xfs: rename flist/free_list to dfops
[deliverable/linux.git] / fs / xfs / libxfs / xfs_ialloc.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
1da177e4 28#include "xfs_inode.h"
a844f451
NS
29#include "xfs_btree.h"
30#include "xfs_ialloc.h"
a4fbe6ab 31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_alloc.h"
1da177e4
LT
33#include "xfs_rtalloc.h"
34#include "xfs_error.h"
35#include "xfs_bmap.h"
983d09ff 36#include "xfs_cksum.h"
239880ef 37#include "xfs_trans.h"
983d09ff 38#include "xfs_buf_item.h"
ddf6ad01 39#include "xfs_icreate_item.h"
7bb85ef3 40#include "xfs_icache.h"
d123031a 41#include "xfs_trace.h"
a45086e2 42#include "xfs_log.h"
1da177e4 43
1da177e4
LT
44
45/*
46 * Allocation group level functions.
47 */
75de2a91
DC
48static inline int
49xfs_ialloc_cluster_alignment(
7a1df156 50 struct xfs_mount *mp)
75de2a91 51{
7a1df156
DC
52 if (xfs_sb_version_hasalign(&mp->m_sb) &&
53 mp->m_sb.sb_inoalignmt >=
54 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
55 return mp->m_sb.sb_inoalignmt;
75de2a91
DC
56 return 1;
57}
1da177e4 58
fe033cc8 59/*
21875505 60 * Lookup a record by ino in the btree given by cur.
fe033cc8 61 */
81e25176 62int /* error */
21875505 63xfs_inobt_lookup(
fe033cc8
CH
64 struct xfs_btree_cur *cur, /* btree cursor */
65 xfs_agino_t ino, /* starting inode of chunk */
21875505 66 xfs_lookup_t dir, /* <=, >=, == */
fe033cc8
CH
67 int *stat) /* success/failure */
68{
69 cur->bc_rec.i.ir_startino = ino;
5419040f
BF
70 cur->bc_rec.i.ir_holemask = 0;
71 cur->bc_rec.i.ir_count = 0;
21875505
CH
72 cur->bc_rec.i.ir_freecount = 0;
73 cur->bc_rec.i.ir_free = 0;
74 return xfs_btree_lookup(cur, dir, stat);
fe033cc8
CH
75}
76
278d0ca1 77/*
afabc24a 78 * Update the record referred to by cur to the value given.
278d0ca1
CH
79 * This either works (return 0) or gets an EFSCORRUPTED error.
80 */
81STATIC int /* error */
82xfs_inobt_update(
83 struct xfs_btree_cur *cur, /* btree cursor */
afabc24a 84 xfs_inobt_rec_incore_t *irec) /* btree record */
278d0ca1
CH
85{
86 union xfs_btree_rec rec;
87
afabc24a 88 rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
5419040f
BF
89 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
90 rec.inobt.ir_u.sp.ir_holemask = cpu_to_be16(irec->ir_holemask);
91 rec.inobt.ir_u.sp.ir_count = irec->ir_count;
92 rec.inobt.ir_u.sp.ir_freecount = irec->ir_freecount;
93 } else {
94 /* ir_holemask/ir_count not supported on-disk */
95 rec.inobt.ir_u.f.ir_freecount = cpu_to_be32(irec->ir_freecount);
96 }
afabc24a 97 rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
278d0ca1
CH
98 return xfs_btree_update(cur, &rec);
99}
100
8cc938fe
CH
101/*
102 * Get the data from the pointed-to record.
103 */
104int /* error */
105xfs_inobt_get_rec(
106 struct xfs_btree_cur *cur, /* btree cursor */
2e287a73 107 xfs_inobt_rec_incore_t *irec, /* btree record */
8cc938fe
CH
108 int *stat) /* output: success/failure */
109{
110 union xfs_btree_rec *rec;
111 int error;
112
113 error = xfs_btree_get_rec(cur, &rec, stat);
5419040f
BF
114 if (error || *stat == 0)
115 return error;
116
117 irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
118 if (xfs_sb_version_hassparseinodes(&cur->bc_mp->m_sb)) {
119 irec->ir_holemask = be16_to_cpu(rec->inobt.ir_u.sp.ir_holemask);
120 irec->ir_count = rec->inobt.ir_u.sp.ir_count;
121 irec->ir_freecount = rec->inobt.ir_u.sp.ir_freecount;
122 } else {
123 /*
124 * ir_holemask/ir_count not supported on-disk. Fill in hardcoded
125 * values for full inode chunks.
126 */
127 irec->ir_holemask = XFS_INOBT_HOLEMASK_FULL;
128 irec->ir_count = XFS_INODES_PER_CHUNK;
129 irec->ir_freecount =
130 be32_to_cpu(rec->inobt.ir_u.f.ir_freecount);
8cc938fe 131 }
5419040f
BF
132 irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
133
134 return 0;
8cc938fe
CH
135}
136
0aa0a756
BF
137/*
138 * Insert a single inobt record. Cursor must already point to desired location.
139 */
140STATIC int
141xfs_inobt_insert_rec(
142 struct xfs_btree_cur *cur,
5419040f
BF
143 __uint16_t holemask,
144 __uint8_t count,
0aa0a756
BF
145 __int32_t freecount,
146 xfs_inofree_t free,
147 int *stat)
148{
5419040f
BF
149 cur->bc_rec.i.ir_holemask = holemask;
150 cur->bc_rec.i.ir_count = count;
0aa0a756
BF
151 cur->bc_rec.i.ir_freecount = freecount;
152 cur->bc_rec.i.ir_free = free;
153 return xfs_btree_insert(cur, stat);
154}
155
156/*
157 * Insert records describing a newly allocated inode chunk into the inobt.
158 */
159STATIC int
160xfs_inobt_insert(
161 struct xfs_mount *mp,
162 struct xfs_trans *tp,
163 struct xfs_buf *agbp,
164 xfs_agino_t newino,
165 xfs_agino_t newlen,
166 xfs_btnum_t btnum)
167{
168 struct xfs_btree_cur *cur;
169 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
170 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
171 xfs_agino_t thisino;
172 int i;
173 int error;
174
175 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
176
177 for (thisino = newino;
178 thisino < newino + newlen;
179 thisino += XFS_INODES_PER_CHUNK) {
180 error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
181 if (error) {
182 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
183 return error;
184 }
185 ASSERT(i == 0);
186
5419040f
BF
187 error = xfs_inobt_insert_rec(cur, XFS_INOBT_HOLEMASK_FULL,
188 XFS_INODES_PER_CHUNK,
189 XFS_INODES_PER_CHUNK,
0aa0a756
BF
190 XFS_INOBT_ALL_FREE, &i);
191 if (error) {
192 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
193 return error;
194 }
195 ASSERT(i == 1);
196 }
197
198 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
199
200 return 0;
201}
202
0b48db80
DC
203/*
204 * Verify that the number of free inodes in the AGI is correct.
205 */
206#ifdef DEBUG
207STATIC int
208xfs_check_agi_freecount(
209 struct xfs_btree_cur *cur,
210 struct xfs_agi *agi)
211{
212 if (cur->bc_nlevels == 1) {
213 xfs_inobt_rec_incore_t rec;
214 int freecount = 0;
215 int error;
216 int i;
217
21875505 218 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
0b48db80
DC
219 if (error)
220 return error;
221
222 do {
223 error = xfs_inobt_get_rec(cur, &rec, &i);
224 if (error)
225 return error;
226
227 if (i) {
228 freecount += rec.ir_freecount;
229 error = xfs_btree_increment(cur, 0, &i);
230 if (error)
231 return error;
232 }
233 } while (i == 1);
234
235 if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
236 ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
237 }
238 return 0;
239}
240#else
241#define xfs_check_agi_freecount(cur, agi) 0
242#endif
243
85c0b2ab 244/*
28c8e41a
DC
245 * Initialise a new set of inodes. When called without a transaction context
246 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
247 * than logging them (which in a transaction context puts them into the AIL
248 * for writeback rather than the xfsbufd queue).
85c0b2ab 249 */
ddf6ad01 250int
85c0b2ab
DC
251xfs_ialloc_inode_init(
252 struct xfs_mount *mp,
253 struct xfs_trans *tp,
28c8e41a 254 struct list_head *buffer_list,
463958af 255 int icount,
85c0b2ab
DC
256 xfs_agnumber_t agno,
257 xfs_agblock_t agbno,
258 xfs_agblock_t length,
259 unsigned int gen)
260{
261 struct xfs_buf *fbuf;
262 struct xfs_dinode *free;
6e0c7b8c 263 int nbufs, blks_per_cluster, inodes_per_cluster;
85c0b2ab
DC
264 int version;
265 int i, j;
266 xfs_daddr_t d;
93848a99 267 xfs_ino_t ino = 0;
85c0b2ab
DC
268
269 /*
6e0c7b8c
JL
270 * Loop over the new block(s), filling in the inodes. For small block
271 * sizes, manipulate the inodes in buffers which are multiples of the
272 * blocks size.
85c0b2ab 273 */
6e0c7b8c
JL
274 blks_per_cluster = xfs_icluster_size_fsb(mp);
275 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
276 nbufs = length / blks_per_cluster;
85c0b2ab
DC
277
278 /*
93848a99
CH
279 * Figure out what version number to use in the inodes we create. If
280 * the superblock version has caught up to the one that supports the new
281 * inode format, then use the new inode version. Otherwise use the old
282 * version so that old kernels will continue to be able to use the file
283 * system.
284 *
285 * For v3 inodes, we also need to write the inode number into the inode,
286 * so calculate the first inode number of the chunk here as
287 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
288 * across multiple filesystem blocks (such as a cluster) and so cannot
289 * be used in the cluster buffer loop below.
290 *
291 * Further, because we are writing the inode directly into the buffer
292 * and calculating a CRC on the entire inode, we have ot log the entire
293 * inode so that the entire range the CRC covers is present in the log.
294 * That means for v3 inode we log the entire buffer rather than just the
295 * inode cores.
85c0b2ab 296 */
93848a99
CH
297 if (xfs_sb_version_hascrc(&mp->m_sb)) {
298 version = 3;
299 ino = XFS_AGINO_TO_INO(mp, agno,
300 XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
ddf6ad01
DC
301
302 /*
303 * log the initialisation that is about to take place as an
304 * logical operation. This means the transaction does not
305 * need to log the physical changes to the inode buffers as log
306 * recovery will know what initialisation is actually needed.
307 * Hence we only need to log the buffers as "ordered" buffers so
308 * they track in the AIL as if they were physically logged.
309 */
310 if (tp)
463958af 311 xfs_icreate_log(tp, agno, agbno, icount,
ddf6ad01 312 mp->m_sb.sb_inodesize, length, gen);
263997a6 313 } else
85c0b2ab 314 version = 2;
85c0b2ab
DC
315
316 for (j = 0; j < nbufs; j++) {
317 /*
318 * Get the block.
319 */
320 d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
321 fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
7c4cebe8
DC
322 mp->m_bsize * blks_per_cluster,
323 XBF_UNMAPPED);
2a30f36d 324 if (!fbuf)
2451337d 325 return -ENOMEM;
ddf6ad01
DC
326
327 /* Initialize the inode buffers and log them appropriately. */
1813dd64 328 fbuf->b_ops = &xfs_inode_buf_ops;
93848a99 329 xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
6e0c7b8c 330 for (i = 0; i < inodes_per_cluster; i++) {
85c0b2ab 331 int ioffset = i << mp->m_sb.sb_inodelog;
93848a99 332 uint isize = xfs_dinode_size(version);
85c0b2ab
DC
333
334 free = xfs_make_iptr(mp, fbuf, i);
335 free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
336 free->di_version = version;
337 free->di_gen = cpu_to_be32(gen);
338 free->di_next_unlinked = cpu_to_be32(NULLAGINO);
93848a99
CH
339
340 if (version == 3) {
341 free->di_ino = cpu_to_be64(ino);
342 ino++;
ce748eaa
ES
343 uuid_copy(&free->di_uuid,
344 &mp->m_sb.sb_meta_uuid);
93848a99 345 xfs_dinode_calc_crc(mp, free);
28c8e41a 346 } else if (tp) {
93848a99
CH
347 /* just log the inode core */
348 xfs_trans_log_buf(tp, fbuf, ioffset,
349 ioffset + isize - 1);
350 }
351 }
28c8e41a
DC
352
353 if (tp) {
354 /*
355 * Mark the buffer as an inode allocation buffer so it
356 * sticks in AIL at the point of this allocation
357 * transaction. This ensures the they are on disk before
358 * the tail of the log can be moved past this
359 * transaction (i.e. by preventing relogging from moving
360 * it forward in the log).
361 */
362 xfs_trans_inode_alloc_buf(tp, fbuf);
363 if (version == 3) {
ddf6ad01
DC
364 /*
365 * Mark the buffer as ordered so that they are
366 * not physically logged in the transaction but
367 * still tracked in the AIL as part of the
368 * transaction and pin the log appropriately.
369 */
370 xfs_trans_ordered_buf(tp, fbuf);
28c8e41a
DC
371 xfs_trans_log_buf(tp, fbuf, 0,
372 BBTOB(fbuf->b_length) - 1);
373 }
374 } else {
375 fbuf->b_flags |= XBF_DONE;
376 xfs_buf_delwri_queue(fbuf, buffer_list);
377 xfs_buf_relse(fbuf);
85c0b2ab 378 }
85c0b2ab 379 }
2a30f36d 380 return 0;
85c0b2ab
DC
381}
382
56d1115c
BF
383/*
384 * Align startino and allocmask for a recently allocated sparse chunk such that
385 * they are fit for insertion (or merge) into the on-disk inode btrees.
386 *
387 * Background:
388 *
389 * When enabled, sparse inode support increases the inode alignment from cluster
390 * size to inode chunk size. This means that the minimum range between two
391 * non-adjacent inode records in the inobt is large enough for a full inode
392 * record. This allows for cluster sized, cluster aligned block allocation
393 * without need to worry about whether the resulting inode record overlaps with
394 * another record in the tree. Without this basic rule, we would have to deal
395 * with the consequences of overlap by potentially undoing recent allocations in
396 * the inode allocation codepath.
397 *
398 * Because of this alignment rule (which is enforced on mount), there are two
399 * inobt possibilities for newly allocated sparse chunks. One is that the
400 * aligned inode record for the chunk covers a range of inodes not already
401 * covered in the inobt (i.e., it is safe to insert a new sparse record). The
402 * other is that a record already exists at the aligned startino that considers
403 * the newly allocated range as sparse. In the latter case, record content is
404 * merged in hope that sparse inode chunks fill to full chunks over time.
405 */
406STATIC void
407xfs_align_sparse_ino(
408 struct xfs_mount *mp,
409 xfs_agino_t *startino,
410 uint16_t *allocmask)
411{
412 xfs_agblock_t agbno;
413 xfs_agblock_t mod;
414 int offset;
415
416 agbno = XFS_AGINO_TO_AGBNO(mp, *startino);
417 mod = agbno % mp->m_sb.sb_inoalignmt;
418 if (!mod)
419 return;
420
421 /* calculate the inode offset and align startino */
422 offset = mod << mp->m_sb.sb_inopblog;
423 *startino -= offset;
424
425 /*
426 * Since startino has been aligned down, left shift allocmask such that
427 * it continues to represent the same physical inodes relative to the
428 * new startino.
429 */
430 *allocmask <<= offset / XFS_INODES_PER_HOLEMASK_BIT;
431}
432
433/*
434 * Determine whether the source inode record can merge into the target. Both
435 * records must be sparse, the inode ranges must match and there must be no
436 * allocation overlap between the records.
437 */
438STATIC bool
439__xfs_inobt_can_merge(
440 struct xfs_inobt_rec_incore *trec, /* tgt record */
441 struct xfs_inobt_rec_incore *srec) /* src record */
442{
443 uint64_t talloc;
444 uint64_t salloc;
445
446 /* records must cover the same inode range */
447 if (trec->ir_startino != srec->ir_startino)
448 return false;
449
450 /* both records must be sparse */
451 if (!xfs_inobt_issparse(trec->ir_holemask) ||
452 !xfs_inobt_issparse(srec->ir_holemask))
453 return false;
454
455 /* both records must track some inodes */
456 if (!trec->ir_count || !srec->ir_count)
457 return false;
458
459 /* can't exceed capacity of a full record */
460 if (trec->ir_count + srec->ir_count > XFS_INODES_PER_CHUNK)
461 return false;
462
463 /* verify there is no allocation overlap */
464 talloc = xfs_inobt_irec_to_allocmask(trec);
465 salloc = xfs_inobt_irec_to_allocmask(srec);
466 if (talloc & salloc)
467 return false;
468
469 return true;
470}
471
472/*
473 * Merge the source inode record into the target. The caller must call
474 * __xfs_inobt_can_merge() to ensure the merge is valid.
475 */
476STATIC void
477__xfs_inobt_rec_merge(
478 struct xfs_inobt_rec_incore *trec, /* target */
479 struct xfs_inobt_rec_incore *srec) /* src */
480{
481 ASSERT(trec->ir_startino == srec->ir_startino);
482
483 /* combine the counts */
484 trec->ir_count += srec->ir_count;
485 trec->ir_freecount += srec->ir_freecount;
486
487 /*
488 * Merge the holemask and free mask. For both fields, 0 bits refer to
489 * allocated inodes. We combine the allocated ranges with bitwise AND.
490 */
491 trec->ir_holemask &= srec->ir_holemask;
492 trec->ir_free &= srec->ir_free;
493}
494
495/*
496 * Insert a new sparse inode chunk into the associated inode btree. The inode
497 * record for the sparse chunk is pre-aligned to a startino that should match
498 * any pre-existing sparse inode record in the tree. This allows sparse chunks
499 * to fill over time.
500 *
501 * This function supports two modes of handling preexisting records depending on
502 * the merge flag. If merge is true, the provided record is merged with the
503 * existing record and updated in place. The merged record is returned in nrec.
504 * If merge is false, an existing record is replaced with the provided record.
505 * If no preexisting record exists, the provided record is always inserted.
506 *
507 * It is considered corruption if a merge is requested and not possible. Given
508 * the sparse inode alignment constraints, this should never happen.
509 */
510STATIC int
511xfs_inobt_insert_sprec(
512 struct xfs_mount *mp,
513 struct xfs_trans *tp,
514 struct xfs_buf *agbp,
515 int btnum,
516 struct xfs_inobt_rec_incore *nrec, /* in/out: new/merged rec. */
517 bool merge) /* merge or replace */
518{
519 struct xfs_btree_cur *cur;
520 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
521 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
522 int error;
523 int i;
524 struct xfs_inobt_rec_incore rec;
525
526 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
527
528 /* the new record is pre-aligned so we know where to look */
529 error = xfs_inobt_lookup(cur, nrec->ir_startino, XFS_LOOKUP_EQ, &i);
530 if (error)
531 goto error;
532 /* if nothing there, insert a new record and return */
533 if (i == 0) {
534 error = xfs_inobt_insert_rec(cur, nrec->ir_holemask,
535 nrec->ir_count, nrec->ir_freecount,
536 nrec->ir_free, &i);
537 if (error)
538 goto error;
539 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
540
541 goto out;
542 }
543
544 /*
545 * A record exists at this startino. Merge or replace the record
546 * depending on what we've been asked to do.
547 */
548 if (merge) {
549 error = xfs_inobt_get_rec(cur, &rec, &i);
550 if (error)
551 goto error;
552 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
553 XFS_WANT_CORRUPTED_GOTO(mp,
554 rec.ir_startino == nrec->ir_startino,
555 error);
556
557 /*
558 * This should never fail. If we have coexisting records that
559 * cannot merge, something is seriously wrong.
560 */
561 XFS_WANT_CORRUPTED_GOTO(mp, __xfs_inobt_can_merge(nrec, &rec),
562 error);
563
564 trace_xfs_irec_merge_pre(mp, agno, rec.ir_startino,
565 rec.ir_holemask, nrec->ir_startino,
566 nrec->ir_holemask);
567
568 /* merge to nrec to output the updated record */
569 __xfs_inobt_rec_merge(nrec, &rec);
570
571 trace_xfs_irec_merge_post(mp, agno, nrec->ir_startino,
572 nrec->ir_holemask);
573
574 error = xfs_inobt_rec_check_count(mp, nrec);
575 if (error)
576 goto error;
577 }
578
579 error = xfs_inobt_update(cur, nrec);
580 if (error)
581 goto error;
582
583out:
584 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
585 return 0;
586error:
587 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
588 return error;
589}
590
1da177e4
LT
591/*
592 * Allocate new inodes in the allocation group specified by agbp.
593 * Return 0 for success, else error code.
594 */
595STATIC int /* error code or 0 */
596xfs_ialloc_ag_alloc(
597 xfs_trans_t *tp, /* transaction pointer */
598 xfs_buf_t *agbp, /* alloc group buffer */
599 int *alloc)
600{
601 xfs_agi_t *agi; /* allocation group header */
602 xfs_alloc_arg_t args; /* allocation argument structure */
92821e2b 603 xfs_agnumber_t agno;
1da177e4 604 int error;
1da177e4
LT
605 xfs_agino_t newino; /* new first inode's number */
606 xfs_agino_t newlen; /* new number of inodes */
3ccb8b5f 607 int isaligned = 0; /* inode allocation at stripe unit */
1da177e4 608 /* boundary */
56d1115c
BF
609 uint16_t allocmask = (uint16_t) -1; /* init. to full chunk */
610 struct xfs_inobt_rec_incore rec;
44b56e0a 611 struct xfs_perag *pag;
1cdadee1
BF
612 int do_sparse = 0;
613
a0041684 614 memset(&args, 0, sizeof(args));
1da177e4
LT
615 args.tp = tp;
616 args.mp = tp->t_mountp;
1cdadee1 617 args.fsbno = NULLFSBLOCK;
1da177e4 618
46fc58da
BF
619#ifdef DEBUG
620 /* randomly do sparse inode allocations */
621 if (xfs_sb_version_hassparseinodes(&tp->t_mountp->m_sb) &&
622 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks)
623 do_sparse = prandom_u32() & 1;
624#endif
625
1da177e4
LT
626 /*
627 * Locking will ensure that we don't have two callers in here
628 * at one time.
629 */
71783438 630 newlen = args.mp->m_ialloc_inos;
1da177e4 631 if (args.mp->m_maxicount &&
74f9ce1c 632 percpu_counter_read_positive(&args.mp->m_icount) + newlen >
501ab323 633 args.mp->m_maxicount)
2451337d 634 return -ENOSPC;
126cd105 635 args.minlen = args.maxlen = args.mp->m_ialloc_blks;
1da177e4 636 /*
3ccb8b5f
GO
637 * First try to allocate inodes contiguous with the last-allocated
638 * chunk of inodes. If the filesystem is striped, this will fill
639 * an entire stripe unit with inodes.
28c8e41a 640 */
1da177e4 641 agi = XFS_BUF_TO_AGI(agbp);
3ccb8b5f 642 newino = be32_to_cpu(agi->agi_newino);
85c0b2ab 643 agno = be32_to_cpu(agi->agi_seqno);
019ff2d5 644 args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
126cd105 645 args.mp->m_ialloc_blks;
1cdadee1
BF
646 if (do_sparse)
647 goto sparse_alloc;
019ff2d5
NS
648 if (likely(newino != NULLAGINO &&
649 (args.agbno < be32_to_cpu(agi->agi_length)))) {
85c0b2ab 650 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f 651 args.type = XFS_ALLOCTYPE_THIS_BNO;
3ccb8b5f 652 args.prod = 1;
75de2a91 653
3ccb8b5f 654 /*
75de2a91
DC
655 * We need to take into account alignment here to ensure that
656 * we don't modify the free list if we fail to have an exact
657 * block. If we don't have an exact match, and every oher
658 * attempt allocation attempt fails, we'll end up cancelling
659 * a dirty transaction and shutting down.
660 *
661 * For an exact allocation, alignment must be 1,
662 * however we need to take cluster alignment into account when
663 * fixing up the freelist. Use the minalignslop field to
664 * indicate that extra blocks might be required for alignment,
665 * but not to use them in the actual exact allocation.
3ccb8b5f 666 */
75de2a91 667 args.alignment = 1;
7a1df156 668 args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
75de2a91
DC
669
670 /* Allow space for the inode btree to split. */
0d87e656 671 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
672 if ((error = xfs_alloc_vextent(&args)))
673 return error;
e480a723
BF
674
675 /*
676 * This request might have dirtied the transaction if the AG can
677 * satisfy the request, but the exact block was not available.
678 * If the allocation did fail, subsequent requests will relax
679 * the exact agbno requirement and increase the alignment
680 * instead. It is critical that the total size of the request
681 * (len + alignment + slop) does not increase from this point
682 * on, so reset minalignslop to ensure it is not included in
683 * subsequent requests.
684 */
685 args.minalignslop = 0;
1cdadee1 686 }
1da177e4 687
3ccb8b5f
GO
688 if (unlikely(args.fsbno == NULLFSBLOCK)) {
689 /*
690 * Set the alignment for the allocation.
691 * If stripe alignment is turned on then align at stripe unit
692 * boundary.
019ff2d5
NS
693 * If the cluster size is smaller than a filesystem block
694 * then we're doing I/O for inodes in filesystem block size
3ccb8b5f
GO
695 * pieces, so don't need alignment anyway.
696 */
697 isaligned = 0;
698 if (args.mp->m_sinoalign) {
699 ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
700 args.alignment = args.mp->m_dalign;
701 isaligned = 1;
75de2a91 702 } else
7a1df156 703 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
3ccb8b5f
GO
704 /*
705 * Need to figure out where to allocate the inode blocks.
706 * Ideally they should be spaced out through the a.g.
707 * For now, just allocate blocks up front.
708 */
709 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 710 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
3ccb8b5f
GO
711 /*
712 * Allocate a fixed-size extent of inodes.
713 */
714 args.type = XFS_ALLOCTYPE_NEAR_BNO;
3ccb8b5f
GO
715 args.prod = 1;
716 /*
717 * Allow space for the inode btree to split.
718 */
0d87e656 719 args.minleft = args.mp->m_in_maxlevels - 1;
3ccb8b5f
GO
720 if ((error = xfs_alloc_vextent(&args)))
721 return error;
722 }
019ff2d5 723
1da177e4
LT
724 /*
725 * If stripe alignment is turned on, then try again with cluster
726 * alignment.
727 */
728 if (isaligned && args.fsbno == NULLFSBLOCK) {
729 args.type = XFS_ALLOCTYPE_NEAR_BNO;
16259e7d 730 args.agbno = be32_to_cpu(agi->agi_root);
85c0b2ab 731 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
7a1df156 732 args.alignment = xfs_ialloc_cluster_alignment(args.mp);
1da177e4
LT
733 if ((error = xfs_alloc_vextent(&args)))
734 return error;
735 }
736
56d1115c
BF
737 /*
738 * Finally, try a sparse allocation if the filesystem supports it and
739 * the sparse allocation length is smaller than a full chunk.
740 */
741 if (xfs_sb_version_hassparseinodes(&args.mp->m_sb) &&
742 args.mp->m_ialloc_min_blks < args.mp->m_ialloc_blks &&
743 args.fsbno == NULLFSBLOCK) {
1cdadee1 744sparse_alloc:
56d1115c
BF
745 args.type = XFS_ALLOCTYPE_NEAR_BNO;
746 args.agbno = be32_to_cpu(agi->agi_root);
747 args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
748 args.alignment = args.mp->m_sb.sb_spino_align;
749 args.prod = 1;
750
751 args.minlen = args.mp->m_ialloc_min_blks;
752 args.maxlen = args.minlen;
753
754 /*
755 * The inode record will be aligned to full chunk size. We must
756 * prevent sparse allocation from AG boundaries that result in
757 * invalid inode records, such as records that start at agbno 0
758 * or extend beyond the AG.
759 *
760 * Set min agbno to the first aligned, non-zero agbno and max to
761 * the last aligned agbno that is at least one full chunk from
762 * the end of the AG.
763 */
764 args.min_agbno = args.mp->m_sb.sb_inoalignmt;
765 args.max_agbno = round_down(args.mp->m_sb.sb_agblocks,
766 args.mp->m_sb.sb_inoalignmt) -
767 args.mp->m_ialloc_blks;
768
769 error = xfs_alloc_vextent(&args);
770 if (error)
771 return error;
772
773 newlen = args.len << args.mp->m_sb.sb_inopblog;
46fc58da 774 ASSERT(newlen <= XFS_INODES_PER_CHUNK);
56d1115c
BF
775 allocmask = (1 << (newlen / XFS_INODES_PER_HOLEMASK_BIT)) - 1;
776 }
777
1da177e4
LT
778 if (args.fsbno == NULLFSBLOCK) {
779 *alloc = 0;
780 return 0;
781 }
782 ASSERT(args.len == args.minlen);
1da177e4 783
359346a9 784 /*
85c0b2ab
DC
785 * Stamp and write the inode buffers.
786 *
359346a9
DC
787 * Seed the new inode cluster with a random generation number. This
788 * prevents short-term reuse of generation numbers if a chunk is
789 * freed and then immediately reallocated. We use random numbers
790 * rather than a linear progression to prevent the next generation
791 * number from being easily guessable.
792 */
463958af
BF
793 error = xfs_ialloc_inode_init(args.mp, tp, NULL, newlen, agno,
794 args.agbno, args.len, prandom_u32());
d42f08f6 795
2a30f36d
CS
796 if (error)
797 return error;
85c0b2ab
DC
798 /*
799 * Convert the results.
800 */
801 newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
56d1115c
BF
802
803 if (xfs_inobt_issparse(~allocmask)) {
804 /*
805 * We've allocated a sparse chunk. Align the startino and mask.
806 */
807 xfs_align_sparse_ino(args.mp, &newino, &allocmask);
808
809 rec.ir_startino = newino;
810 rec.ir_holemask = ~allocmask;
811 rec.ir_count = newlen;
812 rec.ir_freecount = newlen;
813 rec.ir_free = XFS_INOBT_ALL_FREE;
814
815 /*
816 * Insert the sparse record into the inobt and allow for a merge
817 * if necessary. If a merge does occur, rec is updated to the
818 * merged record.
819 */
820 error = xfs_inobt_insert_sprec(args.mp, tp, agbp, XFS_BTNUM_INO,
821 &rec, true);
822 if (error == -EFSCORRUPTED) {
823 xfs_alert(args.mp,
824 "invalid sparse inode record: ino 0x%llx holemask 0x%x count %u",
825 XFS_AGINO_TO_INO(args.mp, agno,
826 rec.ir_startino),
827 rec.ir_holemask, rec.ir_count);
828 xfs_force_shutdown(args.mp, SHUTDOWN_CORRUPT_INCORE);
829 }
830 if (error)
831 return error;
832
833 /*
834 * We can't merge the part we've just allocated as for the inobt
835 * due to finobt semantics. The original record may or may not
836 * exist independent of whether physical inodes exist in this
837 * sparse chunk.
838 *
839 * We must update the finobt record based on the inobt record.
840 * rec contains the fully merged and up to date inobt record
841 * from the previous call. Set merge false to replace any
842 * existing record with this one.
843 */
844 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
845 error = xfs_inobt_insert_sprec(args.mp, tp, agbp,
846 XFS_BTNUM_FINO, &rec,
847 false);
848 if (error)
849 return error;
850 }
851 } else {
852 /* full chunk - insert new records to both btrees */
853 error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
854 XFS_BTNUM_INO);
855 if (error)
856 return error;
857
858 if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
859 error = xfs_inobt_insert(args.mp, tp, agbp, newino,
860 newlen, XFS_BTNUM_FINO);
861 if (error)
862 return error;
863 }
864 }
865
866 /*
867 * Update AGI counts and newino.
868 */
413d57c9
MS
869 be32_add_cpu(&agi->agi_count, newlen);
870 be32_add_cpu(&agi->agi_freecount, newlen);
44b56e0a
DC
871 pag = xfs_perag_get(args.mp, agno);
872 pag->pagi_freecount += newlen;
873 xfs_perag_put(pag);
16259e7d 874 agi->agi_newino = cpu_to_be32(newino);
85c0b2ab 875
1da177e4
LT
876 /*
877 * Log allocation group header fields
878 */
879 xfs_ialloc_log_agi(tp, agbp,
880 XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
881 /*
882 * Modify/log superblock values for inode count and inode free count.
883 */
884 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
885 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
886 *alloc = 1;
887 return 0;
888}
889
b8f82a4a 890STATIC xfs_agnumber_t
1da177e4
LT
891xfs_ialloc_next_ag(
892 xfs_mount_t *mp)
893{
894 xfs_agnumber_t agno;
895
896 spin_lock(&mp->m_agirotor_lock);
897 agno = mp->m_agirotor;
8aea3ff4 898 if (++mp->m_agirotor >= mp->m_maxagi)
1da177e4
LT
899 mp->m_agirotor = 0;
900 spin_unlock(&mp->m_agirotor_lock);
901
902 return agno;
903}
904
905/*
906 * Select an allocation group to look for a free inode in, based on the parent
2f21ff1c 907 * inode and the mode. Return the allocation group buffer.
1da177e4 908 */
55d6af64 909STATIC xfs_agnumber_t
1da177e4
LT
910xfs_ialloc_ag_select(
911 xfs_trans_t *tp, /* transaction pointer */
912 xfs_ino_t parent, /* parent directory inode number */
576b1d67 913 umode_t mode, /* bits set to indicate file type */
1da177e4
LT
914 int okalloc) /* ok to allocate more space */
915{
1da177e4
LT
916 xfs_agnumber_t agcount; /* number of ag's in the filesystem */
917 xfs_agnumber_t agno; /* current ag number */
918 int flags; /* alloc buffer locking flags */
919 xfs_extlen_t ineed; /* blocks needed for inode allocation */
920 xfs_extlen_t longest = 0; /* longest extent available */
921 xfs_mount_t *mp; /* mount point structure */
922 int needspace; /* file mode implies space allocated */
923 xfs_perag_t *pag; /* per allocation group data */
924 xfs_agnumber_t pagno; /* parent (starting) ag number */
55d6af64 925 int error;
1da177e4
LT
926
927 /*
928 * Files of these types need at least one block if length > 0
929 * (and they won't fit in the inode, but that's hard to figure out).
930 */
931 needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
932 mp = tp->t_mountp;
933 agcount = mp->m_maxagi;
934 if (S_ISDIR(mode))
935 pagno = xfs_ialloc_next_ag(mp);
936 else {
937 pagno = XFS_INO_TO_AGNO(mp, parent);
938 if (pagno >= agcount)
939 pagno = 0;
940 }
55d6af64 941
1da177e4 942 ASSERT(pagno < agcount);
55d6af64 943
1da177e4
LT
944 /*
945 * Loop through allocation groups, looking for one with a little
946 * free space in it. Note we don't look for free inodes, exactly.
947 * Instead, we include whether there is a need to allocate inodes
948 * to mean that blocks must be allocated for them,
949 * if none are currently free.
950 */
951 agno = pagno;
952 flags = XFS_ALLOC_FLAG_TRYLOCK;
1da177e4 953 for (;;) {
44b56e0a 954 pag = xfs_perag_get(mp, agno);
55d6af64
CH
955 if (!pag->pagi_inodeok) {
956 xfs_ialloc_next_ag(mp);
957 goto nextag;
958 }
959
1da177e4 960 if (!pag->pagi_init) {
55d6af64
CH
961 error = xfs_ialloc_pagi_init(mp, tp, agno);
962 if (error)
1da177e4 963 goto nextag;
55d6af64 964 }
1da177e4 965
55d6af64
CH
966 if (pag->pagi_freecount) {
967 xfs_perag_put(pag);
968 return agno;
1da177e4
LT
969 }
970
55d6af64
CH
971 if (!okalloc)
972 goto nextag;
973
974 if (!pag->pagf_init) {
975 error = xfs_alloc_pagf_init(mp, tp, agno, flags);
976 if (error)
1da177e4 977 goto nextag;
1da177e4 978 }
55d6af64
CH
979
980 /*
7a1df156
DC
981 * Check that there is enough free space for the file plus a
982 * chunk of inodes if we need to allocate some. If this is the
983 * first pass across the AGs, take into account the potential
984 * space needed for alignment of inode chunks when checking the
985 * longest contiguous free space in the AG - this prevents us
986 * from getting ENOSPC because we have free space larger than
987 * m_ialloc_blks but alignment constraints prevent us from using
988 * it.
989 *
990 * If we can't find an AG with space for full alignment slack to
991 * be taken into account, we must be near ENOSPC in all AGs.
992 * Hence we don't include alignment for the second pass and so
993 * if we fail allocation due to alignment issues then it is most
994 * likely a real ENOSPC condition.
55d6af64 995 */
066a1884 996 ineed = mp->m_ialloc_min_blks;
7a1df156
DC
997 if (flags && ineed > 1)
998 ineed += xfs_ialloc_cluster_alignment(mp);
55d6af64
CH
999 longest = pag->pagf_longest;
1000 if (!longest)
1001 longest = pag->pagf_flcount > 0;
1002
1003 if (pag->pagf_freeblks >= needspace + ineed &&
1004 longest >= ineed) {
1005 xfs_perag_put(pag);
1006 return agno;
1da177e4 1007 }
1da177e4 1008nextag:
44b56e0a 1009 xfs_perag_put(pag);
1da177e4
LT
1010 /*
1011 * No point in iterating over the rest, if we're shutting
1012 * down.
1013 */
1c1c6ebc 1014 if (XFS_FORCED_SHUTDOWN(mp))
55d6af64 1015 return NULLAGNUMBER;
1da177e4
LT
1016 agno++;
1017 if (agno >= agcount)
1018 agno = 0;
1019 if (agno == pagno) {
1c1c6ebc 1020 if (flags == 0)
55d6af64 1021 return NULLAGNUMBER;
1da177e4
LT
1022 flags = 0;
1023 }
1024 }
1025}
1026
4254b0bb
CH
1027/*
1028 * Try to retrieve the next record to the left/right from the current one.
1029 */
1030STATIC int
1031xfs_ialloc_next_rec(
1032 struct xfs_btree_cur *cur,
1033 xfs_inobt_rec_incore_t *rec,
1034 int *done,
1035 int left)
1036{
1037 int error;
1038 int i;
1039
1040 if (left)
1041 error = xfs_btree_decrement(cur, 0, &i);
1042 else
1043 error = xfs_btree_increment(cur, 0, &i);
1044
1045 if (error)
1046 return error;
1047 *done = !i;
1048 if (i) {
1049 error = xfs_inobt_get_rec(cur, rec, &i);
1050 if (error)
1051 return error;
5fb5aeee 1052 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
4254b0bb
CH
1053 }
1054
1055 return 0;
1056}
1057
bd169565
DC
1058STATIC int
1059xfs_ialloc_get_rec(
1060 struct xfs_btree_cur *cur,
1061 xfs_agino_t agino,
1062 xfs_inobt_rec_incore_t *rec,
43df2ee6 1063 int *done)
bd169565
DC
1064{
1065 int error;
1066 int i;
1067
1068 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
1069 if (error)
1070 return error;
1071 *done = !i;
1072 if (i) {
1073 error = xfs_inobt_get_rec(cur, rec, &i);
1074 if (error)
1075 return error;
5fb5aeee 1076 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
bd169565
DC
1077 }
1078
1079 return 0;
1080}
0b48db80 1081
d4cc540b 1082/*
26dd5217
BF
1083 * Return the offset of the first free inode in the record. If the inode chunk
1084 * is sparsely allocated, we convert the record holemask to inode granularity
1085 * and mask off the unallocated regions from the inode free mask.
d4cc540b
BF
1086 */
1087STATIC int
1088xfs_inobt_first_free_inode(
1089 struct xfs_inobt_rec_incore *rec)
1090{
26dd5217
BF
1091 xfs_inofree_t realfree;
1092
1093 /* if there are no holes, return the first available offset */
1094 if (!xfs_inobt_issparse(rec->ir_holemask))
1095 return xfs_lowbit64(rec->ir_free);
1096
1097 realfree = xfs_inobt_irec_to_allocmask(rec);
1098 realfree &= rec->ir_free;
1099
1100 return xfs_lowbit64(realfree);
d4cc540b
BF
1101}
1102
1da177e4 1103/*
6dd8638e 1104 * Allocate an inode using the inobt-only algorithm.
1da177e4 1105 */
f2ecc5e4 1106STATIC int
6dd8638e 1107xfs_dialloc_ag_inobt(
f2ecc5e4
CH
1108 struct xfs_trans *tp,
1109 struct xfs_buf *agbp,
1110 xfs_ino_t parent,
1111 xfs_ino_t *inop)
1da177e4 1112{
f2ecc5e4
CH
1113 struct xfs_mount *mp = tp->t_mountp;
1114 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1115 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1116 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1117 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1118 struct xfs_perag *pag;
1119 struct xfs_btree_cur *cur, *tcur;
1120 struct xfs_inobt_rec_incore rec, trec;
1121 xfs_ino_t ino;
1122 int error;
1123 int offset;
1124 int i, j;
1da177e4 1125
44b56e0a 1126 pag = xfs_perag_get(mp, agno);
bd169565 1127
4bb61069
CH
1128 ASSERT(pag->pagi_init);
1129 ASSERT(pag->pagi_inodeok);
1130 ASSERT(pag->pagi_freecount > 0);
1131
bd169565 1132 restart_pagno:
57bd3dbe 1133 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4
LT
1134 /*
1135 * If pagino is 0 (this is the root inode allocation) use newino.
1136 * This must work because we've just allocated some.
1137 */
1138 if (!pagino)
16259e7d 1139 pagino = be32_to_cpu(agi->agi_newino);
1da177e4 1140
0b48db80
DC
1141 error = xfs_check_agi_freecount(cur, agi);
1142 if (error)
1143 goto error0;
1da177e4 1144
1da177e4 1145 /*
4254b0bb 1146 * If in the same AG as the parent, try to get near the parent.
1da177e4
LT
1147 */
1148 if (pagno == agno) {
4254b0bb
CH
1149 int doneleft; /* done, to the left */
1150 int doneright; /* done, to the right */
bd169565 1151 int searchdistance = 10;
4254b0bb 1152
21875505 1153 error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
4254b0bb 1154 if (error)
1da177e4 1155 goto error0;
c29aad41 1156 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
4254b0bb
CH
1157
1158 error = xfs_inobt_get_rec(cur, &rec, &j);
1159 if (error)
1160 goto error0;
c29aad41 1161 XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
4254b0bb
CH
1162
1163 if (rec.ir_freecount > 0) {
1da177e4
LT
1164 /*
1165 * Found a free inode in the same chunk
4254b0bb 1166 * as the parent, done.
1da177e4 1167 */
4254b0bb 1168 goto alloc_inode;
1da177e4 1169 }
4254b0bb
CH
1170
1171
1da177e4 1172 /*
4254b0bb 1173 * In the same AG as parent, but parent's chunk is full.
1da177e4 1174 */
1da177e4 1175
4254b0bb
CH
1176 /* duplicate the cursor, search left & right simultaneously */
1177 error = xfs_btree_dup_cursor(cur, &tcur);
1178 if (error)
1179 goto error0;
1180
bd169565
DC
1181 /*
1182 * Skip to last blocks looked up if same parent inode.
1183 */
1184 if (pagino != NULLAGINO &&
1185 pag->pagl_pagino == pagino &&
1186 pag->pagl_leftrec != NULLAGINO &&
1187 pag->pagl_rightrec != NULLAGINO) {
1188 error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
43df2ee6 1189 &trec, &doneleft);
bd169565
DC
1190 if (error)
1191 goto error1;
4254b0bb 1192
bd169565 1193 error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
43df2ee6 1194 &rec, &doneright);
bd169565
DC
1195 if (error)
1196 goto error1;
1197 } else {
1198 /* search left with tcur, back up 1 record */
1199 error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
1200 if (error)
1201 goto error1;
1202
1203 /* search right with cur, go forward 1 record. */
1204 error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
1205 if (error)
1206 goto error1;
1207 }
4254b0bb
CH
1208
1209 /*
1210 * Loop until we find an inode chunk with a free inode.
1211 */
1212 while (!doneleft || !doneright) {
1213 int useleft; /* using left inode chunk this time */
1214
bd169565
DC
1215 if (!--searchdistance) {
1216 /*
1217 * Not in range - save last search
1218 * location and allocate a new inode
1219 */
3b826386 1220 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1221 pag->pagl_leftrec = trec.ir_startino;
1222 pag->pagl_rightrec = rec.ir_startino;
1223 pag->pagl_pagino = pagino;
1224 goto newino;
1225 }
1226
4254b0bb
CH
1227 /* figure out the closer block if both are valid. */
1228 if (!doneleft && !doneright) {
1229 useleft = pagino -
1230 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
1231 rec.ir_startino - pagino;
1232 } else {
1233 useleft = !doneleft;
1da177e4 1234 }
4254b0bb
CH
1235
1236 /* free inodes to the left? */
1237 if (useleft && trec.ir_freecount) {
1238 rec = trec;
1239 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1240 cur = tcur;
bd169565
DC
1241
1242 pag->pagl_leftrec = trec.ir_startino;
1243 pag->pagl_rightrec = rec.ir_startino;
1244 pag->pagl_pagino = pagino;
4254b0bb 1245 goto alloc_inode;
1da177e4 1246 }
1da177e4 1247
4254b0bb
CH
1248 /* free inodes to the right? */
1249 if (!useleft && rec.ir_freecount) {
1250 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
bd169565
DC
1251
1252 pag->pagl_leftrec = trec.ir_startino;
1253 pag->pagl_rightrec = rec.ir_startino;
1254 pag->pagl_pagino = pagino;
4254b0bb 1255 goto alloc_inode;
1da177e4 1256 }
4254b0bb
CH
1257
1258 /* get next record to check */
1259 if (useleft) {
1260 error = xfs_ialloc_next_rec(tcur, &trec,
1261 &doneleft, 1);
1262 } else {
1263 error = xfs_ialloc_next_rec(cur, &rec,
1264 &doneright, 0);
1265 }
1266 if (error)
1267 goto error1;
1da177e4 1268 }
bd169565
DC
1269
1270 /*
1271 * We've reached the end of the btree. because
1272 * we are only searching a small chunk of the
1273 * btree each search, there is obviously free
1274 * inodes closer to the parent inode than we
1275 * are now. restart the search again.
1276 */
1277 pag->pagl_pagino = NULLAGINO;
1278 pag->pagl_leftrec = NULLAGINO;
1279 pag->pagl_rightrec = NULLAGINO;
1280 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
1281 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1282 goto restart_pagno;
1da177e4 1283 }
4254b0bb 1284
1da177e4 1285 /*
4254b0bb 1286 * In a different AG from the parent.
1da177e4
LT
1287 * See if the most recently allocated block has any free.
1288 */
bd169565 1289newino:
69ef921b 1290 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
21875505
CH
1291 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1292 XFS_LOOKUP_EQ, &i);
4254b0bb 1293 if (error)
1da177e4 1294 goto error0;
4254b0bb
CH
1295
1296 if (i == 1) {
1297 error = xfs_inobt_get_rec(cur, &rec, &j);
1298 if (error)
1299 goto error0;
1300
1301 if (j == 1 && rec.ir_freecount > 0) {
1302 /*
1303 * The last chunk allocated in the group
1304 * still has a free inode.
1305 */
1306 goto alloc_inode;
1307 }
1da177e4 1308 }
bd169565 1309 }
4254b0bb 1310
bd169565
DC
1311 /*
1312 * None left in the last group, search the whole AG
1313 */
1314 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1315 if (error)
1316 goto error0;
c29aad41 1317 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1318
1319 for (;;) {
1320 error = xfs_inobt_get_rec(cur, &rec, &i);
1321 if (error)
1322 goto error0;
c29aad41 1323 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
bd169565
DC
1324 if (rec.ir_freecount > 0)
1325 break;
1326 error = xfs_btree_increment(cur, 0, &i);
4254b0bb
CH
1327 if (error)
1328 goto error0;
c29aad41 1329 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4 1330 }
4254b0bb
CH
1331
1332alloc_inode:
d4cc540b 1333 offset = xfs_inobt_first_free_inode(&rec);
1da177e4
LT
1334 ASSERT(offset >= 0);
1335 ASSERT(offset < XFS_INODES_PER_CHUNK);
1336 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1337 XFS_INODES_PER_CHUNK) == 0);
1338 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
0d87e656 1339 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1da177e4 1340 rec.ir_freecount--;
afabc24a
CH
1341 error = xfs_inobt_update(cur, &rec);
1342 if (error)
1da177e4 1343 goto error0;
413d57c9 1344 be32_add_cpu(&agi->agi_freecount, -1);
1da177e4 1345 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a 1346 pag->pagi_freecount--;
1da177e4 1347
0b48db80
DC
1348 error = xfs_check_agi_freecount(cur, agi);
1349 if (error)
1350 goto error0;
1351
1da177e4
LT
1352 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1353 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
44b56e0a 1354 xfs_perag_put(pag);
1da177e4
LT
1355 *inop = ino;
1356 return 0;
1357error1:
1358 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
1359error0:
1360 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
44b56e0a 1361 xfs_perag_put(pag);
1da177e4
LT
1362 return error;
1363}
1364
6dd8638e
BF
1365/*
1366 * Use the free inode btree to allocate an inode based on distance from the
1367 * parent. Note that the provided cursor may be deleted and replaced.
1368 */
1369STATIC int
1370xfs_dialloc_ag_finobt_near(
1371 xfs_agino_t pagino,
1372 struct xfs_btree_cur **ocur,
1373 struct xfs_inobt_rec_incore *rec)
1374{
1375 struct xfs_btree_cur *lcur = *ocur; /* left search cursor */
1376 struct xfs_btree_cur *rcur; /* right search cursor */
1377 struct xfs_inobt_rec_incore rrec;
1378 int error;
1379 int i, j;
1380
1381 error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1382 if (error)
1383 return error;
1384
1385 if (i == 1) {
1386 error = xfs_inobt_get_rec(lcur, rec, &i);
1387 if (error)
1388 return error;
5fb5aeee 1389 XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
6dd8638e
BF
1390
1391 /*
1392 * See if we've landed in the parent inode record. The finobt
1393 * only tracks chunks with at least one free inode, so record
1394 * existence is enough.
1395 */
1396 if (pagino >= rec->ir_startino &&
1397 pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1398 return 0;
1399 }
1400
1401 error = xfs_btree_dup_cursor(lcur, &rcur);
1402 if (error)
1403 return error;
1404
1405 error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1406 if (error)
1407 goto error_rcur;
1408 if (j == 1) {
1409 error = xfs_inobt_get_rec(rcur, &rrec, &j);
1410 if (error)
1411 goto error_rcur;
c29aad41 1412 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
6dd8638e
BF
1413 }
1414
c29aad41 1415 XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
6dd8638e
BF
1416 if (i == 1 && j == 1) {
1417 /*
1418 * Both the left and right records are valid. Choose the closer
1419 * inode chunk to the target.
1420 */
1421 if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1422 (rrec.ir_startino - pagino)) {
1423 *rec = rrec;
1424 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1425 *ocur = rcur;
1426 } else {
1427 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1428 }
1429 } else if (j == 1) {
1430 /* only the right record is valid */
1431 *rec = rrec;
1432 xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1433 *ocur = rcur;
1434 } else if (i == 1) {
1435 /* only the left record is valid */
1436 xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1437 }
1438
1439 return 0;
1440
1441error_rcur:
1442 xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1443 return error;
1444}
1445
1446/*
1447 * Use the free inode btree to find a free inode based on a newino hint. If
1448 * the hint is NULL, find the first free inode in the AG.
1449 */
1450STATIC int
1451xfs_dialloc_ag_finobt_newino(
1452 struct xfs_agi *agi,
1453 struct xfs_btree_cur *cur,
1454 struct xfs_inobt_rec_incore *rec)
1455{
1456 int error;
1457 int i;
1458
1459 if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
e68ed775
DC
1460 error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1461 XFS_LOOKUP_EQ, &i);
6dd8638e
BF
1462 if (error)
1463 return error;
1464 if (i == 1) {
1465 error = xfs_inobt_get_rec(cur, rec, &i);
1466 if (error)
1467 return error;
5fb5aeee 1468 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1469 return 0;
1470 }
1471 }
1472
1473 /*
1474 * Find the first inode available in the AG.
1475 */
1476 error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1477 if (error)
1478 return error;
5fb5aeee 1479 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1480
1481 error = xfs_inobt_get_rec(cur, rec, &i);
1482 if (error)
1483 return error;
5fb5aeee 1484 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1485
1486 return 0;
1487}
1488
1489/*
1490 * Update the inobt based on a modification made to the finobt. Also ensure that
1491 * the records from both trees are equivalent post-modification.
1492 */
1493STATIC int
1494xfs_dialloc_ag_update_inobt(
1495 struct xfs_btree_cur *cur, /* inobt cursor */
1496 struct xfs_inobt_rec_incore *frec, /* finobt record */
1497 int offset) /* inode offset */
1498{
1499 struct xfs_inobt_rec_incore rec;
1500 int error;
1501 int i;
1502
1503 error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1504 if (error)
1505 return error;
5fb5aeee 1506 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1507
1508 error = xfs_inobt_get_rec(cur, &rec, &i);
1509 if (error)
1510 return error;
5fb5aeee 1511 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
6dd8638e
BF
1512 ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1513 XFS_INODES_PER_CHUNK) == 0);
1514
1515 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1516 rec.ir_freecount--;
1517
5fb5aeee 1518 XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
6dd8638e
BF
1519 (rec.ir_freecount == frec->ir_freecount));
1520
b72091f2 1521 return xfs_inobt_update(cur, &rec);
6dd8638e
BF
1522}
1523
1524/*
1525 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1526 * back to the inobt search algorithm.
1527 *
1528 * The caller selected an AG for us, and made sure that free inodes are
1529 * available.
1530 */
1531STATIC int
1532xfs_dialloc_ag(
1533 struct xfs_trans *tp,
1534 struct xfs_buf *agbp,
1535 xfs_ino_t parent,
1536 xfs_ino_t *inop)
1537{
1538 struct xfs_mount *mp = tp->t_mountp;
1539 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1540 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1541 xfs_agnumber_t pagno = XFS_INO_TO_AGNO(mp, parent);
1542 xfs_agino_t pagino = XFS_INO_TO_AGINO(mp, parent);
1543 struct xfs_perag *pag;
1544 struct xfs_btree_cur *cur; /* finobt cursor */
1545 struct xfs_btree_cur *icur; /* inobt cursor */
1546 struct xfs_inobt_rec_incore rec;
1547 xfs_ino_t ino;
1548 int error;
1549 int offset;
1550 int i;
1551
1552 if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1553 return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1554
1555 pag = xfs_perag_get(mp, agno);
1556
1557 /*
1558 * If pagino is 0 (this is the root inode allocation) use newino.
1559 * This must work because we've just allocated some.
1560 */
1561 if (!pagino)
1562 pagino = be32_to_cpu(agi->agi_newino);
1563
1564 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1565
1566 error = xfs_check_agi_freecount(cur, agi);
1567 if (error)
1568 goto error_cur;
1569
1570 /*
1571 * The search algorithm depends on whether we're in the same AG as the
1572 * parent. If so, find the closest available inode to the parent. If
1573 * not, consider the agi hint or find the first free inode in the AG.
1574 */
1575 if (agno == pagno)
1576 error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1577 else
1578 error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1579 if (error)
1580 goto error_cur;
1581
d4cc540b 1582 offset = xfs_inobt_first_free_inode(&rec);
6dd8638e
BF
1583 ASSERT(offset >= 0);
1584 ASSERT(offset < XFS_INODES_PER_CHUNK);
1585 ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1586 XFS_INODES_PER_CHUNK) == 0);
1587 ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1588
1589 /*
1590 * Modify or remove the finobt record.
1591 */
1592 rec.ir_free &= ~XFS_INOBT_MASK(offset);
1593 rec.ir_freecount--;
1594 if (rec.ir_freecount)
1595 error = xfs_inobt_update(cur, &rec);
1596 else
1597 error = xfs_btree_delete(cur, &i);
1598 if (error)
1599 goto error_cur;
1600
1601 /*
1602 * The finobt has now been updated appropriately. We haven't updated the
1603 * agi and superblock yet, so we can create an inobt cursor and validate
1604 * the original freecount. If all is well, make the equivalent update to
1605 * the inobt using the finobt record and offset information.
1606 */
1607 icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1608
1609 error = xfs_check_agi_freecount(icur, agi);
1610 if (error)
1611 goto error_icur;
1612
1613 error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1614 if (error)
1615 goto error_icur;
1616
1617 /*
1618 * Both trees have now been updated. We must update the perag and
1619 * superblock before we can check the freecount for each btree.
1620 */
1621 be32_add_cpu(&agi->agi_freecount, -1);
1622 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1623 pag->pagi_freecount--;
1624
1625 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1626
1627 error = xfs_check_agi_freecount(icur, agi);
1628 if (error)
1629 goto error_icur;
1630 error = xfs_check_agi_freecount(cur, agi);
1631 if (error)
1632 goto error_icur;
1633
1634 xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1635 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1636 xfs_perag_put(pag);
1637 *inop = ino;
1638 return 0;
1639
1640error_icur:
1641 xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1642error_cur:
1643 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1644 xfs_perag_put(pag);
1645 return error;
1646}
1647
f2ecc5e4
CH
1648/*
1649 * Allocate an inode on disk.
1650 *
1651 * Mode is used to tell whether the new inode will need space, and whether it
1652 * is a directory.
1653 *
1654 * This function is designed to be called twice if it has to do an allocation
1655 * to make more free inodes. On the first call, *IO_agbp should be set to NULL.
1656 * If an inode is available without having to performn an allocation, an inode
cd856db6
CM
1657 * number is returned. In this case, *IO_agbp is set to NULL. If an allocation
1658 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1659 * The caller should then commit the current transaction, allocate a
f2ecc5e4
CH
1660 * new transaction, and call xfs_dialloc() again, passing in the previous value
1661 * of *IO_agbp. IO_agbp should be held across the transactions. Since the AGI
1662 * buffer is locked across the two calls, the second call is guaranteed to have
1663 * a free inode available.
1664 *
1665 * Once we successfully pick an inode its number is returned and the on-disk
1666 * data structures are updated. The inode itself is not read in, since doing so
1667 * would break ordering constraints with xfs_reclaim.
1668 */
1669int
1670xfs_dialloc(
1671 struct xfs_trans *tp,
1672 xfs_ino_t parent,
1673 umode_t mode,
1674 int okalloc,
1675 struct xfs_buf **IO_agbp,
f2ecc5e4
CH
1676 xfs_ino_t *inop)
1677{
55d6af64 1678 struct xfs_mount *mp = tp->t_mountp;
f2ecc5e4
CH
1679 struct xfs_buf *agbp;
1680 xfs_agnumber_t agno;
f2ecc5e4
CH
1681 int error;
1682 int ialloced;
1683 int noroom = 0;
be60fe54 1684 xfs_agnumber_t start_agno;
f2ecc5e4
CH
1685 struct xfs_perag *pag;
1686
4bb61069 1687 if (*IO_agbp) {
f2ecc5e4 1688 /*
4bb61069
CH
1689 * If the caller passes in a pointer to the AGI buffer,
1690 * continue where we left off before. In this case, we
f2ecc5e4
CH
1691 * know that the allocation group has free inodes.
1692 */
1693 agbp = *IO_agbp;
4bb61069 1694 goto out_alloc;
f2ecc5e4 1695 }
4bb61069
CH
1696
1697 /*
1698 * We do not have an agbp, so select an initial allocation
1699 * group for inode allocation.
1700 */
be60fe54
CH
1701 start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1702 if (start_agno == NULLAGNUMBER) {
4bb61069
CH
1703 *inop = NULLFSINO;
1704 return 0;
1705 }
55d6af64 1706
f2ecc5e4
CH
1707 /*
1708 * If we have already hit the ceiling of inode blocks then clear
1709 * okalloc so we scan all available agi structures for a free
1710 * inode.
74f9ce1c
GW
1711 *
1712 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1713 * which will sacrifice the preciseness but improve the performance.
f2ecc5e4 1714 */
f2ecc5e4 1715 if (mp->m_maxicount &&
74f9ce1c
GW
1716 percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1717 > mp->m_maxicount) {
f2ecc5e4
CH
1718 noroom = 1;
1719 okalloc = 0;
1720 }
1721
1722 /*
1723 * Loop until we find an allocation group that either has free inodes
1724 * or in which we can allocate some inodes. Iterate through the
1725 * allocation groups upward, wrapping at the end.
1726 */
be60fe54
CH
1727 agno = start_agno;
1728 for (;;) {
1729 pag = xfs_perag_get(mp, agno);
1730 if (!pag->pagi_inodeok) {
1731 xfs_ialloc_next_ag(mp);
1732 goto nextag;
1733 }
1734
1735 if (!pag->pagi_init) {
1736 error = xfs_ialloc_pagi_init(mp, tp, agno);
1737 if (error)
1738 goto out_error;
f2ecc5e4 1739 }
be60fe54 1740
f2ecc5e4 1741 /*
be60fe54 1742 * Do a first racy fast path check if this AG is usable.
f2ecc5e4 1743 */
be60fe54
CH
1744 if (!pag->pagi_freecount && !okalloc)
1745 goto nextag;
1746
c4982110
CH
1747 /*
1748 * Then read in the AGI buffer and recheck with the AGI buffer
1749 * lock held.
1750 */
be60fe54
CH
1751 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1752 if (error)
1753 goto out_error;
1754
be60fe54
CH
1755 if (pag->pagi_freecount) {
1756 xfs_perag_put(pag);
1757 goto out_alloc;
1758 }
1759
c4982110
CH
1760 if (!okalloc)
1761 goto nextag_relse_buffer;
1762
be60fe54
CH
1763
1764 error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1765 if (error) {
1766 xfs_trans_brelse(tp, agbp);
1767
2451337d 1768 if (error != -ENOSPC)
be60fe54
CH
1769 goto out_error;
1770
1771 xfs_perag_put(pag);
f2ecc5e4 1772 *inop = NULLFSINO;
be60fe54 1773 return 0;
f2ecc5e4 1774 }
be60fe54
CH
1775
1776 if (ialloced) {
1777 /*
1778 * We successfully allocated some inodes, return
1779 * the current context to the caller so that it
1780 * can commit the current transaction and call
1781 * us again where we left off.
1782 */
1783 ASSERT(pag->pagi_freecount > 0);
f2ecc5e4 1784 xfs_perag_put(pag);
be60fe54
CH
1785
1786 *IO_agbp = agbp;
1787 *inop = NULLFSINO;
1788 return 0;
f2ecc5e4 1789 }
be60fe54 1790
c4982110
CH
1791nextag_relse_buffer:
1792 xfs_trans_brelse(tp, agbp);
be60fe54 1793nextag:
f2ecc5e4 1794 xfs_perag_put(pag);
be60fe54
CH
1795 if (++agno == mp->m_sb.sb_agcount)
1796 agno = 0;
1797 if (agno == start_agno) {
1798 *inop = NULLFSINO;
2451337d 1799 return noroom ? -ENOSPC : 0;
be60fe54 1800 }
f2ecc5e4
CH
1801 }
1802
4bb61069 1803out_alloc:
f2ecc5e4
CH
1804 *IO_agbp = NULL;
1805 return xfs_dialloc_ag(tp, agbp, parent, inop);
be60fe54
CH
1806out_error:
1807 xfs_perag_put(pag);
b474c7ae 1808 return error;
f2ecc5e4
CH
1809}
1810
10ae3dc7
BF
1811/*
1812 * Free the blocks of an inode chunk. We must consider that the inode chunk
1813 * might be sparse and only free the regions that are allocated as part of the
1814 * chunk.
1815 */
1816STATIC void
1817xfs_difree_inode_chunk(
1818 struct xfs_mount *mp,
1819 xfs_agnumber_t agno,
1820 struct xfs_inobt_rec_incore *rec,
2c3234d1 1821 struct xfs_defer_ops *dfops)
10ae3dc7
BF
1822{
1823 xfs_agblock_t sagbno = XFS_AGINO_TO_AGBNO(mp, rec->ir_startino);
1824 int startidx, endidx;
1825 int nextbit;
1826 xfs_agblock_t agbno;
1827 int contigblk;
1828 DECLARE_BITMAP(holemask, XFS_INOBT_HOLEMASK_BITS);
1829
1830 if (!xfs_inobt_issparse(rec->ir_holemask)) {
1831 /* not sparse, calculate extent info directly */
2c3234d1 1832 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, sagbno),
59bad075 1833 mp->m_ialloc_blks);
10ae3dc7
BF
1834 return;
1835 }
1836
1837 /* holemask is only 16-bits (fits in an unsigned long) */
1838 ASSERT(sizeof(rec->ir_holemask) <= sizeof(holemask[0]));
1839 holemask[0] = rec->ir_holemask;
1840
1841 /*
1842 * Find contiguous ranges of zeroes (i.e., allocated regions) in the
1843 * holemask and convert the start/end index of each range to an extent.
1844 * We start with the start and end index both pointing at the first 0 in
1845 * the mask.
1846 */
1847 startidx = endidx = find_first_zero_bit(holemask,
1848 XFS_INOBT_HOLEMASK_BITS);
1849 nextbit = startidx + 1;
1850 while (startidx < XFS_INOBT_HOLEMASK_BITS) {
1851 nextbit = find_next_zero_bit(holemask, XFS_INOBT_HOLEMASK_BITS,
1852 nextbit);
1853 /*
1854 * If the next zero bit is contiguous, update the end index of
1855 * the current range and continue.
1856 */
1857 if (nextbit != XFS_INOBT_HOLEMASK_BITS &&
1858 nextbit == endidx + 1) {
1859 endidx = nextbit;
1860 goto next;
1861 }
1862
1863 /*
1864 * nextbit is not contiguous with the current end index. Convert
1865 * the current start/end to an extent and add it to the free
1866 * list.
1867 */
1868 agbno = sagbno + (startidx * XFS_INODES_PER_HOLEMASK_BIT) /
1869 mp->m_sb.sb_inopblock;
1870 contigblk = ((endidx - startidx + 1) *
1871 XFS_INODES_PER_HOLEMASK_BIT) /
1872 mp->m_sb.sb_inopblock;
1873
1874 ASSERT(agbno % mp->m_sb.sb_spino_align == 0);
1875 ASSERT(contigblk % mp->m_sb.sb_spino_align == 0);
2c3234d1 1876 xfs_bmap_add_free(mp, dfops, XFS_AGB_TO_FSB(mp, agno, agbno),
59bad075 1877 contigblk);
10ae3dc7
BF
1878
1879 /* reset range to current bit and carry on... */
1880 startidx = endidx = nextbit;
1881
1882next:
1883 nextbit++;
1884 }
1885}
1886
2b64ee5c
BF
1887STATIC int
1888xfs_difree_inobt(
1889 struct xfs_mount *mp,
1890 struct xfs_trans *tp,
1891 struct xfs_buf *agbp,
1892 xfs_agino_t agino,
2c3234d1 1893 struct xfs_defer_ops *dfops,
09b56604 1894 struct xfs_icluster *xic,
2b64ee5c 1895 struct xfs_inobt_rec_incore *orec)
1da177e4 1896{
2b64ee5c
BF
1897 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
1898 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
1899 struct xfs_perag *pag;
1900 struct xfs_btree_cur *cur;
1901 struct xfs_inobt_rec_incore rec;
1902 int ilen;
1903 int error;
1904 int i;
1905 int off;
1da177e4 1906
69ef921b 1907 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2b64ee5c
BF
1908 ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1909
1da177e4
LT
1910 /*
1911 * Initialize the cursor.
1912 */
57bd3dbe 1913 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1da177e4 1914
0b48db80
DC
1915 error = xfs_check_agi_freecount(cur, agi);
1916 if (error)
1917 goto error0;
1918
1da177e4
LT
1919 /*
1920 * Look for the entry describing this inode.
1921 */
21875505 1922 if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
0b932ccc
DC
1923 xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1924 __func__, error);
1da177e4
LT
1925 goto error0;
1926 }
c29aad41 1927 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
2e287a73
CH
1928 error = xfs_inobt_get_rec(cur, &rec, &i);
1929 if (error) {
0b932ccc
DC
1930 xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1931 __func__, error);
1da177e4
LT
1932 goto error0;
1933 }
c29aad41 1934 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1da177e4
LT
1935 /*
1936 * Get the offset in the inode chunk.
1937 */
1938 off = agino - rec.ir_startino;
1939 ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
0d87e656 1940 ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1da177e4
LT
1941 /*
1942 * Mark the inode free & increment the count.
1943 */
0d87e656 1944 rec.ir_free |= XFS_INOBT_MASK(off);
1da177e4
LT
1945 rec.ir_freecount++;
1946
1947 /*
999633d3
BF
1948 * When an inode chunk is free, it becomes eligible for removal. Don't
1949 * remove the chunk if the block size is large enough for multiple inode
1950 * chunks (that might not be free).
1da177e4 1951 */
1bd960ee 1952 if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
999633d3
BF
1953 rec.ir_free == XFS_INOBT_ALL_FREE &&
1954 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK) {
09b56604
BF
1955 xic->deleted = 1;
1956 xic->first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1957 xic->alloc = xfs_inobt_irec_to_allocmask(&rec);
1da177e4
LT
1958
1959 /*
1960 * Remove the inode cluster from the AGI B+Tree, adjust the
1961 * AGI and Superblock inode counts, and mark the disk space
1962 * to be freed when the transaction is committed.
1963 */
999633d3 1964 ilen = rec.ir_freecount;
413d57c9
MS
1965 be32_add_cpu(&agi->agi_count, -ilen);
1966 be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1da177e4 1967 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
44b56e0a
DC
1968 pag = xfs_perag_get(mp, agno);
1969 pag->pagi_freecount -= ilen - 1;
1970 xfs_perag_put(pag);
1da177e4
LT
1971 xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1972 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1973
91cca5df 1974 if ((error = xfs_btree_delete(cur, &i))) {
0b932ccc
DC
1975 xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1976 __func__, error);
1da177e4
LT
1977 goto error0;
1978 }
1979
2c3234d1 1980 xfs_difree_inode_chunk(mp, agno, &rec, dfops);
1da177e4 1981 } else {
09b56604 1982 xic->deleted = 0;
1da177e4 1983
afabc24a
CH
1984 error = xfs_inobt_update(cur, &rec);
1985 if (error) {
0b932ccc
DC
1986 xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1987 __func__, error);
1da177e4
LT
1988 goto error0;
1989 }
afabc24a 1990
1da177e4
LT
1991 /*
1992 * Change the inode free counts and log the ag/sb changes.
1993 */
413d57c9 1994 be32_add_cpu(&agi->agi_freecount, 1);
1da177e4 1995 xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
44b56e0a
DC
1996 pag = xfs_perag_get(mp, agno);
1997 pag->pagi_freecount++;
1998 xfs_perag_put(pag);
1da177e4
LT
1999 xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
2000 }
2001
0b48db80
DC
2002 error = xfs_check_agi_freecount(cur, agi);
2003 if (error)
2004 goto error0;
1da177e4 2005
2b64ee5c 2006 *orec = rec;
1da177e4
LT
2007 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2008 return 0;
2009
2010error0:
2011 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2012 return error;
2013}
2014
3efa4ffd
BF
2015/*
2016 * Free an inode in the free inode btree.
2017 */
2018STATIC int
2019xfs_difree_finobt(
2020 struct xfs_mount *mp,
2021 struct xfs_trans *tp,
2022 struct xfs_buf *agbp,
2023 xfs_agino_t agino,
2024 struct xfs_inobt_rec_incore *ibtrec) /* inobt record */
2025{
2026 struct xfs_agi *agi = XFS_BUF_TO_AGI(agbp);
2027 xfs_agnumber_t agno = be32_to_cpu(agi->agi_seqno);
2028 struct xfs_btree_cur *cur;
2029 struct xfs_inobt_rec_incore rec;
2030 int offset = agino - ibtrec->ir_startino;
2031 int error;
2032 int i;
2033
2034 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
2035
2036 error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
2037 if (error)
2038 goto error;
2039 if (i == 0) {
2040 /*
2041 * If the record does not exist in the finobt, we must have just
2042 * freed an inode in a previously fully allocated chunk. If not,
2043 * something is out of sync.
2044 */
c29aad41 2045 XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
3efa4ffd 2046
5419040f
BF
2047 error = xfs_inobt_insert_rec(cur, ibtrec->ir_holemask,
2048 ibtrec->ir_count,
2049 ibtrec->ir_freecount,
3efa4ffd
BF
2050 ibtrec->ir_free, &i);
2051 if (error)
2052 goto error;
2053 ASSERT(i == 1);
2054
2055 goto out;
2056 }
2057
2058 /*
2059 * Read and update the existing record. We could just copy the ibtrec
2060 * across here, but that would defeat the purpose of having redundant
2061 * metadata. By making the modifications independently, we can catch
2062 * corruptions that we wouldn't see if we just copied from one record
2063 * to another.
2064 */
2065 error = xfs_inobt_get_rec(cur, &rec, &i);
2066 if (error)
2067 goto error;
c29aad41 2068 XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
3efa4ffd
BF
2069
2070 rec.ir_free |= XFS_INOBT_MASK(offset);
2071 rec.ir_freecount++;
2072
c29aad41 2073 XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
3efa4ffd
BF
2074 (rec.ir_freecount == ibtrec->ir_freecount),
2075 error);
2076
2077 /*
2078 * The content of inobt records should always match between the inobt
2079 * and finobt. The lifecycle of records in the finobt is different from
2080 * the inobt in that the finobt only tracks records with at least one
2081 * free inode. Hence, if all of the inodes are free and we aren't
2082 * keeping inode chunks permanently on disk, remove the record.
2083 * Otherwise, update the record with the new information.
999633d3
BF
2084 *
2085 * Note that we currently can't free chunks when the block size is large
2086 * enough for multiple chunks. Leave the finobt record to remain in sync
2087 * with the inobt.
3efa4ffd 2088 */
999633d3
BF
2089 if (rec.ir_free == XFS_INOBT_ALL_FREE &&
2090 mp->m_sb.sb_inopblock <= XFS_INODES_PER_CHUNK &&
3efa4ffd
BF
2091 !(mp->m_flags & XFS_MOUNT_IKEEP)) {
2092 error = xfs_btree_delete(cur, &i);
2093 if (error)
2094 goto error;
2095 ASSERT(i == 1);
2096 } else {
2097 error = xfs_inobt_update(cur, &rec);
2098 if (error)
2099 goto error;
2100 }
2101
2102out:
2103 error = xfs_check_agi_freecount(cur, agi);
2104 if (error)
2105 goto error;
2106
2107 xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
2108 return 0;
2109
2110error:
2111 xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
2112 return error;
2113}
2114
2b64ee5c
BF
2115/*
2116 * Free disk inode. Carefully avoids touching the incore inode, all
2117 * manipulations incore are the caller's responsibility.
2118 * The on-disk inode is not changed by this operation, only the
2119 * btree (free inode mask) is changed.
2120 */
2121int
2122xfs_difree(
2123 struct xfs_trans *tp, /* transaction pointer */
2124 xfs_ino_t inode, /* inode to be freed */
2c3234d1 2125 struct xfs_defer_ops *dfops, /* extents to free */
09b56604 2126 struct xfs_icluster *xic) /* cluster info if deleted */
2b64ee5c
BF
2127{
2128 /* REFERENCED */
2129 xfs_agblock_t agbno; /* block number containing inode */
2130 struct xfs_buf *agbp; /* buffer for allocation group header */
2131 xfs_agino_t agino; /* allocation group inode number */
2132 xfs_agnumber_t agno; /* allocation group number */
2133 int error; /* error return value */
2134 struct xfs_mount *mp; /* mount structure for filesystem */
2135 struct xfs_inobt_rec_incore rec;/* btree record */
2136
2137 mp = tp->t_mountp;
2138
2139 /*
2140 * Break up inode number into its components.
2141 */
2142 agno = XFS_INO_TO_AGNO(mp, inode);
2143 if (agno >= mp->m_sb.sb_agcount) {
2144 xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
2145 __func__, agno, mp->m_sb.sb_agcount);
2146 ASSERT(0);
2451337d 2147 return -EINVAL;
2b64ee5c
BF
2148 }
2149 agino = XFS_INO_TO_AGINO(mp, inode);
2150 if (inode != XFS_AGINO_TO_INO(mp, agno, agino)) {
2151 xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
2152 __func__, (unsigned long long)inode,
2153 (unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
2154 ASSERT(0);
2451337d 2155 return -EINVAL;
2b64ee5c
BF
2156 }
2157 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2158 if (agbno >= mp->m_sb.sb_agblocks) {
2159 xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
2160 __func__, agbno, mp->m_sb.sb_agblocks);
2161 ASSERT(0);
2451337d 2162 return -EINVAL;
2b64ee5c
BF
2163 }
2164 /*
2165 * Get the allocation group header.
2166 */
2167 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2168 if (error) {
2169 xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
2170 __func__, error);
2171 return error;
2172 }
2173
2174 /*
2175 * Fix up the inode allocation btree.
2176 */
2c3234d1 2177 error = xfs_difree_inobt(mp, tp, agbp, agino, dfops, xic, &rec);
2b64ee5c
BF
2178 if (error)
2179 goto error0;
2180
3efa4ffd
BF
2181 /*
2182 * Fix up the free inode btree.
2183 */
2184 if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
2185 error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
2186 if (error)
2187 goto error0;
2188 }
2189
2b64ee5c
BF
2190 return 0;
2191
2192error0:
2193 return error;
2194}
2195
7124fe0a
DC
2196STATIC int
2197xfs_imap_lookup(
2198 struct xfs_mount *mp,
2199 struct xfs_trans *tp,
2200 xfs_agnumber_t agno,
2201 xfs_agino_t agino,
2202 xfs_agblock_t agbno,
2203 xfs_agblock_t *chunk_agbno,
2204 xfs_agblock_t *offset_agbno,
2205 int flags)
2206{
2207 struct xfs_inobt_rec_incore rec;
2208 struct xfs_btree_cur *cur;
2209 struct xfs_buf *agbp;
7124fe0a
DC
2210 int error;
2211 int i;
2212
2213 error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
2214 if (error) {
53487786
DC
2215 xfs_alert(mp,
2216 "%s: xfs_ialloc_read_agi() returned error %d, agno %d",
2217 __func__, error, agno);
7124fe0a
DC
2218 return error;
2219 }
2220
2221 /*
4536f2ad
DC
2222 * Lookup the inode record for the given agino. If the record cannot be
2223 * found, then it's an invalid inode number and we should abort. Once
2224 * we have a record, we need to ensure it contains the inode number
2225 * we are looking up.
7124fe0a 2226 */
57bd3dbe 2227 cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
4536f2ad 2228 error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
7124fe0a
DC
2229 if (!error) {
2230 if (i)
2231 error = xfs_inobt_get_rec(cur, &rec, &i);
2232 if (!error && i == 0)
2451337d 2233 error = -EINVAL;
7124fe0a
DC
2234 }
2235
2236 xfs_trans_brelse(tp, agbp);
f307080a 2237 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
7124fe0a
DC
2238 if (error)
2239 return error;
2240
4536f2ad
DC
2241 /* check that the returned record contains the required inode */
2242 if (rec.ir_startino > agino ||
71783438 2243 rec.ir_startino + mp->m_ialloc_inos <= agino)
2451337d 2244 return -EINVAL;
4536f2ad 2245
7124fe0a 2246 /* for untrusted inodes check it is allocated first */
1920779e 2247 if ((flags & XFS_IGET_UNTRUSTED) &&
7124fe0a 2248 (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
2451337d 2249 return -EINVAL;
7124fe0a
DC
2250
2251 *chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
2252 *offset_agbno = agbno - *chunk_agbno;
2253 return 0;
2254}
2255
1da177e4 2256/*
94e1b69d 2257 * Return the location of the inode in imap, for mapping it into a buffer.
1da177e4 2258 */
1da177e4 2259int
94e1b69d
CH
2260xfs_imap(
2261 xfs_mount_t *mp, /* file system mount structure */
2262 xfs_trans_t *tp, /* transaction pointer */
1da177e4 2263 xfs_ino_t ino, /* inode to locate */
94e1b69d
CH
2264 struct xfs_imap *imap, /* location map structure */
2265 uint flags) /* flags for inode btree lookup */
1da177e4
LT
2266{
2267 xfs_agblock_t agbno; /* block number of inode in the alloc group */
1da177e4
LT
2268 xfs_agino_t agino; /* inode number within alloc group */
2269 xfs_agnumber_t agno; /* allocation group number */
2270 int blks_per_cluster; /* num blocks per inode cluster */
2271 xfs_agblock_t chunk_agbno; /* first block in inode chunk */
1da177e4 2272 xfs_agblock_t cluster_agbno; /* first block in inode cluster */
1da177e4 2273 int error; /* error code */
1da177e4 2274 int offset; /* index of inode in its buffer */
836a94ad 2275 xfs_agblock_t offset_agbno; /* blks from chunk start to inode */
1da177e4
LT
2276
2277 ASSERT(ino != NULLFSINO);
94e1b69d 2278
1da177e4
LT
2279 /*
2280 * Split up the inode number into its parts.
2281 */
2282 agno = XFS_INO_TO_AGNO(mp, ino);
2283 agino = XFS_INO_TO_AGINO(mp, ino);
2284 agbno = XFS_AGINO_TO_AGBNO(mp, agino);
2285 if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
2286 ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
2287#ifdef DEBUG
1920779e
DC
2288 /*
2289 * Don't output diagnostic information for untrusted inodes
2290 * as they can be invalid without implying corruption.
2291 */
2292 if (flags & XFS_IGET_UNTRUSTED)
2451337d 2293 return -EINVAL;
1da177e4 2294 if (agno >= mp->m_sb.sb_agcount) {
53487786
DC
2295 xfs_alert(mp,
2296 "%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
2297 __func__, agno, mp->m_sb.sb_agcount);
1da177e4
LT
2298 }
2299 if (agbno >= mp->m_sb.sb_agblocks) {
53487786
DC
2300 xfs_alert(mp,
2301 "%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
2302 __func__, (unsigned long long)agbno,
2303 (unsigned long)mp->m_sb.sb_agblocks);
1da177e4
LT
2304 }
2305 if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
53487786
DC
2306 xfs_alert(mp,
2307 "%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
2308 __func__, ino,
2309 XFS_AGINO_TO_INO(mp, agno, agino));
1da177e4 2310 }
745b1f47 2311 xfs_stack_trace();
1da177e4 2312#endif /* DEBUG */
2451337d 2313 return -EINVAL;
1da177e4 2314 }
94e1b69d 2315
f9e5abcf 2316 blks_per_cluster = xfs_icluster_size_fsb(mp);
7124fe0a
DC
2317
2318 /*
2319 * For bulkstat and handle lookups, we have an untrusted inode number
2320 * that we have to verify is valid. We cannot do this just by reading
2321 * the inode buffer as it may have been unlinked and removed leaving
2322 * inodes in stale state on disk. Hence we have to do a btree lookup
2323 * in all cases where an untrusted inode number is passed.
2324 */
1920779e 2325 if (flags & XFS_IGET_UNTRUSTED) {
7124fe0a
DC
2326 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2327 &chunk_agbno, &offset_agbno, flags);
2328 if (error)
2329 return error;
2330 goto out_map;
2331 }
2332
94e1b69d
CH
2333 /*
2334 * If the inode cluster size is the same as the blocksize or
2335 * smaller we get to the buffer by simple arithmetics.
2336 */
f9e5abcf 2337 if (blks_per_cluster == 1) {
1da177e4
LT
2338 offset = XFS_INO_TO_OFFSET(mp, ino);
2339 ASSERT(offset < mp->m_sb.sb_inopblock);
94e1b69d
CH
2340
2341 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
2342 imap->im_len = XFS_FSB_TO_BB(mp, 1);
2343 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1da177e4
LT
2344 return 0;
2345 }
94e1b69d 2346
94e1b69d
CH
2347 /*
2348 * If the inode chunks are aligned then use simple maths to
2349 * find the location. Otherwise we have to do a btree
2350 * lookup to find the location.
2351 */
1da177e4
LT
2352 if (mp->m_inoalign_mask) {
2353 offset_agbno = agbno & mp->m_inoalign_mask;
2354 chunk_agbno = agbno - offset_agbno;
2355 } else {
7124fe0a
DC
2356 error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
2357 &chunk_agbno, &offset_agbno, flags);
1da177e4
LT
2358 if (error)
2359 return error;
1da177e4 2360 }
94e1b69d 2361
7124fe0a 2362out_map:
1da177e4
LT
2363 ASSERT(agbno >= chunk_agbno);
2364 cluster_agbno = chunk_agbno +
2365 ((offset_agbno / blks_per_cluster) * blks_per_cluster);
2366 offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
2367 XFS_INO_TO_OFFSET(mp, ino);
94e1b69d
CH
2368
2369 imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
2370 imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
2371 imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
2372
2373 /*
2374 * If the inode number maps to a block outside the bounds
2375 * of the file system then return NULL rather than calling
2376 * read_buf and panicing when we get an error from the
2377 * driver.
2378 */
2379 if ((imap->im_blkno + imap->im_len) >
2380 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
53487786
DC
2381 xfs_alert(mp,
2382 "%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
2383 __func__, (unsigned long long) imap->im_blkno,
94e1b69d
CH
2384 (unsigned long long) imap->im_len,
2385 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2451337d 2386 return -EINVAL;
94e1b69d 2387 }
1da177e4 2388 return 0;
1da177e4
LT
2389}
2390
2391/*
2392 * Compute and fill in value of m_in_maxlevels.
2393 */
2394void
2395xfs_ialloc_compute_maxlevels(
2396 xfs_mount_t *mp) /* file system mount structure */
2397{
19b54ee6
DW
2398 uint inodes;
2399
2400 inodes = (1LL << XFS_INO_AGINO_BITS(mp)) >> XFS_INODES_PER_CHUNK_LOG;
2401 mp->m_in_maxlevels = xfs_btree_compute_maxlevels(mp, mp->m_inobt_mnr,
2402 inodes);
1da177e4
LT
2403}
2404
2405/*
aafc3c24
BF
2406 * Log specified fields for the ag hdr (inode section). The growth of the agi
2407 * structure over time requires that we interpret the buffer as two logical
2408 * regions delineated by the end of the unlinked list. This is due to the size
2409 * of the hash table and its location in the middle of the agi.
2410 *
2411 * For example, a request to log a field before agi_unlinked and a field after
2412 * agi_unlinked could cause us to log the entire hash table and use an excessive
2413 * amount of log space. To avoid this behavior, log the region up through
2414 * agi_unlinked in one call and the region after agi_unlinked through the end of
2415 * the structure in another.
1da177e4
LT
2416 */
2417void
2418xfs_ialloc_log_agi(
2419 xfs_trans_t *tp, /* transaction pointer */
2420 xfs_buf_t *bp, /* allocation group header buffer */
2421 int fields) /* bitmask of fields to log */
2422{
2423 int first; /* first byte number */
2424 int last; /* last byte number */
2425 static const short offsets[] = { /* field starting offsets */
2426 /* keep in sync with bit definitions */
2427 offsetof(xfs_agi_t, agi_magicnum),
2428 offsetof(xfs_agi_t, agi_versionnum),
2429 offsetof(xfs_agi_t, agi_seqno),
2430 offsetof(xfs_agi_t, agi_length),
2431 offsetof(xfs_agi_t, agi_count),
2432 offsetof(xfs_agi_t, agi_root),
2433 offsetof(xfs_agi_t, agi_level),
2434 offsetof(xfs_agi_t, agi_freecount),
2435 offsetof(xfs_agi_t, agi_newino),
2436 offsetof(xfs_agi_t, agi_dirino),
2437 offsetof(xfs_agi_t, agi_unlinked),
aafc3c24
BF
2438 offsetof(xfs_agi_t, agi_free_root),
2439 offsetof(xfs_agi_t, agi_free_level),
1da177e4
LT
2440 sizeof(xfs_agi_t)
2441 };
2442#ifdef DEBUG
2443 xfs_agi_t *agi; /* allocation group header */
2444
2445 agi = XFS_BUF_TO_AGI(bp);
69ef921b 2446 ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1da177e4 2447#endif
aafc3c24
BF
2448
2449 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2450
1da177e4 2451 /*
aafc3c24
BF
2452 * Compute byte offsets for the first and last fields in the first
2453 * region and log the agi buffer. This only logs up through
2454 * agi_unlinked.
1da177e4 2455 */
aafc3c24
BF
2456 if (fields & XFS_AGI_ALL_BITS_R1) {
2457 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2458 &first, &last);
2459 xfs_trans_log_buf(tp, bp, first, last);
2460 }
2461
1da177e4 2462 /*
aafc3c24
BF
2463 * Mask off the bits in the first region and calculate the first and
2464 * last field offsets for any bits in the second region.
1da177e4 2465 */
aafc3c24
BF
2466 fields &= ~XFS_AGI_ALL_BITS_R1;
2467 if (fields) {
2468 xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2469 &first, &last);
2470 xfs_trans_log_buf(tp, bp, first, last);
2471 }
1da177e4
LT
2472}
2473
5e1be0fb
CH
2474#ifdef DEBUG
2475STATIC void
2476xfs_check_agi_unlinked(
2477 struct xfs_agi *agi)
2478{
2479 int i;
2480
2481 for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2482 ASSERT(agi->agi_unlinked[i]);
2483}
2484#else
2485#define xfs_check_agi_unlinked(agi)
2486#endif
2487
983d09ff 2488static bool
612cfbfe 2489xfs_agi_verify(
3702ce6e
DC
2490 struct xfs_buf *bp)
2491{
2492 struct xfs_mount *mp = bp->b_target->bt_mount;
2493 struct xfs_agi *agi = XFS_BUF_TO_AGI(bp);
3702ce6e 2494
a45086e2
BF
2495 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2496 if (!uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_meta_uuid))
2497 return false;
2498 if (!xfs_log_check_lsn(mp,
2499 be64_to_cpu(XFS_BUF_TO_AGI(bp)->agi_lsn)))
983d09ff 2500 return false;
a45086e2
BF
2501 }
2502
3702ce6e
DC
2503 /*
2504 * Validate the magic number of the agi block.
2505 */
983d09ff
DC
2506 if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2507 return false;
2508 if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2509 return false;
3702ce6e 2510
e1b05723
ES
2511 if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2512 return false;
3702ce6e
DC
2513 /*
2514 * during growfs operations, the perag is not fully initialised,
2515 * so we can't use it for any useful checking. growfs ensures we can't
2516 * use it by using uncached buffers that don't have the perag attached
2517 * so we can detect and avoid this problem.
2518 */
983d09ff
DC
2519 if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2520 return false;
3702ce6e 2521
3702ce6e 2522 xfs_check_agi_unlinked(agi);
983d09ff 2523 return true;
612cfbfe
DC
2524}
2525
1813dd64
DC
2526static void
2527xfs_agi_read_verify(
612cfbfe
DC
2528 struct xfs_buf *bp)
2529{
983d09ff 2530 struct xfs_mount *mp = bp->b_target->bt_mount;
983d09ff 2531
ce5028cf
ES
2532 if (xfs_sb_version_hascrc(&mp->m_sb) &&
2533 !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2451337d 2534 xfs_buf_ioerror(bp, -EFSBADCRC);
ce5028cf
ES
2535 else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2536 XFS_ERRTAG_IALLOC_READ_AGI,
2537 XFS_RANDOM_IALLOC_READ_AGI))
2451337d 2538 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf
ES
2539
2540 if (bp->b_error)
2541 xfs_verifier_error(bp);
612cfbfe
DC
2542}
2543
b0f539de 2544static void
1813dd64 2545xfs_agi_write_verify(
612cfbfe
DC
2546 struct xfs_buf *bp)
2547{
983d09ff
DC
2548 struct xfs_mount *mp = bp->b_target->bt_mount;
2549 struct xfs_buf_log_item *bip = bp->b_fspriv;
2550
2551 if (!xfs_agi_verify(bp)) {
2451337d 2552 xfs_buf_ioerror(bp, -EFSCORRUPTED);
ce5028cf 2553 xfs_verifier_error(bp);
983d09ff
DC
2554 return;
2555 }
2556
2557 if (!xfs_sb_version_hascrc(&mp->m_sb))
2558 return;
2559
2560 if (bip)
2561 XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
f1dbcd7e 2562 xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
3702ce6e
DC
2563}
2564
1813dd64 2565const struct xfs_buf_ops xfs_agi_buf_ops = {
233135b7 2566 .name = "xfs_agi",
1813dd64
DC
2567 .verify_read = xfs_agi_read_verify,
2568 .verify_write = xfs_agi_write_verify,
2569};
2570
1da177e4
LT
2571/*
2572 * Read in the allocation group header (inode allocation section)
2573 */
2574int
5e1be0fb
CH
2575xfs_read_agi(
2576 struct xfs_mount *mp, /* file system mount structure */
2577 struct xfs_trans *tp, /* transaction pointer */
2578 xfs_agnumber_t agno, /* allocation group number */
2579 struct xfs_buf **bpp) /* allocation group hdr buf */
1da177e4 2580{
5e1be0fb 2581 int error;
1da177e4 2582
d123031a 2583 trace_xfs_read_agi(mp, agno);
5e1be0fb 2584
d123031a 2585 ASSERT(agno != NULLAGNUMBER);
5e1be0fb 2586 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
1da177e4 2587 XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
1813dd64 2588 XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
1da177e4
LT
2589 if (error)
2590 return error;
5e1be0fb 2591
38f23232 2592 xfs_buf_set_ref(*bpp, XFS_AGI_REF);
5e1be0fb
CH
2593 return 0;
2594}
2595
2596int
2597xfs_ialloc_read_agi(
2598 struct xfs_mount *mp, /* file system mount structure */
2599 struct xfs_trans *tp, /* transaction pointer */
2600 xfs_agnumber_t agno, /* allocation group number */
2601 struct xfs_buf **bpp) /* allocation group hdr buf */
2602{
2603 struct xfs_agi *agi; /* allocation group header */
2604 struct xfs_perag *pag; /* per allocation group data */
2605 int error;
2606
d123031a
DC
2607 trace_xfs_ialloc_read_agi(mp, agno);
2608
5e1be0fb
CH
2609 error = xfs_read_agi(mp, tp, agno, bpp);
2610 if (error)
2611 return error;
2612
2613 agi = XFS_BUF_TO_AGI(*bpp);
44b56e0a 2614 pag = xfs_perag_get(mp, agno);
1da177e4 2615 if (!pag->pagi_init) {
16259e7d 2616 pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
92821e2b 2617 pag->pagi_count = be32_to_cpu(agi->agi_count);
1da177e4 2618 pag->pagi_init = 1;
1da177e4 2619 }
1da177e4 2620
5e1be0fb
CH
2621 /*
2622 * It's possible for these to be out of sync if
2623 * we are in the middle of a forced shutdown.
2624 */
2625 ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2626 XFS_FORCED_SHUTDOWN(mp));
44b56e0a 2627 xfs_perag_put(pag);
1da177e4
LT
2628 return 0;
2629}
92821e2b
DC
2630
2631/*
2632 * Read in the agi to initialise the per-ag data in the mount structure
2633 */
2634int
2635xfs_ialloc_pagi_init(
2636 xfs_mount_t *mp, /* file system mount structure */
2637 xfs_trans_t *tp, /* transaction pointer */
2638 xfs_agnumber_t agno) /* allocation group number */
2639{
2640 xfs_buf_t *bp = NULL;
2641 int error;
2642
2643 error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2644 if (error)
2645 return error;
2646 if (bp)
2647 xfs_trans_brelse(tp, bp);
2648 return 0;
2649}
This page took 0.753624 seconds and 5 git commands to generate.