exofs: Remove pnfs-osd private definitions
[deliverable/linux.git] / fs / ubifs / replay.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file contains journal replay code. It runs when the file-system is being
25 * mounted and requires no locking.
26 *
27 * The larger is the journal, the longer it takes to scan it, so the longer it
28 * takes to mount UBIFS. This is why the journal has limited size which may be
29 * changed depending on the system requirements. But a larger journal gives
30 * faster I/O speed because it writes the index less frequently. So this is a
31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32 * larger is the journal, the more memory its index may consume.
33 */
34
35#include "ubifs.h"
debf12d5 36#include <linux/list_sort.h>
1e51764a 37
1e51764a 38/**
debf12d5 39 * struct replay_entry - replay list entry.
1e51764a
AB
40 * @lnum: logical eraseblock number of the node
41 * @offs: node offset
42 * @len: node length
074bcb9b 43 * @deletion: non-zero if this entry corresponds to a node deletion
1e51764a 44 * @sqnum: node sequence number
debf12d5 45 * @list: links the replay list
1e51764a
AB
46 * @key: node key
47 * @nm: directory entry name
48 * @old_size: truncation old size
49 * @new_size: truncation new size
1e51764a 50 *
debf12d5
AB
51 * The replay process first scans all buds and builds the replay list, then
52 * sorts the replay list in nodes sequence number order, and then inserts all
53 * the replay entries to the TNC.
1e51764a
AB
54 */
55struct replay_entry {
56 int lnum;
57 int offs;
58 int len;
074bcb9b 59 unsigned int deletion:1;
1e51764a 60 unsigned long long sqnum;
debf12d5 61 struct list_head list;
1e51764a
AB
62 union ubifs_key key;
63 union {
64 struct qstr nm;
65 struct {
66 loff_t old_size;
67 loff_t new_size;
68 };
1e51764a
AB
69 };
70};
71
72/**
73 * struct bud_entry - entry in the list of buds to replay.
74 * @list: next bud in the list
75 * @bud: bud description object
1e51764a 76 * @sqnum: reference node sequence number
af1dd412
AB
77 * @free: free bytes in the bud
78 * @dirty: dirty bytes in the bud
1e51764a
AB
79 */
80struct bud_entry {
81 struct list_head list;
82 struct ubifs_bud *bud;
1e51764a 83 unsigned long long sqnum;
af1dd412
AB
84 int free;
85 int dirty;
1e51764a
AB
86};
87
88/**
89 * set_bud_lprops - set free and dirty space used by a bud.
90 * @c: UBIFS file-system description object
074bcb9b
AB
91 * @b: bud entry which describes the bud
92 *
93 * This function makes sure the LEB properties of bud @b are set correctly
94 * after the replay. Returns zero in case of success and a negative error code
95 * in case of failure.
1e51764a 96 */
074bcb9b 97static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
1e51764a
AB
98{
99 const struct ubifs_lprops *lp;
100 int err = 0, dirty;
101
102 ubifs_get_lprops(c);
103
074bcb9b 104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
1e51764a
AB
105 if (IS_ERR(lp)) {
106 err = PTR_ERR(lp);
107 goto out;
108 }
109
110 dirty = lp->dirty;
074bcb9b 111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
1e51764a
AB
112 /*
113 * The LEB was added to the journal with a starting offset of
114 * zero which means the LEB must have been empty. The LEB
074bcb9b
AB
115 * property values should be @lp->free == @c->leb_size and
116 * @lp->dirty == 0, but that is not the case. The reason is that
7a9c3e39
AB
117 * the LEB had been garbage collected before it became the bud,
118 * and there was not commit inbetween. The garbage collector
119 * resets the free and dirty space without recording it
120 * anywhere except lprops, so if there was no commit then
121 * lprops does not have that information.
1e51764a
AB
122 *
123 * We do not need to adjust free space because the scan has told
124 * us the exact value which is recorded in the replay entry as
074bcb9b 125 * @b->free.
1e51764a
AB
126 *
127 * However we do need to subtract from the dirty space the
128 * amount of space that the garbage collector reclaimed, which
129 * is the whole LEB minus the amount of space that was free.
130 */
074bcb9b 131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a 132 lp->free, lp->dirty);
074bcb9b 133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
1e51764a
AB
134 lp->free, lp->dirty);
135 dirty -= c->leb_size - lp->free;
136 /*
137 * If the replay order was perfect the dirty space would now be
7d4e9ccb 138 * zero. The order is not perfect because the journal heads
6edbfafd 139 * race with each other. This is not a problem but is does mean
1e51764a
AB
140 * that the dirty space may temporarily exceed c->leb_size
141 * during the replay.
142 */
143 if (dirty != 0)
144 dbg_msg("LEB %d lp: %d free %d dirty "
074bcb9b
AB
145 "replay: %d free %d dirty", b->bud->lnum,
146 lp->free, lp->dirty, b->free, b->dirty);
1e51764a 147 }
074bcb9b 148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
1e51764a
AB
149 lp->flags | LPROPS_TAKEN, 0);
150 if (IS_ERR(lp)) {
151 err = PTR_ERR(lp);
152 goto out;
153 }
52c6e6f9
AB
154
155 /* Make sure the journal head points to the latest bud */
074bcb9b
AB
156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 b->bud->lnum, c->leb_size - b->free,
158 UBI_SHORTTERM);
52c6e6f9 159
1e51764a
AB
160out:
161 ubifs_release_lprops(c);
162 return err;
163}
164
074bcb9b
AB
165/**
166 * set_buds_lprops - set free and dirty space for all replayed buds.
167 * @c: UBIFS file-system description object
168 *
169 * This function sets LEB properties for all replayed buds. Returns zero in
170 * case of success and a negative error code in case of failure.
171 */
172static int set_buds_lprops(struct ubifs_info *c)
173{
174 struct bud_entry *b;
175 int err;
176
177 list_for_each_entry(b, &c->replay_buds, list) {
178 err = set_bud_lprops(c, b);
179 if (err)
180 return err;
181 }
182
183 return 0;
184}
185
1e51764a
AB
186/**
187 * trun_remove_range - apply a replay entry for a truncation to the TNC.
188 * @c: UBIFS file-system description object
189 * @r: replay entry of truncation
190 */
191static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
192{
193 unsigned min_blk, max_blk;
194 union ubifs_key min_key, max_key;
195 ino_t ino;
196
197 min_blk = r->new_size / UBIFS_BLOCK_SIZE;
198 if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
199 min_blk += 1;
200
201 max_blk = r->old_size / UBIFS_BLOCK_SIZE;
202 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
203 max_blk -= 1;
204
205 ino = key_inum(c, &r->key);
206
207 data_key_init(c, &min_key, ino, min_blk);
208 data_key_init(c, &max_key, ino, max_blk);
209
210 return ubifs_tnc_remove_range(c, &min_key, &max_key);
211}
212
213/**
214 * apply_replay_entry - apply a replay entry to the TNC.
215 * @c: UBIFS file-system description object
216 * @r: replay entry to apply
217 *
218 * Apply a replay entry to the TNC.
219 */
220static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
221{
074bcb9b 222 int err;
1e51764a 223
074bcb9b
AB
224 dbg_mnt("LEB %d:%d len %d deletion %d sqnum %llu %s", r->lnum,
225 r->offs, r->len, r->deletion, r->sqnum, DBGKEY(&r->key));
1e51764a
AB
226
227 /* Set c->replay_sqnum to help deal with dangling branches. */
228 c->replay_sqnum = r->sqnum;
229
074bcb9b
AB
230 if (is_hash_key(c, &r->key)) {
231 if (r->deletion)
1e51764a
AB
232 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
233 else
234 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
235 r->len, &r->nm);
236 } else {
074bcb9b 237 if (r->deletion)
1e51764a
AB
238 switch (key_type(c, &r->key)) {
239 case UBIFS_INO_KEY:
240 {
241 ino_t inum = key_inum(c, &r->key);
242
243 err = ubifs_tnc_remove_ino(c, inum);
244 break;
245 }
246 case UBIFS_TRUN_KEY:
247 err = trun_remove_range(c, r);
248 break;
249 default:
250 err = ubifs_tnc_remove(c, &r->key);
251 break;
252 }
253 else
254 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
255 r->len);
256 if (err)
257 return err;
258
259 if (c->need_recovery)
074bcb9b 260 err = ubifs_recover_size_accum(c, &r->key, r->deletion,
1e51764a
AB
261 r->new_size);
262 }
263
264 return err;
265}
266
267/**
debf12d5
AB
268 * replay_entries_cmp - compare 2 replay entries.
269 * @priv: UBIFS file-system description object
270 * @a: first replay entry
271 * @a: second replay entry
1e51764a 272 *
debf12d5
AB
273 * This is a comparios function for 'list_sort()' which compares 2 replay
274 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has
275 * greater sequence number and %-1 otherwise.
1e51764a 276 */
debf12d5
AB
277static int replay_entries_cmp(void *priv, struct list_head *a,
278 struct list_head *b)
1e51764a 279{
debf12d5
AB
280 struct replay_entry *ra, *rb;
281
282 cond_resched();
283 if (a == b)
284 return 0;
285
286 ra = list_entry(a, struct replay_entry, list);
287 rb = list_entry(b, struct replay_entry, list);
288 ubifs_assert(ra->sqnum != rb->sqnum);
289 if (ra->sqnum > rb->sqnum)
290 return 1;
291 return -1;
1e51764a
AB
292}
293
294/**
debf12d5 295 * apply_replay_list - apply the replay list to the TNC.
1e51764a
AB
296 * @c: UBIFS file-system description object
297 *
debf12d5
AB
298 * Apply all entries in the replay list to the TNC. Returns zero in case of
299 * success and a negative error code in case of failure.
1e51764a 300 */
debf12d5 301static int apply_replay_list(struct ubifs_info *c)
1e51764a 302{
debf12d5
AB
303 struct replay_entry *r;
304 int err;
1e51764a 305
debf12d5 306 list_sort(c, &c->replay_list, &replay_entries_cmp);
1e51764a 307
debf12d5 308 list_for_each_entry(r, &c->replay_list, list) {
1e51764a
AB
309 cond_resched();
310
1e51764a
AB
311 err = apply_replay_entry(c, r);
312 if (err)
313 return err;
1e51764a 314 }
debf12d5 315
1e51764a
AB
316 return 0;
317}
318
319/**
debf12d5
AB
320 * destroy_replay_list - destroy the replay.
321 * @c: UBIFS file-system description object
322 *
323 * Destroy the replay list.
324 */
325static void destroy_replay_list(struct ubifs_info *c)
326{
327 struct replay_entry *r, *tmp;
328
329 list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
330 if (is_hash_key(c, &r->key))
331 kfree(r->nm.name);
332 list_del(&r->list);
333 kfree(r);
334 }
335}
336
337/**
338 * insert_node - insert a node to the replay list
1e51764a
AB
339 * @c: UBIFS file-system description object
340 * @lnum: node logical eraseblock number
341 * @offs: node offset
342 * @len: node length
343 * @key: node key
344 * @sqnum: sequence number
345 * @deletion: non-zero if this is a deletion
346 * @used: number of bytes in use in a LEB
347 * @old_size: truncation old size
348 * @new_size: truncation new size
349 *
debf12d5
AB
350 * This function inserts a scanned non-direntry node to the replay list. The
351 * replay list contains @struct replay_entry elements, and we sort this list in
352 * sequence number order before applying it. The replay list is applied at the
353 * very end of the replay process. Since the list is sorted in sequence number
354 * order, the older modifications are applied first. This function returns zero
355 * in case of success and a negative error code in case of failure.
1e51764a
AB
356 */
357static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
358 union ubifs_key *key, unsigned long long sqnum,
359 int deletion, int *used, loff_t old_size,
360 loff_t new_size)
361{
1e51764a
AB
362 struct replay_entry *r;
363
debf12d5
AB
364 dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
365
1e51764a
AB
366 if (key_inum(c, key) >= c->highest_inum)
367 c->highest_inum = key_inum(c, key);
368
1e51764a
AB
369 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
370 if (!r)
371 return -ENOMEM;
372
373 if (!deletion)
374 *used += ALIGN(len, 8);
375 r->lnum = lnum;
376 r->offs = offs;
377 r->len = len;
074bcb9b 378 r->deletion = !!deletion;
1e51764a 379 r->sqnum = sqnum;
074bcb9b 380 key_copy(c, key, &r->key);
1e51764a
AB
381 r->old_size = old_size;
382 r->new_size = new_size;
1e51764a 383
debf12d5 384 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
385 return 0;
386}
387
388/**
debf12d5 389 * insert_dent - insert a directory entry node into the replay list.
1e51764a
AB
390 * @c: UBIFS file-system description object
391 * @lnum: node logical eraseblock number
392 * @offs: node offset
393 * @len: node length
394 * @key: node key
395 * @name: directory entry name
396 * @nlen: directory entry name length
397 * @sqnum: sequence number
398 * @deletion: non-zero if this is a deletion
399 * @used: number of bytes in use in a LEB
400 *
debf12d5
AB
401 * This function inserts a scanned directory entry node or an extended
402 * attribute entry to the replay list. Returns zero in case of success and a
403 * negative error code in case of failure.
1e51764a
AB
404 */
405static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
406 union ubifs_key *key, const char *name, int nlen,
407 unsigned long long sqnum, int deletion, int *used)
408{
1e51764a
AB
409 struct replay_entry *r;
410 char *nbuf;
411
debf12d5 412 dbg_mnt("add LEB %d:%d, key %s", lnum, offs, DBGKEY(key));
1e51764a
AB
413 if (key_inum(c, key) >= c->highest_inum)
414 c->highest_inum = key_inum(c, key);
415
1e51764a
AB
416 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
417 if (!r)
418 return -ENOMEM;
debf12d5 419
1e51764a
AB
420 nbuf = kmalloc(nlen + 1, GFP_KERNEL);
421 if (!nbuf) {
422 kfree(r);
423 return -ENOMEM;
424 }
425
426 if (!deletion)
427 *used += ALIGN(len, 8);
428 r->lnum = lnum;
429 r->offs = offs;
430 r->len = len;
074bcb9b 431 r->deletion = !!deletion;
1e51764a 432 r->sqnum = sqnum;
074bcb9b 433 key_copy(c, key, &r->key);
1e51764a
AB
434 r->nm.len = nlen;
435 memcpy(nbuf, name, nlen);
436 nbuf[nlen] = '\0';
437 r->nm.name = nbuf;
1e51764a 438
debf12d5 439 list_add_tail(&r->list, &c->replay_list);
1e51764a
AB
440 return 0;
441}
442
443/**
444 * ubifs_validate_entry - validate directory or extended attribute entry node.
445 * @c: UBIFS file-system description object
446 * @dent: the node to validate
447 *
448 * This function validates directory or extended attribute entry node @dent.
449 * Returns zero if the node is all right and a %-EINVAL if not.
450 */
451int ubifs_validate_entry(struct ubifs_info *c,
452 const struct ubifs_dent_node *dent)
453{
454 int key_type = key_type_flash(c, dent->key);
455 int nlen = le16_to_cpu(dent->nlen);
456
457 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
458 dent->type >= UBIFS_ITYPES_CNT ||
459 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
460 strnlen(dent->name, nlen) != nlen ||
461 le64_to_cpu(dent->inum) > MAX_INUM) {
462 ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
463 "directory entry" : "extended attribute entry");
464 return -EINVAL;
465 }
466
467 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
468 ubifs_err("bad key type %d", key_type);
469 return -EINVAL;
470 }
471
472 return 0;
473}
474
91c66083
AB
475/**
476 * is_last_bud - check if the bud is the last in the journal head.
477 * @c: UBIFS file-system description object
478 * @bud: bud description object
479 *
480 * This function checks if bud @bud is the last bud in its journal head. This
481 * information is then used by 'replay_bud()' to decide whether the bud can
482 * have corruptions or not. Indeed, only last buds can be corrupted by power
483 * cuts. Returns %1 if this is the last bud, and %0 if not.
484 */
485static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
486{
487 struct ubifs_jhead *jh = &c->jheads[bud->jhead];
488 struct ubifs_bud *next;
489 uint32_t data;
490 int err;
491
492 if (list_is_last(&bud->list, &jh->buds_list))
493 return 1;
494
495 /*
496 * The following is a quirk to make sure we work correctly with UBIFS
497 * images used with older UBIFS.
498 *
499 * Normally, the last bud will be the last in the journal head's list
500 * of bud. However, there is one exception if the UBIFS image belongs
501 * to older UBIFS. This is fairly unlikely: one would need to use old
502 * UBIFS, then have a power cut exactly at the right point, and then
503 * try to mount this image with new UBIFS.
504 *
505 * The exception is: it is possible to have 2 buds A and B, A goes
506 * before B, and B is the last, bud B is contains no data, and bud A is
507 * corrupted at the end. The reason is that in older versions when the
508 * journal code switched the next bud (from A to B), it first added a
509 * log reference node for the new bud (B), and only after this it
510 * synchronized the write-buffer of current bud (A). But later this was
511 * changed and UBIFS started to always synchronize the write-buffer of
512 * the bud (A) before writing the log reference for the new bud (B).
513 *
514 * But because older UBIFS always synchronized A's write-buffer before
515 * writing to B, we can recognize this exceptional situation but
516 * checking the contents of bud B - if it is empty, then A can be
517 * treated as the last and we can recover it.
518 *
519 * TODO: remove this piece of code in a couple of years (today it is
520 * 16.05.2011).
521 */
522 next = list_entry(bud->list.next, struct ubifs_bud, list);
523 if (!list_is_last(&next->list, &jh->buds_list))
524 return 0;
525
526 err = ubi_read(c->ubi, next->lnum, (char *)&data,
527 next->start, 4);
528 if (err)
529 return 0;
530
531 return data == 0xFFFFFFFF;
532}
533
1e51764a
AB
534/**
535 * replay_bud - replay a bud logical eraseblock.
536 * @c: UBIFS file-system description object
e76a4526 537 * @b: bud entry which describes the bud
1e51764a 538 *
e76a4526
AB
539 * This function replays bud @bud, recovers it if needed, and adds all nodes
540 * from this bud to the replay list. Returns zero in case of success and a
541 * negative error code in case of failure.
1e51764a 542 */
e76a4526 543static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
1e51764a 544{
91c66083 545 int is_last = is_last_bud(c, b->bud);
e76a4526 546 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
1e51764a
AB
547 struct ubifs_scan_leb *sleb;
548 struct ubifs_scan_node *snod;
1e51764a 549
91c66083
AB
550 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
551 lnum, b->bud->jhead, offs, is_last);
e76a4526 552
91c66083
AB
553 if (c->need_recovery && is_last)
554 /*
555 * Recover only last LEBs in the journal heads, because power
556 * cuts may cause corruptions only in these LEBs, because only
557 * these LEBs could possibly be written to at the power cut
558 * time.
559 */
efcfde54 560 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
1e51764a 561 else
348709ba 562 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
1e51764a
AB
563 if (IS_ERR(sleb))
564 return PTR_ERR(sleb);
565
566 /*
567 * The bud does not have to start from offset zero - the beginning of
568 * the 'lnum' LEB may contain previously committed data. One of the
569 * things we have to do in replay is to correctly update lprops with
570 * newer information about this LEB.
571 *
572 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
573 * bytes of free space because it only contain information about
574 * committed data.
575 *
576 * But we know that real amount of free space is 'c->leb_size -
577 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
578 * 'sleb->endpt' is used by bud data. We have to correctly calculate
579 * how much of these data are dirty and update lprops with this
580 * information.
581 *
582 * The dirt in that LEB region is comprised of padding nodes, deletion
583 * nodes, truncation nodes and nodes which are obsoleted by subsequent
584 * nodes in this LEB. So instead of calculating clean space, we
585 * calculate used space ('used' variable).
586 */
587
588 list_for_each_entry(snod, &sleb->nodes, list) {
589 int deletion = 0;
590
591 cond_resched();
592
593 if (snod->sqnum >= SQNUM_WATERMARK) {
594 ubifs_err("file system's life ended");
595 goto out_dump;
596 }
597
598 if (snod->sqnum > c->max_sqnum)
599 c->max_sqnum = snod->sqnum;
600
601 switch (snod->type) {
602 case UBIFS_INO_NODE:
603 {
604 struct ubifs_ino_node *ino = snod->node;
605 loff_t new_size = le64_to_cpu(ino->size);
606
607 if (le32_to_cpu(ino->nlink) == 0)
608 deletion = 1;
609 err = insert_node(c, lnum, snod->offs, snod->len,
610 &snod->key, snod->sqnum, deletion,
611 &used, 0, new_size);
612 break;
613 }
614 case UBIFS_DATA_NODE:
615 {
616 struct ubifs_data_node *dn = snod->node;
617 loff_t new_size = le32_to_cpu(dn->size) +
618 key_block(c, &snod->key) *
619 UBIFS_BLOCK_SIZE;
620
621 err = insert_node(c, lnum, snod->offs, snod->len,
622 &snod->key, snod->sqnum, deletion,
623 &used, 0, new_size);
624 break;
625 }
626 case UBIFS_DENT_NODE:
627 case UBIFS_XENT_NODE:
628 {
629 struct ubifs_dent_node *dent = snod->node;
630
631 err = ubifs_validate_entry(c, dent);
632 if (err)
633 goto out_dump;
634
635 err = insert_dent(c, lnum, snod->offs, snod->len,
636 &snod->key, dent->name,
637 le16_to_cpu(dent->nlen), snod->sqnum,
638 !le64_to_cpu(dent->inum), &used);
639 break;
640 }
641 case UBIFS_TRUN_NODE:
642 {
643 struct ubifs_trun_node *trun = snod->node;
644 loff_t old_size = le64_to_cpu(trun->old_size);
645 loff_t new_size = le64_to_cpu(trun->new_size);
646 union ubifs_key key;
647
648 /* Validate truncation node */
649 if (old_size < 0 || old_size > c->max_inode_sz ||
650 new_size < 0 || new_size > c->max_inode_sz ||
651 old_size <= new_size) {
652 ubifs_err("bad truncation node");
653 goto out_dump;
654 }
655
656 /*
657 * Create a fake truncation key just to use the same
658 * functions which expect nodes to have keys.
659 */
660 trun_key_init(c, &key, le32_to_cpu(trun->inum));
661 err = insert_node(c, lnum, snod->offs, snod->len,
662 &key, snod->sqnum, 1, &used,
663 old_size, new_size);
664 break;
665 }
666 default:
667 ubifs_err("unexpected node type %d in bud LEB %d:%d",
668 snod->type, lnum, snod->offs);
669 err = -EINVAL;
670 goto out_dump;
671 }
672 if (err)
673 goto out;
674 }
675
c49139d8 676 ubifs_assert(ubifs_search_bud(c, lnum));
1e51764a
AB
677 ubifs_assert(sleb->endpt - offs >= used);
678 ubifs_assert(sleb->endpt % c->min_io_size == 0);
679
e76a4526
AB
680 b->dirty = sleb->endpt - offs - used;
681 b->free = c->leb_size - sleb->endpt;
682 dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
1e51764a
AB
683
684out:
685 ubifs_scan_destroy(sleb);
686 return err;
687
688out_dump:
689 ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
690 dbg_dump_node(c, snod->node);
691 ubifs_scan_destroy(sleb);
692 return -EINVAL;
693}
694
1e51764a
AB
695/**
696 * replay_buds - replay all buds.
697 * @c: UBIFS file-system description object
698 *
699 * This function returns zero in case of success and a negative error code in
700 * case of failure.
701 */
702static int replay_buds(struct ubifs_info *c)
703{
704 struct bud_entry *b;
074bcb9b 705 int err;
7703f09d 706 unsigned long long prev_sqnum = 0;
1e51764a
AB
707
708 list_for_each_entry(b, &c->replay_buds, list) {
e76a4526 709 err = replay_bud(c, b);
1e51764a
AB
710 if (err)
711 return err;
7703f09d
AB
712
713 ubifs_assert(b->sqnum > prev_sqnum);
714 prev_sqnum = b->sqnum;
1e51764a
AB
715 }
716
717 return 0;
718}
719
720/**
721 * destroy_bud_list - destroy the list of buds to replay.
722 * @c: UBIFS file-system description object
723 */
724static void destroy_bud_list(struct ubifs_info *c)
725{
726 struct bud_entry *b;
727
728 while (!list_empty(&c->replay_buds)) {
729 b = list_entry(c->replay_buds.next, struct bud_entry, list);
730 list_del(&b->list);
731 kfree(b);
732 }
733}
734
735/**
736 * add_replay_bud - add a bud to the list of buds to replay.
737 * @c: UBIFS file-system description object
738 * @lnum: bud logical eraseblock number to replay
739 * @offs: bud start offset
740 * @jhead: journal head to which this bud belongs
741 * @sqnum: reference node sequence number
742 *
743 * This function returns zero in case of success and a negative error code in
744 * case of failure.
745 */
746static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
747 unsigned long long sqnum)
748{
749 struct ubifs_bud *bud;
750 struct bud_entry *b;
751
752 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
753
754 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
755 if (!bud)
756 return -ENOMEM;
757
758 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
759 if (!b) {
760 kfree(bud);
761 return -ENOMEM;
762 }
763
764 bud->lnum = lnum;
765 bud->start = offs;
766 bud->jhead = jhead;
767 ubifs_add_bud(c, bud);
768
769 b->bud = bud;
770 b->sqnum = sqnum;
771 list_add_tail(&b->list, &c->replay_buds);
772
773 return 0;
774}
775
776/**
777 * validate_ref - validate a reference node.
778 * @c: UBIFS file-system description object
779 * @ref: the reference node to validate
780 * @ref_lnum: LEB number of the reference node
781 * @ref_offs: reference node offset
782 *
783 * This function returns %1 if a bud reference already exists for the LEB. %0 is
784 * returned if the reference node is new, otherwise %-EINVAL is returned if
785 * validation failed.
786 */
787static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
788{
789 struct ubifs_bud *bud;
790 int lnum = le32_to_cpu(ref->lnum);
791 unsigned int offs = le32_to_cpu(ref->offs);
792 unsigned int jhead = le32_to_cpu(ref->jhead);
793
794 /*
795 * ref->offs may point to the end of LEB when the journal head points
796 * to the end of LEB and we write reference node for it during commit.
797 * So this is why we require 'offs > c->leb_size'.
798 */
799 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
800 lnum < c->main_first || offs > c->leb_size ||
801 offs & (c->min_io_size - 1))
802 return -EINVAL;
803
804 /* Make sure we have not already looked at this bud */
805 bud = ubifs_search_bud(c, lnum);
806 if (bud) {
807 if (bud->jhead == jhead && bud->start <= offs)
808 return 1;
809 ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
810 return -EINVAL;
811 }
812
813 return 0;
814}
815
816/**
817 * replay_log_leb - replay a log logical eraseblock.
818 * @c: UBIFS file-system description object
819 * @lnum: log logical eraseblock to replay
820 * @offs: offset to start replaying from
821 * @sbuf: scan buffer
822 *
823 * This function replays a log LEB and returns zero in case of success, %1 if
824 * this is the last LEB in the log, and a negative error code in case of
825 * failure.
826 */
827static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
828{
829 int err;
830 struct ubifs_scan_leb *sleb;
831 struct ubifs_scan_node *snod;
832 const struct ubifs_cs_node *node;
833
834 dbg_mnt("replay log LEB %d:%d", lnum, offs);
348709ba
AB
835 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
836 if (IS_ERR(sleb)) {
ed43f2f0
AB
837 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
838 return PTR_ERR(sleb);
7d08ae3c
AB
839 /*
840 * Note, the below function will recover this log LEB only if
841 * it is the last, because unclean reboots can possibly corrupt
842 * only the tail of the log.
843 */
ed43f2f0 844 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1e51764a
AB
845 if (IS_ERR(sleb))
846 return PTR_ERR(sleb);
847 }
848
849 if (sleb->nodes_cnt == 0) {
850 err = 1;
851 goto out;
852 }
853
854 node = sleb->buf;
1e51764a
AB
855 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
856 if (c->cs_sqnum == 0) {
857 /*
858 * This is the first log LEB we are looking at, make sure that
859 * the first node is a commit start node. Also record its
860 * sequence number so that UBIFS can determine where the log
861 * ends, because all nodes which were have higher sequence
862 * numbers.
863 */
864 if (snod->type != UBIFS_CS_NODE) {
865 dbg_err("first log node at LEB %d:%d is not CS node",
866 lnum, offs);
867 goto out_dump;
868 }
869 if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
870 dbg_err("first CS node at LEB %d:%d has wrong "
871 "commit number %llu expected %llu",
872 lnum, offs,
873 (unsigned long long)le64_to_cpu(node->cmt_no),
874 c->cmt_no);
875 goto out_dump;
876 }
877
878 c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
879 dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
880 }
881
882 if (snod->sqnum < c->cs_sqnum) {
883 /*
884 * This means that we reached end of log and now
885 * look to the older log data, which was already
886 * committed but the eraseblock was not erased (UBIFS
6edbfafd 887 * only un-maps it). So this basically means we have to
1e51764a
AB
888 * exit with "end of log" code.
889 */
890 err = 1;
891 goto out;
892 }
893
894 /* Make sure the first node sits at offset zero of the LEB */
895 if (snod->offs != 0) {
896 dbg_err("first node is not at zero offset");
897 goto out_dump;
898 }
899
900 list_for_each_entry(snod, &sleb->nodes, list) {
1e51764a
AB
901 cond_resched();
902
903 if (snod->sqnum >= SQNUM_WATERMARK) {
904 ubifs_err("file system's life ended");
905 goto out_dump;
906 }
907
908 if (snod->sqnum < c->cs_sqnum) {
909 dbg_err("bad sqnum %llu, commit sqnum %llu",
910 snod->sqnum, c->cs_sqnum);
911 goto out_dump;
912 }
913
914 if (snod->sqnum > c->max_sqnum)
915 c->max_sqnum = snod->sqnum;
916
917 switch (snod->type) {
918 case UBIFS_REF_NODE: {
919 const struct ubifs_ref_node *ref = snod->node;
920
921 err = validate_ref(c, ref);
922 if (err == 1)
923 break; /* Already have this bud */
924 if (err)
925 goto out_dump;
926
927 err = add_replay_bud(c, le32_to_cpu(ref->lnum),
928 le32_to_cpu(ref->offs),
929 le32_to_cpu(ref->jhead),
930 snod->sqnum);
931 if (err)
932 goto out;
933
934 break;
935 }
936 case UBIFS_CS_NODE:
937 /* Make sure it sits at the beginning of LEB */
938 if (snod->offs != 0) {
939 ubifs_err("unexpected node in log");
940 goto out_dump;
941 }
942 break;
943 default:
944 ubifs_err("unexpected node in log");
945 goto out_dump;
946 }
947 }
948
949 if (sleb->endpt || c->lhead_offs >= c->leb_size) {
950 c->lhead_lnum = lnum;
951 c->lhead_offs = sleb->endpt;
952 }
953
954 err = !sleb->endpt;
955out:
956 ubifs_scan_destroy(sleb);
957 return err;
958
959out_dump:
681947d2 960 ubifs_err("log error detected while replaying the log at LEB %d:%d",
1e51764a
AB
961 lnum, offs + snod->offs);
962 dbg_dump_node(c, snod->node);
963 ubifs_scan_destroy(sleb);
964 return -EINVAL;
965}
966
967/**
968 * take_ihead - update the status of the index head in lprops to 'taken'.
969 * @c: UBIFS file-system description object
970 *
971 * This function returns the amount of free space in the index head LEB or a
972 * negative error code.
973 */
974static int take_ihead(struct ubifs_info *c)
975{
976 const struct ubifs_lprops *lp;
977 int err, free;
978
979 ubifs_get_lprops(c);
980
981 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
982 if (IS_ERR(lp)) {
983 err = PTR_ERR(lp);
984 goto out;
985 }
986
987 free = lp->free;
988
989 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
990 lp->flags | LPROPS_TAKEN, 0);
991 if (IS_ERR(lp)) {
992 err = PTR_ERR(lp);
993 goto out;
994 }
995
996 err = free;
997out:
998 ubifs_release_lprops(c);
999 return err;
1000}
1001
1002/**
1003 * ubifs_replay_journal - replay journal.
1004 * @c: UBIFS file-system description object
1005 *
1006 * This function scans the journal, replays and cleans it up. It makes sure all
1007 * memory data structures related to uncommitted journal are built (dirty TNC
1008 * tree, tree of buds, modified lprops, etc).
1009 */
1010int ubifs_replay_journal(struct ubifs_info *c)
1011{
1012 int err, i, lnum, offs, free;
1e51764a
AB
1013
1014 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1015
1016 /* Update the status of the index head in lprops to 'taken' */
1017 free = take_ihead(c);
1018 if (free < 0)
1019 return free; /* Error code */
1020
1021 if (c->ihead_offs != c->leb_size - free) {
1022 ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1023 c->ihead_offs);
1024 return -EINVAL;
1025 }
1026
1e51764a 1027 dbg_mnt("start replaying the journal");
1e51764a 1028 c->replaying = 1;
1e51764a
AB
1029 lnum = c->ltail_lnum = c->lhead_lnum;
1030 offs = c->lhead_offs;
1031
1032 for (i = 0; i < c->log_lebs; i++, lnum++) {
1033 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1034 /*
1035 * The log is logically circular, we reached the last
1036 * LEB, switch to the first one.
1037 */
1038 lnum = UBIFS_LOG_LNUM;
1039 offs = 0;
1040 }
6599fcbd 1041 err = replay_log_leb(c, lnum, offs, c->sbuf);
1e51764a
AB
1042 if (err == 1)
1043 /* We hit the end of the log */
1044 break;
1045 if (err)
1046 goto out;
1047 offs = 0;
1048 }
1049
1050 err = replay_buds(c);
1051 if (err)
1052 goto out;
1053
debf12d5 1054 err = apply_replay_list(c);
1e51764a
AB
1055 if (err)
1056 goto out;
1057
074bcb9b
AB
1058 err = set_buds_lprops(c);
1059 if (err)
1060 goto out;
1061
6edbfafd 1062 /*
b137545c
AB
1063 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1064 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
6edbfafd
AB
1065 * depend on it. This means we have to initialize it to make sure
1066 * budgeting works properly.
1067 */
b137545c
AB
1068 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1069 c->bi.uncommitted_idx *= c->max_idx_node_sz;
6edbfafd 1070
1e51764a
AB
1071 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1072 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1073 "highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
e84461ad 1074 (unsigned long)c->highest_inum);
1e51764a 1075out:
debf12d5 1076 destroy_replay_list(c);
1e51764a 1077 destroy_bud_list(c);
1e51764a
AB
1078 c->replaying = 0;
1079 return err;
1080}
This page took 0.262975 seconds and 5 git commands to generate.