UBI: remove superfluous "!!" operation
[deliverable/linux.git] / fs / ubifs / lpt_commit.c
CommitLineData
7d4e9ccb 1/*
1e51764a
AB
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements commit-related functionality of the LEB properties
25 * subsystem.
26 */
27
28#include <linux/crc16.h>
5a0e3ad6 29#include <linux/slab.h>
8d7819b4 30#include <linux/random.h>
1e51764a
AB
31#include "ubifs.h"
32
cdd8ad6e 33static int dbg_populate_lsave(struct ubifs_info *c);
cdd8ad6e 34
1e51764a
AB
35/**
36 * first_dirty_cnode - find first dirty cnode.
37 * @c: UBIFS file-system description object
38 * @nnode: nnode at which to start
39 *
40 * This function returns the first dirty cnode or %NULL if there is not one.
41 */
42static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
43{
44 ubifs_assert(nnode);
45 while (1) {
46 int i, cont = 0;
47
48 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 struct ubifs_cnode *cnode;
50
51 cnode = nnode->nbranch[i].cnode;
52 if (cnode &&
53 test_bit(DIRTY_CNODE, &cnode->flags)) {
54 if (cnode->level == 0)
55 return cnode;
56 nnode = (struct ubifs_nnode *)cnode;
57 cont = 1;
58 break;
59 }
60 }
61 if (!cont)
62 return (struct ubifs_cnode *)nnode;
63 }
64}
65
66/**
67 * next_dirty_cnode - find next dirty cnode.
68 * @cnode: cnode from which to begin searching
69 *
70 * This function returns the next dirty cnode or %NULL if there is not one.
71 */
72static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
73{
74 struct ubifs_nnode *nnode;
75 int i;
76
77 ubifs_assert(cnode);
78 nnode = cnode->parent;
79 if (!nnode)
80 return NULL;
81 for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
82 cnode = nnode->nbranch[i].cnode;
83 if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
84 if (cnode->level == 0)
85 return cnode; /* cnode is a pnode */
86 /* cnode is a nnode */
87 return first_dirty_cnode((struct ubifs_nnode *)cnode);
88 }
89 }
90 return (struct ubifs_cnode *)nnode;
91}
92
93/**
94 * get_cnodes_to_commit - create list of dirty cnodes to commit.
95 * @c: UBIFS file-system description object
96 *
97 * This function returns the number of cnodes to commit.
98 */
99static int get_cnodes_to_commit(struct ubifs_info *c)
100{
101 struct ubifs_cnode *cnode, *cnext;
102 int cnt = 0;
103
104 if (!c->nroot)
105 return 0;
106
107 if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
108 return 0;
109
110 c->lpt_cnext = first_dirty_cnode(c->nroot);
111 cnode = c->lpt_cnext;
112 if (!cnode)
113 return 0;
114 cnt += 1;
115 while (1) {
37662447
AB
116 ubifs_assert(!test_bit(COW_CNODE, &cnode->flags));
117 __set_bit(COW_CNODE, &cnode->flags);
1e51764a
AB
118 cnext = next_dirty_cnode(cnode);
119 if (!cnext) {
120 cnode->cnext = c->lpt_cnext;
121 break;
122 }
123 cnode->cnext = cnext;
124 cnode = cnext;
125 cnt += 1;
126 }
127 dbg_cmt("committing %d cnodes", cnt);
128 dbg_lp("committing %d cnodes", cnt);
129 ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
130 return cnt;
131}
132
133/**
134 * upd_ltab - update LPT LEB properties.
135 * @c: UBIFS file-system description object
136 * @lnum: LEB number
137 * @free: amount of free space
138 * @dirty: amount of dirty space to add
139 */
140static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
141{
142 dbg_lp("LEB %d free %d dirty %d to %d +%d",
143 lnum, c->ltab[lnum - c->lpt_first].free,
144 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
145 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
146 c->ltab[lnum - c->lpt_first].free = free;
147 c->ltab[lnum - c->lpt_first].dirty += dirty;
148}
149
150/**
151 * alloc_lpt_leb - allocate an LPT LEB that is empty.
152 * @c: UBIFS file-system description object
153 * @lnum: LEB number is passed and returned here
154 *
155 * This function finds the next empty LEB in the ltab starting from @lnum. If a
156 * an empty LEB is found it is returned in @lnum and the function returns %0.
157 * Otherwise the function returns -ENOSPC. Note however, that LPT is designed
158 * never to run out of space.
159 */
160static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
161{
162 int i, n;
163
164 n = *lnum - c->lpt_first + 1;
165 for (i = n; i < c->lpt_lebs; i++) {
166 if (c->ltab[i].tgc || c->ltab[i].cmt)
167 continue;
168 if (c->ltab[i].free == c->leb_size) {
169 c->ltab[i].cmt = 1;
170 *lnum = i + c->lpt_first;
171 return 0;
172 }
173 }
174
175 for (i = 0; i < n; i++) {
176 if (c->ltab[i].tgc || c->ltab[i].cmt)
177 continue;
178 if (c->ltab[i].free == c->leb_size) {
179 c->ltab[i].cmt = 1;
180 *lnum = i + c->lpt_first;
181 return 0;
182 }
183 }
1e51764a
AB
184 return -ENOSPC;
185}
186
187/**
188 * layout_cnodes - layout cnodes for commit.
189 * @c: UBIFS file-system description object
190 *
191 * This function returns %0 on success and a negative error code on failure.
192 */
193static int layout_cnodes(struct ubifs_info *c)
194{
195 int lnum, offs, len, alen, done_lsave, done_ltab, err;
196 struct ubifs_cnode *cnode;
197
73944a6d
AH
198 err = dbg_chk_lpt_sz(c, 0, 0);
199 if (err)
200 return err;
1e51764a
AB
201 cnode = c->lpt_cnext;
202 if (!cnode)
203 return 0;
204 lnum = c->nhead_lnum;
205 offs = c->nhead_offs;
206 /* Try to place lsave and ltab nicely */
207 done_lsave = !c->big_lpt;
208 done_ltab = 0;
209 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
210 done_lsave = 1;
211 c->lsave_lnum = lnum;
212 c->lsave_offs = offs;
213 offs += c->lsave_sz;
73944a6d 214 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
215 }
216
217 if (offs + c->ltab_sz <= c->leb_size) {
218 done_ltab = 1;
219 c->ltab_lnum = lnum;
220 c->ltab_offs = offs;
221 offs += c->ltab_sz;
73944a6d 222 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
223 }
224
225 do {
226 if (cnode->level) {
227 len = c->nnode_sz;
228 c->dirty_nn_cnt -= 1;
229 } else {
230 len = c->pnode_sz;
231 c->dirty_pn_cnt -= 1;
232 }
233 while (offs + len > c->leb_size) {
234 alen = ALIGN(offs, c->min_io_size);
235 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 236 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
237 err = alloc_lpt_leb(c, &lnum);
238 if (err)
73944a6d 239 goto no_space;
1e51764a
AB
240 offs = 0;
241 ubifs_assert(lnum >= c->lpt_first &&
242 lnum <= c->lpt_last);
243 /* Try to place lsave and ltab nicely */
244 if (!done_lsave) {
245 done_lsave = 1;
246 c->lsave_lnum = lnum;
247 c->lsave_offs = offs;
248 offs += c->lsave_sz;
73944a6d 249 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
250 continue;
251 }
252 if (!done_ltab) {
253 done_ltab = 1;
254 c->ltab_lnum = lnum;
255 c->ltab_offs = offs;
256 offs += c->ltab_sz;
73944a6d 257 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
258 continue;
259 }
260 break;
261 }
262 if (cnode->parent) {
263 cnode->parent->nbranch[cnode->iip].lnum = lnum;
264 cnode->parent->nbranch[cnode->iip].offs = offs;
265 } else {
266 c->lpt_lnum = lnum;
267 c->lpt_offs = offs;
268 }
269 offs += len;
73944a6d 270 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
271 cnode = cnode->cnext;
272 } while (cnode && cnode != c->lpt_cnext);
273
274 /* Make sure to place LPT's save table */
275 if (!done_lsave) {
276 if (offs + c->lsave_sz > c->leb_size) {
277 alen = ALIGN(offs, c->min_io_size);
278 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 279 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
280 err = alloc_lpt_leb(c, &lnum);
281 if (err)
73944a6d 282 goto no_space;
1e51764a
AB
283 offs = 0;
284 ubifs_assert(lnum >= c->lpt_first &&
285 lnum <= c->lpt_last);
286 }
287 done_lsave = 1;
288 c->lsave_lnum = lnum;
289 c->lsave_offs = offs;
290 offs += c->lsave_sz;
73944a6d 291 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
292 }
293
294 /* Make sure to place LPT's own lprops table */
295 if (!done_ltab) {
296 if (offs + c->ltab_sz > c->leb_size) {
297 alen = ALIGN(offs, c->min_io_size);
298 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
2bc275e9 299 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
300 err = alloc_lpt_leb(c, &lnum);
301 if (err)
73944a6d 302 goto no_space;
1e51764a
AB
303 offs = 0;
304 ubifs_assert(lnum >= c->lpt_first &&
305 lnum <= c->lpt_last);
306 }
307 done_ltab = 1;
308 c->ltab_lnum = lnum;
309 c->ltab_offs = offs;
310 offs += c->ltab_sz;
73944a6d 311 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
312 }
313
314 alen = ALIGN(offs, c->min_io_size);
315 upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
73944a6d
AH
316 dbg_chk_lpt_sz(c, 4, alen - offs);
317 err = dbg_chk_lpt_sz(c, 3, alen);
318 if (err)
319 return err;
1e51764a 320 return 0;
73944a6d
AH
321
322no_space:
a6aae4dd
AB
323 ubifs_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
324 "done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
edf6be24
AB
325 ubifs_dump_lpt_info(c);
326 ubifs_dump_lpt_lebs(c);
787845bd 327 dump_stack();
73944a6d 328 return err;
1e51764a
AB
329}
330
331/**
332 * realloc_lpt_leb - allocate an LPT LEB that is empty.
333 * @c: UBIFS file-system description object
334 * @lnum: LEB number is passed and returned here
335 *
336 * This function duplicates exactly the results of the function alloc_lpt_leb.
337 * It is used during end commit to reallocate the same LEB numbers that were
338 * allocated by alloc_lpt_leb during start commit.
339 *
340 * This function finds the next LEB that was allocated by the alloc_lpt_leb
341 * function starting from @lnum. If a LEB is found it is returned in @lnum and
342 * the function returns %0. Otherwise the function returns -ENOSPC.
343 * Note however, that LPT is designed never to run out of space.
344 */
345static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346{
347 int i, n;
348
349 n = *lnum - c->lpt_first + 1;
350 for (i = n; i < c->lpt_lebs; i++)
351 if (c->ltab[i].cmt) {
352 c->ltab[i].cmt = 0;
353 *lnum = i + c->lpt_first;
354 return 0;
355 }
356
357 for (i = 0; i < n; i++)
358 if (c->ltab[i].cmt) {
359 c->ltab[i].cmt = 0;
360 *lnum = i + c->lpt_first;
361 return 0;
362 }
1e51764a
AB
363 return -ENOSPC;
364}
365
366/**
367 * write_cnodes - write cnodes for commit.
368 * @c: UBIFS file-system description object
369 *
370 * This function returns %0 on success and a negative error code on failure.
371 */
372static int write_cnodes(struct ubifs_info *c)
373{
374 int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 struct ubifs_cnode *cnode;
376 void *buf = c->lpt_buf;
377
378 cnode = c->lpt_cnext;
379 if (!cnode)
380 return 0;
381 lnum = c->nhead_lnum;
382 offs = c->nhead_offs;
383 from = offs;
384 /* Ensure empty LEB is unmapped */
385 if (offs == 0) {
386 err = ubifs_leb_unmap(c, lnum);
387 if (err)
388 return err;
389 }
390 /* Try to place lsave and ltab nicely */
391 done_lsave = !c->big_lpt;
392 done_ltab = 0;
393 if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 done_lsave = 1;
395 ubifs_pack_lsave(c, buf + offs, c->lsave);
396 offs += c->lsave_sz;
73944a6d 397 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
398 }
399
400 if (offs + c->ltab_sz <= c->leb_size) {
401 done_ltab = 1;
402 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 offs += c->ltab_sz;
73944a6d 404 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
405 }
406
407 /* Loop for each cnode */
408 do {
409 if (cnode->level)
410 len = c->nnode_sz;
411 else
412 len = c->pnode_sz;
413 while (offs + len > c->leb_size) {
414 wlen = offs - from;
415 if (wlen) {
416 alen = ALIGN(wlen, c->min_io_size);
417 memset(buf + offs, 0xff, alen - wlen);
418 err = ubifs_leb_write(c, lnum, buf + from, from,
419 alen, UBI_SHORTTERM);
420 if (err)
421 return err;
422 }
2bc275e9 423 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
424 err = realloc_lpt_leb(c, &lnum);
425 if (err)
73944a6d 426 goto no_space;
0a6fb8d9 427 offs = from = 0;
1e51764a
AB
428 ubifs_assert(lnum >= c->lpt_first &&
429 lnum <= c->lpt_last);
430 err = ubifs_leb_unmap(c, lnum);
431 if (err)
432 return err;
433 /* Try to place lsave and ltab nicely */
434 if (!done_lsave) {
435 done_lsave = 1;
436 ubifs_pack_lsave(c, buf + offs, c->lsave);
437 offs += c->lsave_sz;
73944a6d 438 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
439 continue;
440 }
441 if (!done_ltab) {
442 done_ltab = 1;
443 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 offs += c->ltab_sz;
73944a6d 445 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
446 continue;
447 }
448 break;
449 }
450 if (cnode->level)
451 ubifs_pack_nnode(c, buf + offs,
452 (struct ubifs_nnode *)cnode);
453 else
454 ubifs_pack_pnode(c, buf + offs,
455 (struct ubifs_pnode *)cnode);
456 /*
457 * The reason for the barriers is the same as in case of TNC.
458 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 * 'dirty_cow_pnode()' are the functions for which this is
460 * important.
461 */
462 clear_bit(DIRTY_CNODE, &cnode->flags);
463 smp_mb__before_clear_bit();
37662447 464 clear_bit(COW_CNODE, &cnode->flags);
1e51764a
AB
465 smp_mb__after_clear_bit();
466 offs += len;
73944a6d 467 dbg_chk_lpt_sz(c, 1, len);
1e51764a
AB
468 cnode = cnode->cnext;
469 } while (cnode && cnode != c->lpt_cnext);
470
471 /* Make sure to place LPT's save table */
472 if (!done_lsave) {
473 if (offs + c->lsave_sz > c->leb_size) {
474 wlen = offs - from;
475 alen = ALIGN(wlen, c->min_io_size);
476 memset(buf + offs, 0xff, alen - wlen);
477 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
478 UBI_SHORTTERM);
479 if (err)
480 return err;
2bc275e9 481 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
482 err = realloc_lpt_leb(c, &lnum);
483 if (err)
73944a6d 484 goto no_space;
0a6fb8d9 485 offs = from = 0;
1e51764a
AB
486 ubifs_assert(lnum >= c->lpt_first &&
487 lnum <= c->lpt_last);
488 err = ubifs_leb_unmap(c, lnum);
489 if (err)
490 return err;
491 }
492 done_lsave = 1;
493 ubifs_pack_lsave(c, buf + offs, c->lsave);
494 offs += c->lsave_sz;
73944a6d 495 dbg_chk_lpt_sz(c, 1, c->lsave_sz);
1e51764a
AB
496 }
497
498 /* Make sure to place LPT's own lprops table */
499 if (!done_ltab) {
500 if (offs + c->ltab_sz > c->leb_size) {
501 wlen = offs - from;
502 alen = ALIGN(wlen, c->min_io_size);
503 memset(buf + offs, 0xff, alen - wlen);
504 err = ubifs_leb_write(c, lnum, buf + from, from, alen,
505 UBI_SHORTTERM);
506 if (err)
507 return err;
2bc275e9 508 dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
1e51764a
AB
509 err = realloc_lpt_leb(c, &lnum);
510 if (err)
73944a6d 511 goto no_space;
0a6fb8d9 512 offs = from = 0;
1e51764a
AB
513 ubifs_assert(lnum >= c->lpt_first &&
514 lnum <= c->lpt_last);
515 err = ubifs_leb_unmap(c, lnum);
516 if (err)
517 return err;
518 }
519 done_ltab = 1;
520 ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
521 offs += c->ltab_sz;
73944a6d 522 dbg_chk_lpt_sz(c, 1, c->ltab_sz);
1e51764a
AB
523 }
524
525 /* Write remaining data in buffer */
526 wlen = offs - from;
527 alen = ALIGN(wlen, c->min_io_size);
528 memset(buf + offs, 0xff, alen - wlen);
529 err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
530 if (err)
531 return err;
73944a6d
AH
532
533 dbg_chk_lpt_sz(c, 4, alen - wlen);
534 err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
535 if (err)
536 return err;
537
1e51764a
AB
538 c->nhead_lnum = lnum;
539 c->nhead_offs = ALIGN(offs, c->min_io_size);
540
541 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
542 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
543 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
544 if (c->big_lpt)
545 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
73944a6d 546
1e51764a 547 return 0;
73944a6d
AH
548
549no_space:
a6aae4dd
AB
550 ubifs_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
551 "%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
edf6be24
AB
552 ubifs_dump_lpt_info(c);
553 ubifs_dump_lpt_lebs(c);
787845bd 554 dump_stack();
73944a6d 555 return err;
1e51764a
AB
556}
557
558/**
4a29d200 559 * next_pnode_to_dirty - find next pnode to dirty.
1e51764a
AB
560 * @c: UBIFS file-system description object
561 * @pnode: pnode
562 *
4a29d200
AH
563 * This function returns the next pnode to dirty or %NULL if there are no more
564 * pnodes. Note that pnodes that have never been written (lnum == 0) are
565 * skipped.
1e51764a 566 */
4a29d200
AH
567static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
568 struct ubifs_pnode *pnode)
1e51764a
AB
569{
570 struct ubifs_nnode *nnode;
571 int iip;
572
573 /* Try to go right */
574 nnode = pnode->parent;
4a29d200 575 for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1e51764a
AB
576 if (nnode->nbranch[iip].lnum)
577 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
578 }
579
580 /* Go up while can't go right */
581 do {
582 iip = nnode->iip + 1;
583 nnode = nnode->parent;
584 if (!nnode)
585 return NULL;
4a29d200
AH
586 for (; iip < UBIFS_LPT_FANOUT; iip++) {
587 if (nnode->nbranch[iip].lnum)
588 break;
589 }
c4361570 590 } while (iip >= UBIFS_LPT_FANOUT);
1e51764a
AB
591
592 /* Go right */
593 nnode = ubifs_get_nnode(c, nnode, iip);
594 if (IS_ERR(nnode))
595 return (void *)nnode;
596
597 /* Go down to level 1 */
598 while (nnode->level > 1) {
4a29d200
AH
599 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
600 if (nnode->nbranch[iip].lnum)
601 break;
602 }
603 if (iip >= UBIFS_LPT_FANOUT) {
604 /*
605 * Should not happen, but we need to keep going
606 * if it does.
607 */
608 iip = 0;
609 }
610 nnode = ubifs_get_nnode(c, nnode, iip);
1e51764a
AB
611 if (IS_ERR(nnode))
612 return (void *)nnode;
613 }
614
4a29d200
AH
615 for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
616 if (nnode->nbranch[iip].lnum)
617 break;
618 if (iip >= UBIFS_LPT_FANOUT)
619 /* Should not happen, but we need to keep going if it does */
620 iip = 0;
621 return ubifs_get_pnode(c, nnode, iip);
1e51764a
AB
622}
623
624/**
625 * pnode_lookup - lookup a pnode in the LPT.
626 * @c: UBIFS file-system description object
627 * @i: pnode number (0 to main_lebs - 1)
628 *
629 * This function returns a pointer to the pnode on success or a negative
630 * error code on failure.
631 */
632static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
633{
634 int err, h, iip, shft;
635 struct ubifs_nnode *nnode;
636
637 if (!c->nroot) {
638 err = ubifs_read_nnode(c, NULL, 0);
639 if (err)
640 return ERR_PTR(err);
641 }
642 i <<= UBIFS_LPT_FANOUT_SHIFT;
643 nnode = c->nroot;
644 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
645 for (h = 1; h < c->lpt_hght; h++) {
646 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
647 shft -= UBIFS_LPT_FANOUT_SHIFT;
648 nnode = ubifs_get_nnode(c, nnode, iip);
649 if (IS_ERR(nnode))
6da5156f 650 return ERR_CAST(nnode);
1e51764a
AB
651 }
652 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
653 return ubifs_get_pnode(c, nnode, iip);
654}
655
656/**
657 * add_pnode_dirt - add dirty space to LPT LEB properties.
658 * @c: UBIFS file-system description object
659 * @pnode: pnode for which to add dirt
660 */
661static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
662{
663 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
664 c->pnode_sz);
665}
666
667/**
668 * do_make_pnode_dirty - mark a pnode dirty.
669 * @c: UBIFS file-system description object
670 * @pnode: pnode to mark dirty
671 */
672static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
673{
674 /* Assumes cnext list is empty i.e. not called during commit */
675 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
676 struct ubifs_nnode *nnode;
677
678 c->dirty_pn_cnt += 1;
679 add_pnode_dirt(c, pnode);
680 /* Mark parent and ancestors dirty too */
681 nnode = pnode->parent;
682 while (nnode) {
683 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
684 c->dirty_nn_cnt += 1;
685 ubifs_add_nnode_dirt(c, nnode);
686 nnode = nnode->parent;
687 } else
688 break;
689 }
690 }
691}
692
693/**
694 * make_tree_dirty - mark the entire LEB properties tree dirty.
695 * @c: UBIFS file-system description object
696 *
697 * This function is used by the "small" LPT model to cause the entire LEB
698 * properties tree to be written. The "small" LPT model does not use LPT
699 * garbage collection because it is more efficient to write the entire tree
700 * (because it is small).
701 *
702 * This function returns %0 on success and a negative error code on failure.
703 */
704static int make_tree_dirty(struct ubifs_info *c)
705{
706 struct ubifs_pnode *pnode;
707
708 pnode = pnode_lookup(c, 0);
8c893a55
VK
709 if (IS_ERR(pnode))
710 return PTR_ERR(pnode);
711
1e51764a
AB
712 while (pnode) {
713 do_make_pnode_dirty(c, pnode);
4a29d200 714 pnode = next_pnode_to_dirty(c, pnode);
1e51764a
AB
715 if (IS_ERR(pnode))
716 return PTR_ERR(pnode);
717 }
718 return 0;
719}
720
721/**
722 * need_write_all - determine if the LPT area is running out of free space.
723 * @c: UBIFS file-system description object
724 *
725 * This function returns %1 if the LPT area is running out of free space and %0
726 * if it is not.
727 */
728static int need_write_all(struct ubifs_info *c)
729{
730 long long free = 0;
731 int i;
732
733 for (i = 0; i < c->lpt_lebs; i++) {
734 if (i + c->lpt_first == c->nhead_lnum)
735 free += c->leb_size - c->nhead_offs;
736 else if (c->ltab[i].free == c->leb_size)
737 free += c->leb_size;
738 else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
739 free += c->leb_size;
740 }
741 /* Less than twice the size left */
742 if (free <= c->lpt_sz * 2)
743 return 1;
744 return 0;
745}
746
747/**
748 * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
749 * @c: UBIFS file-system description object
750 *
751 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
752 * free space and so may be reused as soon as the next commit is completed.
753 * This function is called during start commit to mark LPT LEBs for trivial GC.
754 */
755static void lpt_tgc_start(struct ubifs_info *c)
756{
757 int i;
758
759 for (i = 0; i < c->lpt_lebs; i++) {
760 if (i + c->lpt_first == c->nhead_lnum)
761 continue;
762 if (c->ltab[i].dirty > 0 &&
763 c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
764 c->ltab[i].tgc = 1;
765 c->ltab[i].free = c->leb_size;
766 c->ltab[i].dirty = 0;
767 dbg_lp("LEB %d", i + c->lpt_first);
768 }
769 }
770}
771
772/**
773 * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
774 * @c: UBIFS file-system description object
775 *
776 * LPT trivial garbage collection is where a LPT LEB contains only dirty and
777 * free space and so may be reused as soon as the next commit is completed.
778 * This function is called after the commit is completed (master node has been
80736d41 779 * written) and un-maps LPT LEBs that were marked for trivial GC.
1e51764a
AB
780 */
781static int lpt_tgc_end(struct ubifs_info *c)
782{
783 int i, err;
784
785 for (i = 0; i < c->lpt_lebs; i++)
786 if (c->ltab[i].tgc) {
787 err = ubifs_leb_unmap(c, i + c->lpt_first);
788 if (err)
789 return err;
790 c->ltab[i].tgc = 0;
791 dbg_lp("LEB %d", i + c->lpt_first);
792 }
793 return 0;
794}
795
796/**
797 * populate_lsave - fill the lsave array with important LEB numbers.
798 * @c: the UBIFS file-system description object
799 *
800 * This function is only called for the "big" model. It records a small number
801 * of LEB numbers of important LEBs. Important LEBs are ones that are (from
802 * most important to least important): empty, freeable, freeable index, dirty
803 * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
804 * their pnodes into memory. That will stop us from having to scan the LPT
805 * straight away. For the "small" model we assume that scanning the LPT is no
806 * big deal.
807 */
808static void populate_lsave(struct ubifs_info *c)
809{
810 struct ubifs_lprops *lprops;
811 struct ubifs_lpt_heap *heap;
812 int i, cnt = 0;
813
814 ubifs_assert(c->big_lpt);
815 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
816 c->lpt_drty_flgs |= LSAVE_DIRTY;
817 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
818 }
cdd8ad6e
AB
819
820 if (dbg_populate_lsave(c))
821 return;
822
1e51764a
AB
823 list_for_each_entry(lprops, &c->empty_list, list) {
824 c->lsave[cnt++] = lprops->lnum;
825 if (cnt >= c->lsave_cnt)
826 return;
827 }
828 list_for_each_entry(lprops, &c->freeable_list, list) {
829 c->lsave[cnt++] = lprops->lnum;
830 if (cnt >= c->lsave_cnt)
831 return;
832 }
833 list_for_each_entry(lprops, &c->frdi_idx_list, list) {
834 c->lsave[cnt++] = lprops->lnum;
835 if (cnt >= c->lsave_cnt)
836 return;
837 }
838 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
839 for (i = 0; i < heap->cnt; i++) {
840 c->lsave[cnt++] = heap->arr[i]->lnum;
841 if (cnt >= c->lsave_cnt)
842 return;
843 }
844 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
845 for (i = 0; i < heap->cnt; i++) {
846 c->lsave[cnt++] = heap->arr[i]->lnum;
847 if (cnt >= c->lsave_cnt)
848 return;
849 }
850 heap = &c->lpt_heap[LPROPS_FREE - 1];
851 for (i = 0; i < heap->cnt; i++) {
852 c->lsave[cnt++] = heap->arr[i]->lnum;
853 if (cnt >= c->lsave_cnt)
854 return;
855 }
856 /* Fill it up completely */
857 while (cnt < c->lsave_cnt)
858 c->lsave[cnt++] = c->main_first;
859}
860
861/**
862 * nnode_lookup - lookup a nnode in the LPT.
863 * @c: UBIFS file-system description object
864 * @i: nnode number
865 *
866 * This function returns a pointer to the nnode on success or a negative
867 * error code on failure.
868 */
869static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
870{
871 int err, iip;
872 struct ubifs_nnode *nnode;
873
874 if (!c->nroot) {
875 err = ubifs_read_nnode(c, NULL, 0);
876 if (err)
877 return ERR_PTR(err);
878 }
879 nnode = c->nroot;
880 while (1) {
881 iip = i & (UBIFS_LPT_FANOUT - 1);
882 i >>= UBIFS_LPT_FANOUT_SHIFT;
883 if (!i)
884 break;
885 nnode = ubifs_get_nnode(c, nnode, iip);
886 if (IS_ERR(nnode))
887 return nnode;
888 }
889 return nnode;
890}
891
892/**
893 * make_nnode_dirty - find a nnode and, if found, make it dirty.
894 * @c: UBIFS file-system description object
895 * @node_num: nnode number of nnode to make dirty
896 * @lnum: LEB number where nnode was written
897 * @offs: offset where nnode was written
898 *
899 * This function is used by LPT garbage collection. LPT garbage collection is
900 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
901 * simply involves marking all the nodes in the LEB being garbage-collected as
902 * dirty. The dirty nodes are written next commit, after which the LEB is free
903 * to be reused.
904 *
905 * This function returns %0 on success and a negative error code on failure.
906 */
907static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
908 int offs)
909{
910 struct ubifs_nnode *nnode;
911
912 nnode = nnode_lookup(c, node_num);
913 if (IS_ERR(nnode))
914 return PTR_ERR(nnode);
915 if (nnode->parent) {
916 struct ubifs_nbranch *branch;
917
918 branch = &nnode->parent->nbranch[nnode->iip];
919 if (branch->lnum != lnum || branch->offs != offs)
920 return 0; /* nnode is obsolete */
921 } else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
922 return 0; /* nnode is obsolete */
923 /* Assumes cnext list is empty i.e. not called during commit */
924 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
925 c->dirty_nn_cnt += 1;
926 ubifs_add_nnode_dirt(c, nnode);
927 /* Mark parent and ancestors dirty too */
928 nnode = nnode->parent;
929 while (nnode) {
930 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
931 c->dirty_nn_cnt += 1;
932 ubifs_add_nnode_dirt(c, nnode);
933 nnode = nnode->parent;
934 } else
935 break;
936 }
937 }
938 return 0;
939}
940
941/**
942 * make_pnode_dirty - find a pnode and, if found, make it dirty.
943 * @c: UBIFS file-system description object
944 * @node_num: pnode number of pnode to make dirty
945 * @lnum: LEB number where pnode was written
946 * @offs: offset where pnode was written
947 *
948 * This function is used by LPT garbage collection. LPT garbage collection is
949 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
950 * simply involves marking all the nodes in the LEB being garbage-collected as
951 * dirty. The dirty nodes are written next commit, after which the LEB is free
952 * to be reused.
953 *
954 * This function returns %0 on success and a negative error code on failure.
955 */
956static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
957 int offs)
958{
959 struct ubifs_pnode *pnode;
960 struct ubifs_nbranch *branch;
961
962 pnode = pnode_lookup(c, node_num);
963 if (IS_ERR(pnode))
964 return PTR_ERR(pnode);
965 branch = &pnode->parent->nbranch[pnode->iip];
966 if (branch->lnum != lnum || branch->offs != offs)
967 return 0;
968 do_make_pnode_dirty(c, pnode);
969 return 0;
970}
971
972/**
973 * make_ltab_dirty - make ltab node dirty.
974 * @c: UBIFS file-system description object
975 * @lnum: LEB number where ltab was written
976 * @offs: offset where ltab was written
977 *
978 * This function is used by LPT garbage collection. LPT garbage collection is
979 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
980 * simply involves marking all the nodes in the LEB being garbage-collected as
981 * dirty. The dirty nodes are written next commit, after which the LEB is free
982 * to be reused.
983 *
984 * This function returns %0 on success and a negative error code on failure.
985 */
986static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
987{
988 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
989 return 0; /* This ltab node is obsolete */
990 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
991 c->lpt_drty_flgs |= LTAB_DIRTY;
992 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
993 }
994 return 0;
995}
996
997/**
998 * make_lsave_dirty - make lsave node dirty.
999 * @c: UBIFS file-system description object
1000 * @lnum: LEB number where lsave was written
1001 * @offs: offset where lsave was written
1002 *
1003 * This function is used by LPT garbage collection. LPT garbage collection is
1004 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1005 * simply involves marking all the nodes in the LEB being garbage-collected as
1006 * dirty. The dirty nodes are written next commit, after which the LEB is free
1007 * to be reused.
1008 *
1009 * This function returns %0 on success and a negative error code on failure.
1010 */
1011static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1012{
1013 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1014 return 0; /* This lsave node is obsolete */
1015 if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1016 c->lpt_drty_flgs |= LSAVE_DIRTY;
1017 ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1018 }
1019 return 0;
1020}
1021
1022/**
1023 * make_node_dirty - make node dirty.
1024 * @c: UBIFS file-system description object
1025 * @node_type: LPT node type
1026 * @node_num: node number
1027 * @lnum: LEB number where node was written
1028 * @offs: offset where node was written
1029 *
1030 * This function is used by LPT garbage collection. LPT garbage collection is
1031 * used only for the "big" LPT model (c->big_lpt == 1). Garbage collection
1032 * simply involves marking all the nodes in the LEB being garbage-collected as
1033 * dirty. The dirty nodes are written next commit, after which the LEB is free
1034 * to be reused.
1035 *
1036 * This function returns %0 on success and a negative error code on failure.
1037 */
1038static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1039 int lnum, int offs)
1040{
1041 switch (node_type) {
1042 case UBIFS_LPT_NNODE:
1043 return make_nnode_dirty(c, node_num, lnum, offs);
1044 case UBIFS_LPT_PNODE:
1045 return make_pnode_dirty(c, node_num, lnum, offs);
1046 case UBIFS_LPT_LTAB:
1047 return make_ltab_dirty(c, lnum, offs);
1048 case UBIFS_LPT_LSAVE:
1049 return make_lsave_dirty(c, lnum, offs);
1050 }
1051 return -EINVAL;
1052}
1053
1054/**
1055 * get_lpt_node_len - return the length of a node based on its type.
1056 * @c: UBIFS file-system description object
1057 * @node_type: LPT node type
1058 */
2ba5f7ae 1059static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1e51764a
AB
1060{
1061 switch (node_type) {
1062 case UBIFS_LPT_NNODE:
1063 return c->nnode_sz;
1064 case UBIFS_LPT_PNODE:
1065 return c->pnode_sz;
1066 case UBIFS_LPT_LTAB:
1067 return c->ltab_sz;
1068 case UBIFS_LPT_LSAVE:
1069 return c->lsave_sz;
1070 }
1071 return 0;
1072}
1073
1074/**
1075 * get_pad_len - return the length of padding in a buffer.
1076 * @c: UBIFS file-system description object
1077 * @buf: buffer
1078 * @len: length of buffer
1079 */
2ba5f7ae 1080static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1081{
1082 int offs, pad_len;
1083
1084 if (c->min_io_size == 1)
1085 return 0;
1086 offs = c->leb_size - len;
1087 pad_len = ALIGN(offs, c->min_io_size) - offs;
1088 return pad_len;
1089}
1090
1091/**
1092 * get_lpt_node_type - return type (and node number) of a node in a buffer.
1093 * @c: UBIFS file-system description object
1094 * @buf: buffer
1095 * @node_num: node number is returned here
1096 */
2ba5f7ae
AB
1097static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1098 int *node_num)
1e51764a
AB
1099{
1100 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1101 int pos = 0, node_type;
1102
1103 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1104 *node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1105 return node_type;
1106}
1107
1108/**
1109 * is_a_node - determine if a buffer contains a node.
1110 * @c: UBIFS file-system description object
1111 * @buf: buffer
1112 * @len: length of buffer
1113 *
1114 * This function returns %1 if the buffer contains a node or %0 if it does not.
1115 */
2ba5f7ae 1116static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1e51764a
AB
1117{
1118 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1119 int pos = 0, node_type, node_len;
1120 uint16_t crc, calc_crc;
1121
be2f6bd6
AH
1122 if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1123 return 0;
1e51764a
AB
1124 node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1125 if (node_type == UBIFS_LPT_NOT_A_NODE)
1126 return 0;
1127 node_len = get_lpt_node_len(c, node_type);
1128 if (!node_len || node_len > len)
1129 return 0;
1130 pos = 0;
1131 addr = buf;
1132 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1133 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1134 node_len - UBIFS_LPT_CRC_BYTES);
1135 if (crc != calc_crc)
1136 return 0;
1137 return 1;
1138}
1139
1e51764a
AB
1140/**
1141 * lpt_gc_lnum - garbage collect a LPT LEB.
1142 * @c: UBIFS file-system description object
1143 * @lnum: LEB number to garbage collect
1144 *
1145 * LPT garbage collection is used only for the "big" LPT model
1146 * (c->big_lpt == 1). Garbage collection simply involves marking all the nodes
1147 * in the LEB being garbage-collected as dirty. The dirty nodes are written
1148 * next commit, after which the LEB is free to be reused.
1149 *
1150 * This function returns %0 on success and a negative error code on failure.
1151 */
1152static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1153{
1154 int err, len = c->leb_size, node_type, node_num, node_len, offs;
1155 void *buf = c->lpt_buf;
1156
1157 dbg_lp("LEB %d", lnum);
d304820a
AB
1158
1159 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1160 if (err)
1e51764a 1161 return err;
d304820a 1162
1e51764a
AB
1163 while (1) {
1164 if (!is_a_node(c, buf, len)) {
1165 int pad_len;
1166
1167 pad_len = get_pad_len(c, buf, len);
1168 if (pad_len) {
1169 buf += pad_len;
1170 len -= pad_len;
1171 continue;
1172 }
1173 return 0;
1174 }
1175 node_type = get_lpt_node_type(c, buf, &node_num);
1176 node_len = get_lpt_node_len(c, node_type);
1177 offs = c->leb_size - len;
1178 ubifs_assert(node_len != 0);
1179 mutex_lock(&c->lp_mutex);
1180 err = make_node_dirty(c, node_type, node_num, lnum, offs);
1181 mutex_unlock(&c->lp_mutex);
1182 if (err)
1183 return err;
1184 buf += node_len;
1185 len -= node_len;
1186 }
1187 return 0;
1188}
1189
1190/**
1191 * lpt_gc - LPT garbage collection.
1192 * @c: UBIFS file-system description object
1193 *
1194 * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1195 * Returns %0 on success and a negative error code on failure.
1196 */
1197static int lpt_gc(struct ubifs_info *c)
1198{
1199 int i, lnum = -1, dirty = 0;
1200
1201 mutex_lock(&c->lp_mutex);
1202 for (i = 0; i < c->lpt_lebs; i++) {
1203 ubifs_assert(!c->ltab[i].tgc);
1204 if (i + c->lpt_first == c->nhead_lnum ||
1205 c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1206 continue;
1207 if (c->ltab[i].dirty > dirty) {
1208 dirty = c->ltab[i].dirty;
1209 lnum = i + c->lpt_first;
1210 }
1211 }
1212 mutex_unlock(&c->lp_mutex);
1213 if (lnum == -1)
1214 return -ENOSPC;
1215 return lpt_gc_lnum(c, lnum);
1216}
1217
1218/**
1219 * ubifs_lpt_start_commit - UBIFS commit starts.
1220 * @c: the UBIFS file-system description object
1221 *
1222 * This function has to be called when UBIFS starts the commit operation.
1223 * This function "freezes" all currently dirty LEB properties and does not
1224 * change them anymore. Further changes are saved and tracked separately
1225 * because they are not part of this commit. This function returns zero in case
1226 * of success and a negative error code in case of failure.
1227 */
1228int ubifs_lpt_start_commit(struct ubifs_info *c)
1229{
1230 int err, cnt;
1231
1232 dbg_lp("");
1233
1234 mutex_lock(&c->lp_mutex);
73944a6d
AH
1235 err = dbg_chk_lpt_free_spc(c);
1236 if (err)
1237 goto out;
1e51764a
AB
1238 err = dbg_check_ltab(c);
1239 if (err)
1240 goto out;
1241
1242 if (c->check_lpt_free) {
1243 /*
1244 * We ensure there is enough free space in
1245 * ubifs_lpt_post_commit() by marking nodes dirty. That
1246 * information is lost when we unmount, so we also need
1247 * to check free space once after mounting also.
1248 */
1249 c->check_lpt_free = 0;
1250 while (need_write_all(c)) {
1251 mutex_unlock(&c->lp_mutex);
1252 err = lpt_gc(c);
1253 if (err)
1254 return err;
1255 mutex_lock(&c->lp_mutex);
1256 }
1257 }
1258
1259 lpt_tgc_start(c);
1260
1261 if (!c->dirty_pn_cnt) {
1262 dbg_cmt("no cnodes to commit");
1263 err = 0;
1264 goto out;
1265 }
1266
1267 if (!c->big_lpt && need_write_all(c)) {
1268 /* If needed, write everything */
1269 err = make_tree_dirty(c);
1270 if (err)
1271 goto out;
1272 lpt_tgc_start(c);
1273 }
1274
1275 if (c->big_lpt)
1276 populate_lsave(c);
1277
1278 cnt = get_cnodes_to_commit(c);
1279 ubifs_assert(cnt != 0);
1280
1281 err = layout_cnodes(c);
1282 if (err)
1283 goto out;
1284
1285 /* Copy the LPT's own lprops for end commit to write */
1286 memcpy(c->ltab_cmt, c->ltab,
1287 sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1288 c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1289
1290out:
1291 mutex_unlock(&c->lp_mutex);
1292 return err;
1293}
1294
1295/**
1296 * free_obsolete_cnodes - free obsolete cnodes for commit end.
1297 * @c: UBIFS file-system description object
1298 */
1299static void free_obsolete_cnodes(struct ubifs_info *c)
1300{
1301 struct ubifs_cnode *cnode, *cnext;
1302
1303 cnext = c->lpt_cnext;
1304 if (!cnext)
1305 return;
1306 do {
1307 cnode = cnext;
1308 cnext = cnode->cnext;
1309 if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1310 kfree(cnode);
1311 else
1312 cnode->cnext = NULL;
1313 } while (cnext != c->lpt_cnext);
1314 c->lpt_cnext = NULL;
1315}
1316
1317/**
1318 * ubifs_lpt_end_commit - finish the commit operation.
1319 * @c: the UBIFS file-system description object
1320 *
1321 * This function has to be called when the commit operation finishes. It
1322 * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1323 * the media. Returns zero in case of success and a negative error code in case
1324 * of failure.
1325 */
1326int ubifs_lpt_end_commit(struct ubifs_info *c)
1327{
1328 int err;
1329
1330 dbg_lp("");
1331
1332 if (!c->lpt_cnext)
1333 return 0;
1334
1335 err = write_cnodes(c);
1336 if (err)
1337 return err;
1338
1339 mutex_lock(&c->lp_mutex);
1340 free_obsolete_cnodes(c);
1341 mutex_unlock(&c->lp_mutex);
1342
1343 return 0;
1344}
1345
1346/**
1347 * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1348 * @c: UBIFS file-system description object
1349 *
1350 * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1351 * commit for the "big" LPT model.
1352 */
1353int ubifs_lpt_post_commit(struct ubifs_info *c)
1354{
1355 int err;
1356
1357 mutex_lock(&c->lp_mutex);
1358 err = lpt_tgc_end(c);
1359 if (err)
1360 goto out;
1361 if (c->big_lpt)
1362 while (need_write_all(c)) {
1363 mutex_unlock(&c->lp_mutex);
1364 err = lpt_gc(c);
1365 if (err)
1366 return err;
1367 mutex_lock(&c->lp_mutex);
1368 }
1369out:
1370 mutex_unlock(&c->lp_mutex);
1371 return err;
1372}
1373
1374/**
1375 * first_nnode - find the first nnode in memory.
1376 * @c: UBIFS file-system description object
1377 * @hght: height of tree where nnode found is returned here
1378 *
1379 * This function returns a pointer to the nnode found or %NULL if no nnode is
1380 * found. This function is a helper to 'ubifs_lpt_free()'.
1381 */
1382static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1383{
1384 struct ubifs_nnode *nnode;
1385 int h, i, found;
1386
1387 nnode = c->nroot;
1388 *hght = 0;
1389 if (!nnode)
1390 return NULL;
1391 for (h = 1; h < c->lpt_hght; h++) {
1392 found = 0;
1393 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1394 if (nnode->nbranch[i].nnode) {
1395 found = 1;
1396 nnode = nnode->nbranch[i].nnode;
1397 *hght = h;
1398 break;
1399 }
1400 }
1401 if (!found)
1402 break;
1403 }
1404 return nnode;
1405}
1406
1407/**
1408 * next_nnode - find the next nnode in memory.
1409 * @c: UBIFS file-system description object
1410 * @nnode: nnode from which to start.
1411 * @hght: height of tree where nnode is, is passed and returned here
1412 *
1413 * This function returns a pointer to the nnode found or %NULL if no nnode is
1414 * found. This function is a helper to 'ubifs_lpt_free()'.
1415 */
1416static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1417 struct ubifs_nnode *nnode, int *hght)
1418{
1419 struct ubifs_nnode *parent;
1420 int iip, h, i, found;
1421
1422 parent = nnode->parent;
1423 if (!parent)
1424 return NULL;
1425 if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1426 *hght -= 1;
1427 return parent;
1428 }
1429 for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1430 nnode = parent->nbranch[iip].nnode;
1431 if (nnode)
1432 break;
1433 }
1434 if (!nnode) {
1435 *hght -= 1;
1436 return parent;
1437 }
1438 for (h = *hght + 1; h < c->lpt_hght; h++) {
1439 found = 0;
1440 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1441 if (nnode->nbranch[i].nnode) {
1442 found = 1;
1443 nnode = nnode->nbranch[i].nnode;
1444 *hght = h;
1445 break;
1446 }
1447 }
1448 if (!found)
1449 break;
1450 }
1451 return nnode;
1452}
1453
1454/**
1455 * ubifs_lpt_free - free resources owned by the LPT.
1456 * @c: UBIFS file-system description object
1457 * @wr_only: free only resources used for writing
1458 */
1459void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1460{
1461 struct ubifs_nnode *nnode;
1462 int i, hght;
1463
1464 /* Free write-only things first */
1465
1466 free_obsolete_cnodes(c); /* Leftover from a failed commit */
1467
1468 vfree(c->ltab_cmt);
1469 c->ltab_cmt = NULL;
1470 vfree(c->lpt_buf);
1471 c->lpt_buf = NULL;
1472 kfree(c->lsave);
1473 c->lsave = NULL;
1474
1475 if (wr_only)
1476 return;
1477
1478 /* Now free the rest */
1479
1480 nnode = first_nnode(c, &hght);
1481 while (nnode) {
1482 for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1483 kfree(nnode->nbranch[i].nnode);
1484 nnode = next_nnode(c, nnode, &hght);
1485 }
1486 for (i = 0; i < LPROPS_HEAP_CNT; i++)
1487 kfree(c->lpt_heap[i].arr);
1488 kfree(c->dirty_idx.arr);
1489 kfree(c->nroot);
1490 vfree(c->ltab);
1491 kfree(c->lpt_nod_buf);
1492}
1493
f70b7e52
AB
1494/*
1495 * Everything below is related to debugging.
1496 */
1e51764a
AB
1497
1498/**
80736d41 1499 * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1e51764a
AB
1500 * @buf: buffer
1501 * @len: buffer length
1502 */
1503static int dbg_is_all_ff(uint8_t *buf, int len)
1504{
1505 int i;
1506
1507 for (i = 0; i < len; i++)
1508 if (buf[i] != 0xff)
1509 return 0;
1510 return 1;
1511}
1512
1513/**
1514 * dbg_is_nnode_dirty - determine if a nnode is dirty.
1515 * @c: the UBIFS file-system description object
1516 * @lnum: LEB number where nnode was written
1517 * @offs: offset where nnode was written
1518 */
1519static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1520{
1521 struct ubifs_nnode *nnode;
1522 int hght;
1523
80736d41 1524 /* Entire tree is in memory so first_nnode / next_nnode are OK */
1e51764a
AB
1525 nnode = first_nnode(c, &hght);
1526 for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1527 struct ubifs_nbranch *branch;
1528
1529 cond_resched();
1530 if (nnode->parent) {
1531 branch = &nnode->parent->nbranch[nnode->iip];
1532 if (branch->lnum != lnum || branch->offs != offs)
1533 continue;
1534 if (test_bit(DIRTY_CNODE, &nnode->flags))
1535 return 1;
1536 return 0;
1537 } else {
1538 if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1539 continue;
1540 if (test_bit(DIRTY_CNODE, &nnode->flags))
1541 return 1;
1542 return 0;
1543 }
1544 }
1545 return 1;
1546}
1547
1548/**
1549 * dbg_is_pnode_dirty - determine if a pnode is dirty.
1550 * @c: the UBIFS file-system description object
1551 * @lnum: LEB number where pnode was written
1552 * @offs: offset where pnode was written
1553 */
1554static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1555{
1556 int i, cnt;
1557
1558 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1559 for (i = 0; i < cnt; i++) {
1560 struct ubifs_pnode *pnode;
1561 struct ubifs_nbranch *branch;
1562
1563 cond_resched();
1564 pnode = pnode_lookup(c, i);
1565 if (IS_ERR(pnode))
1566 return PTR_ERR(pnode);
1567 branch = &pnode->parent->nbranch[pnode->iip];
1568 if (branch->lnum != lnum || branch->offs != offs)
1569 continue;
1570 if (test_bit(DIRTY_CNODE, &pnode->flags))
1571 return 1;
1572 return 0;
1573 }
1574 return 1;
1575}
1576
1577/**
1578 * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1579 * @c: the UBIFS file-system description object
1580 * @lnum: LEB number where ltab node was written
1581 * @offs: offset where ltab node was written
1582 */
1583static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1584{
1585 if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1586 return 1;
1587 return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1588}
1589
1590/**
1591 * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1592 * @c: the UBIFS file-system description object
1593 * @lnum: LEB number where lsave node was written
1594 * @offs: offset where lsave node was written
1595 */
1596static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1597{
1598 if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1599 return 1;
1600 return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1601}
1602
1603/**
1604 * dbg_is_node_dirty - determine if a node is dirty.
1605 * @c: the UBIFS file-system description object
1606 * @node_type: node type
1607 * @lnum: LEB number where node was written
1608 * @offs: offset where node was written
1609 */
1610static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1611 int offs)
1612{
1613 switch (node_type) {
1614 case UBIFS_LPT_NNODE:
1615 return dbg_is_nnode_dirty(c, lnum, offs);
1616 case UBIFS_LPT_PNODE:
1617 return dbg_is_pnode_dirty(c, lnum, offs);
1618 case UBIFS_LPT_LTAB:
1619 return dbg_is_ltab_dirty(c, lnum, offs);
1620 case UBIFS_LPT_LSAVE:
1621 return dbg_is_lsave_dirty(c, lnum, offs);
1622 }
1623 return 1;
1624}
1625
1626/**
1627 * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1628 * @c: the UBIFS file-system description object
1629 * @lnum: LEB number where node was written
1630 * @offs: offset where node was written
1631 *
1632 * This function returns %0 on success and a negative error code on failure.
1633 */
1634static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1635{
1636 int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1637 int ret;
6fb324a4 1638 void *buf, *p;
1e51764a 1639
2b1844a8 1640 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1641 return 0;
1642
fc5e58c0 1643 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
6fb324a4
AB
1644 if (!buf) {
1645 ubifs_err("cannot allocate memory for ltab checking");
1646 return 0;
1647 }
1648
1e51764a 1649 dbg_lp("LEB %d", lnum);
d304820a
AB
1650
1651 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1652 if (err)
6fb324a4 1653 goto out;
d304820a 1654
1e51764a 1655 while (1) {
6fb324a4 1656 if (!is_a_node(c, p, len)) {
1e51764a
AB
1657 int i, pad_len;
1658
6fb324a4 1659 pad_len = get_pad_len(c, p, len);
1e51764a 1660 if (pad_len) {
6fb324a4 1661 p += pad_len;
1e51764a
AB
1662 len -= pad_len;
1663 dirty += pad_len;
1664 continue;
1665 }
6fb324a4 1666 if (!dbg_is_all_ff(p, len)) {
1e51764a
AB
1667 dbg_msg("invalid empty space in LEB %d at %d",
1668 lnum, c->leb_size - len);
1669 err = -EINVAL;
1670 }
1671 i = lnum - c->lpt_first;
1672 if (len != c->ltab[i].free) {
1673 dbg_msg("invalid free space in LEB %d "
1674 "(free %d, expected %d)",
1675 lnum, len, c->ltab[i].free);
1676 err = -EINVAL;
1677 }
1678 if (dirty != c->ltab[i].dirty) {
1679 dbg_msg("invalid dirty space in LEB %d "
1680 "(dirty %d, expected %d)",
1681 lnum, dirty, c->ltab[i].dirty);
1682 err = -EINVAL;
1683 }
6fb324a4 1684 goto out;
1e51764a 1685 }
6fb324a4 1686 node_type = get_lpt_node_type(c, p, &node_num);
1e51764a
AB
1687 node_len = get_lpt_node_len(c, node_type);
1688 ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1689 if (ret == 1)
1690 dirty += node_len;
6fb324a4 1691 p += node_len;
1e51764a
AB
1692 len -= node_len;
1693 }
6fb324a4
AB
1694
1695 err = 0;
1696out:
1697 vfree(buf);
1698 return err;
1e51764a
AB
1699}
1700
1701/**
1702 * dbg_check_ltab - check the free and dirty space in the ltab.
1703 * @c: the UBIFS file-system description object
1704 *
1705 * This function returns %0 on success and a negative error code on failure.
1706 */
1707int dbg_check_ltab(struct ubifs_info *c)
1708{
1709 int lnum, err, i, cnt;
1710
2b1844a8 1711 if (!dbg_is_chk_lprops(c))
1e51764a
AB
1712 return 0;
1713
1714 /* Bring the entire tree into memory */
1715 cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1716 for (i = 0; i < cnt; i++) {
1717 struct ubifs_pnode *pnode;
1718
1719 pnode = pnode_lookup(c, i);
1720 if (IS_ERR(pnode))
1721 return PTR_ERR(pnode);
1722 cond_resched();
1723 }
1724
1725 /* Check nodes */
1726 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1727 if (err)
1728 return err;
1729
1730 /* Check each LEB */
1731 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1732 err = dbg_check_ltab_lnum(c, lnum);
1733 if (err) {
a6aae4dd 1734 ubifs_err("failed at LEB %d", lnum);
1e51764a
AB
1735 return err;
1736 }
1737 }
1738
1739 dbg_lp("succeeded");
1740 return 0;
1741}
1742
73944a6d
AH
1743/**
1744 * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1745 * @c: the UBIFS file-system description object
1746 *
1747 * This function returns %0 on success and a negative error code on failure.
1748 */
1749int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1750{
1751 long long free = 0;
1752 int i;
1753
2b1844a8 1754 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1755 return 0;
1756
73944a6d
AH
1757 for (i = 0; i < c->lpt_lebs; i++) {
1758 if (c->ltab[i].tgc || c->ltab[i].cmt)
1759 continue;
1760 if (i + c->lpt_first == c->nhead_lnum)
1761 free += c->leb_size - c->nhead_offs;
1762 else if (c->ltab[i].free == c->leb_size)
1763 free += c->leb_size;
1764 }
1765 if (free < c->lpt_sz) {
a6aae4dd
AB
1766 ubifs_err("LPT space error: free %lld lpt_sz %lld",
1767 free, c->lpt_sz);
edf6be24
AB
1768 ubifs_dump_lpt_info(c);
1769 ubifs_dump_lpt_lebs(c);
787845bd 1770 dump_stack();
73944a6d
AH
1771 return -EINVAL;
1772 }
1773 return 0;
1774}
1775
1776/**
1777 * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1778 * @c: the UBIFS file-system description object
2bc275e9 1779 * @action: what to do
73944a6d
AH
1780 * @len: length written
1781 *
1782 * This function returns %0 on success and a negative error code on failure.
2bc275e9
AH
1783 * The @action argument may be one of:
1784 * o %0 - LPT debugging checking starts, initialize debugging variables;
1785 * o %1 - wrote an LPT node, increase LPT size by @len bytes;
1786 * o %2 - switched to a different LEB and wasted @len bytes;
1787 * o %3 - check that we've written the right number of bytes.
1788 * o %4 - wasted @len bytes;
73944a6d
AH
1789 */
1790int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1791{
17c2f9f8 1792 struct ubifs_debug_info *d = c->dbg;
73944a6d
AH
1793 long long chk_lpt_sz, lpt_sz;
1794 int err = 0;
1795
2b1844a8 1796 if (!dbg_is_chk_lprops(c))
45e12d90
AB
1797 return 0;
1798
73944a6d
AH
1799 switch (action) {
1800 case 0:
17c2f9f8
AB
1801 d->chk_lpt_sz = 0;
1802 d->chk_lpt_sz2 = 0;
1803 d->chk_lpt_lebs = 0;
1804 d->chk_lpt_wastage = 0;
73944a6d 1805 if (c->dirty_pn_cnt > c->pnode_cnt) {
a6aae4dd
AB
1806 ubifs_err("dirty pnodes %d exceed max %d",
1807 c->dirty_pn_cnt, c->pnode_cnt);
73944a6d
AH
1808 err = -EINVAL;
1809 }
1810 if (c->dirty_nn_cnt > c->nnode_cnt) {
a6aae4dd
AB
1811 ubifs_err("dirty nnodes %d exceed max %d",
1812 c->dirty_nn_cnt, c->nnode_cnt);
73944a6d
AH
1813 err = -EINVAL;
1814 }
1815 return err;
1816 case 1:
17c2f9f8 1817 d->chk_lpt_sz += len;
73944a6d
AH
1818 return 0;
1819 case 2:
17c2f9f8
AB
1820 d->chk_lpt_sz += len;
1821 d->chk_lpt_wastage += len;
1822 d->chk_lpt_lebs += 1;
73944a6d
AH
1823 return 0;
1824 case 3:
1825 chk_lpt_sz = c->leb_size;
17c2f9f8 1826 chk_lpt_sz *= d->chk_lpt_lebs;
73944a6d 1827 chk_lpt_sz += len - c->nhead_offs;
17c2f9f8 1828 if (d->chk_lpt_sz != chk_lpt_sz) {
a6aae4dd
AB
1829 ubifs_err("LPT wrote %lld but space used was %lld",
1830 d->chk_lpt_sz, chk_lpt_sz);
73944a6d
AH
1831 err = -EINVAL;
1832 }
17c2f9f8 1833 if (d->chk_lpt_sz > c->lpt_sz) {
a6aae4dd
AB
1834 ubifs_err("LPT wrote %lld but lpt_sz is %lld",
1835 d->chk_lpt_sz, c->lpt_sz);
73944a6d
AH
1836 err = -EINVAL;
1837 }
17c2f9f8 1838 if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
a6aae4dd
AB
1839 ubifs_err("LPT layout size %lld but wrote %lld",
1840 d->chk_lpt_sz, d->chk_lpt_sz2);
73944a6d
AH
1841 err = -EINVAL;
1842 }
17c2f9f8 1843 if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
a6aae4dd
AB
1844 ubifs_err("LPT new nhead offs: expected %d was %d",
1845 d->new_nhead_offs, len);
73944a6d
AH
1846 err = -EINVAL;
1847 }
1848 lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1849 lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1850 lpt_sz += c->ltab_sz;
1851 if (c->big_lpt)
1852 lpt_sz += c->lsave_sz;
17c2f9f8 1853 if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
a6aae4dd
AB
1854 ubifs_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1855 d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
73944a6d
AH
1856 err = -EINVAL;
1857 }
787845bd 1858 if (err) {
edf6be24
AB
1859 ubifs_dump_lpt_info(c);
1860 ubifs_dump_lpt_lebs(c);
787845bd
AB
1861 dump_stack();
1862 }
17c2f9f8
AB
1863 d->chk_lpt_sz2 = d->chk_lpt_sz;
1864 d->chk_lpt_sz = 0;
1865 d->chk_lpt_wastage = 0;
1866 d->chk_lpt_lebs = 0;
1867 d->new_nhead_offs = len;
73944a6d
AH
1868 return err;
1869 case 4:
17c2f9f8
AB
1870 d->chk_lpt_sz += len;
1871 d->chk_lpt_wastage += len;
73944a6d
AH
1872 return 0;
1873 default:
1874 return -EINVAL;
1875 }
1876}
1877
2ba5f7ae 1878/**
edf6be24 1879 * ubifs_dump_lpt_leb - dump an LPT LEB.
2ba5f7ae
AB
1880 * @c: UBIFS file-system description object
1881 * @lnum: LEB number to dump
1882 *
1883 * This function dumps an LEB from LPT area. Nodes in this area are very
1884 * different to nodes in the main area (e.g., they do not have common headers,
1885 * they do not have 8-byte alignments, etc), so we have a separate function to
80736d41 1886 * dump LPT area LEBs. Note, LPT has to be locked by the caller.
2ba5f7ae
AB
1887 */
1888static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1889{
1890 int err, len = c->leb_size, node_type, node_num, node_len, offs;
cab95d44 1891 void *buf, *p;
2ba5f7ae
AB
1892
1893 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1894 current->pid, lnum);
fc5e58c0 1895 buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
cab95d44
AB
1896 if (!buf) {
1897 ubifs_err("cannot allocate memory to dump LPT");
1898 return;
1899 }
1900
d304820a
AB
1901 err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1902 if (err)
cab95d44 1903 goto out;
d304820a 1904
2ba5f7ae
AB
1905 while (1) {
1906 offs = c->leb_size - len;
cab95d44 1907 if (!is_a_node(c, p, len)) {
2ba5f7ae
AB
1908 int pad_len;
1909
cab95d44 1910 pad_len = get_pad_len(c, p, len);
2ba5f7ae
AB
1911 if (pad_len) {
1912 printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1913 lnum, offs, pad_len);
cab95d44 1914 p += pad_len;
2ba5f7ae
AB
1915 len -= pad_len;
1916 continue;
1917 }
1918 if (len)
1919 printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1920 lnum, offs, len);
1921 break;
1922 }
1923
cab95d44 1924 node_type = get_lpt_node_type(c, p, &node_num);
2ba5f7ae
AB
1925 switch (node_type) {
1926 case UBIFS_LPT_PNODE:
1927 {
1928 node_len = c->pnode_sz;
1929 if (c->big_lpt)
1930 printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1931 lnum, offs, node_num);
1932 else
1933 printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1934 lnum, offs);
1935 break;
1936 }
1937 case UBIFS_LPT_NNODE:
1938 {
1939 int i;
1940 struct ubifs_nnode nnode;
1941
1942 node_len = c->nnode_sz;
1943 if (c->big_lpt)
1944 printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1945 lnum, offs, node_num);
1946 else
1947 printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1948 lnum, offs);
cab95d44 1949 err = ubifs_unpack_nnode(c, p, &nnode);
2ba5f7ae 1950 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
c9927c3e 1951 printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
2ba5f7ae
AB
1952 nnode.nbranch[i].offs);
1953 if (i != UBIFS_LPT_FANOUT - 1)
c9927c3e 1954 printk(KERN_CONT ", ");
2ba5f7ae 1955 }
c9927c3e 1956 printk(KERN_CONT "\n");
2ba5f7ae
AB
1957 break;
1958 }
1959 case UBIFS_LPT_LTAB:
1960 node_len = c->ltab_sz;
1961 printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1962 lnum, offs);
1963 break;
1964 case UBIFS_LPT_LSAVE:
1965 node_len = c->lsave_sz;
1966 printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1967 break;
1968 default:
1969 ubifs_err("LPT node type %d not recognized", node_type);
cab95d44 1970 goto out;
2ba5f7ae
AB
1971 }
1972
cab95d44 1973 p += node_len;
2ba5f7ae
AB
1974 len -= node_len;
1975 }
1976
1977 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1978 current->pid, lnum);
cab95d44
AB
1979out:
1980 vfree(buf);
1981 return;
2ba5f7ae
AB
1982}
1983
1984/**
edf6be24 1985 * ubifs_dump_lpt_lebs - dump LPT lebs.
2ba5f7ae
AB
1986 * @c: UBIFS file-system description object
1987 *
1988 * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1989 * locked.
1990 */
edf6be24 1991void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
2ba5f7ae
AB
1992{
1993 int i;
1994
1995 printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1996 current->pid);
1997 for (i = 0; i < c->lpt_lebs; i++)
1998 dump_lpt_leb(c, i + c->lpt_first);
1999 printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
2000 current->pid);
2001}
2002
cdd8ad6e
AB
2003/**
2004 * dbg_populate_lsave - debugging version of 'populate_lsave()'
2005 * @c: UBIFS file-system description object
2006 *
2007 * This is a debugging version for 'populate_lsave()' which populates lsave
2008 * with random LEBs instead of useful LEBs, which is good for test coverage.
2009 * Returns zero if lsave has not been populated (this debugging feature is
2010 * disabled) an non-zero if lsave has been populated.
2011 */
2012static int dbg_populate_lsave(struct ubifs_info *c)
2013{
2014 struct ubifs_lprops *lprops;
2015 struct ubifs_lpt_heap *heap;
2016 int i;
2017
2b1844a8 2018 if (!dbg_is_chk_gen(c))
cdd8ad6e
AB
2019 return 0;
2020 if (random32() & 3)
2021 return 0;
2022
2023 for (i = 0; i < c->lsave_cnt; i++)
2024 c->lsave[i] = c->main_first;
2025
2026 list_for_each_entry(lprops, &c->empty_list, list)
2027 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2028 list_for_each_entry(lprops, &c->freeable_list, list)
2029 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2030 list_for_each_entry(lprops, &c->frdi_idx_list, list)
2031 c->lsave[random32() % c->lsave_cnt] = lprops->lnum;
2032
2033 heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2034 for (i = 0; i < heap->cnt; i++)
2035 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2036 heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2037 for (i = 0; i < heap->cnt; i++)
2038 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2039 heap = &c->lpt_heap[LPROPS_FREE - 1];
2040 for (i = 0; i < heap->cnt; i++)
2041 c->lsave[random32() % c->lsave_cnt] = heap->arr[i]->lnum;
2042
2043 return 1;
2044}
This page took 0.34504 seconds and 5 git commands to generate.