xfs: event tracing support
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
1da177e4 42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
25e41b3d
CH
46
47/*
48 * Prime number of hash buckets since address is used as the key.
49 */
50#define NVSYNC 37
51#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
52static wait_queue_head_t xfs_ioend_wq[NVSYNC];
53
54void __init
55xfs_ioend_init(void)
56{
57 int i;
58
59 for (i = 0; i < NVSYNC; i++)
60 init_waitqueue_head(&xfs_ioend_wq[i]);
61}
62
63void
64xfs_ioend_wait(
65 xfs_inode_t *ip)
66{
67 wait_queue_head_t *wq = to_ioend_wq(ip);
68
69 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
70}
71
72STATIC void
73xfs_ioend_wake(
74 xfs_inode_t *ip)
75{
76 if (atomic_dec_and_test(&ip->i_iocount))
77 wake_up(to_ioend_wq(ip));
78}
79
0b1b213f 80void
f51623b2
NS
81xfs_count_page_state(
82 struct page *page,
83 int *delalloc,
84 int *unmapped,
85 int *unwritten)
86{
87 struct buffer_head *bh, *head;
88
89 *delalloc = *unmapped = *unwritten = 0;
90
91 bh = head = page_buffers(page);
92 do {
93 if (buffer_uptodate(bh) && !buffer_mapped(bh))
94 (*unmapped) = 1;
f51623b2
NS
95 else if (buffer_unwritten(bh))
96 (*unwritten) = 1;
97 else if (buffer_delay(bh))
98 (*delalloc) = 1;
99 } while ((bh = bh->b_this_page) != head);
100}
101
6214ed44
CH
102STATIC struct block_device *
103xfs_find_bdev_for_inode(
104 struct xfs_inode *ip)
105{
106 struct xfs_mount *mp = ip->i_mount;
107
71ddabb9 108 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
109 return mp->m_rtdev_targp->bt_bdev;
110 else
111 return mp->m_ddev_targp->bt_bdev;
112}
113
f6d6d4fc
CH
114/*
115 * We're now finished for good with this ioend structure.
116 * Update the page state via the associated buffer_heads,
117 * release holds on the inode and bio, and finally free
118 * up memory. Do not use the ioend after this.
119 */
0829c360
CH
120STATIC void
121xfs_destroy_ioend(
122 xfs_ioend_t *ioend)
123{
f6d6d4fc 124 struct buffer_head *bh, *next;
583fa586 125 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
126
127 for (bh = ioend->io_buffer_head; bh; bh = next) {
128 next = bh->b_private;
7d04a335 129 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 130 }
583fa586
CH
131
132 /*
133 * Volume managers supporting multiple paths can send back ENODEV
134 * when the final path disappears. In this case continuing to fill
135 * the page cache with dirty data which cannot be written out is
136 * evil, so prevent that.
137 */
138 if (unlikely(ioend->io_error == -ENODEV)) {
139 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
140 __FILE__, __LINE__);
b677c210 141 }
583fa586 142
25e41b3d 143 xfs_ioend_wake(ip);
0829c360
CH
144 mempool_free(ioend, xfs_ioend_pool);
145}
146
932640e8
DC
147/*
148 * If the end of the current ioend is beyond the current EOF,
149 * return the new EOF value, otherwise zero.
150 */
151STATIC xfs_fsize_t
152xfs_ioend_new_eof(
153 xfs_ioend_t *ioend)
154{
155 xfs_inode_t *ip = XFS_I(ioend->io_inode);
156 xfs_fsize_t isize;
157 xfs_fsize_t bsize;
158
159 bsize = ioend->io_offset + ioend->io_size;
160 isize = MAX(ip->i_size, ip->i_new_size);
161 isize = MIN(isize, bsize);
162 return isize > ip->i_d.di_size ? isize : 0;
163}
164
ba87ea69
LM
165/*
166 * Update on-disk file size now that data has been written to disk.
167 * The current in-memory file size is i_size. If a write is beyond
613d7043 168 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
169 * updated. If this write does not extend all the way to the valid
170 * file size then restrict this update to the end of the write.
171 */
932640e8 172
ba87ea69
LM
173STATIC void
174xfs_setfilesize(
175 xfs_ioend_t *ioend)
176{
b677c210 177 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 178 xfs_fsize_t isize;
ba87ea69 179
ba87ea69
LM
180 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
181 ASSERT(ioend->io_type != IOMAP_READ);
182
183 if (unlikely(ioend->io_error))
184 return;
185
ba87ea69 186 xfs_ilock(ip, XFS_ILOCK_EXCL);
932640e8
DC
187 isize = xfs_ioend_new_eof(ioend);
188 if (isize) {
ba87ea69 189 ip->i_d.di_size = isize;
94b97e39 190 xfs_mark_inode_dirty_sync(ip);
ba87ea69
LM
191 }
192
193 xfs_iunlock(ip, XFS_ILOCK_EXCL);
194}
195
0829c360 196/*
5ec4fabb 197 * IO write completion.
f6d6d4fc
CH
198 */
199STATIC void
5ec4fabb 200xfs_end_io(
c4028958 201 struct work_struct *work)
0829c360 202{
c4028958
DH
203 xfs_ioend_t *ioend =
204 container_of(work, xfs_ioend_t, io_work);
7642861b 205 struct xfs_inode *ip = XFS_I(ioend->io_inode);
ba87ea69 206
5ec4fabb
CH
207 /*
208 * For unwritten extents we need to issue transactions to convert a
209 * range to normal written extens after the data I/O has finished.
210 */
211 if (ioend->io_type == IOMAP_UNWRITTEN &&
212 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
213 int error;
214
215 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
216 ioend->io_size);
217 if (error)
218 ioend->io_error = error;
219 }
ba87ea69 220
5ec4fabb
CH
221 /*
222 * We might have to update the on-disk file size after extending
223 * writes.
224 */
225 if (ioend->io_type != IOMAP_READ)
226 xfs_setfilesize(ioend);
0829c360
CH
227 xfs_destroy_ioend(ioend);
228}
229
c626d174
DC
230/*
231 * Schedule IO completion handling on a xfsdatad if this was
232 * the final hold on this ioend. If we are asked to wait,
233 * flush the workqueue.
234 */
235STATIC void
236xfs_finish_ioend(
237 xfs_ioend_t *ioend,
238 int wait)
239{
240 if (atomic_dec_and_test(&ioend->io_remaining)) {
5ec4fabb 241 struct workqueue_struct *wq;
c626d174 242
5ec4fabb
CH
243 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
244 xfsconvertd_workqueue : xfsdatad_workqueue;
c626d174
DC
245 queue_work(wq, &ioend->io_work);
246 if (wait)
247 flush_workqueue(wq);
248 }
249}
250
0829c360
CH
251/*
252 * Allocate and initialise an IO completion structure.
253 * We need to track unwritten extent write completion here initially.
254 * We'll need to extend this for updating the ondisk inode size later
255 * (vs. incore size).
256 */
257STATIC xfs_ioend_t *
258xfs_alloc_ioend(
f6d6d4fc
CH
259 struct inode *inode,
260 unsigned int type)
0829c360
CH
261{
262 xfs_ioend_t *ioend;
263
264 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
265
266 /*
267 * Set the count to 1 initially, which will prevent an I/O
268 * completion callback from happening before we have started
269 * all the I/O from calling the completion routine too early.
270 */
271 atomic_set(&ioend->io_remaining, 1);
7d04a335 272 ioend->io_error = 0;
f6d6d4fc
CH
273 ioend->io_list = NULL;
274 ioend->io_type = type;
b677c210 275 ioend->io_inode = inode;
c1a073bd 276 ioend->io_buffer_head = NULL;
f6d6d4fc 277 ioend->io_buffer_tail = NULL;
b677c210 278 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
279 ioend->io_offset = 0;
280 ioend->io_size = 0;
281
5ec4fabb 282 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
283 return ioend;
284}
285
1da177e4
LT
286STATIC int
287xfs_map_blocks(
288 struct inode *inode,
289 loff_t offset,
290 ssize_t count,
291 xfs_iomap_t *mapp,
292 int flags)
293{
6bd16ff2
CH
294 int nmaps = 1;
295
296 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
297}
298
b8f82a4a 299STATIC int
1defeac9 300xfs_iomap_valid(
1da177e4 301 xfs_iomap_t *iomapp,
1defeac9 302 loff_t offset)
1da177e4 303{
1defeac9
CH
304 return offset >= iomapp->iomap_offset &&
305 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
306}
307
f6d6d4fc
CH
308/*
309 * BIO completion handler for buffered IO.
310 */
782e3b3b 311STATIC void
f6d6d4fc
CH
312xfs_end_bio(
313 struct bio *bio,
f6d6d4fc
CH
314 int error)
315{
316 xfs_ioend_t *ioend = bio->bi_private;
317
f6d6d4fc 318 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 319 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
320
321 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
322 bio->bi_private = NULL;
323 bio->bi_end_io = NULL;
f6d6d4fc 324 bio_put(bio);
7d04a335 325
e927af90 326 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
327}
328
329STATIC void
330xfs_submit_ioend_bio(
06342cf8
CH
331 struct writeback_control *wbc,
332 xfs_ioend_t *ioend,
333 struct bio *bio)
f6d6d4fc
CH
334{
335 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
336 bio->bi_private = ioend;
337 bio->bi_end_io = xfs_end_bio;
338
932640e8
DC
339 /*
340 * If the I/O is beyond EOF we mark the inode dirty immediately
341 * but don't update the inode size until I/O completion.
342 */
343 if (xfs_ioend_new_eof(ioend))
344 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
345
06342cf8
CH
346 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
347 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
348 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
349 bio_put(bio);
350}
351
352STATIC struct bio *
353xfs_alloc_ioend_bio(
354 struct buffer_head *bh)
355{
356 struct bio *bio;
357 int nvecs = bio_get_nr_vecs(bh->b_bdev);
358
359 do {
360 bio = bio_alloc(GFP_NOIO, nvecs);
361 nvecs >>= 1;
362 } while (!bio);
363
364 ASSERT(bio->bi_private == NULL);
365 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
366 bio->bi_bdev = bh->b_bdev;
367 bio_get(bio);
368 return bio;
369}
370
371STATIC void
372xfs_start_buffer_writeback(
373 struct buffer_head *bh)
374{
375 ASSERT(buffer_mapped(bh));
376 ASSERT(buffer_locked(bh));
377 ASSERT(!buffer_delay(bh));
378 ASSERT(!buffer_unwritten(bh));
379
380 mark_buffer_async_write(bh);
381 set_buffer_uptodate(bh);
382 clear_buffer_dirty(bh);
383}
384
385STATIC void
386xfs_start_page_writeback(
387 struct page *page,
f6d6d4fc
CH
388 int clear_dirty,
389 int buffers)
390{
391 ASSERT(PageLocked(page));
392 ASSERT(!PageWriteback(page));
f6d6d4fc 393 if (clear_dirty)
92132021
DC
394 clear_page_dirty_for_io(page);
395 set_page_writeback(page);
f6d6d4fc 396 unlock_page(page);
1f7decf6
FW
397 /* If no buffers on the page are to be written, finish it here */
398 if (!buffers)
f6d6d4fc 399 end_page_writeback(page);
f6d6d4fc
CH
400}
401
402static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
403{
404 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
405}
406
407/*
d88992f6
DC
408 * Submit all of the bios for all of the ioends we have saved up, covering the
409 * initial writepage page and also any probed pages.
410 *
411 * Because we may have multiple ioends spanning a page, we need to start
412 * writeback on all the buffers before we submit them for I/O. If we mark the
413 * buffers as we got, then we can end up with a page that only has buffers
414 * marked async write and I/O complete on can occur before we mark the other
415 * buffers async write.
416 *
417 * The end result of this is that we trip a bug in end_page_writeback() because
418 * we call it twice for the one page as the code in end_buffer_async_write()
419 * assumes that all buffers on the page are started at the same time.
420 *
421 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 422 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
423 */
424STATIC void
425xfs_submit_ioend(
06342cf8 426 struct writeback_control *wbc,
f6d6d4fc
CH
427 xfs_ioend_t *ioend)
428{
d88992f6 429 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
430 xfs_ioend_t *next;
431 struct buffer_head *bh;
432 struct bio *bio;
433 sector_t lastblock = 0;
434
d88992f6
DC
435 /* Pass 1 - start writeback */
436 do {
437 next = ioend->io_list;
438 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
439 xfs_start_buffer_writeback(bh);
440 }
441 } while ((ioend = next) != NULL);
442
443 /* Pass 2 - submit I/O */
444 ioend = head;
f6d6d4fc
CH
445 do {
446 next = ioend->io_list;
447 bio = NULL;
448
449 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
450
451 if (!bio) {
452 retry:
453 bio = xfs_alloc_ioend_bio(bh);
454 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 455 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
456 goto retry;
457 }
458
459 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 460 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
461 goto retry;
462 }
463
464 lastblock = bh->b_blocknr;
465 }
466 if (bio)
06342cf8 467 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 468 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
469 } while ((ioend = next) != NULL);
470}
471
472/*
473 * Cancel submission of all buffer_heads so far in this endio.
474 * Toss the endio too. Only ever called for the initial page
475 * in a writepage request, so only ever one page.
476 */
477STATIC void
478xfs_cancel_ioend(
479 xfs_ioend_t *ioend)
480{
481 xfs_ioend_t *next;
482 struct buffer_head *bh, *next_bh;
483
484 do {
485 next = ioend->io_list;
486 bh = ioend->io_buffer_head;
487 do {
488 next_bh = bh->b_private;
489 clear_buffer_async_write(bh);
490 unlock_buffer(bh);
491 } while ((bh = next_bh) != NULL);
492
25e41b3d 493 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
494 mempool_free(ioend, xfs_ioend_pool);
495 } while ((ioend = next) != NULL);
496}
497
498/*
499 * Test to see if we've been building up a completion structure for
500 * earlier buffers -- if so, we try to append to this ioend if we
501 * can, otherwise we finish off any current ioend and start another.
502 * Return true if we've finished the given ioend.
503 */
504STATIC void
505xfs_add_to_ioend(
506 struct inode *inode,
507 struct buffer_head *bh,
7336cea8 508 xfs_off_t offset,
f6d6d4fc
CH
509 unsigned int type,
510 xfs_ioend_t **result,
511 int need_ioend)
512{
513 xfs_ioend_t *ioend = *result;
514
515 if (!ioend || need_ioend || type != ioend->io_type) {
516 xfs_ioend_t *previous = *result;
f6d6d4fc 517
f6d6d4fc
CH
518 ioend = xfs_alloc_ioend(inode, type);
519 ioend->io_offset = offset;
520 ioend->io_buffer_head = bh;
521 ioend->io_buffer_tail = bh;
522 if (previous)
523 previous->io_list = ioend;
524 *result = ioend;
525 } else {
526 ioend->io_buffer_tail->b_private = bh;
527 ioend->io_buffer_tail = bh;
528 }
529
530 bh->b_private = NULL;
531 ioend->io_size += bh->b_size;
532}
533
87cbc49c
NS
534STATIC void
535xfs_map_buffer(
536 struct buffer_head *bh,
537 xfs_iomap_t *mp,
538 xfs_off_t offset,
539 uint block_bits)
540{
541 sector_t bn;
542
543 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
544
545 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
546 ((offset - mp->iomap_offset) >> block_bits);
547
548 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
549
550 bh->b_blocknr = bn;
551 set_buffer_mapped(bh);
552}
553
1da177e4
LT
554STATIC void
555xfs_map_at_offset(
1da177e4 556 struct buffer_head *bh,
1defeac9 557 loff_t offset,
1da177e4 558 int block_bits,
1defeac9 559 xfs_iomap_t *iomapp)
1da177e4 560{
1da177e4
LT
561 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
562 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
563
564 lock_buffer(bh);
87cbc49c 565 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 566 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
567 set_buffer_mapped(bh);
568 clear_buffer_delay(bh);
f6d6d4fc 569 clear_buffer_unwritten(bh);
1da177e4
LT
570}
571
572/*
6c4fe19f 573 * Look for a page at index that is suitable for clustering.
1da177e4
LT
574 */
575STATIC unsigned int
6c4fe19f 576xfs_probe_page(
10ce4444 577 struct page *page,
6c4fe19f
CH
578 unsigned int pg_offset,
579 int mapped)
1da177e4 580{
1da177e4
LT
581 int ret = 0;
582
1da177e4 583 if (PageWriteback(page))
10ce4444 584 return 0;
1da177e4
LT
585
586 if (page->mapping && PageDirty(page)) {
587 if (page_has_buffers(page)) {
588 struct buffer_head *bh, *head;
589
590 bh = head = page_buffers(page);
591 do {
6c4fe19f
CH
592 if (!buffer_uptodate(bh))
593 break;
594 if (mapped != buffer_mapped(bh))
1da177e4
LT
595 break;
596 ret += bh->b_size;
597 if (ret >= pg_offset)
598 break;
599 } while ((bh = bh->b_this_page) != head);
600 } else
6c4fe19f 601 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
602 }
603
1da177e4
LT
604 return ret;
605}
606
f6d6d4fc 607STATIC size_t
6c4fe19f 608xfs_probe_cluster(
1da177e4
LT
609 struct inode *inode,
610 struct page *startpage,
611 struct buffer_head *bh,
6c4fe19f
CH
612 struct buffer_head *head,
613 int mapped)
1da177e4 614{
10ce4444 615 struct pagevec pvec;
1da177e4 616 pgoff_t tindex, tlast, tloff;
10ce4444
CH
617 size_t total = 0;
618 int done = 0, i;
1da177e4
LT
619
620 /* First sum forwards in this page */
621 do {
2353e8e9 622 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 623 return total;
1da177e4
LT
624 total += bh->b_size;
625 } while ((bh = bh->b_this_page) != head);
626
10ce4444
CH
627 /* if we reached the end of the page, sum forwards in following pages */
628 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
629 tindex = startpage->index + 1;
630
631 /* Prune this back to avoid pathological behavior */
632 tloff = min(tlast, startpage->index + 64);
633
634 pagevec_init(&pvec, 0);
635 while (!done && tindex <= tloff) {
636 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
637
638 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
639 break;
640
641 for (i = 0; i < pagevec_count(&pvec); i++) {
642 struct page *page = pvec.pages[i];
265c1fac 643 size_t pg_offset, pg_len = 0;
10ce4444
CH
644
645 if (tindex == tlast) {
646 pg_offset =
647 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
648 if (!pg_offset) {
649 done = 1;
10ce4444 650 break;
1defeac9 651 }
10ce4444
CH
652 } else
653 pg_offset = PAGE_CACHE_SIZE;
654
529ae9aa 655 if (page->index == tindex && trylock_page(page)) {
265c1fac 656 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
657 unlock_page(page);
658 }
659
265c1fac 660 if (!pg_len) {
10ce4444
CH
661 done = 1;
662 break;
663 }
664
265c1fac 665 total += pg_len;
1defeac9 666 tindex++;
1da177e4 667 }
10ce4444
CH
668
669 pagevec_release(&pvec);
670 cond_resched();
1da177e4 671 }
10ce4444 672
1da177e4
LT
673 return total;
674}
675
676/*
10ce4444
CH
677 * Test if a given page is suitable for writing as part of an unwritten
678 * or delayed allocate extent.
1da177e4 679 */
10ce4444
CH
680STATIC int
681xfs_is_delayed_page(
682 struct page *page,
f6d6d4fc 683 unsigned int type)
1da177e4 684{
1da177e4 685 if (PageWriteback(page))
10ce4444 686 return 0;
1da177e4
LT
687
688 if (page->mapping && page_has_buffers(page)) {
689 struct buffer_head *bh, *head;
690 int acceptable = 0;
691
692 bh = head = page_buffers(page);
693 do {
f6d6d4fc
CH
694 if (buffer_unwritten(bh))
695 acceptable = (type == IOMAP_UNWRITTEN);
696 else if (buffer_delay(bh))
697 acceptable = (type == IOMAP_DELAY);
2ddee844 698 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 699 acceptable = (type == IOMAP_NEW);
f6d6d4fc 700 else
1da177e4 701 break;
1da177e4
LT
702 } while ((bh = bh->b_this_page) != head);
703
704 if (acceptable)
10ce4444 705 return 1;
1da177e4
LT
706 }
707
10ce4444 708 return 0;
1da177e4
LT
709}
710
1da177e4
LT
711/*
712 * Allocate & map buffers for page given the extent map. Write it out.
713 * except for the original page of a writepage, this is called on
714 * delalloc/unwritten pages only, for the original page it is possible
715 * that the page has no mapping at all.
716 */
f6d6d4fc 717STATIC int
1da177e4
LT
718xfs_convert_page(
719 struct inode *inode,
720 struct page *page,
10ce4444 721 loff_t tindex,
1defeac9 722 xfs_iomap_t *mp,
f6d6d4fc 723 xfs_ioend_t **ioendp,
1da177e4 724 struct writeback_control *wbc,
1da177e4
LT
725 int startio,
726 int all_bh)
727{
f6d6d4fc 728 struct buffer_head *bh, *head;
9260dc6b
CH
729 xfs_off_t end_offset;
730 unsigned long p_offset;
f6d6d4fc 731 unsigned int type;
1da177e4 732 int bbits = inode->i_blkbits;
24e17b5f 733 int len, page_dirty;
f6d6d4fc 734 int count = 0, done = 0, uptodate = 1;
9260dc6b 735 xfs_off_t offset = page_offset(page);
1da177e4 736
10ce4444
CH
737 if (page->index != tindex)
738 goto fail;
529ae9aa 739 if (!trylock_page(page))
10ce4444
CH
740 goto fail;
741 if (PageWriteback(page))
742 goto fail_unlock_page;
743 if (page->mapping != inode->i_mapping)
744 goto fail_unlock_page;
745 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
746 goto fail_unlock_page;
747
24e17b5f
NS
748 /*
749 * page_dirty is initially a count of buffers on the page before
c41564b5 750 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
751 *
752 * Derivation:
753 *
754 * End offset is the highest offset that this page should represent.
755 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
756 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
757 * hence give us the correct page_dirty count. On any other page,
758 * it will be zero and in that case we need page_dirty to be the
759 * count of buffers on the page.
24e17b5f 760 */
9260dc6b
CH
761 end_offset = min_t(unsigned long long,
762 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
763 i_size_read(inode));
764
24e17b5f 765 len = 1 << inode->i_blkbits;
9260dc6b
CH
766 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
767 PAGE_CACHE_SIZE);
768 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
769 page_dirty = p_offset / len;
24e17b5f 770
1da177e4
LT
771 bh = head = page_buffers(page);
772 do {
9260dc6b 773 if (offset >= end_offset)
1da177e4 774 break;
f6d6d4fc
CH
775 if (!buffer_uptodate(bh))
776 uptodate = 0;
777 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
778 done = 1;
1da177e4 779 continue;
f6d6d4fc
CH
780 }
781
9260dc6b
CH
782 if (buffer_unwritten(bh) || buffer_delay(bh)) {
783 if (buffer_unwritten(bh))
784 type = IOMAP_UNWRITTEN;
785 else
786 type = IOMAP_DELAY;
787
788 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 789 done = 1;
9260dc6b
CH
790 continue;
791 }
792
793 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
794 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
795
796 xfs_map_at_offset(bh, offset, bbits, mp);
797 if (startio) {
7336cea8 798 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
799 type, ioendp, done);
800 } else {
801 set_buffer_dirty(bh);
802 unlock_buffer(bh);
803 mark_buffer_dirty(bh);
804 }
805 page_dirty--;
806 count++;
807 } else {
df3c7244 808 type = IOMAP_NEW;
9260dc6b 809 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 810 lock_buffer(bh);
7336cea8 811 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
812 type, ioendp, done);
813 count++;
24e17b5f 814 page_dirty--;
9260dc6b
CH
815 } else {
816 done = 1;
1da177e4 817 }
1da177e4 818 }
7336cea8 819 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 820
f6d6d4fc
CH
821 if (uptodate && bh == head)
822 SetPageUptodate(page);
823
824 if (startio) {
f5e596bb 825 if (count) {
9fddaca2 826 wbc->nr_to_write--;
0d99519e 827 if (wbc->nr_to_write <= 0)
f5e596bb 828 done = 1;
f5e596bb 829 }
b41759cf 830 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 831 }
f6d6d4fc
CH
832
833 return done;
10ce4444
CH
834 fail_unlock_page:
835 unlock_page(page);
836 fail:
837 return 1;
1da177e4
LT
838}
839
840/*
841 * Convert & write out a cluster of pages in the same extent as defined
842 * by mp and following the start page.
843 */
844STATIC void
845xfs_cluster_write(
846 struct inode *inode,
847 pgoff_t tindex,
848 xfs_iomap_t *iomapp,
f6d6d4fc 849 xfs_ioend_t **ioendp,
1da177e4
LT
850 struct writeback_control *wbc,
851 int startio,
852 int all_bh,
853 pgoff_t tlast)
854{
10ce4444
CH
855 struct pagevec pvec;
856 int done = 0, i;
1da177e4 857
10ce4444
CH
858 pagevec_init(&pvec, 0);
859 while (!done && tindex <= tlast) {
860 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
861
862 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 863 break;
10ce4444
CH
864
865 for (i = 0; i < pagevec_count(&pvec); i++) {
866 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
867 iomapp, ioendp, wbc, startio, all_bh);
868 if (done)
869 break;
870 }
871
872 pagevec_release(&pvec);
873 cond_resched();
1da177e4
LT
874 }
875}
876
877/*
878 * Calling this without startio set means we are being asked to make a dirty
879 * page ready for freeing it's buffers. When called with startio set then
880 * we are coming from writepage.
881 *
882 * When called with startio set it is important that we write the WHOLE
883 * page if possible.
884 * The bh->b_state's cannot know if any of the blocks or which block for
885 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 886 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
887 * may clear the page dirty flag prior to calling write page, under the
888 * assumption the entire page will be written out; by not writing out the
889 * whole page the page can be reused before all valid dirty data is
890 * written out. Note: in the case of a page that has been dirty'd by
891 * mapwrite and but partially setup by block_prepare_write the
892 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
893 * valid state, thus the whole page must be written out thing.
894 */
895
896STATIC int
897xfs_page_state_convert(
898 struct inode *inode,
899 struct page *page,
900 struct writeback_control *wbc,
901 int startio,
902 int unmapped) /* also implies page uptodate */
903{
f6d6d4fc 904 struct buffer_head *bh, *head;
1defeac9 905 xfs_iomap_t iomap;
f6d6d4fc 906 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
907 loff_t offset;
908 unsigned long p_offset = 0;
f6d6d4fc 909 unsigned int type;
1da177e4
LT
910 __uint64_t end_offset;
911 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
912 ssize_t size, len;
913 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
914 int page_dirty, count = 0;
915 int trylock = 0;
6c4fe19f 916 int all_bh = unmapped;
1da177e4 917
8272145c
NS
918 if (startio) {
919 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
920 trylock |= BMAPI_TRYLOCK;
921 }
3ba0815a 922
1da177e4
LT
923 /* Is this page beyond the end of the file? */
924 offset = i_size_read(inode);
925 end_index = offset >> PAGE_CACHE_SHIFT;
926 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
927 if (page->index >= end_index) {
928 if ((page->index >= end_index + 1) ||
929 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
930 if (startio)
931 unlock_page(page);
932 return 0;
1da177e4
LT
933 }
934 }
935
1da177e4 936 /*
24e17b5f 937 * page_dirty is initially a count of buffers on the page before
c41564b5 938 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
939 *
940 * Derivation:
941 *
942 * End offset is the highest offset that this page should represent.
943 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
944 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
945 * hence give us the correct page_dirty count. On any other page,
946 * it will be zero and in that case we need page_dirty to be the
947 * count of buffers on the page.
948 */
949 end_offset = min_t(unsigned long long,
950 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 951 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
952 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
953 PAGE_CACHE_SIZE);
954 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
955 page_dirty = p_offset / len;
956
24e17b5f 957 bh = head = page_buffers(page);
f6d6d4fc 958 offset = page_offset(page);
df3c7244
DC
959 flags = BMAPI_READ;
960 type = IOMAP_NEW;
f6d6d4fc 961
f6d6d4fc 962 /* TODO: cleanup count and page_dirty */
1da177e4
LT
963
964 do {
965 if (offset >= end_offset)
966 break;
967 if (!buffer_uptodate(bh))
968 uptodate = 0;
f6d6d4fc 969 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
970 /*
971 * the iomap is actually still valid, but the ioend
972 * isn't. shouldn't happen too often.
973 */
974 iomap_valid = 0;
1da177e4 975 continue;
f6d6d4fc 976 }
1da177e4 977
1defeac9
CH
978 if (iomap_valid)
979 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
980
981 /*
982 * First case, map an unwritten extent and prepare for
983 * extent state conversion transaction on completion.
f6d6d4fc 984 *
1da177e4
LT
985 * Second case, allocate space for a delalloc buffer.
986 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
987 *
988 * Third case, an unmapped buffer was found, and we are
989 * in a path where we need to write the whole page out.
df3c7244 990 */
d5cb48aa
CH
991 if (buffer_unwritten(bh) || buffer_delay(bh) ||
992 ((buffer_uptodate(bh) || PageUptodate(page)) &&
993 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
994 int new_ioend = 0;
995
df3c7244 996 /*
6c4fe19f
CH
997 * Make sure we don't use a read-only iomap
998 */
df3c7244 999 if (flags == BMAPI_READ)
6c4fe19f
CH
1000 iomap_valid = 0;
1001
f6d6d4fc
CH
1002 if (buffer_unwritten(bh)) {
1003 type = IOMAP_UNWRITTEN;
8272145c 1004 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1005 } else if (buffer_delay(bh)) {
f6d6d4fc 1006 type = IOMAP_DELAY;
8272145c 1007 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1008 } else {
6c4fe19f 1009 type = IOMAP_NEW;
8272145c 1010 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1011 }
1012
1defeac9 1013 if (!iomap_valid) {
effd120e
DC
1014 /*
1015 * if we didn't have a valid mapping then we
1016 * need to ensure that we put the new mapping
1017 * in a new ioend structure. This needs to be
1018 * done to ensure that the ioends correctly
1019 * reflect the block mappings at io completion
1020 * for unwritten extent conversion.
1021 */
1022 new_ioend = 1;
6c4fe19f
CH
1023 if (type == IOMAP_NEW) {
1024 size = xfs_probe_cluster(inode,
1025 page, bh, head, 0);
d5cb48aa
CH
1026 } else {
1027 size = len;
1028 }
1029
1030 err = xfs_map_blocks(inode, offset, size,
1031 &iomap, flags);
f6d6d4fc 1032 if (err)
1da177e4 1033 goto error;
1defeac9 1034 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1035 }
1defeac9
CH
1036 if (iomap_valid) {
1037 xfs_map_at_offset(bh, offset,
1038 inode->i_blkbits, &iomap);
1da177e4 1039 if (startio) {
7336cea8 1040 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1041 type, &ioend,
effd120e 1042 new_ioend);
1da177e4
LT
1043 } else {
1044 set_buffer_dirty(bh);
1045 unlock_buffer(bh);
1046 mark_buffer_dirty(bh);
1047 }
1048 page_dirty--;
f6d6d4fc 1049 count++;
1da177e4 1050 }
d5cb48aa 1051 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1052 /*
1053 * we got here because the buffer is already mapped.
1054 * That means it must already have extents allocated
1055 * underneath it. Map the extent by reading it.
1056 */
df3c7244 1057 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1058 flags = BMAPI_READ;
1059 size = xfs_probe_cluster(inode, page, bh,
1060 head, 1);
1061 err = xfs_map_blocks(inode, offset, size,
1062 &iomap, flags);
1063 if (err)
1064 goto error;
1065 iomap_valid = xfs_iomap_valid(&iomap, offset);
1066 }
d5cb48aa 1067
df3c7244
DC
1068 /*
1069 * We set the type to IOMAP_NEW in case we are doing a
1070 * small write at EOF that is extending the file but
1071 * without needing an allocation. We need to update the
1072 * file size on I/O completion in this case so it is
1073 * the same case as having just allocated a new extent
1074 * that we are writing into for the first time.
1075 */
1076 type = IOMAP_NEW;
ca5de404 1077 if (trylock_buffer(bh)) {
d5cb48aa 1078 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1079 if (iomap_valid)
1080 all_bh = 1;
7336cea8 1081 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1082 &ioend, !iomap_valid);
1083 page_dirty--;
1084 count++;
f6d6d4fc 1085 } else {
1defeac9 1086 iomap_valid = 0;
1da177e4 1087 }
d5cb48aa
CH
1088 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1089 (unmapped || startio)) {
1090 iomap_valid = 0;
1da177e4 1091 }
f6d6d4fc
CH
1092
1093 if (!iohead)
1094 iohead = ioend;
1095
1096 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1097
1098 if (uptodate && bh == head)
1099 SetPageUptodate(page);
1100
f6d6d4fc 1101 if (startio)
b41759cf 1102 xfs_start_page_writeback(page, 1, count);
1da177e4 1103
1defeac9
CH
1104 if (ioend && iomap_valid) {
1105 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1106 PAGE_CACHE_SHIFT;
775bf6c9 1107 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1108 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1109 wbc, startio, all_bh, tlast);
1da177e4
LT
1110 }
1111
f6d6d4fc 1112 if (iohead)
06342cf8 1113 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1114
1da177e4
LT
1115 return page_dirty;
1116
1117error:
f6d6d4fc
CH
1118 if (iohead)
1119 xfs_cancel_ioend(iohead);
1da177e4
LT
1120
1121 /*
1122 * If it's delalloc and we have nowhere to put it,
1123 * throw it away, unless the lower layers told
1124 * us to try again.
1125 */
1126 if (err != -EAGAIN) {
f6d6d4fc 1127 if (!unmapped)
1da177e4 1128 block_invalidatepage(page, 0);
1da177e4
LT
1129 ClearPageUptodate(page);
1130 }
1131 return err;
1132}
1133
f51623b2
NS
1134/*
1135 * writepage: Called from one of two places:
1136 *
1137 * 1. we are flushing a delalloc buffer head.
1138 *
1139 * 2. we are writing out a dirty page. Typically the page dirty
1140 * state is cleared before we get here. In this case is it
1141 * conceivable we have no buffer heads.
1142 *
1143 * For delalloc space on the page we need to allocate space and
1144 * flush it. For unmapped buffer heads on the page we should
1145 * allocate space if the page is uptodate. For any other dirty
1146 * buffer heads on the page we should flush them.
1147 *
1148 * If we detect that a transaction would be required to flush
1149 * the page, we have to check the process flags first, if we
1150 * are already in a transaction or disk I/O during allocations
1151 * is off, we need to fail the writepage and redirty the page.
1152 */
1153
1154STATIC int
e4c573bb 1155xfs_vm_writepage(
f51623b2
NS
1156 struct page *page,
1157 struct writeback_control *wbc)
1158{
1159 int error;
1160 int need_trans;
1161 int delalloc, unmapped, unwritten;
1162 struct inode *inode = page->mapping->host;
1163
0b1b213f 1164 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1165
1166 /*
1167 * We need a transaction if:
1168 * 1. There are delalloc buffers on the page
1169 * 2. The page is uptodate and we have unmapped buffers
1170 * 3. The page is uptodate and we have no buffers
1171 * 4. There are unwritten buffers on the page
1172 */
1173
1174 if (!page_has_buffers(page)) {
1175 unmapped = 1;
1176 need_trans = 1;
1177 } else {
1178 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1179 if (!PageUptodate(page))
1180 unmapped = 0;
1181 need_trans = delalloc + unmapped + unwritten;
1182 }
1183
1184 /*
1185 * If we need a transaction and the process flags say
1186 * we are already in a transaction, or no IO is allowed
1187 * then mark the page dirty again and leave the page
1188 * as is.
1189 */
59c1b082 1190 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1191 goto out_fail;
1192
1193 /*
1194 * Delay hooking up buffer heads until we have
1195 * made our go/no-go decision.
1196 */
1197 if (!page_has_buffers(page))
1198 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1199
c8a4051c
ES
1200
1201 /*
1202 * VM calculation for nr_to_write seems off. Bump it way
1203 * up, this gets simple streaming writes zippy again.
1204 * To be reviewed again after Jens' writeback changes.
1205 */
1206 wbc->nr_to_write *= 4;
1207
f51623b2
NS
1208 /*
1209 * Convert delayed allocate, unwritten or unmapped space
1210 * to real space and flush out to disk.
1211 */
1212 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1213 if (error == -EAGAIN)
1214 goto out_fail;
1215 if (unlikely(error < 0))
1216 goto out_unlock;
1217
1218 return 0;
1219
1220out_fail:
1221 redirty_page_for_writepage(wbc, page);
1222 unlock_page(page);
1223 return 0;
1224out_unlock:
1225 unlock_page(page);
1226 return error;
1227}
1228
7d4fb40a
NS
1229STATIC int
1230xfs_vm_writepages(
1231 struct address_space *mapping,
1232 struct writeback_control *wbc)
1233{
b3aea4ed 1234 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1235 return generic_writepages(mapping, wbc);
1236}
1237
f51623b2
NS
1238/*
1239 * Called to move a page into cleanable state - and from there
1240 * to be released. Possibly the page is already clean. We always
1241 * have buffer heads in this call.
1242 *
1243 * Returns 0 if the page is ok to release, 1 otherwise.
1244 *
1245 * Possible scenarios are:
1246 *
1247 * 1. We are being called to release a page which has been written
1248 * to via regular I/O. buffer heads will be dirty and possibly
1249 * delalloc. If no delalloc buffer heads in this case then we
1250 * can just return zero.
1251 *
1252 * 2. We are called to release a page which has been written via
1253 * mmap, all we need to do is ensure there is no delalloc
1254 * state in the buffer heads, if not we can let the caller
1255 * free them and we should come back later via writepage.
1256 */
1257STATIC int
238f4c54 1258xfs_vm_releasepage(
f51623b2
NS
1259 struct page *page,
1260 gfp_t gfp_mask)
1261{
1262 struct inode *inode = page->mapping->host;
1263 int dirty, delalloc, unmapped, unwritten;
1264 struct writeback_control wbc = {
1265 .sync_mode = WB_SYNC_ALL,
1266 .nr_to_write = 1,
1267 };
1268
0b1b213f 1269 trace_xfs_releasepage(inode, page, 0);
f51623b2 1270
238f4c54
NS
1271 if (!page_has_buffers(page))
1272 return 0;
1273
f51623b2
NS
1274 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1275 if (!delalloc && !unwritten)
1276 goto free_buffers;
1277
1278 if (!(gfp_mask & __GFP_FS))
1279 return 0;
1280
1281 /* If we are already inside a transaction or the thread cannot
1282 * do I/O, we cannot release this page.
1283 */
59c1b082 1284 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1285 return 0;
1286
1287 /*
1288 * Convert delalloc space to real space, do not flush the
1289 * data out to disk, that will be done by the caller.
1290 * Never need to allocate space here - we will always
1291 * come back to writepage in that case.
1292 */
1293 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1294 if (dirty == 0 && !unwritten)
1295 goto free_buffers;
1296 return 0;
1297
1298free_buffers:
1299 return try_to_free_buffers(page);
1300}
1301
1da177e4 1302STATIC int
c2536668 1303__xfs_get_blocks(
1da177e4
LT
1304 struct inode *inode,
1305 sector_t iblock,
1da177e4
LT
1306 struct buffer_head *bh_result,
1307 int create,
1308 int direct,
1309 bmapi_flags_t flags)
1310{
1da177e4 1311 xfs_iomap_t iomap;
fdc7ed75
NS
1312 xfs_off_t offset;
1313 ssize_t size;
c2536668 1314 int niomap = 1;
1da177e4 1315 int error;
1da177e4 1316
fdc7ed75 1317 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1318 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1319 size = bh_result->b_size;
364f358a
LM
1320
1321 if (!create && direct && offset >= i_size_read(inode))
1322 return 0;
1323
541d7d3c 1324 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1325 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1326 if (error)
1327 return -error;
c2536668 1328 if (niomap == 0)
1da177e4
LT
1329 return 0;
1330
1331 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1332 /*
1333 * For unwritten extents do not report a disk address on
1da177e4
LT
1334 * the read case (treat as if we're reading into a hole).
1335 */
1336 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1337 xfs_map_buffer(bh_result, &iomap, offset,
1338 inode->i_blkbits);
1da177e4
LT
1339 }
1340 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1341 if (direct)
1342 bh_result->b_private = inode;
1343 set_buffer_unwritten(bh_result);
1da177e4
LT
1344 }
1345 }
1346
c2536668
NS
1347 /*
1348 * If this is a realtime file, data may be on a different device.
1349 * to that pointed to from the buffer_head b_bdev currently.
1350 */
ce8e922c 1351 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1352
c2536668 1353 /*
549054af
DC
1354 * If we previously allocated a block out beyond eof and we are now
1355 * coming back to use it then we will need to flag it as new even if it
1356 * has a disk address.
1357 *
1358 * With sub-block writes into unwritten extents we also need to mark
1359 * the buffer as new so that the unwritten parts of the buffer gets
1360 * correctly zeroed.
1da177e4
LT
1361 */
1362 if (create &&
1363 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1364 (offset >= i_size_read(inode)) ||
1365 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1366 set_buffer_new(bh_result);
1da177e4
LT
1367
1368 if (iomap.iomap_flags & IOMAP_DELAY) {
1369 BUG_ON(direct);
1370 if (create) {
1371 set_buffer_uptodate(bh_result);
1372 set_buffer_mapped(bh_result);
1373 set_buffer_delay(bh_result);
1374 }
1375 }
1376
c2536668 1377 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1378 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1379 offset = min_t(xfs_off_t,
c2536668
NS
1380 iomap.iomap_bsize - iomap.iomap_delta, size);
1381 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1382 }
1383
1384 return 0;
1385}
1386
1387int
c2536668 1388xfs_get_blocks(
1da177e4
LT
1389 struct inode *inode,
1390 sector_t iblock,
1391 struct buffer_head *bh_result,
1392 int create)
1393{
c2536668 1394 return __xfs_get_blocks(inode, iblock,
fa30bd05 1395 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1396}
1397
1398STATIC int
e4c573bb 1399xfs_get_blocks_direct(
1da177e4
LT
1400 struct inode *inode,
1401 sector_t iblock,
1da177e4
LT
1402 struct buffer_head *bh_result,
1403 int create)
1404{
c2536668 1405 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1406 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1407}
1408
f0973863 1409STATIC void
e4c573bb 1410xfs_end_io_direct(
f0973863
CH
1411 struct kiocb *iocb,
1412 loff_t offset,
1413 ssize_t size,
1414 void *private)
1415{
1416 xfs_ioend_t *ioend = iocb->private;
1417
1418 /*
1419 * Non-NULL private data means we need to issue a transaction to
1420 * convert a range from unwritten to written extents. This needs
c41564b5 1421 * to happen from process context but aio+dio I/O completion
f0973863 1422 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1423 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1424 * it anyway to keep the code uniform and simpler.
1425 *
e927af90
DC
1426 * Well, if only it were that simple. Because synchronous direct I/O
1427 * requires extent conversion to occur *before* we return to userspace,
1428 * we have to wait for extent conversion to complete. Look at the
1429 * iocb that has been passed to us to determine if this is AIO or
1430 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1431 * workqueue and wait for it to complete.
1432 *
f0973863
CH
1433 * The core direct I/O code might be changed to always call the
1434 * completion handler in the future, in which case all this can
1435 * go away.
1436 */
ba87ea69
LM
1437 ioend->io_offset = offset;
1438 ioend->io_size = size;
1439 if (ioend->io_type == IOMAP_READ) {
e927af90 1440 xfs_finish_ioend(ioend, 0);
ba87ea69 1441 } else if (private && size > 0) {
e927af90 1442 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1443 } else {
ba87ea69
LM
1444 /*
1445 * A direct I/O write ioend starts it's life in unwritten
1446 * state in case they map an unwritten extent. This write
1447 * didn't map an unwritten extent so switch it's completion
1448 * handler.
1449 */
5ec4fabb 1450 ioend->io_type = IOMAP_NEW;
e927af90 1451 xfs_finish_ioend(ioend, 0);
f0973863
CH
1452 }
1453
1454 /*
c41564b5 1455 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1456 * completion handler was called. Thus we need to protect
1457 * against double-freeing.
1458 */
1459 iocb->private = NULL;
1460}
1461
1da177e4 1462STATIC ssize_t
e4c573bb 1463xfs_vm_direct_IO(
1da177e4
LT
1464 int rw,
1465 struct kiocb *iocb,
1466 const struct iovec *iov,
1467 loff_t offset,
1468 unsigned long nr_segs)
1469{
1470 struct file *file = iocb->ki_filp;
1471 struct inode *inode = file->f_mapping->host;
6214ed44 1472 struct block_device *bdev;
f0973863 1473 ssize_t ret;
1da177e4 1474
6214ed44 1475 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1476
721259bc 1477 if (rw == WRITE) {
ba87ea69 1478 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1479 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1480 bdev, iov, offset, nr_segs,
721259bc
LM
1481 xfs_get_blocks_direct,
1482 xfs_end_io_direct);
1483 } else {
ba87ea69 1484 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1485 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1486 bdev, iov, offset, nr_segs,
721259bc
LM
1487 xfs_get_blocks_direct,
1488 xfs_end_io_direct);
1489 }
f0973863 1490
8459d86a 1491 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1492 xfs_destroy_ioend(iocb->private);
1493 return ret;
1da177e4
LT
1494}
1495
f51623b2 1496STATIC int
d79689c7 1497xfs_vm_write_begin(
f51623b2 1498 struct file *file,
d79689c7
NP
1499 struct address_space *mapping,
1500 loff_t pos,
1501 unsigned len,
1502 unsigned flags,
1503 struct page **pagep,
1504 void **fsdata)
f51623b2 1505{
d79689c7
NP
1506 *pagep = NULL;
1507 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1508 xfs_get_blocks);
f51623b2 1509}
1da177e4
LT
1510
1511STATIC sector_t
e4c573bb 1512xfs_vm_bmap(
1da177e4
LT
1513 struct address_space *mapping,
1514 sector_t block)
1515{
1516 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1517 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1518
cf441eeb 1519 xfs_itrace_entry(XFS_I(inode));
126468b1 1520 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1521 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1522 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1523 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1524}
1525
1526STATIC int
e4c573bb 1527xfs_vm_readpage(
1da177e4
LT
1528 struct file *unused,
1529 struct page *page)
1530{
c2536668 1531 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1532}
1533
1534STATIC int
e4c573bb 1535xfs_vm_readpages(
1da177e4
LT
1536 struct file *unused,
1537 struct address_space *mapping,
1538 struct list_head *pages,
1539 unsigned nr_pages)
1540{
c2536668 1541 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1542}
1543
2ff28e22 1544STATIC void
238f4c54 1545xfs_vm_invalidatepage(
bcec2b7f
NS
1546 struct page *page,
1547 unsigned long offset)
1548{
0b1b213f 1549 trace_xfs_invalidatepage(page->mapping->host, page, offset);
2ff28e22 1550 block_invalidatepage(page, offset);
bcec2b7f
NS
1551}
1552
f5e54d6e 1553const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1554 .readpage = xfs_vm_readpage,
1555 .readpages = xfs_vm_readpages,
1556 .writepage = xfs_vm_writepage,
7d4fb40a 1557 .writepages = xfs_vm_writepages,
1da177e4 1558 .sync_page = block_sync_page,
238f4c54
NS
1559 .releasepage = xfs_vm_releasepage,
1560 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1561 .write_begin = xfs_vm_write_begin,
1562 .write_end = generic_write_end,
e4c573bb
NS
1563 .bmap = xfs_vm_bmap,
1564 .direct_IO = xfs_vm_direct_IO,
e965f963 1565 .migratepage = buffer_migrate_page,
bddaafa1 1566 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1567 .error_remove_page = generic_error_remove_page,
1da177e4 1568};
This page took 0.502516 seconds and 5 git commands to generate.