Commit | Line | Data |
---|---|---|
1e51764a AB |
1 | /* |
2 | * This file is part of UBIFS. | |
3 | * | |
4 | * Copyright (C) 2006-2008 Nokia Corporation. | |
5 | * | |
6 | * This program is free software; you can redistribute it and/or modify it | |
7 | * under the terms of the GNU General Public License version 2 as published by | |
8 | * the Free Software Foundation. | |
9 | * | |
10 | * This program is distributed in the hope that it will be useful, but WITHOUT | |
11 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
12 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | |
13 | * more details. | |
14 | * | |
15 | * You should have received a copy of the GNU General Public License along with | |
16 | * this program; if not, write to the Free Software Foundation, Inc., 51 | |
17 | * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
18 | * | |
19 | * Authors: Adrian Hunter | |
20 | * Artem Bityutskiy (Битюцкий Артём) | |
21 | */ | |
22 | ||
23 | /* | |
24 | * This file contains miscelanious TNC-related functions shared betweend | |
25 | * different files. This file does not form any logically separate TNC | |
26 | * sub-system. The file was created because there is a lot of TNC code and | |
27 | * putting it all in one file would make that file too big and unreadable. | |
28 | */ | |
29 | ||
30 | #include "ubifs.h" | |
31 | ||
32 | /** | |
33 | * ubifs_tnc_levelorder_next - next TNC tree element in levelorder traversal. | |
34 | * @zr: root of the subtree to traverse | |
35 | * @znode: previous znode | |
36 | * | |
37 | * This function implements levelorder TNC traversal. The LNC is ignored. | |
38 | * Returns the next element or %NULL if @znode is already the last one. | |
39 | */ | |
40 | struct ubifs_znode *ubifs_tnc_levelorder_next(struct ubifs_znode *zr, | |
41 | struct ubifs_znode *znode) | |
42 | { | |
43 | int level, iip, level_search = 0; | |
44 | struct ubifs_znode *zn; | |
45 | ||
46 | ubifs_assert(zr); | |
47 | ||
48 | if (unlikely(!znode)) | |
49 | return zr; | |
50 | ||
51 | if (unlikely(znode == zr)) { | |
52 | if (znode->level == 0) | |
53 | return NULL; | |
54 | return ubifs_tnc_find_child(zr, 0); | |
55 | } | |
56 | ||
57 | level = znode->level; | |
58 | ||
59 | iip = znode->iip; | |
60 | while (1) { | |
61 | ubifs_assert(znode->level <= zr->level); | |
62 | ||
63 | /* | |
64 | * First walk up until there is a znode with next branch to | |
65 | * look at. | |
66 | */ | |
67 | while (znode->parent != zr && iip >= znode->parent->child_cnt) { | |
68 | znode = znode->parent; | |
69 | iip = znode->iip; | |
70 | } | |
71 | ||
72 | if (unlikely(znode->parent == zr && | |
73 | iip >= znode->parent->child_cnt)) { | |
74 | /* This level is done, switch to the lower one */ | |
75 | level -= 1; | |
76 | if (level_search || level < 0) | |
77 | /* | |
78 | * We were already looking for znode at lower | |
79 | * level ('level_search'). As we are here | |
80 | * again, it just does not exist. Or all levels | |
81 | * were finished ('level < 0'). | |
82 | */ | |
83 | return NULL; | |
84 | ||
85 | level_search = 1; | |
86 | iip = -1; | |
87 | znode = ubifs_tnc_find_child(zr, 0); | |
88 | ubifs_assert(znode); | |
89 | } | |
90 | ||
91 | /* Switch to the next index */ | |
92 | zn = ubifs_tnc_find_child(znode->parent, iip + 1); | |
93 | if (!zn) { | |
94 | /* No more children to look at, we have walk up */ | |
95 | iip = znode->parent->child_cnt; | |
96 | continue; | |
97 | } | |
98 | ||
99 | /* Walk back down to the level we came from ('level') */ | |
100 | while (zn->level != level) { | |
101 | znode = zn; | |
102 | zn = ubifs_tnc_find_child(zn, 0); | |
103 | if (!zn) { | |
104 | /* | |
105 | * This path is not too deep so it does not | |
106 | * reach 'level'. Try next path. | |
107 | */ | |
108 | iip = znode->iip; | |
109 | break; | |
110 | } | |
111 | } | |
112 | ||
113 | if (zn) { | |
114 | ubifs_assert(zn->level >= 0); | |
115 | return zn; | |
116 | } | |
117 | } | |
118 | } | |
119 | ||
120 | /** | |
121 | * ubifs_search_zbranch - search znode branch. | |
122 | * @c: UBIFS file-system description object | |
123 | * @znode: znode to search in | |
124 | * @key: key to search for | |
125 | * @n: znode branch slot number is returned here | |
126 | * | |
127 | * This is a helper function which search branch with key @key in @znode using | |
128 | * binary search. The result of the search may be: | |
129 | * o exact match, then %1 is returned, and the slot number of the branch is | |
130 | * stored in @n; | |
131 | * o no exact match, then %0 is returned and the slot number of the left | |
132 | * closest branch is returned in @n; the slot if all keys in this znode are | |
133 | * greater than @key, then %-1 is returned in @n. | |
134 | */ | |
135 | int ubifs_search_zbranch(const struct ubifs_info *c, | |
136 | const struct ubifs_znode *znode, | |
137 | const union ubifs_key *key, int *n) | |
138 | { | |
139 | int beg = 0, end = znode->child_cnt, uninitialized_var(mid); | |
140 | int uninitialized_var(cmp); | |
141 | const struct ubifs_zbranch *zbr = &znode->zbranch[0]; | |
142 | ||
143 | ubifs_assert(end > beg); | |
144 | ||
145 | while (end > beg) { | |
146 | mid = (beg + end) >> 1; | |
147 | cmp = keys_cmp(c, key, &zbr[mid].key); | |
148 | if (cmp > 0) | |
149 | beg = mid + 1; | |
150 | else if (cmp < 0) | |
151 | end = mid; | |
152 | else { | |
153 | *n = mid; | |
154 | return 1; | |
155 | } | |
156 | } | |
157 | ||
158 | *n = end - 1; | |
159 | ||
160 | /* The insert point is after *n */ | |
161 | ubifs_assert(*n >= -1 && *n < znode->child_cnt); | |
162 | if (*n == -1) | |
163 | ubifs_assert(keys_cmp(c, key, &zbr[0].key) < 0); | |
164 | else | |
165 | ubifs_assert(keys_cmp(c, key, &zbr[*n].key) > 0); | |
166 | if (*n + 1 < znode->child_cnt) | |
167 | ubifs_assert(keys_cmp(c, key, &zbr[*n + 1].key) < 0); | |
168 | ||
169 | return 0; | |
170 | } | |
171 | ||
172 | /** | |
173 | * ubifs_tnc_postorder_first - find first znode to do postorder tree traversal. | |
174 | * @znode: znode to start at (root of the sub-tree to traverse) | |
175 | * | |
176 | * Find the lowest leftmost znode in a subtree of the TNC tree. The LNC is | |
177 | * ignored. | |
178 | */ | |
179 | struct ubifs_znode *ubifs_tnc_postorder_first(struct ubifs_znode *znode) | |
180 | { | |
181 | if (unlikely(!znode)) | |
182 | return NULL; | |
183 | ||
184 | while (znode->level > 0) { | |
185 | struct ubifs_znode *child; | |
186 | ||
187 | child = ubifs_tnc_find_child(znode, 0); | |
188 | if (!child) | |
189 | return znode; | |
190 | znode = child; | |
191 | } | |
192 | ||
193 | return znode; | |
194 | } | |
195 | ||
196 | /** | |
197 | * ubifs_tnc_postorder_next - next TNC tree element in postorder traversal. | |
198 | * @znode: previous znode | |
199 | * | |
200 | * This function implements postorder TNC traversal. The LNC is ignored. | |
201 | * Returns the next element or %NULL if @znode is already the last one. | |
202 | */ | |
203 | struct ubifs_znode *ubifs_tnc_postorder_next(struct ubifs_znode *znode) | |
204 | { | |
205 | struct ubifs_znode *zn; | |
206 | ||
207 | ubifs_assert(znode); | |
208 | if (unlikely(!znode->parent)) | |
209 | return NULL; | |
210 | ||
211 | /* Switch to the next index in the parent */ | |
212 | zn = ubifs_tnc_find_child(znode->parent, znode->iip + 1); | |
213 | if (!zn) | |
214 | /* This is in fact the last child, return parent */ | |
215 | return znode->parent; | |
216 | ||
217 | /* Go to the first znode in this new subtree */ | |
218 | return ubifs_tnc_postorder_first(zn); | |
219 | } | |
220 | ||
221 | /** | |
222 | * ubifs_destroy_tnc_subtree - destroy all znodes connected to a subtree. | |
223 | * @znode: znode defining subtree to destroy | |
224 | * | |
225 | * This function destroys subtree of the TNC tree. Returns number of clean | |
226 | * znodes in the subtree. | |
227 | */ | |
228 | long ubifs_destroy_tnc_subtree(struct ubifs_znode *znode) | |
229 | { | |
230 | struct ubifs_znode *zn = ubifs_tnc_postorder_first(znode); | |
231 | long clean_freed = 0; | |
232 | int n; | |
233 | ||
234 | ubifs_assert(zn); | |
235 | while (1) { | |
236 | for (n = 0; n < zn->child_cnt; n++) { | |
237 | if (!zn->zbranch[n].znode) | |
238 | continue; | |
239 | ||
240 | if (zn->level > 0 && | |
241 | !ubifs_zn_dirty(zn->zbranch[n].znode)) | |
242 | clean_freed += 1; | |
243 | ||
244 | cond_resched(); | |
245 | kfree(zn->zbranch[n].znode); | |
246 | } | |
247 | ||
248 | if (zn == znode) { | |
249 | if (!ubifs_zn_dirty(zn)) | |
250 | clean_freed += 1; | |
251 | kfree(zn); | |
252 | return clean_freed; | |
253 | } | |
254 | ||
255 | zn = ubifs_tnc_postorder_next(zn); | |
256 | } | |
257 | } | |
258 | ||
259 | /** | |
260 | * read_znode - read an indexing node from flash and fill znode. | |
261 | * @c: UBIFS file-system description object | |
262 | * @lnum: LEB of the indexing node to read | |
263 | * @offs: node offset | |
264 | * @len: node length | |
265 | * @znode: znode to read to | |
266 | * | |
267 | * This function reads an indexing node from the flash media and fills znode | |
268 | * with the read data. Returns zero in case of success and a negative error | |
269 | * code in case of failure. The read indexing node is validated and if anything | |
270 | * is wrong with it, this function prints complaint messages and returns | |
271 | * %-EINVAL. | |
272 | */ | |
273 | static int read_znode(struct ubifs_info *c, int lnum, int offs, int len, | |
274 | struct ubifs_znode *znode) | |
275 | { | |
276 | int i, err, type, cmp; | |
277 | struct ubifs_idx_node *idx; | |
278 | ||
279 | idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); | |
280 | if (!idx) | |
281 | return -ENOMEM; | |
282 | ||
283 | err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); | |
284 | if (err < 0) { | |
285 | kfree(idx); | |
286 | return err; | |
287 | } | |
288 | ||
289 | znode->child_cnt = le16_to_cpu(idx->child_cnt); | |
290 | znode->level = le16_to_cpu(idx->level); | |
291 | ||
292 | dbg_tnc("LEB %d:%d, level %d, %d branch", | |
293 | lnum, offs, znode->level, znode->child_cnt); | |
294 | ||
295 | if (znode->child_cnt > c->fanout || znode->level > UBIFS_MAX_LEVELS) { | |
235c362b | 296 | ubifs_err(c, "current fanout %d, branch count %d", |
a6aae4dd | 297 | c->fanout, znode->child_cnt); |
235c362b | 298 | ubifs_err(c, "max levels %d, znode level %d", |
a6aae4dd | 299 | UBIFS_MAX_LEVELS, znode->level); |
1e51764a AB |
300 | err = 1; |
301 | goto out_dump; | |
302 | } | |
303 | ||
304 | for (i = 0; i < znode->child_cnt; i++) { | |
305 | const struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); | |
306 | struct ubifs_zbranch *zbr = &znode->zbranch[i]; | |
307 | ||
308 | key_read(c, &br->key, &zbr->key); | |
309 | zbr->lnum = le32_to_cpu(br->lnum); | |
310 | zbr->offs = le32_to_cpu(br->offs); | |
311 | zbr->len = le32_to_cpu(br->len); | |
312 | zbr->znode = NULL; | |
313 | ||
314 | /* Validate branch */ | |
315 | ||
316 | if (zbr->lnum < c->main_first || | |
317 | zbr->lnum >= c->leb_cnt || zbr->offs < 0 || | |
318 | zbr->offs + zbr->len > c->leb_size || zbr->offs & 7) { | |
235c362b | 319 | ubifs_err(c, "bad branch %d", i); |
1e51764a AB |
320 | err = 2; |
321 | goto out_dump; | |
322 | } | |
323 | ||
324 | switch (key_type(c, &zbr->key)) { | |
325 | case UBIFS_INO_KEY: | |
326 | case UBIFS_DATA_KEY: | |
327 | case UBIFS_DENT_KEY: | |
328 | case UBIFS_XENT_KEY: | |
329 | break; | |
330 | default: | |
235c362b | 331 | ubifs_err(c, "bad key type at slot %d: %d", |
3668b70f | 332 | i, key_type(c, &zbr->key)); |
1e51764a AB |
333 | err = 3; |
334 | goto out_dump; | |
335 | } | |
336 | ||
337 | if (znode->level) | |
338 | continue; | |
339 | ||
340 | type = key_type(c, &zbr->key); | |
341 | if (c->ranges[type].max_len == 0) { | |
342 | if (zbr->len != c->ranges[type].len) { | |
235c362b | 343 | ubifs_err(c, "bad target node (type %d) length (%d)", |
a6aae4dd | 344 | type, zbr->len); |
235c362b | 345 | ubifs_err(c, "have to be %d", c->ranges[type].len); |
1e51764a AB |
346 | err = 4; |
347 | goto out_dump; | |
348 | } | |
349 | } else if (zbr->len < c->ranges[type].min_len || | |
350 | zbr->len > c->ranges[type].max_len) { | |
235c362b | 351 | ubifs_err(c, "bad target node (type %d) length (%d)", |
a6aae4dd | 352 | type, zbr->len); |
235c362b | 353 | ubifs_err(c, "have to be in range of %d-%d", |
a6aae4dd AB |
354 | c->ranges[type].min_len, |
355 | c->ranges[type].max_len); | |
1e51764a AB |
356 | err = 5; |
357 | goto out_dump; | |
358 | } | |
359 | } | |
360 | ||
361 | /* | |
362 | * Ensure that the next key is greater or equivalent to the | |
363 | * previous one. | |
364 | */ | |
365 | for (i = 0; i < znode->child_cnt - 1; i++) { | |
366 | const union ubifs_key *key1, *key2; | |
367 | ||
368 | key1 = &znode->zbranch[i].key; | |
369 | key2 = &znode->zbranch[i + 1].key; | |
370 | ||
371 | cmp = keys_cmp(c, key1, key2); | |
372 | if (cmp > 0) { | |
235c362b | 373 | ubifs_err(c, "bad key order (keys %d and %d)", i, i + 1); |
1e51764a AB |
374 | err = 6; |
375 | goto out_dump; | |
376 | } else if (cmp == 0 && !is_hash_key(c, key1)) { | |
377 | /* These can only be keys with colliding hash */ | |
235c362b | 378 | ubifs_err(c, "keys %d and %d are not hashed but equivalent", |
a6aae4dd | 379 | i, i + 1); |
1e51764a AB |
380 | err = 7; |
381 | goto out_dump; | |
382 | } | |
383 | } | |
384 | ||
385 | kfree(idx); | |
386 | return 0; | |
387 | ||
388 | out_dump: | |
235c362b | 389 | ubifs_err(c, "bad indexing node at LEB %d:%d, error %d", lnum, offs, err); |
edf6be24 | 390 | ubifs_dump_node(c, idx); |
1e51764a AB |
391 | kfree(idx); |
392 | return -EINVAL; | |
393 | } | |
394 | ||
395 | /** | |
396 | * ubifs_load_znode - load znode to TNC cache. | |
397 | * @c: UBIFS file-system description object | |
398 | * @zbr: znode branch | |
399 | * @parent: znode's parent | |
400 | * @iip: index in parent | |
401 | * | |
402 | * This function loads znode pointed to by @zbr into the TNC cache and | |
403 | * returns pointer to it in case of success and a negative error code in case | |
404 | * of failure. | |
405 | */ | |
406 | struct ubifs_znode *ubifs_load_znode(struct ubifs_info *c, | |
407 | struct ubifs_zbranch *zbr, | |
408 | struct ubifs_znode *parent, int iip) | |
409 | { | |
410 | int err; | |
411 | struct ubifs_znode *znode; | |
412 | ||
413 | ubifs_assert(!zbr->znode); | |
414 | /* | |
415 | * A slab cache is not presently used for znodes because the znode size | |
416 | * depends on the fanout which is stored in the superblock. | |
417 | */ | |
418 | znode = kzalloc(c->max_znode_sz, GFP_NOFS); | |
419 | if (!znode) | |
420 | return ERR_PTR(-ENOMEM); | |
421 | ||
422 | err = read_znode(c, zbr->lnum, zbr->offs, zbr->len, znode); | |
423 | if (err) | |
424 | goto out; | |
425 | ||
426 | atomic_long_inc(&c->clean_zn_cnt); | |
427 | ||
428 | /* | |
429 | * Increment the global clean znode counter as well. It is OK that | |
430 | * global and per-FS clean znode counters may be inconsistent for some | |
431 | * short time (because we might be preempted at this point), the global | |
432 | * one is only used in shrinker. | |
433 | */ | |
434 | atomic_long_inc(&ubifs_clean_zn_cnt); | |
435 | ||
436 | zbr->znode = znode; | |
437 | znode->parent = parent; | |
438 | znode->time = get_seconds(); | |
439 | znode->iip = iip; | |
440 | ||
441 | return znode; | |
442 | ||
443 | out: | |
444 | kfree(znode); | |
445 | return ERR_PTR(err); | |
446 | } | |
447 | ||
448 | /** | |
449 | * ubifs_tnc_read_node - read a leaf node from the flash media. | |
450 | * @c: UBIFS file-system description object | |
451 | * @zbr: key and position of the node | |
452 | * @node: node is returned here | |
453 | * | |
454 | * This function reads a node defined by @zbr from the flash media. Returns | |
455 | * zero in case of success or a negative negative error code in case of | |
456 | * failure. | |
457 | */ | |
458 | int ubifs_tnc_read_node(struct ubifs_info *c, struct ubifs_zbranch *zbr, | |
459 | void *node) | |
460 | { | |
461 | union ubifs_key key1, *key = &zbr->key; | |
462 | int err, type = key_type(c, key); | |
463 | struct ubifs_wbuf *wbuf; | |
464 | ||
465 | /* | |
466 | * 'zbr' has to point to on-flash node. The node may sit in a bud and | |
467 | * may even be in a write buffer, so we have to take care about this. | |
468 | */ | |
469 | wbuf = ubifs_get_wbuf(c, zbr->lnum); | |
470 | if (wbuf) | |
471 | err = ubifs_read_node_wbuf(wbuf, node, type, zbr->len, | |
472 | zbr->lnum, zbr->offs); | |
473 | else | |
474 | err = ubifs_read_node(c, node, type, zbr->len, zbr->lnum, | |
475 | zbr->offs); | |
476 | ||
477 | if (err) { | |
515315a1 | 478 | dbg_tnck(key, "key "); |
1e51764a AB |
479 | return err; |
480 | } | |
481 | ||
482 | /* Make sure the key of the read node is correct */ | |
2094c334 AH |
483 | key_read(c, node + UBIFS_KEY_OFFSET, &key1); |
484 | if (!keys_eq(c, key, &key1)) { | |
235c362b | 485 | ubifs_err(c, "bad key in node at LEB %d:%d", |
1e51764a | 486 | zbr->lnum, zbr->offs); |
515315a1 AB |
487 | dbg_tnck(key, "looked for key "); |
488 | dbg_tnck(&key1, "but found node's key "); | |
edf6be24 | 489 | ubifs_dump_node(c, node); |
1e51764a AB |
490 | return -EINVAL; |
491 | } | |
492 | ||
493 | return 0; | |
494 | } |