xfs: report iomap_bn in block base
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir2.h"
25#include "xfs_trans.h"
26#include "xfs_dmapi.h"
27#include "xfs_mount.h"
28#include "xfs_bmap_btree.h"
29#include "xfs_alloc_btree.h"
30#include "xfs_ialloc_btree.h"
1da177e4 31#include "xfs_dir2_sf.h"
a844f451 32#include "xfs_attr_sf.h"
1da177e4
LT
33#include "xfs_dinode.h"
34#include "xfs_inode.h"
a844f451
NS
35#include "xfs_alloc.h"
36#include "xfs_btree.h"
1da177e4
LT
37#include "xfs_error.h"
38#include "xfs_rw.h"
39#include "xfs_iomap.h"
739bfb2a 40#include "xfs_vnodeops.h"
0b1b213f 41#include "xfs_trace.h"
3ed3a434 42#include "xfs_bmap.h"
5a0e3ad6 43#include <linux/gfp.h>
1da177e4 44#include <linux/mpage.h>
10ce4444 45#include <linux/pagevec.h>
1da177e4
LT
46#include <linux/writeback.h>
47
25e41b3d
CH
48
49/*
50 * Prime number of hash buckets since address is used as the key.
51 */
52#define NVSYNC 37
53#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
54static wait_queue_head_t xfs_ioend_wq[NVSYNC];
55
56void __init
57xfs_ioend_init(void)
58{
59 int i;
60
61 for (i = 0; i < NVSYNC; i++)
62 init_waitqueue_head(&xfs_ioend_wq[i]);
63}
64
65void
66xfs_ioend_wait(
67 xfs_inode_t *ip)
68{
69 wait_queue_head_t *wq = to_ioend_wq(ip);
70
71 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
72}
73
74STATIC void
75xfs_ioend_wake(
76 xfs_inode_t *ip)
77{
78 if (atomic_dec_and_test(&ip->i_iocount))
79 wake_up(to_ioend_wq(ip));
80}
81
0b1b213f 82void
f51623b2
NS
83xfs_count_page_state(
84 struct page *page,
85 int *delalloc,
86 int *unmapped,
87 int *unwritten)
88{
89 struct buffer_head *bh, *head;
90
91 *delalloc = *unmapped = *unwritten = 0;
92
93 bh = head = page_buffers(page);
94 do {
95 if (buffer_uptodate(bh) && !buffer_mapped(bh))
96 (*unmapped) = 1;
f51623b2
NS
97 else if (buffer_unwritten(bh))
98 (*unwritten) = 1;
99 else if (buffer_delay(bh))
100 (*delalloc) = 1;
101 } while ((bh = bh->b_this_page) != head);
102}
103
6214ed44
CH
104STATIC struct block_device *
105xfs_find_bdev_for_inode(
046f1685 106 struct inode *inode)
6214ed44 107{
046f1685 108 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
109 struct xfs_mount *mp = ip->i_mount;
110
71ddabb9 111 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
112 return mp->m_rtdev_targp->bt_bdev;
113 else
114 return mp->m_ddev_targp->bt_bdev;
115}
116
f6d6d4fc
CH
117/*
118 * We're now finished for good with this ioend structure.
119 * Update the page state via the associated buffer_heads,
120 * release holds on the inode and bio, and finally free
121 * up memory. Do not use the ioend after this.
122 */
0829c360
CH
123STATIC void
124xfs_destroy_ioend(
125 xfs_ioend_t *ioend)
126{
f6d6d4fc 127 struct buffer_head *bh, *next;
583fa586 128 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
129
130 for (bh = ioend->io_buffer_head; bh; bh = next) {
131 next = bh->b_private;
7d04a335 132 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 133 }
583fa586
CH
134
135 /*
136 * Volume managers supporting multiple paths can send back ENODEV
137 * when the final path disappears. In this case continuing to fill
138 * the page cache with dirty data which cannot be written out is
139 * evil, so prevent that.
140 */
141 if (unlikely(ioend->io_error == -ENODEV)) {
142 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
143 __FILE__, __LINE__);
b677c210 144 }
583fa586 145
25e41b3d 146 xfs_ioend_wake(ip);
0829c360
CH
147 mempool_free(ioend, xfs_ioend_pool);
148}
149
932640e8
DC
150/*
151 * If the end of the current ioend is beyond the current EOF,
152 * return the new EOF value, otherwise zero.
153 */
154STATIC xfs_fsize_t
155xfs_ioend_new_eof(
156 xfs_ioend_t *ioend)
157{
158 xfs_inode_t *ip = XFS_I(ioend->io_inode);
159 xfs_fsize_t isize;
160 xfs_fsize_t bsize;
161
162 bsize = ioend->io_offset + ioend->io_size;
163 isize = MAX(ip->i_size, ip->i_new_size);
164 isize = MIN(isize, bsize);
165 return isize > ip->i_d.di_size ? isize : 0;
166}
167
ba87ea69 168/*
77d7a0c2
DC
169 * Update on-disk file size now that data has been written to disk. The
170 * current in-memory file size is i_size. If a write is beyond eof i_new_size
171 * will be the intended file size until i_size is updated. If this write does
172 * not extend all the way to the valid file size then restrict this update to
173 * the end of the write.
174 *
175 * This function does not block as blocking on the inode lock in IO completion
176 * can lead to IO completion order dependency deadlocks.. If it can't get the
177 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 178 */
77d7a0c2 179STATIC int
ba87ea69
LM
180xfs_setfilesize(
181 xfs_ioend_t *ioend)
182{
b677c210 183 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 184 xfs_fsize_t isize;
ba87ea69 185
ba87ea69
LM
186 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
187 ASSERT(ioend->io_type != IOMAP_READ);
188
189 if (unlikely(ioend->io_error))
77d7a0c2
DC
190 return 0;
191
192 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
193 return EAGAIN;
ba87ea69 194
932640e8
DC
195 isize = xfs_ioend_new_eof(ioend);
196 if (isize) {
ba87ea69 197 ip->i_d.di_size = isize;
66d834ea 198 xfs_mark_inode_dirty(ip);
ba87ea69
LM
199 }
200
201 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
202 return 0;
203}
204
205/*
206 * Schedule IO completion handling on a xfsdatad if this was
207 * the final hold on this ioend. If we are asked to wait,
208 * flush the workqueue.
209 */
210STATIC void
211xfs_finish_ioend(
212 xfs_ioend_t *ioend,
213 int wait)
214{
215 if (atomic_dec_and_test(&ioend->io_remaining)) {
216 struct workqueue_struct *wq;
217
218 wq = (ioend->io_type == IOMAP_UNWRITTEN) ?
219 xfsconvertd_workqueue : xfsdatad_workqueue;
220 queue_work(wq, &ioend->io_work);
221 if (wait)
222 flush_workqueue(wq);
223 }
ba87ea69
LM
224}
225
0829c360 226/*
5ec4fabb 227 * IO write completion.
f6d6d4fc
CH
228 */
229STATIC void
5ec4fabb 230xfs_end_io(
77d7a0c2 231 struct work_struct *work)
0829c360 232{
77d7a0c2
DC
233 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
234 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 235 int error = 0;
ba87ea69 236
5ec4fabb
CH
237 /*
238 * For unwritten extents we need to issue transactions to convert a
239 * range to normal written extens after the data I/O has finished.
240 */
241 if (ioend->io_type == IOMAP_UNWRITTEN &&
242 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
243
244 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
245 ioend->io_size);
246 if (error)
247 ioend->io_error = error;
248 }
ba87ea69 249
5ec4fabb
CH
250 /*
251 * We might have to update the on-disk file size after extending
252 * writes.
253 */
77d7a0c2
DC
254 if (ioend->io_type != IOMAP_READ) {
255 error = xfs_setfilesize(ioend);
256 ASSERT(!error || error == EAGAIN);
c626d174 257 }
77d7a0c2
DC
258
259 /*
260 * If we didn't complete processing of the ioend, requeue it to the
261 * tail of the workqueue for another attempt later. Otherwise destroy
262 * it.
263 */
264 if (error == EAGAIN) {
265 atomic_inc(&ioend->io_remaining);
266 xfs_finish_ioend(ioend, 0);
267 /* ensure we don't spin on blocked ioends */
268 delay(1);
269 } else
270 xfs_destroy_ioend(ioend);
c626d174
DC
271}
272
0829c360
CH
273/*
274 * Allocate and initialise an IO completion structure.
275 * We need to track unwritten extent write completion here initially.
276 * We'll need to extend this for updating the ondisk inode size later
277 * (vs. incore size).
278 */
279STATIC xfs_ioend_t *
280xfs_alloc_ioend(
f6d6d4fc
CH
281 struct inode *inode,
282 unsigned int type)
0829c360
CH
283{
284 xfs_ioend_t *ioend;
285
286 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
287
288 /*
289 * Set the count to 1 initially, which will prevent an I/O
290 * completion callback from happening before we have started
291 * all the I/O from calling the completion routine too early.
292 */
293 atomic_set(&ioend->io_remaining, 1);
7d04a335 294 ioend->io_error = 0;
f6d6d4fc
CH
295 ioend->io_list = NULL;
296 ioend->io_type = type;
b677c210 297 ioend->io_inode = inode;
c1a073bd 298 ioend->io_buffer_head = NULL;
f6d6d4fc 299 ioend->io_buffer_tail = NULL;
b677c210 300 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
301 ioend->io_offset = 0;
302 ioend->io_size = 0;
303
5ec4fabb 304 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
305 return ioend;
306}
307
1da177e4
LT
308STATIC int
309xfs_map_blocks(
310 struct inode *inode,
311 loff_t offset,
312 ssize_t count,
313 xfs_iomap_t *mapp,
314 int flags)
315{
6bd16ff2
CH
316 int nmaps = 1;
317
318 return -xfs_iomap(XFS_I(inode), offset, count, flags, mapp, &nmaps);
1da177e4
LT
319}
320
b8f82a4a 321STATIC int
1defeac9 322xfs_iomap_valid(
8699bb0a 323 struct inode *inode,
1da177e4 324 xfs_iomap_t *iomapp,
1defeac9 325 loff_t offset)
1da177e4 326{
8699bb0a
CH
327 struct xfs_mount *mp = XFS_I(inode)->i_mount;
328 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, iomapp->iomap_offset);
329 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, iomapp->iomap_bsize);
330
331 return offset >= iomap_offset &&
332 offset < iomap_offset + iomap_bsize;
1da177e4
LT
333}
334
f6d6d4fc
CH
335/*
336 * BIO completion handler for buffered IO.
337 */
782e3b3b 338STATIC void
f6d6d4fc
CH
339xfs_end_bio(
340 struct bio *bio,
f6d6d4fc
CH
341 int error)
342{
343 xfs_ioend_t *ioend = bio->bi_private;
344
f6d6d4fc 345 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 346 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
347
348 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
349 bio->bi_private = NULL;
350 bio->bi_end_io = NULL;
f6d6d4fc 351 bio_put(bio);
7d04a335 352
e927af90 353 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
354}
355
356STATIC void
357xfs_submit_ioend_bio(
06342cf8
CH
358 struct writeback_control *wbc,
359 xfs_ioend_t *ioend,
360 struct bio *bio)
f6d6d4fc
CH
361{
362 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
363 bio->bi_private = ioend;
364 bio->bi_end_io = xfs_end_bio;
365
932640e8
DC
366 /*
367 * If the I/O is beyond EOF we mark the inode dirty immediately
368 * but don't update the inode size until I/O completion.
369 */
370 if (xfs_ioend_new_eof(ioend))
66d834ea 371 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 372
06342cf8
CH
373 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
374 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
375 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
376 bio_put(bio);
377}
378
379STATIC struct bio *
380xfs_alloc_ioend_bio(
381 struct buffer_head *bh)
382{
383 struct bio *bio;
384 int nvecs = bio_get_nr_vecs(bh->b_bdev);
385
386 do {
387 bio = bio_alloc(GFP_NOIO, nvecs);
388 nvecs >>= 1;
389 } while (!bio);
390
391 ASSERT(bio->bi_private == NULL);
392 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
393 bio->bi_bdev = bh->b_bdev;
394 bio_get(bio);
395 return bio;
396}
397
398STATIC void
399xfs_start_buffer_writeback(
400 struct buffer_head *bh)
401{
402 ASSERT(buffer_mapped(bh));
403 ASSERT(buffer_locked(bh));
404 ASSERT(!buffer_delay(bh));
405 ASSERT(!buffer_unwritten(bh));
406
407 mark_buffer_async_write(bh);
408 set_buffer_uptodate(bh);
409 clear_buffer_dirty(bh);
410}
411
412STATIC void
413xfs_start_page_writeback(
414 struct page *page,
f6d6d4fc
CH
415 int clear_dirty,
416 int buffers)
417{
418 ASSERT(PageLocked(page));
419 ASSERT(!PageWriteback(page));
f6d6d4fc 420 if (clear_dirty)
92132021
DC
421 clear_page_dirty_for_io(page);
422 set_page_writeback(page);
f6d6d4fc 423 unlock_page(page);
1f7decf6
FW
424 /* If no buffers on the page are to be written, finish it here */
425 if (!buffers)
f6d6d4fc 426 end_page_writeback(page);
f6d6d4fc
CH
427}
428
429static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
430{
431 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
432}
433
434/*
d88992f6
DC
435 * Submit all of the bios for all of the ioends we have saved up, covering the
436 * initial writepage page and also any probed pages.
437 *
438 * Because we may have multiple ioends spanning a page, we need to start
439 * writeback on all the buffers before we submit them for I/O. If we mark the
440 * buffers as we got, then we can end up with a page that only has buffers
441 * marked async write and I/O complete on can occur before we mark the other
442 * buffers async write.
443 *
444 * The end result of this is that we trip a bug in end_page_writeback() because
445 * we call it twice for the one page as the code in end_buffer_async_write()
446 * assumes that all buffers on the page are started at the same time.
447 *
448 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 449 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
450 */
451STATIC void
452xfs_submit_ioend(
06342cf8 453 struct writeback_control *wbc,
f6d6d4fc
CH
454 xfs_ioend_t *ioend)
455{
d88992f6 456 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
457 xfs_ioend_t *next;
458 struct buffer_head *bh;
459 struct bio *bio;
460 sector_t lastblock = 0;
461
d88992f6
DC
462 /* Pass 1 - start writeback */
463 do {
464 next = ioend->io_list;
465 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
466 xfs_start_buffer_writeback(bh);
467 }
468 } while ((ioend = next) != NULL);
469
470 /* Pass 2 - submit I/O */
471 ioend = head;
f6d6d4fc
CH
472 do {
473 next = ioend->io_list;
474 bio = NULL;
475
476 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
477
478 if (!bio) {
479 retry:
480 bio = xfs_alloc_ioend_bio(bh);
481 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 482 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
483 goto retry;
484 }
485
486 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 487 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
488 goto retry;
489 }
490
491 lastblock = bh->b_blocknr;
492 }
493 if (bio)
06342cf8 494 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 495 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
496 } while ((ioend = next) != NULL);
497}
498
499/*
500 * Cancel submission of all buffer_heads so far in this endio.
501 * Toss the endio too. Only ever called for the initial page
502 * in a writepage request, so only ever one page.
503 */
504STATIC void
505xfs_cancel_ioend(
506 xfs_ioend_t *ioend)
507{
508 xfs_ioend_t *next;
509 struct buffer_head *bh, *next_bh;
510
511 do {
512 next = ioend->io_list;
513 bh = ioend->io_buffer_head;
514 do {
515 next_bh = bh->b_private;
516 clear_buffer_async_write(bh);
517 unlock_buffer(bh);
518 } while ((bh = next_bh) != NULL);
519
25e41b3d 520 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
521 mempool_free(ioend, xfs_ioend_pool);
522 } while ((ioend = next) != NULL);
523}
524
525/*
526 * Test to see if we've been building up a completion structure for
527 * earlier buffers -- if so, we try to append to this ioend if we
528 * can, otherwise we finish off any current ioend and start another.
529 * Return true if we've finished the given ioend.
530 */
531STATIC void
532xfs_add_to_ioend(
533 struct inode *inode,
534 struct buffer_head *bh,
7336cea8 535 xfs_off_t offset,
f6d6d4fc
CH
536 unsigned int type,
537 xfs_ioend_t **result,
538 int need_ioend)
539{
540 xfs_ioend_t *ioend = *result;
541
542 if (!ioend || need_ioend || type != ioend->io_type) {
543 xfs_ioend_t *previous = *result;
f6d6d4fc 544
f6d6d4fc
CH
545 ioend = xfs_alloc_ioend(inode, type);
546 ioend->io_offset = offset;
547 ioend->io_buffer_head = bh;
548 ioend->io_buffer_tail = bh;
549 if (previous)
550 previous->io_list = ioend;
551 *result = ioend;
552 } else {
553 ioend->io_buffer_tail->b_private = bh;
554 ioend->io_buffer_tail = bh;
555 }
556
557 bh->b_private = NULL;
558 ioend->io_size += bh->b_size;
559}
560
87cbc49c
NS
561STATIC void
562xfs_map_buffer(
046f1685 563 struct inode *inode,
87cbc49c
NS
564 struct buffer_head *bh,
565 xfs_iomap_t *mp,
046f1685 566 xfs_off_t offset)
87cbc49c
NS
567{
568 sector_t bn;
8699bb0a
CH
569 struct xfs_mount *m = XFS_I(inode)->i_mount;
570 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, mp->iomap_offset);
e513182d 571 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), mp->iomap_bn);
87cbc49c 572
e513182d
CH
573 ASSERT(mp->iomap_bn != HOLESTARTBLOCK);
574 ASSERT(mp->iomap_bn != DELAYSTARTBLOCK);
87cbc49c 575
e513182d 576 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 577 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 578
046f1685 579 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
580
581 bh->b_blocknr = bn;
582 set_buffer_mapped(bh);
583}
584
1da177e4
LT
585STATIC void
586xfs_map_at_offset(
046f1685 587 struct inode *inode,
1da177e4 588 struct buffer_head *bh,
046f1685
CH
589 xfs_iomap_t *iomapp,
590 xfs_off_t offset)
1da177e4 591{
e513182d
CH
592 ASSERT(iomapp->iomap_bn != HOLESTARTBLOCK);
593 ASSERT(iomapp->iomap_bn != DELAYSTARTBLOCK);
1da177e4
LT
594
595 lock_buffer(bh);
046f1685
CH
596 xfs_map_buffer(inode, bh, iomapp, offset);
597 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
598 set_buffer_mapped(bh);
599 clear_buffer_delay(bh);
f6d6d4fc 600 clear_buffer_unwritten(bh);
1da177e4
LT
601}
602
603/*
6c4fe19f 604 * Look for a page at index that is suitable for clustering.
1da177e4
LT
605 */
606STATIC unsigned int
6c4fe19f 607xfs_probe_page(
10ce4444 608 struct page *page,
6c4fe19f
CH
609 unsigned int pg_offset,
610 int mapped)
1da177e4 611{
1da177e4
LT
612 int ret = 0;
613
1da177e4 614 if (PageWriteback(page))
10ce4444 615 return 0;
1da177e4
LT
616
617 if (page->mapping && PageDirty(page)) {
618 if (page_has_buffers(page)) {
619 struct buffer_head *bh, *head;
620
621 bh = head = page_buffers(page);
622 do {
6c4fe19f
CH
623 if (!buffer_uptodate(bh))
624 break;
625 if (mapped != buffer_mapped(bh))
1da177e4
LT
626 break;
627 ret += bh->b_size;
628 if (ret >= pg_offset)
629 break;
630 } while ((bh = bh->b_this_page) != head);
631 } else
6c4fe19f 632 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
633 }
634
1da177e4
LT
635 return ret;
636}
637
f6d6d4fc 638STATIC size_t
6c4fe19f 639xfs_probe_cluster(
1da177e4
LT
640 struct inode *inode,
641 struct page *startpage,
642 struct buffer_head *bh,
6c4fe19f
CH
643 struct buffer_head *head,
644 int mapped)
1da177e4 645{
10ce4444 646 struct pagevec pvec;
1da177e4 647 pgoff_t tindex, tlast, tloff;
10ce4444
CH
648 size_t total = 0;
649 int done = 0, i;
1da177e4
LT
650
651 /* First sum forwards in this page */
652 do {
2353e8e9 653 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 654 return total;
1da177e4
LT
655 total += bh->b_size;
656 } while ((bh = bh->b_this_page) != head);
657
10ce4444
CH
658 /* if we reached the end of the page, sum forwards in following pages */
659 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
660 tindex = startpage->index + 1;
661
662 /* Prune this back to avoid pathological behavior */
663 tloff = min(tlast, startpage->index + 64);
664
665 pagevec_init(&pvec, 0);
666 while (!done && tindex <= tloff) {
667 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
668
669 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
670 break;
671
672 for (i = 0; i < pagevec_count(&pvec); i++) {
673 struct page *page = pvec.pages[i];
265c1fac 674 size_t pg_offset, pg_len = 0;
10ce4444
CH
675
676 if (tindex == tlast) {
677 pg_offset =
678 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
679 if (!pg_offset) {
680 done = 1;
10ce4444 681 break;
1defeac9 682 }
10ce4444
CH
683 } else
684 pg_offset = PAGE_CACHE_SIZE;
685
529ae9aa 686 if (page->index == tindex && trylock_page(page)) {
265c1fac 687 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
688 unlock_page(page);
689 }
690
265c1fac 691 if (!pg_len) {
10ce4444
CH
692 done = 1;
693 break;
694 }
695
265c1fac 696 total += pg_len;
1defeac9 697 tindex++;
1da177e4 698 }
10ce4444
CH
699
700 pagevec_release(&pvec);
701 cond_resched();
1da177e4 702 }
10ce4444 703
1da177e4
LT
704 return total;
705}
706
707/*
10ce4444
CH
708 * Test if a given page is suitable for writing as part of an unwritten
709 * or delayed allocate extent.
1da177e4 710 */
10ce4444
CH
711STATIC int
712xfs_is_delayed_page(
713 struct page *page,
f6d6d4fc 714 unsigned int type)
1da177e4 715{
1da177e4 716 if (PageWriteback(page))
10ce4444 717 return 0;
1da177e4
LT
718
719 if (page->mapping && page_has_buffers(page)) {
720 struct buffer_head *bh, *head;
721 int acceptable = 0;
722
723 bh = head = page_buffers(page);
724 do {
f6d6d4fc
CH
725 if (buffer_unwritten(bh))
726 acceptable = (type == IOMAP_UNWRITTEN);
727 else if (buffer_delay(bh))
728 acceptable = (type == IOMAP_DELAY);
2ddee844 729 else if (buffer_dirty(bh) && buffer_mapped(bh))
df3c7244 730 acceptable = (type == IOMAP_NEW);
f6d6d4fc 731 else
1da177e4 732 break;
1da177e4
LT
733 } while ((bh = bh->b_this_page) != head);
734
735 if (acceptable)
10ce4444 736 return 1;
1da177e4
LT
737 }
738
10ce4444 739 return 0;
1da177e4
LT
740}
741
1da177e4
LT
742/*
743 * Allocate & map buffers for page given the extent map. Write it out.
744 * except for the original page of a writepage, this is called on
745 * delalloc/unwritten pages only, for the original page it is possible
746 * that the page has no mapping at all.
747 */
f6d6d4fc 748STATIC int
1da177e4
LT
749xfs_convert_page(
750 struct inode *inode,
751 struct page *page,
10ce4444 752 loff_t tindex,
1defeac9 753 xfs_iomap_t *mp,
f6d6d4fc 754 xfs_ioend_t **ioendp,
1da177e4 755 struct writeback_control *wbc,
1da177e4
LT
756 int startio,
757 int all_bh)
758{
f6d6d4fc 759 struct buffer_head *bh, *head;
9260dc6b
CH
760 xfs_off_t end_offset;
761 unsigned long p_offset;
f6d6d4fc 762 unsigned int type;
24e17b5f 763 int len, page_dirty;
f6d6d4fc 764 int count = 0, done = 0, uptodate = 1;
9260dc6b 765 xfs_off_t offset = page_offset(page);
1da177e4 766
10ce4444
CH
767 if (page->index != tindex)
768 goto fail;
529ae9aa 769 if (!trylock_page(page))
10ce4444
CH
770 goto fail;
771 if (PageWriteback(page))
772 goto fail_unlock_page;
773 if (page->mapping != inode->i_mapping)
774 goto fail_unlock_page;
775 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
776 goto fail_unlock_page;
777
24e17b5f
NS
778 /*
779 * page_dirty is initially a count of buffers on the page before
c41564b5 780 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
781 *
782 * Derivation:
783 *
784 * End offset is the highest offset that this page should represent.
785 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
786 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
787 * hence give us the correct page_dirty count. On any other page,
788 * it will be zero and in that case we need page_dirty to be the
789 * count of buffers on the page.
24e17b5f 790 */
9260dc6b
CH
791 end_offset = min_t(unsigned long long,
792 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
793 i_size_read(inode));
794
24e17b5f 795 len = 1 << inode->i_blkbits;
9260dc6b
CH
796 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
797 PAGE_CACHE_SIZE);
798 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
799 page_dirty = p_offset / len;
24e17b5f 800
1da177e4
LT
801 bh = head = page_buffers(page);
802 do {
9260dc6b 803 if (offset >= end_offset)
1da177e4 804 break;
f6d6d4fc
CH
805 if (!buffer_uptodate(bh))
806 uptodate = 0;
807 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
808 done = 1;
1da177e4 809 continue;
f6d6d4fc
CH
810 }
811
9260dc6b
CH
812 if (buffer_unwritten(bh) || buffer_delay(bh)) {
813 if (buffer_unwritten(bh))
814 type = IOMAP_UNWRITTEN;
815 else
816 type = IOMAP_DELAY;
817
8699bb0a 818 if (!xfs_iomap_valid(inode, mp, offset)) {
f6d6d4fc 819 done = 1;
9260dc6b
CH
820 continue;
821 }
822
e513182d
CH
823 ASSERT(mp->iomap_bn != HOLESTARTBLOCK);
824 ASSERT(mp->iomap_bn != DELAYSTARTBLOCK);
9260dc6b 825
046f1685 826 xfs_map_at_offset(inode, bh, mp, offset);
9260dc6b 827 if (startio) {
7336cea8 828 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
829 type, ioendp, done);
830 } else {
831 set_buffer_dirty(bh);
832 unlock_buffer(bh);
833 mark_buffer_dirty(bh);
834 }
835 page_dirty--;
836 count++;
837 } else {
df3c7244 838 type = IOMAP_NEW;
9260dc6b 839 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 840 lock_buffer(bh);
7336cea8 841 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
842 type, ioendp, done);
843 count++;
24e17b5f 844 page_dirty--;
9260dc6b
CH
845 } else {
846 done = 1;
1da177e4 847 }
1da177e4 848 }
7336cea8 849 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 850
f6d6d4fc
CH
851 if (uptodate && bh == head)
852 SetPageUptodate(page);
853
854 if (startio) {
f5e596bb 855 if (count) {
9fddaca2 856 wbc->nr_to_write--;
0d99519e 857 if (wbc->nr_to_write <= 0)
f5e596bb 858 done = 1;
f5e596bb 859 }
b41759cf 860 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 861 }
f6d6d4fc
CH
862
863 return done;
10ce4444
CH
864 fail_unlock_page:
865 unlock_page(page);
866 fail:
867 return 1;
1da177e4
LT
868}
869
870/*
871 * Convert & write out a cluster of pages in the same extent as defined
872 * by mp and following the start page.
873 */
874STATIC void
875xfs_cluster_write(
876 struct inode *inode,
877 pgoff_t tindex,
878 xfs_iomap_t *iomapp,
f6d6d4fc 879 xfs_ioend_t **ioendp,
1da177e4
LT
880 struct writeback_control *wbc,
881 int startio,
882 int all_bh,
883 pgoff_t tlast)
884{
10ce4444
CH
885 struct pagevec pvec;
886 int done = 0, i;
1da177e4 887
10ce4444
CH
888 pagevec_init(&pvec, 0);
889 while (!done && tindex <= tlast) {
890 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
891
892 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 893 break;
10ce4444
CH
894
895 for (i = 0; i < pagevec_count(&pvec); i++) {
896 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
897 iomapp, ioendp, wbc, startio, all_bh);
898 if (done)
899 break;
900 }
901
902 pagevec_release(&pvec);
903 cond_resched();
1da177e4
LT
904 }
905}
906
3ed3a434
DC
907STATIC void
908xfs_vm_invalidatepage(
909 struct page *page,
910 unsigned long offset)
911{
912 trace_xfs_invalidatepage(page->mapping->host, page, offset);
913 block_invalidatepage(page, offset);
914}
915
916/*
917 * If the page has delalloc buffers on it, we need to punch them out before we
918 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
919 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
920 * is done on that same region - the delalloc extent is returned when none is
921 * supposed to be there.
922 *
923 * We prevent this by truncating away the delalloc regions on the page before
924 * invalidating it. Because they are delalloc, we can do this without needing a
925 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
926 * truncation without a transaction as there is no space left for block
927 * reservation (typically why we see a ENOSPC in writeback).
928 *
929 * This is not a performance critical path, so for now just do the punching a
930 * buffer head at a time.
931 */
932STATIC void
933xfs_aops_discard_page(
934 struct page *page)
935{
936 struct inode *inode = page->mapping->host;
937 struct xfs_inode *ip = XFS_I(inode);
938 struct buffer_head *bh, *head;
939 loff_t offset = page_offset(page);
940 ssize_t len = 1 << inode->i_blkbits;
941
942 if (!xfs_is_delayed_page(page, IOMAP_DELAY))
943 goto out_invalidate;
944
e8c3753c
DC
945 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
946 goto out_invalidate;
947
3ed3a434
DC
948 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
949 "page discard on page %p, inode 0x%llx, offset %llu.",
950 page, ip->i_ino, offset);
951
952 xfs_ilock(ip, XFS_ILOCK_EXCL);
953 bh = head = page_buffers(page);
954 do {
955 int done;
956 xfs_fileoff_t offset_fsb;
957 xfs_bmbt_irec_t imap;
958 int nimaps = 1;
959 int error;
960 xfs_fsblock_t firstblock;
961 xfs_bmap_free_t flist;
962
963 if (!buffer_delay(bh))
964 goto next_buffer;
965
966 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
967
968 /*
969 * Map the range first and check that it is a delalloc extent
970 * before trying to unmap the range. Otherwise we will be
971 * trying to remove a real extent (which requires a
972 * transaction) or a hole, which is probably a bad idea...
973 */
974 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
975 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
976 &nimaps, NULL, NULL);
977
978 if (error) {
979 /* something screwed, just bail */
e8c3753c
DC
980 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
981 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
982 "page discard failed delalloc mapping lookup.");
983 }
3ed3a434
DC
984 break;
985 }
986 if (!nimaps) {
987 /* nothing there */
988 goto next_buffer;
989 }
990 if (imap.br_startblock != DELAYSTARTBLOCK) {
991 /* been converted, ignore */
992 goto next_buffer;
993 }
994 WARN_ON(imap.br_blockcount == 0);
995
996 /*
997 * Note: while we initialise the firstblock/flist pair, they
998 * should never be used because blocks should never be
999 * allocated or freed for a delalloc extent and hence we need
1000 * don't cancel or finish them after the xfs_bunmapi() call.
1001 */
1002 xfs_bmap_init(&flist, &firstblock);
1003 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
1004 &flist, NULL, &done);
1005
1006 ASSERT(!flist.xbf_count && !flist.xbf_first);
1007 if (error) {
1008 /* something screwed, just bail */
e8c3753c
DC
1009 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1010 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1011 "page discard unable to remove delalloc mapping.");
e8c3753c 1012 }
3ed3a434
DC
1013 break;
1014 }
1015next_buffer:
1016 offset += len;
1017
1018 } while ((bh = bh->b_this_page) != head);
1019
1020 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1021out_invalidate:
1022 xfs_vm_invalidatepage(page, 0);
1023 return;
1024}
1025
1da177e4
LT
1026/*
1027 * Calling this without startio set means we are being asked to make a dirty
1028 * page ready for freeing it's buffers. When called with startio set then
1029 * we are coming from writepage.
1030 *
1031 * When called with startio set it is important that we write the WHOLE
1032 * page if possible.
1033 * The bh->b_state's cannot know if any of the blocks or which block for
1034 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1035 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1036 * may clear the page dirty flag prior to calling write page, under the
1037 * assumption the entire page will be written out; by not writing out the
1038 * whole page the page can be reused before all valid dirty data is
1039 * written out. Note: in the case of a page that has been dirty'd by
1040 * mapwrite and but partially setup by block_prepare_write the
1041 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1042 * valid state, thus the whole page must be written out thing.
1043 */
1044
1045STATIC int
1046xfs_page_state_convert(
1047 struct inode *inode,
1048 struct page *page,
1049 struct writeback_control *wbc,
1050 int startio,
1051 int unmapped) /* also implies page uptodate */
1052{
f6d6d4fc 1053 struct buffer_head *bh, *head;
1defeac9 1054 xfs_iomap_t iomap;
f6d6d4fc 1055 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1056 loff_t offset;
1057 unsigned long p_offset = 0;
f6d6d4fc 1058 unsigned int type;
1da177e4
LT
1059 __uint64_t end_offset;
1060 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
1061 ssize_t size, len;
1062 int flags, err, iomap_valid = 0, uptodate = 1;
8272145c
NS
1063 int page_dirty, count = 0;
1064 int trylock = 0;
6c4fe19f 1065 int all_bh = unmapped;
1da177e4 1066
8272145c
NS
1067 if (startio) {
1068 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1069 trylock |= BMAPI_TRYLOCK;
1070 }
3ba0815a 1071
1da177e4
LT
1072 /* Is this page beyond the end of the file? */
1073 offset = i_size_read(inode);
1074 end_index = offset >> PAGE_CACHE_SHIFT;
1075 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1076 if (page->index >= end_index) {
1077 if ((page->index >= end_index + 1) ||
1078 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1079 if (startio)
1080 unlock_page(page);
1081 return 0;
1da177e4
LT
1082 }
1083 }
1084
1da177e4 1085 /*
24e17b5f 1086 * page_dirty is initially a count of buffers on the page before
c41564b5 1087 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1088 *
1089 * Derivation:
1090 *
1091 * End offset is the highest offset that this page should represent.
1092 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1093 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1094 * hence give us the correct page_dirty count. On any other page,
1095 * it will be zero and in that case we need page_dirty to be the
1096 * count of buffers on the page.
1097 */
1098 end_offset = min_t(unsigned long long,
1099 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1100 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1101 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1102 PAGE_CACHE_SIZE);
1103 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1104 page_dirty = p_offset / len;
1105
24e17b5f 1106 bh = head = page_buffers(page);
f6d6d4fc 1107 offset = page_offset(page);
df3c7244
DC
1108 flags = BMAPI_READ;
1109 type = IOMAP_NEW;
f6d6d4fc 1110
f6d6d4fc 1111 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1112
1113 do {
1114 if (offset >= end_offset)
1115 break;
1116 if (!buffer_uptodate(bh))
1117 uptodate = 0;
f6d6d4fc 1118 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1119 /*
1120 * the iomap is actually still valid, but the ioend
1121 * isn't. shouldn't happen too often.
1122 */
1123 iomap_valid = 0;
1da177e4 1124 continue;
f6d6d4fc 1125 }
1da177e4 1126
1defeac9 1127 if (iomap_valid)
8699bb0a 1128 iomap_valid = xfs_iomap_valid(inode, &iomap, offset);
1da177e4
LT
1129
1130 /*
1131 * First case, map an unwritten extent and prepare for
1132 * extent state conversion transaction on completion.
f6d6d4fc 1133 *
1da177e4
LT
1134 * Second case, allocate space for a delalloc buffer.
1135 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1136 *
1137 * Third case, an unmapped buffer was found, and we are
1138 * in a path where we need to write the whole page out.
df3c7244 1139 */
d5cb48aa
CH
1140 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1141 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1142 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1143 int new_ioend = 0;
1144
df3c7244 1145 /*
6c4fe19f
CH
1146 * Make sure we don't use a read-only iomap
1147 */
df3c7244 1148 if (flags == BMAPI_READ)
6c4fe19f
CH
1149 iomap_valid = 0;
1150
f6d6d4fc
CH
1151 if (buffer_unwritten(bh)) {
1152 type = IOMAP_UNWRITTEN;
8272145c 1153 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1154 } else if (buffer_delay(bh)) {
f6d6d4fc 1155 type = IOMAP_DELAY;
8272145c 1156 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1157 } else {
6c4fe19f 1158 type = IOMAP_NEW;
8272145c 1159 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1160 }
1161
1defeac9 1162 if (!iomap_valid) {
effd120e
DC
1163 /*
1164 * if we didn't have a valid mapping then we
1165 * need to ensure that we put the new mapping
1166 * in a new ioend structure. This needs to be
1167 * done to ensure that the ioends correctly
1168 * reflect the block mappings at io completion
1169 * for unwritten extent conversion.
1170 */
1171 new_ioend = 1;
6c4fe19f
CH
1172 if (type == IOMAP_NEW) {
1173 size = xfs_probe_cluster(inode,
1174 page, bh, head, 0);
d5cb48aa
CH
1175 } else {
1176 size = len;
1177 }
1178
1179 err = xfs_map_blocks(inode, offset, size,
1180 &iomap, flags);
f6d6d4fc 1181 if (err)
1da177e4 1182 goto error;
8699bb0a 1183 iomap_valid = xfs_iomap_valid(inode, &iomap, offset);
1da177e4 1184 }
1defeac9 1185 if (iomap_valid) {
046f1685 1186 xfs_map_at_offset(inode, bh, &iomap, offset);
1da177e4 1187 if (startio) {
7336cea8 1188 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1189 type, &ioend,
effd120e 1190 new_ioend);
1da177e4
LT
1191 } else {
1192 set_buffer_dirty(bh);
1193 unlock_buffer(bh);
1194 mark_buffer_dirty(bh);
1195 }
1196 page_dirty--;
f6d6d4fc 1197 count++;
1da177e4 1198 }
d5cb48aa 1199 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1200 /*
1201 * we got here because the buffer is already mapped.
1202 * That means it must already have extents allocated
1203 * underneath it. Map the extent by reading it.
1204 */
df3c7244 1205 if (!iomap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1206 flags = BMAPI_READ;
1207 size = xfs_probe_cluster(inode, page, bh,
1208 head, 1);
1209 err = xfs_map_blocks(inode, offset, size,
1210 &iomap, flags);
1211 if (err)
1212 goto error;
8699bb0a 1213 iomap_valid = xfs_iomap_valid(inode, &iomap, offset);
6c4fe19f 1214 }
d5cb48aa 1215
df3c7244
DC
1216 /*
1217 * We set the type to IOMAP_NEW in case we are doing a
1218 * small write at EOF that is extending the file but
1219 * without needing an allocation. We need to update the
1220 * file size on I/O completion in this case so it is
1221 * the same case as having just allocated a new extent
1222 * that we are writing into for the first time.
1223 */
1224 type = IOMAP_NEW;
ca5de404 1225 if (trylock_buffer(bh)) {
d5cb48aa 1226 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1227 if (iomap_valid)
1228 all_bh = 1;
7336cea8 1229 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1230 &ioend, !iomap_valid);
1231 page_dirty--;
1232 count++;
f6d6d4fc 1233 } else {
1defeac9 1234 iomap_valid = 0;
1da177e4 1235 }
d5cb48aa
CH
1236 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1237 (unmapped || startio)) {
1238 iomap_valid = 0;
1da177e4 1239 }
f6d6d4fc
CH
1240
1241 if (!iohead)
1242 iohead = ioend;
1243
1244 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1245
1246 if (uptodate && bh == head)
1247 SetPageUptodate(page);
1248
f6d6d4fc 1249 if (startio)
b41759cf 1250 xfs_start_page_writeback(page, 1, count);
1da177e4 1251
1defeac9 1252 if (ioend && iomap_valid) {
8699bb0a
CH
1253 struct xfs_mount *m = XFS_I(inode)->i_mount;
1254 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, iomap.iomap_offset);
1255 xfs_off_t iomap_bsize = XFS_FSB_TO_B(m, iomap.iomap_bsize);
1256
1257 offset = (iomap_offset + iomap_bsize - 1) >>
1da177e4 1258 PAGE_CACHE_SHIFT;
775bf6c9 1259 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1260 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1261 wbc, startio, all_bh, tlast);
1da177e4
LT
1262 }
1263
f6d6d4fc 1264 if (iohead)
06342cf8 1265 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1266
1da177e4
LT
1267 return page_dirty;
1268
1269error:
f6d6d4fc
CH
1270 if (iohead)
1271 xfs_cancel_ioend(iohead);
1da177e4
LT
1272
1273 /*
1274 * If it's delalloc and we have nowhere to put it,
1275 * throw it away, unless the lower layers told
1276 * us to try again.
1277 */
1278 if (err != -EAGAIN) {
f6d6d4fc 1279 if (!unmapped)
3ed3a434 1280 xfs_aops_discard_page(page);
1da177e4
LT
1281 ClearPageUptodate(page);
1282 }
1283 return err;
1284}
1285
f51623b2
NS
1286/*
1287 * writepage: Called from one of two places:
1288 *
1289 * 1. we are flushing a delalloc buffer head.
1290 *
1291 * 2. we are writing out a dirty page. Typically the page dirty
1292 * state is cleared before we get here. In this case is it
1293 * conceivable we have no buffer heads.
1294 *
1295 * For delalloc space on the page we need to allocate space and
1296 * flush it. For unmapped buffer heads on the page we should
1297 * allocate space if the page is uptodate. For any other dirty
1298 * buffer heads on the page we should flush them.
1299 *
1300 * If we detect that a transaction would be required to flush
1301 * the page, we have to check the process flags first, if we
1302 * are already in a transaction or disk I/O during allocations
1303 * is off, we need to fail the writepage and redirty the page.
1304 */
1305
1306STATIC int
e4c573bb 1307xfs_vm_writepage(
f51623b2
NS
1308 struct page *page,
1309 struct writeback_control *wbc)
1310{
1311 int error;
1312 int need_trans;
1313 int delalloc, unmapped, unwritten;
1314 struct inode *inode = page->mapping->host;
1315
0b1b213f 1316 trace_xfs_writepage(inode, page, 0);
f51623b2
NS
1317
1318 /*
1319 * We need a transaction if:
1320 * 1. There are delalloc buffers on the page
1321 * 2. The page is uptodate and we have unmapped buffers
1322 * 3. The page is uptodate and we have no buffers
1323 * 4. There are unwritten buffers on the page
1324 */
1325
1326 if (!page_has_buffers(page)) {
1327 unmapped = 1;
1328 need_trans = 1;
1329 } else {
1330 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1331 if (!PageUptodate(page))
1332 unmapped = 0;
1333 need_trans = delalloc + unmapped + unwritten;
1334 }
1335
1336 /*
1337 * If we need a transaction and the process flags say
1338 * we are already in a transaction, or no IO is allowed
1339 * then mark the page dirty again and leave the page
1340 * as is.
1341 */
59c1b082 1342 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1343 goto out_fail;
1344
1345 /*
1346 * Delay hooking up buffer heads until we have
1347 * made our go/no-go decision.
1348 */
1349 if (!page_has_buffers(page))
1350 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1351
c8a4051c
ES
1352
1353 /*
1354 * VM calculation for nr_to_write seems off. Bump it way
1355 * up, this gets simple streaming writes zippy again.
1356 * To be reviewed again after Jens' writeback changes.
1357 */
1358 wbc->nr_to_write *= 4;
1359
f51623b2
NS
1360 /*
1361 * Convert delayed allocate, unwritten or unmapped space
1362 * to real space and flush out to disk.
1363 */
1364 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1365 if (error == -EAGAIN)
1366 goto out_fail;
1367 if (unlikely(error < 0))
1368 goto out_unlock;
1369
1370 return 0;
1371
1372out_fail:
1373 redirty_page_for_writepage(wbc, page);
1374 unlock_page(page);
1375 return 0;
1376out_unlock:
1377 unlock_page(page);
1378 return error;
1379}
1380
7d4fb40a
NS
1381STATIC int
1382xfs_vm_writepages(
1383 struct address_space *mapping,
1384 struct writeback_control *wbc)
1385{
b3aea4ed 1386 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1387 return generic_writepages(mapping, wbc);
1388}
1389
f51623b2
NS
1390/*
1391 * Called to move a page into cleanable state - and from there
1392 * to be released. Possibly the page is already clean. We always
1393 * have buffer heads in this call.
1394 *
1395 * Returns 0 if the page is ok to release, 1 otherwise.
1396 *
1397 * Possible scenarios are:
1398 *
1399 * 1. We are being called to release a page which has been written
1400 * to via regular I/O. buffer heads will be dirty and possibly
1401 * delalloc. If no delalloc buffer heads in this case then we
1402 * can just return zero.
1403 *
1404 * 2. We are called to release a page which has been written via
1405 * mmap, all we need to do is ensure there is no delalloc
1406 * state in the buffer heads, if not we can let the caller
1407 * free them and we should come back later via writepage.
1408 */
1409STATIC int
238f4c54 1410xfs_vm_releasepage(
f51623b2
NS
1411 struct page *page,
1412 gfp_t gfp_mask)
1413{
1414 struct inode *inode = page->mapping->host;
1415 int dirty, delalloc, unmapped, unwritten;
1416 struct writeback_control wbc = {
1417 .sync_mode = WB_SYNC_ALL,
1418 .nr_to_write = 1,
1419 };
1420
0b1b213f 1421 trace_xfs_releasepage(inode, page, 0);
f51623b2 1422
238f4c54
NS
1423 if (!page_has_buffers(page))
1424 return 0;
1425
f51623b2
NS
1426 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1427 if (!delalloc && !unwritten)
1428 goto free_buffers;
1429
1430 if (!(gfp_mask & __GFP_FS))
1431 return 0;
1432
1433 /* If we are already inside a transaction or the thread cannot
1434 * do I/O, we cannot release this page.
1435 */
59c1b082 1436 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1437 return 0;
1438
1439 /*
1440 * Convert delalloc space to real space, do not flush the
1441 * data out to disk, that will be done by the caller.
1442 * Never need to allocate space here - we will always
1443 * come back to writepage in that case.
1444 */
1445 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1446 if (dirty == 0 && !unwritten)
1447 goto free_buffers;
1448 return 0;
1449
1450free_buffers:
1451 return try_to_free_buffers(page);
1452}
1453
1da177e4 1454STATIC int
c2536668 1455__xfs_get_blocks(
1da177e4
LT
1456 struct inode *inode,
1457 sector_t iblock,
1da177e4
LT
1458 struct buffer_head *bh_result,
1459 int create,
1460 int direct,
1461 bmapi_flags_t flags)
1462{
1da177e4 1463 xfs_iomap_t iomap;
fdc7ed75
NS
1464 xfs_off_t offset;
1465 ssize_t size;
c2536668 1466 int niomap = 1;
1da177e4 1467 int error;
1da177e4 1468
fdc7ed75 1469 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1470 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1471 size = bh_result->b_size;
364f358a
LM
1472
1473 if (!create && direct && offset >= i_size_read(inode))
1474 return 0;
1475
541d7d3c 1476 error = xfs_iomap(XFS_I(inode), offset, size,
67fcaa73 1477 create ? flags : BMAPI_READ, &iomap, &niomap);
1da177e4
LT
1478 if (error)
1479 return -error;
c2536668 1480 if (niomap == 0)
1da177e4
LT
1481 return 0;
1482
e513182d
CH
1483 if (iomap.iomap_bn != HOLESTARTBLOCK &&
1484 iomap.iomap_bn != DELAYSTARTBLOCK) {
87cbc49c
NS
1485 /*
1486 * For unwritten extents do not report a disk address on
1da177e4
LT
1487 * the read case (treat as if we're reading into a hole).
1488 */
046f1685
CH
1489 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN))
1490 xfs_map_buffer(inode, bh_result, &iomap, offset);
1da177e4
LT
1491 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1492 if (direct)
1493 bh_result->b_private = inode;
1494 set_buffer_unwritten(bh_result);
1da177e4
LT
1495 }
1496 }
1497
c2536668
NS
1498 /*
1499 * If this is a realtime file, data may be on a different device.
1500 * to that pointed to from the buffer_head b_bdev currently.
1501 */
046f1685 1502 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1503
c2536668 1504 /*
549054af
DC
1505 * If we previously allocated a block out beyond eof and we are now
1506 * coming back to use it then we will need to flag it as new even if it
1507 * has a disk address.
1508 *
1509 * With sub-block writes into unwritten extents we also need to mark
1510 * the buffer as new so that the unwritten parts of the buffer gets
1511 * correctly zeroed.
1da177e4
LT
1512 */
1513 if (create &&
1514 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af
DC
1515 (offset >= i_size_read(inode)) ||
1516 (iomap.iomap_flags & (IOMAP_NEW|IOMAP_UNWRITTEN))))
1da177e4 1517 set_buffer_new(bh_result);
1da177e4 1518
e513182d 1519 if (iomap.iomap_bn == DELAYSTARTBLOCK) {
1da177e4
LT
1520 BUG_ON(direct);
1521 if (create) {
1522 set_buffer_uptodate(bh_result);
1523 set_buffer_mapped(bh_result);
1524 set_buffer_delay(bh_result);
1525 }
1526 }
1527
c2536668 1528 if (direct || size > (1 << inode->i_blkbits)) {
8699bb0a
CH
1529 struct xfs_mount *mp = XFS_I(inode)->i_mount;
1530 xfs_off_t iomap_offset = XFS_FSB_TO_B(mp, iomap.iomap_offset);
1531 xfs_off_t iomap_delta = offset - iomap_offset;
1532 xfs_off_t iomap_bsize = XFS_FSB_TO_B(mp, iomap.iomap_bsize);
9563b3d8 1533
8699bb0a 1534 ASSERT(iomap_bsize - iomap_delta > 0);
fdc7ed75 1535 offset = min_t(xfs_off_t,
8699bb0a 1536 iomap_bsize - iomap_delta, size);
c2536668 1537 bh_result->b_size = (ssize_t)min_t(xfs_off_t, LONG_MAX, offset);
1da177e4
LT
1538 }
1539
1540 return 0;
1541}
1542
1543int
c2536668 1544xfs_get_blocks(
1da177e4
LT
1545 struct inode *inode,
1546 sector_t iblock,
1547 struct buffer_head *bh_result,
1548 int create)
1549{
c2536668 1550 return __xfs_get_blocks(inode, iblock,
fa30bd05 1551 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1552}
1553
1554STATIC int
e4c573bb 1555xfs_get_blocks_direct(
1da177e4
LT
1556 struct inode *inode,
1557 sector_t iblock,
1da177e4
LT
1558 struct buffer_head *bh_result,
1559 int create)
1560{
c2536668 1561 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1562 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1563}
1564
f0973863 1565STATIC void
e4c573bb 1566xfs_end_io_direct(
f0973863
CH
1567 struct kiocb *iocb,
1568 loff_t offset,
1569 ssize_t size,
1570 void *private)
1571{
1572 xfs_ioend_t *ioend = iocb->private;
1573
1574 /*
1575 * Non-NULL private data means we need to issue a transaction to
1576 * convert a range from unwritten to written extents. This needs
c41564b5 1577 * to happen from process context but aio+dio I/O completion
f0973863 1578 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1579 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1580 * it anyway to keep the code uniform and simpler.
1581 *
e927af90
DC
1582 * Well, if only it were that simple. Because synchronous direct I/O
1583 * requires extent conversion to occur *before* we return to userspace,
1584 * we have to wait for extent conversion to complete. Look at the
1585 * iocb that has been passed to us to determine if this is AIO or
1586 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1587 * workqueue and wait for it to complete.
1588 *
f0973863
CH
1589 * The core direct I/O code might be changed to always call the
1590 * completion handler in the future, in which case all this can
1591 * go away.
1592 */
ba87ea69
LM
1593 ioend->io_offset = offset;
1594 ioend->io_size = size;
1595 if (ioend->io_type == IOMAP_READ) {
e927af90 1596 xfs_finish_ioend(ioend, 0);
ba87ea69 1597 } else if (private && size > 0) {
e927af90 1598 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1599 } else {
ba87ea69
LM
1600 /*
1601 * A direct I/O write ioend starts it's life in unwritten
1602 * state in case they map an unwritten extent. This write
1603 * didn't map an unwritten extent so switch it's completion
1604 * handler.
1605 */
5ec4fabb 1606 ioend->io_type = IOMAP_NEW;
e927af90 1607 xfs_finish_ioend(ioend, 0);
f0973863
CH
1608 }
1609
1610 /*
c41564b5 1611 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1612 * completion handler was called. Thus we need to protect
1613 * against double-freeing.
1614 */
1615 iocb->private = NULL;
1616}
1617
1da177e4 1618STATIC ssize_t
e4c573bb 1619xfs_vm_direct_IO(
1da177e4
LT
1620 int rw,
1621 struct kiocb *iocb,
1622 const struct iovec *iov,
1623 loff_t offset,
1624 unsigned long nr_segs)
1625{
1626 struct file *file = iocb->ki_filp;
1627 struct inode *inode = file->f_mapping->host;
6214ed44 1628 struct block_device *bdev;
f0973863 1629 ssize_t ret;
1da177e4 1630
046f1685 1631 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1632
5fe878ae
CH
1633 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
1634 IOMAP_UNWRITTEN : IOMAP_READ);
1635
1636 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1637 offset, nr_segs,
1638 xfs_get_blocks_direct,
1639 xfs_end_io_direct);
f0973863 1640
8459d86a 1641 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1642 xfs_destroy_ioend(iocb->private);
1643 return ret;
1da177e4
LT
1644}
1645
f51623b2 1646STATIC int
d79689c7 1647xfs_vm_write_begin(
f51623b2 1648 struct file *file,
d79689c7
NP
1649 struct address_space *mapping,
1650 loff_t pos,
1651 unsigned len,
1652 unsigned flags,
1653 struct page **pagep,
1654 void **fsdata)
f51623b2 1655{
d79689c7
NP
1656 *pagep = NULL;
1657 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1658 xfs_get_blocks);
f51623b2 1659}
1da177e4
LT
1660
1661STATIC sector_t
e4c573bb 1662xfs_vm_bmap(
1da177e4
LT
1663 struct address_space *mapping,
1664 sector_t block)
1665{
1666 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1667 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1668
cf441eeb 1669 xfs_itrace_entry(XFS_I(inode));
126468b1 1670 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1671 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1672 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1673 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1674}
1675
1676STATIC int
e4c573bb 1677xfs_vm_readpage(
1da177e4
LT
1678 struct file *unused,
1679 struct page *page)
1680{
c2536668 1681 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1682}
1683
1684STATIC int
e4c573bb 1685xfs_vm_readpages(
1da177e4
LT
1686 struct file *unused,
1687 struct address_space *mapping,
1688 struct list_head *pages,
1689 unsigned nr_pages)
1690{
c2536668 1691 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1692}
1693
f5e54d6e 1694const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1695 .readpage = xfs_vm_readpage,
1696 .readpages = xfs_vm_readpages,
1697 .writepage = xfs_vm_writepage,
7d4fb40a 1698 .writepages = xfs_vm_writepages,
1da177e4 1699 .sync_page = block_sync_page,
238f4c54
NS
1700 .releasepage = xfs_vm_releasepage,
1701 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1702 .write_begin = xfs_vm_write_begin,
1703 .write_end = generic_write_end,
e4c573bb
NS
1704 .bmap = xfs_vm_bmap,
1705 .direct_IO = xfs_vm_direct_IO,
e965f963 1706 .migratepage = buffer_migrate_page,
bddaafa1 1707 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1708 .error_remove_page = generic_error_remove_page,
1da177e4 1709};
This page took 0.530027 seconds and 5 git commands to generate.