xfs: stop using the page cache to back the buffer cache
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
ce8e922c 47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 48
7989cb8e 49static struct workqueue_struct *xfslogd_workqueue;
0829c360 50struct workqueue_struct *xfsdatad_workqueue;
c626d174 51struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 52
ce8e922c
NS
53#ifdef XFS_BUF_LOCK_TRACKING
54# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 57#else
ce8e922c
NS
58# define XB_SET_OWNER(bp) do { } while (0)
59# define XB_CLEAR_OWNER(bp) do { } while (0)
60# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
61#endif
62
ce8e922c
NS
63#define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 66
ce8e922c
NS
67#define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 69
ce8e922c
NS
70#define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72#define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 74
73c77e2c
JB
75static inline int
76xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78{
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87}
88
89static inline int
90xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92{
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94}
95
1da177e4 96/*
430cbeb8
DC
97 * xfs_buf_lru_add - add a buffer to the LRU.
98 *
99 * The LRU takes a new reference to the buffer so that it will only be freed
100 * once the shrinker takes the buffer off the LRU.
101 */
102STATIC void
103xfs_buf_lru_add(
104 struct xfs_buf *bp)
105{
106 struct xfs_buftarg *btp = bp->b_target;
107
108 spin_lock(&btp->bt_lru_lock);
109 if (list_empty(&bp->b_lru)) {
110 atomic_inc(&bp->b_hold);
111 list_add_tail(&bp->b_lru, &btp->bt_lru);
112 btp->bt_lru_nr++;
113 }
114 spin_unlock(&btp->bt_lru_lock);
115}
116
117/*
118 * xfs_buf_lru_del - remove a buffer from the LRU
119 *
120 * The unlocked check is safe here because it only occurs when there are not
121 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
122 * to optimise the shrinker removing the buffer from the LRU and calling
123 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
124 * bt_lru_lock.
1da177e4 125 */
430cbeb8
DC
126STATIC void
127xfs_buf_lru_del(
128 struct xfs_buf *bp)
129{
130 struct xfs_buftarg *btp = bp->b_target;
131
132 if (list_empty(&bp->b_lru))
133 return;
134
135 spin_lock(&btp->bt_lru_lock);
136 if (!list_empty(&bp->b_lru)) {
137 list_del_init(&bp->b_lru);
138 btp->bt_lru_nr--;
139 }
140 spin_unlock(&btp->bt_lru_lock);
141}
142
143/*
144 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
145 * b_lru_ref count so that the buffer is freed immediately when the buffer
146 * reference count falls to zero. If the buffer is already on the LRU, we need
147 * to remove the reference that LRU holds on the buffer.
148 *
149 * This prevents build-up of stale buffers on the LRU.
150 */
151void
152xfs_buf_stale(
153 struct xfs_buf *bp)
154{
155 bp->b_flags |= XBF_STALE;
156 atomic_set(&(bp)->b_lru_ref, 0);
157 if (!list_empty(&bp->b_lru)) {
158 struct xfs_buftarg *btp = bp->b_target;
159
160 spin_lock(&btp->bt_lru_lock);
161 if (!list_empty(&bp->b_lru)) {
162 list_del_init(&bp->b_lru);
163 btp->bt_lru_nr--;
164 atomic_dec(&bp->b_hold);
165 }
166 spin_unlock(&btp->bt_lru_lock);
167 }
168 ASSERT(atomic_read(&bp->b_hold) >= 1);
169}
1da177e4
LT
170
171STATIC void
ce8e922c
NS
172_xfs_buf_initialize(
173 xfs_buf_t *bp,
1da177e4 174 xfs_buftarg_t *target,
204ab25f 175 xfs_off_t range_base,
1da177e4 176 size_t range_length,
ce8e922c 177 xfs_buf_flags_t flags)
1da177e4
LT
178{
179 /*
ce8e922c 180 * We don't want certain flags to appear in b_flags.
1da177e4 181 */
ce8e922c
NS
182 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
183
184 memset(bp, 0, sizeof(xfs_buf_t));
185 atomic_set(&bp->b_hold, 1);
430cbeb8 186 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 187 init_completion(&bp->b_iowait);
430cbeb8 188 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 189 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 190 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 191 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
192 XB_SET_OWNER(bp);
193 bp->b_target = target;
194 bp->b_file_offset = range_base;
1da177e4
LT
195 /*
196 * Set buffer_length and count_desired to the same value initially.
197 * I/O routines should use count_desired, which will be the same in
198 * most cases but may be reset (e.g. XFS recovery).
199 */
ce8e922c
NS
200 bp->b_buffer_length = bp->b_count_desired = range_length;
201 bp->b_flags = flags;
202 bp->b_bn = XFS_BUF_DADDR_NULL;
203 atomic_set(&bp->b_pin_count, 0);
204 init_waitqueue_head(&bp->b_waiters);
205
206 XFS_STATS_INC(xb_create);
0b1b213f
CH
207
208 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
209}
210
211/*
ce8e922c
NS
212 * Allocate a page array capable of holding a specified number
213 * of pages, and point the page buf at it.
1da177e4
LT
214 */
215STATIC int
ce8e922c
NS
216_xfs_buf_get_pages(
217 xfs_buf_t *bp,
1da177e4 218 int page_count,
ce8e922c 219 xfs_buf_flags_t flags)
1da177e4
LT
220{
221 /* Make sure that we have a page list */
ce8e922c
NS
222 if (bp->b_pages == NULL) {
223 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
224 bp->b_page_count = page_count;
225 if (page_count <= XB_PAGES) {
226 bp->b_pages = bp->b_page_array;
1da177e4 227 } else {
ce8e922c
NS
228 bp->b_pages = kmem_alloc(sizeof(struct page *) *
229 page_count, xb_to_km(flags));
230 if (bp->b_pages == NULL)
1da177e4
LT
231 return -ENOMEM;
232 }
ce8e922c 233 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
234 }
235 return 0;
236}
237
238/*
ce8e922c 239 * Frees b_pages if it was allocated.
1da177e4
LT
240 */
241STATIC void
ce8e922c 242_xfs_buf_free_pages(
1da177e4
LT
243 xfs_buf_t *bp)
244{
ce8e922c 245 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 246 kmem_free(bp->b_pages);
3fc98b1a 247 bp->b_pages = NULL;
1da177e4
LT
248 }
249}
250
251/*
252 * Releases the specified buffer.
253 *
254 * The modification state of any associated pages is left unchanged.
ce8e922c 255 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
256 * hashed and refcounted buffers
257 */
258void
ce8e922c 259xfs_buf_free(
1da177e4
LT
260 xfs_buf_t *bp)
261{
0b1b213f 262 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 263
430cbeb8
DC
264 ASSERT(list_empty(&bp->b_lru));
265
0e6e847f 266 if (bp->b_flags & _XBF_PAGES) {
1da177e4
LT
267 uint i;
268
73c77e2c 269 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
270 vm_unmap_ram(bp->b_addr - bp->b_offset,
271 bp->b_page_count);
1da177e4 272
948ecdb4
NS
273 for (i = 0; i < bp->b_page_count; i++) {
274 struct page *page = bp->b_pages[i];
275
0e6e847f 276 __free_page(page);
948ecdb4 277 }
0e6e847f
DC
278 } else if (bp->b_flags & _XBF_KMEM)
279 kmem_free(bp->b_addr);
3fc98b1a 280 _xfs_buf_free_pages(bp);
ce8e922c 281 xfs_buf_deallocate(bp);
1da177e4
LT
282}
283
284/*
0e6e847f 285 * Allocates all the pages for buffer in question and builds it's page list.
1da177e4
LT
286 */
287STATIC int
0e6e847f 288xfs_buf_allocate_memory(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
ce8e922c 292 size_t size = bp->b_count_desired;
1da177e4 293 size_t nbytes, offset;
ce8e922c 294 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
295 unsigned short page_count, i;
296 pgoff_t first;
204ab25f 297 xfs_off_t end;
1da177e4
LT
298 int error;
299
0e6e847f
DC
300 /*
301 * for buffers that are contained within a single page, just allocate
302 * the memory from the heap - there's no need for the complexity of
303 * page arrays to keep allocation down to order 0.
304 */
305 if (bp->b_buffer_length < PAGE_SIZE) {
306 bp->b_addr = kmem_alloc(bp->b_buffer_length, xb_to_km(flags));
307 if (!bp->b_addr) {
308 /* low memory - use alloc_page loop instead */
309 goto use_alloc_page;
310 }
311
312 if (((unsigned long)(bp->b_addr + bp->b_buffer_length - 1) &
313 PAGE_MASK) !=
314 ((unsigned long)bp->b_addr & PAGE_MASK)) {
315 /* b_addr spans two pages - use alloc_page instead */
316 kmem_free(bp->b_addr);
317 bp->b_addr = NULL;
318 goto use_alloc_page;
319 }
320 bp->b_offset = offset_in_page(bp->b_addr);
321 bp->b_pages = bp->b_page_array;
322 bp->b_pages[0] = virt_to_page(bp->b_addr);
323 bp->b_page_count = 1;
324 bp->b_flags |= XBF_MAPPED | _XBF_KMEM;
325 return 0;
326 }
327
328use_alloc_page:
ce8e922c
NS
329 end = bp->b_file_offset + bp->b_buffer_length;
330 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
ce8e922c 331 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
332 if (unlikely(error))
333 return error;
1da177e4 334
ce8e922c 335 offset = bp->b_offset;
0e6e847f
DC
336 first = bp->b_file_offset >> PAGE_SHIFT;
337 bp->b_flags |= _XBF_PAGES;
1da177e4 338
ce8e922c 339 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
340 struct page *page;
341 uint retries = 0;
0e6e847f
DC
342retry:
343 page = alloc_page(gfp_mask);
1da177e4 344 if (unlikely(page == NULL)) {
ce8e922c
NS
345 if (flags & XBF_READ_AHEAD) {
346 bp->b_page_count = i;
0e6e847f
DC
347 error = ENOMEM;
348 goto out_free_pages;
1da177e4
LT
349 }
350
351 /*
352 * This could deadlock.
353 *
354 * But until all the XFS lowlevel code is revamped to
355 * handle buffer allocation failures we can't do much.
356 */
357 if (!(++retries % 100))
4f10700a
DC
358 xfs_err(NULL,
359 "possible memory allocation deadlock in %s (mode:0x%x)",
34a622b2 360 __func__, gfp_mask);
1da177e4 361
ce8e922c 362 XFS_STATS_INC(xb_page_retries);
8aa7e847 363 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
364 goto retry;
365 }
366
ce8e922c 367 XFS_STATS_INC(xb_page_found);
1da177e4 368
0e6e847f 369 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
1da177e4 370 size -= nbytes;
ce8e922c 371 bp->b_pages[i] = page;
1da177e4
LT
372 offset = 0;
373 }
0e6e847f 374 return 0;
1da177e4 375
0e6e847f
DC
376out_free_pages:
377 for (i = 0; i < bp->b_page_count; i++)
378 __free_page(bp->b_pages[i]);
1da177e4
LT
379 return error;
380}
381
382/*
383 * Map buffer into kernel address-space if nessecary.
384 */
385STATIC int
ce8e922c 386_xfs_buf_map_pages(
1da177e4
LT
387 xfs_buf_t *bp,
388 uint flags)
389{
0e6e847f 390 ASSERT(bp->b_flags & _XBF_PAGES);
ce8e922c 391 if (bp->b_page_count == 1) {
0e6e847f 392 /* A single page buffer is always mappable */
ce8e922c
NS
393 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
394 bp->b_flags |= XBF_MAPPED;
395 } else if (flags & XBF_MAPPED) {
a19fb380
DC
396 int retried = 0;
397
398 do {
399 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
400 -1, PAGE_KERNEL);
401 if (bp->b_addr)
402 break;
403 vm_unmap_aliases();
404 } while (retried++ <= 1);
405
406 if (!bp->b_addr)
1da177e4 407 return -ENOMEM;
ce8e922c
NS
408 bp->b_addr += bp->b_offset;
409 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
410 }
411
412 return 0;
413}
414
415/*
416 * Finding and Reading Buffers
417 */
418
419/*
ce8e922c 420 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
421 * a given range of an inode. The buffer is returned
422 * locked. If other overlapping buffers exist, they are
423 * released before the new buffer is created and locked,
424 * which may imply that this call will block until those buffers
425 * are unlocked. No I/O is implied by this call.
426 */
427xfs_buf_t *
ce8e922c 428_xfs_buf_find(
1da177e4 429 xfs_buftarg_t *btp, /* block device target */
204ab25f 430 xfs_off_t ioff, /* starting offset of range */
1da177e4 431 size_t isize, /* length of range */
ce8e922c
NS
432 xfs_buf_flags_t flags,
433 xfs_buf_t *new_bp)
1da177e4 434{
204ab25f 435 xfs_off_t range_base;
1da177e4 436 size_t range_length;
74f75a0c
DC
437 struct xfs_perag *pag;
438 struct rb_node **rbp;
439 struct rb_node *parent;
440 xfs_buf_t *bp;
1da177e4
LT
441
442 range_base = (ioff << BBSHIFT);
443 range_length = (isize << BBSHIFT);
444
445 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 446 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 447 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 448
74f75a0c
DC
449 /* get tree root */
450 pag = xfs_perag_get(btp->bt_mount,
451 xfs_daddr_to_agno(btp->bt_mount, ioff));
452
453 /* walk tree */
454 spin_lock(&pag->pag_buf_lock);
455 rbp = &pag->pag_buf_tree.rb_node;
456 parent = NULL;
457 bp = NULL;
458 while (*rbp) {
459 parent = *rbp;
460 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
461
462 if (range_base < bp->b_file_offset)
463 rbp = &(*rbp)->rb_left;
464 else if (range_base > bp->b_file_offset)
465 rbp = &(*rbp)->rb_right;
466 else {
467 /*
468 * found a block offset match. If the range doesn't
469 * match, the only way this is allowed is if the buffer
470 * in the cache is stale and the transaction that made
471 * it stale has not yet committed. i.e. we are
472 * reallocating a busy extent. Skip this buffer and
473 * continue searching to the right for an exact match.
474 */
475 if (bp->b_buffer_length != range_length) {
476 ASSERT(bp->b_flags & XBF_STALE);
477 rbp = &(*rbp)->rb_right;
478 continue;
479 }
ce8e922c 480 atomic_inc(&bp->b_hold);
1da177e4
LT
481 goto found;
482 }
483 }
484
485 /* No match found */
ce8e922c
NS
486 if (new_bp) {
487 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 488 range_length, flags);
74f75a0c
DC
489 rb_link_node(&new_bp->b_rbnode, parent, rbp);
490 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
491 /* the buffer keeps the perag reference until it is freed */
492 new_bp->b_pag = pag;
493 spin_unlock(&pag->pag_buf_lock);
1da177e4 494 } else {
ce8e922c 495 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
496 spin_unlock(&pag->pag_buf_lock);
497 xfs_perag_put(pag);
1da177e4 498 }
ce8e922c 499 return new_bp;
1da177e4
LT
500
501found:
74f75a0c
DC
502 spin_unlock(&pag->pag_buf_lock);
503 xfs_perag_put(pag);
1da177e4 504
90810b9e
DC
505 if (xfs_buf_cond_lock(bp)) {
506 /* failed, so wait for the lock if requested. */
ce8e922c 507 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
508 xfs_buf_lock(bp);
509 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 510 } else {
ce8e922c
NS
511 xfs_buf_rele(bp);
512 XFS_STATS_INC(xb_busy_locked);
513 return NULL;
1da177e4 514 }
1da177e4
LT
515 }
516
0e6e847f
DC
517 /*
518 * if the buffer is stale, clear all the external state associated with
519 * it. We need to keep flags such as how we allocated the buffer memory
520 * intact here.
521 */
ce8e922c
NS
522 if (bp->b_flags & XBF_STALE) {
523 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
0e6e847f 524 bp->b_flags &= XBF_MAPPED | _XBF_KMEM | _XBF_PAGES;
2f926587 525 }
0b1b213f
CH
526
527 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
528 XFS_STATS_INC(xb_get_locked);
529 return bp;
1da177e4
LT
530}
531
532/*
ce8e922c 533 * Assembles a buffer covering the specified range.
1da177e4
LT
534 * Storage in memory for all portions of the buffer will be allocated,
535 * although backing storage may not be.
536 */
537xfs_buf_t *
6ad112bf 538xfs_buf_get(
1da177e4 539 xfs_buftarg_t *target,/* target for buffer */
204ab25f 540 xfs_off_t ioff, /* starting offset of range */
1da177e4 541 size_t isize, /* length of range */
ce8e922c 542 xfs_buf_flags_t flags)
1da177e4 543{
ce8e922c 544 xfs_buf_t *bp, *new_bp;
0e6e847f 545 int error = 0;
1da177e4 546
ce8e922c
NS
547 new_bp = xfs_buf_allocate(flags);
548 if (unlikely(!new_bp))
1da177e4
LT
549 return NULL;
550
ce8e922c
NS
551 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
552 if (bp == new_bp) {
0e6e847f 553 error = xfs_buf_allocate_memory(bp, flags);
1da177e4
LT
554 if (error)
555 goto no_buffer;
556 } else {
ce8e922c
NS
557 xfs_buf_deallocate(new_bp);
558 if (unlikely(bp == NULL))
1da177e4
LT
559 return NULL;
560 }
561
ce8e922c
NS
562 if (!(bp->b_flags & XBF_MAPPED)) {
563 error = _xfs_buf_map_pages(bp, flags);
1da177e4 564 if (unlikely(error)) {
4f10700a
DC
565 xfs_warn(target->bt_mount,
566 "%s: failed to map pages\n", __func__);
1da177e4
LT
567 goto no_buffer;
568 }
569 }
570
ce8e922c 571 XFS_STATS_INC(xb_get);
1da177e4
LT
572
573 /*
574 * Always fill in the block number now, the mapped cases can do
575 * their own overlay of this later.
576 */
ce8e922c
NS
577 bp->b_bn = ioff;
578 bp->b_count_desired = bp->b_buffer_length;
1da177e4 579
0b1b213f 580 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 581 return bp;
1da177e4
LT
582
583 no_buffer:
ce8e922c
NS
584 if (flags & (XBF_LOCK | XBF_TRYLOCK))
585 xfs_buf_unlock(bp);
586 xfs_buf_rele(bp);
1da177e4
LT
587 return NULL;
588}
589
5d765b97
CH
590STATIC int
591_xfs_buf_read(
592 xfs_buf_t *bp,
593 xfs_buf_flags_t flags)
594{
595 int status;
596
5d765b97
CH
597 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
598 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
599
600 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
601 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
602 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
603 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
604
605 status = xfs_buf_iorequest(bp);
ec53d1db
DC
606 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
607 return status;
608 return xfs_buf_iowait(bp);
5d765b97
CH
609}
610
1da177e4 611xfs_buf_t *
6ad112bf 612xfs_buf_read(
1da177e4 613 xfs_buftarg_t *target,
204ab25f 614 xfs_off_t ioff,
1da177e4 615 size_t isize,
ce8e922c 616 xfs_buf_flags_t flags)
1da177e4 617{
ce8e922c
NS
618 xfs_buf_t *bp;
619
620 flags |= XBF_READ;
621
6ad112bf 622 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 623 if (bp) {
0b1b213f
CH
624 trace_xfs_buf_read(bp, flags, _RET_IP_);
625
ce8e922c 626 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 627 XFS_STATS_INC(xb_get_read);
5d765b97 628 _xfs_buf_read(bp, flags);
ce8e922c 629 } else if (flags & XBF_ASYNC) {
1da177e4
LT
630 /*
631 * Read ahead call which is already satisfied,
632 * drop the buffer
633 */
634 goto no_buffer;
635 } else {
1da177e4 636 /* We do not want read in the flags */
ce8e922c 637 bp->b_flags &= ~XBF_READ;
1da177e4
LT
638 }
639 }
640
ce8e922c 641 return bp;
1da177e4
LT
642
643 no_buffer:
ce8e922c
NS
644 if (flags & (XBF_LOCK | XBF_TRYLOCK))
645 xfs_buf_unlock(bp);
646 xfs_buf_rele(bp);
1da177e4
LT
647 return NULL;
648}
649
1da177e4 650/*
ce8e922c
NS
651 * If we are not low on memory then do the readahead in a deadlock
652 * safe manner.
1da177e4
LT
653 */
654void
ce8e922c 655xfs_buf_readahead(
1da177e4 656 xfs_buftarg_t *target,
204ab25f 657 xfs_off_t ioff,
1a1a3e97 658 size_t isize)
1da177e4
LT
659{
660 struct backing_dev_info *bdi;
661
0e6e847f 662 if (bdi_read_congested(target->bt_bdi))
1da177e4
LT
663 return;
664
1a1a3e97
CH
665 xfs_buf_read(target, ioff, isize,
666 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
667}
668
5adc94c2
DC
669/*
670 * Read an uncached buffer from disk. Allocates and returns a locked
671 * buffer containing the disk contents or nothing.
672 */
673struct xfs_buf *
674xfs_buf_read_uncached(
675 struct xfs_mount *mp,
676 struct xfs_buftarg *target,
677 xfs_daddr_t daddr,
678 size_t length,
679 int flags)
680{
681 xfs_buf_t *bp;
682 int error;
683
684 bp = xfs_buf_get_uncached(target, length, flags);
685 if (!bp)
686 return NULL;
687
688 /* set up the buffer for a read IO */
689 xfs_buf_lock(bp);
690 XFS_BUF_SET_ADDR(bp, daddr);
691 XFS_BUF_READ(bp);
692 XFS_BUF_BUSY(bp);
693
694 xfsbdstrat(mp, bp);
1a1a3e97 695 error = xfs_buf_iowait(bp);
5adc94c2
DC
696 if (error || bp->b_error) {
697 xfs_buf_relse(bp);
698 return NULL;
699 }
700 return bp;
1da177e4
LT
701}
702
703xfs_buf_t *
ce8e922c 704xfs_buf_get_empty(
1da177e4
LT
705 size_t len,
706 xfs_buftarg_t *target)
707{
ce8e922c 708 xfs_buf_t *bp;
1da177e4 709
ce8e922c
NS
710 bp = xfs_buf_allocate(0);
711 if (bp)
712 _xfs_buf_initialize(bp, target, 0, len, 0);
713 return bp;
1da177e4
LT
714}
715
716static inline struct page *
717mem_to_page(
718 void *addr)
719{
9e2779fa 720 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
721 return virt_to_page(addr);
722 } else {
723 return vmalloc_to_page(addr);
724 }
725}
726
727int
ce8e922c
NS
728xfs_buf_associate_memory(
729 xfs_buf_t *bp,
1da177e4
LT
730 void *mem,
731 size_t len)
732{
733 int rval;
734 int i = 0;
d1afb678
LM
735 unsigned long pageaddr;
736 unsigned long offset;
737 size_t buflen;
1da177e4
LT
738 int page_count;
739
0e6e847f 740 pageaddr = (unsigned long)mem & PAGE_MASK;
d1afb678 741 offset = (unsigned long)mem - pageaddr;
0e6e847f
DC
742 buflen = PAGE_ALIGN(len + offset);
743 page_count = buflen >> PAGE_SHIFT;
1da177e4
LT
744
745 /* Free any previous set of page pointers */
ce8e922c
NS
746 if (bp->b_pages)
747 _xfs_buf_free_pages(bp);
1da177e4 748
ce8e922c
NS
749 bp->b_pages = NULL;
750 bp->b_addr = mem;
1da177e4 751
36fae17a 752 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
753 if (rval)
754 return rval;
755
ce8e922c 756 bp->b_offset = offset;
d1afb678
LM
757
758 for (i = 0; i < bp->b_page_count; i++) {
759 bp->b_pages[i] = mem_to_page((void *)pageaddr);
0e6e847f 760 pageaddr += PAGE_SIZE;
1da177e4 761 }
1da177e4 762
d1afb678
LM
763 bp->b_count_desired = len;
764 bp->b_buffer_length = buflen;
ce8e922c 765 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
766
767 return 0;
768}
769
770xfs_buf_t *
686865f7
DC
771xfs_buf_get_uncached(
772 struct xfs_buftarg *target,
1da177e4 773 size_t len,
686865f7 774 int flags)
1da177e4 775{
1fa40b01
CH
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
1da177e4 778 xfs_buf_t *bp;
1da177e4 779
ce8e922c 780 bp = xfs_buf_allocate(0);
1da177e4
LT
781 if (unlikely(bp == NULL))
782 goto fail;
ce8e922c 783 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 784
1fa40b01
CH
785 error = _xfs_buf_get_pages(bp, page_count, 0);
786 if (error)
1da177e4
LT
787 goto fail_free_buf;
788
1fa40b01 789 for (i = 0; i < page_count; i++) {
686865f7 790 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
791 if (!bp->b_pages[i])
792 goto fail_free_mem;
1da177e4 793 }
1fa40b01 794 bp->b_flags |= _XBF_PAGES;
1da177e4 795
1fa40b01
CH
796 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797 if (unlikely(error)) {
4f10700a
DC
798 xfs_warn(target->bt_mount,
799 "%s: failed to map pages\n", __func__);
1da177e4 800 goto fail_free_mem;
1fa40b01 801 }
1da177e4 802
ce8e922c 803 xfs_buf_unlock(bp);
1da177e4 804
686865f7 805 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 806 return bp;
1fa40b01 807
1da177e4 808 fail_free_mem:
1fa40b01
CH
809 while (--i >= 0)
810 __free_page(bp->b_pages[i]);
ca165b88 811 _xfs_buf_free_pages(bp);
1da177e4 812 fail_free_buf:
ca165b88 813 xfs_buf_deallocate(bp);
1da177e4
LT
814 fail:
815 return NULL;
816}
817
818/*
1da177e4
LT
819 * Increment reference count on buffer, to hold the buffer concurrently
820 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
821 * Must hold the buffer already to call this function.
822 */
823void
ce8e922c
NS
824xfs_buf_hold(
825 xfs_buf_t *bp)
1da177e4 826{
0b1b213f 827 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 828 atomic_inc(&bp->b_hold);
1da177e4
LT
829}
830
831/*
ce8e922c
NS
832 * Releases a hold on the specified buffer. If the
833 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
834 */
835void
ce8e922c
NS
836xfs_buf_rele(
837 xfs_buf_t *bp)
1da177e4 838{
74f75a0c 839 struct xfs_perag *pag = bp->b_pag;
1da177e4 840
0b1b213f 841 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 842
74f75a0c 843 if (!pag) {
430cbeb8 844 ASSERT(list_empty(&bp->b_lru));
74f75a0c 845 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
846 if (atomic_dec_and_test(&bp->b_hold))
847 xfs_buf_free(bp);
848 return;
849 }
850
74f75a0c 851 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 852
3790689f 853 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 854 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
bfc60177 855 if (!(bp->b_flags & XBF_STALE) &&
430cbeb8
DC
856 atomic_read(&bp->b_lru_ref)) {
857 xfs_buf_lru_add(bp);
858 spin_unlock(&pag->pag_buf_lock);
1da177e4 859 } else {
430cbeb8 860 xfs_buf_lru_del(bp);
ce8e922c 861 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
862 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
863 spin_unlock(&pag->pag_buf_lock);
864 xfs_perag_put(pag);
ce8e922c 865 xfs_buf_free(bp);
1da177e4
LT
866 }
867 }
868}
869
870
871/*
0e6e847f 872 * Lock a buffer object, if it is not already locked.
90810b9e
DC
873 *
874 * If we come across a stale, pinned, locked buffer, we know that we are
875 * being asked to lock a buffer that has been reallocated. Because it is
876 * pinned, we know that the log has not been pushed to disk and hence it
877 * will still be locked. Rather than continuing to have trylock attempts
878 * fail until someone else pushes the log, push it ourselves before
879 * returning. This means that the xfsaild will not get stuck trying
880 * to push on stale inode buffers.
1da177e4
LT
881 */
882int
ce8e922c
NS
883xfs_buf_cond_lock(
884 xfs_buf_t *bp)
1da177e4
LT
885{
886 int locked;
887
ce8e922c 888 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 889 if (locked)
ce8e922c 890 XB_SET_OWNER(bp);
90810b9e
DC
891 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
892 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
893
894 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 895 return locked ? 0 : -EBUSY;
1da177e4
LT
896}
897
1da177e4 898int
ce8e922c
NS
899xfs_buf_lock_value(
900 xfs_buf_t *bp)
1da177e4 901{
adaa693b 902 return bp->b_sema.count;
1da177e4 903}
1da177e4
LT
904
905/*
0e6e847f 906 * Lock a buffer object.
ed3b4d6c
DC
907 *
908 * If we come across a stale, pinned, locked buffer, we know that we
909 * are being asked to lock a buffer that has been reallocated. Because
910 * it is pinned, we know that the log has not been pushed to disk and
911 * hence it will still be locked. Rather than sleeping until someone
912 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 913 */
ce8e922c
NS
914void
915xfs_buf_lock(
916 xfs_buf_t *bp)
1da177e4 917{
0b1b213f
CH
918 trace_xfs_buf_lock(bp, _RET_IP_);
919
ed3b4d6c 920 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 921 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c 922 if (atomic_read(&bp->b_io_remaining))
0e6e847f 923 blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
ce8e922c
NS
924 down(&bp->b_sema);
925 XB_SET_OWNER(bp);
0b1b213f
CH
926
927 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
928}
929
930/*
ce8e922c 931 * Releases the lock on the buffer object.
2f926587 932 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 933 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
934 * take a reference for the delwri queue because the unlocker is going to
935 * drop their's and they don't know we just queued it.
1da177e4
LT
936 */
937void
ce8e922c
NS
938xfs_buf_unlock(
939 xfs_buf_t *bp)
1da177e4 940{
ce8e922c
NS
941 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
942 atomic_inc(&bp->b_hold);
943 bp->b_flags |= XBF_ASYNC;
944 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
945 }
946
ce8e922c
NS
947 XB_CLEAR_OWNER(bp);
948 up(&bp->b_sema);
0b1b213f
CH
949
950 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
951}
952
ce8e922c
NS
953STATIC void
954xfs_buf_wait_unpin(
955 xfs_buf_t *bp)
1da177e4
LT
956{
957 DECLARE_WAITQUEUE (wait, current);
958
ce8e922c 959 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
960 return;
961
ce8e922c 962 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
963 for (;;) {
964 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 965 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 966 break;
ce8e922c 967 if (atomic_read(&bp->b_io_remaining))
0e6e847f 968 blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
1da177e4
LT
969 schedule();
970 }
ce8e922c 971 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
972 set_current_state(TASK_RUNNING);
973}
974
975/*
976 * Buffer Utility Routines
977 */
978
1da177e4 979STATIC void
ce8e922c 980xfs_buf_iodone_work(
c4028958 981 struct work_struct *work)
1da177e4 982{
c4028958
DH
983 xfs_buf_t *bp =
984 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 985
80f6c29d 986 if (bp->b_iodone)
ce8e922c
NS
987 (*(bp->b_iodone))(bp);
988 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
989 xfs_buf_relse(bp);
990}
991
992void
ce8e922c
NS
993xfs_buf_ioend(
994 xfs_buf_t *bp,
1da177e4
LT
995 int schedule)
996{
0b1b213f
CH
997 trace_xfs_buf_iodone(bp, _RET_IP_);
998
77be55a5 999 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1000 if (bp->b_error == 0)
1001 bp->b_flags |= XBF_DONE;
1da177e4 1002
ce8e922c 1003 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1004 if (schedule) {
c4028958 1005 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1006 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1007 } else {
c4028958 1008 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1009 }
1010 } else {
b4dd330b 1011 complete(&bp->b_iowait);
1da177e4
LT
1012 }
1013}
1014
1da177e4 1015void
ce8e922c
NS
1016xfs_buf_ioerror(
1017 xfs_buf_t *bp,
1018 int error)
1da177e4
LT
1019{
1020 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1021 bp->b_error = (unsigned short)error;
0b1b213f 1022 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1023}
1024
1da177e4 1025int
64e0bc7d
CH
1026xfs_bwrite(
1027 struct xfs_mount *mp,
5d765b97 1028 struct xfs_buf *bp)
1da177e4 1029{
8c38366f 1030 int error;
1da177e4 1031
64e0bc7d 1032 bp->b_flags |= XBF_WRITE;
8c38366f 1033 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1034
5d765b97 1035 xfs_buf_delwri_dequeue(bp);
939d723b 1036 xfs_bdstrat_cb(bp);
1da177e4 1037
8c38366f
CH
1038 error = xfs_buf_iowait(bp);
1039 if (error)
1040 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1041 xfs_buf_relse(bp);
64e0bc7d 1042 return error;
5d765b97 1043}
1da177e4 1044
5d765b97
CH
1045void
1046xfs_bdwrite(
1047 void *mp,
1048 struct xfs_buf *bp)
1049{
0b1b213f 1050 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1051
5d765b97
CH
1052 bp->b_flags &= ~XBF_READ;
1053 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1054
1055 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1056}
1057
4e23471a
CH
1058/*
1059 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1060 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1061 * so that the proper iodone callbacks get called.
1062 */
1063STATIC int
1064xfs_bioerror(
1065 xfs_buf_t *bp)
1066{
1067#ifdef XFSERRORDEBUG
1068 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1069#endif
1070
1071 /*
1072 * No need to wait until the buffer is unpinned, we aren't flushing it.
1073 */
1074 XFS_BUF_ERROR(bp, EIO);
1075
1076 /*
1a1a3e97 1077 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1078 */
1079 XFS_BUF_UNREAD(bp);
1080 XFS_BUF_UNDELAYWRITE(bp);
1081 XFS_BUF_UNDONE(bp);
1082 XFS_BUF_STALE(bp);
1083
1a1a3e97 1084 xfs_buf_ioend(bp, 0);
4e23471a
CH
1085
1086 return EIO;
1087}
1088
1089/*
1090 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1091 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1092 * This is meant for userdata errors; metadata bufs come with
1093 * iodone functions attached, so that we can track down errors.
1094 */
1095STATIC int
1096xfs_bioerror_relse(
1097 struct xfs_buf *bp)
1098{
1099 int64_t fl = XFS_BUF_BFLAGS(bp);
1100 /*
1101 * No need to wait until the buffer is unpinned.
1102 * We aren't flushing it.
1103 *
1104 * chunkhold expects B_DONE to be set, whether
1105 * we actually finish the I/O or not. We don't want to
1106 * change that interface.
1107 */
1108 XFS_BUF_UNREAD(bp);
1109 XFS_BUF_UNDELAYWRITE(bp);
1110 XFS_BUF_DONE(bp);
1111 XFS_BUF_STALE(bp);
1112 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1113 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1114 /*
1115 * Mark b_error and B_ERROR _both_.
1116 * Lot's of chunkcache code assumes that.
1117 * There's no reason to mark error for
1118 * ASYNC buffers.
1119 */
1120 XFS_BUF_ERROR(bp, EIO);
1121 XFS_BUF_FINISH_IOWAIT(bp);
1122 } else {
1123 xfs_buf_relse(bp);
1124 }
1125
1126 return EIO;
1127}
1128
1129
1130/*
1131 * All xfs metadata buffers except log state machine buffers
1132 * get this attached as their b_bdstrat callback function.
1133 * This is so that we can catch a buffer
1134 * after prematurely unpinning it to forcibly shutdown the filesystem.
1135 */
1136int
1137xfs_bdstrat_cb(
1138 struct xfs_buf *bp)
1139{
ebad861b 1140 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1141 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1142 /*
1143 * Metadata write that didn't get logged but
1144 * written delayed anyway. These aren't associated
1145 * with a transaction, and can be ignored.
1146 */
1147 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1148 return xfs_bioerror_relse(bp);
1149 else
1150 return xfs_bioerror(bp);
1151 }
1152
1153 xfs_buf_iorequest(bp);
1154 return 0;
1155}
1156
1157/*
1158 * Wrapper around bdstrat so that we can stop data from going to disk in case
1159 * we are shutting down the filesystem. Typically user data goes thru this
1160 * path; one of the exceptions is the superblock.
1161 */
1162void
1163xfsbdstrat(
1164 struct xfs_mount *mp,
1165 struct xfs_buf *bp)
1166{
1167 if (XFS_FORCED_SHUTDOWN(mp)) {
1168 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1169 xfs_bioerror_relse(bp);
1170 return;
1171 }
1172
1173 xfs_buf_iorequest(bp);
1174}
1175
b8f82a4a 1176STATIC void
ce8e922c
NS
1177_xfs_buf_ioend(
1178 xfs_buf_t *bp,
1da177e4
LT
1179 int schedule)
1180{
0e6e847f 1181 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
ce8e922c 1182 xfs_buf_ioend(bp, schedule);
1da177e4
LT
1183}
1184
782e3b3b 1185STATIC void
ce8e922c 1186xfs_buf_bio_end_io(
1da177e4 1187 struct bio *bio,
1da177e4
LT
1188 int error)
1189{
ce8e922c 1190 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1da177e4 1191
cfbe5267 1192 xfs_buf_ioerror(bp, -error);
1da177e4 1193
73c77e2c
JB
1194 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1195 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1196
ce8e922c 1197 _xfs_buf_ioend(bp, 1);
1da177e4 1198 bio_put(bio);
1da177e4
LT
1199}
1200
1201STATIC void
ce8e922c
NS
1202_xfs_buf_ioapply(
1203 xfs_buf_t *bp)
1da177e4 1204{
a9759f2d 1205 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1206 struct bio *bio;
ce8e922c
NS
1207 int offset = bp->b_offset;
1208 int size = bp->b_count_desired;
1209 sector_t sector = bp->b_bn;
1da177e4 1210
ce8e922c 1211 total_nr_pages = bp->b_page_count;
1da177e4
LT
1212 map_i = 0;
1213
ce8e922c
NS
1214 if (bp->b_flags & XBF_ORDERED) {
1215 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1216 rw = WRITE_FLUSH_FUA;
2ee1abad 1217 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1218 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1219 bp->b_flags &= ~_XBF_RUN_QUEUES;
1220 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1221 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1222 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1223 bp->b_flags &= ~_XBF_RUN_QUEUES;
1224 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1225 } else {
1226 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1227 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1228 }
1229
1da177e4 1230
1da177e4 1231next_chunk:
ce8e922c 1232 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1233 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1234 if (nr_pages > total_nr_pages)
1235 nr_pages = total_nr_pages;
1236
1237 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1238 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1239 bio->bi_sector = sector;
ce8e922c
NS
1240 bio->bi_end_io = xfs_buf_bio_end_io;
1241 bio->bi_private = bp;
1da177e4 1242
0e6e847f 1243
1da177e4 1244 for (; size && nr_pages; nr_pages--, map_i++) {
0e6e847f 1245 int rbytes, nbytes = PAGE_SIZE - offset;
1da177e4
LT
1246
1247 if (nbytes > size)
1248 nbytes = size;
1249
ce8e922c
NS
1250 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1251 if (rbytes < nbytes)
1da177e4
LT
1252 break;
1253
1254 offset = 0;
1255 sector += nbytes >> BBSHIFT;
1256 size -= nbytes;
1257 total_nr_pages--;
1258 }
1259
1da177e4 1260 if (likely(bio->bi_size)) {
73c77e2c
JB
1261 if (xfs_buf_is_vmapped(bp)) {
1262 flush_kernel_vmap_range(bp->b_addr,
1263 xfs_buf_vmap_len(bp));
1264 }
1da177e4
LT
1265 submit_bio(rw, bio);
1266 if (size)
1267 goto next_chunk;
1268 } else {
ce8e922c 1269 xfs_buf_ioerror(bp, EIO);
ec53d1db 1270 bio_put(bio);
1da177e4
LT
1271 }
1272}
1273
1da177e4 1274int
ce8e922c
NS
1275xfs_buf_iorequest(
1276 xfs_buf_t *bp)
1da177e4 1277{
0b1b213f 1278 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1279
ce8e922c
NS
1280 if (bp->b_flags & XBF_DELWRI) {
1281 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1282 return 0;
1283 }
1284
ce8e922c
NS
1285 if (bp->b_flags & XBF_WRITE) {
1286 xfs_buf_wait_unpin(bp);
1da177e4
LT
1287 }
1288
ce8e922c 1289 xfs_buf_hold(bp);
1da177e4
LT
1290
1291 /* Set the count to 1 initially, this will stop an I/O
1292 * completion callout which happens before we have started
ce8e922c 1293 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1294 */
ce8e922c
NS
1295 atomic_set(&bp->b_io_remaining, 1);
1296 _xfs_buf_ioapply(bp);
1297 _xfs_buf_ioend(bp, 0);
1da177e4 1298
ce8e922c 1299 xfs_buf_rele(bp);
1da177e4
LT
1300 return 0;
1301}
1302
1303/*
ce8e922c
NS
1304 * Waits for I/O to complete on the buffer supplied.
1305 * It returns immediately if no I/O is pending.
1306 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1307 */
1308int
ce8e922c
NS
1309xfs_buf_iowait(
1310 xfs_buf_t *bp)
1da177e4 1311{
0b1b213f
CH
1312 trace_xfs_buf_iowait(bp, _RET_IP_);
1313
ce8e922c 1314 if (atomic_read(&bp->b_io_remaining))
0e6e847f 1315 blk_run_backing_dev(bp->b_target->bt_bdi, NULL);
b4dd330b 1316 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1317
1318 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1319 return bp->b_error;
1da177e4
LT
1320}
1321
ce8e922c
NS
1322xfs_caddr_t
1323xfs_buf_offset(
1324 xfs_buf_t *bp,
1da177e4
LT
1325 size_t offset)
1326{
1327 struct page *page;
1328
ce8e922c
NS
1329 if (bp->b_flags & XBF_MAPPED)
1330 return XFS_BUF_PTR(bp) + offset;
1da177e4 1331
ce8e922c 1332 offset += bp->b_offset;
0e6e847f
DC
1333 page = bp->b_pages[offset >> PAGE_SHIFT];
1334 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_SIZE-1));
1da177e4
LT
1335}
1336
1337/*
1da177e4
LT
1338 * Move data into or out of a buffer.
1339 */
1340void
ce8e922c
NS
1341xfs_buf_iomove(
1342 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1343 size_t boff, /* starting buffer offset */
1344 size_t bsize, /* length to copy */
b9c48649 1345 void *data, /* data address */
ce8e922c 1346 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1347{
1348 size_t bend, cpoff, csize;
1349 struct page *page;
1350
1351 bend = boff + bsize;
1352 while (boff < bend) {
ce8e922c
NS
1353 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1354 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1355 csize = min_t(size_t,
0e6e847f 1356 PAGE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4 1357
0e6e847f 1358 ASSERT(((csize + cpoff) <= PAGE_SIZE));
1da177e4
LT
1359
1360 switch (mode) {
ce8e922c 1361 case XBRW_ZERO:
1da177e4
LT
1362 memset(page_address(page) + cpoff, 0, csize);
1363 break;
ce8e922c 1364 case XBRW_READ:
1da177e4
LT
1365 memcpy(data, page_address(page) + cpoff, csize);
1366 break;
ce8e922c 1367 case XBRW_WRITE:
1da177e4
LT
1368 memcpy(page_address(page) + cpoff, data, csize);
1369 }
1370
1371 boff += csize;
1372 data += csize;
1373 }
1374}
1375
1376/*
ce8e922c 1377 * Handling of buffer targets (buftargs).
1da177e4
LT
1378 */
1379
1380/*
430cbeb8
DC
1381 * Wait for any bufs with callbacks that have been submitted but have not yet
1382 * returned. These buffers will have an elevated hold count, so wait on those
1383 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1384 */
1385void
1386xfs_wait_buftarg(
74f75a0c 1387 struct xfs_buftarg *btp)
1da177e4 1388{
430cbeb8
DC
1389 struct xfs_buf *bp;
1390
1391restart:
1392 spin_lock(&btp->bt_lru_lock);
1393 while (!list_empty(&btp->bt_lru)) {
1394 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1395 if (atomic_read(&bp->b_hold) > 1) {
1396 spin_unlock(&btp->bt_lru_lock);
26af6552 1397 delay(100);
430cbeb8 1398 goto restart;
1da177e4 1399 }
430cbeb8
DC
1400 /*
1401 * clear the LRU reference count so the bufer doesn't get
1402 * ignored in xfs_buf_rele().
1403 */
1404 atomic_set(&bp->b_lru_ref, 0);
1405 spin_unlock(&btp->bt_lru_lock);
1406 xfs_buf_rele(bp);
1407 spin_lock(&btp->bt_lru_lock);
1da177e4 1408 }
430cbeb8 1409 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1410}
1411
ff57ab21
DC
1412int
1413xfs_buftarg_shrink(
1414 struct shrinker *shrink,
1415 int nr_to_scan,
1416 gfp_t mask)
a6867a68 1417{
ff57ab21
DC
1418 struct xfs_buftarg *btp = container_of(shrink,
1419 struct xfs_buftarg, bt_shrinker);
430cbeb8
DC
1420 struct xfs_buf *bp;
1421 LIST_HEAD(dispose);
1422
1423 if (!nr_to_scan)
1424 return btp->bt_lru_nr;
1425
1426 spin_lock(&btp->bt_lru_lock);
1427 while (!list_empty(&btp->bt_lru)) {
1428 if (nr_to_scan-- <= 0)
1429 break;
1430
1431 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1432
1433 /*
1434 * Decrement the b_lru_ref count unless the value is already
1435 * zero. If the value is already zero, we need to reclaim the
1436 * buffer, otherwise it gets another trip through the LRU.
1437 */
1438 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1439 list_move_tail(&bp->b_lru, &btp->bt_lru);
1440 continue;
1441 }
1442
1443 /*
1444 * remove the buffer from the LRU now to avoid needing another
1445 * lock round trip inside xfs_buf_rele().
1446 */
1447 list_move(&bp->b_lru, &dispose);
1448 btp->bt_lru_nr--;
ff57ab21 1449 }
430cbeb8
DC
1450 spin_unlock(&btp->bt_lru_lock);
1451
1452 while (!list_empty(&dispose)) {
1453 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1454 list_del_init(&bp->b_lru);
1455 xfs_buf_rele(bp);
1456 }
1457
1458 return btp->bt_lru_nr;
a6867a68
DC
1459}
1460
1da177e4
LT
1461void
1462xfs_free_buftarg(
b7963133
CH
1463 struct xfs_mount *mp,
1464 struct xfs_buftarg *btp)
1da177e4 1465{
ff57ab21
DC
1466 unregister_shrinker(&btp->bt_shrinker);
1467
1da177e4 1468 xfs_flush_buftarg(btp, 1);
b7963133
CH
1469 if (mp->m_flags & XFS_MOUNT_BARRIER)
1470 xfs_blkdev_issue_flush(btp);
a6867a68 1471
a6867a68 1472 kthread_stop(btp->bt_task);
f0e2d93c 1473 kmem_free(btp);
1da177e4
LT
1474}
1475
1da177e4
LT
1476STATIC int
1477xfs_setsize_buftarg_flags(
1478 xfs_buftarg_t *btp,
1479 unsigned int blocksize,
1480 unsigned int sectorsize,
1481 int verbose)
1482{
ce8e922c
NS
1483 btp->bt_bsize = blocksize;
1484 btp->bt_sshift = ffs(sectorsize) - 1;
1485 btp->bt_smask = sectorsize - 1;
1da177e4 1486
ce8e922c 1487 if (set_blocksize(btp->bt_bdev, sectorsize)) {
4f10700a
DC
1488 xfs_warn(btp->bt_mount,
1489 "Cannot set_blocksize to %u on device %s\n",
1da177e4
LT
1490 sectorsize, XFS_BUFTARG_NAME(btp));
1491 return EINVAL;
1492 }
1493
1da177e4
LT
1494 return 0;
1495}
1496
1497/*
ce8e922c
NS
1498 * When allocating the initial buffer target we have not yet
1499 * read in the superblock, so don't know what sized sectors
1500 * are being used is at this early stage. Play safe.
1501 */
1da177e4
LT
1502STATIC int
1503xfs_setsize_buftarg_early(
1504 xfs_buftarg_t *btp,
1505 struct block_device *bdev)
1506{
1507 return xfs_setsize_buftarg_flags(btp,
0e6e847f 1508 PAGE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1509}
1510
1511int
1512xfs_setsize_buftarg(
1513 xfs_buftarg_t *btp,
1514 unsigned int blocksize,
1515 unsigned int sectorsize)
1516{
1517 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1518}
1519
a6867a68
DC
1520STATIC int
1521xfs_alloc_delwrite_queue(
e2a07812
JE
1522 xfs_buftarg_t *btp,
1523 const char *fsname)
a6867a68 1524{
a6867a68 1525 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1526 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1527 btp->bt_flags = 0;
e2a07812 1528 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1529 if (IS_ERR(btp->bt_task))
1530 return PTR_ERR(btp->bt_task);
1531 return 0;
a6867a68
DC
1532}
1533
1da177e4
LT
1534xfs_buftarg_t *
1535xfs_alloc_buftarg(
ebad861b 1536 struct xfs_mount *mp,
1da177e4 1537 struct block_device *bdev,
e2a07812
JE
1538 int external,
1539 const char *fsname)
1da177e4
LT
1540{
1541 xfs_buftarg_t *btp;
1542
1543 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1544
ebad861b 1545 btp->bt_mount = mp;
ce8e922c
NS
1546 btp->bt_dev = bdev->bd_dev;
1547 btp->bt_bdev = bdev;
0e6e847f
DC
1548 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1549 if (!btp->bt_bdi)
1550 goto error;
1551
430cbeb8
DC
1552 INIT_LIST_HEAD(&btp->bt_lru);
1553 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1554 if (xfs_setsize_buftarg_early(btp, bdev))
1555 goto error;
e2a07812 1556 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1557 goto error;
ff57ab21
DC
1558 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1559 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1560 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1561 return btp;
1562
1563error:
f0e2d93c 1564 kmem_free(btp);
1da177e4
LT
1565 return NULL;
1566}
1567
1568
1569/*
ce8e922c 1570 * Delayed write buffer handling
1da177e4 1571 */
1da177e4 1572STATIC void
ce8e922c
NS
1573xfs_buf_delwri_queue(
1574 xfs_buf_t *bp,
1da177e4
LT
1575 int unlock)
1576{
ce8e922c
NS
1577 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1578 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1579
0b1b213f
CH
1580 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1581
ce8e922c 1582 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1583
a6867a68 1584 spin_lock(dwlk);
1da177e4 1585 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1586 if (!list_empty(&bp->b_list)) {
1587 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1588 if (unlock)
1589 atomic_dec(&bp->b_hold);
1590 list_del(&bp->b_list);
1da177e4
LT
1591 }
1592
c9c12971
DC
1593 if (list_empty(dwq)) {
1594 /* start xfsbufd as it is about to have something to do */
1595 wake_up_process(bp->b_target->bt_task);
1596 }
1597
ce8e922c
NS
1598 bp->b_flags |= _XBF_DELWRI_Q;
1599 list_add_tail(&bp->b_list, dwq);
1600 bp->b_queuetime = jiffies;
a6867a68 1601 spin_unlock(dwlk);
1da177e4
LT
1602
1603 if (unlock)
ce8e922c 1604 xfs_buf_unlock(bp);
1da177e4
LT
1605}
1606
1607void
ce8e922c
NS
1608xfs_buf_delwri_dequeue(
1609 xfs_buf_t *bp)
1da177e4 1610{
ce8e922c 1611 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1612 int dequeued = 0;
1613
a6867a68 1614 spin_lock(dwlk);
ce8e922c
NS
1615 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1616 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1617 list_del_init(&bp->b_list);
1da177e4
LT
1618 dequeued = 1;
1619 }
ce8e922c 1620 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1621 spin_unlock(dwlk);
1da177e4
LT
1622
1623 if (dequeued)
ce8e922c 1624 xfs_buf_rele(bp);
1da177e4 1625
0b1b213f 1626 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1627}
1628
d808f617
DC
1629/*
1630 * If a delwri buffer needs to be pushed before it has aged out, then promote
1631 * it to the head of the delwri queue so that it will be flushed on the next
1632 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1633 * than the age currently needed to flush the buffer. Hence the next time the
1634 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1635 */
1636void
1637xfs_buf_delwri_promote(
1638 struct xfs_buf *bp)
1639{
1640 struct xfs_buftarg *btp = bp->b_target;
1641 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1642
1643 ASSERT(bp->b_flags & XBF_DELWRI);
1644 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1645
1646 /*
1647 * Check the buffer age before locking the delayed write queue as we
1648 * don't need to promote buffers that are already past the flush age.
1649 */
1650 if (bp->b_queuetime < jiffies - age)
1651 return;
1652 bp->b_queuetime = jiffies - age;
1653 spin_lock(&btp->bt_delwrite_lock);
1654 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1655 spin_unlock(&btp->bt_delwrite_lock);
1656}
1657
1da177e4 1658STATIC void
ce8e922c 1659xfs_buf_runall_queues(
1da177e4
LT
1660 struct workqueue_struct *queue)
1661{
1662 flush_workqueue(queue);
1663}
1664
585e6d88
DC
1665/*
1666 * Move as many buffers as specified to the supplied list
1667 * idicating if we skipped any buffers to prevent deadlocks.
1668 */
1669STATIC int
1670xfs_buf_delwri_split(
1671 xfs_buftarg_t *target,
1672 struct list_head *list,
5e6a07df 1673 unsigned long age)
585e6d88
DC
1674{
1675 xfs_buf_t *bp, *n;
1676 struct list_head *dwq = &target->bt_delwrite_queue;
1677 spinlock_t *dwlk = &target->bt_delwrite_lock;
1678 int skipped = 0;
5e6a07df 1679 int force;
585e6d88 1680
5e6a07df 1681 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1682 INIT_LIST_HEAD(list);
1683 spin_lock(dwlk);
1684 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1685 ASSERT(bp->b_flags & XBF_DELWRI);
1686
4d16e924 1687 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1688 if (!force &&
585e6d88
DC
1689 time_before(jiffies, bp->b_queuetime + age)) {
1690 xfs_buf_unlock(bp);
1691 break;
1692 }
1693
1694 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1695 _XBF_RUN_QUEUES);
1696 bp->b_flags |= XBF_WRITE;
1697 list_move_tail(&bp->b_list, list);
bfe27419 1698 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1699 } else
1700 skipped++;
1701 }
1702 spin_unlock(dwlk);
1703
1704 return skipped;
1705
1706}
1707
089716aa
DC
1708/*
1709 * Compare function is more complex than it needs to be because
1710 * the return value is only 32 bits and we are doing comparisons
1711 * on 64 bit values
1712 */
1713static int
1714xfs_buf_cmp(
1715 void *priv,
1716 struct list_head *a,
1717 struct list_head *b)
1718{
1719 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1720 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1721 xfs_daddr_t diff;
1722
1723 diff = ap->b_bn - bp->b_bn;
1724 if (diff < 0)
1725 return -1;
1726 if (diff > 0)
1727 return 1;
1728 return 0;
1729}
1730
1731void
1732xfs_buf_delwri_sort(
1733 xfs_buftarg_t *target,
1734 struct list_head *list)
1735{
1736 list_sort(NULL, list, xfs_buf_cmp);
1737}
1738
1da177e4 1739STATIC int
23ea4032 1740xfsbufd(
585e6d88 1741 void *data)
1da177e4 1742{
089716aa 1743 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1744
1da177e4
LT
1745 current->flags |= PF_MEMALLOC;
1746
978c7b2f
RW
1747 set_freezable();
1748
1da177e4 1749 do {
c9c12971
DC
1750 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1751 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1752 int count = 0;
1753 struct list_head tmp;
c9c12971 1754
3e1d1d28 1755 if (unlikely(freezing(current))) {
ce8e922c 1756 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1757 refrigerator();
abd0cf7a 1758 } else {
ce8e922c 1759 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1760 }
1da177e4 1761
c9c12971
DC
1762 /* sleep for a long time if there is nothing to do. */
1763 if (list_empty(&target->bt_delwrite_queue))
1764 tout = MAX_SCHEDULE_TIMEOUT;
1765 schedule_timeout_interruptible(tout);
1da177e4 1766
c9c12971 1767 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1768 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1769 while (!list_empty(&tmp)) {
089716aa
DC
1770 struct xfs_buf *bp;
1771 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1772 list_del_init(&bp->b_list);
939d723b 1773 xfs_bdstrat_cb(bp);
585e6d88 1774 count++;
1da177e4 1775 }
f07c2250 1776 if (count)
0e6e847f 1777 blk_run_backing_dev(target->bt_bdi, NULL);
1da177e4 1778
4df08c52 1779 } while (!kthread_should_stop());
1da177e4 1780
4df08c52 1781 return 0;
1da177e4
LT
1782}
1783
1784/*
ce8e922c
NS
1785 * Go through all incore buffers, and release buffers if they belong to
1786 * the given device. This is used in filesystem error handling to
1787 * preserve the consistency of its metadata.
1da177e4
LT
1788 */
1789int
1790xfs_flush_buftarg(
585e6d88
DC
1791 xfs_buftarg_t *target,
1792 int wait)
1da177e4 1793{
089716aa 1794 xfs_buf_t *bp;
585e6d88 1795 int pincount = 0;
089716aa
DC
1796 LIST_HEAD(tmp_list);
1797 LIST_HEAD(wait_list);
1da177e4 1798
c626d174 1799 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1800 xfs_buf_runall_queues(xfsdatad_workqueue);
1801 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1802
5e6a07df 1803 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1804 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1805
1806 /*
089716aa
DC
1807 * Dropped the delayed write list lock, now walk the temporary list.
1808 * All I/O is issued async and then if we need to wait for completion
1809 * we do that after issuing all the IO.
1da177e4 1810 */
089716aa
DC
1811 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1812 while (!list_empty(&tmp_list)) {
1813 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1814 ASSERT(target == bp->b_target);
089716aa
DC
1815 list_del_init(&bp->b_list);
1816 if (wait) {
ce8e922c 1817 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1818 list_add(&bp->b_list, &wait_list);
1819 }
939d723b 1820 xfs_bdstrat_cb(bp);
1da177e4
LT
1821 }
1822
089716aa
DC
1823 if (wait) {
1824 /* Expedite and wait for IO to complete. */
0e6e847f 1825 blk_run_backing_dev(target->bt_bdi, NULL);
089716aa
DC
1826 while (!list_empty(&wait_list)) {
1827 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1828
089716aa 1829 list_del_init(&bp->b_list);
1a1a3e97 1830 xfs_buf_iowait(bp);
089716aa
DC
1831 xfs_buf_relse(bp);
1832 }
1da177e4
LT
1833 }
1834
1da177e4
LT
1835 return pincount;
1836}
1837
04d8b284 1838int __init
ce8e922c 1839xfs_buf_init(void)
1da177e4 1840{
8758280f
NS
1841 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1842 KM_ZONE_HWALIGN, NULL);
ce8e922c 1843 if (!xfs_buf_zone)
0b1b213f 1844 goto out;
04d8b284 1845
51749e47 1846 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 1847 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 1848 if (!xfslogd_workqueue)
04d8b284 1849 goto out_free_buf_zone;
1da177e4 1850
b4337692 1851 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1852 if (!xfsdatad_workqueue)
1853 goto out_destroy_xfslogd_workqueue;
1da177e4 1854
c626d174
DC
1855 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1856 if (!xfsconvertd_workqueue)
1857 goto out_destroy_xfsdatad_workqueue;
1858
23ea4032 1859 return 0;
1da177e4 1860
c626d174
DC
1861 out_destroy_xfsdatad_workqueue:
1862 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1863 out_destroy_xfslogd_workqueue:
1864 destroy_workqueue(xfslogd_workqueue);
23ea4032 1865 out_free_buf_zone:
ce8e922c 1866 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1867 out:
8758280f 1868 return -ENOMEM;
1da177e4
LT
1869}
1870
1da177e4 1871void
ce8e922c 1872xfs_buf_terminate(void)
1da177e4 1873{
c626d174 1874 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1875 destroy_workqueue(xfsdatad_workqueue);
1876 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1877 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1878}
e6a0e9cd
TS
1879
1880#ifdef CONFIG_KDB_MODULES
1881struct list_head *
1882xfs_get_buftarg_list(void)
1883{
1884 return &xfs_buftarg_list;
1885}
1886#endif
This page took 0.612974 seconds and 5 git commands to generate.