LIST_HEAD(tmp_la_list);
1158
b4107950
TM
1159 trace_ocfs2_complete_recovery(
1160 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
ccd979bd
MF
1161
1162 spin_lock(&journal->j_lock);
1163 list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1164 spin_unlock(&journal->j_lock);
1165
800deef3 1166 list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
ccd979bd
MF
1167 list_del_init(&item->lri_list);
1168
19ece546
JK
1169 ocfs2_wait_on_quotas(osb);
1170
ccd979bd 1171 la_dinode = item->lri_la_dinode;
b4107950
TM
1172 tl_dinode = item->lri_tl_dinode;
1173 qrec = item->lri_qrec;
ccd979bd 1174
b4107950
TM
1175 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1176 la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1177 tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1178 qrec);
1179
1180 if (la_dinode) {
ccd979bd
MF
1181 ret = ocfs2_complete_local_alloc_recovery(osb,
1182 la_dinode);
1183 if (ret < 0)
1184 mlog_errno(ret);
1185
1186 kfree(la_dinode);
1187 }
1188
ccd979bd 1189 if (tl_dinode) {
ccd979bd
MF
1190 ret = ocfs2_complete_truncate_log_recovery(osb,
1191 tl_dinode);
1192 if (ret < 0)
1193 mlog_errno(ret);
1194
1195 kfree(tl_dinode);
1196 }
1197
1198 ret = ocfs2_recover_orphans(osb, item->lri_slot);
1199 if (ret < 0)
1200 mlog_errno(ret);
1201
2205363d 1202 if (qrec) {
2205363d
JK
1203 ret = ocfs2_finish_quota_recovery(osb, qrec,
1204 item->lri_slot);
1205 if (ret < 0)
1206 mlog_errno(ret);
1207 /* Recovery info is already freed now */
1208 }
1209
ccd979bd
MF
1210 kfree(item);
1211 }
1212
b4107950 1213 trace_ocfs2_complete_recovery_end(ret);
ccd979bd
MF
1214}
1215
1216/* NOTE: This function always eats your references to la_dinode and
1217 * tl_dinode, either manually on error, or by passing them to
1218 * ocfs2_complete_recovery */
1219static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1220 int slot_num,
1221 struct ocfs2_dinode *la_dinode,
2205363d
JK
1222 struct ocfs2_dinode *tl_dinode,
1223 struct ocfs2_quota_recovery *qrec)
ccd979bd
MF
1224{
1225 struct ocfs2_la_recovery_item *item;
1226
afae00ab 1227 item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
ccd979bd
MF
1228 if (!item) {
1229 /* Though we wish to avoid it, we are in fact safe in
1230 * skipping local alloc cleanup as fsck.ocfs2 is more
1231 * than capable of reclaiming unused space. */
1232 if (la_dinode)
1233 kfree(la_dinode);
1234
1235 if (tl_dinode)
1236 kfree(tl_dinode);
1237
2205363d
JK
1238 if (qrec)
1239 ocfs2_free_quota_recovery(qrec);
1240
ccd979bd
MF
1241 mlog_errno(-ENOMEM);
1242 return;
1243 }
1244
1245 INIT_LIST_HEAD(&item->lri_list);
1246 item->lri_la_dinode = la_dinode;
1247 item->lri_slot = slot_num;
1248 item->lri_tl_dinode = tl_dinode;
2205363d 1249 item->lri_qrec = qrec;
ccd979bd
MF
1250
1251 spin_lock(&journal->j_lock);
1252 list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1253 queue_work(ocfs2_wq, &journal->j_recovery_work);
1254 spin_unlock(&journal->j_lock);
1255}
1256
1257/* Called by the mount code to queue recovery the last part of
9140db04 1258 * recovery for it's own and offline slot(s). */
ccd979bd
MF
1259void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1260{
1261 struct ocfs2_journal *journal = osb->journal;
1262
9140db04
SE
1263 /* No need to queue up our truncate_log as regular cleanup will catch
1264 * that */
1265 ocfs2_queue_recovery_completion(journal, osb->slot_num,
1266 osb->local_alloc_copy, NULL, NULL);
1267 ocfs2_schedule_truncate_log_flush(osb, 0);
ccd979bd 1268
9140db04
SE
1269 osb->local_alloc_copy = NULL;
1270 osb->dirty = 0;
1271
1272 /* queue to recover orphan slots for all offline slots */
1273 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1274 ocfs2_queue_replay_slots(osb);
1275 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1276}
1277
2205363d
JK
1278void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1279{
1280 if (osb->quota_rec) {
1281 ocfs2_queue_recovery_completion(osb->journal,
1282 osb->slot_num,
1283 NULL,
1284 NULL,
1285 osb->quota_rec);
1286 osb->quota_rec = NULL;
1287 }
1288}
1289
ccd979bd
MF
1290static int __ocfs2_recovery_thread(void *arg)
1291{
2205363d 1292 int status, node_num, slot_num;
ccd979bd 1293 struct ocfs2_super *osb = arg;
553abd04 1294 struct ocfs2_recovery_map *rm = osb->recovery_map;
2205363d
JK
1295 int *rm_quota = NULL;
1296 int rm_quota_used = 0, i;
1297 struct ocfs2_quota_recovery *qrec;
ccd979bd 1298
ccd979bd
MF
1299 status = ocfs2_wait_on_mount(osb);
1300 if (status < 0) {
1301 goto bail;
1302 }
1303
2205363d
JK
1304 rm_quota = kzalloc(osb->max_slots * sizeof(int), GFP_NOFS);
1305 if (!rm_quota) {
1306 status = -ENOMEM;
1307 goto bail;
1308 }
ccd979bd
MF
1309restart:
1310 status = ocfs2_super_lock(osb, 1);
1311 if (status < 0) {
1312 mlog_errno(status);
1313 goto bail;
1314 }
1315
9140db04
SE
1316 status = ocfs2_compute_replay_slots(osb);
1317 if (status < 0)
1318 mlog_errno(status);
1319
1320 /* queue recovery for our own slot */
1321 ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1322 NULL, NULL);
1323
553abd04
JB
1324 spin_lock(&osb->osb_lock);
1325 while (rm->rm_used) {
1326 /* It's always safe to remove entry zero, as we won't
1327 * clear it until ocfs2_recover_node() has succeeded. */
1328 node_num = rm->rm_entries[0];
1329 spin_unlock(&osb->osb_lock);
2205363d 1330 slot_num = ocfs2_node_num_to_slot(osb, node_num);
b4107950 1331 trace_ocfs2_recovery_thread_node(node_num, slot_num);
2205363d
JK
1332 if (slot_num == -ENOENT) {
1333 status = 0;
2205363d
JK
1334 goto skip_recovery;
1335 }
2205363d
JK
1336
1337 /* It is a bit subtle with quota recovery. We cannot do it
1338 * immediately because we have to obtain cluster locks from
1339 * quota files and we also don't want to just skip it because
1340 * then quota usage would be out of sync until some node takes
1341 * the slot. So we remember which nodes need quota recovery
1342 * and when everything else is done, we recover quotas. */
1343 for (i = 0; i < rm_quota_used && rm_quota[i] != slot_num; i++);
1344 if (i == rm_quota_used)
1345 rm_quota[rm_quota_used++] = slot_num;
1346
1347 status = ocfs2_recover_node(osb, node_num, slot_num);
1348skip_recovery:
553abd04
JB
1349 if (!status) {
1350 ocfs2_recovery_map_clear(osb, node_num);
1351 } else {
ccd979bd
MF
1352 mlog(ML_ERROR,
1353 "Error %d recovering node %d on device (%u,%u)!\n",
1354 status, node_num,
1355 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1356 mlog(ML_ERROR, "Volume requires unmount.\n");
ccd979bd
MF
1357 }
1358
553abd04 1359 spin_lock(&osb->osb_lock);
ccd979bd 1360 }
553abd04 1361 spin_unlock(&osb->osb_lock);
b4107950 1362 trace_ocfs2_recovery_thread_end(status);
553abd04 1363
539d8264
SM
1364 /* Refresh all journal recovery generations from disk */
1365 status = ocfs2_check_journals_nolocks(osb);
1366 status = (status == -EROFS) ? 0 : status;
1367 if (status < 0)
1368 mlog_errno(status);
1369
2205363d 1370 /* Now it is right time to recover quotas... We have to do this under
25985edc 1371 * superblock lock so that no one can start using the slot (and crash)
2205363d
JK
1372 * before we recover it */
1373 for (i = 0; i < rm_quota_used; i++) {
1374 qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1375 if (IS_ERR(qrec)) {
1376 status = PTR_ERR(qrec);
1377 mlog_errno(status);
1378 continue;
1379 }
1380 ocfs2_queue_recovery_completion(osb->journal, rm_quota[i],
1381 NULL, NULL, qrec);
1382 }
1383
ccd979bd
MF
1384 ocfs2_super_unlock(osb, 1);
1385
9140db04
SE
1386 /* queue recovery for offline slots */
1387 ocfs2_queue_replay_slots(osb);
ccd979bd
MF
1388
1389bail:
c74ec2f7 1390 mutex_lock(&osb->recovery_lock);
553abd04 1391 if (!status && !ocfs2_recovery_completed(osb)) {
c74ec2f7 1392 mutex_unlock(&osb->recovery_lock);
ccd979bd
MF
1393 goto restart;
1394 }
1395
9140db04 1396 ocfs2_free_replay_slots(osb);
ccd979bd
MF
1397 osb->recovery_thread_task = NULL;
1398 mb(); /* sync with ocfs2_recovery_thread_running */
1399 wake_up(&osb->recovery_event);
1400
c74ec2f7 1401 mutex_unlock(&osb->recovery_lock);
ccd979bd 1402
2205363d
JK
1403 if (rm_quota)
1404 kfree(rm_quota);
1405
ccd979bd
MF
1406 /* no one is callint kthread_stop() for us so the kthread() api
1407 * requires that we call do_exit(). And it isn't exported, but
1408 * complete_and_exit() seems to be a minimal wrapper around it. */
1409 complete_and_exit(NULL, status);
1410 return status;
1411}
1412
1413void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1414{
c74ec2f7 1415 mutex_lock(&osb->recovery_lock);
ccd979bd 1416
b4107950
TM
1417 trace_ocfs2_recovery_thread(node_num, osb->node_num,
1418 osb->disable_recovery, osb->recovery_thread_task,
1419 osb->disable_recovery ?
1420 -1 : ocfs2_recovery_map_set(osb, node_num));
ccd979bd 1421
b4107950
TM
1422 if (osb->disable_recovery)
1423 goto out;
ccd979bd
MF
1424
1425 if (osb->recovery_thread_task)
1426 goto out;
1427
1428 osb->recovery_thread_task = kthread_run(__ocfs2_recovery_thread, osb,
78427043 1429 "ocfs2rec");
ccd979bd
MF
1430 if (IS_ERR(osb->recovery_thread_task)) {
1431 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1432 osb->recovery_thread_task = NULL;
1433 }
1434
1435out:
c74ec2f7 1436 mutex_unlock(&osb->recovery_lock);
ccd979bd 1437 wake_up(&osb->recovery_event);
ccd979bd
MF
1438}
1439
539d8264
SM
1440static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1441 int slot_num,
1442 struct buffer_head **bh,
1443 struct inode **ret_inode)
1444{
1445 int status = -EACCES;
1446 struct inode *inode = NULL;
1447
1448 BUG_ON(slot_num >= osb->max_slots);
1449
1450 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1451 slot_num);
1452 if (!inode || is_bad_inode(inode)) {
1453 mlog_errno(status);
1454 goto bail;
1455 }
1456 SET_INODE_JOURNAL(inode);
1457
b657c95c 1458 status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
539d8264
SM
1459 if (status < 0) {
1460 mlog_errno(status);
1461 goto bail;
1462 }
1463
1464 status = 0;
1465
1466bail:
1467 if (inode) {
1468 if (status || !ret_inode)
1469 iput(inode);
1470 else
1471 *ret_inode = inode;
1472 }
1473 return status;
1474}
1475
ccd979bd
MF
1476/* Does the actual journal replay and marks the journal inode as
1477 * clean. Will only replay if the journal inode is marked dirty. */
1478static int ocfs2_replay_journal(struct ocfs2_super *osb,
1479 int node_num,
1480 int slot_num)
1481{
1482 int status;
1483 int got_lock = 0;
1484 unsigned int flags;
1485 struct inode *inode = NULL;
1486 struct ocfs2_dinode *fe;
1487 journal_t *journal = NULL;
1488 struct buffer_head *bh = NULL;
539d8264 1489 u32 slot_reco_gen;
ccd979bd 1490
539d8264
SM
1491 status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1492 if (status) {
ccd979bd
MF
1493 mlog_errno(status);
1494 goto done;
1495 }
539d8264
SM
1496
1497 fe = (struct ocfs2_dinode *)bh->b_data;
1498 slot_reco_gen = ocfs2_get_recovery_generation(fe);
1499 brelse(bh);
1500 bh = NULL;
1501
1502 /*
1503 * As the fs recovery is asynchronous, there is a small chance that
1504 * another node mounted (and recovered) the slot before the recovery
1505 * thread could get the lock. To handle that, we dirty read the journal
1506 * inode for that slot to get the recovery generation. If it is
1507 * different than what we expected, the slot has been recovered.
1508 * If not, it needs recovery.
1509 */
1510 if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
b4107950 1511 trace_ocfs2_replay_journal_recovered(slot_num,
539d8264
SM
1512 osb->slot_recovery_generations[slot_num], slot_reco_gen);
1513 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1514 status = -EBUSY;
ccd979bd
MF
1515 goto done;
1516 }
539d8264
SM
1517
1518 /* Continue with recovery as the journal has not yet been recovered */
ccd979bd 1519
e63aecb6 1520 status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
ccd979bd 1521 if (status < 0) {
b4107950 1522 trace_ocfs2_replay_journal_lock_err(status);
ccd979bd
MF
1523 if (status != -ERESTARTSYS)
1524 mlog(ML_ERROR, "Could not lock journal!\n");
1525 goto done;
1526 }
1527 got_lock = 1;
1528
1529 fe = (struct ocfs2_dinode *) bh->b_data;
1530
1531 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
539d8264 1532 slot_reco_gen = ocfs2_get_recovery_generation(fe);
ccd979bd
MF
1533
1534 if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
b4107950 1535 trace_ocfs2_replay_journal_skip(node_num);
539d8264
SM
1536 /* Refresh recovery generation for the slot */
1537 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
ccd979bd
MF
1538 goto done;
1539 }
1540
9140db04
SE
1541 /* we need to run complete recovery for offline orphan slots */
1542 ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1543
ccd979bd
MF
1544 mlog(ML_NOTICE, "Recovering node %d from slot %d on device (%u,%u)\n",
1545 node_num, slot_num,
1546 MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1547
1548 OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1549
1550 status = ocfs2_force_read_journal(inode);
1551 if (status < 0) {
1552 mlog_errno(status);
1553 goto done;
1554 }
1555
2b4e30fb 1556 journal = jbd2_journal_init_inode(inode);
ccd979bd
MF
1557 if (journal == NULL) {
1558 mlog(ML_ERROR, "Linux journal layer error\n");
1559 status = -EIO;
1560 goto done;
1561 }
1562
2b4e30fb 1563 status = jbd2_journal_load(journal);
ccd979bd
MF
1564 if (status < 0) {
1565 mlog_errno(status);
1566 if (!igrab(inode))
1567 BUG();
2b4e30fb 1568 jbd2_journal_destroy(journal);
ccd979bd
MF
1569 goto done;
1570 }
1571
1572 ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1573
1574 /* wipe the journal */
2b4e30fb
JB
1575 jbd2_journal_lock_updates(journal);
1576 status = jbd2_journal_flush(journal);
1577 jbd2_journal_unlock_updates(journal);
ccd979bd
MF
1578 if (status < 0)
1579 mlog_errno(status);
1580
1581 /* This will mark the node clean */
1582 flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1583 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1584 fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1585
539d8264
SM
1586 /* Increment recovery generation to indicate successful recovery */
1587 ocfs2_bump_recovery_generation(fe);
1588 osb->slot_recovery_generations[slot_num] =
1589 ocfs2_get_recovery_generation(fe);
1590
13723d00 1591 ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
8cb471e8 1592 status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
ccd979bd
MF
1593 if (status < 0)
1594 mlog_errno(status);
1595
1596 if (!igrab(inode))
1597 BUG();
1598
2b4e30fb 1599 jbd2_journal_destroy(journal);
ccd979bd
MF
1600
1601done:
1602 /* drop the lock on this nodes journal */
1603 if (got_lock)
e63aecb6 1604 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1605
1606 if (inode)
1607 iput(inode);
1608
a81cb88b 1609 brelse(bh);
ccd979bd 1610
ccd979bd
MF
1611 return status;
1612}
1613
1614/*
1615 * Do the most important parts of node recovery:
1616 * - Replay it's journal
1617 * - Stamp a clean local allocator file
1618 * - Stamp a clean truncate log
1619 * - Mark the node clean
1620 *
1621 * If this function completes without error, a node in OCFS2 can be
1622 * said to have been safely recovered. As a result, failure during the
1623 * second part of a nodes recovery process (local alloc recovery) is
1624 * far less concerning.
1625 */
1626static int ocfs2_recover_node(struct ocfs2_super *osb,
2205363d 1627 int node_num, int slot_num)
ccd979bd
MF
1628{
1629 int status = 0;
ccd979bd
MF
1630 struct ocfs2_dinode *la_copy = NULL;
1631 struct ocfs2_dinode *tl_copy = NULL;
1632
b4107950 1633 trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
ccd979bd
MF
1634
1635 /* Should not ever be called to recover ourselves -- in that
1636 * case we should've called ocfs2_journal_load instead. */
ebdec83b 1637 BUG_ON(osb->node_num == node_num);
ccd979bd 1638
ccd979bd
MF
1639 status = ocfs2_replay_journal(osb, node_num, slot_num);
1640 if (status < 0) {
539d8264 1641 if (status == -EBUSY) {
b4107950 1642 trace_ocfs2_recover_node_skip(slot_num, node_num);
539d8264
SM
1643 status = 0;
1644 goto done;
1645 }
ccd979bd
MF
1646 mlog_errno(status);
1647 goto done;
1648 }
1649
1650 /* Stamp a clean local alloc file AFTER recovering the journal... */
1651 status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1652 if (status < 0) {
1653 mlog_errno(status);
1654 goto done;
1655 }
1656
1657 /* An error from begin_truncate_log_recovery is not
1658 * serious enough to warrant halting the rest of
1659 * recovery. */
1660 status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1661 if (status < 0)
1662 mlog_errno(status);
1663
1664 /* Likewise, this would be a strange but ultimately not so
1665 * harmful place to get an error... */
8e8a4603 1666 status = ocfs2_clear_slot(osb, slot_num);
ccd979bd
MF
1667 if (status < 0)
1668 mlog_errno(status);
1669
1670 /* This will kfree the memory pointed to by la_copy and tl_copy */
1671 ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
2205363d 1672 tl_copy, NULL);
ccd979bd
MF
1673
1674 status = 0;
1675done:
1676
ccd979bd
MF
1677 return status;
1678}
1679
1680/* Test node liveness by trylocking his journal. If we get the lock,
1681 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1682 * still alive (we couldn't get the lock) and < 0 on error. */
1683static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1684 int slot_num)
1685{
1686 int status, flags;
1687 struct inode *inode = NULL;
1688
1689 inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1690 slot_num);
1691 if (inode == NULL) {
1692 mlog(ML_ERROR, "access error\n");
1693 status = -EACCES;
1694 goto bail;
1695 }
1696 if (is_bad_inode(inode)) {
1697 mlog(ML_ERROR, "access error (bad inode)\n");
1698 iput(inode);
1699 inode = NULL;
1700 status = -EACCES;
1701 goto bail;
1702 }
1703 SET_INODE_JOURNAL(inode);
1704
1705 flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
e63aecb6 1706 status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
ccd979bd
MF
1707 if (status < 0) {
1708 if (status != -EAGAIN)
1709 mlog_errno(status);
1710 goto bail;
1711 }
1712
e63aecb6 1713 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
1714bail:
1715 if (inode)
1716 iput(inode);
1717
1718 return status;
1719}
1720
1721/* Call this underneath ocfs2_super_lock. It also assumes that the
1722 * slot info struct has been updated from disk. */
1723int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1724{
d85b20e4
JB
1725 unsigned int node_num;
1726 int status, i;
a1af7d15 1727 u32 gen;
539d8264
SM
1728 struct buffer_head *bh = NULL;
1729 struct ocfs2_dinode *di;
ccd979bd
MF
1730
1731 /* This is called with the super block cluster lock, so we
1732 * know that the slot map can't change underneath us. */
1733
d85b20e4 1734 for (i = 0; i < osb->max_slots; i++) {
539d8264
SM
1735 /* Read journal inode to get the recovery generation */
1736 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1737 if (status) {
1738 mlog_errno(status);
1739 goto bail;
1740 }
1741 di = (struct ocfs2_dinode *)bh->b_data;
a1af7d15 1742 gen = ocfs2_get_recovery_generation(di);
539d8264
SM
1743 brelse(bh);
1744 bh = NULL;
1745
a1af7d15
MF
1746 spin_lock(&osb->osb_lock);
1747 osb->slot_recovery_generations[i] = gen;
1748
b4107950
TM
1749 trace_ocfs2_mark_dead_nodes(i,
1750 osb->slot_recovery_generations[i]);
539d8264 1751
a1af7d15
MF
1752 if (i == osb->slot_num) {
1753 spin_unlock(&osb->osb_lock);
ccd979bd 1754 continue;
a1af7d15 1755 }
d85b20e4
JB
1756
1757 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
a1af7d15
MF
1758 if (status == -ENOENT) {
1759 spin_unlock(&osb->osb_lock);
ccd979bd 1760 continue;
a1af7d15 1761 }
ccd979bd 1762
a1af7d15
MF
1763 if (__ocfs2_recovery_map_test(osb, node_num)) {
1764 spin_unlock(&osb->osb_lock);
ccd979bd 1765 continue;
a1af7d15 1766 }
d85b20e4 1767 spin_unlock(&osb->osb_lock);
ccd979bd
MF
1768
1769 /* Ok, we have a slot occupied by another node which
1770 * is not in the recovery map. We trylock his journal
1771 * file here to test if he's alive. */
1772 status = ocfs2_trylock_journal(osb, i);
1773 if (!status) {
1774 /* Since we're called from mount, we know that
1775 * the recovery thread can't race us on
1776 * setting / checking the recovery bits. */
1777 ocfs2_recovery_thread(osb, node_num);
1778 } else if ((status < 0) && (status != -EAGAIN)) {
1779 mlog_errno(status);
1780 goto bail;
1781 }
ccd979bd 1782 }
ccd979bd
MF
1783
1784 status = 0;
1785bail:
ccd979bd
MF
1786 return status;
1787}
1788
83273932
SE
1789/*
1790 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1791 * randomness to the timeout to minimize multple nodes firing the timer at the
1792 * same time.
1793 */
1794static inline unsigned long ocfs2_orphan_scan_timeout(void)
1795{
1796 unsigned long time;
1797
1798 get_random_bytes(&time, sizeof(time));
1799 time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1800 return msecs_to_jiffies(time);
1801}
1802
1803/*
1804 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1805 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1806 * is done to catch any orphans that are left over in orphan directories.
1807 *
1808 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1809 * seconds. It gets an EX lock on os_lockres and checks sequence number
1810 * stored in LVB. If the sequence number has changed, it means some other
1811 * node has done the scan. This node skips the scan and tracks the
1812 * sequence number. If the sequence number didn't change, it means a scan
1813 * hasn't happened. The node queues a scan and increments the
1814 * sequence number in the LVB.
1815 */
1816void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1817{
1818 struct ocfs2_orphan_scan *os;
1819 int status, i;
1820 u32 seqno = 0;
1821
1822 os = &osb->osb_orphan_scan;
1823
692684e1
SM
1824 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1825 goto out;
1826
b4107950
TM
1827 trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1828 atomic_read(&os->os_state));
1829
df152c24 1830 status = ocfs2_orphan_scan_lock(osb, &seqno);
83273932
SE
1831 if (status < 0) {
1832 if (status != -EAGAIN)
1833 mlog_errno(status);
1834 goto out;
1835 }
1836
692684e1
SM
1837 /* Do no queue the tasks if the volume is being umounted */
1838 if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1839 goto unlock;
1840
83273932
SE
1841 if (os->os_seqno != seqno) {
1842 os->os_seqno = seqno;
1843 goto unlock;
1844 }
1845
1846 for (i = 0; i < osb->max_slots; i++)
1847 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1848 NULL);
1849 /*
1850 * We queued a recovery on orphan slots, increment the sequence
1851 * number and update LVB so other node will skip the scan for a while
1852 */
1853 seqno++;
15633a22
SE
1854 os->os_count++;
1855 os->os_scantime = CURRENT_TIME;
83273932 1856unlock:
df152c24 1857 ocfs2_orphan_scan_unlock(osb, seqno);
83273932 1858out:
b4107950
TM
1859 trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1860 atomic_read(&os->os_state));
83273932
SE
1861 return;
1862}
1863
1864/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1865void ocfs2_orphan_scan_work(struct work_struct *work)
1866{
1867 struct ocfs2_orphan_scan *os;
1868 struct ocfs2_super *osb;
1869
1870 os = container_of(work, struct ocfs2_orphan_scan,
1871 os_orphan_scan_work.work);
1872 osb = os->os_osb;
1873
1874 mutex_lock(&os->os_lock);
1875 ocfs2_queue_orphan_scan(osb);
692684e1 1876 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
40f165f4 1877 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
692684e1 1878 ocfs2_orphan_scan_timeout());
83273932
SE
1879 mutex_unlock(&os->os_lock);
1880}
1881
1882void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1883{
1884 struct ocfs2_orphan_scan *os;
1885
1886 os = &osb->osb_orphan_scan;
df152c24
SM
1887 if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1888 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1889 mutex_lock(&os->os_lock);
1890 cancel_delayed_work(&os->os_orphan_scan_work);
1891 mutex_unlock(&os->os_lock);
1892 }
83273932
SE
1893}
1894
df152c24 1895void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
83273932
SE
1896{
1897 struct ocfs2_orphan_scan *os;
1898
1899 os = &osb->osb_orphan_scan;
1900 os->os_osb = osb;
15633a22 1901 os->os_count = 0;
3211949f 1902 os->os_seqno = 0;
83273932 1903 mutex_init(&os->os_lock);
df152c24 1904 INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
8b712cd5 1905}
83273932 1906
8b712cd5
JM
1907void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
1908{
1909 struct ocfs2_orphan_scan *os;
1910
1911 os = &osb->osb_orphan_scan;
1912 os->os_scantime = CURRENT_TIME;
df152c24
SM
1913 if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
1914 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1915 else {
1916 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
40f165f4
TM
1917 queue_delayed_work(ocfs2_wq, &os->os_orphan_scan_work,
1918 ocfs2_orphan_scan_timeout());
df152c24 1919 }
83273932
SE
1920}
1921
5eae5b96
MF
1922struct ocfs2_orphan_filldir_priv {
1923 struct inode *head;
1924 struct ocfs2_super *osb;
1925};
1926
1927static int ocfs2_orphan_filldir(void *priv, const char *name, int name_len,
1928 loff_t pos, u64 ino, unsigned type)
1929{
1930 struct ocfs2_orphan_filldir_priv *p = priv;
1931 struct inode *iter;
1932
1933 if (name_len == 1 && !strncmp(".", name, 1))
1934 return 0;
1935 if (name_len == 2 && !strncmp("..", name, 2))
1936 return 0;
1937
1938 /* Skip bad inodes so that recovery can continue */
1939 iter = ocfs2_iget(p->osb, ino,
5fa0613e 1940 OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
5eae5b96
MF
1941 if (IS_ERR(iter))
1942 return 0;
1943
b4107950 1944 trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
5eae5b96
MF
1945 /* No locking is required for the next_orphan queue as there
1946 * is only ever a single process doing orphan recovery. */
1947 OCFS2_I(iter)->ip_next_orphan = p->head;
1948 p->head = iter;
1949
1950 return 0;
1951}
1952
b4df6ed8
MF
1953static int ocfs2_queue_orphans(struct ocfs2_super *osb,
1954 int slot,
1955 struct inode **head)
ccd979bd 1956{
b4df6ed8 1957 int status;
ccd979bd 1958 struct inode *orphan_dir_inode = NULL;
5eae5b96
MF
1959 struct ocfs2_orphan_filldir_priv priv;
1960 loff_t pos = 0;
1961
1962 priv.osb = osb;
1963 priv.head = *head;
ccd979bd
MF
1964
1965 orphan_dir_inode = ocfs2_get_system_file_inode(osb,
1966 ORPHAN_DIR_SYSTEM_INODE,
1967 slot);
1968 if (!orphan_dir_inode) {
1969 status = -ENOENT;
1970 mlog_errno(status);
b4df6ed8 1971 return status;
2bd63216 1972 }
ccd979bd 1973
1b1dcc1b 1974 mutex_lock(&orphan_dir_inode->i_mutex);
e63aecb6 1975 status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
ccd979bd 1976 if (status < 0) {
ccd979bd
MF
1977 mlog_errno(status);
1978 goto out;
1979 }
ccd979bd 1980
5eae5b96
MF
1981 status = ocfs2_dir_foreach(orphan_dir_inode, &pos, &priv,
1982 ocfs2_orphan_filldir);
1983 if (status) {
1984 mlog_errno(status);
a86370fb 1985 goto out_cluster;
ccd979bd 1986 }
ccd979bd 1987
5eae5b96
MF
1988 *head = priv.head;
1989
a86370fb 1990out_cluster:
e63aecb6 1991 ocfs2_inode_unlock(orphan_dir_inode, 0);
b4df6ed8
MF
1992out:
1993 mutex_unlock(&orphan_dir_inode->i_mutex);
ccd979bd 1994 iput(orphan_dir_inode);
b4df6ed8
MF
1995 return status;
1996}
1997
1998static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
1999 int slot)
2000{
2001 int ret;
2002
2003 spin_lock(&osb->osb_lock);
2004 ret = !osb->osb_orphan_wipes[slot];
2005 spin_unlock(&osb->osb_lock);
2006 return ret;
2007}
2008
2009static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2010 int slot)
2011{
2012 spin_lock(&osb->osb_lock);
2013 /* Mark ourselves such that new processes in delete_inode()
2014 * know to quit early. */
2015 ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2016 while (osb->osb_orphan_wipes[slot]) {
2017 /* If any processes are already in the middle of an
2018 * orphan wipe on this dir, then we need to wait for
2019 * them. */
2020 spin_unlock(&osb->osb_lock);
2021 wait_event_interruptible(osb->osb_wipe_event,
2022 ocfs2_orphan_recovery_can_continue(osb, slot));
2023 spin_lock(&osb->osb_lock);
2024 }
2025 spin_unlock(&osb->osb_lock);
2026}
2027
2028static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2029 int slot)
2030{
2031 ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2032}
2033
2034/*
2035 * Orphan recovery. Each mounted node has it's own orphan dir which we
2036 * must run during recovery. Our strategy here is to build a list of
2037 * the inodes in the orphan dir and iget/iput them. The VFS does
2038 * (most) of the rest of the work.
2039 *
2040 * Orphan recovery can happen at any time, not just mount so we have a
2041 * couple of extra considerations.
2042 *
2043 * - We grab as many inodes as we can under the orphan dir lock -
2044 * doing iget() outside the orphan dir risks getting a reference on
2045 * an invalid inode.
2046 * - We must be sure not to deadlock with other processes on the
2047 * system wanting to run delete_inode(). This can happen when they go
2048 * to lock the orphan dir and the orphan recovery process attempts to
2049 * iget() inside the orphan dir lock. This can be avoided by
2050 * advertising our state to ocfs2_delete_inode().
2051 */
2052static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2053 int slot)
2054{
2055 int ret = 0;
2056 struct inode *inode = NULL;
2057 struct inode *iter;
2058 struct ocfs2_inode_info *oi;
2059
b4107950 2060 trace_ocfs2_recover_orphans(slot);
b4df6ed8
MF
2061
2062 ocfs2_mark_recovering_orphan_dir(osb, slot);
2063 ret = ocfs2_queue_orphans(osb, slot, &inode);
2064 ocfs2_clear_recovering_orphan_dir(osb, slot);
2065
2066 /* Error here should be noted, but we want to continue with as
2067 * many queued inodes as we've got. */
2068 if (ret)
2069 mlog_errno(ret);
ccd979bd
MF
2070
2071 while (inode) {
2072 oi = OCFS2_I(inode);
b4107950
TM
2073 trace_ocfs2_recover_orphans_iput(
2074 (unsigned long long)oi->ip_blkno);
ccd979bd
MF
2075
2076 iter = oi->ip_next_orphan;
2077
2078 spin_lock(&oi->ip_lock);
34d024f8
MF
2079 /* The remote delete code may have set these on the
2080 * assumption that the other node would wipe them
2081 * successfully. If they are still in the node's
2082 * orphan dir, we need to reset that state. */
ccd979bd
MF
2083 oi->ip_flags &= ~(OCFS2_INODE_DELETED|OCFS2_INODE_SKIP_DELETE);
2084
2085 /* Set the proper information to get us going into
2086 * ocfs2_delete_inode. */
2087 oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
ccd979bd
MF
2088 spin_unlock(&oi->ip_lock);
2089
2090 iput(inode);
2091
2092 inode = iter;
2093 }
2094
b4df6ed8 2095 return ret;
ccd979bd
MF
2096}
2097
19ece546 2098static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
ccd979bd
MF
2099{
2100 /* This check is good because ocfs2 will wait on our recovery
2101 * thread before changing it to something other than MOUNTED
2102 * or DISABLED. */
2103 wait_event(osb->osb_mount_event,
19ece546
JK
2104 (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2105 atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
ccd979bd
MF
2106 atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2107
2108 /* If there's an error on mount, then we may never get to the
2109 * MOUNTED flag, but this is set right before
2110 * dismount_volume() so we can trust it. */
2111 if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
b4107950 2112 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
ccd979bd
MF
2113 mlog(0, "mount error, exiting!\n");
2114 return -EBUSY;
2115 }
2116
2117 return 0;
2118}
2119
2120static int ocfs2_commit_thread(void *arg)
2121{
2122 int status;
2123 struct ocfs2_super *osb = arg;
2124 struct ocfs2_journal *journal = osb->journal;
2125
2126 /* we can trust j_num_trans here because _should_stop() is only set in
2127 * shutdown and nobody other than ourselves should be able to start
2128 * transactions. committing on shutdown might take a few iterations
2129 * as final transactions put deleted inodes on the list */
2130 while (!(kthread_should_stop() &&
2131 atomic_read(&journal->j_num_trans) == 0)) {
2132
745ae8ba
MF
2133 wait_event_interruptible(osb->checkpoint_event,
2134 atomic_read(&journal->j_num_trans)
2135 || kthread_should_stop());
ccd979bd
MF
2136
2137 status = ocfs2_commit_cache(osb);
2138 if (status < 0)
2139 mlog_errno(status);
2140
2141 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2142 mlog(ML_KTHREAD,
2143 "commit_thread: %u transactions pending on "
2144 "shutdown\n",
2145 atomic_read(&journal->j_num_trans));
2146 }
2147 }
2148
2149 return 0;
2150}
2151
539d8264
SM
2152/* Reads all the journal inodes without taking any cluster locks. Used
2153 * for hard readonly access to determine whether any journal requires
2154 * recovery. Also used to refresh the recovery generation numbers after
2155 * a journal has been recovered by another node.
2156 */
ccd979bd
MF
2157int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2158{
2159 int ret = 0;
2160 unsigned int slot;
539d8264 2161 struct buffer_head *di_bh = NULL;
ccd979bd 2162 struct ocfs2_dinode *di;
539d8264 2163 int journal_dirty = 0;
ccd979bd
MF
2164
2165 for(slot = 0; slot < osb->max_slots; slot++) {
539d8264
SM
2166 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2167 if (ret) {
ccd979bd
MF
2168 mlog_errno(ret);
2169 goto out;
2170 }
2171
2172 di = (struct ocfs2_dinode *) di_bh->b_data;
2173
539d8264
SM
2174 osb->slot_recovery_generations[slot] =
2175 ocfs2_get_recovery_generation(di);
2176
ccd979bd
MF
2177 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2178 OCFS2_JOURNAL_DIRTY_FL)
539d8264 2179 journal_dirty = 1;
ccd979bd
MF
2180
2181 brelse(di_bh);
539d8264 2182 di_bh = NULL;
ccd979bd
MF
2183 }
2184
2185out:
539d8264
SM
2186 if (journal_dirty)
2187 ret = -EROFS;
ccd979bd
MF
2188 return ret;
2189}
This page took 0.569325 seconds and 5 git commands to generate.