Merge branches 'tracing/kmemtrace2' and 'tracing/ftrace' into tracing/urgent
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
1da177e4 41#include <linux/mpage.h>
10ce4444 42#include <linux/pagevec.h>
1da177e4
LT
43#include <linux/writeback.h>
44
25e41b3d
CH
45
46/*
47 * Prime number of hash buckets since address is used as the key.
48 */
49#define NVSYNC 37
50#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
51static wait_queue_head_t xfs_ioend_wq[NVSYNC];
52
53void __init
54xfs_ioend_init(void)
55{
56 int i;
57
58 for (i = 0; i < NVSYNC; i++)
59 init_waitqueue_head(&xfs_ioend_wq[i]);
60}
61
62void
63xfs_ioend_wait(
64 xfs_inode_t *ip)
65{
66 wait_queue_head_t *wq = to_ioend_wq(ip);
67
68 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
69}
70
71STATIC void
72xfs_ioend_wake(
73 xfs_inode_t *ip)
74{
75 if (atomic_dec_and_test(&ip->i_iocount))
76 wake_up(to_ioend_wq(ip));
77}
78
f51623b2
NS
79STATIC void
80xfs_count_page_state(
81 struct page *page,
82 int *delalloc,
83 int *unmapped,
84 int *unwritten)
85{
86 struct buffer_head *bh, *head;
87
88 *delalloc = *unmapped = *unwritten = 0;
89
90 bh = head = page_buffers(page);
91 do {
92 if (buffer_uptodate(bh) && !buffer_mapped(bh))
93 (*unmapped) = 1;
f51623b2
NS
94 else if (buffer_unwritten(bh))
95 (*unwritten) = 1;
96 else if (buffer_delay(bh))
97 (*delalloc) = 1;
98 } while ((bh = bh->b_this_page) != head);
99}
100
1da177e4
LT
101#if defined(XFS_RW_TRACE)
102void
103xfs_page_trace(
104 int tag,
105 struct inode *inode,
106 struct page *page,
ed9d88f7 107 unsigned long pgoff)
1da177e4
LT
108{
109 xfs_inode_t *ip;
1da177e4 110 loff_t isize = i_size_read(inode);
f6d6d4fc 111 loff_t offset = page_offset(page);
1da177e4
LT
112 int delalloc = -1, unmapped = -1, unwritten = -1;
113
114 if (page_has_buffers(page))
115 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
116
e6064d30 117 ip = XFS_I(inode);
1da177e4
LT
118 if (!ip->i_rwtrace)
119 return;
120
121 ktrace_enter(ip->i_rwtrace,
122 (void *)((unsigned long)tag),
123 (void *)ip,
124 (void *)inode,
125 (void *)page,
ed9d88f7 126 (void *)pgoff,
1da177e4
LT
127 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
128 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
129 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
130 (void *)((unsigned long)(isize & 0xffffffff)),
131 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
132 (void *)((unsigned long)(offset & 0xffffffff)),
133 (void *)((unsigned long)delalloc),
134 (void *)((unsigned long)unmapped),
135 (void *)((unsigned long)unwritten),
f1fdc848 136 (void *)((unsigned long)current_pid()),
1da177e4
LT
137 (void *)NULL);
138}
139#else
ed9d88f7 140#define xfs_page_trace(tag, inode, page, pgoff)
1da177e4
LT
141#endif
142
6214ed44
CH
143STATIC struct block_device *
144xfs_find_bdev_for_inode(
145 struct xfs_inode *ip)
146{
147 struct xfs_mount *mp = ip->i_mount;
148
71ddabb9 149 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
150 return mp->m_rtdev_targp->bt_bdev;
151 else
152 return mp->m_ddev_targp->bt_bdev;
153}
154
0829c360
CH
155/*
156 * Schedule IO completion handling on a xfsdatad if this was
e927af90
DC
157 * the final hold on this ioend. If we are asked to wait,
158 * flush the workqueue.
0829c360
CH
159 */
160STATIC void
161xfs_finish_ioend(
e927af90
DC
162 xfs_ioend_t *ioend,
163 int wait)
0829c360 164{
e927af90 165 if (atomic_dec_and_test(&ioend->io_remaining)) {
0829c360 166 queue_work(xfsdatad_workqueue, &ioend->io_work);
e927af90
DC
167 if (wait)
168 flush_workqueue(xfsdatad_workqueue);
169 }
0829c360
CH
170}
171
f6d6d4fc
CH
172/*
173 * We're now finished for good with this ioend structure.
174 * Update the page state via the associated buffer_heads,
175 * release holds on the inode and bio, and finally free
176 * up memory. Do not use the ioend after this.
177 */
0829c360
CH
178STATIC void
179xfs_destroy_ioend(
180 xfs_ioend_t *ioend)
181{
f6d6d4fc 182 struct buffer_head *bh, *next;
583fa586 183 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
184
185 for (bh = ioend->io_buffer_head; bh; bh = next) {
186 next = bh->b_private;
7d04a335 187 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 188 }
583fa586
CH
189
190 /*
191 * Volume managers supporting multiple paths can send back ENODEV
192 * when the final path disappears. In this case continuing to fill
193 * the page cache with dirty data which cannot be written out is
194 * evil, so prevent that.
195 */
196 if (unlikely(ioend->io_error == -ENODEV)) {
197 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
198 __FILE__, __LINE__);
b677c210 199 }
583fa586 200
25e41b3d 201 xfs_ioend_wake(ip);
0829c360
CH
202 mempool_free(ioend, xfs_ioend_pool);
203}
204
ba87ea69
LM
205/*
206 * Update on-disk file size now that data has been written to disk.
207 * The current in-memory file size is i_size. If a write is beyond
613d7043 208 * eof i_new_size will be the intended file size until i_size is
ba87ea69
LM
209 * updated. If this write does not extend all the way to the valid
210 * file size then restrict this update to the end of the write.
211 */
212STATIC void
213xfs_setfilesize(
214 xfs_ioend_t *ioend)
215{
b677c210 216 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69
LM
217 xfs_fsize_t isize;
218 xfs_fsize_t bsize;
219
ba87ea69
LM
220 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
221 ASSERT(ioend->io_type != IOMAP_READ);
222
223 if (unlikely(ioend->io_error))
224 return;
225
226 bsize = ioend->io_offset + ioend->io_size;
227
228 xfs_ilock(ip, XFS_ILOCK_EXCL);
229
613d7043 230 isize = MAX(ip->i_size, ip->i_new_size);
ba87ea69
LM
231 isize = MIN(isize, bsize);
232
233 if (ip->i_d.di_size < isize) {
234 ip->i_d.di_size = isize;
235 ip->i_update_core = 1;
236 ip->i_update_size = 1;
94b97e39 237 xfs_mark_inode_dirty_sync(ip);
ba87ea69
LM
238 }
239
240 xfs_iunlock(ip, XFS_ILOCK_EXCL);
241}
242
0829c360 243/*
f6d6d4fc 244 * Buffered IO write completion for delayed allocate extents.
f6d6d4fc
CH
245 */
246STATIC void
247xfs_end_bio_delalloc(
c4028958 248 struct work_struct *work)
f6d6d4fc 249{
c4028958
DH
250 xfs_ioend_t *ioend =
251 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 252
ba87ea69 253 xfs_setfilesize(ioend);
f6d6d4fc
CH
254 xfs_destroy_ioend(ioend);
255}
256
257/*
258 * Buffered IO write completion for regular, written extents.
259 */
260STATIC void
261xfs_end_bio_written(
c4028958 262 struct work_struct *work)
f6d6d4fc 263{
c4028958
DH
264 xfs_ioend_t *ioend =
265 container_of(work, xfs_ioend_t, io_work);
f6d6d4fc 266
ba87ea69 267 xfs_setfilesize(ioend);
f6d6d4fc
CH
268 xfs_destroy_ioend(ioend);
269}
270
271/*
272 * IO write completion for unwritten extents.
273 *
0829c360 274 * Issue transactions to convert a buffer range from unwritten
f0973863 275 * to written extents.
0829c360
CH
276 */
277STATIC void
278xfs_end_bio_unwritten(
c4028958 279 struct work_struct *work)
0829c360 280{
c4028958
DH
281 xfs_ioend_t *ioend =
282 container_of(work, xfs_ioend_t, io_work);
7642861b 283 struct xfs_inode *ip = XFS_I(ioend->io_inode);
0829c360
CH
284 xfs_off_t offset = ioend->io_offset;
285 size_t size = ioend->io_size;
0829c360 286
ba87ea69 287 if (likely(!ioend->io_error)) {
cc88466f
DC
288 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
289 int error;
290 error = xfs_iomap_write_unwritten(ip, offset, size);
291 if (error)
292 ioend->io_error = error;
293 }
ba87ea69
LM
294 xfs_setfilesize(ioend);
295 }
296 xfs_destroy_ioend(ioend);
297}
298
299/*
300 * IO read completion for regular, written extents.
301 */
302STATIC void
303xfs_end_bio_read(
304 struct work_struct *work)
305{
306 xfs_ioend_t *ioend =
307 container_of(work, xfs_ioend_t, io_work);
308
0829c360
CH
309 xfs_destroy_ioend(ioend);
310}
311
312/*
313 * Allocate and initialise an IO completion structure.
314 * We need to track unwritten extent write completion here initially.
315 * We'll need to extend this for updating the ondisk inode size later
316 * (vs. incore size).
317 */
318STATIC xfs_ioend_t *
319xfs_alloc_ioend(
f6d6d4fc
CH
320 struct inode *inode,
321 unsigned int type)
0829c360
CH
322{
323 xfs_ioend_t *ioend;
324
325 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
326
327 /*
328 * Set the count to 1 initially, which will prevent an I/O
329 * completion callback from happening before we have started
330 * all the I/O from calling the completion routine too early.
331 */
332 atomic_set(&ioend->io_remaining, 1);
7d04a335 333 ioend->io_error = 0;
f6d6d4fc
CH
334 ioend->io_list = NULL;
335 ioend->io_type = type;
b677c210 336 ioend->io_inode = inode;
c1a073bd 337 ioend->io_buffer_head = NULL;
f6d6d4fc 338 ioend->io_buffer_tail = NULL;
b677c210 339 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
340 ioend->io_offset = 0;
341 ioend->io_size = 0;
342
f6d6d4fc 343 if (type == IOMAP_UNWRITTEN)
c4028958 344 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten);
f6d6d4fc 345 else if (type == IOMAP_DELAY)
c4028958 346 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc);
ba87ea69
LM
347 else if (type == IOMAP_READ)
348 INIT_WORK(&ioend->io_work, xfs_end_bio_read);
f6d6d4fc 349 else
c4028958 350 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
0829c360
CH
351
352 return ioend;
353}
354
1da177e4
LT
355STATIC int
356xfs_map_blocks(
357 struct inode *inode,
358 loff_t offset,
359 ssize_t count,
360 xfs_iomap_t *mapp,
361 int flags)
362{
6bd16ff2
CH
363 int nmaps = 1;
364
365 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
366}
367
7989cb8e 368STATIC_INLINE int
1defeac9 369xfs_iomap_valid(
1da177e4 370 xfs_iomap_t *iomapp,
1defeac9 371 loff_t offset)
1da177e4 372{
1defeac9
CH
373 return offset >= iomapp->iomap_offset &&
374 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
375}
376
f6d6d4fc
CH
377/*
378 * BIO completion handler for buffered IO.
379 */
782e3b3b 380STATIC void
f6d6d4fc
CH
381xfs_end_bio(
382 struct bio *bio,
f6d6d4fc
CH
383 int error)
384{
385 xfs_ioend_t *ioend = bio->bi_private;
386
f6d6d4fc 387 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 388 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
389
390 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
391 bio->bi_private = NULL;
392 bio->bi_end_io = NULL;
f6d6d4fc 393 bio_put(bio);
7d04a335 394
e927af90 395 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
396}
397
398STATIC void
399xfs_submit_ioend_bio(
400 xfs_ioend_t *ioend,
401 struct bio *bio)
402{
403 atomic_inc(&ioend->io_remaining);
404
405 bio->bi_private = ioend;
406 bio->bi_end_io = xfs_end_bio;
407
408 submit_bio(WRITE, bio);
409 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
410 bio_put(bio);
411}
412
413STATIC struct bio *
414xfs_alloc_ioend_bio(
415 struct buffer_head *bh)
416{
417 struct bio *bio;
418 int nvecs = bio_get_nr_vecs(bh->b_bdev);
419
420 do {
421 bio = bio_alloc(GFP_NOIO, nvecs);
422 nvecs >>= 1;
423 } while (!bio);
424
425 ASSERT(bio->bi_private == NULL);
426 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
427 bio->bi_bdev = bh->b_bdev;
428 bio_get(bio);
429 return bio;
430}
431
432STATIC void
433xfs_start_buffer_writeback(
434 struct buffer_head *bh)
435{
436 ASSERT(buffer_mapped(bh));
437 ASSERT(buffer_locked(bh));
438 ASSERT(!buffer_delay(bh));
439 ASSERT(!buffer_unwritten(bh));
440
441 mark_buffer_async_write(bh);
442 set_buffer_uptodate(bh);
443 clear_buffer_dirty(bh);
444}
445
446STATIC void
447xfs_start_page_writeback(
448 struct page *page,
f6d6d4fc
CH
449 int clear_dirty,
450 int buffers)
451{
452 ASSERT(PageLocked(page));
453 ASSERT(!PageWriteback(page));
f6d6d4fc 454 if (clear_dirty)
92132021
DC
455 clear_page_dirty_for_io(page);
456 set_page_writeback(page);
f6d6d4fc 457 unlock_page(page);
1f7decf6
FW
458 /* If no buffers on the page are to be written, finish it here */
459 if (!buffers)
f6d6d4fc 460 end_page_writeback(page);
f6d6d4fc
CH
461}
462
463static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
464{
465 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
466}
467
468/*
d88992f6
DC
469 * Submit all of the bios for all of the ioends we have saved up, covering the
470 * initial writepage page and also any probed pages.
471 *
472 * Because we may have multiple ioends spanning a page, we need to start
473 * writeback on all the buffers before we submit them for I/O. If we mark the
474 * buffers as we got, then we can end up with a page that only has buffers
475 * marked async write and I/O complete on can occur before we mark the other
476 * buffers async write.
477 *
478 * The end result of this is that we trip a bug in end_page_writeback() because
479 * we call it twice for the one page as the code in end_buffer_async_write()
480 * assumes that all buffers on the page are started at the same time.
481 *
482 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 483 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
484 */
485STATIC void
486xfs_submit_ioend(
487 xfs_ioend_t *ioend)
488{
d88992f6 489 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
490 xfs_ioend_t *next;
491 struct buffer_head *bh;
492 struct bio *bio;
493 sector_t lastblock = 0;
494
d88992f6
DC
495 /* Pass 1 - start writeback */
496 do {
497 next = ioend->io_list;
498 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
499 xfs_start_buffer_writeback(bh);
500 }
501 } while ((ioend = next) != NULL);
502
503 /* Pass 2 - submit I/O */
504 ioend = head;
f6d6d4fc
CH
505 do {
506 next = ioend->io_list;
507 bio = NULL;
508
509 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
510
511 if (!bio) {
512 retry:
513 bio = xfs_alloc_ioend_bio(bh);
514 } else if (bh->b_blocknr != lastblock + 1) {
515 xfs_submit_ioend_bio(ioend, bio);
516 goto retry;
517 }
518
519 if (bio_add_buffer(bio, bh) != bh->b_size) {
520 xfs_submit_ioend_bio(ioend, bio);
521 goto retry;
522 }
523
524 lastblock = bh->b_blocknr;
525 }
526 if (bio)
527 xfs_submit_ioend_bio(ioend, bio);
e927af90 528 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
529 } while ((ioend = next) != NULL);
530}
531
532/*
533 * Cancel submission of all buffer_heads so far in this endio.
534 * Toss the endio too. Only ever called for the initial page
535 * in a writepage request, so only ever one page.
536 */
537STATIC void
538xfs_cancel_ioend(
539 xfs_ioend_t *ioend)
540{
541 xfs_ioend_t *next;
542 struct buffer_head *bh, *next_bh;
543
544 do {
545 next = ioend->io_list;
546 bh = ioend->io_buffer_head;
547 do {
548 next_bh = bh->b_private;
549 clear_buffer_async_write(bh);
550 unlock_buffer(bh);
551 } while ((bh = next_bh) != NULL);
552
25e41b3d 553 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
554 mempool_free(ioend, xfs_ioend_pool);
555 } while ((ioend = next) != NULL);
556}
557
558/*
559 * Test to see if we've been building up a completion structure for
560 * earlier buffers -- if so, we try to append to this ioend if we
561 * can, otherwise we finish off any current ioend and start another.
562 * Return true if we've finished the given ioend.
563 */
564STATIC void
565xfs_add_to_ioend(
566 struct inode *inode,
567 struct buffer_head *bh,
7336cea8 568 xfs_off_t offset,
f6d6d4fc
CH
569 unsigned int type,
570 xfs_ioend_t **result,
571 int need_ioend)
572{
573 xfs_ioend_t *ioend = *result;
574
575 if (!ioend || need_ioend || type != ioend->io_type) {
576 xfs_ioend_t *previous = *result;
f6d6d4fc 577
f6d6d4fc
CH
578 ioend = xfs_alloc_ioend(inode, type);
579 ioend->io_offset = offset;
580 ioend->io_buffer_head = bh;
581 ioend->io_buffer_tail = bh;
582 if (previous)
583 previous->io_list = ioend;
584 *result = ioend;
585 } else {
586 ioend->io_buffer_tail->b_private = bh;
587 ioend->io_buffer_tail = bh;
588 }
589
590 bh->b_private = NULL;
591 ioend->io_size += bh->b_size;
592}
593
87cbc49c
NS
594STATIC void
595xfs_map_buffer(
596 struct buffer_head *bh,
597 xfs_iomap_t *mp,
598 xfs_off_t offset,
599 uint block_bits)
600{
601 sector_t bn;
602
603 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
604
605 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
606 ((offset - mp->iomap_offset) >> block_bits);
607
608 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
609
610 bh->b_blocknr = bn;
611 set_buffer_mapped(bh);
612}
613
1da177e4
LT
614STATIC void
615xfs_map_at_offset(
1da177e4 616 struct buffer_head *bh,
1defeac9 617 loff_t offset,
1da177e4 618 int block_bits,
1defeac9 619 xfs_iomap_t *iomapp)
1da177e4 620{
1da177e4
LT
621 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
622 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
623
624 lock_buffer(bh);
87cbc49c 625 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 626 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
627 set_buffer_mapped(bh);
628 clear_buffer_delay(bh);
f6d6d4fc 629 clear_buffer_unwritten(bh);
1da177e4
LT
630}
631
632/*
6c4fe19f 633 * Look for a page at index that is suitable for clustering.
1da177e4
LT
634 */
635STATIC unsigned int
6c4fe19f 636xfs_probe_page(
10ce4444 637 struct page *page,
6c4fe19f
CH
638 unsigned int pg_offset,
639 int mapped)
1da177e4 640{
1da177e4
LT
641 int ret = 0;
642
1da177e4 643 if (PageWriteback(page))
10ce4444 644 return 0;
1da177e4
LT
645
646 if (page->mapping && PageDirty(page)) {
647 if (page_has_buffers(page)) {
648 struct buffer_head *bh, *head;
649
650 bh = head = page_buffers(page);
651 do {
6c4fe19f
CH
652 if (!buffer_uptodate(bh))
653 break;
654 if (mapped != buffer_mapped(bh))
1da177e4
LT
655 break;
656 ret += bh->b_size;
657 if (ret >= pg_offset)
658 break;
659 } while ((bh = bh->b_this_page) != head);
660 } else
6c4fe19f 661 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
662 }
663
1da177e4
LT
664 return ret;
665}
666
f6d6d4fc 667STATIC size_t
6c4fe19f 668xfs_probe_cluster(
1da177e4
LT
669 struct inode *inode,
670 struct page *startpage,
671 struct buffer_head *bh,
6c4fe19f
CH
672 struct buffer_head *head,
673 int mapped)
1da177e4 674{
10ce4444 675 struct pagevec pvec;
1da177e4 676 pgoff_t tindex, tlast, tloff;
10ce4444
CH
677 size_t total = 0;
678 int done = 0, i;
1da177e4
LT
679
680 /* First sum forwards in this page */
681 do {
2353e8e9 682 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 683 return total;
1da177e4
LT
684 total += bh->b_size;
685 } while ((bh = bh->b_this_page) != head);
686
10ce4444
CH
687 /* if we reached the end of the page, sum forwards in following pages */
688 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
689 tindex = startpage->index + 1;
690
691 /* Prune this back to avoid pathological behavior */
692 tloff = min(tlast, startpage->index + 64);
693
694 pagevec_init(&pvec, 0);
695 while (!done && tindex <= tloff) {
696 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
697
698 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
699 break;
700
701 for (i = 0; i < pagevec_count(&pvec); i++) {
702 struct page *page = pvec.pages[i];
265c1fac 703 size_t pg_offset, pg_len = 0;
10ce4444
CH
704
705 if (tindex == tlast) {
706 pg_offset =
707 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
708 if (!pg_offset) {
709 done = 1;
10ce4444 710 break;
1defeac9 711 }
10ce4444
CH
712 } else
713 pg_offset = PAGE_CACHE_SIZE;
714
529ae9aa 715 if (page->index == tindex && trylock_page(page)) {
265c1fac 716 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
717 unlock_page(page);
718 }
719
265c1fac 720 if (!pg_len) {
10ce4444
CH
721 done = 1;
722 break;
723 }
724
265c1fac 725 total += pg_len;
1defeac9 726 tindex++;
1da177e4 727 }
10ce4444
CH
728
729 pagevec_release(&pvec);
730 cond_resched();
1da177e4 731 }
10ce4444 732
1da177e4
LT
733 return total;
734}
735
736/*
10ce4444
CH
737 * Test if a given page is suitable for writing as part of an unwritten
738 * or delayed allocate extent.
1da177e4 739 */
10ce4444
CH
740STATIC int
741xfs_is_delayed_page(
742 struct page *page,
f6d6d4fc 743 unsigned int type)
1da177e4 744{
1da177e4 745 if (PageWriteback(page))
10ce4444 746 return 0;
1da177e4
LT
747
748 if (page->mapping && page_has_buffers(page)) {
749 struct buffer_head *bh, *head;
750 int acceptable = 0;
751
752 bh = head = page_buffers(page);
753 do {
f6d6d4fc
CH
754 if (buffer_unwritten(bh))
755 acceptable = (type == IOMAP_UNWRITTEN);
756 else if (buffer_delay(bh))
757 acceptable = (type == IOMAP_DELAY);
2ddee844 758 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 759 acceptable = (type == IOMAP_NEW);
f6d6d4fc 760 else
1da177e4 761 break;
1da177e4
LT
762 } while ((bh = bh->b_this_page) != head);
763
764 if (acceptable)
10ce4444 765 return 1;
1da177e4
LT
766 }
767
10ce4444 768 return 0;
1da177e4
LT
769}
770
1da177e4
LT
771/*
772 * Allocate & map buffers for page given the extent map. Write it out.
773 * except for the original page of a writepage, this is called on
774 * delalloc/unwritten pages only, for the original page it is possible
775 * that the page has no mapping at all.
776 */
f6d6d4fc 777STATIC int
1da177e4
LT
778xfs_convert_page(
779 struct inode *inode,
780 struct page *page,
10ce4444 781 loff_t tindex,
1defeac9 782 xfs_iomap_t *mp,
f6d6d4fc 783 xfs_ioend_t **ioendp,
1da177e4 784 struct writeback_control *wbc,
1da177e4
LT
785 int startio,
786 int all_bh)
787{
f6d6d4fc 788 struct buffer_head *bh, *head;
9260dc6b
CH
789 xfs_off_t end_offset;
790 unsigned long p_offset;
f6d6d4fc 791 unsigned int type;
1da177e4 792 int bbits = inode->i_blkbits;
24e17b5f 793 int len, page_dirty;
f6d6d4fc 794 int count = 0, done = 0, uptodate = 1;
9260dc6b 795 xfs_off_t offset = page_offset(page);
1da177e4 796
10ce4444
CH
797 if (page->index != tindex)
798 goto fail;
529ae9aa 799 if (!trylock_page(page))
10ce4444
CH
800 goto fail;
801 if (PageWriteback(page))
802 goto fail_unlock_page;
803 if (page->mapping != inode->i_mapping)
804 goto fail_unlock_page;
805 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
806 goto fail_unlock_page;
807
24e17b5f
NS
808 /*
809 * page_dirty is initially a count of buffers on the page before
c41564b5 810 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
811 *
812 * Derivation:
813 *
814 * End offset is the highest offset that this page should represent.
815 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
816 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
817 * hence give us the correct page_dirty count. On any other page,
818 * it will be zero and in that case we need page_dirty to be the
819 * count of buffers on the page.
24e17b5f 820 */
9260dc6b
CH
821 end_offset = min_t(unsigned long long,
822 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
823 i_size_read(inode));
824
24e17b5f 825 len = 1 << inode->i_blkbits;
9260dc6b
CH
826 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
827 PAGE_CACHE_SIZE);
828 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
829 page_dirty = p_offset / len;
24e17b5f 830
1da177e4
LT
831 bh = head = page_buffers(page);
832 do {
9260dc6b 833 if (offset >= end_offset)
1da177e4 834 break;
f6d6d4fc
CH
835 if (!buffer_uptodate(bh))
836 uptodate = 0;
837 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
838 done = 1;
1da177e4 839 continue;
f6d6d4fc
CH
840 }
841
9260dc6b
CH
842 if (buffer_unwritten(bh) || buffer_delay(bh)) {
843 if (buffer_unwritten(bh))
844 type = IOMAP_UNWRITTEN;
845 else
846 type = IOMAP_DELAY;
847
848 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 849 done = 1;
9260dc6b
CH
850 continue;
851 }
852
853 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
854 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
855
856 xfs_map_at_offset(bh, offset, bbits, mp);
857 if (startio) {
7336cea8 858 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
859 type, ioendp, done);
860 } else {
861 set_buffer_dirty(bh);
862 unlock_buffer(bh);
863 mark_buffer_dirty(bh);
864 }
865 page_dirty--;
866 count++;
867 } else {
df3c7244 868 type = IOMAP_NEW;
9260dc6b 869 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 870 lock_buffer(bh);
7336cea8 871 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
872 type, ioendp, done);
873 count++;
24e17b5f 874 page_dirty--;
9260dc6b
CH
875 } else {
876 done = 1;
1da177e4 877 }
1da177e4 878 }
7336cea8 879 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 880
f6d6d4fc
CH
881 if (uptodate && bh == head)
882 SetPageUptodate(page);
883
884 if (startio) {
f5e596bb
CH
885 if (count) {
886 struct backing_dev_info *bdi;
887
888 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 889 wbc->nr_to_write--;
f5e596bb
CH
890 if (bdi_write_congested(bdi)) {
891 wbc->encountered_congestion = 1;
892 done = 1;
9fddaca2 893 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
894 done = 1;
895 }
896 }
b41759cf 897 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 898 }
f6d6d4fc
CH
899
900 return done;
10ce4444
CH
901 fail_unlock_page:
902 unlock_page(page);
903 fail:
904 return 1;
1da177e4
LT
905}
906
907/*
908 * Convert & write out a cluster of pages in the same extent as defined
909 * by mp and following the start page.
910 */
911STATIC void
912xfs_cluster_write(
913 struct inode *inode,
914 pgoff_t tindex,
915 xfs_iomap_t *iomapp,
f6d6d4fc 916 xfs_ioend_t **ioendp,
1da177e4
LT
917 struct writeback_control *wbc,
918 int startio,
919 int all_bh,
920 pgoff_t tlast)
921{
10ce4444
CH
922 struct pagevec pvec;
923 int done = 0, i;
1da177e4 924
10ce4444
CH
925 pagevec_init(&pvec, 0);
926 while (!done && tindex <= tlast) {
927 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
928
929 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 930 break;
10ce4444
CH
931
932 for (i = 0; i < pagevec_count(&pvec); i++) {
933 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
934 iomapp, ioendp, wbc, startio, all_bh);
935 if (done)
936 break;
937 }
938
939 pagevec_release(&pvec);
940 cond_resched();
1da177e4
LT
941 }
942}
943
944/*
945 * Calling this without startio set means we are being asked to make a dirty
946 * page ready for freeing it's buffers. When called with startio set then
947 * we are coming from writepage.
948 *
949 * When called with startio set it is important that we write the WHOLE
950 * page if possible.
951 * The bh->b_state's cannot know if any of the blocks or which block for
952 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 953 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
954 * may clear the page dirty flag prior to calling write page, under the
955 * assumption the entire page will be written out; by not writing out the
956 * whole page the page can be reused before all valid dirty data is
957 * written out. Note: in the case of a page that has been dirty'd by
958 * mapwrite and but partially setup by block_prepare_write the
959 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
960 * valid state, thus the whole page must be written out thing.
961 */
962
963STATIC int
964xfs_page_state_convert(
965 struct inode *inode,
966 struct page *page,
967 struct writeback_control *wbc,
968 int startio,
969 int unmapped) /* also implies page uptodate */
970{
f6d6d4fc 971 struct buffer_head *bh, *head;
1defeac9 972 xfs_iomap_t iomap;
f6d6d4fc 973 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
974 loff_t offset;
975 unsigned long p_offset = 0;
f6d6d4fc 976 unsigned int type;
1da177e4
LT
977 __uint64_t end_offset;
978 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
979 ssize_t size, len;
980 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
981 int page_dirty, count = 0;
982 int trylock = 0;
6c4fe19f 983 int all_bh = unmapped;
1da177e4 984
8272145c
NS
985 if (startio) {
986 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
987 trylock |= BMAPI_TRYLOCK;
988 }
3ba0815a 989
1da177e4
LT
990 /* Is this page beyond the end of the file? */
991 offset = i_size_read(inode);
992 end_index = offset >> PAGE_CACHE_SHIFT;
993 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
994 if (page->index >= end_index) {
995 if ((page->index >= end_index + 1) ||
996 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
997 if (startio)
998 unlock_page(page);
999 return 0;
1da177e4
LT
1000 }
1001 }
1002
1da177e4 1003 /*
24e17b5f 1004 * page_dirty is initially a count of buffers on the page before
c41564b5 1005 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1006 *
1007 * Derivation:
1008 *
1009 * End offset is the highest offset that this page should represent.
1010 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1011 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1012 * hence give us the correct page_dirty count. On any other page,
1013 * it will be zero and in that case we need page_dirty to be the
1014 * count of buffers on the page.
1015 */
1016 end_offset = min_t(unsigned long long,
1017 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1018 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1019 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1020 PAGE_CACHE_SIZE);
1021 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1022 page_dirty = p_offset / len;
1023
24e17b5f 1024 bh = head = page_buffers(page);
f6d6d4fc 1025 offset = page_offset(page);
df3c7244
DC
1026 flags = BMAPI_READ;
1027 type = IOMAP_NEW;
f6d6d4fc 1028
f6d6d4fc 1029 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1030
1031 do {
1032 if (offset >= end_offset)
1033 break;
1034 if (!buffer_uptodate(bh))
1035 uptodate = 0;
f6d6d4fc 1036 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1037 /*
1038 * the iomap is actually still valid, but the ioend
1039 * isn't. shouldn't happen too often.
1040 */
1041 iomap_valid = 0;
1da177e4 1042 continue;
f6d6d4fc 1043 }
1da177e4 1044
1defeac9
CH
1045 if (iomap_valid)
1046 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
1047
1048 /*
1049 * First case, map an unwritten extent and prepare for
1050 * extent state conversion transaction on completion.
f6d6d4fc 1051 *
1da177e4
LT
1052 * Second case, allocate space for a delalloc buffer.
1053 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1054 *
1055 * Third case, an unmapped buffer was found, and we are
1056 * in a path where we need to write the whole page out.
df3c7244 1057 */
d5cb48aa
CH
1058 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1059 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1060 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1061 int new_ioend = 0;
1062
df3c7244 1063 /*
6c4fe19f
CH
1064 * Make sure we don't use a read-only iomap
1065 */
df3c7244 1066 if (flags == BMAPI_READ)
6c4fe19f
CH
1067 iomap_valid = 0;
1068
f6d6d4fc
CH
1069 if (buffer_unwritten(bh)) {
1070 type = IOMAP_UNWRITTEN;
8272145c 1071 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1072 } else if (buffer_delay(bh)) {
f6d6d4fc 1073 type = IOMAP_DELAY;
8272145c 1074 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1075 } else {
6c4fe19f 1076 type = IOMAP_NEW;
8272145c 1077 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1078 }
1079
1defeac9 1080 if (!iomap_valid) {
effd120e
DC
1081 /*
1082 * if we didn't have a valid mapping then we
1083 * need to ensure that we put the new mapping
1084 * in a new ioend structure. This needs to be
1085 * done to ensure that the ioends correctly
1086 * reflect the block mappings at io completion
1087 * for unwritten extent conversion.
1088 */
1089 new_ioend = 1;
6c4fe19f
CH
1090 if (type == IOMAP_NEW) {
1091 size = xfs_probe_cluster(inode,
1092 page, bh, head, 0);
d5cb48aa
CH
1093 } else {
1094 size = len;
1095 }
1096
1097 err = xfs_map_blocks(inode, offset, size,
1098 &iomap, flags);
f6d6d4fc 1099 if (err)
1da177e4 1100 goto error;
1defeac9 1101 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 1102 }
1defeac9
CH
1103 if (iomap_valid) {
1104 xfs_map_at_offset(bh, offset,
1105 inode->i_blkbits, &iomap);
1da177e4 1106 if (startio) {
7336cea8 1107 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1108 type, &ioend,
effd120e 1109 new_ioend);
1da177e4
LT
1110 } else {
1111 set_buffer_dirty(bh);
1112 unlock_buffer(bh);
1113 mark_buffer_dirty(bh);
1114 }
1115 page_dirty--;
f6d6d4fc 1116 count++;
1da177e4 1117 }
d5cb48aa 1118 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1119 /*
1120 * we got here because the buffer is already mapped.
1121 * That means it must already have extents allocated
1122 * underneath it. Map the extent by reading it.
1123 */
df3c7244 1124 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1125 flags = BMAPI_READ;
1126 size = xfs_probe_cluster(inode, page, bh,
1127 head, 1);
1128 err = xfs_map_blocks(inode, offset, size,
1129 &iomap, flags);
1130 if (err)
1131 goto error;
1132 iomap_valid = xfs_iomap_valid(&iomap, offset);
1133 }
d5cb48aa 1134
df3c7244
DC
1135 /*
1136 * We set the type to IOMAP_NEW in case we are doing a
1137 * small write at EOF that is extending the file but
1138 * without needing an allocation. We need to update the
1139 * file size on I/O completion in this case so it is
1140 * the same case as having just allocated a new extent
1141 * that we are writing into for the first time.
1142 */
1143 type = IOMAP_NEW;
ca5de404 1144 if (trylock_buffer(bh)) {
d5cb48aa 1145 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1146 if (iomap_valid)
1147 all_bh = 1;
7336cea8 1148 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1149 &ioend, !iomap_valid);
1150 page_dirty--;
1151 count++;
f6d6d4fc 1152 } else {
1defeac9 1153 iomap_valid = 0;
1da177e4 1154 }
d5cb48aa
CH
1155 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1156 (unmapped || startio)) {
1157 iomap_valid = 0;
1da177e4 1158 }
f6d6d4fc
CH
1159
1160 if (!iohead)
1161 iohead = ioend;
1162
1163 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1164
1165 if (uptodate && bh == head)
1166 SetPageUptodate(page);
1167
f6d6d4fc 1168 if (startio)
b41759cf 1169 xfs_start_page_writeback(page, 1, count);
1da177e4 1170
1defeac9
CH
1171 if (ioend && iomap_valid) {
1172 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1173 PAGE_CACHE_SHIFT;
775bf6c9 1174 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1175 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1176 wbc, startio, all_bh, tlast);
1da177e4
LT
1177 }
1178
f6d6d4fc
CH
1179 if (iohead)
1180 xfs_submit_ioend(iohead);
1181
1da177e4
LT
1182 return page_dirty;
1183
1184error:
f6d6d4fc
CH
1185 if (iohead)
1186 xfs_cancel_ioend(iohead);
1da177e4
LT
1187
1188 /*
1189 * If it's delalloc and we have nowhere to put it,
1190 * throw it away, unless the lower layers told
1191 * us to try again.
1192 */
1193 if (err != -EAGAIN) {
f6d6d4fc 1194 if (!unmapped)
1da177e4 1195 block_invalidatepage(page, 0);
1da177e4
LT
1196 ClearPageUptodate(page);
1197 }
1198 return err;
1199}
1200
f51623b2
NS
1201/*
1202 * writepage: Called from one of two places:
1203 *
1204 * 1. we are flushing a delalloc buffer head.
1205 *
1206 * 2. we are writing out a dirty page. Typically the page dirty
1207 * state is cleared before we get here. In this case is it
1208 * conceivable we have no buffer heads.
1209 *
1210 * For delalloc space on the page we need to allocate space and
1211 * flush it. For unmapped buffer heads on the page we should
1212 * allocate space if the page is uptodate. For any other dirty
1213 * buffer heads on the page we should flush them.
1214 *
1215 * If we detect that a transaction would be required to flush
1216 * the page, we have to check the process flags first, if we
1217 * are already in a transaction or disk I/O during allocations
1218 * is off, we need to fail the writepage and redirty the page.
1219 */
1220
1221STATIC int
e4c573bb 1222xfs_vm_writepage(
f51623b2
NS
1223 struct page *page,
1224 struct writeback_control *wbc)
1225{
1226 int error;
1227 int need_trans;
1228 int delalloc, unmapped, unwritten;
1229 struct inode *inode = page->mapping->host;
1230
1231 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1232
1233 /*
1234 * We need a transaction if:
1235 * 1. There are delalloc buffers on the page
1236 * 2. The page is uptodate and we have unmapped buffers
1237 * 3. The page is uptodate and we have no buffers
1238 * 4. There are unwritten buffers on the page
1239 */
1240
1241 if (!page_has_buffers(page)) {
1242 unmapped = 1;
1243 need_trans = 1;
1244 } else {
1245 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1246 if (!PageUptodate(page))
1247 unmapped = 0;
1248 need_trans = delalloc + unmapped + unwritten;
1249 }
1250
1251 /*
1252 * If we need a transaction and the process flags say
1253 * we are already in a transaction, or no IO is allowed
1254 * then mark the page dirty again and leave the page
1255 * as is.
1256 */
59c1b082 1257 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1258 goto out_fail;
1259
1260 /*
1261 * Delay hooking up buffer heads until we have
1262 * made our go/no-go decision.
1263 */
1264 if (!page_has_buffers(page))
1265 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1266
1267 /*
1268 * Convert delayed allocate, unwritten or unmapped space
1269 * to real space and flush out to disk.
1270 */
1271 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1272 if (error == -EAGAIN)
1273 goto out_fail;
1274 if (unlikely(error < 0))
1275 goto out_unlock;
1276
1277 return 0;
1278
1279out_fail:
1280 redirty_page_for_writepage(wbc, page);
1281 unlock_page(page);
1282 return 0;
1283out_unlock:
1284 unlock_page(page);
1285 return error;
1286}
1287
7d4fb40a
NS
1288STATIC int
1289xfs_vm_writepages(
1290 struct address_space *mapping,
1291 struct writeback_control *wbc)
1292{
b3aea4ed 1293 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1294 return generic_writepages(mapping, wbc);
1295}
1296
f51623b2
NS
1297/*
1298 * Called to move a page into cleanable state - and from there
1299 * to be released. Possibly the page is already clean. We always
1300 * have buffer heads in this call.
1301 *
1302 * Returns 0 if the page is ok to release, 1 otherwise.
1303 *
1304 * Possible scenarios are:
1305 *
1306 * 1. We are being called to release a page which has been written
1307 * to via regular I/O. buffer heads will be dirty and possibly
1308 * delalloc. If no delalloc buffer heads in this case then we
1309 * can just return zero.
1310 *
1311 * 2. We are called to release a page which has been written via
1312 * mmap, all we need to do is ensure there is no delalloc
1313 * state in the buffer heads, if not we can let the caller
1314 * free them and we should come back later via writepage.
1315 */
1316STATIC int
238f4c54 1317xfs_vm_releasepage(
f51623b2
NS
1318 struct page *page,
1319 gfp_t gfp_mask)
1320{
1321 struct inode *inode = page->mapping->host;
1322 int dirty, delalloc, unmapped, unwritten;
1323 struct writeback_control wbc = {
1324 .sync_mode = WB_SYNC_ALL,
1325 .nr_to_write = 1,
1326 };
1327
ed9d88f7 1328 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, 0);
f51623b2 1329
238f4c54
NS
1330 if (!page_has_buffers(page))
1331 return 0;
1332
f51623b2
NS
1333 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1334 if (!delalloc && !unwritten)
1335 goto free_buffers;
1336
1337 if (!(gfp_mask & __GFP_FS))
1338 return 0;
1339
1340 /* If we are already inside a transaction or the thread cannot
1341 * do I/O, we cannot release this page.
1342 */
59c1b082 1343 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1344 return 0;
1345
1346 /*
1347 * Convert delalloc space to real space, do not flush the
1348 * data out to disk, that will be done by the caller.
1349 * Never need to allocate space here - we will always
1350 * come back to writepage in that case.
1351 */
1352 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1353 if (dirty == 0 && !unwritten)
1354 goto free_buffers;
1355 return 0;
1356
1357free_buffers:
1358 return try_to_free_buffers(page);
1359}
1360
1da177e4 1361STATIC int
c2536668 1362__xfs_get_blocks(
1da177e4
LT
1363 struct inode *inode,
1364 sector_t iblock,
1da177e4
LT
1365 struct buffer_head *bh_result,
1366 int create,
1367 int direct,
1368 bmapi_flags_t flags)
1369{
1da177e4 1370 xfs_iomap_t iomap;
fdc7ed75
NS
1371 xfs_off_t offset;
1372 ssize_t size;
c2536668 1373 int niomap = 1;
1da177e4 1374 int error;
1da177e4 1375
fdc7ed75 1376 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1377 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1378 size = bh_result->b_size;
364f358a
LM
1379
1380 if (!create && direct && offset >= i_size_read(inode))
1381 return 0;
1382
541d7d3c 1383 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1384 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1385 if (error)
1386 return -error;
c2536668 1387 if (niomap == 0)
1da177e4
LT
1388 return 0;
1389
1390 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1391 /*
1392 * For unwritten extents do not report a disk address on
1da177e4
LT
1393 * the read case (treat as if we're reading into a hole).
1394 */
1395 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1396 xfs_map_buffer(bh_result, &iomap, offset,
1397 inode->i_blkbits);
1da177e4
LT
1398 }
1399 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1400 if (direct)
1401 bh_result->b_private = inode;
1402 set_buffer_unwritten(bh_result);
1da177e4
LT
1403 }
1404 }
1405
c2536668
NS
1406 /*
1407 * If this is a realtime file, data may be on a different device.
1408 * to that pointed to from the buffer_head b_bdev currently.
1409 */
ce8e922c 1410 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4 1411
c2536668 1412 /*
549054af
DC
1413 * If we previously allocated a block out beyond eof and we are now
1414 * coming back to use it then we will need to flag it as new even if it
1415 * has a disk address.
1416 *
1417 * With sub-block writes into unwritten extents we also need to mark
1418 * the buffer as new so that the unwritten parts of the buffer gets
1419 * correctly zeroed.
1da177e4
LT
1420 */
1421 if (create &&
1422 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1423 (offset >= i_size_read(inode)) ||
1424 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1425 set_buffer_new(bh_result);
1da177e4
LT
1426
1427 if (iomap.iomap_flags & IOMAP_DELAY) {
1428 BUG_ON(direct);
1429 if (create) {
1430 set_buffer_uptodate(bh_result);
1431 set_buffer_mapped(bh_result);
1432 set_buffer_delay(bh_result);
1433 }
1434 }
1435
c2536668 1436 if (direct || size > (1 << inode->i_blkbits)) {
fdc7ed75
NS
1437 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1438 offset = min_t(xfs_off_t,
c2536668
NS
1439 iomap.iomap_bsize - iomap.iomap_delta, size);
1440 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1441 }
1442
1443 return 0;
1444}
1445
1446int
c2536668 1447xfs_get_blocks(
1da177e4
LT
1448 struct inode *inode,
1449 sector_t iblock,
1450 struct buffer_head *bh_result,
1451 int create)
1452{
c2536668 1453 return __xfs_get_blocks(inode, iblock,
fa30bd05 1454 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1455}
1456
1457STATIC int
e4c573bb 1458xfs_get_blocks_direct(
1da177e4
LT
1459 struct inode *inode,
1460 sector_t iblock,
1da177e4
LT
1461 struct buffer_head *bh_result,
1462 int create)
1463{
c2536668 1464 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1465 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1466}
1467
f0973863 1468STATIC void
e4c573bb 1469xfs_end_io_direct(
f0973863
CH
1470 struct kiocb *iocb,
1471 loff_t offset,
1472 ssize_t size,
1473 void *private)
1474{
1475 xfs_ioend_t *ioend = iocb->private;
1476
1477 /*
1478 * Non-NULL private data means we need to issue a transaction to
1479 * convert a range from unwritten to written extents. This needs
c41564b5 1480 * to happen from process context but aio+dio I/O completion
f0973863 1481 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1482 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1483 * it anyway to keep the code uniform and simpler.
1484 *
e927af90
DC
1485 * Well, if only it were that simple. Because synchronous direct I/O
1486 * requires extent conversion to occur *before* we return to userspace,
1487 * we have to wait for extent conversion to complete. Look at the
1488 * iocb that has been passed to us to determine if this is AIO or
1489 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1490 * workqueue and wait for it to complete.
1491 *
f0973863
CH
1492 * The core direct I/O code might be changed to always call the
1493 * completion handler in the future, in which case all this can
1494 * go away.
1495 */
ba87ea69
LM
1496 ioend->io_offset = offset;
1497 ioend->io_size = size;
1498 if (ioend->io_type == IOMAP_READ) {
e927af90 1499 xfs_finish_ioend(ioend, 0);
ba87ea69 1500 } else if (private && size > 0) {
e927af90 1501 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1502 } else {
ba87ea69
LM
1503 /*
1504 * A direct I/O write ioend starts it's life in unwritten
1505 * state in case they map an unwritten extent. This write
1506 * didn't map an unwritten extent so switch it's completion
1507 * handler.
1508 */
1509 INIT_WORK(&ioend->io_work, xfs_end_bio_written);
e927af90 1510 xfs_finish_ioend(ioend, 0);
f0973863
CH
1511 }
1512
1513 /*
c41564b5 1514 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1515 * completion handler was called. Thus we need to protect
1516 * against double-freeing.
1517 */
1518 iocb->private = NULL;
1519}
1520
1da177e4 1521STATIC ssize_t
e4c573bb 1522xfs_vm_direct_IO(
1da177e4
LT
1523 int rw,
1524 struct kiocb *iocb,
1525 const struct iovec *iov,
1526 loff_t offset,
1527 unsigned long nr_segs)
1528{
1529 struct file *file = iocb->ki_filp;
1530 struct inode *inode = file->f_mapping->host;
6214ed44 1531 struct block_device *bdev;
f0973863 1532 ssize_t ret;
1da177e4 1533
6214ed44 1534 bdev = xfs_find_bdev_for_inode(XFS_I(inode));
1da177e4 1535
721259bc 1536 if (rw == WRITE) {
ba87ea69 1537 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
721259bc 1538 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
6214ed44 1539 bdev, iov, offset, nr_segs,
721259bc
LM
1540 xfs_get_blocks_direct,
1541 xfs_end_io_direct);
1542 } else {
ba87ea69 1543 iocb->private = xfs_alloc_ioend(inode, IOMAP_READ);
721259bc 1544 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
6214ed44 1545 bdev, iov, offset, nr_segs,
721259bc
LM
1546 xfs_get_blocks_direct,
1547 xfs_end_io_direct);
1548 }
f0973863 1549
8459d86a 1550 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1551 xfs_destroy_ioend(iocb->private);
1552 return ret;
1da177e4
LT
1553}
1554
f51623b2 1555STATIC int
d79689c7 1556xfs_vm_write_begin(
f51623b2 1557 struct file *file,
d79689c7
NP
1558 struct address_space *mapping,
1559 loff_t pos,
1560 unsigned len,
1561 unsigned flags,
1562 struct page **pagep,
1563 void **fsdata)
f51623b2 1564{
d79689c7
NP
1565 *pagep = NULL;
1566 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1567 xfs_get_blocks);
f51623b2 1568}
1da177e4
LT
1569
1570STATIC sector_t
e4c573bb 1571xfs_vm_bmap(
1da177e4
LT
1572 struct address_space *mapping,
1573 sector_t block)
1574{
1575 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1576 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1577
cf441eeb 1578 xfs_itrace_entry(XFS_I(inode));
126468b1 1579 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1580 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1581 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1582 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1583}
1584
1585STATIC int
e4c573bb 1586xfs_vm_readpage(
1da177e4
LT
1587 struct file *unused,
1588 struct page *page)
1589{
c2536668 1590 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1591}
1592
1593STATIC int
e4c573bb 1594xfs_vm_readpages(
1da177e4
LT
1595 struct file *unused,
1596 struct address_space *mapping,
1597 struct list_head *pages,
1598 unsigned nr_pages)
1599{
c2536668 1600 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1601}
1602
2ff28e22 1603STATIC void
238f4c54 1604xfs_vm_invalidatepage(
bcec2b7f
NS
1605 struct page *page,
1606 unsigned long offset)
1607{
1608 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1609 page->mapping->host, page, offset);
2ff28e22 1610 block_invalidatepage(page, offset);
bcec2b7f
NS
1611}
1612
f5e54d6e 1613const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1614 .readpage = xfs_vm_readpage,
1615 .readpages = xfs_vm_readpages,
1616 .writepage = xfs_vm_writepage,
7d4fb40a 1617 .writepages = xfs_vm_writepages,
1da177e4 1618 .sync_page = block_sync_page,
238f4c54
NS
1619 .releasepage = xfs_vm_releasepage,
1620 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1621 .write_begin = xfs_vm_write_begin,
1622 .write_end = generic_write_end,
e4c573bb
NS
1623 .bmap = xfs_vm_bmap,
1624 .direct_IO = xfs_vm_direct_IO,
e965f963 1625 .migratepage = buffer_migrate_page,
1da177e4 1626};
This page took 0.476086 seconds and 5 git commands to generate.