xfs: use WRITE_SYNC_PLUG for synchronous writeout
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
25e41b3d
CH
45
46/*
47 * Prime number of hash buckets since address is used as the key.
48 */
49#define NVSYNC 37
50#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51static wait_queue_head_t xfs_ioend_wq[NVSYNC];
52
53void __init
54xfs_ioend_init(void)
55{
56 int i;
57
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
60}
61
62void
63xfs_ioend_wait(
64 xfs_inode_t *ip)
65{
66 wait_queue_head_t *wq = to_ioend_wq(ip);
67
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
69}
70
71STATIC void
72xfs_ioend_wake(
73 xfs_inode_t *ip)
74{
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
77}
78
f51623b2
NS
79STATIC void
80xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
85{
86 struct buffer_head *bh, *head;
87
88 *delalloc = *unmapped = *unwritten = 0;
89
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
f51623b2
NS
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
99}
100
1da177e4
LT
101#if defined(XFS_RW_TRACE)
102void
103xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
ed9d88f7 107 unsigned long pgoff)
1da177e4
LT
108{
109 xfs_inode_t *ip;
1da177e4 110 loff_t isize = i_size_read(inode);
f6d6d4fc 111 loff_t offset = page_offset(page);
1da177e4
LT
112 int delalloc = -1, unmapped = -1, unwritten = -1;
113
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
116
e6064d30 117 ip = XFS_I(inode);
1da177e4
LT
118 if (!ip->i_rwtrace)
119 return;
120
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
ed9d88f7 126 (void *)pgoff,
1da177e4
LT
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
f1fdc848 136 (void *)((unsigned long)current_pid()),
1da177e4
LT
137 (void *)NULL);
138}
139#else
ed9d88f7 140#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
141#endif
142
6214ed44
CH
143STATIC struct block_device *
144xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
146{
147 struct xfs_mount *mp = ip->i_mount;
148
71ddabb9 149 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
153}
154
f6d6d4fc
CH
155/*
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
160 */
0829c360
CH
161STATIC void
162xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
164{
f6d6d4fc 165 struct buffer_head *bh, *next;
583fa586 166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
167
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
7d04a335 170 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 171 }
583fa586
CH
172
173 /*
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
178 */
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
b677c210 182 }
583fa586 183
25e41b3d 184 xfs_ioend_wake(ip);
0829c360
CH
185 mempool_free(ioend, xfs_ioend_pool);
186}
187
932640e8
DC
188/*
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
191 */
192STATIC xfs_fsize_t
193xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
195{
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
199
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
204}
205
ba87ea69
LM
206/*
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
613d7043 209 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
212 */
932640e8 213
ba87ea69
LM
214STATIC void
215xfs_setfilesize(
216 xfs_ioend_t *ioend)
217{
b677c210 218 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 219 xfs_fsize_t isize;
ba87ea69 220
ba87ea69
LM
221 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
222 ASSERT(ioend->io_type != IOMAP_READ);
223
224 if (unlikely(ioend->io_error))
225 return;
226
ba87ea69 227 xfs_ilock(ip, XFS_ILOCK_EXCL);
932640e8
DC
228 isize = xfs_ioend_new_eof(ioend);
229 if (isize) {
ba87ea69 230 ip->i_d.di_size = isize;
94b97e39 231 xfs_mark_inode_dirty_sync(ip);
ba87ea69
LM
232 }
233
234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
235}
236
0829c360 237/*
f6d6d4fc 238 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
239 */
240STATIC void
241xfs_end_bio_delalloc(
c4028958 242 struct work_struct *work)
f6d6d4fc 243{
c4028958
DH
244 xfs_ioend_t *ioend =
245 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 246
ba87ea69 247 xfs_setfilesize(ioend);
f6d6d4fc
CH
248 xfs_destroy_ioend(ioend);
249}
250
251/*
252 * Buffered IO write completion for regular, written extents.
253 */
254STATIC void
255xfs_end_bio_written(
c4028958 256 struct work_struct *work)
f6d6d4fc 257{
c4028958
DH
258 xfs_ioend_t *ioend =
259 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 260
ba87ea69 261 xfs_setfilesize(ioend);
f6d6d4fc
CH
262 xfs_destroy_ioend(ioend);
263}
264
265/*
266 * IO write completion for unwritten extents.
267 *
0829c360 268 * Issue transactions to convert a buffer range from unwritten
f0973863 269 * to written extents.
0829c360
CH
270 */
271STATIC void
272xfs_end_bio_unwritten(
c4028958 273 struct work_struct *work)
0829c360 274{
c4028958
DH
275 xfs_ioend_t *ioend =
276 container_of(work, xfs_ioend_t, io_work);
7642861b 277 struct xfs_inode *ip = XFS_I(ioend->io_inode);
0829c360
CH
278 xfs_off_t offset = ioend->io_offset;
279 size_t size = ioend->io_size;
0829c360 280
ba87ea69 281 if (likely(!ioend->io_error)) {
cc88466f
DC
282 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
283 int error;
284 error = xfs_iomap_write_unwritten(ip, offset, size);
285 if (error)
286 ioend->io_error = error;
287 }
ba87ea69
LM
288 xfs_setfilesize(ioend);
289 }
290 xfs_destroy_ioend(ioend);
291}
292
293/*
294 * IO read completion for regular, written extents.
295 */
296STATIC void
297xfs_end_bio_read(
298 struct work_struct *work)
299{
300 xfs_ioend_t *ioend =
301 container_of(work, xfs_ioend_t, io_work);
302
0829c360
CH
303 xfs_destroy_ioend(ioend);
304}
305
c626d174
DC
306/*
307 * Schedule IO completion handling on a xfsdatad if this was
308 * the final hold on this ioend. If we are asked to wait,
309 * flush the workqueue.
310 */
311STATIC void
312xfs_finish_ioend(
313 xfs_ioend_t *ioend,
314 int wait)
315{
316 if (atomic_dec_and_test(&ioend->io_remaining)) {
317 struct workqueue_struct *wq = xfsdatad_workqueue;
318 if (ioend->io_work.func == xfs_end_bio_unwritten)
319 wq = xfsconvertd_workqueue;
320
321 queue_work(wq, &ioend->io_work);
322 if (wait)
323 flush_workqueue(wq);
324 }
325}
326
0829c360
CH
327/*
328 * Allocate and initialise an IO completion structure.
329 * We need to track unwritten extent write completion here initially.
330 * We'll need to extend this for updating the ondisk inode size later
331 * (vs. incore size).
332 */
333STATIC xfs_ioend_t *
334xfs_alloc_ioend(
f6d6d4fc
CH
335 struct inode *inode,
336 unsigned int type)
0829c360
CH
337{
338 xfs_ioend_t *ioend;
339
340 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
341
342 /*
343 * Set the count to 1 initially, which will prevent an I/O
344 * completion callback from happening before we have started
345 * all the I/O from calling the completion routine too early.
346 */
347 atomic_set(&ioend->io_remaining, 1);
7d04a335 348 ioend->io_error = 0;
f6d6d4fc
CH
349 ioend->io_list = NULL;
350 ioend->io_type = type;
b677c210 351 ioend->io_inode = inode;
c1a073bd 352 ioend->io_buffer_head = NULL;
f6d6d4fc 353 ioend->io_buffer_tail = NULL;
b677c210 354 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
355 ioend->io_offset = 0;
356 ioend->io_size = 0;
357
f6d6d4fc 358 if (type == IOMAP_UNWRITTEN)
c4028958 359 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 360 else if (type == IOMAP_DELAY)
c4028958 361 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
362 else if (type == IOMAP_READ)
363 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 364 else
c4028958 365 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
366
367 return ioend;
368}
369
1da177e4
LT
370STATIC int
371xfs_map_blocks(
372 struct inode *inode,
373 loff_t offset,
374 ssize_t count,
375 xfs_iomap_t *mapp,
376 int flags)
377{
6bd16ff2
CH
378 int nmaps = 1;
379
380 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
381}
382
7989cb8e 383STATIC_INLINE int
1defeac9 384xfs_iomap_valid(
1da177e4 385 xfs_iomap_t *iomapp,
1defeac9 386 loff_t offset)
1da177e4 387{
1defeac9
CH
388 return offset >= iomapp->iomap_offset &&
389 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
390}
391
f6d6d4fc
CH
392/*
393 * BIO completion handler for buffered IO.
394 */
782e3b3b 395STATIC void
f6d6d4fc
CH
396xfs_end_bio(
397 struct bio *bio,
f6d6d4fc
CH
398 int error)
399{
400 xfs_ioend_t *ioend = bio->bi_private;
401
f6d6d4fc 402 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 403 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
404
405 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
406 bio->bi_private = NULL;
407 bio->bi_end_io = NULL;
f6d6d4fc 408 bio_put(bio);
7d04a335 409
e927af90 410 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
411}
412
413STATIC void
414xfs_submit_ioend_bio(
06342cf8
CH
415 struct writeback_control *wbc,
416 xfs_ioend_t *ioend,
417 struct bio *bio)
f6d6d4fc
CH
418{
419 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
420 bio->bi_private = ioend;
421 bio->bi_end_io = xfs_end_bio;
422
932640e8
DC
423 /*
424 * If the I/O is beyond EOF we mark the inode dirty immediately
425 * but don't update the inode size until I/O completion.
426 */
427 if (xfs_ioend_new_eof(ioend))
428 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
429
06342cf8
CH
430 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
431 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
432 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
433 bio_put(bio);
434}
435
436STATIC struct bio *
437xfs_alloc_ioend_bio(
438 struct buffer_head *bh)
439{
440 struct bio *bio;
441 int nvecs = bio_get_nr_vecs(bh->b_bdev);
442
443 do {
444 bio = bio_alloc(GFP_NOIO, nvecs);
445 nvecs >>= 1;
446 } while (!bio);
447
448 ASSERT(bio->bi_private == NULL);
449 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
450 bio->bi_bdev = bh->b_bdev;
451 bio_get(bio);
452 return bio;
453}
454
455STATIC void
456xfs_start_buffer_writeback(
457 struct buffer_head *bh)
458{
459 ASSERT(buffer_mapped(bh));
460 ASSERT(buffer_locked(bh));
461 ASSERT(!buffer_delay(bh));
462 ASSERT(!buffer_unwritten(bh));
463
464 mark_buffer_async_write(bh);
465 set_buffer_uptodate(bh);
466 clear_buffer_dirty(bh);
467}
468
469STATIC void
470xfs_start_page_writeback(
471 struct page *page,
f6d6d4fc
CH
472 int clear_dirty,
473 int buffers)
474{
475 ASSERT(PageLocked(page));
476 ASSERT(!PageWriteback(page));
f6d6d4fc 477 if (clear_dirty)
92132021
DC
478 clear_page_dirty_for_io(page);
479 set_page_writeback(page);
f6d6d4fc 480 unlock_page(page);
1f7decf6
FW
481 /* If no buffers on the page are to be written, finish it here */
482 if (!buffers)
f6d6d4fc 483 end_page_writeback(page);
f6d6d4fc
CH
484}
485
486static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
487{
488 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
489}
490
491/*
d88992f6
DC
492 * Submit all of the bios for all of the ioends we have saved up, covering the
493 * initial writepage page and also any probed pages.
494 *
495 * Because we may have multiple ioends spanning a page, we need to start
496 * writeback on all the buffers before we submit them for I/O. If we mark the
497 * buffers as we got, then we can end up with a page that only has buffers
498 * marked async write and I/O complete on can occur before we mark the other
499 * buffers async write.
500 *
501 * The end result of this is that we trip a bug in end_page_writeback() because
502 * we call it twice for the one page as the code in end_buffer_async_write()
503 * assumes that all buffers on the page are started at the same time.
504 *
505 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 506 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
507 */
508STATIC void
509xfs_submit_ioend(
06342cf8 510 struct writeback_control *wbc,
f6d6d4fc
CH
511 xfs_ioend_t *ioend)
512{
d88992f6 513 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
514 xfs_ioend_t *next;
515 struct buffer_head *bh;
516 struct bio *bio;
517 sector_t lastblock = 0;
518
d88992f6
DC
519 /* Pass 1 - start writeback */
520 do {
521 next = ioend->io_list;
522 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
523 xfs_start_buffer_writeback(bh);
524 }
525 } while ((ioend = next) != NULL);
526
527 /* Pass 2 - submit I/O */
528 ioend = head;
f6d6d4fc
CH
529 do {
530 next = ioend->io_list;
531 bio = NULL;
532
533 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
534
535 if (!bio) {
536 retry:
537 bio = xfs_alloc_ioend_bio(bh);
538 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 539 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
540 goto retry;
541 }
542
543 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 544 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
545 goto retry;
546 }
547
548 lastblock = bh->b_blocknr;
549 }
550 if (bio)
06342cf8 551 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 552 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
553 } while ((ioend = next) != NULL);
554}
555
556/*
557 * Cancel submission of all buffer_heads so far in this endio.
558 * Toss the endio too. Only ever called for the initial page
559 * in a writepage request, so only ever one page.
560 */
561STATIC void
562xfs_cancel_ioend(
563 xfs_ioend_t *ioend)
564{
565 xfs_ioend_t *next;
566 struct buffer_head *bh, *next_bh;
567
568 do {
569 next = ioend->io_list;
570 bh = ioend->io_buffer_head;
571 do {
572 next_bh = bh->b_private;
573 clear_buffer_async_write(bh);
574 unlock_buffer(bh);
575 } while ((bh = next_bh) != NULL);
576
25e41b3d 577 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
578 mempool_free(ioend, xfs_ioend_pool);
579 } while ((ioend = next) != NULL);
580}
581
582/*
583 * Test to see if we've been building up a completion structure for
584 * earlier buffers -- if so, we try to append to this ioend if we
585 * can, otherwise we finish off any current ioend and start another.
586 * Return true if we've finished the given ioend.
587 */
588STATIC void
589xfs_add_to_ioend(
590 struct inode *inode,
591 struct buffer_head *bh,
7336cea8 592 xfs_off_t offset,
f6d6d4fc
CH
593 unsigned int type,
594 xfs_ioend_t **result,
595 int need_ioend)
596{
597 xfs_ioend_t *ioend = *result;
598
599 if (!ioend || need_ioend || type != ioend->io_type) {
600 xfs_ioend_t *previous = *result;
f6d6d4fc 601
f6d6d4fc
CH
602 ioend = xfs_alloc_ioend(inode, type);
603 ioend->io_offset = offset;
604 ioend->io_buffer_head = bh;
605 ioend->io_buffer_tail = bh;
606 if (previous)
607 previous->io_list = ioend;
608 *result = ioend;
609 } else {
610 ioend->io_buffer_tail->b_private = bh;
611 ioend->io_buffer_tail = bh;
612 }
613
614 bh->b_private = NULL;
615 ioend->io_size += bh->b_size;
616}
617
87cbc49c
NS
618STATIC void
619xfs_map_buffer(
620 struct buffer_head *bh,
621 xfs_iomap_t *mp,
622 xfs_off_t offset,
623 uint block_bits)
624{
625 sector_t bn;
626
627 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
628
629 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
630 ((offset - mp->iomap_offset) >> block_bits);
631
632 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
633
634 bh->b_blocknr = bn;
635 set_buffer_mapped(bh);
636}
637
1da177e4
LT
638STATIC void
639xfs_map_at_offset(
1da177e4 640 struct buffer_head *bh,
1defeac9 641 loff_t offset,
1da177e4 642 int block_bits,
1defeac9 643 xfs_iomap_t *iomapp)
1da177e4 644{
1da177e4
LT
645 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
646 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
647
648 lock_buffer(bh);
87cbc49c 649 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 650 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
651 set_buffer_mapped(bh);
652 clear_buffer_delay(bh);
f6d6d4fc 653 clear_buffer_unwritten(bh);
1da177e4
LT
654}
655
656/*
6c4fe19f 657 * Look for a page at index that is suitable for clustering.
1da177e4
LT
658 */
659STATIC unsigned int
6c4fe19f 660xfs_probe_page(
10ce4444 661 struct page *page,
6c4fe19f
CH
662 unsigned int pg_offset,
663 int mapped)
1da177e4 664{
1da177e4
LT
665 int ret = 0;
666
1da177e4 667 if (PageWriteback(page))
10ce4444 668 return 0;
1da177e4
LT
669
670 if (page->mapping && PageDirty(page)) {
671 if (page_has_buffers(page)) {
672 struct buffer_head *bh, *head;
673
674 bh = head = page_buffers(page);
675 do {
6c4fe19f
CH
676 if (!buffer_uptodate(bh))
677 break;
678 if (mapped != buffer_mapped(bh))
1da177e4
LT
679 break;
680 ret += bh->b_size;
681 if (ret >= pg_offset)
682 break;
683 } while ((bh = bh->b_this_page) != head);
684 } else
6c4fe19f 685 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
686 }
687
1da177e4
LT
688 return ret;
689}
690
f6d6d4fc 691STATIC size_t
6c4fe19f 692xfs_probe_cluster(
1da177e4
LT
693 struct inode *inode,
694 struct page *startpage,
695 struct buffer_head *bh,
6c4fe19f
CH
696 struct buffer_head *head,
697 int mapped)
1da177e4 698{
10ce4444 699 struct pagevec pvec;
1da177e4 700 pgoff_t tindex, tlast, tloff;
10ce4444
CH
701 size_t total = 0;
702 int done = 0, i;
1da177e4
LT
703
704 /* First sum forwards in this page */
705 do {
2353e8e9 706 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 707 return total;
1da177e4
LT
708 total += bh->b_size;
709 } while ((bh = bh->b_this_page) != head);
710
10ce4444
CH
711 /* if we reached the end of the page, sum forwards in following pages */
712 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
713 tindex = startpage->index + 1;
714
715 /* Prune this back to avoid pathological behavior */
716 tloff = min(tlast, startpage->index + 64);
717
718 pagevec_init(&pvec, 0);
719 while (!done && tindex <= tloff) {
720 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
721
722 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
723 break;
724
725 for (i = 0; i < pagevec_count(&pvec); i++) {
726 struct page *page = pvec.pages[i];
265c1fac 727 size_t pg_offset, pg_len = 0;
10ce4444
CH
728
729 if (tindex == tlast) {
730 pg_offset =
731 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
732 if (!pg_offset) {
733 done = 1;
10ce4444 734 break;
1defeac9 735 }
10ce4444
CH
736 } else
737 pg_offset = PAGE_CACHE_SIZE;
738
529ae9aa 739 if (page->index == tindex && trylock_page(page)) {
265c1fac 740 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
741 unlock_page(page);
742 }
743
265c1fac 744 if (!pg_len) {
10ce4444
CH
745 done = 1;
746 break;
747 }
748
265c1fac 749 total += pg_len;
1defeac9 750 tindex++;
1da177e4 751 }
10ce4444
CH
752
753 pagevec_release(&pvec);
754 cond_resched();
1da177e4 755 }
10ce4444 756
1da177e4
LT
757 return total;
758}
759
760/*
10ce4444
CH
761 * Test if a given page is suitable for writing as part of an unwritten
762 * or delayed allocate extent.
1da177e4 763 */
10ce4444
CH
764STATIC int
765xfs_is_delayed_page(
766 struct page *page,
f6d6d4fc 767 unsigned int type)
1da177e4 768{
1da177e4 769 if (PageWriteback(page))
10ce4444 770 return 0;
1da177e4
LT
771
772 if (page->mapping && page_has_buffers(page)) {
773 struct buffer_head *bh, *head;
774 int acceptable = 0;
775
776 bh = head = page_buffers(page);
777 do {
f6d6d4fc
CH
778 if (buffer_unwritten(bh))
779 acceptable = (type == IOMAP_UNWRITTEN);
780 else if (buffer_delay(bh))
781 acceptable = (type == IOMAP_DELAY);
2ddee844 782 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 783 acceptable = (type == IOMAP_NEW);
f6d6d4fc 784 else
1da177e4 785 break;
1da177e4
LT
786 } while ((bh = bh->b_this_page) != head);
787
788 if (acceptable)
10ce4444 789 return 1;
1da177e4
LT
790 }
791
10ce4444 792 return 0;
1da177e4
LT
793}
794
1da177e4
LT
795/*
796 * Allocate & map buffers for page given the extent map. Write it out.
797 * except for the original page of a writepage, this is called on
798 * delalloc/unwritten pages only, for the original page it is possible
799 * that the page has no mapping at all.
800 */
f6d6d4fc 801STATIC int
1da177e4
LT
802xfs_convert_page(
803 struct inode *inode,
804 struct page *page,
10ce4444 805 loff_t tindex,
1defeac9 806 xfs_iomap_t *mp,
f6d6d4fc 807 xfs_ioend_t **ioendp,
1da177e4 808 struct writeback_control *wbc,
1da177e4
LT
809 int startio,
810 int all_bh)
811{
f6d6d4fc 812 struct buffer_head *bh, *head;
9260dc6b
CH
813 xfs_off_t end_offset;
814 unsigned long p_offset;
f6d6d4fc 815 unsigned int type;
1da177e4 816 int bbits = inode->i_blkbits;
24e17b5f 817 int len, page_dirty;
f6d6d4fc 818 int count = 0, done = 0, uptodate = 1;
9260dc6b 819 xfs_off_t offset = page_offset(page);
1da177e4 820
10ce4444
CH
821 if (page->index != tindex)
822 goto fail;
529ae9aa 823 if (!trylock_page(page))
10ce4444
CH
824 goto fail;
825 if (PageWriteback(page))
826 goto fail_unlock_page;
827 if (page->mapping != inode->i_mapping)
828 goto fail_unlock_page;
829 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
830 goto fail_unlock_page;
831
24e17b5f
NS
832 /*
833 * page_dirty is initially a count of buffers on the page before
c41564b5 834 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
835 *
836 * Derivation:
837 *
838 * End offset is the highest offset that this page should represent.
839 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
840 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
841 * hence give us the correct page_dirty count. On any other page,
842 * it will be zero and in that case we need page_dirty to be the
843 * count of buffers on the page.
24e17b5f 844 */
9260dc6b
CH
845 end_offset = min_t(unsigned long long,
846 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
847 i_size_read(inode));
848
24e17b5f 849 len = 1 << inode->i_blkbits;
9260dc6b
CH
850 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
851 PAGE_CACHE_SIZE);
852 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
853 page_dirty = p_offset / len;
24e17b5f 854
1da177e4
LT
855 bh = head = page_buffers(page);
856 do {
9260dc6b 857 if (offset >= end_offset)
1da177e4 858 break;
f6d6d4fc
CH
859 if (!buffer_uptodate(bh))
860 uptodate = 0;
861 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
862 done = 1;
1da177e4 863 continue;
f6d6d4fc
CH
864 }
865
9260dc6b
CH
866 if (buffer_unwritten(bh) || buffer_delay(bh)) {
867 if (buffer_unwritten(bh))
868 type = IOMAP_UNWRITTEN;
869 else
870 type = IOMAP_DELAY;
871
872 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 873 done = 1;
9260dc6b
CH
874 continue;
875 }
876
877 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
878 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
879
880 xfs_map_at_offset(bh, offset, bbits, mp);
881 if (startio) {
7336cea8 882 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
883 type, ioendp, done);
884 } else {
885 set_buffer_dirty(bh);
886 unlock_buffer(bh);
887 mark_buffer_dirty(bh);
888 }
889 page_dirty--;
890 count++;
891 } else {
df3c7244 892 type = IOMAP_NEW;
9260dc6b 893 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 894 lock_buffer(bh);
7336cea8 895 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
896 type, ioendp, done);
897 count++;
24e17b5f 898 page_dirty--;
9260dc6b
CH
899 } else {
900 done = 1;
1da177e4 901 }
1da177e4 902 }
7336cea8 903 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 904
f6d6d4fc
CH
905 if (uptodate && bh == head)
906 SetPageUptodate(page);
907
908 if (startio) {
f5e596bb
CH
909 if (count) {
910 struct backing_dev_info *bdi;
911
912 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 913 wbc->nr_to_write--;
f5e596bb
CH
914 if (bdi_write_congested(bdi)) {
915 wbc->encountered_congestion = 1;
916 done = 1;
9fddaca2 917 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
918 done = 1;
919 }
920 }
b41759cf 921 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 922 }
f6d6d4fc
CH
923
924 return done;
10ce4444
CH
925 fail_unlock_page:
926 unlock_page(page);
927 fail:
928 return 1;
1da177e4
LT
929}
930
931/*
932 * Convert & write out a cluster of pages in the same extent as defined
933 * by mp and following the start page.
934 */
935STATIC void
936xfs_cluster_write(
937 struct inode *inode,
938 pgoff_t tindex,
939 xfs_iomap_t *iomapp,
f6d6d4fc 940 xfs_ioend_t **ioendp,
1da177e4
LT
941 struct writeback_control *wbc,
942 int startio,
943 int all_bh,
944 pgoff_t tlast)
945{
10ce4444
CH
946 struct pagevec pvec;
947 int done = 0, i;
1da177e4 948
10ce4444
CH
949 pagevec_init(&pvec, 0);
950 while (!done && tindex <= tlast) {
951 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
952
953 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 954 break;
10ce4444
CH
955
956 for (i = 0; i < pagevec_count(&pvec); i++) {
957 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
958 iomapp, ioendp, wbc, startio, all_bh);
959 if (done)
960 break;
961 }
962
963 pagevec_release(&pvec);
964 cond_resched();
1da177e4
LT
965 }
966}
967
968/*
969 * Calling this without startio set means we are being asked to make a dirty
970 * page ready for freeing it's buffers. When called with startio set then
971 * we are coming from writepage.
972 *
973 * When called with startio set it is important that we write the WHOLE
974 * page if possible.
975 * The bh->b_state's cannot know if any of the blocks or which block for
976 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 977 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
978 * may clear the page dirty flag prior to calling write page, under the
979 * assumption the entire page will be written out; by not writing out the
980 * whole page the page can be reused before all valid dirty data is
981 * written out. Note: in the case of a page that has been dirty'd by
982 * mapwrite and but partially setup by block_prepare_write the
983 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
984 * valid state, thus the whole page must be written out thing.
985 */
986
987STATIC int
988xfs_page_state_convert(
989 struct inode *inode,
990 struct page *page,
991 struct writeback_control *wbc,
992 int startio,
993 int unmapped) /* also implies page uptodate */
994{
f6d6d4fc 995 struct buffer_head *bh, *head;
1defeac9 996 xfs_iomap_t iomap;
f6d6d4fc 997 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
998 loff_t offset;
999 unsigned long p_offset = 0;
f6d6d4fc 1000 unsigned int type;
1da177e4
LT
1001 __uint64_t end_offset;
1002 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1003 ssize_t size, len;
1004 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1005 int page_dirty, count = 0;
1006 int trylock = 0;
6c4fe19f 1007 int all_bh = unmapped;
1da177e4 1008
8272145c
NS
1009 if (startio) {
1010 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1011 trylock |= BMAPI_TRYLOCK;
1012 }
3ba0815a 1013
1da177e4
LT
1014 /* Is this page beyond the end of the file? */
1015 offset = i_size_read(inode);
1016 end_index = offset >> PAGE_CACHE_SHIFT;
1017 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1018 if (page->index >= end_index) {
1019 if ((page->index >= end_index + 1) ||
1020 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1021 if (startio)
1022 unlock_page(page);
1023 return 0;
1da177e4
LT
1024 }
1025 }
1026
1da177e4 1027 /*
24e17b5f 1028 * page_dirty is initially a count of buffers on the page before
c41564b5 1029 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1030 *
1031 * Derivation:
1032 *
1033 * End offset is the highest offset that this page should represent.
1034 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1035 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1036 * hence give us the correct page_dirty count. On any other page,
1037 * it will be zero and in that case we need page_dirty to be the
1038 * count of buffers on the page.
1039 */
1040 end_offset = min_t(unsigned long long,
1041 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1042 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1043 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1044 PAGE_CACHE_SIZE);
1045 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1046 page_dirty = p_offset / len;
1047
24e17b5f 1048 bh = head = page_buffers(page);
f6d6d4fc 1049 offset = page_offset(page);
df3c7244
DC
1050 flags = BMAPI_READ;
1051 type = IOMAP_NEW;
f6d6d4fc 1052
f6d6d4fc 1053 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1054
1055 do {
1056 if (offset >= end_offset)
1057 break;
1058 if (!buffer_uptodate(bh))
1059 uptodate = 0;
f6d6d4fc 1060 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1061 /*
1062 * the iomap is actually still valid, but the ioend
1063 * isn't. shouldn't happen too often.
1064 */
1065 iomap_valid = 0;
1da177e4 1066 continue;
f6d6d4fc 1067 }
1da177e4 1068
1defeac9
CH
1069 if (iomap_valid)
1070 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1071
1072 /*
1073 * First case, map an unwritten extent and prepare for
1074 * extent state conversion transaction on completion.
f6d6d4fc 1075 *
1da177e4
LT
1076 * Second case, allocate space for a delalloc buffer.
1077 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1078 *
1079 * Third case, an unmapped buffer was found, and we are
1080 * in a path where we need to write the whole page out.
df3c7244 1081 */
d5cb48aa
CH
1082 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1083 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1084 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1085 int new_ioend = 0;
1086
df3c7244 1087 /*
6c4fe19f
CH
1088 * Make sure we don't use a read-only iomap
1089 */
df3c7244 1090 if (flags == BMAPI_READ)
6c4fe19f
CH
1091 iomap_valid = 0;
1092
f6d6d4fc
CH
1093 if (buffer_unwritten(bh)) {
1094 type = IOMAP_UNWRITTEN;
8272145c 1095 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1096 } else if (buffer_delay(bh)) {
f6d6d4fc 1097 type = IOMAP_DELAY;
8272145c 1098 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1099 } else {
6c4fe19f 1100 type = IOMAP_NEW;
8272145c 1101 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1102 }
1103
1defeac9 1104 if (!iomap_valid) {
effd120e
DC
1105 /*
1106 * if we didn't have a valid mapping then we
1107 * need to ensure that we put the new mapping
1108 * in a new ioend structure. This needs to be
1109 * done to ensure that the ioends correctly
1110 * reflect the block mappings at io completion
1111 * for unwritten extent conversion.
1112 */
1113 new_ioend = 1;
6c4fe19f
CH
1114 if (type == IOMAP_NEW) {
1115 size = xfs_probe_cluster(inode,
1116 page, bh, head, 0);
d5cb48aa
CH
1117 } else {
1118 size = len;
1119 }
1120
1121 err = xfs_map_blocks(inode, offset, size,
1122 &iomap, flags);
f6d6d4fc 1123 if (err)
1da177e4 1124 goto error;
1defeac9 1125 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1126 }
1defeac9
CH
1127 if (iomap_valid) {
1128 xfs_map_at_offset(bh, offset,
1129 inode->i_blkbits, &iomap);
1da177e4 1130 if (startio) {
7336cea8 1131 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1132 type, &ioend,
effd120e 1133 new_ioend);
1da177e4
LT
1134 } else {
1135 set_buffer_dirty(bh);
1136 unlock_buffer(bh);
1137 mark_buffer_dirty(bh);
1138 }
1139 page_dirty--;
f6d6d4fc 1140 count++;
1da177e4 1141 }
d5cb48aa 1142 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1143 /*
1144 * we got here because the buffer is already mapped.
1145 * That means it must already have extents allocated
1146 * underneath it. Map the extent by reading it.
1147 */
df3c7244 1148 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1149 flags = BMAPI_READ;
1150 size = xfs_probe_cluster(inode, page, bh,
1151 head, 1);
1152 err = xfs_map_blocks(inode, offset, size,
1153 &iomap, flags);
1154 if (err)
1155 goto error;
1156 iomap_valid = xfs_iomap_valid(&iomap, offset);
1157 }
d5cb48aa 1158
df3c7244
DC
1159 /*
1160 * We set the type to IOMAP_NEW in case we are doing a
1161 * small write at EOF that is extending the file but
1162 * without needing an allocation. We need to update the
1163 * file size on I/O completion in this case so it is
1164 * the same case as having just allocated a new extent
1165 * that we are writing into for the first time.
1166 */
1167 type = IOMAP_NEW;
ca5de404 1168 if (trylock_buffer(bh)) {
d5cb48aa 1169 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1170 if (iomap_valid)
1171 all_bh = 1;
7336cea8 1172 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1173 &ioend, !iomap_valid);
1174 page_dirty--;
1175 count++;
f6d6d4fc 1176 } else {
1defeac9 1177 iomap_valid = 0;
1da177e4 1178 }
d5cb48aa
CH
1179 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1180 (unmapped || startio)) {
1181 iomap_valid = 0;
1da177e4 1182 }
f6d6d4fc
CH
1183
1184 if (!iohead)
1185 iohead = ioend;
1186
1187 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1188
1189 if (uptodate && bh == head)
1190 SetPageUptodate(page);
1191
f6d6d4fc 1192 if (startio)
b41759cf 1193 xfs_start_page_writeback(page, 1, count);
1da177e4 1194
1defeac9
CH
1195 if (ioend && iomap_valid) {
1196 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1197 PAGE_CACHE_SHIFT;
775bf6c9 1198 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1199 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1200 wbc, startio, all_bh, tlast);
1da177e4
LT
1201 }
1202
f6d6d4fc 1203 if (iohead)
06342cf8 1204 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1205
1da177e4
LT
1206 return page_dirty;
1207
1208error:
f6d6d4fc
CH
1209 if (iohead)
1210 xfs_cancel_ioend(iohead);
1da177e4
LT
1211
1212 /*
1213 * If it's delalloc and we have nowhere to put it,
1214 * throw it away, unless the lower layers told
1215 * us to try again.
1216 */
1217 if (err != -EAGAIN) {
f6d6d4fc 1218 if (!unmapped)
1da177e4 1219 block_invalidatepage(page, 0);
1da177e4
LT
1220 ClearPageUptodate(page);
1221 }
1222 return err;
1223}
1224
f51623b2
NS
1225/*
1226 * writepage: Called from one of two places:
1227 *
1228 * 1. we are flushing a delalloc buffer head.
1229 *
1230 * 2. we are writing out a dirty page. Typically the page dirty
1231 * state is cleared before we get here. In this case is it
1232 * conceivable we have no buffer heads.
1233 *
1234 * For delalloc space on the page we need to allocate space and
1235 * flush it. For unmapped buffer heads on the page we should
1236 * allocate space if the page is uptodate. For any other dirty
1237 * buffer heads on the page we should flush them.
1238 *
1239 * If we detect that a transaction would be required to flush
1240 * the page, we have to check the process flags first, if we
1241 * are already in a transaction or disk I/O during allocations
1242 * is off, we need to fail the writepage and redirty the page.
1243 */
1244
1245STATIC int
e4c573bb 1246xfs_vm_writepage(
f51623b2
NS
1247 struct page *page,
1248 struct writeback_control *wbc)
1249{
1250 int error;
1251 int need_trans;
1252 int delalloc, unmapped, unwritten;
1253 struct inode *inode = page->mapping->host;
1254
1255 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1256
1257 /*
1258 * We need a transaction if:
1259 * 1. There are delalloc buffers on the page
1260 * 2. The page is uptodate and we have unmapped buffers
1261 * 3. The page is uptodate and we have no buffers
1262 * 4. There are unwritten buffers on the page
1263 */
1264
1265 if (!page_has_buffers(page)) {
1266 unmapped = 1;
1267 need_trans = 1;
1268 } else {
1269 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1270 if (!PageUptodate(page))
1271 unmapped = 0;
1272 need_trans = delalloc + unmapped + unwritten;
1273 }
1274
1275 /*
1276 * If we need a transaction and the process flags say
1277 * we are already in a transaction, or no IO is allowed
1278 * then mark the page dirty again and leave the page
1279 * as is.
1280 */
59c1b082 1281 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1282 goto out_fail;
1283
1284 /*
1285 * Delay hooking up buffer heads until we have
1286 * made our go/no-go decision.
1287 */
1288 if (!page_has_buffers(page))
1289 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1290
c8a4051c
ES
1291
1292 /*
1293 * VM calculation for nr_to_write seems off. Bump it way
1294 * up, this gets simple streaming writes zippy again.
1295 * To be reviewed again after Jens' writeback changes.
1296 */
1297 wbc->nr_to_write *= 4;
1298
f51623b2
NS
1299 /*
1300 * Convert delayed allocate, unwritten or unmapped space
1301 * to real space and flush out to disk.
1302 */
1303 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1304 if (error == -EAGAIN)
1305 goto out_fail;
1306 if (unlikely(error < 0))
1307 goto out_unlock;
1308
1309 return 0;
1310
1311out_fail:
1312 redirty_page_for_writepage(wbc, page);
1313 unlock_page(page);
1314 return 0;
1315out_unlock:
1316 unlock_page(page);
1317 return error;
1318}
1319
7d4fb40a
NS
1320STATIC int
1321xfs_vm_writepages(
1322 struct address_space *mapping,
1323 struct writeback_control *wbc)
1324{
b3aea4ed 1325 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1326 return generic_writepages(mapping, wbc);
1327}
1328
f51623b2
NS
1329/*
1330 * Called to move a page into cleanable state - and from there
1331 * to be released. Possibly the page is already clean. We always
1332 * have buffer heads in this call.
1333 *
1334 * Returns 0 if the page is ok to release, 1 otherwise.
1335 *
1336 * Possible scenarios are:
1337 *
1338 * 1. We are being called to release a page which has been written
1339 * to via regular I/O. buffer heads will be dirty and possibly
1340 * delalloc. If no delalloc buffer heads in this case then we
1341 * can just return zero.
1342 *
1343 * 2. We are called to release a page which has been written via
1344 * mmap, all we need to do is ensure there is no delalloc
1345 * state in the buffer heads, if not we can let the caller
1346 * free them and we should come back later via writepage.
1347 */
1348STATIC int
238f4c54 1349xfs_vm_releasepage(
f51623b2
NS
1350 struct page *page,
1351 gfp_t gfp_mask)
1352{
1353 struct inode *inode = page->mapping->host;
1354 int dirty, delalloc, unmapped, unwritten;
1355 struct writeback_control wbc = {
1356 .sync_mode = WB_SYNC_ALL,
1357 .nr_to_write = 1,
1358 };
1359
ed9d88f7 1360 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1361
238f4c54
NS
1362 if (!page_has_buffers(page))
1363 return 0;
1364
f51623b2
NS
1365 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1366 if (!delalloc && !unwritten)
1367 goto free_buffers;
1368
1369 if (!(gfp_mask & __GFP_FS))
1370 return 0;
1371
1372 /* If we are already inside a transaction or the thread cannot
1373 * do I/O, we cannot release this page.
1374 */
59c1b082 1375 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1376 return 0;
1377
1378 /*
1379 * Convert delalloc space to real space, do not flush the
1380 * data out to disk, that will be done by the caller.
1381 * Never need to allocate space here - we will always
1382 * come back to writepage in that case.
1383 */
1384 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1385 if (dirty == 0 && !unwritten)
1386 goto free_buffers;
1387 return 0;
1388
1389free_buffers:
1390 return try_to_free_buffers(page);
1391}
1392
1da177e4 1393STATIC int
c2536668 1394__xfs_get_blocks(
1da177e4
LT
1395 struct inode *inode,
1396 sector_t iblock,
1da177e4
LT
1397 struct buffer_head *bh_result,
1398 int create,
1399 int direct,
1400 bmapi_flags_t flags)
1401{
1da177e4 1402 xfs_iomap_t iomap;
fdc7ed75
NS
1403 xfs_off_t offset;
1404 ssize_t size;
c2536668 1405 int niomap = 1;
1da177e4 1406 int error;
1da177e4 1407
fdc7ed75 1408 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1409 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1410 size = bh_result->b_size;
364f358a
LM
1411
1412 if (!create && direct && offset >= i_size_read(inode))
1413 return 0;
1414
541d7d3c 1415 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1416 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1417 if (error)
1418 return -error;
c2536668 1419 if (niomap == 0)
1da177e4
LT
1420 return 0;
1421
1422 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1423 /*
1424 * For unwritten extents do not report a disk address on
1da177e4
LT
1425 * the read case (treat as if we're reading into a hole).
1426 */
1427 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1428 xfs_map_buffer(bh_result, &iomap, offset,
1429 inode->i_blkbits);
1da177e4
LT
1430 }
1431 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1432 if (direct)
1433 bh_result->b_private = inode;
1434 set_buffer_unwritten(bh_result);
1da177e4
LT
1435 }
1436 }
1437
c2536668
NS
1438 /*
1439 * If this is a realtime file, data may be on a different device.
1440 * to that pointed to from the buffer_head b_bdev currently.
1441 */
ce8e922c 1442 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1443
c2536668 1444 /*
549054af
DC
1445 * If we previously allocated a block out beyond eof and we are now
1446 * coming back to use it then we will need to flag it as new even if it
1447 * has a disk address.
1448 *
1449 * With sub-block writes into unwritten extents we also need to mark
1450 * the buffer as new so that the unwritten parts of the buffer gets
1451 * correctly zeroed.
1da177e4
LT
1452 */
1453 if (create &&
1454 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1455 (offset >= i_size_read(inode)) ||
1456 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1457 set_buffer_new(bh_result);
1da177e4
LT
1458
1459 if (iomap.iomap_flags & IOMAP_DELAY) {
1460 BUG_ON(direct);
1461 if (create) {
1462 set_buffer_uptodate(bh_result);
1463 set_buffer_mapped(bh_result);
1464 set_buffer_delay(bh_result);
1465 }
1466 }
1467
c2536668 1468 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1469 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1470 offset = min_t(xfs_off_t,
c2536668
NS
1471 iomap.iomap_bsize - iomap.iomap_delta, size);
1472 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1473 }
1474
1475 return 0;
1476}
1477
1478int
c2536668 1479xfs_get_blocks(
1da177e4
LT
1480 struct inode *inode,
1481 sector_t iblock,
1482 struct buffer_head *bh_result,
1483 int create)
1484{
c2536668 1485 return __xfs_get_blocks(inode, iblock,
fa30bd05 1486 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1487}
1488
1489STATIC int
e4c573bb 1490xfs_get_blocks_direct(
1da177e4
LT
1491 struct inode *inode,
1492 sector_t iblock,
1da177e4
LT
1493 struct buffer_head *bh_result,
1494 int create)
1495{
c2536668 1496 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1497 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1498}
1499
f0973863 1500STATIC void
e4c573bb 1501xfs_end_io_direct(
f0973863
CH
1502 struct kiocb *iocb,
1503 loff_t offset,
1504 ssize_t size,
1505 void *private)
1506{
1507 xfs_ioend_t *ioend = iocb->private;
1508
1509 /*
1510 * Non-NULL private data means we need to issue a transaction to
1511 * convert a range from unwritten to written extents. This needs
c41564b5 1512 * to happen from process context but aio+dio I/O completion
f0973863 1513 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1514 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1515 * it anyway to keep the code uniform and simpler.
1516 *
e927af90
DC
1517 * Well, if only it were that simple. Because synchronous direct I/O
1518 * requires extent conversion to occur *before* we return to userspace,
1519 * we have to wait for extent conversion to complete. Look at the
1520 * iocb that has been passed to us to determine if this is AIO or
1521 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1522 * workqueue and wait for it to complete.
1523 *
f0973863
CH
1524 * The core direct I/O code might be changed to always call the
1525 * completion handler in the future, in which case all this can
1526 * go away.
1527 */
ba87ea69
LM
1528 ioend->io_offset = offset;
1529 ioend->io_size = size;
1530 if (ioend->io_type == IOMAP_READ) {
e927af90 1531 xfs_finish_ioend(ioend, 0);
ba87ea69 1532 } else if (private && size > 0) {
e927af90 1533 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1534 } else {
ba87ea69
LM
1535 /*
1536 * A direct I/O write ioend starts it's life in unwritten
1537 * state in case they map an unwritten extent. This write
1538 * didn't map an unwritten extent so switch it's completion
1539 * handler.
1540 */
1541 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1542 xfs_finish_ioend(ioend, 0);
f0973863
CH
1543 }
1544
1545 /*
c41564b5 1546 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1547 * completion handler was called. Thus we need to protect
1548 * against double-freeing.
1549 */
1550 iocb->private = NULL;
1551}
1552
1da177e4 1553STATIC ssize_t
e4c573bb 1554xfs_vm_direct_IO(
1da177e4
LT
1555 int rw,
1556 struct kiocb *iocb,
1557 const struct iovec *iov,
1558 loff_t offset,
1559 unsigned long nr_segs)
1560{
1561 struct file *file = iocb->ki_filp;
1562 struct inode *inode = file->f_mapping->host;
6214ed44 1563 struct block_device *bdev;
f0973863 1564 ssize_t ret;
1da177e4 1565
6214ed44 1566 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1567
721259bc 1568 if (rw == WRITE) {
ba87ea69 1569 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1570 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1571 bdev, iov, offset, nr_segs,
721259bc
LM
1572 xfs_get_blocks_direct,
1573 xfs_end_io_direct);
1574 } else {
ba87ea69 1575 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1576 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1577 bdev, iov, offset, nr_segs,
721259bc
LM
1578 xfs_get_blocks_direct,
1579 xfs_end_io_direct);
1580 }
f0973863 1581
8459d86a 1582 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1583 xfs_destroy_ioend(iocb->private);
1584 return ret;
1da177e4
LT
1585}
1586
f51623b2 1587STATIC int
d79689c7 1588xfs_vm_write_begin(
f51623b2 1589 struct file *file,
d79689c7
NP
1590 struct address_space *mapping,
1591 loff_t pos,
1592 unsigned len,
1593 unsigned flags,
1594 struct page **pagep,
1595 void **fsdata)
f51623b2 1596{
d79689c7
NP
1597 *pagep = NULL;
1598 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1599 xfs_get_blocks);
f51623b2 1600}
1da177e4
LT
1601
1602STATIC sector_t
e4c573bb 1603xfs_vm_bmap(
1da177e4
LT
1604 struct address_space *mapping,
1605 sector_t block)
1606{
1607 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1608 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1609
cf441eeb 1610 xfs_itrace_entry(XFS_I(inode));
126468b1 1611 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1612 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1613 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1614 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1615}
1616
1617STATIC int
e4c573bb 1618xfs_vm_readpage(
1da177e4
LT
1619 struct file *unused,
1620 struct page *page)
1621{
c2536668 1622 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1623}
1624
1625STATIC int
e4c573bb 1626xfs_vm_readpages(
1da177e4
LT
1627 struct file *unused,
1628 struct address_space *mapping,
1629 struct list_head *pages,
1630 unsigned nr_pages)
1631{
c2536668 1632 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1633}
1634
2ff28e22 1635STATIC void
238f4c54 1636xfs_vm_invalidatepage(
bcec2b7f
NS
1637 struct page *page,
1638 unsigned long offset)
1639{
1640 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1641 page->mapping->host, page, offset);
2ff28e22 1642 block_invalidatepage(page, offset);
bcec2b7f
NS
1643}
1644
f5e54d6e 1645const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1646 .readpage = xfs_vm_readpage,
1647 .readpages = xfs_vm_readpages,
1648 .writepage = xfs_vm_writepage,
7d4fb40a 1649 .writepages = xfs_vm_writepages,
1da177e4 1650 .sync_page = block_sync_page,
238f4c54
NS
1651 .releasepage = xfs_vm_releasepage,
1652 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1653 .write_begin = xfs_vm_write_begin,
1654 .write_end = generic_write_end,
e4c573bb
NS
1655 .bmap = xfs_vm_bmap,
1656 .direct_IO = xfs_vm_direct_IO,
e965f963 1657 .migratepage = buffer_migrate_page,
bddaafa1 1658 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1659 .error_remove_page = generic_error_remove_page,
1da177e4 1660};
This page took 0.531197 seconds and 5 git commands to generate.