UBIFS: remove unneeded function parameter
[deliverable/linux.git] / fs / ubifs / journal.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61#include "ubifs.h"
62
63/**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68{
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71}
72
73/**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79{
80 dent->padding1 = 0;
81 memset(dent->padding2, 0, 4);
82}
83
84/**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
87 */
88static inline void zero_data_node_unused(struct ubifs_data_node *data)
89{
90 memset(data->padding, 0, 2);
91}
92
93/**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 * node.
96 * @trun: the truncation node to zero out
97 */
98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99{
100 memset(trun->padding, 0, 12);
101}
102
103/**
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
108 *
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
114 */
115static int reserve_space(struct ubifs_info *c, int jhead, int len)
116{
117 int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze;
118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119
120 /*
121 * Typically, the base head has smaller nodes written to it, so it is
122 * better to try to allocate space at the ends of eraseblocks. This is
123 * what the squeeze parameter does.
124 */
125 squeeze = (jhead == BASEHD);
126again:
127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
128
129 if (c->ro_media) {
130 err = -EROFS;
131 goto out_unlock;
132 }
133
134 avail = c->leb_size - wbuf->offs - wbuf->used;
135 if (wbuf->lnum != -1 && avail >= len)
136 return 0;
137
138 /*
139 * Write buffer wasn't seek'ed or there is no enough space - look for an
140 * LEB with some empty space.
141 */
142 lnum = ubifs_find_free_space(c, len, &free, squeeze);
143 if (lnum >= 0) {
144 /* Found an LEB, add it to the journal head */
145 offs = c->leb_size - free;
146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
147 if (err)
148 goto out_return;
149 /* A new bud was successfully allocated and added to the log */
150 goto out;
151 }
152
153 err = lnum;
154 if (err != -ENOSPC)
155 goto out_unlock;
156
157 /*
158 * No free space, we have to run garbage collector to make
159 * some. But the write-buffer mutex has to be unlocked because
160 * GC also takes it.
161 */
162 dbg_jnl("no free space jhead %d, run GC", jhead);
163 mutex_unlock(&wbuf->io_mutex);
164
165 lnum = ubifs_garbage_collect(c, 0);
166 if (lnum < 0) {
167 err = lnum;
168 if (err != -ENOSPC)
169 return err;
170
171 /*
172 * GC could not make a free LEB. But someone else may
173 * have allocated new bud for this journal head,
174 * because we dropped @wbuf->io_mutex, so try once
175 * again.
176 */
177 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
178 if (retries++ < 2) {
179 dbg_jnl("retry (%d)", retries);
180 goto again;
181 }
182
183 dbg_jnl("return -ENOSPC");
184 return err;
185 }
186
187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
188 dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
189 avail = c->leb_size - wbuf->offs - wbuf->used;
190
191 if (wbuf->lnum != -1 && avail >= len) {
192 /*
193 * Someone else has switched the journal head and we have
194 * enough space now. This happens when more then one process is
195 * trying to write to the same journal head at the same time.
196 */
197 dbg_jnl("return LEB %d back, already have LEB %d:%d",
198 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
199 err = ubifs_return_leb(c, lnum);
200 if (err)
201 goto out_unlock;
202 return 0;
203 }
204
205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
206 if (err)
207 goto out_return;
208 offs = 0;
209
210out:
211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM);
212 if (err)
213 goto out_unlock;
214
215 return 0;
216
217out_unlock:
218 mutex_unlock(&wbuf->io_mutex);
219 return err;
220
221out_return:
222 /* An error occurred and the LEB has to be returned to lprops */
223 ubifs_assert(err < 0);
224 err1 = ubifs_return_leb(c, lnum);
225 if (err1 && err == -EAGAIN)
226 /*
227 * Return original error code only if it is not %-EAGAIN,
228 * which is not really an error. Otherwise, return the error
229 * code of 'ubifs_return_leb()'.
230 */
231 err = err1;
232 mutex_unlock(&wbuf->io_mutex);
233 return err;
234}
235
236/**
237 * write_node - write node to a journal head.
238 * @c: UBIFS file-system description object
239 * @jhead: journal head
240 * @node: node to write
241 * @len: node length
242 * @lnum: LEB number written is returned here
243 * @offs: offset written is returned here
244 *
245 * This function writes a node to reserved space of journal head @jhead.
246 * Returns zero in case of success and a negative error code in case of
247 * failure.
248 */
249static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
250 int *lnum, int *offs)
251{
252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
253
254 ubifs_assert(jhead != GCHD);
255
256 *lnum = c->jheads[jhead].wbuf.lnum;
257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
258
259 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
260 ubifs_prepare_node(c, node, len, 0);
261
262 return ubifs_wbuf_write_nolock(wbuf, node, len);
263}
264
265/**
266 * write_head - write data to a journal head.
267 * @c: UBIFS file-system description object
268 * @jhead: journal head
269 * @buf: buffer to write
270 * @len: length to write
271 * @lnum: LEB number written is returned here
272 * @offs: offset written is returned here
273 * @sync: non-zero if the write-buffer has to by synchronized
274 *
275 * This function is the same as 'write_node()' but it does not assume the
276 * buffer it is writing is a node, so it does not prepare it (which means
277 * initializing common header and calculating CRC).
278 */
279static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
280 int *lnum, int *offs, int sync)
281{
282 int err;
283 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
284
285 ubifs_assert(jhead != GCHD);
286
287 *lnum = c->jheads[jhead].wbuf.lnum;
288 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
289 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
290
291 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
292 if (err)
293 return err;
294 if (sync)
295 err = ubifs_wbuf_sync_nolock(wbuf);
296 return err;
297}
298
299/**
300 * make_reservation - reserve journal space.
301 * @c: UBIFS file-system description object
302 * @jhead: journal head
303 * @len: how many bytes to reserve
304 *
305 * This function makes space reservation in journal head @jhead. The function
306 * takes the commit lock and locks the journal head, and the caller has to
307 * unlock the head and finish the reservation with 'finish_reservation()'.
308 * Returns zero in case of success and a negative error code in case of
309 * failure.
310 *
311 * Note, the journal head may be unlocked as soon as the data is written, while
312 * the commit lock has to be released after the data has been added to the
313 * TNC.
314 */
315static int make_reservation(struct ubifs_info *c, int jhead, int len)
316{
317 int err, cmt_retries = 0, nospc_retries = 0;
318
319again:
320 down_read(&c->commit_sem);
321 err = reserve_space(c, jhead, len);
322 if (!err)
323 return 0;
324 up_read(&c->commit_sem);
325
326 if (err == -ENOSPC) {
327 /*
328 * GC could not make any progress. We should try to commit
329 * once because it could make some dirty space and GC would
330 * make progress, so make the error -EAGAIN so that the below
331 * will commit and re-try.
332 */
333 if (nospc_retries++ < 2) {
334 dbg_jnl("no space, retry");
335 err = -EAGAIN;
336 }
337
338 /*
339 * This means that the budgeting is incorrect. We always have
340 * to be able to write to the media, because all operations are
341 * budgeted. Deletions are not budgeted, though, but we reserve
342 * an extra LEB for them.
343 */
344 }
345
346 if (err != -EAGAIN)
347 goto out;
348
349 /*
350 * -EAGAIN means that the journal is full or too large, or the above
351 * code wants to do one commit. Do this and re-try.
352 */
353 if (cmt_retries > 128) {
354 /*
355 * This should not happen unless the journal size limitations
356 * are too tough.
357 */
358 ubifs_err("stuck in space allocation");
359 err = -ENOSPC;
360 goto out;
361 } else if (cmt_retries > 32)
362 ubifs_warn("too many space allocation re-tries (%d)",
363 cmt_retries);
364
365 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
366 cmt_retries);
367 cmt_retries += 1;
368
369 err = ubifs_run_commit(c);
370 if (err)
371 return err;
372 goto again;
373
374out:
375 ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
376 len, jhead, err);
377 if (err == -ENOSPC) {
378 /* This are some budgeting problems, print useful information */
379 down_write(&c->commit_sem);
380 spin_lock(&c->space_lock);
381 dbg_dump_stack();
382 dbg_dump_budg(c);
383 spin_unlock(&c->space_lock);
384 dbg_dump_lprops(c);
385 cmt_retries = dbg_check_lprops(c);
386 up_write(&c->commit_sem);
387 }
388 return err;
389}
390
391/**
392 * release_head - release a journal head.
393 * @c: UBIFS file-system description object
394 * @jhead: journal head
395 *
396 * This function releases journal head @jhead which was locked by
397 * the 'make_reservation()' function. It has to be called after each successful
398 * 'make_reservation()' invocation.
399 */
400static inline void release_head(struct ubifs_info *c, int jhead)
401{
402 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
403}
404
405/**
406 * finish_reservation - finish a reservation.
407 * @c: UBIFS file-system description object
408 *
409 * This function finishes journal space reservation. It must be called after
410 * 'make_reservation()'.
411 */
412static void finish_reservation(struct ubifs_info *c)
413{
414 up_read(&c->commit_sem);
415}
416
417/**
418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
419 * @mode: inode mode
420 */
421static int get_dent_type(int mode)
422{
423 switch (mode & S_IFMT) {
424 case S_IFREG:
425 return UBIFS_ITYPE_REG;
426 case S_IFDIR:
427 return UBIFS_ITYPE_DIR;
428 case S_IFLNK:
429 return UBIFS_ITYPE_LNK;
430 case S_IFBLK:
431 return UBIFS_ITYPE_BLK;
432 case S_IFCHR:
433 return UBIFS_ITYPE_CHR;
434 case S_IFIFO:
435 return UBIFS_ITYPE_FIFO;
436 case S_IFSOCK:
437 return UBIFS_ITYPE_SOCK;
438 default:
439 BUG();
440 }
441 return 0;
442}
443
444/**
445 * pack_inode - pack an inode node.
446 * @c: UBIFS file-system description object
447 * @ino: buffer in which to pack inode node
448 * @inode: inode to pack
449 * @last: indicates the last node of the group
450 * @last_reference: non-zero if this is a deletion inode
451 */
452static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
453 const struct inode *inode, int last,
454 int last_reference)
455{
456 int data_len = 0;
457 struct ubifs_inode *ui = ubifs_inode(inode);
458
459 ino->ch.node_type = UBIFS_INO_NODE;
460 ino_key_init_flash(c, &ino->key, inode->i_ino);
461 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
462 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
463 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
464 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
465 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
466 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
467 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
468 ino->uid = cpu_to_le32(inode->i_uid);
469 ino->gid = cpu_to_le32(inode->i_gid);
470 ino->mode = cpu_to_le32(inode->i_mode);
471 ino->flags = cpu_to_le32(ui->flags);
472 ino->size = cpu_to_le64(ui->ui_size);
473 ino->nlink = cpu_to_le32(inode->i_nlink);
474 ino->compr_type = cpu_to_le16(ui->compr_type);
475 ino->data_len = cpu_to_le32(ui->data_len);
476 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
477 ino->xattr_size = cpu_to_le32(ui->xattr_size);
478 ino->xattr_names = cpu_to_le32(ui->xattr_names);
479 zero_ino_node_unused(ino);
480
481 /*
482 * Drop the attached data if this is a deletion inode, the data is not
483 * needed anymore.
484 */
485 if (!last_reference) {
486 memcpy(ino->data, ui->data, ui->data_len);
487 data_len = ui->data_len;
488 }
489
490 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
491}
492
493/**
494 * mark_inode_clean - mark UBIFS inode as clean.
495 * @c: UBIFS file-system description object
496 * @ui: UBIFS inode to mark as clean
497 *
498 * This helper function marks UBIFS inode @ui as clean by cleaning the
499 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
500 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
501 * just do nothing.
502 */
503static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
504{
505 if (ui->dirty)
506 ubifs_release_dirty_inode_budget(c, ui);
507 ui->dirty = 0;
508}
509
510/**
511 * ubifs_jnl_update - update inode.
512 * @c: UBIFS file-system description object
513 * @dir: parent inode or host inode in case of extended attributes
514 * @nm: directory entry name
515 * @inode: inode to update
516 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
517 * @xent: non-zero if the directory entry is an extended attribute entry
518 *
519 * This function updates an inode by writing a directory entry (or extended
520 * attribute entry), the inode itself, and the parent directory inode (or the
521 * host inode) to the journal.
522 *
523 * The function writes the host inode @dir last, which is important in case of
524 * extended attributes. Indeed, then we guarantee that if the host inode gets
525 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
526 * the extended attribute inode gets flushed too. And this is exactly what the
527 * user expects - synchronizing the host inode synchronizes its extended
528 * attributes. Similarly, this guarantees that if @dir is synchronized, its
529 * directory entry corresponding to @nm gets synchronized too.
530 *
531 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
532 * function synchronizes the write-buffer.
533 *
534 * This function marks the @dir and @inode inodes as clean and returns zero on
535 * success. In case of failure, a negative error code is returned.
536 */
537int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
538 const struct qstr *nm, const struct inode *inode,
539 int deletion, int xent)
540{
541 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
542 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
543 int last_reference = !!(deletion && inode->i_nlink == 0);
544 struct ubifs_inode *ui = ubifs_inode(inode);
545 struct ubifs_inode *dir_ui = ubifs_inode(dir);
546 struct ubifs_dent_node *dent;
547 struct ubifs_ino_node *ino;
548 union ubifs_key dent_key, ino_key;
549
550 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
551 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
552 ubifs_assert(dir_ui->data_len == 0);
553 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
554
555 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
556 ilen = UBIFS_INO_NODE_SZ;
557
558 /*
559 * If the last reference to the inode is being deleted, then there is
560 * no need to attach and write inode data, it is being deleted anyway.
561 * And if the inode is being deleted, no need to synchronize
562 * write-buffer even if the inode is synchronous.
563 */
564 if (!last_reference) {
565 ilen += ui->data_len;
566 sync |= IS_SYNC(inode);
567 }
568
569 aligned_dlen = ALIGN(dlen, 8);
570 aligned_ilen = ALIGN(ilen, 8);
571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 dent = kmalloc(len, GFP_NOFS);
573 if (!dent)
574 return -ENOMEM;
575
576 /* Make reservation before allocating sequence numbers */
577 err = make_reservation(c, BASEHD, len);
578 if (err)
579 goto out_free;
580
581 if (!xent) {
582 dent->ch.node_type = UBIFS_DENT_NODE;
583 dent_key_init(c, &dent_key, dir->i_ino, nm);
584 } else {
585 dent->ch.node_type = UBIFS_XENT_NODE;
586 xent_key_init(c, &dent_key, dir->i_ino, nm);
587 }
588
589 key_write(c, &dent_key, dent->key);
590 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
591 dent->type = get_dent_type(inode->i_mode);
592 dent->nlen = cpu_to_le16(nm->len);
593 memcpy(dent->name, nm->name, nm->len);
594 dent->name[nm->len] = '\0';
595 zero_dent_node_unused(dent);
596 ubifs_prep_grp_node(c, dent, dlen, 0);
597
598 ino = (void *)dent + aligned_dlen;
599 pack_inode(c, ino, inode, 0, last_reference);
600 ino = (void *)ino + aligned_ilen;
601 pack_inode(c, ino, dir, 1, 0);
602
603 if (last_reference) {
604 err = ubifs_add_orphan(c, inode->i_ino);
605 if (err) {
606 release_head(c, BASEHD);
607 goto out_finish;
608 }
609 }
610
611 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
612 if (err)
613 goto out_release;
614 if (!sync) {
615 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
616
617 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
618 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
619 }
620 release_head(c, BASEHD);
621 kfree(dent);
622
623 if (deletion) {
624 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
625 if (err)
626 goto out_ro;
627 err = ubifs_add_dirt(c, lnum, dlen);
628 } else
629 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
630 if (err)
631 goto out_ro;
632
633 /*
634 * Note, we do not remove the inode from TNC even if the last reference
635 * to it has just been deleted, because the inode may still be opened.
636 * Instead, the inode has been added to orphan lists and the orphan
637 * subsystem will take further care about it.
638 */
639 ino_key_init(c, &ino_key, inode->i_ino);
640 ino_offs = dent_offs + aligned_dlen;
641 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
642 if (err)
643 goto out_ro;
644
645 ino_key_init(c, &ino_key, dir->i_ino);
646 ino_offs += aligned_ilen;
647 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
648 if (err)
649 goto out_ro;
650
651 finish_reservation(c);
652 spin_lock(&ui->ui_lock);
653 ui->synced_i_size = ui->ui_size;
654 spin_unlock(&ui->ui_lock);
655 mark_inode_clean(c, ui);
656 mark_inode_clean(c, dir_ui);
657 return 0;
658
659out_finish:
660 finish_reservation(c);
661out_free:
662 kfree(dent);
663 return err;
664
665out_release:
666 release_head(c, BASEHD);
667out_ro:
668 ubifs_ro_mode(c, err);
669 if (last_reference)
670 ubifs_delete_orphan(c, inode->i_ino);
671 finish_reservation(c);
672 return err;
673}
674
675/**
676 * ubifs_jnl_write_data - write a data node to the journal.
677 * @c: UBIFS file-system description object
678 * @inode: inode the data node belongs to
679 * @key: node key
680 * @buf: buffer to write
681 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
682 *
683 * This function writes a data node to the journal. Returns %0 if the data node
684 * was successfully written, and a negative error code in case of failure.
685 */
686int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
687 const union ubifs_key *key, const void *buf, int len)
688{
689 struct ubifs_data_node *data;
690 int err, lnum, offs, compr_type, out_len;
691 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
692 struct ubifs_inode *ui = ubifs_inode(inode);
693
694 dbg_jnl("ino %lu, blk %u, len %d, key %s", key_inum(c, key),
695 key_block(c, key), len, DBGKEY(key));
696 ubifs_assert(len <= UBIFS_BLOCK_SIZE);
697
698 data = kmalloc(dlen, GFP_NOFS);
699 if (!data)
700 return -ENOMEM;
701
702 data->ch.node_type = UBIFS_DATA_NODE;
703 key_write(c, key, &data->key);
704 data->size = cpu_to_le32(len);
705 zero_data_node_unused(data);
706
707 if (!(ui->flags && UBIFS_COMPR_FL))
708 /* Compression is disabled for this inode */
709 compr_type = UBIFS_COMPR_NONE;
710 else
711 compr_type = ui->compr_type;
712
713 out_len = dlen - UBIFS_DATA_NODE_SZ;
714 ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
715 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
716
717 dlen = UBIFS_DATA_NODE_SZ + out_len;
718 data->compr_type = cpu_to_le16(compr_type);
719
720 /* Make reservation before allocating sequence numbers */
721 err = make_reservation(c, DATAHD, dlen);
722 if (err)
723 goto out_free;
724
725 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
726 if (err)
727 goto out_release;
728 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
729 release_head(c, DATAHD);
730
731 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
732 if (err)
733 goto out_ro;
734
735 finish_reservation(c);
736 kfree(data);
737 return 0;
738
739out_release:
740 release_head(c, DATAHD);
741out_ro:
742 ubifs_ro_mode(c, err);
743 finish_reservation(c);
744out_free:
745 kfree(data);
746 return err;
747}
748
749/**
750 * ubifs_jnl_write_inode - flush inode to the journal.
751 * @c: UBIFS file-system description object
752 * @inode: inode to flush
1e51764a
AB
753 *
754 * This function writes inode @inode to the journal. If the inode is
755 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
756 * success and a negative error code in case of failure.
757 */
1f28681a 758int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
1e51764a 759{
1f28681a 760 int err, lnum, offs;
1e51764a
AB
761 struct ubifs_ino_node *ino;
762 struct ubifs_inode *ui = ubifs_inode(inode);
1f28681a 763 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
1e51764a 764
1f28681a 765 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
1e51764a 766
1e51764a
AB
767 /*
768 * If the inode is being deleted, do not write the attached data. No
769 * need to synchronize the write-buffer either.
770 */
1f28681a 771 if (!last_reference) {
1e51764a
AB
772 len += ui->data_len;
773 sync = IS_SYNC(inode);
774 }
775 ino = kmalloc(len, GFP_NOFS);
776 if (!ino)
777 return -ENOMEM;
778
779 /* Make reservation before allocating sequence numbers */
780 err = make_reservation(c, BASEHD, len);
781 if (err)
782 goto out_free;
783
1f28681a 784 pack_inode(c, ino, inode, 1, last_reference);
1e51764a
AB
785 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
786 if (err)
787 goto out_release;
788 if (!sync)
789 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
790 inode->i_ino);
791 release_head(c, BASEHD);
792
1f28681a 793 if (last_reference) {
1e51764a
AB
794 err = ubifs_tnc_remove_ino(c, inode->i_ino);
795 if (err)
796 goto out_ro;
797 ubifs_delete_orphan(c, inode->i_ino);
798 err = ubifs_add_dirt(c, lnum, len);
799 } else {
800 union ubifs_key key;
801
802 ino_key_init(c, &key, inode->i_ino);
803 err = ubifs_tnc_add(c, &key, lnum, offs, len);
804 }
805 if (err)
806 goto out_ro;
807
808 finish_reservation(c);
809 spin_lock(&ui->ui_lock);
810 ui->synced_i_size = ui->ui_size;
811 spin_unlock(&ui->ui_lock);
812 kfree(ino);
813 return 0;
814
815out_release:
816 release_head(c, BASEHD);
817out_ro:
818 ubifs_ro_mode(c, err);
819 finish_reservation(c);
820out_free:
821 kfree(ino);
822 return err;
823}
824
825/**
826 * ubifs_jnl_rename - rename a directory entry.
827 * @c: UBIFS file-system description object
828 * @old_dir: parent inode of directory entry to rename
829 * @old_dentry: directory entry to rename
830 * @new_dir: parent inode of directory entry to rename
831 * @new_dentry: new directory entry (or directory entry to replace)
832 * @sync: non-zero if the write-buffer has to be synchronized
833 *
834 * This function implements the re-name operation which may involve writing up
835 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
836 * and returns zero on success. In case of failure, a negative error code is
837 * returned.
838 */
839int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
840 const struct dentry *old_dentry,
841 const struct inode *new_dir,
842 const struct dentry *new_dentry, int sync)
843{
844 void *p;
845 union ubifs_key key;
846 struct ubifs_dent_node *dent, *dent2;
847 int err, dlen1, dlen2, ilen, lnum, offs, len;
848 const struct inode *old_inode = old_dentry->d_inode;
849 const struct inode *new_inode = new_dentry->d_inode;
850 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
851 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
852 int move = (old_dir != new_dir);
853 struct ubifs_inode *uninitialized_var(new_ui);
854
855 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
856 old_dentry->d_name.len, old_dentry->d_name.name,
857 old_dir->i_ino, new_dentry->d_name.len,
858 new_dentry->d_name.name, new_dir->i_ino);
859 ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
860 ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
861 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
862 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
863
864 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
865 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
866 if (new_inode) {
867 new_ui = ubifs_inode(new_inode);
868 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
869 ilen = UBIFS_INO_NODE_SZ;
870 if (!last_reference)
871 ilen += new_ui->data_len;
872 } else
873 ilen = 0;
874
875 aligned_dlen1 = ALIGN(dlen1, 8);
876 aligned_dlen2 = ALIGN(dlen2, 8);
877 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
878 if (old_dir != new_dir)
879 len += plen;
880 dent = kmalloc(len, GFP_NOFS);
881 if (!dent)
882 return -ENOMEM;
883
884 /* Make reservation before allocating sequence numbers */
885 err = make_reservation(c, BASEHD, len);
886 if (err)
887 goto out_free;
888
889 /* Make new dent */
890 dent->ch.node_type = UBIFS_DENT_NODE;
891 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
892 dent->inum = cpu_to_le64(old_inode->i_ino);
893 dent->type = get_dent_type(old_inode->i_mode);
894 dent->nlen = cpu_to_le16(new_dentry->d_name.len);
895 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
896 dent->name[new_dentry->d_name.len] = '\0';
897 zero_dent_node_unused(dent);
898 ubifs_prep_grp_node(c, dent, dlen1, 0);
899
900 /* Make deletion dent */
901 dent2 = (void *)dent + aligned_dlen1;
902 dent2->ch.node_type = UBIFS_DENT_NODE;
903 dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
904 &old_dentry->d_name);
905 dent2->inum = 0;
906 dent2->type = DT_UNKNOWN;
907 dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
908 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
909 dent2->name[old_dentry->d_name.len] = '\0';
910 zero_dent_node_unused(dent2);
911 ubifs_prep_grp_node(c, dent2, dlen2, 0);
912
913 p = (void *)dent2 + aligned_dlen2;
914 if (new_inode) {
915 pack_inode(c, p, new_inode, 0, last_reference);
916 p += ALIGN(ilen, 8);
917 }
918
919 if (!move)
920 pack_inode(c, p, old_dir, 1, 0);
921 else {
922 pack_inode(c, p, old_dir, 0, 0);
923 p += ALIGN(plen, 8);
924 pack_inode(c, p, new_dir, 1, 0);
925 }
926
927 if (last_reference) {
928 err = ubifs_add_orphan(c, new_inode->i_ino);
929 if (err) {
930 release_head(c, BASEHD);
931 goto out_finish;
932 }
933 }
934
935 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
936 if (err)
937 goto out_release;
938 if (!sync) {
939 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
940
941 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
942 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
943 if (new_inode)
944 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
945 new_inode->i_ino);
946 }
947 release_head(c, BASEHD);
948
949 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
950 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
951 if (err)
952 goto out_ro;
953
954 err = ubifs_add_dirt(c, lnum, dlen2);
955 if (err)
956 goto out_ro;
957
958 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
959 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
960 if (err)
961 goto out_ro;
962
963 offs += aligned_dlen1 + aligned_dlen2;
964 if (new_inode) {
965 ino_key_init(c, &key, new_inode->i_ino);
966 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
967 if (err)
968 goto out_ro;
969 offs += ALIGN(ilen, 8);
970 }
971
972 ino_key_init(c, &key, old_dir->i_ino);
973 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
974 if (err)
975 goto out_ro;
976
977 if (old_dir != new_dir) {
978 offs += ALIGN(plen, 8);
979 ino_key_init(c, &key, new_dir->i_ino);
980 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
981 if (err)
982 goto out_ro;
983 }
984
985 finish_reservation(c);
986 if (new_inode) {
987 mark_inode_clean(c, new_ui);
988 spin_lock(&new_ui->ui_lock);
989 new_ui->synced_i_size = new_ui->ui_size;
990 spin_unlock(&new_ui->ui_lock);
991 }
992 mark_inode_clean(c, ubifs_inode(old_dir));
993 if (move)
994 mark_inode_clean(c, ubifs_inode(new_dir));
995 kfree(dent);
996 return 0;
997
998out_release:
999 release_head(c, BASEHD);
1000out_ro:
1001 ubifs_ro_mode(c, err);
1002 if (last_reference)
1003 ubifs_delete_orphan(c, new_inode->i_ino);
1004out_finish:
1005 finish_reservation(c);
1006out_free:
1007 kfree(dent);
1008 return err;
1009}
1010
1011/**
1012 * recomp_data_node - re-compress a truncated data node.
1013 * @dn: data node to re-compress
1014 * @new_len: new length
1015 *
1016 * This function is used when an inode is truncated and the last data node of
1017 * the inode has to be re-compressed and re-written.
1018 */
1019static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1020{
1021 void *buf;
1022 int err, len, compr_type, out_len;
1023
1024 out_len = le32_to_cpu(dn->size);
1025 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1026 if (!buf)
1027 return -ENOMEM;
1028
1029 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1030 compr_type = le16_to_cpu(dn->compr_type);
1031 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1032 if (err)
1033 goto out;
1034
1035 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1036 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1037 dn->compr_type = cpu_to_le16(compr_type);
1038 dn->size = cpu_to_le32(*new_len);
1039 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1040out:
1041 kfree(buf);
1042 return err;
1043}
1044
1045/**
1046 * ubifs_jnl_truncate - update the journal for a truncation.
1047 * @c: UBIFS file-system description object
1048 * @inode: inode to truncate
1049 * @old_size: old size
1050 * @new_size: new size
1051 *
1052 * When the size of a file decreases due to truncation, a truncation node is
1053 * written, the journal tree is updated, and the last data block is re-written
1054 * if it has been affected. The inode is also updated in order to synchronize
1055 * the new inode size.
1056 *
1057 * This function marks the inode as clean and returns zero on success. In case
1058 * of failure, a negative error code is returned.
1059 */
1060int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1061 loff_t old_size, loff_t new_size)
1062{
1063 union ubifs_key key, to_key;
1064 struct ubifs_ino_node *ino;
1065 struct ubifs_trun_node *trun;
1066 struct ubifs_data_node *uninitialized_var(dn);
1067 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1068 struct ubifs_inode *ui = ubifs_inode(inode);
1069 ino_t inum = inode->i_ino;
1070 unsigned int blk;
1071
1072 dbg_jnl("ino %lu, size %lld -> %lld", inum, old_size, new_size);
1073 ubifs_assert(!ui->data_len);
1074 ubifs_assert(S_ISREG(inode->i_mode));
1075 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1076
1077 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1078 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1079 ino = kmalloc(sz, GFP_NOFS);
1080 if (!ino)
1081 return -ENOMEM;
1082
1083 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1084 trun->ch.node_type = UBIFS_TRUN_NODE;
1085 trun->inum = cpu_to_le32(inum);
1086 trun->old_size = cpu_to_le64(old_size);
1087 trun->new_size = cpu_to_le64(new_size);
1088 zero_trun_node_unused(trun);
1089
1090 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1091 if (dlen) {
1092 /* Get last data block so it can be truncated */
1093 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1094 blk = new_size >> UBIFS_BLOCK_SHIFT;
1095 data_key_init(c, &key, inum, blk);
1096 dbg_jnl("last block key %s", DBGKEY(&key));
1097 err = ubifs_tnc_lookup(c, &key, dn);
1098 if (err == -ENOENT)
1099 dlen = 0; /* Not found (so it is a hole) */
1100 else if (err)
1101 goto out_free;
1102 else {
1103 if (le32_to_cpu(dn->size) <= dlen)
1104 dlen = 0; /* Nothing to do */
1105 else {
1106 int compr_type = le16_to_cpu(dn->compr_type);
1107
1108 if (compr_type != UBIFS_COMPR_NONE) {
1109 err = recomp_data_node(dn, &dlen);
1110 if (err)
1111 goto out_free;
1112 } else {
1113 dn->size = cpu_to_le32(dlen);
1114 dlen += UBIFS_DATA_NODE_SZ;
1115 }
1116 zero_data_node_unused(dn);
1117 }
1118 }
1119 }
1120
1121 /* Must make reservation before allocating sequence numbers */
1122 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1123 if (dlen)
1124 len += dlen;
1125 err = make_reservation(c, BASEHD, len);
1126 if (err)
1127 goto out_free;
1128
1129 pack_inode(c, ino, inode, 0, 0);
1130 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1131 if (dlen)
1132 ubifs_prep_grp_node(c, dn, dlen, 1);
1133
1134 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1135 if (err)
1136 goto out_release;
1137 if (!sync)
1138 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1139 release_head(c, BASEHD);
1140
1141 if (dlen) {
1142 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1143 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1144 if (err)
1145 goto out_ro;
1146 }
1147
1148 ino_key_init(c, &key, inum);
1149 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1150 if (err)
1151 goto out_ro;
1152
1153 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1154 if (err)
1155 goto out_ro;
1156
1157 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1158 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1159 data_key_init(c, &key, inum, blk);
1160
1161 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1162 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1);
1163 data_key_init(c, &to_key, inum, blk);
1164
1165 err = ubifs_tnc_remove_range(c, &key, &to_key);
1166 if (err)
1167 goto out_ro;
1168
1169 finish_reservation(c);
1170 spin_lock(&ui->ui_lock);
1171 ui->synced_i_size = ui->ui_size;
1172 spin_unlock(&ui->ui_lock);
1173 mark_inode_clean(c, ui);
1174 kfree(ino);
1175 return 0;
1176
1177out_release:
1178 release_head(c, BASEHD);
1179out_ro:
1180 ubifs_ro_mode(c, err);
1181 finish_reservation(c);
1182out_free:
1183 kfree(ino);
1184 return err;
1185}
1186
1187#ifdef CONFIG_UBIFS_FS_XATTR
1188
1189/**
1190 * ubifs_jnl_delete_xattr - delete an extended attribute.
1191 * @c: UBIFS file-system description object
1192 * @host: host inode
1193 * @inode: extended attribute inode
1194 * @nm: extended attribute entry name
1195 *
1196 * This function delete an extended attribute which is very similar to
1197 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1198 * updates the target inode. Returns zero in case of success and a negative
1199 * error code in case of failure.
1200 */
1201int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1202 const struct inode *inode, const struct qstr *nm)
1203{
1204 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1205 struct ubifs_dent_node *xent;
1206 struct ubifs_ino_node *ino;
1207 union ubifs_key xent_key, key1, key2;
1208 int sync = IS_DIRSYNC(host);
1209 struct ubifs_inode *host_ui = ubifs_inode(host);
1210
1211 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1212 host->i_ino, inode->i_ino, nm->name,
1213 ubifs_inode(inode)->data_len);
1214 ubifs_assert(inode->i_nlink == 0);
1215 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1216
1217 /*
1218 * Since we are deleting the inode, we do not bother to attach any data
1219 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1220 */
1221 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1222 aligned_xlen = ALIGN(xlen, 8);
1223 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1224 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1225
1226 xent = kmalloc(len, GFP_NOFS);
1227 if (!xent)
1228 return -ENOMEM;
1229
1230 /* Make reservation before allocating sequence numbers */
1231 err = make_reservation(c, BASEHD, len);
1232 if (err) {
1233 kfree(xent);
1234 return err;
1235 }
1236
1237 xent->ch.node_type = UBIFS_XENT_NODE;
1238 xent_key_init(c, &xent_key, host->i_ino, nm);
1239 key_write(c, &xent_key, xent->key);
1240 xent->inum = 0;
1241 xent->type = get_dent_type(inode->i_mode);
1242 xent->nlen = cpu_to_le16(nm->len);
1243 memcpy(xent->name, nm->name, nm->len);
1244 xent->name[nm->len] = '\0';
1245 zero_dent_node_unused(xent);
1246 ubifs_prep_grp_node(c, xent, xlen, 0);
1247
1248 ino = (void *)xent + aligned_xlen;
1249 pack_inode(c, ino, inode, 0, 1);
1250 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1251 pack_inode(c, ino, host, 1, 0);
1252
1253 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1254 if (!sync && !err)
1255 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1256 release_head(c, BASEHD);
1257 kfree(xent);
1258 if (err)
1259 goto out_ro;
1260
1261 /* Remove the extended attribute entry from TNC */
1262 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1263 if (err)
1264 goto out_ro;
1265 err = ubifs_add_dirt(c, lnum, xlen);
1266 if (err)
1267 goto out_ro;
1268
1269 /*
1270 * Remove all nodes belonging to the extended attribute inode from TNC.
1271 * Well, there actually must be only one node - the inode itself.
1272 */
1273 lowest_ino_key(c, &key1, inode->i_ino);
1274 highest_ino_key(c, &key2, inode->i_ino);
1275 err = ubifs_tnc_remove_range(c, &key1, &key2);
1276 if (err)
1277 goto out_ro;
1278 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1279 if (err)
1280 goto out_ro;
1281
1282 /* And update TNC with the new host inode position */
1283 ino_key_init(c, &key1, host->i_ino);
1284 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1285 if (err)
1286 goto out_ro;
1287
1288 finish_reservation(c);
1289 spin_lock(&host_ui->ui_lock);
1290 host_ui->synced_i_size = host_ui->ui_size;
1291 spin_unlock(&host_ui->ui_lock);
1292 mark_inode_clean(c, host_ui);
1293 return 0;
1294
1295out_ro:
1296 ubifs_ro_mode(c, err);
1297 finish_reservation(c);
1298 return err;
1299}
1300
1301/**
1302 * ubifs_jnl_change_xattr - change an extended attribute.
1303 * @c: UBIFS file-system description object
1304 * @inode: extended attribute inode
1305 * @host: host inode
1306 *
1307 * This function writes the updated version of an extended attribute inode and
1308 * the host inode tho the journal (to the base head). The host inode is written
1309 * after the extended attribute inode in order to guarantee that the extended
1310 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1311 * consequently, the write-buffer is synchronized. This function returns zero
1312 * in case of success and a negative error code in case of failure.
1313 */
1314int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1315 const struct inode *host)
1316{
1317 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1318 struct ubifs_inode *host_ui = ubifs_inode(inode);
1319 struct ubifs_ino_node *ino;
1320 union ubifs_key key;
1321 int sync = IS_DIRSYNC(host);
1322
1323 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1324 ubifs_assert(host->i_nlink > 0);
1325 ubifs_assert(inode->i_nlink > 0);
1326 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1327
1328 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1329 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1330 aligned_len1 = ALIGN(len1, 8);
1331 aligned_len = aligned_len1 + ALIGN(len2, 8);
1332
1333 ino = kmalloc(aligned_len, GFP_NOFS);
1334 if (!ino)
1335 return -ENOMEM;
1336
1337 /* Make reservation before allocating sequence numbers */
1338 err = make_reservation(c, BASEHD, aligned_len);
1339 if (err)
1340 goto out_free;
1341
1342 pack_inode(c, ino, host, 0, 0);
1343 pack_inode(c, (void *)ino + aligned_len1, inode, 1, 0);
1344
1345 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1346 if (!sync && !err) {
1347 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1348
1349 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1350 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1351 }
1352 release_head(c, BASEHD);
1353 if (err)
1354 goto out_ro;
1355
1356 ino_key_init(c, &key, host->i_ino);
1357 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1358 if (err)
1359 goto out_ro;
1360
1361 ino_key_init(c, &key, inode->i_ino);
1362 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1363 if (err)
1364 goto out_ro;
1365
1366 finish_reservation(c);
1367 spin_lock(&host_ui->ui_lock);
1368 host_ui->synced_i_size = host_ui->ui_size;
1369 spin_unlock(&host_ui->ui_lock);
1370 mark_inode_clean(c, host_ui);
1371 kfree(ino);
1372 return 0;
1373
1374out_ro:
1375 ubifs_ro_mode(c, err);
1376 finish_reservation(c);
1377out_free:
1378 kfree(ino);
1379 return err;
1380}
1381
1382#endif /* CONFIG_UBIFS_FS_XATTR */
This page took 0.092081 seconds and 5 git commands to generate.