xfs: change the xfs_iext_insert / xfs_iext_remove
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
25e41b3d
CH
45
46/*
47 * Prime number of hash buckets since address is used as the key.
48 */
49#define NVSYNC 37
50#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51static wait_queue_head_t xfs_ioend_wq[NVSYNC];
52
53void __init
54xfs_ioend_init(void)
55{
56 int i;
57
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
60}
61
62void
63xfs_ioend_wait(
64 xfs_inode_t *ip)
65{
66 wait_queue_head_t *wq = to_ioend_wq(ip);
67
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
69}
70
71STATIC void
72xfs_ioend_wake(
73 xfs_inode_t *ip)
74{
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
77}
78
f51623b2
NS
79STATIC void
80xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
85{
86 struct buffer_head *bh, *head;
87
88 *delalloc = *unmapped = *unwritten = 0;
89
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
f51623b2
NS
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
99}
100
1da177e4
LT
101#if defined(XFS_RW_TRACE)
102void
103xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
ed9d88f7 107 unsigned long pgoff)
1da177e4
LT
108{
109 xfs_inode_t *ip;
1da177e4 110 loff_t isize = i_size_read(inode);
f6d6d4fc 111 loff_t offset = page_offset(page);
1da177e4
LT
112 int delalloc = -1, unmapped = -1, unwritten = -1;
113
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
116
e6064d30 117 ip = XFS_I(inode);
1da177e4
LT
118 if (!ip->i_rwtrace)
119 return;
120
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
ed9d88f7 126 (void *)pgoff,
1da177e4
LT
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
f1fdc848 136 (void *)((unsigned long)current_pid()),
1da177e4
LT
137 (void *)NULL);
138}
139#else
ed9d88f7 140#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
141#endif
142
6214ed44
CH
143STATIC struct block_device *
144xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
146{
147 struct xfs_mount *mp = ip->i_mount;
148
71ddabb9 149 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
153}
154
f6d6d4fc
CH
155/*
156 * We're now finished for good with this ioend structure.
157 * Update the page state via the associated buffer_heads,
158 * release holds on the inode and bio, and finally free
159 * up memory. Do not use the ioend after this.
160 */
0829c360
CH
161STATIC void
162xfs_destroy_ioend(
163 xfs_ioend_t *ioend)
164{
f6d6d4fc 165 struct buffer_head *bh, *next;
583fa586 166 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
167
168 for (bh = ioend->io_buffer_head; bh; bh = next) {
169 next = bh->b_private;
7d04a335 170 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 171 }
583fa586
CH
172
173 /*
174 * Volume managers supporting multiple paths can send back ENODEV
175 * when the final path disappears. In this case continuing to fill
176 * the page cache with dirty data which cannot be written out is
177 * evil, so prevent that.
178 */
179 if (unlikely(ioend->io_error == -ENODEV)) {
180 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
181 __FILE__, __LINE__);
b677c210 182 }
583fa586 183
25e41b3d 184 xfs_ioend_wake(ip);
0829c360
CH
185 mempool_free(ioend, xfs_ioend_pool);
186}
187
932640e8
DC
188/*
189 * If the end of the current ioend is beyond the current EOF,
190 * return the new EOF value, otherwise zero.
191 */
192STATIC xfs_fsize_t
193xfs_ioend_new_eof(
194 xfs_ioend_t *ioend)
195{
196 xfs_inode_t *ip = XFS_I(ioend->io_inode);
197 xfs_fsize_t isize;
198 xfs_fsize_t bsize;
199
200 bsize = ioend->io_offset + ioend->io_size;
201 isize = MAX(ip->i_size, ip->i_new_size);
202 isize = MIN(isize, bsize);
203 return isize > ip->i_d.di_size ? isize : 0;
204}
205
ba87ea69
LM
206/*
207 * Update on-disk file size now that data has been written to disk.
208 * The current in-memory file size is i_size. If a write is beyond
613d7043 209 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
210 * updated. If this write does not extend all the way to the valid
211 * file size then restrict this update to the end of the write.
212 */
932640e8 213
ba87ea69
LM
214STATIC void
215xfs_setfilesize(
216 xfs_ioend_t *ioend)
217{
b677c210 218 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 219 xfs_fsize_t isize;
ba87ea69 220
ba87ea69
LM
221 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
222 ASSERT(ioend->io_type != IOMAP_READ);
223
224 if (unlikely(ioend->io_error))
225 return;
226
ba87ea69 227 xfs_ilock(ip, XFS_ILOCK_EXCL);
932640e8
DC
228 isize = xfs_ioend_new_eof(ioend);
229 if (isize) {
ba87ea69 230 ip->i_d.di_size = isize;
94b97e39 231 xfs_mark_inode_dirty_sync(ip);
ba87ea69
LM
232 }
233
234 xfs_iunlock(ip, XFS_ILOCK_EXCL);
235}
236
0829c360 237/*
5ec4fabb 238 * IO write completion.
f6d6d4fc
CH
239 */
240STATIC void
5ec4fabb 241xfs_end_io(
c4028958 242 struct work_struct *work)
0829c360 243{
c4028958
DH
244 xfs_ioend_t *ioend =
245 container_of(work, xfs_ioend_t, io_work);
7642861b 246 struct xfs_inode *ip = XFS_I(ioend->io_inode);
ba87ea69 247
5ec4fabb
CH
248 /*
249 * For unwritten extents we need to issue transactions to convert a
250 * range to normal written extens after the data I/O has finished.
251 */
252 if (ioend->io_type == IOMAP_UNWRITTEN &&
253 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
254 int error;
255
256 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
257 ioend->io_size);
258 if (error)
259 ioend->io_error = error;
260 }
ba87ea69 261
5ec4fabb
CH
262 /*
263 * We might have to update the on-disk file size after extending
264 * writes.
265 */
266 if (ioend->io_type != IOMAP_READ)
267 xfs_setfilesize(ioend);
0829c360
CH
268 xfs_destroy_ioend(ioend);
269}
270
c626d174
DC
271/*
272 * Schedule IO completion handling on a xfsdatad if this was
273 * the final hold on this ioend. If we are asked to wait,
274 * flush the workqueue.
275 */
276STATIC void
277xfs_finish_ioend(
278 xfs_ioend_t *ioend,
279 int wait)
280{
281 if (atomic_dec_and_test(&ioend->io_remaining)) {
5ec4fabb 282 struct workqueue_struct *wq;
c626d174 283
5ec4fabb
CH
284 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
285 xfsconvertd_workqueue : xfsdatad_workqueue;
c626d174
DC
286 queue_work(wq, &ioend->io_work);
287 if (wait)
288 flush_workqueue(wq);
289 }
290}
291
0829c360
CH
292/*
293 * Allocate and initialise an IO completion structure.
294 * We need to track unwritten extent write completion here initially.
295 * We'll need to extend this for updating the ondisk inode size later
296 * (vs. incore size).
297 */
298STATIC xfs_ioend_t *
299xfs_alloc_ioend(
f6d6d4fc
CH
300 struct inode *inode,
301 unsigned int type)
0829c360
CH
302{
303 xfs_ioend_t *ioend;
304
305 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
306
307 /*
308 * Set the count to 1 initially, which will prevent an I/O
309 * completion callback from happening before we have started
310 * all the I/O from calling the completion routine too early.
311 */
312 atomic_set(&ioend->io_remaining, 1);
7d04a335 313 ioend->io_error = 0;
f6d6d4fc
CH
314 ioend->io_list = NULL;
315 ioend->io_type = type;
b677c210 316 ioend->io_inode = inode;
c1a073bd 317 ioend->io_buffer_head = NULL;
f6d6d4fc 318 ioend->io_buffer_tail = NULL;
b677c210 319 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
320 ioend->io_offset = 0;
321 ioend->io_size = 0;
322
5ec4fabb 323 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
324 return ioend;
325}
326
1da177e4
LT
327STATIC int
328xfs_map_blocks(
329 struct inode *inode,
330 loff_t offset,
331 ssize_t count,
332 xfs_iomap_t *mapp,
333 int flags)
334{
6bd16ff2
CH
335 int nmaps = 1;
336
337 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
338}
339
b8f82a4a 340STATIC int
1defeac9 341xfs_iomap_valid(
1da177e4 342 xfs_iomap_t *iomapp,
1defeac9 343 loff_t offset)
1da177e4 344{
1defeac9
CH
345 return offset >= iomapp->iomap_offset &&
346 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
347}
348
f6d6d4fc
CH
349/*
350 * BIO completion handler for buffered IO.
351 */
782e3b3b 352STATIC void
f6d6d4fc
CH
353xfs_end_bio(
354 struct bio *bio,
f6d6d4fc
CH
355 int error)
356{
357 xfs_ioend_t *ioend = bio->bi_private;
358
f6d6d4fc 359 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 360 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
361
362 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
363 bio->bi_private = NULL;
364 bio->bi_end_io = NULL;
f6d6d4fc 365 bio_put(bio);
7d04a335 366
e927af90 367 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
368}
369
370STATIC void
371xfs_submit_ioend_bio(
06342cf8
CH
372 struct writeback_control *wbc,
373 xfs_ioend_t *ioend,
374 struct bio *bio)
f6d6d4fc
CH
375{
376 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
377 bio->bi_private = ioend;
378 bio->bi_end_io = xfs_end_bio;
379
932640e8
DC
380 /*
381 * If the I/O is beyond EOF we mark the inode dirty immediately
382 * but don't update the inode size until I/O completion.
383 */
384 if (xfs_ioend_new_eof(ioend))
385 xfs_mark_inode_dirty_sync(XFS_I(ioend->io_inode));
386
06342cf8
CH
387 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
388 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
389 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
390 bio_put(bio);
391}
392
393STATIC struct bio *
394xfs_alloc_ioend_bio(
395 struct buffer_head *bh)
396{
397 struct bio *bio;
398 int nvecs = bio_get_nr_vecs(bh->b_bdev);
399
400 do {
401 bio = bio_alloc(GFP_NOIO, nvecs);
402 nvecs >>= 1;
403 } while (!bio);
404
405 ASSERT(bio->bi_private == NULL);
406 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
407 bio->bi_bdev = bh->b_bdev;
408 bio_get(bio);
409 return bio;
410}
411
412STATIC void
413xfs_start_buffer_writeback(
414 struct buffer_head *bh)
415{
416 ASSERT(buffer_mapped(bh));
417 ASSERT(buffer_locked(bh));
418 ASSERT(!buffer_delay(bh));
419 ASSERT(!buffer_unwritten(bh));
420
421 mark_buffer_async_write(bh);
422 set_buffer_uptodate(bh);
423 clear_buffer_dirty(bh);
424}
425
426STATIC void
427xfs_start_page_writeback(
428 struct page *page,
f6d6d4fc
CH
429 int clear_dirty,
430 int buffers)
431{
432 ASSERT(PageLocked(page));
433 ASSERT(!PageWriteback(page));
f6d6d4fc 434 if (clear_dirty)
92132021
DC
435 clear_page_dirty_for_io(page);
436 set_page_writeback(page);
f6d6d4fc 437 unlock_page(page);
1f7decf6
FW
438 /* If no buffers on the page are to be written, finish it here */
439 if (!buffers)
f6d6d4fc 440 end_page_writeback(page);
f6d6d4fc
CH
441}
442
443static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
444{
445 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
446}
447
448/*
d88992f6
DC
449 * Submit all of the bios for all of the ioends we have saved up, covering the
450 * initial writepage page and also any probed pages.
451 *
452 * Because we may have multiple ioends spanning a page, we need to start
453 * writeback on all the buffers before we submit them for I/O. If we mark the
454 * buffers as we got, then we can end up with a page that only has buffers
455 * marked async write and I/O complete on can occur before we mark the other
456 * buffers async write.
457 *
458 * The end result of this is that we trip a bug in end_page_writeback() because
459 * we call it twice for the one page as the code in end_buffer_async_write()
460 * assumes that all buffers on the page are started at the same time.
461 *
462 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 463 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
464 */
465STATIC void
466xfs_submit_ioend(
06342cf8 467 struct writeback_control *wbc,
f6d6d4fc
CH
468 xfs_ioend_t *ioend)
469{
d88992f6 470 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
471 xfs_ioend_t *next;
472 struct buffer_head *bh;
473 struct bio *bio;
474 sector_t lastblock = 0;
475
d88992f6
DC
476 /* Pass 1 - start writeback */
477 do {
478 next = ioend->io_list;
479 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
480 xfs_start_buffer_writeback(bh);
481 }
482 } while ((ioend = next) != NULL);
483
484 /* Pass 2 - submit I/O */
485 ioend = head;
f6d6d4fc
CH
486 do {
487 next = ioend->io_list;
488 bio = NULL;
489
490 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
491
492 if (!bio) {
493 retry:
494 bio = xfs_alloc_ioend_bio(bh);
495 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 496 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
497 goto retry;
498 }
499
500 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 501 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
502 goto retry;
503 }
504
505 lastblock = bh->b_blocknr;
506 }
507 if (bio)
06342cf8 508 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 509 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
510 } while ((ioend = next) != NULL);
511}
512
513/*
514 * Cancel submission of all buffer_heads so far in this endio.
515 * Toss the endio too. Only ever called for the initial page
516 * in a writepage request, so only ever one page.
517 */
518STATIC void
519xfs_cancel_ioend(
520 xfs_ioend_t *ioend)
521{
522 xfs_ioend_t *next;
523 struct buffer_head *bh, *next_bh;
524
525 do {
526 next = ioend->io_list;
527 bh = ioend->io_buffer_head;
528 do {
529 next_bh = bh->b_private;
530 clear_buffer_async_write(bh);
531 unlock_buffer(bh);
532 } while ((bh = next_bh) != NULL);
533
25e41b3d 534 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
535 mempool_free(ioend, xfs_ioend_pool);
536 } while ((ioend = next) != NULL);
537}
538
539/*
540 * Test to see if we've been building up a completion structure for
541 * earlier buffers -- if so, we try to append to this ioend if we
542 * can, otherwise we finish off any current ioend and start another.
543 * Return true if we've finished the given ioend.
544 */
545STATIC void
546xfs_add_to_ioend(
547 struct inode *inode,
548 struct buffer_head *bh,
7336cea8 549 xfs_off_t offset,
f6d6d4fc
CH
550 unsigned int type,
551 xfs_ioend_t **result,
552 int need_ioend)
553{
554 xfs_ioend_t *ioend = *result;
555
556 if (!ioend || need_ioend || type != ioend->io_type) {
557 xfs_ioend_t *previous = *result;
f6d6d4fc 558
f6d6d4fc
CH
559 ioend = xfs_alloc_ioend(inode, type);
560 ioend->io_offset = offset;
561 ioend->io_buffer_head = bh;
562 ioend->io_buffer_tail = bh;
563 if (previous)
564 previous->io_list = ioend;
565 *result = ioend;
566 } else {
567 ioend->io_buffer_tail->b_private = bh;
568 ioend->io_buffer_tail = bh;
569 }
570
571 bh->b_private = NULL;
572 ioend->io_size += bh->b_size;
573}
574
87cbc49c
NS
575STATIC void
576xfs_map_buffer(
577 struct buffer_head *bh,
578 xfs_iomap_t *mp,
579 xfs_off_t offset,
580 uint block_bits)
581{
582 sector_t bn;
583
584 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
585
586 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
587 ((offset - mp->iomap_offset) >> block_bits);
588
589 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
590
591 bh->b_blocknr = bn;
592 set_buffer_mapped(bh);
593}
594
1da177e4
LT
595STATIC void
596xfs_map_at_offset(
1da177e4 597 struct buffer_head *bh,
1defeac9 598 loff_t offset,
1da177e4 599 int block_bits,
1defeac9 600 xfs_iomap_t *iomapp)
1da177e4 601{
1da177e4
LT
602 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
603 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
604
605 lock_buffer(bh);
87cbc49c 606 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 607 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
608 set_buffer_mapped(bh);
609 clear_buffer_delay(bh);
f6d6d4fc 610 clear_buffer_unwritten(bh);
1da177e4
LT
611}
612
613/*
6c4fe19f 614 * Look for a page at index that is suitable for clustering.
1da177e4
LT
615 */
616STATIC unsigned int
6c4fe19f 617xfs_probe_page(
10ce4444 618 struct page *page,
6c4fe19f
CH
619 unsigned int pg_offset,
620 int mapped)
1da177e4 621{
1da177e4
LT
622 int ret = 0;
623
1da177e4 624 if (PageWriteback(page))
10ce4444 625 return 0;
1da177e4
LT
626
627 if (page->mapping && PageDirty(page)) {
628 if (page_has_buffers(page)) {
629 struct buffer_head *bh, *head;
630
631 bh = head = page_buffers(page);
632 do {
6c4fe19f
CH
633 if (!buffer_uptodate(bh))
634 break;
635 if (mapped != buffer_mapped(bh))
1da177e4
LT
636 break;
637 ret += bh->b_size;
638 if (ret >= pg_offset)
639 break;
640 } while ((bh = bh->b_this_page) != head);
641 } else
6c4fe19f 642 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
643 }
644
1da177e4
LT
645 return ret;
646}
647
f6d6d4fc 648STATIC size_t
6c4fe19f 649xfs_probe_cluster(
1da177e4
LT
650 struct inode *inode,
651 struct page *startpage,
652 struct buffer_head *bh,
6c4fe19f
CH
653 struct buffer_head *head,
654 int mapped)
1da177e4 655{
10ce4444 656 struct pagevec pvec;
1da177e4 657 pgoff_t tindex, tlast, tloff;
10ce4444
CH
658 size_t total = 0;
659 int done = 0, i;
1da177e4
LT
660
661 /* First sum forwards in this page */
662 do {
2353e8e9 663 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 664 return total;
1da177e4
LT
665 total += bh->b_size;
666 } while ((bh = bh->b_this_page) != head);
667
10ce4444
CH
668 /* if we reached the end of the page, sum forwards in following pages */
669 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
670 tindex = startpage->index + 1;
671
672 /* Prune this back to avoid pathological behavior */
673 tloff = min(tlast, startpage->index + 64);
674
675 pagevec_init(&pvec, 0);
676 while (!done && tindex <= tloff) {
677 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
678
679 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
680 break;
681
682 for (i = 0; i < pagevec_count(&pvec); i++) {
683 struct page *page = pvec.pages[i];
265c1fac 684 size_t pg_offset, pg_len = 0;
10ce4444
CH
685
686 if (tindex == tlast) {
687 pg_offset =
688 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
689 if (!pg_offset) {
690 done = 1;
10ce4444 691 break;
1defeac9 692 }
10ce4444
CH
693 } else
694 pg_offset = PAGE_CACHE_SIZE;
695
529ae9aa 696 if (page->index == tindex && trylock_page(page)) {
265c1fac 697 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
698 unlock_page(page);
699 }
700
265c1fac 701 if (!pg_len) {
10ce4444
CH
702 done = 1;
703 break;
704 }
705
265c1fac 706 total += pg_len;
1defeac9 707 tindex++;
1da177e4 708 }
10ce4444
CH
709
710 pagevec_release(&pvec);
711 cond_resched();
1da177e4 712 }
10ce4444 713
1da177e4
LT
714 return total;
715}
716
717/*
10ce4444
CH
718 * Test if a given page is suitable for writing as part of an unwritten
719 * or delayed allocate extent.
1da177e4 720 */
10ce4444
CH
721STATIC int
722xfs_is_delayed_page(
723 struct page *page,
f6d6d4fc 724 unsigned int type)
1da177e4 725{
1da177e4 726 if (PageWriteback(page))
10ce4444 727 return 0;
1da177e4
LT
728
729 if (page->mapping && page_has_buffers(page)) {
730 struct buffer_head *bh, *head;
731 int acceptable = 0;
732
733 bh = head = page_buffers(page);
734 do {
f6d6d4fc
CH
735 if (buffer_unwritten(bh))
736 acceptable = (type == IOMAP_UNWRITTEN);
737 else if (buffer_delay(bh))
738 acceptable = (type == IOMAP_DELAY);
2ddee844 739 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 740 acceptable = (type == IOMAP_NEW);
f6d6d4fc 741 else
1da177e4 742 break;
1da177e4
LT
743 } while ((bh = bh->b_this_page) != head);
744
745 if (acceptable)
10ce4444 746 return 1;
1da177e4
LT
747 }
748
10ce4444 749 return 0;
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * Allocate & map buffers for page given the extent map. Write it out.
754 * except for the original page of a writepage, this is called on
755 * delalloc/unwritten pages only, for the original page it is possible
756 * that the page has no mapping at all.
757 */
f6d6d4fc 758STATIC int
1da177e4
LT
759xfs_convert_page(
760 struct inode *inode,
761 struct page *page,
10ce4444 762 loff_t tindex,
1defeac9 763 xfs_iomap_t *mp,
f6d6d4fc 764 xfs_ioend_t **ioendp,
1da177e4 765 struct writeback_control *wbc,
1da177e4
LT
766 int startio,
767 int all_bh)
768{
f6d6d4fc 769 struct buffer_head *bh, *head;
9260dc6b
CH
770 xfs_off_t end_offset;
771 unsigned long p_offset;
f6d6d4fc 772 unsigned int type;
1da177e4 773 int bbits = inode->i_blkbits;
24e17b5f 774 int len, page_dirty;
f6d6d4fc 775 int count = 0, done = 0, uptodate = 1;
9260dc6b 776 xfs_off_t offset = page_offset(page);
1da177e4 777
10ce4444
CH
778 if (page->index != tindex)
779 goto fail;
529ae9aa 780 if (!trylock_page(page))
10ce4444
CH
781 goto fail;
782 if (PageWriteback(page))
783 goto fail_unlock_page;
784 if (page->mapping != inode->i_mapping)
785 goto fail_unlock_page;
786 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
787 goto fail_unlock_page;
788
24e17b5f
NS
789 /*
790 * page_dirty is initially a count of buffers on the page before
c41564b5 791 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
792 *
793 * Derivation:
794 *
795 * End offset is the highest offset that this page should represent.
796 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
797 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
798 * hence give us the correct page_dirty count. On any other page,
799 * it will be zero and in that case we need page_dirty to be the
800 * count of buffers on the page.
24e17b5f 801 */
9260dc6b
CH
802 end_offset = min_t(unsigned long long,
803 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
804 i_size_read(inode));
805
24e17b5f 806 len = 1 << inode->i_blkbits;
9260dc6b
CH
807 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
808 PAGE_CACHE_SIZE);
809 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
810 page_dirty = p_offset / len;
24e17b5f 811
1da177e4
LT
812 bh = head = page_buffers(page);
813 do {
9260dc6b 814 if (offset >= end_offset)
1da177e4 815 break;
f6d6d4fc
CH
816 if (!buffer_uptodate(bh))
817 uptodate = 0;
818 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
819 done = 1;
1da177e4 820 continue;
f6d6d4fc
CH
821 }
822
9260dc6b
CH
823 if (buffer_unwritten(bh) || buffer_delay(bh)) {
824 if (buffer_unwritten(bh))
825 type = IOMAP_UNWRITTEN;
826 else
827 type = IOMAP_DELAY;
828
829 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 830 done = 1;
9260dc6b
CH
831 continue;
832 }
833
834 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
835 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
836
837 xfs_map_at_offset(bh, offset, bbits, mp);
838 if (startio) {
7336cea8 839 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
840 type, ioendp, done);
841 } else {
842 set_buffer_dirty(bh);
843 unlock_buffer(bh);
844 mark_buffer_dirty(bh);
845 }
846 page_dirty--;
847 count++;
848 } else {
df3c7244 849 type = IOMAP_NEW;
9260dc6b 850 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 851 lock_buffer(bh);
7336cea8 852 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
853 type, ioendp, done);
854 count++;
24e17b5f 855 page_dirty--;
9260dc6b
CH
856 } else {
857 done = 1;
1da177e4 858 }
1da177e4 859 }
7336cea8 860 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 861
f6d6d4fc
CH
862 if (uptodate && bh == head)
863 SetPageUptodate(page);
864
865 if (startio) {
f5e596bb 866 if (count) {
9fddaca2 867 wbc->nr_to_write--;
0d99519e 868 if (wbc->nr_to_write <= 0)
f5e596bb 869 done = 1;
f5e596bb 870 }
b41759cf 871 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 872 }
f6d6d4fc
CH
873
874 return done;
10ce4444
CH
875 fail_unlock_page:
876 unlock_page(page);
877 fail:
878 return 1;
1da177e4
LT
879}
880
881/*
882 * Convert & write out a cluster of pages in the same extent as defined
883 * by mp and following the start page.
884 */
885STATIC void
886xfs_cluster_write(
887 struct inode *inode,
888 pgoff_t tindex,
889 xfs_iomap_t *iomapp,
f6d6d4fc 890 xfs_ioend_t **ioendp,
1da177e4
LT
891 struct writeback_control *wbc,
892 int startio,
893 int all_bh,
894 pgoff_t tlast)
895{
10ce4444
CH
896 struct pagevec pvec;
897 int done = 0, i;
1da177e4 898
10ce4444
CH
899 pagevec_init(&pvec, 0);
900 while (!done && tindex <= tlast) {
901 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
902
903 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 904 break;
10ce4444
CH
905
906 for (i = 0; i < pagevec_count(&pvec); i++) {
907 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
908 iomapp, ioendp, wbc, startio, all_bh);
909 if (done)
910 break;
911 }
912
913 pagevec_release(&pvec);
914 cond_resched();
1da177e4
LT
915 }
916}
917
918/*
919 * Calling this without startio set means we are being asked to make a dirty
920 * page ready for freeing it's buffers. When called with startio set then
921 * we are coming from writepage.
922 *
923 * When called with startio set it is important that we write the WHOLE
924 * page if possible.
925 * The bh->b_state's cannot know if any of the blocks or which block for
926 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 927 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
928 * may clear the page dirty flag prior to calling write page, under the
929 * assumption the entire page will be written out; by not writing out the
930 * whole page the page can be reused before all valid dirty data is
931 * written out. Note: in the case of a page that has been dirty'd by
932 * mapwrite and but partially setup by block_prepare_write the
933 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
934 * valid state, thus the whole page must be written out thing.
935 */
936
937STATIC int
938xfs_page_state_convert(
939 struct inode *inode,
940 struct page *page,
941 struct writeback_control *wbc,
942 int startio,
943 int unmapped) /* also implies page uptodate */
944{
f6d6d4fc 945 struct buffer_head *bh, *head;
1defeac9 946 xfs_iomap_t iomap;
f6d6d4fc 947 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
948 loff_t offset;
949 unsigned long p_offset = 0;
f6d6d4fc 950 unsigned int type;
1da177e4
LT
951 __uint64_t end_offset;
952 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
953 ssize_t size, len;
954 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
955 int page_dirty, count = 0;
956 int trylock = 0;
6c4fe19f 957 int all_bh = unmapped;
1da177e4 958
8272145c
NS
959 if (startio) {
960 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
961 trylock |= BMAPI_TRYLOCK;
962 }
3ba0815a 963
1da177e4
LT
964 /* Is this page beyond the end of the file? */
965 offset = i_size_read(inode);
966 end_index = offset >> PAGE_CACHE_SHIFT;
967 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
968 if (page->index >= end_index) {
969 if ((page->index >= end_index + 1) ||
970 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
971 if (startio)
972 unlock_page(page);
973 return 0;
1da177e4
LT
974 }
975 }
976
1da177e4 977 /*
24e17b5f 978 * page_dirty is initially a count of buffers on the page before
c41564b5 979 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
980 *
981 * Derivation:
982 *
983 * End offset is the highest offset that this page should represent.
984 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
985 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
986 * hence give us the correct page_dirty count. On any other page,
987 * it will be zero and in that case we need page_dirty to be the
988 * count of buffers on the page.
989 */
990 end_offset = min_t(unsigned long long,
991 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 992 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
993 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
994 PAGE_CACHE_SIZE);
995 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
996 page_dirty = p_offset / len;
997
24e17b5f 998 bh = head = page_buffers(page);
f6d6d4fc 999 offset = page_offset(page);
df3c7244
DC
1000 flags = BMAPI_READ;
1001 type = IOMAP_NEW;
f6d6d4fc 1002
f6d6d4fc 1003 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1004
1005 do {
1006 if (offset >= end_offset)
1007 break;
1008 if (!buffer_uptodate(bh))
1009 uptodate = 0;
f6d6d4fc 1010 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1011 /*
1012 * the iomap is actually still valid, but the ioend
1013 * isn't. shouldn't happen too often.
1014 */
1015 iomap_valid = 0;
1da177e4 1016 continue;
f6d6d4fc 1017 }
1da177e4 1018
1defeac9
CH
1019 if (iomap_valid)
1020 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1021
1022 /*
1023 * First case, map an unwritten extent and prepare for
1024 * extent state conversion transaction on completion.
f6d6d4fc 1025 *
1da177e4
LT
1026 * Second case, allocate space for a delalloc buffer.
1027 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1028 *
1029 * Third case, an unmapped buffer was found, and we are
1030 * in a path where we need to write the whole page out.
df3c7244 1031 */
d5cb48aa
CH
1032 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1033 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1034 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1035 int new_ioend = 0;
1036
df3c7244 1037 /*
6c4fe19f
CH
1038 * Make sure we don't use a read-only iomap
1039 */
df3c7244 1040 if (flags == BMAPI_READ)
6c4fe19f
CH
1041 iomap_valid = 0;
1042
f6d6d4fc
CH
1043 if (buffer_unwritten(bh)) {
1044 type = IOMAP_UNWRITTEN;
8272145c 1045 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1046 } else if (buffer_delay(bh)) {
f6d6d4fc 1047 type = IOMAP_DELAY;
8272145c 1048 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1049 } else {
6c4fe19f 1050 type = IOMAP_NEW;
8272145c 1051 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1052 }
1053
1defeac9 1054 if (!iomap_valid) {
effd120e
DC
1055 /*
1056 * if we didn't have a valid mapping then we
1057 * need to ensure that we put the new mapping
1058 * in a new ioend structure. This needs to be
1059 * done to ensure that the ioends correctly
1060 * reflect the block mappings at io completion
1061 * for unwritten extent conversion.
1062 */
1063 new_ioend = 1;
6c4fe19f
CH
1064 if (type == IOMAP_NEW) {
1065 size = xfs_probe_cluster(inode,
1066 page, bh, head, 0);
d5cb48aa
CH
1067 } else {
1068 size = len;
1069 }
1070
1071 err = xfs_map_blocks(inode, offset, size,
1072 &iomap, flags);
f6d6d4fc 1073 if (err)
1da177e4 1074 goto error;
1defeac9 1075 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1076 }
1defeac9
CH
1077 if (iomap_valid) {
1078 xfs_map_at_offset(bh, offset,
1079 inode->i_blkbits, &iomap);
1da177e4 1080 if (startio) {
7336cea8 1081 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1082 type, &ioend,
effd120e 1083 new_ioend);
1da177e4
LT
1084 } else {
1085 set_buffer_dirty(bh);
1086 unlock_buffer(bh);
1087 mark_buffer_dirty(bh);
1088 }
1089 page_dirty--;
f6d6d4fc 1090 count++;
1da177e4 1091 }
d5cb48aa 1092 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1093 /*
1094 * we got here because the buffer is already mapped.
1095 * That means it must already have extents allocated
1096 * underneath it. Map the extent by reading it.
1097 */
df3c7244 1098 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1099 flags = BMAPI_READ;
1100 size = xfs_probe_cluster(inode, page, bh,
1101 head, 1);
1102 err = xfs_map_blocks(inode, offset, size,
1103 &iomap, flags);
1104 if (err)
1105 goto error;
1106 iomap_valid = xfs_iomap_valid(&iomap, offset);
1107 }
d5cb48aa 1108
df3c7244
DC
1109 /*
1110 * We set the type to IOMAP_NEW in case we are doing a
1111 * small write at EOF that is extending the file but
1112 * without needing an allocation. We need to update the
1113 * file size on I/O completion in this case so it is
1114 * the same case as having just allocated a new extent
1115 * that we are writing into for the first time.
1116 */
1117 type = IOMAP_NEW;
ca5de404 1118 if (trylock_buffer(bh)) {
d5cb48aa 1119 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1120 if (iomap_valid)
1121 all_bh = 1;
7336cea8 1122 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1123 &ioend, !iomap_valid);
1124 page_dirty--;
1125 count++;
f6d6d4fc 1126 } else {
1defeac9 1127 iomap_valid = 0;
1da177e4 1128 }
d5cb48aa
CH
1129 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1130 (unmapped || startio)) {
1131 iomap_valid = 0;
1da177e4 1132 }
f6d6d4fc
CH
1133
1134 if (!iohead)
1135 iohead = ioend;
1136
1137 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1138
1139 if (uptodate && bh == head)
1140 SetPageUptodate(page);
1141
f6d6d4fc 1142 if (startio)
b41759cf 1143 xfs_start_page_writeback(page, 1, count);
1da177e4 1144
1defeac9
CH
1145 if (ioend && iomap_valid) {
1146 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1147 PAGE_CACHE_SHIFT;
775bf6c9 1148 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1149 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1150 wbc, startio, all_bh, tlast);
1da177e4
LT
1151 }
1152
f6d6d4fc 1153 if (iohead)
06342cf8 1154 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1155
1da177e4
LT
1156 return page_dirty;
1157
1158error:
f6d6d4fc
CH
1159 if (iohead)
1160 xfs_cancel_ioend(iohead);
1da177e4
LT
1161
1162 /*
1163 * If it's delalloc and we have nowhere to put it,
1164 * throw it away, unless the lower layers told
1165 * us to try again.
1166 */
1167 if (err != -EAGAIN) {
f6d6d4fc 1168 if (!unmapped)
1da177e4 1169 block_invalidatepage(page, 0);
1da177e4
LT
1170 ClearPageUptodate(page);
1171 }
1172 return err;
1173}
1174
f51623b2
NS
1175/*
1176 * writepage: Called from one of two places:
1177 *
1178 * 1. we are flushing a delalloc buffer head.
1179 *
1180 * 2. we are writing out a dirty page. Typically the page dirty
1181 * state is cleared before we get here. In this case is it
1182 * conceivable we have no buffer heads.
1183 *
1184 * For delalloc space on the page we need to allocate space and
1185 * flush it. For unmapped buffer heads on the page we should
1186 * allocate space if the page is uptodate. For any other dirty
1187 * buffer heads on the page we should flush them.
1188 *
1189 * If we detect that a transaction would be required to flush
1190 * the page, we have to check the process flags first, if we
1191 * are already in a transaction or disk I/O during allocations
1192 * is off, we need to fail the writepage and redirty the page.
1193 */
1194
1195STATIC int
e4c573bb 1196xfs_vm_writepage(
f51623b2
NS
1197 struct page *page,
1198 struct writeback_control *wbc)
1199{
1200 int error;
1201 int need_trans;
1202 int delalloc, unmapped, unwritten;
1203 struct inode *inode = page->mapping->host;
1204
1205 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1206
1207 /*
1208 * We need a transaction if:
1209 * 1. There are delalloc buffers on the page
1210 * 2. The page is uptodate and we have unmapped buffers
1211 * 3. The page is uptodate and we have no buffers
1212 * 4. There are unwritten buffers on the page
1213 */
1214
1215 if (!page_has_buffers(page)) {
1216 unmapped = 1;
1217 need_trans = 1;
1218 } else {
1219 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1220 if (!PageUptodate(page))
1221 unmapped = 0;
1222 need_trans = delalloc + unmapped + unwritten;
1223 }
1224
1225 /*
1226 * If we need a transaction and the process flags say
1227 * we are already in a transaction, or no IO is allowed
1228 * then mark the page dirty again and leave the page
1229 * as is.
1230 */
59c1b082 1231 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1232 goto out_fail;
1233
1234 /*
1235 * Delay hooking up buffer heads until we have
1236 * made our go/no-go decision.
1237 */
1238 if (!page_has_buffers(page))
1239 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1240
c8a4051c
ES
1241
1242 /*
1243 * VM calculation for nr_to_write seems off. Bump it way
1244 * up, this gets simple streaming writes zippy again.
1245 * To be reviewed again after Jens' writeback changes.
1246 */
1247 wbc->nr_to_write *= 4;
1248
f51623b2
NS
1249 /*
1250 * Convert delayed allocate, unwritten or unmapped space
1251 * to real space and flush out to disk.
1252 */
1253 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1254 if (error == -EAGAIN)
1255 goto out_fail;
1256 if (unlikely(error < 0))
1257 goto out_unlock;
1258
1259 return 0;
1260
1261out_fail:
1262 redirty_page_for_writepage(wbc, page);
1263 unlock_page(page);
1264 return 0;
1265out_unlock:
1266 unlock_page(page);
1267 return error;
1268}
1269
7d4fb40a
NS
1270STATIC int
1271xfs_vm_writepages(
1272 struct address_space *mapping,
1273 struct writeback_control *wbc)
1274{
b3aea4ed 1275 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1276 return generic_writepages(mapping, wbc);
1277}
1278
f51623b2
NS
1279/*
1280 * Called to move a page into cleanable state - and from there
1281 * to be released. Possibly the page is already clean. We always
1282 * have buffer heads in this call.
1283 *
1284 * Returns 0 if the page is ok to release, 1 otherwise.
1285 *
1286 * Possible scenarios are:
1287 *
1288 * 1. We are being called to release a page which has been written
1289 * to via regular I/O. buffer heads will be dirty and possibly
1290 * delalloc. If no delalloc buffer heads in this case then we
1291 * can just return zero.
1292 *
1293 * 2. We are called to release a page which has been written via
1294 * mmap, all we need to do is ensure there is no delalloc
1295 * state in the buffer heads, if not we can let the caller
1296 * free them and we should come back later via writepage.
1297 */
1298STATIC int
238f4c54 1299xfs_vm_releasepage(
f51623b2
NS
1300 struct page *page,
1301 gfp_t gfp_mask)
1302{
1303 struct inode *inode = page->mapping->host;
1304 int dirty, delalloc, unmapped, unwritten;
1305 struct writeback_control wbc = {
1306 .sync_mode = WB_SYNC_ALL,
1307 .nr_to_write = 1,
1308 };
1309
ed9d88f7 1310 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1311
238f4c54
NS
1312 if (!page_has_buffers(page))
1313 return 0;
1314
f51623b2
NS
1315 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1316 if (!delalloc && !unwritten)
1317 goto free_buffers;
1318
1319 if (!(gfp_mask & __GFP_FS))
1320 return 0;
1321
1322 /* If we are already inside a transaction or the thread cannot
1323 * do I/O, we cannot release this page.
1324 */
59c1b082 1325 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1326 return 0;
1327
1328 /*
1329 * Convert delalloc space to real space, do not flush the
1330 * data out to disk, that will be done by the caller.
1331 * Never need to allocate space here - we will always
1332 * come back to writepage in that case.
1333 */
1334 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1335 if (dirty == 0 && !unwritten)
1336 goto free_buffers;
1337 return 0;
1338
1339free_buffers:
1340 return try_to_free_buffers(page);
1341}
1342
1da177e4 1343STATIC int
c2536668 1344__xfs_get_blocks(
1da177e4
LT
1345 struct inode *inode,
1346 sector_t iblock,
1da177e4
LT
1347 struct buffer_head *bh_result,
1348 int create,
1349 int direct,
1350 bmapi_flags_t flags)
1351{
1da177e4 1352 xfs_iomap_t iomap;
fdc7ed75
NS
1353 xfs_off_t offset;
1354 ssize_t size;
c2536668 1355 int niomap = 1;
1da177e4 1356 int error;
1da177e4 1357
fdc7ed75 1358 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1359 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1360 size = bh_result->b_size;
364f358a
LM
1361
1362 if (!create && direct && offset >= i_size_read(inode))
1363 return 0;
1364
541d7d3c 1365 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1366 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1367 if (error)
1368 return -error;
c2536668 1369 if (niomap == 0)
1da177e4
LT
1370 return 0;
1371
1372 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1373 /*
1374 * For unwritten extents do not report a disk address on
1da177e4
LT
1375 * the read case (treat as if we're reading into a hole).
1376 */
1377 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1378 xfs_map_buffer(bh_result, &iomap, offset,
1379 inode->i_blkbits);
1da177e4
LT
1380 }
1381 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1382 if (direct)
1383 bh_result->b_private = inode;
1384 set_buffer_unwritten(bh_result);
1da177e4
LT
1385 }
1386 }
1387
c2536668
NS
1388 /*
1389 * If this is a realtime file, data may be on a different device.
1390 * to that pointed to from the buffer_head b_bdev currently.
1391 */
ce8e922c 1392 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1393
c2536668 1394 /*
549054af
DC
1395 * If we previously allocated a block out beyond eof and we are now
1396 * coming back to use it then we will need to flag it as new even if it
1397 * has a disk address.
1398 *
1399 * With sub-block writes into unwritten extents we also need to mark
1400 * the buffer as new so that the unwritten parts of the buffer gets
1401 * correctly zeroed.
1da177e4
LT
1402 */
1403 if (create &&
1404 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1405 (offset >= i_size_read(inode)) ||
1406 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1407 set_buffer_new(bh_result);
1da177e4
LT
1408
1409 if (iomap.iomap_flags & IOMAP_DELAY) {
1410 BUG_ON(direct);
1411 if (create) {
1412 set_buffer_uptodate(bh_result);
1413 set_buffer_mapped(bh_result);
1414 set_buffer_delay(bh_result);
1415 }
1416 }
1417
c2536668 1418 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1419 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1420 offset = min_t(xfs_off_t,
c2536668
NS
1421 iomap.iomap_bsize - iomap.iomap_delta, size);
1422 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1423 }
1424
1425 return 0;
1426}
1427
1428int
c2536668 1429xfs_get_blocks(
1da177e4
LT
1430 struct inode *inode,
1431 sector_t iblock,
1432 struct buffer_head *bh_result,
1433 int create)
1434{
c2536668 1435 return __xfs_get_blocks(inode, iblock,
fa30bd05 1436 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1437}
1438
1439STATIC int
e4c573bb 1440xfs_get_blocks_direct(
1da177e4
LT
1441 struct inode *inode,
1442 sector_t iblock,
1da177e4
LT
1443 struct buffer_head *bh_result,
1444 int create)
1445{
c2536668 1446 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1447 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1448}
1449
f0973863 1450STATIC void
e4c573bb 1451xfs_end_io_direct(
f0973863
CH
1452 struct kiocb *iocb,
1453 loff_t offset,
1454 ssize_t size,
1455 void *private)
1456{
1457 xfs_ioend_t *ioend = iocb->private;
1458
1459 /*
1460 * Non-NULL private data means we need to issue a transaction to
1461 * convert a range from unwritten to written extents. This needs
c41564b5 1462 * to happen from process context but aio+dio I/O completion
f0973863 1463 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1464 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1465 * it anyway to keep the code uniform and simpler.
1466 *
e927af90
DC
1467 * Well, if only it were that simple. Because synchronous direct I/O
1468 * requires extent conversion to occur *before* we return to userspace,
1469 * we have to wait for extent conversion to complete. Look at the
1470 * iocb that has been passed to us to determine if this is AIO or
1471 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1472 * workqueue and wait for it to complete.
1473 *
f0973863
CH
1474 * The core direct I/O code might be changed to always call the
1475 * completion handler in the future, in which case all this can
1476 * go away.
1477 */
ba87ea69
LM
1478 ioend->io_offset = offset;
1479 ioend->io_size = size;
1480 if (ioend->io_type == IOMAP_READ) {
e927af90 1481 xfs_finish_ioend(ioend, 0);
ba87ea69 1482 } else if (private && size > 0) {
e927af90 1483 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1484 } else {
ba87ea69
LM
1485 /*
1486 * A direct I/O write ioend starts it's life in unwritten
1487 * state in case they map an unwritten extent. This write
1488 * didn't map an unwritten extent so switch it's completion
1489 * handler.
1490 */
5ec4fabb 1491 ioend->io_type = IOMAP_NEW;
e927af90 1492 xfs_finish_ioend(ioend, 0);
f0973863
CH
1493 }
1494
1495 /*
c41564b5 1496 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1497 * completion handler was called. Thus we need to protect
1498 * against double-freeing.
1499 */
1500 iocb->private = NULL;
1501}
1502
1da177e4 1503STATIC ssize_t
e4c573bb 1504xfs_vm_direct_IO(
1da177e4
LT
1505 int rw,
1506 struct kiocb *iocb,
1507 const struct iovec *iov,
1508 loff_t offset,
1509 unsigned long nr_segs)
1510{
1511 struct file *file = iocb->ki_filp;
1512 struct inode *inode = file->f_mapping->host;
6214ed44 1513 struct block_device *bdev;
f0973863 1514 ssize_t ret;
1da177e4 1515
6214ed44 1516 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1517
721259bc 1518 if (rw == WRITE) {
ba87ea69 1519 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1520 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1521 bdev, iov, offset, nr_segs,
721259bc
LM
1522 xfs_get_blocks_direct,
1523 xfs_end_io_direct);
1524 } else {
ba87ea69 1525 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1526 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1527 bdev, iov, offset, nr_segs,
721259bc
LM
1528 xfs_get_blocks_direct,
1529 xfs_end_io_direct);
1530 }
f0973863 1531
8459d86a 1532 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1533 xfs_destroy_ioend(iocb->private);
1534 return ret;
1da177e4
LT
1535}
1536
f51623b2 1537STATIC int
d79689c7 1538xfs_vm_write_begin(
f51623b2 1539 struct file *file,
d79689c7
NP
1540 struct address_space *mapping,
1541 loff_t pos,
1542 unsigned len,
1543 unsigned flags,
1544 struct page **pagep,
1545 void **fsdata)
f51623b2 1546{
d79689c7
NP
1547 *pagep = NULL;
1548 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1549 xfs_get_blocks);
f51623b2 1550}
1da177e4
LT
1551
1552STATIC sector_t
e4c573bb 1553xfs_vm_bmap(
1da177e4
LT
1554 struct address_space *mapping,
1555 sector_t block)
1556{
1557 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1558 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1559
cf441eeb 1560 xfs_itrace_entry(XFS_I(inode));
126468b1 1561 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1562 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1563 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1564 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1565}
1566
1567STATIC int
e4c573bb 1568xfs_vm_readpage(
1da177e4
LT
1569 struct file *unused,
1570 struct page *page)
1571{
c2536668 1572 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1573}
1574
1575STATIC int
e4c573bb 1576xfs_vm_readpages(
1da177e4
LT
1577 struct file *unused,
1578 struct address_space *mapping,
1579 struct list_head *pages,
1580 unsigned nr_pages)
1581{
c2536668 1582 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1583}
1584
2ff28e22 1585STATIC void
238f4c54 1586xfs_vm_invalidatepage(
bcec2b7f
NS
1587 struct page *page,
1588 unsigned long offset)
1589{
1590 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1591 page->mapping->host, page, offset);
2ff28e22 1592 block_invalidatepage(page, offset);
bcec2b7f
NS
1593}
1594
f5e54d6e 1595const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1596 .readpage = xfs_vm_readpage,
1597 .readpages = xfs_vm_readpages,
1598 .writepage = xfs_vm_writepage,
7d4fb40a 1599 .writepages = xfs_vm_writepages,
1da177e4 1600 .sync_page = block_sync_page,
238f4c54
NS
1601 .releasepage = xfs_vm_releasepage,
1602 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1603 .write_begin = xfs_vm_write_begin,
1604 .write_end = generic_write_end,
e4c573bb
NS
1605 .bmap = xfs_vm_bmap,
1606 .direct_IO = xfs_vm_direct_IO,
e965f963 1607 .migratepage = buffer_migrate_page,
bddaafa1 1608 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1609 .error_remove_page = generic_error_remove_page,
1da177e4 1610};
This page took 0.495101 seconds and 5 git commands to generate.