xfs: convert buffer cache hash to rbtree
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
7f8275d0 47STATIC int xfsbufd_wakeup(struct shrinker *, int, gfp_t);
ce8e922c 48STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
8e1f936b
RR
49static struct shrinker xfs_buf_shake = {
50 .shrink = xfsbufd_wakeup,
51 .seeks = DEFAULT_SEEKS,
52};
23ea4032 53
7989cb8e 54static struct workqueue_struct *xfslogd_workqueue;
0829c360 55struct workqueue_struct *xfsdatad_workqueue;
c626d174 56struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 57
ce8e922c
NS
58#ifdef XFS_BUF_LOCK_TRACKING
59# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
60# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
61# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 62#else
ce8e922c
NS
63# define XB_SET_OWNER(bp) do { } while (0)
64# define XB_CLEAR_OWNER(bp) do { } while (0)
65# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
66#endif
67
ce8e922c
NS
68#define xb_to_gfp(flags) \
69 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
70 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 71
ce8e922c
NS
72#define xb_to_km(flags) \
73 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 74
ce8e922c
NS
75#define xfs_buf_allocate(flags) \
76 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
77#define xfs_buf_deallocate(bp) \
78 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 79
73c77e2c
JB
80static inline int
81xfs_buf_is_vmapped(
82 struct xfs_buf *bp)
83{
84 /*
85 * Return true if the buffer is vmapped.
86 *
87 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
88 * code is clever enough to know it doesn't have to map a single page,
89 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
90 */
91 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
92}
93
94static inline int
95xfs_buf_vmap_len(
96 struct xfs_buf *bp)
97{
98 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
99}
100
1da177e4 101/*
ce8e922c 102 * Page Region interfaces.
1da177e4 103 *
ce8e922c
NS
104 * For pages in filesystems where the blocksize is smaller than the
105 * pagesize, we use the page->private field (long) to hold a bitmap
106 * of uptodate regions within the page.
1da177e4 107 *
ce8e922c 108 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 109 *
ce8e922c
NS
110 * NBPPR == number-of-bytes-per-page-region
111 * BTOPR == bytes-to-page-region (rounded up)
112 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
113 */
114#if (BITS_PER_LONG == 32)
115#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
116#elif (BITS_PER_LONG == 64)
117#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
118#else
119#error BITS_PER_LONG must be 32 or 64
120#endif
121#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
122#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
123#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
124
125STATIC unsigned long
126page_region_mask(
127 size_t offset,
128 size_t length)
129{
130 unsigned long mask;
131 int first, final;
132
133 first = BTOPR(offset);
134 final = BTOPRT(offset + length - 1);
135 first = min(first, final);
136
137 mask = ~0UL;
138 mask <<= BITS_PER_LONG - (final - first);
139 mask >>= BITS_PER_LONG - (final);
140
141 ASSERT(offset + length <= PAGE_CACHE_SIZE);
142 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
143
144 return mask;
145}
146
b8f82a4a 147STATIC void
1da177e4
LT
148set_page_region(
149 struct page *page,
150 size_t offset,
151 size_t length)
152{
4c21e2f2
HD
153 set_page_private(page,
154 page_private(page) | page_region_mask(offset, length));
155 if (page_private(page) == ~0UL)
1da177e4
LT
156 SetPageUptodate(page);
157}
158
b8f82a4a 159STATIC int
1da177e4
LT
160test_page_region(
161 struct page *page,
162 size_t offset,
163 size_t length)
164{
165 unsigned long mask = page_region_mask(offset, length);
166
4c21e2f2 167 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
168}
169
1da177e4 170/*
ce8e922c 171 * Internal xfs_buf_t object manipulation
1da177e4
LT
172 */
173
174STATIC void
ce8e922c
NS
175_xfs_buf_initialize(
176 xfs_buf_t *bp,
1da177e4 177 xfs_buftarg_t *target,
204ab25f 178 xfs_off_t range_base,
1da177e4 179 size_t range_length,
ce8e922c 180 xfs_buf_flags_t flags)
1da177e4
LT
181{
182 /*
ce8e922c 183 * We don't want certain flags to appear in b_flags.
1da177e4 184 */
ce8e922c
NS
185 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
186
187 memset(bp, 0, sizeof(xfs_buf_t));
188 atomic_set(&bp->b_hold, 1);
b4dd330b 189 init_completion(&bp->b_iowait);
ce8e922c 190 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 191 RB_CLEAR_NODE(&bp->b_rbnode);
ce8e922c
NS
192 init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
193 XB_SET_OWNER(bp);
194 bp->b_target = target;
195 bp->b_file_offset = range_base;
1da177e4
LT
196 /*
197 * Set buffer_length and count_desired to the same value initially.
198 * I/O routines should use count_desired, which will be the same in
199 * most cases but may be reset (e.g. XFS recovery).
200 */
ce8e922c
NS
201 bp->b_buffer_length = bp->b_count_desired = range_length;
202 bp->b_flags = flags;
203 bp->b_bn = XFS_BUF_DADDR_NULL;
204 atomic_set(&bp->b_pin_count, 0);
205 init_waitqueue_head(&bp->b_waiters);
206
207 XFS_STATS_INC(xb_create);
0b1b213f
CH
208
209 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
210}
211
212/*
ce8e922c
NS
213 * Allocate a page array capable of holding a specified number
214 * of pages, and point the page buf at it.
1da177e4
LT
215 */
216STATIC int
ce8e922c
NS
217_xfs_buf_get_pages(
218 xfs_buf_t *bp,
1da177e4 219 int page_count,
ce8e922c 220 xfs_buf_flags_t flags)
1da177e4
LT
221{
222 /* Make sure that we have a page list */
ce8e922c
NS
223 if (bp->b_pages == NULL) {
224 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
225 bp->b_page_count = page_count;
226 if (page_count <= XB_PAGES) {
227 bp->b_pages = bp->b_page_array;
1da177e4 228 } else {
ce8e922c
NS
229 bp->b_pages = kmem_alloc(sizeof(struct page *) *
230 page_count, xb_to_km(flags));
231 if (bp->b_pages == NULL)
1da177e4
LT
232 return -ENOMEM;
233 }
ce8e922c 234 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
235 }
236 return 0;
237}
238
239/*
ce8e922c 240 * Frees b_pages if it was allocated.
1da177e4
LT
241 */
242STATIC void
ce8e922c 243_xfs_buf_free_pages(
1da177e4
LT
244 xfs_buf_t *bp)
245{
ce8e922c 246 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 247 kmem_free(bp->b_pages);
3fc98b1a 248 bp->b_pages = NULL;
1da177e4
LT
249 }
250}
251
252/*
253 * Releases the specified buffer.
254 *
255 * The modification state of any associated pages is left unchanged.
ce8e922c 256 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
257 * hashed and refcounted buffers
258 */
259void
ce8e922c 260xfs_buf_free(
1da177e4
LT
261 xfs_buf_t *bp)
262{
0b1b213f 263 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 264
1fa40b01 265 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
266 uint i;
267
73c77e2c 268 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
269 vm_unmap_ram(bp->b_addr - bp->b_offset,
270 bp->b_page_count);
1da177e4 271
948ecdb4
NS
272 for (i = 0; i < bp->b_page_count; i++) {
273 struct page *page = bp->b_pages[i];
274
1fa40b01
CH
275 if (bp->b_flags & _XBF_PAGE_CACHE)
276 ASSERT(!PagePrivate(page));
948ecdb4
NS
277 page_cache_release(page);
278 }
1da177e4 279 }
3fc98b1a 280 _xfs_buf_free_pages(bp);
ce8e922c 281 xfs_buf_deallocate(bp);
1da177e4
LT
282}
283
284/*
285 * Finds all pages for buffer in question and builds it's page list.
286 */
287STATIC int
ce8e922c 288_xfs_buf_lookup_pages(
1da177e4
LT
289 xfs_buf_t *bp,
290 uint flags)
291{
ce8e922c
NS
292 struct address_space *mapping = bp->b_target->bt_mapping;
293 size_t blocksize = bp->b_target->bt_bsize;
294 size_t size = bp->b_count_desired;
1da177e4 295 size_t nbytes, offset;
ce8e922c 296 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
297 unsigned short page_count, i;
298 pgoff_t first;
204ab25f 299 xfs_off_t end;
1da177e4
LT
300 int error;
301
ce8e922c
NS
302 end = bp->b_file_offset + bp->b_buffer_length;
303 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 304
ce8e922c 305 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
306 if (unlikely(error))
307 return error;
ce8e922c 308 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 309
ce8e922c
NS
310 offset = bp->b_offset;
311 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 312
ce8e922c 313 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
314 struct page *page;
315 uint retries = 0;
316
317 retry:
318 page = find_or_create_page(mapping, first + i, gfp_mask);
319 if (unlikely(page == NULL)) {
ce8e922c
NS
320 if (flags & XBF_READ_AHEAD) {
321 bp->b_page_count = i;
6ab455ee
CH
322 for (i = 0; i < bp->b_page_count; i++)
323 unlock_page(bp->b_pages[i]);
1da177e4
LT
324 return -ENOMEM;
325 }
326
327 /*
328 * This could deadlock.
329 *
330 * But until all the XFS lowlevel code is revamped to
331 * handle buffer allocation failures we can't do much.
332 */
333 if (!(++retries % 100))
334 printk(KERN_ERR
335 "XFS: possible memory allocation "
336 "deadlock in %s (mode:0x%x)\n",
34a622b2 337 __func__, gfp_mask);
1da177e4 338
ce8e922c 339 XFS_STATS_INC(xb_page_retries);
7f8275d0 340 xfsbufd_wakeup(NULL, 0, gfp_mask);
8aa7e847 341 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
342 goto retry;
343 }
344
ce8e922c 345 XFS_STATS_INC(xb_page_found);
1da177e4
LT
346
347 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
348 size -= nbytes;
349
948ecdb4 350 ASSERT(!PagePrivate(page));
1da177e4
LT
351 if (!PageUptodate(page)) {
352 page_count--;
6ab455ee
CH
353 if (blocksize >= PAGE_CACHE_SIZE) {
354 if (flags & XBF_READ)
355 bp->b_flags |= _XBF_PAGE_LOCKED;
356 } else if (!PagePrivate(page)) {
1da177e4
LT
357 if (test_page_region(page, offset, nbytes))
358 page_count++;
359 }
360 }
361
ce8e922c 362 bp->b_pages[i] = page;
1da177e4
LT
363 offset = 0;
364 }
365
6ab455ee
CH
366 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
367 for (i = 0; i < bp->b_page_count; i++)
368 unlock_page(bp->b_pages[i]);
369 }
370
ce8e922c
NS
371 if (page_count == bp->b_page_count)
372 bp->b_flags |= XBF_DONE;
1da177e4 373
1da177e4
LT
374 return error;
375}
376
377/*
378 * Map buffer into kernel address-space if nessecary.
379 */
380STATIC int
ce8e922c 381_xfs_buf_map_pages(
1da177e4
LT
382 xfs_buf_t *bp,
383 uint flags)
384{
385 /* A single page buffer is always mappable */
ce8e922c
NS
386 if (bp->b_page_count == 1) {
387 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
388 bp->b_flags |= XBF_MAPPED;
389 } else if (flags & XBF_MAPPED) {
8a262e57
AE
390 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
391 -1, PAGE_KERNEL);
ce8e922c 392 if (unlikely(bp->b_addr == NULL))
1da177e4 393 return -ENOMEM;
ce8e922c
NS
394 bp->b_addr += bp->b_offset;
395 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
396 }
397
398 return 0;
399}
400
401/*
402 * Finding and Reading Buffers
403 */
404
405/*
ce8e922c 406 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
407 * a given range of an inode. The buffer is returned
408 * locked. If other overlapping buffers exist, they are
409 * released before the new buffer is created and locked,
410 * which may imply that this call will block until those buffers
411 * are unlocked. No I/O is implied by this call.
412 */
413xfs_buf_t *
ce8e922c 414_xfs_buf_find(
1da177e4 415 xfs_buftarg_t *btp, /* block device target */
204ab25f 416 xfs_off_t ioff, /* starting offset of range */
1da177e4 417 size_t isize, /* length of range */
ce8e922c
NS
418 xfs_buf_flags_t flags,
419 xfs_buf_t *new_bp)
1da177e4 420{
204ab25f 421 xfs_off_t range_base;
1da177e4 422 size_t range_length;
74f75a0c
DC
423 struct xfs_perag *pag;
424 struct rb_node **rbp;
425 struct rb_node *parent;
426 xfs_buf_t *bp;
1da177e4
LT
427
428 range_base = (ioff << BBSHIFT);
429 range_length = (isize << BBSHIFT);
430
431 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 432 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 433 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 434
74f75a0c
DC
435 /* get tree root */
436 pag = xfs_perag_get(btp->bt_mount,
437 xfs_daddr_to_agno(btp->bt_mount, ioff));
438
439 /* walk tree */
440 spin_lock(&pag->pag_buf_lock);
441 rbp = &pag->pag_buf_tree.rb_node;
442 parent = NULL;
443 bp = NULL;
444 while (*rbp) {
445 parent = *rbp;
446 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
447
448 if (range_base < bp->b_file_offset)
449 rbp = &(*rbp)->rb_left;
450 else if (range_base > bp->b_file_offset)
451 rbp = &(*rbp)->rb_right;
452 else {
453 /*
454 * found a block offset match. If the range doesn't
455 * match, the only way this is allowed is if the buffer
456 * in the cache is stale and the transaction that made
457 * it stale has not yet committed. i.e. we are
458 * reallocating a busy extent. Skip this buffer and
459 * continue searching to the right for an exact match.
460 */
461 if (bp->b_buffer_length != range_length) {
462 ASSERT(bp->b_flags & XBF_STALE);
463 rbp = &(*rbp)->rb_right;
464 continue;
465 }
ce8e922c 466 atomic_inc(&bp->b_hold);
1da177e4
LT
467 goto found;
468 }
469 }
470
471 /* No match found */
ce8e922c
NS
472 if (new_bp) {
473 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 474 range_length, flags);
74f75a0c
DC
475 rb_link_node(&new_bp->b_rbnode, parent, rbp);
476 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
477 /* the buffer keeps the perag reference until it is freed */
478 new_bp->b_pag = pag;
479 spin_unlock(&pag->pag_buf_lock);
1da177e4 480 } else {
ce8e922c 481 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
482 spin_unlock(&pag->pag_buf_lock);
483 xfs_perag_put(pag);
1da177e4 484 }
ce8e922c 485 return new_bp;
1da177e4
LT
486
487found:
74f75a0c
DC
488 spin_unlock(&pag->pag_buf_lock);
489 xfs_perag_put(pag);
1da177e4
LT
490
491 /* Attempt to get the semaphore without sleeping,
492 * if this does not work then we need to drop the
493 * spinlock and do a hard attempt on the semaphore.
494 */
ce8e922c
NS
495 if (down_trylock(&bp->b_sema)) {
496 if (!(flags & XBF_TRYLOCK)) {
1da177e4 497 /* wait for buffer ownership */
ce8e922c
NS
498 xfs_buf_lock(bp);
499 XFS_STATS_INC(xb_get_locked_waited);
1da177e4
LT
500 } else {
501 /* We asked for a trylock and failed, no need
502 * to look at file offset and length here, we
ce8e922c
NS
503 * know that this buffer at least overlaps our
504 * buffer and is locked, therefore our buffer
505 * either does not exist, or is this buffer.
1da177e4 506 */
ce8e922c
NS
507 xfs_buf_rele(bp);
508 XFS_STATS_INC(xb_busy_locked);
509 return NULL;
1da177e4
LT
510 }
511 } else {
512 /* trylock worked */
ce8e922c 513 XB_SET_OWNER(bp);
1da177e4
LT
514 }
515
ce8e922c
NS
516 if (bp->b_flags & XBF_STALE) {
517 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
518 bp->b_flags &= XBF_MAPPED;
2f926587 519 }
0b1b213f
CH
520
521 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
522 XFS_STATS_INC(xb_get_locked);
523 return bp;
1da177e4
LT
524}
525
526/*
ce8e922c 527 * Assembles a buffer covering the specified range.
1da177e4
LT
528 * Storage in memory for all portions of the buffer will be allocated,
529 * although backing storage may not be.
530 */
531xfs_buf_t *
6ad112bf 532xfs_buf_get(
1da177e4 533 xfs_buftarg_t *target,/* target for buffer */
204ab25f 534 xfs_off_t ioff, /* starting offset of range */
1da177e4 535 size_t isize, /* length of range */
ce8e922c 536 xfs_buf_flags_t flags)
1da177e4 537{
ce8e922c 538 xfs_buf_t *bp, *new_bp;
1da177e4
LT
539 int error = 0, i;
540
ce8e922c
NS
541 new_bp = xfs_buf_allocate(flags);
542 if (unlikely(!new_bp))
1da177e4
LT
543 return NULL;
544
ce8e922c
NS
545 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
546 if (bp == new_bp) {
547 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
548 if (error)
549 goto no_buffer;
550 } else {
ce8e922c
NS
551 xfs_buf_deallocate(new_bp);
552 if (unlikely(bp == NULL))
1da177e4
LT
553 return NULL;
554 }
555
ce8e922c
NS
556 for (i = 0; i < bp->b_page_count; i++)
557 mark_page_accessed(bp->b_pages[i]);
1da177e4 558
ce8e922c
NS
559 if (!(bp->b_flags & XBF_MAPPED)) {
560 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
561 if (unlikely(error)) {
562 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 563 __func__);
1da177e4
LT
564 goto no_buffer;
565 }
566 }
567
ce8e922c 568 XFS_STATS_INC(xb_get);
1da177e4
LT
569
570 /*
571 * Always fill in the block number now, the mapped cases can do
572 * their own overlay of this later.
573 */
ce8e922c
NS
574 bp->b_bn = ioff;
575 bp->b_count_desired = bp->b_buffer_length;
1da177e4 576
0b1b213f 577 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 578 return bp;
1da177e4
LT
579
580 no_buffer:
ce8e922c
NS
581 if (flags & (XBF_LOCK | XBF_TRYLOCK))
582 xfs_buf_unlock(bp);
583 xfs_buf_rele(bp);
1da177e4
LT
584 return NULL;
585}
586
5d765b97
CH
587STATIC int
588_xfs_buf_read(
589 xfs_buf_t *bp,
590 xfs_buf_flags_t flags)
591{
592 int status;
593
5d765b97
CH
594 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
595 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
596
597 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
598 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
599 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
600 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
601
602 status = xfs_buf_iorequest(bp);
ec53d1db
DC
603 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
604 return status;
605 return xfs_buf_iowait(bp);
5d765b97
CH
606}
607
1da177e4 608xfs_buf_t *
6ad112bf 609xfs_buf_read(
1da177e4 610 xfs_buftarg_t *target,
204ab25f 611 xfs_off_t ioff,
1da177e4 612 size_t isize,
ce8e922c 613 xfs_buf_flags_t flags)
1da177e4 614{
ce8e922c
NS
615 xfs_buf_t *bp;
616
617 flags |= XBF_READ;
618
6ad112bf 619 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 620 if (bp) {
0b1b213f
CH
621 trace_xfs_buf_read(bp, flags, _RET_IP_);
622
ce8e922c 623 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 624 XFS_STATS_INC(xb_get_read);
5d765b97 625 _xfs_buf_read(bp, flags);
ce8e922c 626 } else if (flags & XBF_ASYNC) {
1da177e4
LT
627 /*
628 * Read ahead call which is already satisfied,
629 * drop the buffer
630 */
631 goto no_buffer;
632 } else {
1da177e4 633 /* We do not want read in the flags */
ce8e922c 634 bp->b_flags &= ~XBF_READ;
1da177e4
LT
635 }
636 }
637
ce8e922c 638 return bp;
1da177e4
LT
639
640 no_buffer:
ce8e922c
NS
641 if (flags & (XBF_LOCK | XBF_TRYLOCK))
642 xfs_buf_unlock(bp);
643 xfs_buf_rele(bp);
1da177e4
LT
644 return NULL;
645}
646
1da177e4 647/*
ce8e922c
NS
648 * If we are not low on memory then do the readahead in a deadlock
649 * safe manner.
1da177e4
LT
650 */
651void
ce8e922c 652xfs_buf_readahead(
1da177e4 653 xfs_buftarg_t *target,
204ab25f 654 xfs_off_t ioff,
1da177e4 655 size_t isize,
ce8e922c 656 xfs_buf_flags_t flags)
1da177e4
LT
657{
658 struct backing_dev_info *bdi;
659
ce8e922c 660 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
661 if (bdi_read_congested(bdi))
662 return;
663
ce8e922c 664 flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
6ad112bf 665 xfs_buf_read(target, ioff, isize, flags);
1da177e4
LT
666}
667
5adc94c2
DC
668/*
669 * Read an uncached buffer from disk. Allocates and returns a locked
670 * buffer containing the disk contents or nothing.
671 */
672struct xfs_buf *
673xfs_buf_read_uncached(
674 struct xfs_mount *mp,
675 struct xfs_buftarg *target,
676 xfs_daddr_t daddr,
677 size_t length,
678 int flags)
679{
680 xfs_buf_t *bp;
681 int error;
682
683 bp = xfs_buf_get_uncached(target, length, flags);
684 if (!bp)
685 return NULL;
686
687 /* set up the buffer for a read IO */
688 xfs_buf_lock(bp);
689 XFS_BUF_SET_ADDR(bp, daddr);
690 XFS_BUF_READ(bp);
691 XFS_BUF_BUSY(bp);
692
693 xfsbdstrat(mp, bp);
694 error = xfs_iowait(bp);
695 if (error || bp->b_error) {
696 xfs_buf_relse(bp);
697 return NULL;
698 }
699 return bp;
700}
701
1da177e4 702xfs_buf_t *
ce8e922c 703xfs_buf_get_empty(
1da177e4
LT
704 size_t len,
705 xfs_buftarg_t *target)
706{
ce8e922c 707 xfs_buf_t *bp;
1da177e4 708
ce8e922c
NS
709 bp = xfs_buf_allocate(0);
710 if (bp)
711 _xfs_buf_initialize(bp, target, 0, len, 0);
712 return bp;
1da177e4
LT
713}
714
715static inline struct page *
716mem_to_page(
717 void *addr)
718{
9e2779fa 719 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
720 return virt_to_page(addr);
721 } else {
722 return vmalloc_to_page(addr);
723 }
724}
725
726int
ce8e922c
NS
727xfs_buf_associate_memory(
728 xfs_buf_t *bp,
1da177e4
LT
729 void *mem,
730 size_t len)
731{
732 int rval;
733 int i = 0;
d1afb678
LM
734 unsigned long pageaddr;
735 unsigned long offset;
736 size_t buflen;
1da177e4
LT
737 int page_count;
738
d1afb678
LM
739 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
740 offset = (unsigned long)mem - pageaddr;
741 buflen = PAGE_CACHE_ALIGN(len + offset);
742 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
743
744 /* Free any previous set of page pointers */
ce8e922c
NS
745 if (bp->b_pages)
746 _xfs_buf_free_pages(bp);
1da177e4 747
ce8e922c
NS
748 bp->b_pages = NULL;
749 bp->b_addr = mem;
1da177e4 750
36fae17a 751 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
752 if (rval)
753 return rval;
754
ce8e922c 755 bp->b_offset = offset;
d1afb678
LM
756
757 for (i = 0; i < bp->b_page_count; i++) {
758 bp->b_pages[i] = mem_to_page((void *)pageaddr);
759 pageaddr += PAGE_CACHE_SIZE;
1da177e4 760 }
1da177e4 761
d1afb678
LM
762 bp->b_count_desired = len;
763 bp->b_buffer_length = buflen;
ce8e922c 764 bp->b_flags |= XBF_MAPPED;
6ab455ee 765 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
766
767 return 0;
768}
769
770xfs_buf_t *
686865f7
DC
771xfs_buf_get_uncached(
772 struct xfs_buftarg *target,
1da177e4 773 size_t len,
686865f7 774 int flags)
1da177e4 775{
1fa40b01
CH
776 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
777 int error, i;
1da177e4 778 xfs_buf_t *bp;
1da177e4 779
ce8e922c 780 bp = xfs_buf_allocate(0);
1da177e4
LT
781 if (unlikely(bp == NULL))
782 goto fail;
ce8e922c 783 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 784
1fa40b01
CH
785 error = _xfs_buf_get_pages(bp, page_count, 0);
786 if (error)
1da177e4
LT
787 goto fail_free_buf;
788
1fa40b01 789 for (i = 0; i < page_count; i++) {
686865f7 790 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
791 if (!bp->b_pages[i])
792 goto fail_free_mem;
1da177e4 793 }
1fa40b01 794 bp->b_flags |= _XBF_PAGES;
1da177e4 795
1fa40b01
CH
796 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
797 if (unlikely(error)) {
798 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 799 __func__);
1da177e4 800 goto fail_free_mem;
1fa40b01 801 }
1da177e4 802
ce8e922c 803 xfs_buf_unlock(bp);
1da177e4 804
686865f7 805 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 806 return bp;
1fa40b01 807
1da177e4 808 fail_free_mem:
1fa40b01
CH
809 while (--i >= 0)
810 __free_page(bp->b_pages[i]);
ca165b88 811 _xfs_buf_free_pages(bp);
1da177e4 812 fail_free_buf:
ca165b88 813 xfs_buf_deallocate(bp);
1da177e4
LT
814 fail:
815 return NULL;
816}
817
818/*
1da177e4
LT
819 * Increment reference count on buffer, to hold the buffer concurrently
820 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
821 * Must hold the buffer already to call this function.
822 */
823void
ce8e922c
NS
824xfs_buf_hold(
825 xfs_buf_t *bp)
1da177e4 826{
0b1b213f 827 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 828 atomic_inc(&bp->b_hold);
1da177e4
LT
829}
830
831/*
ce8e922c
NS
832 * Releases a hold on the specified buffer. If the
833 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
834 */
835void
ce8e922c
NS
836xfs_buf_rele(
837 xfs_buf_t *bp)
1da177e4 838{
74f75a0c 839 struct xfs_perag *pag = bp->b_pag;
1da177e4 840
0b1b213f 841 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 842
74f75a0c 843 if (!pag) {
fad3aa1e 844 ASSERT(!bp->b_relse);
74f75a0c 845 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
846 if (atomic_dec_and_test(&bp->b_hold))
847 xfs_buf_free(bp);
848 return;
849 }
850
74f75a0c 851 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
3790689f 852 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 853 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
ce8e922c
NS
854 if (bp->b_relse) {
855 atomic_inc(&bp->b_hold);
74f75a0c
DC
856 spin_unlock(&pag->pag_buf_lock);
857 bp->b_relse(bp);
1da177e4 858 } else {
ce8e922c 859 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
860 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
861 spin_unlock(&pag->pag_buf_lock);
862 xfs_perag_put(pag);
ce8e922c 863 xfs_buf_free(bp);
1da177e4
LT
864 }
865 }
866}
867
868
869/*
870 * Mutual exclusion on buffers. Locking model:
871 *
872 * Buffers associated with inodes for which buffer locking
873 * is not enabled are not protected by semaphores, and are
874 * assumed to be exclusively owned by the caller. There is a
875 * spinlock in the buffer, used by the caller when concurrent
876 * access is possible.
877 */
878
879/*
ce8e922c
NS
880 * Locks a buffer object, if it is not already locked.
881 * Note that this in no way locks the underlying pages, so it is only
882 * useful for synchronizing concurrent use of buffer objects, not for
883 * synchronizing independent access to the underlying pages.
1da177e4
LT
884 */
885int
ce8e922c
NS
886xfs_buf_cond_lock(
887 xfs_buf_t *bp)
1da177e4
LT
888{
889 int locked;
890
ce8e922c 891 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 892 if (locked)
ce8e922c 893 XB_SET_OWNER(bp);
0b1b213f
CH
894
895 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 896 return locked ? 0 : -EBUSY;
1da177e4
LT
897}
898
1da177e4 899int
ce8e922c
NS
900xfs_buf_lock_value(
901 xfs_buf_t *bp)
1da177e4 902{
adaa693b 903 return bp->b_sema.count;
1da177e4 904}
1da177e4
LT
905
906/*
ce8e922c
NS
907 * Locks a buffer object.
908 * Note that this in no way locks the underlying pages, so it is only
909 * useful for synchronizing concurrent use of buffer objects, not for
910 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
911 *
912 * If we come across a stale, pinned, locked buffer, we know that we
913 * are being asked to lock a buffer that has been reallocated. Because
914 * it is pinned, we know that the log has not been pushed to disk and
915 * hence it will still be locked. Rather than sleeping until someone
916 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 917 */
ce8e922c
NS
918void
919xfs_buf_lock(
920 xfs_buf_t *bp)
1da177e4 921{
0b1b213f
CH
922 trace_xfs_buf_lock(bp, _RET_IP_);
923
ed3b4d6c 924 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 925 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
926 if (atomic_read(&bp->b_io_remaining))
927 blk_run_address_space(bp->b_target->bt_mapping);
928 down(&bp->b_sema);
929 XB_SET_OWNER(bp);
0b1b213f
CH
930
931 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
932}
933
934/*
ce8e922c 935 * Releases the lock on the buffer object.
2f926587 936 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 937 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
938 * take a reference for the delwri queue because the unlocker is going to
939 * drop their's and they don't know we just queued it.
1da177e4
LT
940 */
941void
ce8e922c
NS
942xfs_buf_unlock(
943 xfs_buf_t *bp)
1da177e4 944{
ce8e922c
NS
945 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
946 atomic_inc(&bp->b_hold);
947 bp->b_flags |= XBF_ASYNC;
948 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
949 }
950
ce8e922c
NS
951 XB_CLEAR_OWNER(bp);
952 up(&bp->b_sema);
0b1b213f
CH
953
954 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
955}
956
ce8e922c
NS
957STATIC void
958xfs_buf_wait_unpin(
959 xfs_buf_t *bp)
1da177e4
LT
960{
961 DECLARE_WAITQUEUE (wait, current);
962
ce8e922c 963 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
964 return;
965
ce8e922c 966 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
967 for (;;) {
968 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 969 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 970 break;
ce8e922c
NS
971 if (atomic_read(&bp->b_io_remaining))
972 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
973 schedule();
974 }
ce8e922c 975 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
976 set_current_state(TASK_RUNNING);
977}
978
979/*
980 * Buffer Utility Routines
981 */
982
1da177e4 983STATIC void
ce8e922c 984xfs_buf_iodone_work(
c4028958 985 struct work_struct *work)
1da177e4 986{
c4028958
DH
987 xfs_buf_t *bp =
988 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 989
0bfefc46
DC
990 /*
991 * We can get an EOPNOTSUPP to ordered writes. Here we clear the
992 * ordered flag and reissue them. Because we can't tell the higher
993 * layers directly that they should not issue ordered I/O anymore, they
73f6aa4d 994 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
0bfefc46
DC
995 */
996 if ((bp->b_error == EOPNOTSUPP) &&
997 (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
0b1b213f 998 trace_xfs_buf_ordered_retry(bp, _RET_IP_);
0bfefc46 999 bp->b_flags &= ~XBF_ORDERED;
73f6aa4d 1000 bp->b_flags |= _XFS_BARRIER_FAILED;
0bfefc46
DC
1001 xfs_buf_iorequest(bp);
1002 } else if (bp->b_iodone)
ce8e922c
NS
1003 (*(bp->b_iodone))(bp);
1004 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1005 xfs_buf_relse(bp);
1006}
1007
1008void
ce8e922c
NS
1009xfs_buf_ioend(
1010 xfs_buf_t *bp,
1da177e4
LT
1011 int schedule)
1012{
0b1b213f
CH
1013 trace_xfs_buf_iodone(bp, _RET_IP_);
1014
77be55a5 1015 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1016 if (bp->b_error == 0)
1017 bp->b_flags |= XBF_DONE;
1da177e4 1018
ce8e922c 1019 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1020 if (schedule) {
c4028958 1021 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1022 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1023 } else {
c4028958 1024 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1025 }
1026 } else {
b4dd330b 1027 complete(&bp->b_iowait);
1da177e4
LT
1028 }
1029}
1030
1da177e4 1031void
ce8e922c
NS
1032xfs_buf_ioerror(
1033 xfs_buf_t *bp,
1034 int error)
1da177e4
LT
1035{
1036 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1037 bp->b_error = (unsigned short)error;
0b1b213f 1038 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1039}
1040
1da177e4 1041int
64e0bc7d
CH
1042xfs_bwrite(
1043 struct xfs_mount *mp,
5d765b97 1044 struct xfs_buf *bp)
1da177e4 1045{
8c38366f 1046 int error;
1da177e4 1047
64e0bc7d 1048 bp->b_flags |= XBF_WRITE;
8c38366f 1049 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1050
5d765b97 1051 xfs_buf_delwri_dequeue(bp);
939d723b 1052 xfs_bdstrat_cb(bp);
1da177e4 1053
8c38366f
CH
1054 error = xfs_buf_iowait(bp);
1055 if (error)
1056 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1057 xfs_buf_relse(bp);
64e0bc7d 1058 return error;
5d765b97 1059}
1da177e4 1060
5d765b97
CH
1061void
1062xfs_bdwrite(
1063 void *mp,
1064 struct xfs_buf *bp)
1065{
0b1b213f 1066 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1067
5d765b97
CH
1068 bp->b_flags &= ~XBF_READ;
1069 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1070
1071 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1072}
1073
4e23471a
CH
1074/*
1075 * Called when we want to stop a buffer from getting written or read.
1076 * We attach the EIO error, muck with its flags, and call biodone
1077 * so that the proper iodone callbacks get called.
1078 */
1079STATIC int
1080xfs_bioerror(
1081 xfs_buf_t *bp)
1082{
1083#ifdef XFSERRORDEBUG
1084 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1085#endif
1086
1087 /*
1088 * No need to wait until the buffer is unpinned, we aren't flushing it.
1089 */
1090 XFS_BUF_ERROR(bp, EIO);
1091
1092 /*
1093 * We're calling biodone, so delete XBF_DONE flag.
1094 */
1095 XFS_BUF_UNREAD(bp);
1096 XFS_BUF_UNDELAYWRITE(bp);
1097 XFS_BUF_UNDONE(bp);
1098 XFS_BUF_STALE(bp);
1099
4e23471a
CH
1100 xfs_biodone(bp);
1101
1102 return EIO;
1103}
1104
1105/*
1106 * Same as xfs_bioerror, except that we are releasing the buffer
1107 * here ourselves, and avoiding the biodone call.
1108 * This is meant for userdata errors; metadata bufs come with
1109 * iodone functions attached, so that we can track down errors.
1110 */
1111STATIC int
1112xfs_bioerror_relse(
1113 struct xfs_buf *bp)
1114{
1115 int64_t fl = XFS_BUF_BFLAGS(bp);
1116 /*
1117 * No need to wait until the buffer is unpinned.
1118 * We aren't flushing it.
1119 *
1120 * chunkhold expects B_DONE to be set, whether
1121 * we actually finish the I/O or not. We don't want to
1122 * change that interface.
1123 */
1124 XFS_BUF_UNREAD(bp);
1125 XFS_BUF_UNDELAYWRITE(bp);
1126 XFS_BUF_DONE(bp);
1127 XFS_BUF_STALE(bp);
1128 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1129 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1130 /*
1131 * Mark b_error and B_ERROR _both_.
1132 * Lot's of chunkcache code assumes that.
1133 * There's no reason to mark error for
1134 * ASYNC buffers.
1135 */
1136 XFS_BUF_ERROR(bp, EIO);
1137 XFS_BUF_FINISH_IOWAIT(bp);
1138 } else {
1139 xfs_buf_relse(bp);
1140 }
1141
1142 return EIO;
1143}
1144
1145
1146/*
1147 * All xfs metadata buffers except log state machine buffers
1148 * get this attached as their b_bdstrat callback function.
1149 * This is so that we can catch a buffer
1150 * after prematurely unpinning it to forcibly shutdown the filesystem.
1151 */
1152int
1153xfs_bdstrat_cb(
1154 struct xfs_buf *bp)
1155{
ebad861b 1156 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1157 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1158 /*
1159 * Metadata write that didn't get logged but
1160 * written delayed anyway. These aren't associated
1161 * with a transaction, and can be ignored.
1162 */
1163 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1164 return xfs_bioerror_relse(bp);
1165 else
1166 return xfs_bioerror(bp);
1167 }
1168
1169 xfs_buf_iorequest(bp);
1170 return 0;
1171}
1172
1173/*
1174 * Wrapper around bdstrat so that we can stop data from going to disk in case
1175 * we are shutting down the filesystem. Typically user data goes thru this
1176 * path; one of the exceptions is the superblock.
1177 */
1178void
1179xfsbdstrat(
1180 struct xfs_mount *mp,
1181 struct xfs_buf *bp)
1182{
1183 if (XFS_FORCED_SHUTDOWN(mp)) {
1184 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1185 xfs_bioerror_relse(bp);
1186 return;
1187 }
1188
1189 xfs_buf_iorequest(bp);
1190}
1191
b8f82a4a 1192STATIC void
ce8e922c
NS
1193_xfs_buf_ioend(
1194 xfs_buf_t *bp,
1da177e4
LT
1195 int schedule)
1196{
6ab455ee
CH
1197 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1198 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1199 xfs_buf_ioend(bp, schedule);
6ab455ee 1200 }
1da177e4
LT
1201}
1202
782e3b3b 1203STATIC void
ce8e922c 1204xfs_buf_bio_end_io(
1da177e4 1205 struct bio *bio,
1da177e4
LT
1206 int error)
1207{
ce8e922c
NS
1208 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1209 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1210 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1211
cfbe5267 1212 xfs_buf_ioerror(bp, -error);
1da177e4 1213
73c77e2c
JB
1214 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1215 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1216
eedb5530 1217 do {
1da177e4
LT
1218 struct page *page = bvec->bv_page;
1219
948ecdb4 1220 ASSERT(!PagePrivate(page));
ce8e922c
NS
1221 if (unlikely(bp->b_error)) {
1222 if (bp->b_flags & XBF_READ)
eedb5530 1223 ClearPageUptodate(page);
ce8e922c 1224 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1225 SetPageUptodate(page);
1226 } else if (!PagePrivate(page) &&
ce8e922c 1227 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1228 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1229 }
1230
eedb5530
NS
1231 if (--bvec >= bio->bi_io_vec)
1232 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1233
1234 if (bp->b_flags & _XBF_PAGE_LOCKED)
1235 unlock_page(page);
eedb5530 1236 } while (bvec >= bio->bi_io_vec);
1da177e4 1237
ce8e922c 1238 _xfs_buf_ioend(bp, 1);
1da177e4 1239 bio_put(bio);
1da177e4
LT
1240}
1241
1242STATIC void
ce8e922c
NS
1243_xfs_buf_ioapply(
1244 xfs_buf_t *bp)
1da177e4 1245{
a9759f2d 1246 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1247 struct bio *bio;
ce8e922c
NS
1248 int offset = bp->b_offset;
1249 int size = bp->b_count_desired;
1250 sector_t sector = bp->b_bn;
1251 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1252
ce8e922c 1253 total_nr_pages = bp->b_page_count;
1da177e4
LT
1254 map_i = 0;
1255
ce8e922c
NS
1256 if (bp->b_flags & XBF_ORDERED) {
1257 ASSERT(!(bp->b_flags & XBF_READ));
f538d4da 1258 rw = WRITE_BARRIER;
2ee1abad 1259 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1260 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1261 bp->b_flags &= ~_XBF_RUN_QUEUES;
1262 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1263 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1264 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1265 bp->b_flags &= ~_XBF_RUN_QUEUES;
1266 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1267 } else {
1268 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1269 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1270 }
1271
ce8e922c 1272 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1273 * we populate up the whole page, and hence the other metadata
1274 * in the same page. This optimization is only valid when the
ce8e922c 1275 * filesystem block size is not smaller than the page size.
1da177e4 1276 */
ce8e922c 1277 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1278 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1279 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1280 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1281 bio = bio_alloc(GFP_NOIO, 1);
1282
ce8e922c 1283 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1284 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1285 bio->bi_end_io = xfs_buf_bio_end_io;
1286 bio->bi_private = bp;
1da177e4 1287
ce8e922c 1288 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1289 size = 0;
1290
ce8e922c 1291 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1292
1293 goto submit_io;
1294 }
1295
1da177e4 1296next_chunk:
ce8e922c 1297 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1298 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1299 if (nr_pages > total_nr_pages)
1300 nr_pages = total_nr_pages;
1301
1302 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1303 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1304 bio->bi_sector = sector;
ce8e922c
NS
1305 bio->bi_end_io = xfs_buf_bio_end_io;
1306 bio->bi_private = bp;
1da177e4
LT
1307
1308 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1309 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1310
1311 if (nbytes > size)
1312 nbytes = size;
1313
ce8e922c
NS
1314 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1315 if (rbytes < nbytes)
1da177e4
LT
1316 break;
1317
1318 offset = 0;
1319 sector += nbytes >> BBSHIFT;
1320 size -= nbytes;
1321 total_nr_pages--;
1322 }
1323
1324submit_io:
1325 if (likely(bio->bi_size)) {
73c77e2c
JB
1326 if (xfs_buf_is_vmapped(bp)) {
1327 flush_kernel_vmap_range(bp->b_addr,
1328 xfs_buf_vmap_len(bp));
1329 }
1da177e4
LT
1330 submit_bio(rw, bio);
1331 if (size)
1332 goto next_chunk;
1333 } else {
ec53d1db
DC
1334 /*
1335 * if we get here, no pages were added to the bio. However,
1336 * we can't just error out here - if the pages are locked then
1337 * we have to unlock them otherwise we can hang on a later
1338 * access to the page.
1339 */
ce8e922c 1340 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1341 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1342 int i;
1343 for (i = 0; i < bp->b_page_count; i++)
1344 unlock_page(bp->b_pages[i]);
1345 }
1346 bio_put(bio);
1da177e4
LT
1347 }
1348}
1349
1da177e4 1350int
ce8e922c
NS
1351xfs_buf_iorequest(
1352 xfs_buf_t *bp)
1da177e4 1353{
0b1b213f 1354 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1355
ce8e922c
NS
1356 if (bp->b_flags & XBF_DELWRI) {
1357 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1358 return 0;
1359 }
1360
ce8e922c
NS
1361 if (bp->b_flags & XBF_WRITE) {
1362 xfs_buf_wait_unpin(bp);
1da177e4
LT
1363 }
1364
ce8e922c 1365 xfs_buf_hold(bp);
1da177e4
LT
1366
1367 /* Set the count to 1 initially, this will stop an I/O
1368 * completion callout which happens before we have started
ce8e922c 1369 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1370 */
ce8e922c
NS
1371 atomic_set(&bp->b_io_remaining, 1);
1372 _xfs_buf_ioapply(bp);
1373 _xfs_buf_ioend(bp, 0);
1da177e4 1374
ce8e922c 1375 xfs_buf_rele(bp);
1da177e4
LT
1376 return 0;
1377}
1378
1379/*
ce8e922c
NS
1380 * Waits for I/O to complete on the buffer supplied.
1381 * It returns immediately if no I/O is pending.
1382 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1383 */
1384int
ce8e922c
NS
1385xfs_buf_iowait(
1386 xfs_buf_t *bp)
1da177e4 1387{
0b1b213f
CH
1388 trace_xfs_buf_iowait(bp, _RET_IP_);
1389
ce8e922c
NS
1390 if (atomic_read(&bp->b_io_remaining))
1391 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1392 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1393
1394 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1395 return bp->b_error;
1da177e4
LT
1396}
1397
ce8e922c
NS
1398xfs_caddr_t
1399xfs_buf_offset(
1400 xfs_buf_t *bp,
1da177e4
LT
1401 size_t offset)
1402{
1403 struct page *page;
1404
ce8e922c
NS
1405 if (bp->b_flags & XBF_MAPPED)
1406 return XFS_BUF_PTR(bp) + offset;
1da177e4 1407
ce8e922c
NS
1408 offset += bp->b_offset;
1409 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1410 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1411}
1412
1413/*
1da177e4
LT
1414 * Move data into or out of a buffer.
1415 */
1416void
ce8e922c
NS
1417xfs_buf_iomove(
1418 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1419 size_t boff, /* starting buffer offset */
1420 size_t bsize, /* length to copy */
b9c48649 1421 void *data, /* data address */
ce8e922c 1422 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1423{
1424 size_t bend, cpoff, csize;
1425 struct page *page;
1426
1427 bend = boff + bsize;
1428 while (boff < bend) {
ce8e922c
NS
1429 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1430 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1431 csize = min_t(size_t,
ce8e922c 1432 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1433
1434 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1435
1436 switch (mode) {
ce8e922c 1437 case XBRW_ZERO:
1da177e4
LT
1438 memset(page_address(page) + cpoff, 0, csize);
1439 break;
ce8e922c 1440 case XBRW_READ:
1da177e4
LT
1441 memcpy(data, page_address(page) + cpoff, csize);
1442 break;
ce8e922c 1443 case XBRW_WRITE:
1da177e4
LT
1444 memcpy(page_address(page) + cpoff, data, csize);
1445 }
1446
1447 boff += csize;
1448 data += csize;
1449 }
1450}
1451
1452/*
ce8e922c 1453 * Handling of buffer targets (buftargs).
1da177e4
LT
1454 */
1455
1456/*
ce8e922c
NS
1457 * Wait for any bufs with callbacks that have been submitted but
1458 * have not yet returned... walk the hash list for the target.
1da177e4
LT
1459 */
1460void
1461xfs_wait_buftarg(
74f75a0c 1462 struct xfs_buftarg *btp)
1da177e4 1463{
74f75a0c
DC
1464 struct xfs_perag *pag;
1465 uint i;
1466
1467 for (i = 0; i < btp->bt_mount->m_sb.sb_agcount; i++) {
1468 pag = xfs_perag_get(btp->bt_mount, i);
1469 spin_lock(&pag->pag_buf_lock);
1470 while (rb_first(&pag->pag_buf_tree)) {
1471 spin_unlock(&pag->pag_buf_lock);
26af6552 1472 delay(100);
74f75a0c 1473 spin_lock(&pag->pag_buf_lock);
1da177e4 1474 }
74f75a0c
DC
1475 spin_unlock(&pag->pag_buf_lock);
1476 xfs_perag_put(pag);
1da177e4
LT
1477 }
1478}
1479
a6867a68 1480/*
ce8e922c 1481 * buftarg list for delwrite queue processing
a6867a68 1482 */
e6a0e9cd 1483static LIST_HEAD(xfs_buftarg_list);
7989cb8e 1484static DEFINE_SPINLOCK(xfs_buftarg_lock);
a6867a68
DC
1485
1486STATIC void
1487xfs_register_buftarg(
1488 xfs_buftarg_t *btp)
1489{
1490 spin_lock(&xfs_buftarg_lock);
1491 list_add(&btp->bt_list, &xfs_buftarg_list);
1492 spin_unlock(&xfs_buftarg_lock);
1493}
1494
1495STATIC void
1496xfs_unregister_buftarg(
1497 xfs_buftarg_t *btp)
1498{
1499 spin_lock(&xfs_buftarg_lock);
1500 list_del(&btp->bt_list);
1501 spin_unlock(&xfs_buftarg_lock);
1502}
1503
1da177e4
LT
1504void
1505xfs_free_buftarg(
b7963133
CH
1506 struct xfs_mount *mp,
1507 struct xfs_buftarg *btp)
1da177e4
LT
1508{
1509 xfs_flush_buftarg(btp, 1);
b7963133
CH
1510 if (mp->m_flags & XFS_MOUNT_BARRIER)
1511 xfs_blkdev_issue_flush(btp);
ce8e922c 1512 iput(btp->bt_mapping->host);
a6867a68 1513
ce8e922c
NS
1514 /* Unregister the buftarg first so that we don't get a
1515 * wakeup finding a non-existent task
1516 */
a6867a68
DC
1517 xfs_unregister_buftarg(btp);
1518 kthread_stop(btp->bt_task);
1519
f0e2d93c 1520 kmem_free(btp);
1da177e4
LT
1521}
1522
1da177e4
LT
1523STATIC int
1524xfs_setsize_buftarg_flags(
1525 xfs_buftarg_t *btp,
1526 unsigned int blocksize,
1527 unsigned int sectorsize,
1528 int verbose)
1529{
ce8e922c
NS
1530 btp->bt_bsize = blocksize;
1531 btp->bt_sshift = ffs(sectorsize) - 1;
1532 btp->bt_smask = sectorsize - 1;
1da177e4 1533
ce8e922c 1534 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1535 printk(KERN_WARNING
1536 "XFS: Cannot set_blocksize to %u on device %s\n",
1537 sectorsize, XFS_BUFTARG_NAME(btp));
1538 return EINVAL;
1539 }
1540
1541 if (verbose &&
1542 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1543 printk(KERN_WARNING
1544 "XFS: %u byte sectors in use on device %s. "
1545 "This is suboptimal; %u or greater is ideal.\n",
1546 sectorsize, XFS_BUFTARG_NAME(btp),
1547 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1548 }
1549
1550 return 0;
1551}
1552
1553/*
ce8e922c
NS
1554 * When allocating the initial buffer target we have not yet
1555 * read in the superblock, so don't know what sized sectors
1556 * are being used is at this early stage. Play safe.
1557 */
1da177e4
LT
1558STATIC int
1559xfs_setsize_buftarg_early(
1560 xfs_buftarg_t *btp,
1561 struct block_device *bdev)
1562{
1563 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1564 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1565}
1566
1567int
1568xfs_setsize_buftarg(
1569 xfs_buftarg_t *btp,
1570 unsigned int blocksize,
1571 unsigned int sectorsize)
1572{
1573 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1574}
1575
1576STATIC int
1577xfs_mapping_buftarg(
1578 xfs_buftarg_t *btp,
1579 struct block_device *bdev)
1580{
1581 struct backing_dev_info *bdi;
1582 struct inode *inode;
1583 struct address_space *mapping;
f5e54d6e 1584 static const struct address_space_operations mapping_aops = {
1da177e4 1585 .sync_page = block_sync_page,
e965f963 1586 .migratepage = fail_migrate_page,
1da177e4
LT
1587 };
1588
1589 inode = new_inode(bdev->bd_inode->i_sb);
1590 if (!inode) {
1591 printk(KERN_WARNING
1592 "XFS: Cannot allocate mapping inode for device %s\n",
1593 XFS_BUFTARG_NAME(btp));
1594 return ENOMEM;
1595 }
1596 inode->i_mode = S_IFBLK;
1597 inode->i_bdev = bdev;
1598 inode->i_rdev = bdev->bd_dev;
1599 bdi = blk_get_backing_dev_info(bdev);
1600 if (!bdi)
1601 bdi = &default_backing_dev_info;
1602 mapping = &inode->i_data;
1603 mapping->a_ops = &mapping_aops;
1604 mapping->backing_dev_info = bdi;
1605 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1606 btp->bt_mapping = mapping;
1da177e4
LT
1607 return 0;
1608}
1609
a6867a68
DC
1610STATIC int
1611xfs_alloc_delwrite_queue(
e2a07812
JE
1612 xfs_buftarg_t *btp,
1613 const char *fsname)
a6867a68
DC
1614{
1615 int error = 0;
1616
1617 INIT_LIST_HEAD(&btp->bt_list);
1618 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1619 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1620 btp->bt_flags = 0;
e2a07812 1621 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
a6867a68
DC
1622 if (IS_ERR(btp->bt_task)) {
1623 error = PTR_ERR(btp->bt_task);
1624 goto out_error;
1625 }
1626 xfs_register_buftarg(btp);
1627out_error:
1628 return error;
1629}
1630
1da177e4
LT
1631xfs_buftarg_t *
1632xfs_alloc_buftarg(
ebad861b 1633 struct xfs_mount *mp,
1da177e4 1634 struct block_device *bdev,
e2a07812
JE
1635 int external,
1636 const char *fsname)
1da177e4
LT
1637{
1638 xfs_buftarg_t *btp;
1639
1640 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1641
ebad861b 1642 btp->bt_mount = mp;
ce8e922c
NS
1643 btp->bt_dev = bdev->bd_dev;
1644 btp->bt_bdev = bdev;
1da177e4
LT
1645 if (xfs_setsize_buftarg_early(btp, bdev))
1646 goto error;
1647 if (xfs_mapping_buftarg(btp, bdev))
1648 goto error;
e2a07812 1649 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1650 goto error;
1da177e4
LT
1651 return btp;
1652
1653error:
f0e2d93c 1654 kmem_free(btp);
1da177e4
LT
1655 return NULL;
1656}
1657
1658
1659/*
ce8e922c 1660 * Delayed write buffer handling
1da177e4 1661 */
1da177e4 1662STATIC void
ce8e922c
NS
1663xfs_buf_delwri_queue(
1664 xfs_buf_t *bp,
1da177e4
LT
1665 int unlock)
1666{
ce8e922c
NS
1667 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1668 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1669
0b1b213f
CH
1670 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1671
ce8e922c 1672 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1673
a6867a68 1674 spin_lock(dwlk);
1da177e4 1675 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1676 if (!list_empty(&bp->b_list)) {
1677 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1678 if (unlock)
1679 atomic_dec(&bp->b_hold);
1680 list_del(&bp->b_list);
1da177e4
LT
1681 }
1682
c9c12971
DC
1683 if (list_empty(dwq)) {
1684 /* start xfsbufd as it is about to have something to do */
1685 wake_up_process(bp->b_target->bt_task);
1686 }
1687
ce8e922c
NS
1688 bp->b_flags |= _XBF_DELWRI_Q;
1689 list_add_tail(&bp->b_list, dwq);
1690 bp->b_queuetime = jiffies;
a6867a68 1691 spin_unlock(dwlk);
1da177e4
LT
1692
1693 if (unlock)
ce8e922c 1694 xfs_buf_unlock(bp);
1da177e4
LT
1695}
1696
1697void
ce8e922c
NS
1698xfs_buf_delwri_dequeue(
1699 xfs_buf_t *bp)
1da177e4 1700{
ce8e922c 1701 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1702 int dequeued = 0;
1703
a6867a68 1704 spin_lock(dwlk);
ce8e922c
NS
1705 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1706 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1707 list_del_init(&bp->b_list);
1da177e4
LT
1708 dequeued = 1;
1709 }
ce8e922c 1710 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1711 spin_unlock(dwlk);
1da177e4
LT
1712
1713 if (dequeued)
ce8e922c 1714 xfs_buf_rele(bp);
1da177e4 1715
0b1b213f 1716 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1717}
1718
d808f617
DC
1719/*
1720 * If a delwri buffer needs to be pushed before it has aged out, then promote
1721 * it to the head of the delwri queue so that it will be flushed on the next
1722 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1723 * than the age currently needed to flush the buffer. Hence the next time the
1724 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1725 */
1726void
1727xfs_buf_delwri_promote(
1728 struct xfs_buf *bp)
1729{
1730 struct xfs_buftarg *btp = bp->b_target;
1731 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1732
1733 ASSERT(bp->b_flags & XBF_DELWRI);
1734 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1735
1736 /*
1737 * Check the buffer age before locking the delayed write queue as we
1738 * don't need to promote buffers that are already past the flush age.
1739 */
1740 if (bp->b_queuetime < jiffies - age)
1741 return;
1742 bp->b_queuetime = jiffies - age;
1743 spin_lock(&btp->bt_delwrite_lock);
1744 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1745 spin_unlock(&btp->bt_delwrite_lock);
1746}
1747
1da177e4 1748STATIC void
ce8e922c 1749xfs_buf_runall_queues(
1da177e4
LT
1750 struct workqueue_struct *queue)
1751{
1752 flush_workqueue(queue);
1753}
1754
1da177e4 1755STATIC int
23ea4032 1756xfsbufd_wakeup(
7f8275d0 1757 struct shrinker *shrink,
15c84a47
NS
1758 int priority,
1759 gfp_t mask)
1da177e4 1760{
da7f93e9 1761 xfs_buftarg_t *btp;
a6867a68
DC
1762
1763 spin_lock(&xfs_buftarg_lock);
da7f93e9 1764 list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
ce8e922c 1765 if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
a6867a68 1766 continue;
c9c12971
DC
1767 if (list_empty(&btp->bt_delwrite_queue))
1768 continue;
ce8e922c 1769 set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
a6867a68
DC
1770 wake_up_process(btp->bt_task);
1771 }
1772 spin_unlock(&xfs_buftarg_lock);
1da177e4
LT
1773 return 0;
1774}
1775
585e6d88
DC
1776/*
1777 * Move as many buffers as specified to the supplied list
1778 * idicating if we skipped any buffers to prevent deadlocks.
1779 */
1780STATIC int
1781xfs_buf_delwri_split(
1782 xfs_buftarg_t *target,
1783 struct list_head *list,
5e6a07df 1784 unsigned long age)
585e6d88
DC
1785{
1786 xfs_buf_t *bp, *n;
1787 struct list_head *dwq = &target->bt_delwrite_queue;
1788 spinlock_t *dwlk = &target->bt_delwrite_lock;
1789 int skipped = 0;
5e6a07df 1790 int force;
585e6d88 1791
5e6a07df 1792 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1793 INIT_LIST_HEAD(list);
1794 spin_lock(dwlk);
1795 list_for_each_entry_safe(bp, n, dwq, b_list) {
0b1b213f 1796 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1797 ASSERT(bp->b_flags & XBF_DELWRI);
1798
4d16e924 1799 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1800 if (!force &&
585e6d88
DC
1801 time_before(jiffies, bp->b_queuetime + age)) {
1802 xfs_buf_unlock(bp);
1803 break;
1804 }
1805
1806 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1807 _XBF_RUN_QUEUES);
1808 bp->b_flags |= XBF_WRITE;
1809 list_move_tail(&bp->b_list, list);
1810 } else
1811 skipped++;
1812 }
1813 spin_unlock(dwlk);
1814
1815 return skipped;
1816
1817}
1818
089716aa
DC
1819/*
1820 * Compare function is more complex than it needs to be because
1821 * the return value is only 32 bits and we are doing comparisons
1822 * on 64 bit values
1823 */
1824static int
1825xfs_buf_cmp(
1826 void *priv,
1827 struct list_head *a,
1828 struct list_head *b)
1829{
1830 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1831 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1832 xfs_daddr_t diff;
1833
1834 diff = ap->b_bn - bp->b_bn;
1835 if (diff < 0)
1836 return -1;
1837 if (diff > 0)
1838 return 1;
1839 return 0;
1840}
1841
1842void
1843xfs_buf_delwri_sort(
1844 xfs_buftarg_t *target,
1845 struct list_head *list)
1846{
1847 list_sort(NULL, list, xfs_buf_cmp);
1848}
1849
1da177e4 1850STATIC int
23ea4032 1851xfsbufd(
585e6d88 1852 void *data)
1da177e4 1853{
089716aa 1854 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1855
1da177e4
LT
1856 current->flags |= PF_MEMALLOC;
1857
978c7b2f
RW
1858 set_freezable();
1859
1da177e4 1860 do {
c9c12971
DC
1861 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1862 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1863 int count = 0;
1864 struct list_head tmp;
c9c12971 1865
3e1d1d28 1866 if (unlikely(freezing(current))) {
ce8e922c 1867 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1868 refrigerator();
abd0cf7a 1869 } else {
ce8e922c 1870 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1871 }
1da177e4 1872
c9c12971
DC
1873 /* sleep for a long time if there is nothing to do. */
1874 if (list_empty(&target->bt_delwrite_queue))
1875 tout = MAX_SCHEDULE_TIMEOUT;
1876 schedule_timeout_interruptible(tout);
1da177e4 1877
c9c12971 1878 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1879 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1880 while (!list_empty(&tmp)) {
089716aa
DC
1881 struct xfs_buf *bp;
1882 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1883 list_del_init(&bp->b_list);
939d723b 1884 xfs_bdstrat_cb(bp);
585e6d88 1885 count++;
1da177e4 1886 }
f07c2250
NS
1887 if (count)
1888 blk_run_address_space(target->bt_mapping);
1da177e4 1889
4df08c52 1890 } while (!kthread_should_stop());
1da177e4 1891
4df08c52 1892 return 0;
1da177e4
LT
1893}
1894
1895/*
ce8e922c
NS
1896 * Go through all incore buffers, and release buffers if they belong to
1897 * the given device. This is used in filesystem error handling to
1898 * preserve the consistency of its metadata.
1da177e4
LT
1899 */
1900int
1901xfs_flush_buftarg(
585e6d88
DC
1902 xfs_buftarg_t *target,
1903 int wait)
1da177e4 1904{
089716aa 1905 xfs_buf_t *bp;
585e6d88 1906 int pincount = 0;
089716aa
DC
1907 LIST_HEAD(tmp_list);
1908 LIST_HEAD(wait_list);
1da177e4 1909
c626d174 1910 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1911 xfs_buf_runall_queues(xfsdatad_workqueue);
1912 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1913
5e6a07df 1914 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1915 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1916
1917 /*
089716aa
DC
1918 * Dropped the delayed write list lock, now walk the temporary list.
1919 * All I/O is issued async and then if we need to wait for completion
1920 * we do that after issuing all the IO.
1da177e4 1921 */
089716aa
DC
1922 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1923 while (!list_empty(&tmp_list)) {
1924 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1925 ASSERT(target == bp->b_target);
089716aa
DC
1926 list_del_init(&bp->b_list);
1927 if (wait) {
ce8e922c 1928 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1929 list_add(&bp->b_list, &wait_list);
1930 }
939d723b 1931 xfs_bdstrat_cb(bp);
1da177e4
LT
1932 }
1933
089716aa
DC
1934 if (wait) {
1935 /* Expedite and wait for IO to complete. */
f07c2250 1936 blk_run_address_space(target->bt_mapping);
089716aa
DC
1937 while (!list_empty(&wait_list)) {
1938 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 1939
089716aa
DC
1940 list_del_init(&bp->b_list);
1941 xfs_iowait(bp);
1942 xfs_buf_relse(bp);
1943 }
1da177e4
LT
1944 }
1945
1da177e4
LT
1946 return pincount;
1947}
1948
04d8b284 1949int __init
ce8e922c 1950xfs_buf_init(void)
1da177e4 1951{
8758280f
NS
1952 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1953 KM_ZONE_HWALIGN, NULL);
ce8e922c 1954 if (!xfs_buf_zone)
0b1b213f 1955 goto out;
04d8b284 1956
51749e47
DC
1957 xfslogd_workqueue = alloc_workqueue("xfslogd",
1958 WQ_RESCUER | WQ_HIGHPRI, 1);
23ea4032 1959 if (!xfslogd_workqueue)
04d8b284 1960 goto out_free_buf_zone;
1da177e4 1961
b4337692 1962 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
1963 if (!xfsdatad_workqueue)
1964 goto out_destroy_xfslogd_workqueue;
1da177e4 1965
c626d174
DC
1966 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
1967 if (!xfsconvertd_workqueue)
1968 goto out_destroy_xfsdatad_workqueue;
1969
8e1f936b 1970 register_shrinker(&xfs_buf_shake);
23ea4032 1971 return 0;
1da177e4 1972
c626d174
DC
1973 out_destroy_xfsdatad_workqueue:
1974 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
1975 out_destroy_xfslogd_workqueue:
1976 destroy_workqueue(xfslogd_workqueue);
23ea4032 1977 out_free_buf_zone:
ce8e922c 1978 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 1979 out:
8758280f 1980 return -ENOMEM;
1da177e4
LT
1981}
1982
1da177e4 1983void
ce8e922c 1984xfs_buf_terminate(void)
1da177e4 1985{
8e1f936b 1986 unregister_shrinker(&xfs_buf_shake);
c626d174 1987 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
1988 destroy_workqueue(xfsdatad_workqueue);
1989 destroy_workqueue(xfslogd_workqueue);
ce8e922c 1990 kmem_zone_destroy(xfs_buf_zone);
1da177e4 1991}
e6a0e9cd
TS
1992
1993#ifdef CONFIG_KDB_MODULES
1994struct list_head *
1995xfs_get_buftarg_list(void)
1996{
1997 return &xfs_buftarg_list;
1998}
1999#endif
This page took 0.585998 seconds and 5 git commands to generate.