xfs: add FITRIM support
[deliverable/linux.git] / fs / xfs / linux-2.6 / xfs_buf.c
CommitLineData
1da177e4 1/*
f07c2250 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
93c189c1 18#include "xfs.h"
1da177e4
LT
19#include <linux/stddef.h>
20#include <linux/errno.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/pagemap.h>
23#include <linux/init.h>
24#include <linux/vmalloc.h>
25#include <linux/bio.h>
26#include <linux/sysctl.h>
27#include <linux/proc_fs.h>
28#include <linux/workqueue.h>
29#include <linux/percpu.h>
30#include <linux/blkdev.h>
31#include <linux/hash.h>
4df08c52 32#include <linux/kthread.h>
b20a3503 33#include <linux/migrate.h>
3fcfab16 34#include <linux/backing-dev.h>
7dfb7103 35#include <linux/freezer.h>
089716aa 36#include <linux/list_sort.h>
1da177e4 37
b7963133
CH
38#include "xfs_sb.h"
39#include "xfs_inum.h"
ed3b4d6c 40#include "xfs_log.h"
b7963133 41#include "xfs_ag.h"
b7963133 42#include "xfs_mount.h"
0b1b213f 43#include "xfs_trace.h"
b7963133 44
7989cb8e 45static kmem_zone_t *xfs_buf_zone;
a6867a68 46STATIC int xfsbufd(void *);
ce8e922c 47STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
23ea4032 48
7989cb8e 49static struct workqueue_struct *xfslogd_workqueue;
0829c360 50struct workqueue_struct *xfsdatad_workqueue;
c626d174 51struct workqueue_struct *xfsconvertd_workqueue;
1da177e4 52
ce8e922c
NS
53#ifdef XFS_BUF_LOCK_TRACKING
54# define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
55# define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
56# define XB_GET_OWNER(bp) ((bp)->b_last_holder)
1da177e4 57#else
ce8e922c
NS
58# define XB_SET_OWNER(bp) do { } while (0)
59# define XB_CLEAR_OWNER(bp) do { } while (0)
60# define XB_GET_OWNER(bp) do { } while (0)
1da177e4
LT
61#endif
62
ce8e922c
NS
63#define xb_to_gfp(flags) \
64 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
65 ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
1da177e4 66
ce8e922c
NS
67#define xb_to_km(flags) \
68 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
1da177e4 69
ce8e922c
NS
70#define xfs_buf_allocate(flags) \
71 kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
72#define xfs_buf_deallocate(bp) \
73 kmem_zone_free(xfs_buf_zone, (bp));
1da177e4 74
73c77e2c
JB
75static inline int
76xfs_buf_is_vmapped(
77 struct xfs_buf *bp)
78{
79 /*
80 * Return true if the buffer is vmapped.
81 *
82 * The XBF_MAPPED flag is set if the buffer should be mapped, but the
83 * code is clever enough to know it doesn't have to map a single page,
84 * so the check has to be both for XBF_MAPPED and bp->b_page_count > 1.
85 */
86 return (bp->b_flags & XBF_MAPPED) && bp->b_page_count > 1;
87}
88
89static inline int
90xfs_buf_vmap_len(
91 struct xfs_buf *bp)
92{
93 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
94}
95
1da177e4 96/*
ce8e922c 97 * Page Region interfaces.
1da177e4 98 *
ce8e922c
NS
99 * For pages in filesystems where the blocksize is smaller than the
100 * pagesize, we use the page->private field (long) to hold a bitmap
101 * of uptodate regions within the page.
1da177e4 102 *
ce8e922c 103 * Each such region is "bytes per page / bits per long" bytes long.
1da177e4 104 *
ce8e922c
NS
105 * NBPPR == number-of-bytes-per-page-region
106 * BTOPR == bytes-to-page-region (rounded up)
107 * BTOPRT == bytes-to-page-region-truncated (rounded down)
1da177e4
LT
108 */
109#if (BITS_PER_LONG == 32)
110#define PRSHIFT (PAGE_CACHE_SHIFT - 5) /* (32 == 1<<5) */
111#elif (BITS_PER_LONG == 64)
112#define PRSHIFT (PAGE_CACHE_SHIFT - 6) /* (64 == 1<<6) */
113#else
114#error BITS_PER_LONG must be 32 or 64
115#endif
116#define NBPPR (PAGE_CACHE_SIZE/BITS_PER_LONG)
117#define BTOPR(b) (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
118#define BTOPRT(b) (((unsigned int)(b) >> PRSHIFT))
119
120STATIC unsigned long
121page_region_mask(
122 size_t offset,
123 size_t length)
124{
125 unsigned long mask;
126 int first, final;
127
128 first = BTOPR(offset);
129 final = BTOPRT(offset + length - 1);
130 first = min(first, final);
131
132 mask = ~0UL;
133 mask <<= BITS_PER_LONG - (final - first);
134 mask >>= BITS_PER_LONG - (final);
135
136 ASSERT(offset + length <= PAGE_CACHE_SIZE);
137 ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
138
139 return mask;
140}
141
b8f82a4a 142STATIC void
1da177e4
LT
143set_page_region(
144 struct page *page,
145 size_t offset,
146 size_t length)
147{
4c21e2f2
HD
148 set_page_private(page,
149 page_private(page) | page_region_mask(offset, length));
150 if (page_private(page) == ~0UL)
1da177e4
LT
151 SetPageUptodate(page);
152}
153
b8f82a4a 154STATIC int
1da177e4
LT
155test_page_region(
156 struct page *page,
157 size_t offset,
158 size_t length)
159{
160 unsigned long mask = page_region_mask(offset, length);
161
4c21e2f2 162 return (mask && (page_private(page) & mask) == mask);
1da177e4
LT
163}
164
1da177e4 165/*
430cbeb8
DC
166 * xfs_buf_lru_add - add a buffer to the LRU.
167 *
168 * The LRU takes a new reference to the buffer so that it will only be freed
169 * once the shrinker takes the buffer off the LRU.
170 */
171STATIC void
172xfs_buf_lru_add(
173 struct xfs_buf *bp)
174{
175 struct xfs_buftarg *btp = bp->b_target;
176
177 spin_lock(&btp->bt_lru_lock);
178 if (list_empty(&bp->b_lru)) {
179 atomic_inc(&bp->b_hold);
180 list_add_tail(&bp->b_lru, &btp->bt_lru);
181 btp->bt_lru_nr++;
182 }
183 spin_unlock(&btp->bt_lru_lock);
184}
185
186/*
187 * xfs_buf_lru_del - remove a buffer from the LRU
188 *
189 * The unlocked check is safe here because it only occurs when there are not
190 * b_lru_ref counts left on the inode under the pag->pag_buf_lock. it is there
191 * to optimise the shrinker removing the buffer from the LRU and calling
192 * xfs_buf_free(). i.e. it removes an unneccessary round trip on the
193 * bt_lru_lock.
1da177e4 194 */
430cbeb8
DC
195STATIC void
196xfs_buf_lru_del(
197 struct xfs_buf *bp)
198{
199 struct xfs_buftarg *btp = bp->b_target;
200
201 if (list_empty(&bp->b_lru))
202 return;
203
204 spin_lock(&btp->bt_lru_lock);
205 if (!list_empty(&bp->b_lru)) {
206 list_del_init(&bp->b_lru);
207 btp->bt_lru_nr--;
208 }
209 spin_unlock(&btp->bt_lru_lock);
210}
211
212/*
213 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
214 * b_lru_ref count so that the buffer is freed immediately when the buffer
215 * reference count falls to zero. If the buffer is already on the LRU, we need
216 * to remove the reference that LRU holds on the buffer.
217 *
218 * This prevents build-up of stale buffers on the LRU.
219 */
220void
221xfs_buf_stale(
222 struct xfs_buf *bp)
223{
224 bp->b_flags |= XBF_STALE;
225 atomic_set(&(bp)->b_lru_ref, 0);
226 if (!list_empty(&bp->b_lru)) {
227 struct xfs_buftarg *btp = bp->b_target;
228
229 spin_lock(&btp->bt_lru_lock);
230 if (!list_empty(&bp->b_lru)) {
231 list_del_init(&bp->b_lru);
232 btp->bt_lru_nr--;
233 atomic_dec(&bp->b_hold);
234 }
235 spin_unlock(&btp->bt_lru_lock);
236 }
237 ASSERT(atomic_read(&bp->b_hold) >= 1);
238}
1da177e4
LT
239
240STATIC void
ce8e922c
NS
241_xfs_buf_initialize(
242 xfs_buf_t *bp,
1da177e4 243 xfs_buftarg_t *target,
204ab25f 244 xfs_off_t range_base,
1da177e4 245 size_t range_length,
ce8e922c 246 xfs_buf_flags_t flags)
1da177e4
LT
247{
248 /*
ce8e922c 249 * We don't want certain flags to appear in b_flags.
1da177e4 250 */
ce8e922c
NS
251 flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
252
253 memset(bp, 0, sizeof(xfs_buf_t));
254 atomic_set(&bp->b_hold, 1);
430cbeb8 255 atomic_set(&bp->b_lru_ref, 1);
b4dd330b 256 init_completion(&bp->b_iowait);
430cbeb8 257 INIT_LIST_HEAD(&bp->b_lru);
ce8e922c 258 INIT_LIST_HEAD(&bp->b_list);
74f75a0c 259 RB_CLEAR_NODE(&bp->b_rbnode);
a731cd11 260 sema_init(&bp->b_sema, 0); /* held, no waiters */
ce8e922c
NS
261 XB_SET_OWNER(bp);
262 bp->b_target = target;
263 bp->b_file_offset = range_base;
1da177e4
LT
264 /*
265 * Set buffer_length and count_desired to the same value initially.
266 * I/O routines should use count_desired, which will be the same in
267 * most cases but may be reset (e.g. XFS recovery).
268 */
ce8e922c
NS
269 bp->b_buffer_length = bp->b_count_desired = range_length;
270 bp->b_flags = flags;
271 bp->b_bn = XFS_BUF_DADDR_NULL;
272 atomic_set(&bp->b_pin_count, 0);
273 init_waitqueue_head(&bp->b_waiters);
274
275 XFS_STATS_INC(xb_create);
0b1b213f
CH
276
277 trace_xfs_buf_init(bp, _RET_IP_);
1da177e4
LT
278}
279
280/*
ce8e922c
NS
281 * Allocate a page array capable of holding a specified number
282 * of pages, and point the page buf at it.
1da177e4
LT
283 */
284STATIC int
ce8e922c
NS
285_xfs_buf_get_pages(
286 xfs_buf_t *bp,
1da177e4 287 int page_count,
ce8e922c 288 xfs_buf_flags_t flags)
1da177e4
LT
289{
290 /* Make sure that we have a page list */
ce8e922c
NS
291 if (bp->b_pages == NULL) {
292 bp->b_offset = xfs_buf_poff(bp->b_file_offset);
293 bp->b_page_count = page_count;
294 if (page_count <= XB_PAGES) {
295 bp->b_pages = bp->b_page_array;
1da177e4 296 } else {
ce8e922c
NS
297 bp->b_pages = kmem_alloc(sizeof(struct page *) *
298 page_count, xb_to_km(flags));
299 if (bp->b_pages == NULL)
1da177e4
LT
300 return -ENOMEM;
301 }
ce8e922c 302 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
1da177e4
LT
303 }
304 return 0;
305}
306
307/*
ce8e922c 308 * Frees b_pages if it was allocated.
1da177e4
LT
309 */
310STATIC void
ce8e922c 311_xfs_buf_free_pages(
1da177e4
LT
312 xfs_buf_t *bp)
313{
ce8e922c 314 if (bp->b_pages != bp->b_page_array) {
f0e2d93c 315 kmem_free(bp->b_pages);
3fc98b1a 316 bp->b_pages = NULL;
1da177e4
LT
317 }
318}
319
320/*
321 * Releases the specified buffer.
322 *
323 * The modification state of any associated pages is left unchanged.
ce8e922c 324 * The buffer most not be on any hash - use xfs_buf_rele instead for
1da177e4
LT
325 * hashed and refcounted buffers
326 */
327void
ce8e922c 328xfs_buf_free(
1da177e4
LT
329 xfs_buf_t *bp)
330{
0b1b213f 331 trace_xfs_buf_free(bp, _RET_IP_);
1da177e4 332
430cbeb8
DC
333 ASSERT(list_empty(&bp->b_lru));
334
1fa40b01 335 if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
1da177e4
LT
336 uint i;
337
73c77e2c 338 if (xfs_buf_is_vmapped(bp))
8a262e57
AE
339 vm_unmap_ram(bp->b_addr - bp->b_offset,
340 bp->b_page_count);
1da177e4 341
948ecdb4
NS
342 for (i = 0; i < bp->b_page_count; i++) {
343 struct page *page = bp->b_pages[i];
344
1fa40b01
CH
345 if (bp->b_flags & _XBF_PAGE_CACHE)
346 ASSERT(!PagePrivate(page));
948ecdb4
NS
347 page_cache_release(page);
348 }
1da177e4 349 }
3fc98b1a 350 _xfs_buf_free_pages(bp);
ce8e922c 351 xfs_buf_deallocate(bp);
1da177e4
LT
352}
353
354/*
355 * Finds all pages for buffer in question and builds it's page list.
356 */
357STATIC int
ce8e922c 358_xfs_buf_lookup_pages(
1da177e4
LT
359 xfs_buf_t *bp,
360 uint flags)
361{
ce8e922c
NS
362 struct address_space *mapping = bp->b_target->bt_mapping;
363 size_t blocksize = bp->b_target->bt_bsize;
364 size_t size = bp->b_count_desired;
1da177e4 365 size_t nbytes, offset;
ce8e922c 366 gfp_t gfp_mask = xb_to_gfp(flags);
1da177e4
LT
367 unsigned short page_count, i;
368 pgoff_t first;
204ab25f 369 xfs_off_t end;
1da177e4
LT
370 int error;
371
ce8e922c
NS
372 end = bp->b_file_offset + bp->b_buffer_length;
373 page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
1da177e4 374
ce8e922c 375 error = _xfs_buf_get_pages(bp, page_count, flags);
1da177e4
LT
376 if (unlikely(error))
377 return error;
ce8e922c 378 bp->b_flags |= _XBF_PAGE_CACHE;
1da177e4 379
ce8e922c
NS
380 offset = bp->b_offset;
381 first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
1da177e4 382
ce8e922c 383 for (i = 0; i < bp->b_page_count; i++) {
1da177e4
LT
384 struct page *page;
385 uint retries = 0;
386
387 retry:
388 page = find_or_create_page(mapping, first + i, gfp_mask);
389 if (unlikely(page == NULL)) {
ce8e922c
NS
390 if (flags & XBF_READ_AHEAD) {
391 bp->b_page_count = i;
6ab455ee
CH
392 for (i = 0; i < bp->b_page_count; i++)
393 unlock_page(bp->b_pages[i]);
1da177e4
LT
394 return -ENOMEM;
395 }
396
397 /*
398 * This could deadlock.
399 *
400 * But until all the XFS lowlevel code is revamped to
401 * handle buffer allocation failures we can't do much.
402 */
403 if (!(++retries % 100))
404 printk(KERN_ERR
405 "XFS: possible memory allocation "
406 "deadlock in %s (mode:0x%x)\n",
34a622b2 407 __func__, gfp_mask);
1da177e4 408
ce8e922c 409 XFS_STATS_INC(xb_page_retries);
8aa7e847 410 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
411 goto retry;
412 }
413
ce8e922c 414 XFS_STATS_INC(xb_page_found);
1da177e4
LT
415
416 nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
417 size -= nbytes;
418
948ecdb4 419 ASSERT(!PagePrivate(page));
1da177e4
LT
420 if (!PageUptodate(page)) {
421 page_count--;
6ab455ee
CH
422 if (blocksize >= PAGE_CACHE_SIZE) {
423 if (flags & XBF_READ)
424 bp->b_flags |= _XBF_PAGE_LOCKED;
425 } else if (!PagePrivate(page)) {
1da177e4
LT
426 if (test_page_region(page, offset, nbytes))
427 page_count++;
428 }
429 }
430
ce8e922c 431 bp->b_pages[i] = page;
1da177e4
LT
432 offset = 0;
433 }
434
6ab455ee
CH
435 if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
436 for (i = 0; i < bp->b_page_count; i++)
437 unlock_page(bp->b_pages[i]);
438 }
439
ce8e922c
NS
440 if (page_count == bp->b_page_count)
441 bp->b_flags |= XBF_DONE;
1da177e4 442
1da177e4
LT
443 return error;
444}
445
446/*
447 * Map buffer into kernel address-space if nessecary.
448 */
449STATIC int
ce8e922c 450_xfs_buf_map_pages(
1da177e4
LT
451 xfs_buf_t *bp,
452 uint flags)
453{
454 /* A single page buffer is always mappable */
ce8e922c
NS
455 if (bp->b_page_count == 1) {
456 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
457 bp->b_flags |= XBF_MAPPED;
458 } else if (flags & XBF_MAPPED) {
8a262e57
AE
459 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
460 -1, PAGE_KERNEL);
ce8e922c 461 if (unlikely(bp->b_addr == NULL))
1da177e4 462 return -ENOMEM;
ce8e922c
NS
463 bp->b_addr += bp->b_offset;
464 bp->b_flags |= XBF_MAPPED;
1da177e4
LT
465 }
466
467 return 0;
468}
469
470/*
471 * Finding and Reading Buffers
472 */
473
474/*
ce8e922c 475 * Look up, and creates if absent, a lockable buffer for
1da177e4
LT
476 * a given range of an inode. The buffer is returned
477 * locked. If other overlapping buffers exist, they are
478 * released before the new buffer is created and locked,
479 * which may imply that this call will block until those buffers
480 * are unlocked. No I/O is implied by this call.
481 */
482xfs_buf_t *
ce8e922c 483_xfs_buf_find(
1da177e4 484 xfs_buftarg_t *btp, /* block device target */
204ab25f 485 xfs_off_t ioff, /* starting offset of range */
1da177e4 486 size_t isize, /* length of range */
ce8e922c
NS
487 xfs_buf_flags_t flags,
488 xfs_buf_t *new_bp)
1da177e4 489{
204ab25f 490 xfs_off_t range_base;
1da177e4 491 size_t range_length;
74f75a0c
DC
492 struct xfs_perag *pag;
493 struct rb_node **rbp;
494 struct rb_node *parent;
495 xfs_buf_t *bp;
1da177e4
LT
496
497 range_base = (ioff << BBSHIFT);
498 range_length = (isize << BBSHIFT);
499
500 /* Check for IOs smaller than the sector size / not sector aligned */
ce8e922c 501 ASSERT(!(range_length < (1 << btp->bt_sshift)));
204ab25f 502 ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
1da177e4 503
74f75a0c
DC
504 /* get tree root */
505 pag = xfs_perag_get(btp->bt_mount,
506 xfs_daddr_to_agno(btp->bt_mount, ioff));
507
508 /* walk tree */
509 spin_lock(&pag->pag_buf_lock);
510 rbp = &pag->pag_buf_tree.rb_node;
511 parent = NULL;
512 bp = NULL;
513 while (*rbp) {
514 parent = *rbp;
515 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
516
517 if (range_base < bp->b_file_offset)
518 rbp = &(*rbp)->rb_left;
519 else if (range_base > bp->b_file_offset)
520 rbp = &(*rbp)->rb_right;
521 else {
522 /*
523 * found a block offset match. If the range doesn't
524 * match, the only way this is allowed is if the buffer
525 * in the cache is stale and the transaction that made
526 * it stale has not yet committed. i.e. we are
527 * reallocating a busy extent. Skip this buffer and
528 * continue searching to the right for an exact match.
529 */
530 if (bp->b_buffer_length != range_length) {
531 ASSERT(bp->b_flags & XBF_STALE);
532 rbp = &(*rbp)->rb_right;
533 continue;
534 }
ce8e922c 535 atomic_inc(&bp->b_hold);
1da177e4
LT
536 goto found;
537 }
538 }
539
540 /* No match found */
ce8e922c
NS
541 if (new_bp) {
542 _xfs_buf_initialize(new_bp, btp, range_base,
1da177e4 543 range_length, flags);
74f75a0c
DC
544 rb_link_node(&new_bp->b_rbnode, parent, rbp);
545 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
546 /* the buffer keeps the perag reference until it is freed */
547 new_bp->b_pag = pag;
548 spin_unlock(&pag->pag_buf_lock);
1da177e4 549 } else {
ce8e922c 550 XFS_STATS_INC(xb_miss_locked);
74f75a0c
DC
551 spin_unlock(&pag->pag_buf_lock);
552 xfs_perag_put(pag);
1da177e4 553 }
ce8e922c 554 return new_bp;
1da177e4
LT
555
556found:
74f75a0c
DC
557 spin_unlock(&pag->pag_buf_lock);
558 xfs_perag_put(pag);
1da177e4 559
90810b9e
DC
560 if (xfs_buf_cond_lock(bp)) {
561 /* failed, so wait for the lock if requested. */
ce8e922c 562 if (!(flags & XBF_TRYLOCK)) {
ce8e922c
NS
563 xfs_buf_lock(bp);
564 XFS_STATS_INC(xb_get_locked_waited);
1da177e4 565 } else {
ce8e922c
NS
566 xfs_buf_rele(bp);
567 XFS_STATS_INC(xb_busy_locked);
568 return NULL;
1da177e4 569 }
1da177e4
LT
570 }
571
ce8e922c
NS
572 if (bp->b_flags & XBF_STALE) {
573 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
574 bp->b_flags &= XBF_MAPPED;
2f926587 575 }
0b1b213f
CH
576
577 trace_xfs_buf_find(bp, flags, _RET_IP_);
ce8e922c
NS
578 XFS_STATS_INC(xb_get_locked);
579 return bp;
1da177e4
LT
580}
581
582/*
ce8e922c 583 * Assembles a buffer covering the specified range.
1da177e4
LT
584 * Storage in memory for all portions of the buffer will be allocated,
585 * although backing storage may not be.
586 */
587xfs_buf_t *
6ad112bf 588xfs_buf_get(
1da177e4 589 xfs_buftarg_t *target,/* target for buffer */
204ab25f 590 xfs_off_t ioff, /* starting offset of range */
1da177e4 591 size_t isize, /* length of range */
ce8e922c 592 xfs_buf_flags_t flags)
1da177e4 593{
ce8e922c 594 xfs_buf_t *bp, *new_bp;
1da177e4
LT
595 int error = 0, i;
596
ce8e922c
NS
597 new_bp = xfs_buf_allocate(flags);
598 if (unlikely(!new_bp))
1da177e4
LT
599 return NULL;
600
ce8e922c
NS
601 bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
602 if (bp == new_bp) {
603 error = _xfs_buf_lookup_pages(bp, flags);
1da177e4
LT
604 if (error)
605 goto no_buffer;
606 } else {
ce8e922c
NS
607 xfs_buf_deallocate(new_bp);
608 if (unlikely(bp == NULL))
1da177e4
LT
609 return NULL;
610 }
611
ce8e922c
NS
612 for (i = 0; i < bp->b_page_count; i++)
613 mark_page_accessed(bp->b_pages[i]);
1da177e4 614
ce8e922c
NS
615 if (!(bp->b_flags & XBF_MAPPED)) {
616 error = _xfs_buf_map_pages(bp, flags);
1da177e4
LT
617 if (unlikely(error)) {
618 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 619 __func__);
1da177e4
LT
620 goto no_buffer;
621 }
622 }
623
ce8e922c 624 XFS_STATS_INC(xb_get);
1da177e4
LT
625
626 /*
627 * Always fill in the block number now, the mapped cases can do
628 * their own overlay of this later.
629 */
ce8e922c
NS
630 bp->b_bn = ioff;
631 bp->b_count_desired = bp->b_buffer_length;
1da177e4 632
0b1b213f 633 trace_xfs_buf_get(bp, flags, _RET_IP_);
ce8e922c 634 return bp;
1da177e4
LT
635
636 no_buffer:
ce8e922c
NS
637 if (flags & (XBF_LOCK | XBF_TRYLOCK))
638 xfs_buf_unlock(bp);
639 xfs_buf_rele(bp);
1da177e4
LT
640 return NULL;
641}
642
5d765b97
CH
643STATIC int
644_xfs_buf_read(
645 xfs_buf_t *bp,
646 xfs_buf_flags_t flags)
647{
648 int status;
649
5d765b97
CH
650 ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
651 ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
652
653 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
654 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
655 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
656 XBF_READ_AHEAD | _XBF_RUN_QUEUES);
657
658 status = xfs_buf_iorequest(bp);
ec53d1db
DC
659 if (status || XFS_BUF_ISERROR(bp) || (flags & XBF_ASYNC))
660 return status;
661 return xfs_buf_iowait(bp);
5d765b97
CH
662}
663
1da177e4 664xfs_buf_t *
6ad112bf 665xfs_buf_read(
1da177e4 666 xfs_buftarg_t *target,
204ab25f 667 xfs_off_t ioff,
1da177e4 668 size_t isize,
ce8e922c 669 xfs_buf_flags_t flags)
1da177e4 670{
ce8e922c
NS
671 xfs_buf_t *bp;
672
673 flags |= XBF_READ;
674
6ad112bf 675 bp = xfs_buf_get(target, ioff, isize, flags);
ce8e922c 676 if (bp) {
0b1b213f
CH
677 trace_xfs_buf_read(bp, flags, _RET_IP_);
678
ce8e922c 679 if (!XFS_BUF_ISDONE(bp)) {
ce8e922c 680 XFS_STATS_INC(xb_get_read);
5d765b97 681 _xfs_buf_read(bp, flags);
ce8e922c 682 } else if (flags & XBF_ASYNC) {
1da177e4
LT
683 /*
684 * Read ahead call which is already satisfied,
685 * drop the buffer
686 */
687 goto no_buffer;
688 } else {
1da177e4 689 /* We do not want read in the flags */
ce8e922c 690 bp->b_flags &= ~XBF_READ;
1da177e4
LT
691 }
692 }
693
ce8e922c 694 return bp;
1da177e4
LT
695
696 no_buffer:
ce8e922c
NS
697 if (flags & (XBF_LOCK | XBF_TRYLOCK))
698 xfs_buf_unlock(bp);
699 xfs_buf_rele(bp);
1da177e4
LT
700 return NULL;
701}
702
1da177e4 703/*
ce8e922c
NS
704 * If we are not low on memory then do the readahead in a deadlock
705 * safe manner.
1da177e4
LT
706 */
707void
ce8e922c 708xfs_buf_readahead(
1da177e4 709 xfs_buftarg_t *target,
204ab25f 710 xfs_off_t ioff,
1a1a3e97 711 size_t isize)
1da177e4
LT
712{
713 struct backing_dev_info *bdi;
714
ce8e922c 715 bdi = target->bt_mapping->backing_dev_info;
1da177e4
LT
716 if (bdi_read_congested(bdi))
717 return;
718
1a1a3e97
CH
719 xfs_buf_read(target, ioff, isize,
720 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD|XBF_DONT_BLOCK);
1da177e4
LT
721}
722
5adc94c2
DC
723/*
724 * Read an uncached buffer from disk. Allocates and returns a locked
725 * buffer containing the disk contents or nothing.
726 */
727struct xfs_buf *
728xfs_buf_read_uncached(
729 struct xfs_mount *mp,
730 struct xfs_buftarg *target,
731 xfs_daddr_t daddr,
732 size_t length,
733 int flags)
734{
735 xfs_buf_t *bp;
736 int error;
737
738 bp = xfs_buf_get_uncached(target, length, flags);
739 if (!bp)
740 return NULL;
741
742 /* set up the buffer for a read IO */
743 xfs_buf_lock(bp);
744 XFS_BUF_SET_ADDR(bp, daddr);
745 XFS_BUF_READ(bp);
746 XFS_BUF_BUSY(bp);
747
748 xfsbdstrat(mp, bp);
1a1a3e97 749 error = xfs_buf_iowait(bp);
5adc94c2
DC
750 if (error || bp->b_error) {
751 xfs_buf_relse(bp);
752 return NULL;
753 }
754 return bp;
1da177e4
LT
755}
756
757xfs_buf_t *
ce8e922c 758xfs_buf_get_empty(
1da177e4
LT
759 size_t len,
760 xfs_buftarg_t *target)
761{
ce8e922c 762 xfs_buf_t *bp;
1da177e4 763
ce8e922c
NS
764 bp = xfs_buf_allocate(0);
765 if (bp)
766 _xfs_buf_initialize(bp, target, 0, len, 0);
767 return bp;
1da177e4
LT
768}
769
770static inline struct page *
771mem_to_page(
772 void *addr)
773{
9e2779fa 774 if ((!is_vmalloc_addr(addr))) {
1da177e4
LT
775 return virt_to_page(addr);
776 } else {
777 return vmalloc_to_page(addr);
778 }
779}
780
781int
ce8e922c
NS
782xfs_buf_associate_memory(
783 xfs_buf_t *bp,
1da177e4
LT
784 void *mem,
785 size_t len)
786{
787 int rval;
788 int i = 0;
d1afb678
LM
789 unsigned long pageaddr;
790 unsigned long offset;
791 size_t buflen;
1da177e4
LT
792 int page_count;
793
d1afb678
LM
794 pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
795 offset = (unsigned long)mem - pageaddr;
796 buflen = PAGE_CACHE_ALIGN(len + offset);
797 page_count = buflen >> PAGE_CACHE_SHIFT;
1da177e4
LT
798
799 /* Free any previous set of page pointers */
ce8e922c
NS
800 if (bp->b_pages)
801 _xfs_buf_free_pages(bp);
1da177e4 802
ce8e922c
NS
803 bp->b_pages = NULL;
804 bp->b_addr = mem;
1da177e4 805
36fae17a 806 rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
1da177e4
LT
807 if (rval)
808 return rval;
809
ce8e922c 810 bp->b_offset = offset;
d1afb678
LM
811
812 for (i = 0; i < bp->b_page_count; i++) {
813 bp->b_pages[i] = mem_to_page((void *)pageaddr);
814 pageaddr += PAGE_CACHE_SIZE;
1da177e4 815 }
1da177e4 816
d1afb678
LM
817 bp->b_count_desired = len;
818 bp->b_buffer_length = buflen;
ce8e922c 819 bp->b_flags |= XBF_MAPPED;
6ab455ee 820 bp->b_flags &= ~_XBF_PAGE_LOCKED;
1da177e4
LT
821
822 return 0;
823}
824
825xfs_buf_t *
686865f7
DC
826xfs_buf_get_uncached(
827 struct xfs_buftarg *target,
1da177e4 828 size_t len,
686865f7 829 int flags)
1da177e4 830{
1fa40b01
CH
831 unsigned long page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
832 int error, i;
1da177e4 833 xfs_buf_t *bp;
1da177e4 834
ce8e922c 835 bp = xfs_buf_allocate(0);
1da177e4
LT
836 if (unlikely(bp == NULL))
837 goto fail;
ce8e922c 838 _xfs_buf_initialize(bp, target, 0, len, 0);
1da177e4 839
1fa40b01
CH
840 error = _xfs_buf_get_pages(bp, page_count, 0);
841 if (error)
1da177e4
LT
842 goto fail_free_buf;
843
1fa40b01 844 for (i = 0; i < page_count; i++) {
686865f7 845 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
1fa40b01
CH
846 if (!bp->b_pages[i])
847 goto fail_free_mem;
1da177e4 848 }
1fa40b01 849 bp->b_flags |= _XBF_PAGES;
1da177e4 850
1fa40b01
CH
851 error = _xfs_buf_map_pages(bp, XBF_MAPPED);
852 if (unlikely(error)) {
853 printk(KERN_WARNING "%s: failed to map pages\n",
34a622b2 854 __func__);
1da177e4 855 goto fail_free_mem;
1fa40b01 856 }
1da177e4 857
ce8e922c 858 xfs_buf_unlock(bp);
1da177e4 859
686865f7 860 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1da177e4 861 return bp;
1fa40b01 862
1da177e4 863 fail_free_mem:
1fa40b01
CH
864 while (--i >= 0)
865 __free_page(bp->b_pages[i]);
ca165b88 866 _xfs_buf_free_pages(bp);
1da177e4 867 fail_free_buf:
ca165b88 868 xfs_buf_deallocate(bp);
1da177e4
LT
869 fail:
870 return NULL;
871}
872
873/*
1da177e4
LT
874 * Increment reference count on buffer, to hold the buffer concurrently
875 * with another thread which may release (free) the buffer asynchronously.
1da177e4
LT
876 * Must hold the buffer already to call this function.
877 */
878void
ce8e922c
NS
879xfs_buf_hold(
880 xfs_buf_t *bp)
1da177e4 881{
0b1b213f 882 trace_xfs_buf_hold(bp, _RET_IP_);
ce8e922c 883 atomic_inc(&bp->b_hold);
1da177e4
LT
884}
885
886/*
ce8e922c
NS
887 * Releases a hold on the specified buffer. If the
888 * the hold count is 1, calls xfs_buf_free.
1da177e4
LT
889 */
890void
ce8e922c
NS
891xfs_buf_rele(
892 xfs_buf_t *bp)
1da177e4 893{
74f75a0c 894 struct xfs_perag *pag = bp->b_pag;
1da177e4 895
0b1b213f 896 trace_xfs_buf_rele(bp, _RET_IP_);
1da177e4 897
74f75a0c 898 if (!pag) {
fad3aa1e 899 ASSERT(!bp->b_relse);
430cbeb8 900 ASSERT(list_empty(&bp->b_lru));
74f75a0c 901 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
fad3aa1e
NS
902 if (atomic_dec_and_test(&bp->b_hold))
903 xfs_buf_free(bp);
904 return;
905 }
906
74f75a0c 907 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
430cbeb8 908
3790689f 909 ASSERT(atomic_read(&bp->b_hold) > 0);
74f75a0c 910 if (atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock)) {
ce8e922c
NS
911 if (bp->b_relse) {
912 atomic_inc(&bp->b_hold);
74f75a0c
DC
913 spin_unlock(&pag->pag_buf_lock);
914 bp->b_relse(bp);
430cbeb8
DC
915 } else if (!(bp->b_flags & XBF_STALE) &&
916 atomic_read(&bp->b_lru_ref)) {
917 xfs_buf_lru_add(bp);
918 spin_unlock(&pag->pag_buf_lock);
1da177e4 919 } else {
430cbeb8 920 xfs_buf_lru_del(bp);
ce8e922c 921 ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
74f75a0c
DC
922 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
923 spin_unlock(&pag->pag_buf_lock);
924 xfs_perag_put(pag);
ce8e922c 925 xfs_buf_free(bp);
1da177e4
LT
926 }
927 }
928}
929
930
931/*
932 * Mutual exclusion on buffers. Locking model:
933 *
934 * Buffers associated with inodes for which buffer locking
935 * is not enabled are not protected by semaphores, and are
936 * assumed to be exclusively owned by the caller. There is a
937 * spinlock in the buffer, used by the caller when concurrent
938 * access is possible.
939 */
940
941/*
90810b9e
DC
942 * Locks a buffer object, if it is not already locked. Note that this in
943 * no way locks the underlying pages, so it is only useful for
944 * synchronizing concurrent use of buffer objects, not for synchronizing
945 * independent access to the underlying pages.
946 *
947 * If we come across a stale, pinned, locked buffer, we know that we are
948 * being asked to lock a buffer that has been reallocated. Because it is
949 * pinned, we know that the log has not been pushed to disk and hence it
950 * will still be locked. Rather than continuing to have trylock attempts
951 * fail until someone else pushes the log, push it ourselves before
952 * returning. This means that the xfsaild will not get stuck trying
953 * to push on stale inode buffers.
1da177e4
LT
954 */
955int
ce8e922c
NS
956xfs_buf_cond_lock(
957 xfs_buf_t *bp)
1da177e4
LT
958{
959 int locked;
960
ce8e922c 961 locked = down_trylock(&bp->b_sema) == 0;
0b1b213f 962 if (locked)
ce8e922c 963 XB_SET_OWNER(bp);
90810b9e
DC
964 else if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
965 xfs_log_force(bp->b_target->bt_mount, 0);
0b1b213f
CH
966
967 trace_xfs_buf_cond_lock(bp, _RET_IP_);
ce8e922c 968 return locked ? 0 : -EBUSY;
1da177e4
LT
969}
970
1da177e4 971int
ce8e922c
NS
972xfs_buf_lock_value(
973 xfs_buf_t *bp)
1da177e4 974{
adaa693b 975 return bp->b_sema.count;
1da177e4 976}
1da177e4
LT
977
978/*
ce8e922c
NS
979 * Locks a buffer object.
980 * Note that this in no way locks the underlying pages, so it is only
981 * useful for synchronizing concurrent use of buffer objects, not for
982 * synchronizing independent access to the underlying pages.
ed3b4d6c
DC
983 *
984 * If we come across a stale, pinned, locked buffer, we know that we
985 * are being asked to lock a buffer that has been reallocated. Because
986 * it is pinned, we know that the log has not been pushed to disk and
987 * hence it will still be locked. Rather than sleeping until someone
988 * else pushes the log, push it ourselves before trying to get the lock.
1da177e4 989 */
ce8e922c
NS
990void
991xfs_buf_lock(
992 xfs_buf_t *bp)
1da177e4 993{
0b1b213f
CH
994 trace_xfs_buf_lock(bp, _RET_IP_);
995
ed3b4d6c 996 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
ebad861b 997 xfs_log_force(bp->b_target->bt_mount, 0);
ce8e922c
NS
998 if (atomic_read(&bp->b_io_remaining))
999 blk_run_address_space(bp->b_target->bt_mapping);
1000 down(&bp->b_sema);
1001 XB_SET_OWNER(bp);
0b1b213f
CH
1002
1003 trace_xfs_buf_lock_done(bp, _RET_IP_);
1da177e4
LT
1004}
1005
1006/*
ce8e922c 1007 * Releases the lock on the buffer object.
2f926587 1008 * If the buffer is marked delwri but is not queued, do so before we
ce8e922c 1009 * unlock the buffer as we need to set flags correctly. We also need to
2f926587
DC
1010 * take a reference for the delwri queue because the unlocker is going to
1011 * drop their's and they don't know we just queued it.
1da177e4
LT
1012 */
1013void
ce8e922c
NS
1014xfs_buf_unlock(
1015 xfs_buf_t *bp)
1da177e4 1016{
ce8e922c
NS
1017 if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
1018 atomic_inc(&bp->b_hold);
1019 bp->b_flags |= XBF_ASYNC;
1020 xfs_buf_delwri_queue(bp, 0);
2f926587
DC
1021 }
1022
ce8e922c
NS
1023 XB_CLEAR_OWNER(bp);
1024 up(&bp->b_sema);
0b1b213f
CH
1025
1026 trace_xfs_buf_unlock(bp, _RET_IP_);
1da177e4
LT
1027}
1028
ce8e922c
NS
1029STATIC void
1030xfs_buf_wait_unpin(
1031 xfs_buf_t *bp)
1da177e4
LT
1032{
1033 DECLARE_WAITQUEUE (wait, current);
1034
ce8e922c 1035 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4
LT
1036 return;
1037
ce8e922c 1038 add_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1039 for (;;) {
1040 set_current_state(TASK_UNINTERRUPTIBLE);
ce8e922c 1041 if (atomic_read(&bp->b_pin_count) == 0)
1da177e4 1042 break;
ce8e922c
NS
1043 if (atomic_read(&bp->b_io_remaining))
1044 blk_run_address_space(bp->b_target->bt_mapping);
1da177e4
LT
1045 schedule();
1046 }
ce8e922c 1047 remove_wait_queue(&bp->b_waiters, &wait);
1da177e4
LT
1048 set_current_state(TASK_RUNNING);
1049}
1050
1051/*
1052 * Buffer Utility Routines
1053 */
1054
1da177e4 1055STATIC void
ce8e922c 1056xfs_buf_iodone_work(
c4028958 1057 struct work_struct *work)
1da177e4 1058{
c4028958
DH
1059 xfs_buf_t *bp =
1060 container_of(work, xfs_buf_t, b_iodone_work);
1da177e4 1061
80f6c29d 1062 if (bp->b_iodone)
ce8e922c
NS
1063 (*(bp->b_iodone))(bp);
1064 else if (bp->b_flags & XBF_ASYNC)
1da177e4
LT
1065 xfs_buf_relse(bp);
1066}
1067
1068void
ce8e922c
NS
1069xfs_buf_ioend(
1070 xfs_buf_t *bp,
1da177e4
LT
1071 int schedule)
1072{
0b1b213f
CH
1073 trace_xfs_buf_iodone(bp, _RET_IP_);
1074
77be55a5 1075 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
ce8e922c
NS
1076 if (bp->b_error == 0)
1077 bp->b_flags |= XBF_DONE;
1da177e4 1078
ce8e922c 1079 if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1da177e4 1080 if (schedule) {
c4028958 1081 INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
ce8e922c 1082 queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1da177e4 1083 } else {
c4028958 1084 xfs_buf_iodone_work(&bp->b_iodone_work);
1da177e4
LT
1085 }
1086 } else {
b4dd330b 1087 complete(&bp->b_iowait);
1da177e4
LT
1088 }
1089}
1090
1da177e4 1091void
ce8e922c
NS
1092xfs_buf_ioerror(
1093 xfs_buf_t *bp,
1094 int error)
1da177e4
LT
1095{
1096 ASSERT(error >= 0 && error <= 0xffff);
ce8e922c 1097 bp->b_error = (unsigned short)error;
0b1b213f 1098 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1da177e4
LT
1099}
1100
1da177e4 1101int
64e0bc7d
CH
1102xfs_bwrite(
1103 struct xfs_mount *mp,
5d765b97 1104 struct xfs_buf *bp)
1da177e4 1105{
8c38366f 1106 int error;
1da177e4 1107
64e0bc7d 1108 bp->b_flags |= XBF_WRITE;
8c38366f 1109 bp->b_flags &= ~(XBF_ASYNC | XBF_READ);
1da177e4 1110
5d765b97 1111 xfs_buf_delwri_dequeue(bp);
939d723b 1112 xfs_bdstrat_cb(bp);
1da177e4 1113
8c38366f
CH
1114 error = xfs_buf_iowait(bp);
1115 if (error)
1116 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1117 xfs_buf_relse(bp);
64e0bc7d 1118 return error;
5d765b97 1119}
1da177e4 1120
5d765b97
CH
1121void
1122xfs_bdwrite(
1123 void *mp,
1124 struct xfs_buf *bp)
1125{
0b1b213f 1126 trace_xfs_buf_bdwrite(bp, _RET_IP_);
1da177e4 1127
5d765b97
CH
1128 bp->b_flags &= ~XBF_READ;
1129 bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
1130
1131 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1132}
1133
4e23471a
CH
1134/*
1135 * Called when we want to stop a buffer from getting written or read.
1a1a3e97 1136 * We attach the EIO error, muck with its flags, and call xfs_buf_ioend
4e23471a
CH
1137 * so that the proper iodone callbacks get called.
1138 */
1139STATIC int
1140xfs_bioerror(
1141 xfs_buf_t *bp)
1142{
1143#ifdef XFSERRORDEBUG
1144 ASSERT(XFS_BUF_ISREAD(bp) || bp->b_iodone);
1145#endif
1146
1147 /*
1148 * No need to wait until the buffer is unpinned, we aren't flushing it.
1149 */
1150 XFS_BUF_ERROR(bp, EIO);
1151
1152 /*
1a1a3e97 1153 * We're calling xfs_buf_ioend, so delete XBF_DONE flag.
4e23471a
CH
1154 */
1155 XFS_BUF_UNREAD(bp);
1156 XFS_BUF_UNDELAYWRITE(bp);
1157 XFS_BUF_UNDONE(bp);
1158 XFS_BUF_STALE(bp);
1159
1a1a3e97 1160 xfs_buf_ioend(bp, 0);
4e23471a
CH
1161
1162 return EIO;
1163}
1164
1165/*
1166 * Same as xfs_bioerror, except that we are releasing the buffer
1a1a3e97 1167 * here ourselves, and avoiding the xfs_buf_ioend call.
4e23471a
CH
1168 * This is meant for userdata errors; metadata bufs come with
1169 * iodone functions attached, so that we can track down errors.
1170 */
1171STATIC int
1172xfs_bioerror_relse(
1173 struct xfs_buf *bp)
1174{
1175 int64_t fl = XFS_BUF_BFLAGS(bp);
1176 /*
1177 * No need to wait until the buffer is unpinned.
1178 * We aren't flushing it.
1179 *
1180 * chunkhold expects B_DONE to be set, whether
1181 * we actually finish the I/O or not. We don't want to
1182 * change that interface.
1183 */
1184 XFS_BUF_UNREAD(bp);
1185 XFS_BUF_UNDELAYWRITE(bp);
1186 XFS_BUF_DONE(bp);
1187 XFS_BUF_STALE(bp);
1188 XFS_BUF_CLR_IODONE_FUNC(bp);
0cadda1c 1189 if (!(fl & XBF_ASYNC)) {
4e23471a
CH
1190 /*
1191 * Mark b_error and B_ERROR _both_.
1192 * Lot's of chunkcache code assumes that.
1193 * There's no reason to mark error for
1194 * ASYNC buffers.
1195 */
1196 XFS_BUF_ERROR(bp, EIO);
1197 XFS_BUF_FINISH_IOWAIT(bp);
1198 } else {
1199 xfs_buf_relse(bp);
1200 }
1201
1202 return EIO;
1203}
1204
1205
1206/*
1207 * All xfs metadata buffers except log state machine buffers
1208 * get this attached as their b_bdstrat callback function.
1209 * This is so that we can catch a buffer
1210 * after prematurely unpinning it to forcibly shutdown the filesystem.
1211 */
1212int
1213xfs_bdstrat_cb(
1214 struct xfs_buf *bp)
1215{
ebad861b 1216 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
4e23471a
CH
1217 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1218 /*
1219 * Metadata write that didn't get logged but
1220 * written delayed anyway. These aren't associated
1221 * with a transaction, and can be ignored.
1222 */
1223 if (!bp->b_iodone && !XFS_BUF_ISREAD(bp))
1224 return xfs_bioerror_relse(bp);
1225 else
1226 return xfs_bioerror(bp);
1227 }
1228
1229 xfs_buf_iorequest(bp);
1230 return 0;
1231}
1232
1233/*
1234 * Wrapper around bdstrat so that we can stop data from going to disk in case
1235 * we are shutting down the filesystem. Typically user data goes thru this
1236 * path; one of the exceptions is the superblock.
1237 */
1238void
1239xfsbdstrat(
1240 struct xfs_mount *mp,
1241 struct xfs_buf *bp)
1242{
1243 if (XFS_FORCED_SHUTDOWN(mp)) {
1244 trace_xfs_bdstrat_shut(bp, _RET_IP_);
1245 xfs_bioerror_relse(bp);
1246 return;
1247 }
1248
1249 xfs_buf_iorequest(bp);
1250}
1251
b8f82a4a 1252STATIC void
ce8e922c
NS
1253_xfs_buf_ioend(
1254 xfs_buf_t *bp,
1da177e4
LT
1255 int schedule)
1256{
6ab455ee
CH
1257 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1258 bp->b_flags &= ~_XBF_PAGE_LOCKED;
ce8e922c 1259 xfs_buf_ioend(bp, schedule);
6ab455ee 1260 }
1da177e4
LT
1261}
1262
782e3b3b 1263STATIC void
ce8e922c 1264xfs_buf_bio_end_io(
1da177e4 1265 struct bio *bio,
1da177e4
LT
1266 int error)
1267{
ce8e922c
NS
1268 xfs_buf_t *bp = (xfs_buf_t *)bio->bi_private;
1269 unsigned int blocksize = bp->b_target->bt_bsize;
eedb5530 1270 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1da177e4 1271
cfbe5267 1272 xfs_buf_ioerror(bp, -error);
1da177e4 1273
73c77e2c
JB
1274 if (!error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1275 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1276
eedb5530 1277 do {
1da177e4
LT
1278 struct page *page = bvec->bv_page;
1279
948ecdb4 1280 ASSERT(!PagePrivate(page));
ce8e922c
NS
1281 if (unlikely(bp->b_error)) {
1282 if (bp->b_flags & XBF_READ)
eedb5530 1283 ClearPageUptodate(page);
ce8e922c 1284 } else if (blocksize >= PAGE_CACHE_SIZE) {
1da177e4
LT
1285 SetPageUptodate(page);
1286 } else if (!PagePrivate(page) &&
ce8e922c 1287 (bp->b_flags & _XBF_PAGE_CACHE)) {
1da177e4
LT
1288 set_page_region(page, bvec->bv_offset, bvec->bv_len);
1289 }
1290
eedb5530
NS
1291 if (--bvec >= bio->bi_io_vec)
1292 prefetchw(&bvec->bv_page->flags);
6ab455ee
CH
1293
1294 if (bp->b_flags & _XBF_PAGE_LOCKED)
1295 unlock_page(page);
eedb5530 1296 } while (bvec >= bio->bi_io_vec);
1da177e4 1297
ce8e922c 1298 _xfs_buf_ioend(bp, 1);
1da177e4 1299 bio_put(bio);
1da177e4
LT
1300}
1301
1302STATIC void
ce8e922c
NS
1303_xfs_buf_ioapply(
1304 xfs_buf_t *bp)
1da177e4 1305{
a9759f2d 1306 int rw, map_i, total_nr_pages, nr_pages;
1da177e4 1307 struct bio *bio;
ce8e922c
NS
1308 int offset = bp->b_offset;
1309 int size = bp->b_count_desired;
1310 sector_t sector = bp->b_bn;
1311 unsigned int blocksize = bp->b_target->bt_bsize;
1da177e4 1312
ce8e922c 1313 total_nr_pages = bp->b_page_count;
1da177e4
LT
1314 map_i = 0;
1315
ce8e922c
NS
1316 if (bp->b_flags & XBF_ORDERED) {
1317 ASSERT(!(bp->b_flags & XBF_READ));
80f6c29d 1318 rw = WRITE_FLUSH_FUA;
2ee1abad 1319 } else if (bp->b_flags & XBF_LOG_BUFFER) {
51bdd706
NS
1320 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1321 bp->b_flags &= ~_XBF_RUN_QUEUES;
1322 rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
2ee1abad
DC
1323 } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1324 ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1325 bp->b_flags &= ~_XBF_RUN_QUEUES;
1326 rw = (bp->b_flags & XBF_WRITE) ? WRITE_META : READ_META;
51bdd706
NS
1327 } else {
1328 rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1329 (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
f538d4da
CH
1330 }
1331
ce8e922c 1332 /* Special code path for reading a sub page size buffer in --
1da177e4
LT
1333 * we populate up the whole page, and hence the other metadata
1334 * in the same page. This optimization is only valid when the
ce8e922c 1335 * filesystem block size is not smaller than the page size.
1da177e4 1336 */
ce8e922c 1337 if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
6ab455ee
CH
1338 ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
1339 (XBF_READ|_XBF_PAGE_LOCKED)) &&
ce8e922c 1340 (blocksize >= PAGE_CACHE_SIZE)) {
1da177e4
LT
1341 bio = bio_alloc(GFP_NOIO, 1);
1342
ce8e922c 1343 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1344 bio->bi_sector = sector - (offset >> BBSHIFT);
ce8e922c
NS
1345 bio->bi_end_io = xfs_buf_bio_end_io;
1346 bio->bi_private = bp;
1da177e4 1347
ce8e922c 1348 bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1da177e4
LT
1349 size = 0;
1350
ce8e922c 1351 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1352
1353 goto submit_io;
1354 }
1355
1da177e4 1356next_chunk:
ce8e922c 1357 atomic_inc(&bp->b_io_remaining);
1da177e4
LT
1358 nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1359 if (nr_pages > total_nr_pages)
1360 nr_pages = total_nr_pages;
1361
1362 bio = bio_alloc(GFP_NOIO, nr_pages);
ce8e922c 1363 bio->bi_bdev = bp->b_target->bt_bdev;
1da177e4 1364 bio->bi_sector = sector;
ce8e922c
NS
1365 bio->bi_end_io = xfs_buf_bio_end_io;
1366 bio->bi_private = bp;
1da177e4
LT
1367
1368 for (; size && nr_pages; nr_pages--, map_i++) {
ce8e922c 1369 int rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1da177e4
LT
1370
1371 if (nbytes > size)
1372 nbytes = size;
1373
ce8e922c
NS
1374 rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1375 if (rbytes < nbytes)
1da177e4
LT
1376 break;
1377
1378 offset = 0;
1379 sector += nbytes >> BBSHIFT;
1380 size -= nbytes;
1381 total_nr_pages--;
1382 }
1383
1384submit_io:
1385 if (likely(bio->bi_size)) {
73c77e2c
JB
1386 if (xfs_buf_is_vmapped(bp)) {
1387 flush_kernel_vmap_range(bp->b_addr,
1388 xfs_buf_vmap_len(bp));
1389 }
1da177e4
LT
1390 submit_bio(rw, bio);
1391 if (size)
1392 goto next_chunk;
1393 } else {
ec53d1db
DC
1394 /*
1395 * if we get here, no pages were added to the bio. However,
1396 * we can't just error out here - if the pages are locked then
1397 * we have to unlock them otherwise we can hang on a later
1398 * access to the page.
1399 */
ce8e922c 1400 xfs_buf_ioerror(bp, EIO);
ec53d1db
DC
1401 if (bp->b_flags & _XBF_PAGE_LOCKED) {
1402 int i;
1403 for (i = 0; i < bp->b_page_count; i++)
1404 unlock_page(bp->b_pages[i]);
1405 }
1406 bio_put(bio);
1da177e4
LT
1407 }
1408}
1409
1da177e4 1410int
ce8e922c
NS
1411xfs_buf_iorequest(
1412 xfs_buf_t *bp)
1da177e4 1413{
0b1b213f 1414 trace_xfs_buf_iorequest(bp, _RET_IP_);
1da177e4 1415
ce8e922c
NS
1416 if (bp->b_flags & XBF_DELWRI) {
1417 xfs_buf_delwri_queue(bp, 1);
1da177e4
LT
1418 return 0;
1419 }
1420
ce8e922c
NS
1421 if (bp->b_flags & XBF_WRITE) {
1422 xfs_buf_wait_unpin(bp);
1da177e4
LT
1423 }
1424
ce8e922c 1425 xfs_buf_hold(bp);
1da177e4
LT
1426
1427 /* Set the count to 1 initially, this will stop an I/O
1428 * completion callout which happens before we have started
ce8e922c 1429 * all the I/O from calling xfs_buf_ioend too early.
1da177e4 1430 */
ce8e922c
NS
1431 atomic_set(&bp->b_io_remaining, 1);
1432 _xfs_buf_ioapply(bp);
1433 _xfs_buf_ioend(bp, 0);
1da177e4 1434
ce8e922c 1435 xfs_buf_rele(bp);
1da177e4
LT
1436 return 0;
1437}
1438
1439/*
ce8e922c
NS
1440 * Waits for I/O to complete on the buffer supplied.
1441 * It returns immediately if no I/O is pending.
1442 * It returns the I/O error code, if any, or 0 if there was no error.
1da177e4
LT
1443 */
1444int
ce8e922c
NS
1445xfs_buf_iowait(
1446 xfs_buf_t *bp)
1da177e4 1447{
0b1b213f
CH
1448 trace_xfs_buf_iowait(bp, _RET_IP_);
1449
ce8e922c
NS
1450 if (atomic_read(&bp->b_io_remaining))
1451 blk_run_address_space(bp->b_target->bt_mapping);
b4dd330b 1452 wait_for_completion(&bp->b_iowait);
0b1b213f
CH
1453
1454 trace_xfs_buf_iowait_done(bp, _RET_IP_);
ce8e922c 1455 return bp->b_error;
1da177e4
LT
1456}
1457
ce8e922c
NS
1458xfs_caddr_t
1459xfs_buf_offset(
1460 xfs_buf_t *bp,
1da177e4
LT
1461 size_t offset)
1462{
1463 struct page *page;
1464
ce8e922c
NS
1465 if (bp->b_flags & XBF_MAPPED)
1466 return XFS_BUF_PTR(bp) + offset;
1da177e4 1467
ce8e922c
NS
1468 offset += bp->b_offset;
1469 page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1470 return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1da177e4
LT
1471}
1472
1473/*
1da177e4
LT
1474 * Move data into or out of a buffer.
1475 */
1476void
ce8e922c
NS
1477xfs_buf_iomove(
1478 xfs_buf_t *bp, /* buffer to process */
1da177e4
LT
1479 size_t boff, /* starting buffer offset */
1480 size_t bsize, /* length to copy */
b9c48649 1481 void *data, /* data address */
ce8e922c 1482 xfs_buf_rw_t mode) /* read/write/zero flag */
1da177e4
LT
1483{
1484 size_t bend, cpoff, csize;
1485 struct page *page;
1486
1487 bend = boff + bsize;
1488 while (boff < bend) {
ce8e922c
NS
1489 page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1490 cpoff = xfs_buf_poff(boff + bp->b_offset);
1da177e4 1491 csize = min_t(size_t,
ce8e922c 1492 PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1da177e4
LT
1493
1494 ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1495
1496 switch (mode) {
ce8e922c 1497 case XBRW_ZERO:
1da177e4
LT
1498 memset(page_address(page) + cpoff, 0, csize);
1499 break;
ce8e922c 1500 case XBRW_READ:
1da177e4
LT
1501 memcpy(data, page_address(page) + cpoff, csize);
1502 break;
ce8e922c 1503 case XBRW_WRITE:
1da177e4
LT
1504 memcpy(page_address(page) + cpoff, data, csize);
1505 }
1506
1507 boff += csize;
1508 data += csize;
1509 }
1510}
1511
1512/*
ce8e922c 1513 * Handling of buffer targets (buftargs).
1da177e4
LT
1514 */
1515
1516/*
430cbeb8
DC
1517 * Wait for any bufs with callbacks that have been submitted but have not yet
1518 * returned. These buffers will have an elevated hold count, so wait on those
1519 * while freeing all the buffers only held by the LRU.
1da177e4
LT
1520 */
1521void
1522xfs_wait_buftarg(
74f75a0c 1523 struct xfs_buftarg *btp)
1da177e4 1524{
430cbeb8
DC
1525 struct xfs_buf *bp;
1526
1527restart:
1528 spin_lock(&btp->bt_lru_lock);
1529 while (!list_empty(&btp->bt_lru)) {
1530 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1531 if (atomic_read(&bp->b_hold) > 1) {
1532 spin_unlock(&btp->bt_lru_lock);
26af6552 1533 delay(100);
430cbeb8 1534 goto restart;
1da177e4 1535 }
430cbeb8
DC
1536 /*
1537 * clear the LRU reference count so the bufer doesn't get
1538 * ignored in xfs_buf_rele().
1539 */
1540 atomic_set(&bp->b_lru_ref, 0);
1541 spin_unlock(&btp->bt_lru_lock);
1542 xfs_buf_rele(bp);
1543 spin_lock(&btp->bt_lru_lock);
1da177e4 1544 }
430cbeb8 1545 spin_unlock(&btp->bt_lru_lock);
1da177e4
LT
1546}
1547
ff57ab21
DC
1548int
1549xfs_buftarg_shrink(
1550 struct shrinker *shrink,
1551 int nr_to_scan,
1552 gfp_t mask)
a6867a68 1553{
ff57ab21
DC
1554 struct xfs_buftarg *btp = container_of(shrink,
1555 struct xfs_buftarg, bt_shrinker);
430cbeb8
DC
1556 struct xfs_buf *bp;
1557 LIST_HEAD(dispose);
1558
1559 if (!nr_to_scan)
1560 return btp->bt_lru_nr;
1561
1562 spin_lock(&btp->bt_lru_lock);
1563 while (!list_empty(&btp->bt_lru)) {
1564 if (nr_to_scan-- <= 0)
1565 break;
1566
1567 bp = list_first_entry(&btp->bt_lru, struct xfs_buf, b_lru);
1568
1569 /*
1570 * Decrement the b_lru_ref count unless the value is already
1571 * zero. If the value is already zero, we need to reclaim the
1572 * buffer, otherwise it gets another trip through the LRU.
1573 */
1574 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1575 list_move_tail(&bp->b_lru, &btp->bt_lru);
1576 continue;
1577 }
1578
1579 /*
1580 * remove the buffer from the LRU now to avoid needing another
1581 * lock round trip inside xfs_buf_rele().
1582 */
1583 list_move(&bp->b_lru, &dispose);
1584 btp->bt_lru_nr--;
ff57ab21 1585 }
430cbeb8
DC
1586 spin_unlock(&btp->bt_lru_lock);
1587
1588 while (!list_empty(&dispose)) {
1589 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1590 list_del_init(&bp->b_lru);
1591 xfs_buf_rele(bp);
1592 }
1593
1594 return btp->bt_lru_nr;
a6867a68
DC
1595}
1596
1da177e4
LT
1597void
1598xfs_free_buftarg(
b7963133
CH
1599 struct xfs_mount *mp,
1600 struct xfs_buftarg *btp)
1da177e4 1601{
ff57ab21
DC
1602 unregister_shrinker(&btp->bt_shrinker);
1603
1da177e4 1604 xfs_flush_buftarg(btp, 1);
b7963133
CH
1605 if (mp->m_flags & XFS_MOUNT_BARRIER)
1606 xfs_blkdev_issue_flush(btp);
ce8e922c 1607 iput(btp->bt_mapping->host);
a6867a68 1608
a6867a68 1609 kthread_stop(btp->bt_task);
f0e2d93c 1610 kmem_free(btp);
1da177e4
LT
1611}
1612
1da177e4
LT
1613STATIC int
1614xfs_setsize_buftarg_flags(
1615 xfs_buftarg_t *btp,
1616 unsigned int blocksize,
1617 unsigned int sectorsize,
1618 int verbose)
1619{
ce8e922c
NS
1620 btp->bt_bsize = blocksize;
1621 btp->bt_sshift = ffs(sectorsize) - 1;
1622 btp->bt_smask = sectorsize - 1;
1da177e4 1623
ce8e922c 1624 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1da177e4
LT
1625 printk(KERN_WARNING
1626 "XFS: Cannot set_blocksize to %u on device %s\n",
1627 sectorsize, XFS_BUFTARG_NAME(btp));
1628 return EINVAL;
1629 }
1630
1631 if (verbose &&
1632 (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1633 printk(KERN_WARNING
1634 "XFS: %u byte sectors in use on device %s. "
1635 "This is suboptimal; %u or greater is ideal.\n",
1636 sectorsize, XFS_BUFTARG_NAME(btp),
1637 (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1638 }
1639
1640 return 0;
1641}
1642
1643/*
ce8e922c
NS
1644 * When allocating the initial buffer target we have not yet
1645 * read in the superblock, so don't know what sized sectors
1646 * are being used is at this early stage. Play safe.
1647 */
1da177e4
LT
1648STATIC int
1649xfs_setsize_buftarg_early(
1650 xfs_buftarg_t *btp,
1651 struct block_device *bdev)
1652{
1653 return xfs_setsize_buftarg_flags(btp,
e1defc4f 1654 PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
1da177e4
LT
1655}
1656
1657int
1658xfs_setsize_buftarg(
1659 xfs_buftarg_t *btp,
1660 unsigned int blocksize,
1661 unsigned int sectorsize)
1662{
1663 return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1664}
1665
1666STATIC int
1667xfs_mapping_buftarg(
1668 xfs_buftarg_t *btp,
1669 struct block_device *bdev)
1670{
1671 struct backing_dev_info *bdi;
1672 struct inode *inode;
1673 struct address_space *mapping;
f5e54d6e 1674 static const struct address_space_operations mapping_aops = {
1da177e4 1675 .sync_page = block_sync_page,
e965f963 1676 .migratepage = fail_migrate_page,
1da177e4
LT
1677 };
1678
1679 inode = new_inode(bdev->bd_inode->i_sb);
1680 if (!inode) {
1681 printk(KERN_WARNING
1682 "XFS: Cannot allocate mapping inode for device %s\n",
1683 XFS_BUFTARG_NAME(btp));
1684 return ENOMEM;
1685 }
85fe4025 1686 inode->i_ino = get_next_ino();
1da177e4
LT
1687 inode->i_mode = S_IFBLK;
1688 inode->i_bdev = bdev;
1689 inode->i_rdev = bdev->bd_dev;
1690 bdi = blk_get_backing_dev_info(bdev);
1691 if (!bdi)
1692 bdi = &default_backing_dev_info;
1693 mapping = &inode->i_data;
1694 mapping->a_ops = &mapping_aops;
1695 mapping->backing_dev_info = bdi;
1696 mapping_set_gfp_mask(mapping, GFP_NOFS);
ce8e922c 1697 btp->bt_mapping = mapping;
1da177e4
LT
1698 return 0;
1699}
1700
a6867a68
DC
1701STATIC int
1702xfs_alloc_delwrite_queue(
e2a07812
JE
1703 xfs_buftarg_t *btp,
1704 const char *fsname)
a6867a68 1705{
a6867a68 1706 INIT_LIST_HEAD(&btp->bt_delwrite_queue);
007c61c6 1707 spin_lock_init(&btp->bt_delwrite_lock);
a6867a68 1708 btp->bt_flags = 0;
e2a07812 1709 btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd/%s", fsname);
ff57ab21
DC
1710 if (IS_ERR(btp->bt_task))
1711 return PTR_ERR(btp->bt_task);
1712 return 0;
a6867a68
DC
1713}
1714
1da177e4
LT
1715xfs_buftarg_t *
1716xfs_alloc_buftarg(
ebad861b 1717 struct xfs_mount *mp,
1da177e4 1718 struct block_device *bdev,
e2a07812
JE
1719 int external,
1720 const char *fsname)
1da177e4
LT
1721{
1722 xfs_buftarg_t *btp;
1723
1724 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1725
ebad861b 1726 btp->bt_mount = mp;
ce8e922c
NS
1727 btp->bt_dev = bdev->bd_dev;
1728 btp->bt_bdev = bdev;
430cbeb8
DC
1729 INIT_LIST_HEAD(&btp->bt_lru);
1730 spin_lock_init(&btp->bt_lru_lock);
1da177e4
LT
1731 if (xfs_setsize_buftarg_early(btp, bdev))
1732 goto error;
1733 if (xfs_mapping_buftarg(btp, bdev))
1734 goto error;
e2a07812 1735 if (xfs_alloc_delwrite_queue(btp, fsname))
a6867a68 1736 goto error;
ff57ab21
DC
1737 btp->bt_shrinker.shrink = xfs_buftarg_shrink;
1738 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1739 register_shrinker(&btp->bt_shrinker);
1da177e4
LT
1740 return btp;
1741
1742error:
f0e2d93c 1743 kmem_free(btp);
1da177e4
LT
1744 return NULL;
1745}
1746
1747
1748/*
ce8e922c 1749 * Delayed write buffer handling
1da177e4 1750 */
1da177e4 1751STATIC void
ce8e922c
NS
1752xfs_buf_delwri_queue(
1753 xfs_buf_t *bp,
1da177e4
LT
1754 int unlock)
1755{
ce8e922c
NS
1756 struct list_head *dwq = &bp->b_target->bt_delwrite_queue;
1757 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
a6867a68 1758
0b1b213f
CH
1759 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1760
ce8e922c 1761 ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1da177e4 1762
a6867a68 1763 spin_lock(dwlk);
1da177e4 1764 /* If already in the queue, dequeue and place at tail */
ce8e922c
NS
1765 if (!list_empty(&bp->b_list)) {
1766 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1767 if (unlock)
1768 atomic_dec(&bp->b_hold);
1769 list_del(&bp->b_list);
1da177e4
LT
1770 }
1771
c9c12971
DC
1772 if (list_empty(dwq)) {
1773 /* start xfsbufd as it is about to have something to do */
1774 wake_up_process(bp->b_target->bt_task);
1775 }
1776
ce8e922c
NS
1777 bp->b_flags |= _XBF_DELWRI_Q;
1778 list_add_tail(&bp->b_list, dwq);
1779 bp->b_queuetime = jiffies;
a6867a68 1780 spin_unlock(dwlk);
1da177e4
LT
1781
1782 if (unlock)
ce8e922c 1783 xfs_buf_unlock(bp);
1da177e4
LT
1784}
1785
1786void
ce8e922c
NS
1787xfs_buf_delwri_dequeue(
1788 xfs_buf_t *bp)
1da177e4 1789{
ce8e922c 1790 spinlock_t *dwlk = &bp->b_target->bt_delwrite_lock;
1da177e4
LT
1791 int dequeued = 0;
1792
a6867a68 1793 spin_lock(dwlk);
ce8e922c
NS
1794 if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1795 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1796 list_del_init(&bp->b_list);
1da177e4
LT
1797 dequeued = 1;
1798 }
ce8e922c 1799 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
a6867a68 1800 spin_unlock(dwlk);
1da177e4
LT
1801
1802 if (dequeued)
ce8e922c 1803 xfs_buf_rele(bp);
1da177e4 1804
0b1b213f 1805 trace_xfs_buf_delwri_dequeue(bp, _RET_IP_);
1da177e4
LT
1806}
1807
d808f617
DC
1808/*
1809 * If a delwri buffer needs to be pushed before it has aged out, then promote
1810 * it to the head of the delwri queue so that it will be flushed on the next
1811 * xfsbufd run. We do this by resetting the queuetime of the buffer to be older
1812 * than the age currently needed to flush the buffer. Hence the next time the
1813 * xfsbufd sees it is guaranteed to be considered old enough to flush.
1814 */
1815void
1816xfs_buf_delwri_promote(
1817 struct xfs_buf *bp)
1818{
1819 struct xfs_buftarg *btp = bp->b_target;
1820 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10) + 1;
1821
1822 ASSERT(bp->b_flags & XBF_DELWRI);
1823 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1824
1825 /*
1826 * Check the buffer age before locking the delayed write queue as we
1827 * don't need to promote buffers that are already past the flush age.
1828 */
1829 if (bp->b_queuetime < jiffies - age)
1830 return;
1831 bp->b_queuetime = jiffies - age;
1832 spin_lock(&btp->bt_delwrite_lock);
1833 list_move(&bp->b_list, &btp->bt_delwrite_queue);
1834 spin_unlock(&btp->bt_delwrite_lock);
1835}
1836
1da177e4 1837STATIC void
ce8e922c 1838xfs_buf_runall_queues(
1da177e4
LT
1839 struct workqueue_struct *queue)
1840{
1841 flush_workqueue(queue);
1842}
1843
585e6d88
DC
1844/*
1845 * Move as many buffers as specified to the supplied list
1846 * idicating if we skipped any buffers to prevent deadlocks.
1847 */
1848STATIC int
1849xfs_buf_delwri_split(
1850 xfs_buftarg_t *target,
1851 struct list_head *list,
5e6a07df 1852 unsigned long age)
585e6d88
DC
1853{
1854 xfs_buf_t *bp, *n;
1855 struct list_head *dwq = &target->bt_delwrite_queue;
1856 spinlock_t *dwlk = &target->bt_delwrite_lock;
1857 int skipped = 0;
5e6a07df 1858 int force;
585e6d88 1859
5e6a07df 1860 force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
585e6d88
DC
1861 INIT_LIST_HEAD(list);
1862 spin_lock(dwlk);
1863 list_for_each_entry_safe(bp, n, dwq, b_list) {
585e6d88
DC
1864 ASSERT(bp->b_flags & XBF_DELWRI);
1865
4d16e924 1866 if (!XFS_BUF_ISPINNED(bp) && !xfs_buf_cond_lock(bp)) {
5e6a07df 1867 if (!force &&
585e6d88
DC
1868 time_before(jiffies, bp->b_queuetime + age)) {
1869 xfs_buf_unlock(bp);
1870 break;
1871 }
1872
1873 bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1874 _XBF_RUN_QUEUES);
1875 bp->b_flags |= XBF_WRITE;
1876 list_move_tail(&bp->b_list, list);
bfe27419 1877 trace_xfs_buf_delwri_split(bp, _RET_IP_);
585e6d88
DC
1878 } else
1879 skipped++;
1880 }
1881 spin_unlock(dwlk);
1882
1883 return skipped;
1884
1885}
1886
089716aa
DC
1887/*
1888 * Compare function is more complex than it needs to be because
1889 * the return value is only 32 bits and we are doing comparisons
1890 * on 64 bit values
1891 */
1892static int
1893xfs_buf_cmp(
1894 void *priv,
1895 struct list_head *a,
1896 struct list_head *b)
1897{
1898 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1899 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1900 xfs_daddr_t diff;
1901
1902 diff = ap->b_bn - bp->b_bn;
1903 if (diff < 0)
1904 return -1;
1905 if (diff > 0)
1906 return 1;
1907 return 0;
1908}
1909
1910void
1911xfs_buf_delwri_sort(
1912 xfs_buftarg_t *target,
1913 struct list_head *list)
1914{
1915 list_sort(NULL, list, xfs_buf_cmp);
1916}
1917
1da177e4 1918STATIC int
23ea4032 1919xfsbufd(
585e6d88 1920 void *data)
1da177e4 1921{
089716aa 1922 xfs_buftarg_t *target = (xfs_buftarg_t *)data;
1da177e4 1923
1da177e4
LT
1924 current->flags |= PF_MEMALLOC;
1925
978c7b2f
RW
1926 set_freezable();
1927
1da177e4 1928 do {
c9c12971
DC
1929 long age = xfs_buf_age_centisecs * msecs_to_jiffies(10);
1930 long tout = xfs_buf_timer_centisecs * msecs_to_jiffies(10);
089716aa
DC
1931 int count = 0;
1932 struct list_head tmp;
c9c12971 1933
3e1d1d28 1934 if (unlikely(freezing(current))) {
ce8e922c 1935 set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
3e1d1d28 1936 refrigerator();
abd0cf7a 1937 } else {
ce8e922c 1938 clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
abd0cf7a 1939 }
1da177e4 1940
c9c12971
DC
1941 /* sleep for a long time if there is nothing to do. */
1942 if (list_empty(&target->bt_delwrite_queue))
1943 tout = MAX_SCHEDULE_TIMEOUT;
1944 schedule_timeout_interruptible(tout);
1da177e4 1945
c9c12971 1946 xfs_buf_delwri_split(target, &tmp, age);
089716aa 1947 list_sort(NULL, &tmp, xfs_buf_cmp);
1da177e4 1948 while (!list_empty(&tmp)) {
089716aa
DC
1949 struct xfs_buf *bp;
1950 bp = list_first_entry(&tmp, struct xfs_buf, b_list);
ce8e922c 1951 list_del_init(&bp->b_list);
939d723b 1952 xfs_bdstrat_cb(bp);
585e6d88 1953 count++;
1da177e4 1954 }
f07c2250
NS
1955 if (count)
1956 blk_run_address_space(target->bt_mapping);
1da177e4 1957
4df08c52 1958 } while (!kthread_should_stop());
1da177e4 1959
4df08c52 1960 return 0;
1da177e4
LT
1961}
1962
1963/*
ce8e922c
NS
1964 * Go through all incore buffers, and release buffers if they belong to
1965 * the given device. This is used in filesystem error handling to
1966 * preserve the consistency of its metadata.
1da177e4
LT
1967 */
1968int
1969xfs_flush_buftarg(
585e6d88
DC
1970 xfs_buftarg_t *target,
1971 int wait)
1da177e4 1972{
089716aa 1973 xfs_buf_t *bp;
585e6d88 1974 int pincount = 0;
089716aa
DC
1975 LIST_HEAD(tmp_list);
1976 LIST_HEAD(wait_list);
1da177e4 1977
c626d174 1978 xfs_buf_runall_queues(xfsconvertd_workqueue);
ce8e922c
NS
1979 xfs_buf_runall_queues(xfsdatad_workqueue);
1980 xfs_buf_runall_queues(xfslogd_workqueue);
1da177e4 1981
5e6a07df 1982 set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
089716aa 1983 pincount = xfs_buf_delwri_split(target, &tmp_list, 0);
1da177e4
LT
1984
1985 /*
089716aa
DC
1986 * Dropped the delayed write list lock, now walk the temporary list.
1987 * All I/O is issued async and then if we need to wait for completion
1988 * we do that after issuing all the IO.
1da177e4 1989 */
089716aa
DC
1990 list_sort(NULL, &tmp_list, xfs_buf_cmp);
1991 while (!list_empty(&tmp_list)) {
1992 bp = list_first_entry(&tmp_list, struct xfs_buf, b_list);
585e6d88 1993 ASSERT(target == bp->b_target);
089716aa
DC
1994 list_del_init(&bp->b_list);
1995 if (wait) {
ce8e922c 1996 bp->b_flags &= ~XBF_ASYNC;
089716aa
DC
1997 list_add(&bp->b_list, &wait_list);
1998 }
939d723b 1999 xfs_bdstrat_cb(bp);
1da177e4
LT
2000 }
2001
089716aa
DC
2002 if (wait) {
2003 /* Expedite and wait for IO to complete. */
f07c2250 2004 blk_run_address_space(target->bt_mapping);
089716aa
DC
2005 while (!list_empty(&wait_list)) {
2006 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
f07c2250 2007
089716aa 2008 list_del_init(&bp->b_list);
1a1a3e97 2009 xfs_buf_iowait(bp);
089716aa
DC
2010 xfs_buf_relse(bp);
2011 }
1da177e4
LT
2012 }
2013
1da177e4
LT
2014 return pincount;
2015}
2016
04d8b284 2017int __init
ce8e922c 2018xfs_buf_init(void)
1da177e4 2019{
8758280f
NS
2020 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2021 KM_ZONE_HWALIGN, NULL);
ce8e922c 2022 if (!xfs_buf_zone)
0b1b213f 2023 goto out;
04d8b284 2024
51749e47 2025 xfslogd_workqueue = alloc_workqueue("xfslogd",
6370a6ad 2026 WQ_MEM_RECLAIM | WQ_HIGHPRI, 1);
23ea4032 2027 if (!xfslogd_workqueue)
04d8b284 2028 goto out_free_buf_zone;
1da177e4 2029
b4337692 2030 xfsdatad_workqueue = create_workqueue("xfsdatad");
23ea4032
CH
2031 if (!xfsdatad_workqueue)
2032 goto out_destroy_xfslogd_workqueue;
1da177e4 2033
c626d174
DC
2034 xfsconvertd_workqueue = create_workqueue("xfsconvertd");
2035 if (!xfsconvertd_workqueue)
2036 goto out_destroy_xfsdatad_workqueue;
2037
23ea4032 2038 return 0;
1da177e4 2039
c626d174
DC
2040 out_destroy_xfsdatad_workqueue:
2041 destroy_workqueue(xfsdatad_workqueue);
23ea4032
CH
2042 out_destroy_xfslogd_workqueue:
2043 destroy_workqueue(xfslogd_workqueue);
23ea4032 2044 out_free_buf_zone:
ce8e922c 2045 kmem_zone_destroy(xfs_buf_zone);
0b1b213f 2046 out:
8758280f 2047 return -ENOMEM;
1da177e4
LT
2048}
2049
1da177e4 2050void
ce8e922c 2051xfs_buf_terminate(void)
1da177e4 2052{
c626d174 2053 destroy_workqueue(xfsconvertd_workqueue);
04d8b284
CH
2054 destroy_workqueue(xfsdatad_workqueue);
2055 destroy_workqueue(xfslogd_workqueue);
ce8e922c 2056 kmem_zone_destroy(xfs_buf_zone);
1da177e4 2057}
e6a0e9cd
TS
2058
2059#ifdef CONFIG_KDB_MODULES
2060struct list_head *
2061xfs_get_buftarg_list(void)
2062{
2063 return &xfs_buftarg_list;
2064}
2065#endif
This page took 1.56647 seconds and 5 git commands to generate.